
SDP Offer/Answer Details:
Resource & State Management

Adam Roach
Monday, November 11th, Shenzen, China

Sunday, November 10th, Kirkland, WA, USA

What are we talking about?
•  When do resources get reserved?
•  When do resources get released?
•  What operations impact resource state?
•  For the most part, I’m hoping we can get

additional documentation around these
behaviors in the WebRTC API spec.

ICE CANDIDATES

ICE Candidate Gathering
•  There are several places where an implementation

can reasonably start collecting candidates (number
to be collected is impacted by bundling constraint):
–  PC Creation: Optimistically begin gathering candidates

for fastest possible connection establishment.
–  AddStream: Could hold off gathering a candidate until

we know there’s going to be a need for it.
–  CreateOffer / CreateAnswer: Even later in the cycle,

allows for being even more conservative by taking into
account final configuration of streams and constraints.

–  SetLocalDescription / SetRemoveDescription: Last
rational place to gather candidates, since ICE
processing needs to start.

Implementation Visibility
•  Although the javascript apps could (probably)

detect differences among these behaviors if
they went looking for them, all of them are
consistent with the currently defined API.

•  In other words, regardless of what the browser
does in this regard, any app written to the spec
will behave the same regardless of which of
these choices the browser they’re running in
take.

ICE Candidates: Proposal
•  Allow implementations broad discretion in

when to begin gathering, so long as key
criteria are met:
1.  Candidate gathering begins no later than the

success callback for CreateOffer/CreateAnswer.
2.  Candidates for unused media sections are freed

upon a successful Set*Description containing an
answer.

3.  Unused candidates for used media sections are
freed upon ICE completion.

OTHER RESOURCES

Other Resource Reservation
(Codecs, Hardware)
•  Input resources reserved via gUM
•  Input resources released by MediaStreamTrack.stop()
•  Codecs reserved by:

–  AddStream
–  CreateOffer with OfferToReceive*: true
–  SetRemoteDescription(offer)

•  Codecs freed by:
–  Set*Description(answer)
–  RemoveStream
–  MediaStreamTrack.stop()

•  Output resources reserved and freed as normal for
<audio> and <video> elements

Media Transmission and
Reception
•  I think this is straightforward and well-

understood.
– Need to be ready to receive as soon as

SetLocalDescription is called.
– Can begin sending as soon as

SetRemoteDescription is called.

•  This is spelled out in jsep – I don’t think it
makes sense to reiterate it in the WebRTC
spec.

SESSION ROLLBACK

Local Session State Rollback:
SetLocalDescription handling
•  Call CreateOffer
•  Call SetLocalDescription (offer)
•  Send offer to remote party

–  At this point, we need to be willing to receive media conforming
to either the old description (let’s call it “alpha”) or the new
description (let’s call it “beta”).

•  Receive indication that the remote party rejected our offer
•  Need to return local state machine to idle, return session

description to pre-offer values
•  Jsep-05 suggests calling SetLocalOffer with type=“rollback”

–  Presumably, the body of this SetLocalOffer will be “alpha?” You
can’t ask the PC for this description (is that a bug?). Do we really
want to require the javascript to track this?

•  Proposal: use type of “rollback,” sdp string ignored:���
SetLocalOffer(new RTCSessionDescription({type:“rollback”}))

Local Session State Rollback:
SetRemoteDescription handling
•  Jsep-05 also mentions the use of “rollback” in

the context of SetRemoteDescription.
– What use case would necessitate this?

•  SetRemoteDescription(offer): if the JS didn’t want the
offer to be processed, it rejects it before calling
SetRemoteDescription.

•  SetRemoteDescription(answer): Rolling back is ill-
defined. Are we rolling back to the state between the
offer and the answer, or the state prior to the offer? How
can we possibly expect to get the remote side into a
shared state if we do this?

•  Proposal: SetRemoteDescription(rollback)
always throws an InvalidStateError.

PARTIAL OFFER/PARTIAL
ANSWER MECHANISM

Requesting Partial Offers
•  Implementations can request partial offers by

adding a “partial:true” constraint to createOffer.
•  If the changes since the most recent O/A exchange

can be expressed as a partial offer, then the
RTCSessionDescription passed to the success
callback is of type:partialoffer, and the sdp is of the
format described in draft-roach-mmusic-pof-pan.

•  If the changes require a full O/A exchange, then the
success callback is still called, but the
RTCSessionDescription is of type:offer.

•  If the session is rolled back, it rolls back only the
partial offer, not the previous full offer.

Processing Partial Offers
•  If setRemoteDescription is called with

type:partialoffer, then the subsequent
createAnswer must generate a
type:partialanswer.
– This does not require a partial:true constraint.
–  If additional changes are needed to the session,

then an negotiationneeded event is also
generated.

CONTROLLING STREAMS IN A
SESSION

Stream Pause/Unpause/Rejection/
Removal
•  We currently have implementors asking us

how to do this. They are more than a little
surprised to learn that it’s not currently defined
in the specification.

•  Luckily, I think we can add this functionality
without changing the API by simply being
clearer about the behavior implied by certain
operations
– And, even if we don’t want to add pause/unpause/

reject/remove, we need to be clear about what
these operations mean anyway.

Proposal: Pause/Resume Sending
•  Set enabled=false on a MediaStreamTrack

that you have added to a PeerConnection.
– This information will cause the PeerConnection

to stop sending the associated RTP.
– This will also trigger a negotiationneeded to set

the corresponding m-line to recvonly or
inactive.

•  To unpause, set enabled back to true.
– The preceding steps are reversed.

Proposal: Pause/Resume Receiving
•  Set enabled=false on the MediaStreamTrack

that you received from the PeerConnection
via onaddstream.
– This will cause the MST to stop providing

media to whatever sink it has been wired to.
– This also triggers a negotiationneeded event.

The subsequent CreateOffer sets the
corresponding m-line to sendonly or inactive,
as appropriate.

•  Unpause by setting enabled back to true.

Proposal: Rejecting an Offered
Stream

•  To reject a track that has been offered, call
stop() on the corresponding
MediaStreamTrack after it has been
received via onaddstream, but before
calling CreateAnswer. This will cause it to
be rejected with a port number of zero.

Proposal: Removing a Stream
•  Call stop() on the corresponding MediaStreamTrack

object.
–  This will immediately stop transmitting associated RTP.
–  This will also trigger a negotiationneeded event. If both

the sending and receiving MST associated with that m-
line have been stop()ed, then the subsequent
CreateOffer sets the port on the corresponding m-line
to zero.

•  If only one of the two MSTs associated with that m-
line has been stop()ed, then the subsequent
CreateOffer sets the corresponding m-line to
sendonly, receiveonly, or inactive, as appropriate.

ONE MORE TINY ISSUE

Minor Issue: SDP Operation
Queuing Spec Bug
•  Current spec: “The general idea is to have only one

among createOffer, setLocalDescription,
createAnswer and setRemoteDescription executing
at any given time. If subsequent calls are made
while one of them is still executing, they are added
to a queue and processed when the previous
operation is fully completed.”

•  I’m pretty sure this list is missing addIceCandidate.
–  Consider queuing setRemoteDescription/

setRemoteDescription/addIceCandidate: which sRD
should the aIC apply to?

•  Proposal: add addIceCandidate to the list.

