
KITE for webrtc testing
04-2018 Update
W3C WebRTC interim meeting

WebRTC testing original sins
Original sin => complexify (add features inside) instead of modularity

-> trying to make wpt selenium aware

-> trying to make wpt tests asymmetric and synchronized

-> trying to force a tool (travis)

-> trying to force one signalling

KITE allows to run the unmodified wpt tests in any configurations and to send the
result to anything you want, without assumption.

Overview
Goal: testing p2p communication between two webrtc-capable [browsers]

W3C Goal: test webrtc APIs to proceed to standard (compliance)

Browser vendors: fasten implementation, reference test (compliance)
 Regression testing, early warning

All: interoperability between webrtc capable [clients], and [back-ends]
 Using any signaling protocol.

Open Source code with currently two W3C Members contributing: Google and
CoSMo.

KITE Interop: webdriver extension work (w Apple)
Permissions

Special case of GUM as a permission proxy
Network / ice candidates
Media device and listing

Fake Media

HTTPS origin

...

KITE Interop SE Grid - Browser configs
(without saucelab, without Mobile, Without Electron)

KITE Interop: Whatever app, whatever back-end
Webrtc does not define signalling, nor back-end. How to test all cases? You also
need to be able to have discovery and handshake before testing connections.

=> KITE is app / back-end independant, and does not assume anything about the
test. The test is the part where which app and which back-end will be used is
decided.

- Run any client against same back end (end-to-end interop)
- reuse tests/runs against prod, staging, dev, or local back-end
- Reuse test/runs against different apps all together.

Examples to come: WPT, apprtc, jitsi, ….

KITE
Modular
Design

SE Grid

Running test

Test own Infra

Tests
B configs
#Browsers

Results
(JSON)

KITE 1-browser : auto WPT runs
(2d of work for all available configs)

KITE 2-browsers: appRTC runs and Stats integration
Daily runs on webrtc.org !

Analysis and bug reports against
Browsers, webdrivers impl, ...

KITE 3-browsers: Jitsi runs

KITE Update: new tests for multiparty, multistream, simulcast ...

Multiparty -> jitsi test. No limit in the number of parties … in KITE …. :-)

Multistream -> testing against Unified Plan, helping chrome delivering faster
(see next slide)

Simulcast -> Requires SFU. Only sender->SFU defined in webrtc 1.0, logic for
layer switching not defined. Lots of arbitrary decisions for now. See next slides.

KITE: multistream and Unified Plan
Multi-stream (Unified plan):
- It runs a local signaling server (node), currently with and without adapter.js
- Using streams from html video elements for peer connection.
- The test verifies :

o that the generated SDPs are compliant with the unified plan format (sender).

o the received stream ids against ids announced in the SDP offer (receiver).

o that media is flowing (with canvas sum as usual).

Results (4/12):
- Firefox: it works as expected, even without adapter.js
- Chrome: there are some errors, and the flags provided do not seem to work yet. In Progress.

KITE: Simulcast
Simulcast
- the dedicated app runs over https and is available at https://simulcast-test.dev.cosmosoftware.io/
- The test verifies the following (not in order):

· echoed stream is displayed from loopback peerconnection.

· stream is sent back from SFU (validates it received it, format was correct, and it could
extract the right layer).

· access to SDP offer/answer from peerconnection object.

· SDP offer/answer format.

Results (4/12):
- it works as expected on Firefox only, but using the SDP format from the older draft. However, that should
be considered a failure for strict compliance testing, since the SDP is not using the latest specs format.

https://simulcast-test.dev.cosmosoftware.io/

KITE: Load and Infra Testing - Config file
Different configuration file with the notion of time/frequency, and multiplier:

For example, to run a test at midnight with 50,000 Chrome at a time only need one
entry to be defined:

[0 0 0, cr 53 win 10, 50000]

The variations across time are equally easy to write “crontab-style”, e.g. add one
Chrome 53 on Windows 10 every 20 seconds:

[*/20 * *, cr 53 win 10, 1]

KITE: Load Testing - Grid Manager
- Scalability:

- Multiple SE hubs
- Allowed for Multi cloud vendors

- On-demand spawning/closing of hubs/nodes
- On-Demand network configuration /

instrumentation (with callstats.io)
- Test bandwidth estimation
- Test simulcast / SVC / bitrate adaptation vs bandwidth

scenarii
- Test RTX / RED / FEC behavior against network (jitter,

packet loss, …)

- Tested against most open-source webrtc SFU,
results proposed to IPTComm

- Tested with a customer up to 50,000 concurrent
clients (streaming use case)

