

partial interface RTCRtpSender {

 readonly attribute RTCDtlsTransport transport; // And rtcpTransport

}

partial interface RTCRtpReceiver {

 readonly attribute RTCDtlsTransport transport; // And rtcpTransport

}

interface RTCDtlsTransport {

 readonly attribute RTCIceTransport transport;

 readonly attribute RTCDtlsTransportState state;

 sequence<ArrayBuffer> getRemoteCertificates();

 attribute EventHandler onstatechange;

}

interface RTCIceTransport {

 readonly attribute RTCIceConnectionState state;

 RTCIceCandidatePair? getSelectedCandidatePair();

 attribute EventHandler onstatechange;

 attribute EventHandler onselectedcandidatepairchange

}

dictionary RTCIceCandidatePair {

 RTCIceCandidate local;

 RTCIceCandidate remote;

}

partial interface RTCRtpSender {

 RTCRtpParameters getParameters();

 void setParameters(RTCRtpParameters parameters);

}

dictionary RTCRtpParameters {

 sequence<RTCRtpEncodingParameters> encodings;

}

dictionary RTCRtpEncodingParameters {

 boolean active;

 RTCPriorityType priority; // high, medium, low, very-low

 unsigned long maxBitrate;

}

partial interface RTCRtpSender { // Same as RTCRtpReceiver

 static RTCRtpCapabilities getCapabilities(DOMString kind)

}

dictionary RTCRtpCapabilities {

 sequence<RTCRtpCodecCapability> codecs;

 sequence<RTCRtpHeaderExtensionCapability> headerExtensions;

}

dictionary RTCRtpCodecCapability {

 DOMString mimeType;

}

dictionary RTCRtpCodecCapability {

 DOMString uri;

}

partial interface RTCPeerConnection {

 readonly attribute RTCSctpTransport? dataTransport;

}

interface RTCSctpTransport {

 readonly attribute RTCDtlsTransport transport;

 readonly attribute unsigned long maxMessageSize;

}

partial interface RTCIceTransport {

 readonly attribute RTCIceRole role;

 readonly attribute RTCIceComponent component;

 readonly attribute RTCIceGatheringState state;

 RTCIceParameters? getLocalParameters();

 RTCIceParameters? getRemoteParameters();

 sequence<RTCIceCandidate> getLocalCandidates();

 sequence<RTCIceCandidate> getRemoteCandidates();

 attribute EventHandler ongatheringstatechange;

}

dictionary RTCIceParameters {

 DOMString usernameFragment;

 DOMString password;

}

dictionary RTCRtpParameters {

 // ...

 sequence<RTCRtpHeaderExtensionParameters> headerExtensions;

}

dictionary RTCRtpHeaderExtensionParameters {

 DOMString uri;

 unsigned short id;

 boolean encrypted;

}

dictionary RTCRtpEncodingParameters {

 unsigned long ssrc;

 RTCRtxParameters rtx; // dictionary { unsigned long ssrc; }

 RTCFecParameters fec; // dictionary { unsigned long ssrc; }

 RTCRtcpParaemeters rtcp; // dictionary { DOMString cname; boolean reducedSize; }

}

dictionary RTCRtpEncodingParameters {

 unsigned short payloadType;

}

dictionary RTCRtpParameters {

 // ...

 sequence<RTCRtpCodecParameters> codecs; // These are all read-only

}

dictionary RTCRtpCodecParameters {

 // These are all read-only.

 DOMString mimeType;

 unsigned long clockRate;

 unsigned short channels;

 DOMString sdpFmtpLine;

}

RtpSender codec selection example
// Pick dalaa if it's available

var params = sender.getParameters();

for (codec of params.codecs) {

 if (codec.mimeType == "video/dalaa") {

 params.encodings[0].payloadType = codec.payloadType;

 sender.setParameters(params);

 }

}

dictionary RTCRtpEncodingParameters {

 double resolutionScale; // 1 == full, 2 == half, 4 == quarter

 double framerateScale; // 1 == full, 2 == half, 4 == quarter

 double framerateBias; // 1.0 == framerate, 0.0 == resolution, 0.5 == default

}

partial interface PeerConnection {

 // disconnected, connecting, connected, failed

 readonly attribute PeerConnectionState connectionState;

 attribute EventHandler onconnedctionstatechange;

}

pc.onconnectionstatechange = function() {

 if (pc.connectionstate == "failed") {

 // Uh-oh!

 } else if (pc.connectionstate == "connected") {

 // Great!

 }

}

More slides: https://docs.google.

com/presentation/d/1vHTlEof4dV12iAtZ7SrchrtVK1o239pbrPi9fAutnb4/edit#slide=id.

g663e05ce9_0_0

https://docs.google.com/presentation/d/1vHTlEof4dV12iAtZ7SrchrtVK1o239pbrPi9fAutnb4/edit#slide=id.g663e05ce9_0_0
https://docs.google.com/presentation/d/1vHTlEof4dV12iAtZ7SrchrtVK1o239pbrPi9fAutnb4/edit#slide=id.g663e05ce9_0_0
https://docs.google.com/presentation/d/1vHTlEof4dV12iAtZ7SrchrtVK1o239pbrPi9fAutnb4/edit#slide=id.g663e05ce9_0_0
https://docs.google.com/presentation/d/1vHTlEof4dV12iAtZ7SrchrtVK1o239pbrPi9fAutnb4/edit#slide=id.g663e05ce9_0_0

partial interface PeerConnection {

 // The PeerConnection can't continue.

 attribute EventHandler onfatalerror;

 // The PeerConnection can continue.

 attribute EventHandler onwarning;

}

pc.onwarning = function(evt) {

 console.log(evt.message);

}

pc.onfatalerror = function(evt) {

 console.log(evt.message);

 goToBrokedUI();

}

partial interface PeerConnection {

 RtpSender createRtpSender(DOMString kind);

}

For more details, this deserves its own slide deck:

PeerConnection ICE/DTLS warmup

https://docs.google.com/presentation/d/1k5q-ja7dDYm3c78IbW0Fs78u6e1-O-FKxwP6SKi6cpA/edit#slide=id.p
https://docs.google.com/presentation/d/1k5q-ja7dDYm3c78IbW0Fs78u6e1-O-FKxwP6SKi6cpA/edit#slide=id.p

// Offer side

var sender = pc.createRtpSender("audio"); // Adds sendrecv m-line in createOffer

// ... otherwise normal offer/answer/SLD/SRD ...

// Wait for the "I really answered" bit in signalling

sender.replaceTrack(track);

// Hookup pc.getReceivers()[0].track

// Answer side

var sender = pc.createRtpSender("audio"); // Uses existing m-line in createAnswer

// ... otherwise normal offer/answer/SLD/SRD ...

// Wait for the user to really answer

// Send the "I really answered" bit

sender.replaceTrack(track);

// Hookup pc.getReceivers()[0].track

● What's the "track ID"/MSID/MID? A random ID

● Do we do anything with track-specific hardware codecs? No

● Does this create an m-line with sendrecv, sendonly, recvonly,

or inactive? sendrecv, just like addTrack

● Can we rename replaceTrack to setTrack? replaceTrack doesn't

make sense when there isn't one yet.

● Should replaceTrack cause renegotiation? If so, I vote we add

another method: setTrackWithoutRenegotiation and use that for

ICE/DTLS warmup.

● Do we need to worry about changing from sendonly/inactive to

sendrecv/recvonly? I don't think we do.

partial interface PeerConnection {

 // Note: We need to change createRtpSender to create a

 // sendonly m-line unless an RtpReceiver is also created

 // This changes the warmup example.

 RtpSender createRtpSender(DOMString kind);

 RtpReceiver createRtpReceiver(DOMString kind);

}

For more details, this deserves its own slide deck:

Remaining issues with RtpSenders/RtpReceviers and SDP

https://docs.google.com/presentation/d/1BN2GBoJvys6PbswQink4CAgrGl_ofZYEHepbExfAsF0/edit#slide=id.p
https://docs.google.com/presentation/d/1BN2GBoJvys6PbswQink4CAgrGl_ofZYEHepbExfAsF0/edit#slide=id.p

var sender = pc.addTrack(audioTrack); // audio sendrecv

var sender = pc.createRtpSender(); // video sendonly

sender.replaceTrack(videoTrack);

var receiver2 = pc.createRtpReceiver("audio"); // audio recvonly

var receiver3 = pc.createRtpReceiver("audio"); // audio recvonly

// Generates like {offerToRecevieAudio: 3, offerToReceiveVideo: 0}

// 1 audio sendrecv line

// 1 video sendonly line

// 2 audio recvonly lines

pc.createOffer();

https://docs.google.com/presentation/d/1BN2GBoJvys6PbswQink4CAgrGl_ofZYEHepbExfAsF0/edit#slide=id.p
https://docs.google.com/presentation/d/1BN2GBoJvys6PbswQink4CAgrGl_ofZYEHepbExfAsF0/edit#slide=id.p

partial interface PeerConnection {

 RTCRtpTransceiver addMedia(DOMString kind or MediaStreamTrack, RTCRtpTransceiverInit dict);

 sequence<RTCRtpTransceiver> getMedia();

}

dictionary RTCRtpTransceiverInit {

 bool send = true;

 bool receive = true;

}

interface RTCRtpTransceiver {

 readonly attribute mid; // Chosen when addMedia is called.

 // These are non-nullable. You get one, even if it isn't actively sending/receiving.

 readonly attribute RtpSender sender;

 readonly attribute RtpReceiver receiver;

 readonly attribute bool stopped;

 void stop();

}

partial interface PeerConnection {

 RTCSdpMediaSection addMedia(DOMString kind or MediaStreamTrack, RTCSdpMediaSectionInit dict);

 sequence<RTCSdpMediaSection> getSdpMediaSections();

}

dictionary RTCSdpMediaSectionInit {

 bool send = true;

 bool receive = true;

}

interface RTCSdpMediaSection {

 readonly attribute mid; // Chosen when createRtpPair is called.

 // These are non-nullable. You get one, even if it isn't actively sending/receiving.

 readonly attribute RtpSender sender;

 readonly attribute RtpReceiver receiver;

 readonly attribute bool close;

 void close();

}

// Replaces createRtpSender, and createRtpReceiver, and offerToReceiveX

pc.addMedia(track);

pc.addMedia("audio", {send: false, recv: true});

pc.addMedia("audio", {send: false, recv: true});

pc.addMedia("video", {send: true, recv: false));

// Adds 1 sendrecv audio, 2 recvonly audio, and 1 sendonly "warmup" video

pc.createOffer();

// On answer side, replace track.stop()

pc.setRemoteDescription(offer);

for (media of pc.getSdpMediaSections()) {

 if (media.receiver.kind == "video") {

 media.close();

 }

}

pc.addTrack(audioTrack)

// Send back one audio, leave two extra audio inactive, reject the video warmup

