
W3C WebRTC
WG Meeting
February 22, 2021

8:00 AM - 9:30 AM Pacific Time

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the 2nd interim meeting of 2021

of the W3C WebRTC WG!
○ During this meeting, we will discuss Testing, Media

Capture, WebRTC Extensions and Insertable
Streams.

3

About this Virtual Meeting
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/February_22_2021
● Link to latest drafts:

○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-image/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-extensions/
○ https://w3c.github.io/webrtc-stats/
○ https://w3c.github.io/mst-content-hint/
○ https://w3c.github.io/webrtc-priority/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://w3c.github.io/webrtc-dscp-exp/
○ https://github.com/w3c/webrtc-insertable-streams
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is being recorded. The recording will be public.

4

https://www.w3.org/2011/04/webrtc/wiki/February_22_2021
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://w3c.github.io/webrtc-dscp-exp/
https://github.com/w3c/webrtc-insertable-streams
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/February_22_2021
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

Issues for Discussion Today
● Testing
● Media Capture & Streams

○ Issue 529: Origin Isolation (Jan-Ivar)
● Media Capture & Streams Extensions

○ Issue 16: Transfer MediaStreamTrack (Youenn)

● WebRTC Extensions
○ Issue 52: Invalid TURN credentials: What Function Should Fail? (Henrik)
○ Issue 63: Enabling opus stereo audio without SDP munging (stereo=1) (Henrik)
○ Issue 64: Transferable RTCDataChannel (Youenn)

● WebRTC Insertable Streams
○ Issue 48: RTC transforms in workers (Youenn)

5

https://github.com/w3c/mediacapture-main/issues/529
https://github.com/w3c/mediacapture-extensions/issues/16
https://github.com/w3c/webrtc-extensions/issues/52
https://github.com/w3c/webrtc-extensions/issues/63
https://github.com/w3c/webrtc-extensions/issues/64
https://github.com/w3c/webrtc-insertable-streams/issues/48

WebRTC Testing Going Forward

● What will we need to test?
● How do we achieve better test coverage?

6

What Will We Need to Test?
● Work related to WebRTC PeerConnection (WebRTC-PC):

○ WebRTC-Stats
○ WebRTC-Priority
○ WebRTC DSCP

● Extensions to WebRTC PeerConnection:
○ WebRTC Extensions
○ WebRTC-SVC

○ Insertable Streams
● Extensions to Capture, Streams and Output-related specifications, including:

○ MediaStreamTrack Insertable Streams,

○ Media Capture and Streams Extensions

○ MediaCapture Depth Stream Extensions (recently revived)

○ Content-Hints

● Standalone specifications, not related to PeerConnection or Capture, such as:
○ WebRTC-ICE (in the W3C WebRTC WG)

○ WebTransport (in the W3C WebTransport WG)

○ WebRTC-QUIC (in the ORTC CG)

○ WebCodecs (being adopted by the W3C Media WG) 7

https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/webrtc-priority/
https://www.w3.org/TR/webrtc-priority/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-svc/
https://w3c.github.io/webrtc-insertable-streams/
https://w3c.github.io/mediacapture-insertable-streams/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-depth/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-ice/
https://w3c.github.io/webtransport/
https://w3c.github.io/webrtc-quic/
https://wicg.github.io/web-codecs/

What Challenges Do We Face?
● WebRTC-Stats: Testing whether the stats are correct, not just whether they

are retrievable.
● WebRTC-Priority, WebRTC DSCP, Content-Hints: Testing whether what is

requested is provided, not just whether attributes can be set and retrieved.
○ Example: ‘text’ content-hint should activate AV1 content coding tools.

● WebRTC Extensions: Testing whether the requested RTP header
extensions (and encryption) are delivered.

● WebRTC-SVC, Insertable Streams: Testing whether it works end-to-end
(e.g. whether what is encoded/encrypted can be decrypted/decoded
after SFU processing).

● MediaStreamTrack Insertable Streams: Performance testing.

● Media Capture and Streams Extensions: testing application backward

compatibility.

8

https://w3c.github.io/webrtc-stats/
https://w3c.github.io/webrtc-priority/
https://www.w3.org/TR/webrtc-priority/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-svc/
https://w3c.github.io/webrtc-insertable-streams/
https://w3c.github.io/mediacapture-insertable-streams/
https://w3c.github.io/mediacapture-extensions/

A Harbinger: AV1/WebRTC Integration Testing
● Integration of AV1 with WebRTC required development of a custom

end-to-end test suite.
○ Required to demonstrate correct operation of webrtclib endpoints

communicating via an SFU (Medooze) implementing the Dependency
Descriptor RTP header extension.

○ Many issues found in interactions between WebRTC RTP stack, AV1,
DD header extension, SVC scalability modes, SFU behavior, E2E
encryption, decoder filtering, etc.

○ Javascript tests in-progress, (complete JS API support not yet ready)
○ Test coverage: https://cosmosoftware.github.io/av1-rtp-spec-html/

● Will the AV1 E2E test suite be run on an ongoing basis, to guard
against regressions?
○ The answer appears to be “no”. Uh oh...

9

https://cosmosoftware.github.io/av1-rtp-spec-html/

Some Questions

● How do we ensure that recently added
features do not regress?

● Should we add server support to WPT tests
(as W3C WebTransport WG has done)?

● If so, what does the server code look like?
○ How would this improve coverage?

10

A Modest Proposal

● Make incremental progress
● Inter-browser tests are hard to get into

browsers’ submit-time checks
● Extensive server logic is hard to maintain

inside shared services like the WPT tool
● Proposal: Build a content reflector that

speaks the WebRTC stack - no more
11

Proposal: an aiortc-based server
● Server to act as WebRTC endpoint

○ as stupid^Wminimal as possible
● https://github.com/jlaine/aiortc-wpt-demo/

○ only 60 lines of code
○ terminates STUN + DTLS, decrypts SRTP, echoes RTP/RTCP packets

via WebSockets
○ uses RTCPeerConnection from aiortc
○ WPT already uses aioquic for quic tests

● Simple tests!
○ create a peerconnection, connect WebSocket
○ get raw packets

■ parsing RTP/RTCP/SCTP...

12

https://github.com/jlaine/aiortc-wpt-demo/

aiortc-based server

13

aiortc-based server: the test
https://github.com/jlaine/aiortc-wpt-demo/pull/1

14

https://github.com/jlaine/aiortc-wpt-demo/pull/1

aiortc-based server: the test

15

aiortc-based server: next steps
● O/A RTCPeerConnection from the server

○ Test might want to generate SDP themselves
○ reduce server to ORTC ICETransport + DTLSTransport

● Sending packets from the test
○ Send PLI, expect keyframe within X milliseconds.

● Needs to generate some RTCP
○ or bandwidth will be stuck at 300kbps

16

Issues for Discussion Today
● Media Capture & Streams

○ Issue 529: Origin Isolation (Jan-Ivar)

● Media Capture & Streams Extensions
○ Issue 16: Transfer MediaStreamTrack (Youenn)

17

https://github.com/w3c/mediacapture-main/issues/529
https://github.com/w3c/mediacapture-extensions/issues/16

Issue 529: Origin Isolation (Jan-Ivar)
video.src = "https://cross-orig.in/v.mp4" Canvas 🦠

Hello world!

drawImage()

getImageData()

SecurityErrorfillText()

Tainted Canvas 🦠

From https://jsfiddle.net/jib1/cwzdtpgk/

https://github.com/w3c/mediacapture-main/issues/529
https://jsfiddle.net/jib1/cwzdtpgk/

Issue 529: Origin Isolation (Jan-Ivar)

drawImage()

From https://jsfiddle.net/jib1/cwzdtpgk/

SecurityError

Canvas 🦠

Hello world!fillText()

video.captureStream()

MediaStreamTrack

canvas.captureStream()

MediaStreamTrack

Hello world!

MediaRecorder()
pc.addTrack()

video.src = "https://cross-orig.in/v.mp4"

getImageData()

video.srcObject

x
x

https://github.com/w3c/mediacapture-main/issues/529
https://jsfiddle.net/jib1/cwzdtpgk/

Issue 529: Origin Isolation (Jan-Ivar)

drawImage()

SecurityError

Canvas 🦠

Hello world!fillText()

video.captureStream()

MediaStreamTrack 🦠
MediaStreamTrack 🦠

Hello world!

Hello world!

MediaRecorder()
pc.addTrack()

video.src = "https://cross-orig.in/v.mp4"

getImageData()

video.srcObject
canvas.captureStream()

https://github.com/w3c/mediacapture-main/issues/529

Open issue w3c/mediacapture-fromelement#83 Taint, not mute cross-origin tracks

Why? Symmetry with tainted canvas. Authorization model; track origin for security.

Tainted MediaStreamTrack use cases:
● Captioning/compositing of cross-origin videos in canvas using mediaelement

playback features like picture-in-picture, chromecast, airplay. (performance?)
● peerIdentity or a future e2ee replacement?
● Future MediaStreamTrack manipulation features (cropping)?
● Transferable MediaStreamTracks to cross origins?

Raw media access is limited to same-origin media
If we expose MSTs to other origins, then s/taint/mark track with origin(s)/ regardless

Issue 529: Origin Isolation (Jan-Ivar)

https://github.com/w3c/mediacapture-fromelement/issues/83
https://w3c.github.io/webrtc-identity/#isolated-track
https://github.com/w3c/mediacapture-main/issues/529

Few enticing short-term use cases. Allow more exploration?

Proposal A: “If the User Agent supports tainted MediaStreamTracks, then all sinks
of MediaStreamTrack MUST protect the data of cross-origin media in said tracks
from being exposed to the application, e.g. by replacing the data with muted output.”

Proposal B: Band-aid this in mediacapture-fromelement somehow. “Tainted tracks
can only be consumed in HTMLMediaElement sinks. ...”

Proposal C: Say nothing.

Issue 529: Origin Isolation (Jan-Ivar)

https://github.com/w3c/mediacapture-main/issues/529

Why should we do it?
● Create a track in the IFrame that makes sense

○ Transport the track in a different IFrame that makes more sense
● Do processing in a worker

○ MediaStreamTrack -> WebCodec -> RTCDataChannel
○ RTCDataChannel -> WebCodec -> MediaStreamTrack

Issue 16: Transfer MediaStreamTrack (Youenn)

https://github.com/w3c/mediacapture-extensions/issues/16

Can we do it? Cross process?
● MediaStreamTrack is already flowing out of process

○ Content is often produced out of process
○ Content is often processed out of process

● Browsers already do this, and efficiently

Issue 16: Transfer MediaStreamTrack (Youenn)

https://github.com/w3c/mediacapture-extensions/issues/16

How can it be done?
What is needed is very similar to RTCDataChannel
● Transfer algorithm
● 'Neutered' behavior
● Lifetime of transferred MediaStreamTrack tied to creation context

○ Like streams, like data channel

Issue 16: Transfer MediaStreamTrack (Youenn)

https://github.com/w3c/mediacapture-extensions/issues/16

Alternative
● Use mediacapture insertable streams to shim transferable MediaStreamTracks

○ MediaStreamTrack -> Streams
○ Transfer streams
○ Streams -> MediaStreamTrack

Potential downsides
● More difficult to optimize this code path than transferring a MediaStreamTrack
● Not the same support as transferable streams out of the box

○ Especially for capture tracks: getSettings, applyConstraints…

Should we do it?

Issue 16: Transfer MediaStreamTrack (Youenn)

https://github.com/w3c/mediacapture-extensions/issues/16

Issues for Discussion Today
● WebRTC Extensions

○ Issue 52: Invalid TURN credentials: What Function Should Fail? (Henrik)
○ Issue 63: Enabling opus stereo audio without SDP munging (stereo=1)

(Henrik)
○ Issue 64: Transferable RTCDataChannel (Youenn)

● WebRTC Insertable Streams
○ Issue 48: RTC transforms in workers (Youenn)

27

https://github.com/w3c/webrtc-extensions/issues/52
https://github.com/w3c/webrtc-extensions/issues/63
https://github.com/w3c/webrtc-extensions/issues/64
https://github.com/w3c/webrtc-insertable-streams/issues/48

TURN credentials are set with pc.setConfiguration(). For non-parse errors like
invalid credentials or unable to reach host, errors would only be discovered later.

Problem: Not clear if/where invalid TURN credential failures are surfaced.

pc.onicecandidateerror already covers unable to reach server:
If no host candidate can reach the server, errorCode will be set to the value 701 which is outside the STUN error code

range. This error is only fired once per server URL while in the RTCIceGatheringState of "gathering".

Proposal:
● Parse-error: throw at setConfiguration(). Non-parse errors:

Fire pc.onicecandidateerror with errorCode:701 for invalid TURN credentials.
○ Alternative: new errorCode 702?

Issue 52: Invalid TURN credentials: What Function Should Fail?
(Henrik)

https://www.w3.org/TR/webrtc/#dom-rtcpeerconnectioniceerrorevent-errorcode
https://www.w3.org/TR/webrtc/#dom-rtcicegatheringstate
https://www.w3.org/TR/webrtc/#dom-rtcicegatheringstate-gathering
https://github.com/w3c/webrtc-extensions/issues/52

In Chromium, SDP munging is currently required to send stereo audio.
● In SDP, “stereo=1” means “I am OK with receiving stereo”.

No stereo line or “stereo=0” means “I prefer to receive mono”.
● Regardless of stereo attribute, opus decoders MUST support stereo.

Problem:
● We currently don’t specify stereo, meaning we default to mono, and there is no

API to control this.
● I think Chromium’s SDP munging turns on stereo for sending at

setLocalDescription() when SDP munging to say “I am OK with receiving
stereo”? This is backwards!

● The encoder also does no care about MediaStreamTrack’s channelCount?

Issue 63: Enabling opus stereo audio without SDP munging
(stereo=1) (Henrik)

https://github.com/w3c/webrtc-extensions/issues/63

Proposal:
● Make stereo=1 the default.
● Channels to send:

min(track’s channelCount, stereo attribute)

Q: What if I want mono? Do I have to SDP munge stereo=0?
A: No, use getUserMedia({audio:{channelCount:1}}), WebAudio, etc.

Issue 63: Enabling opus stereo audio without SDP munging
(stereo=1) (Henrik)

https://github.com/w3c/webrtc-extensions/issues/52

Web sites do use data channel to transmit data but process the data in workers
● Conferencing: Zoom
● Game streaming/Remote desktop: Parsec
● Audio/video low latency transmission: receiving and sending

Potential solution: make data channels transferable
● Create data channels as done today
● Transfer data channel to audio worklet/video worker

Reduced problem scope
● No solution to the persistent data channel in shared worker use cases
● Cannot easily share the same data channel object between workers

Issue 64: Transferable RTCDataChannel (1/3)

https://github.com/w3c/webrtc-extensions/issues/64

What is needed to make data channels transferable?
● Transfer algorithm
● 'Neutered' data channel behavior

Specification check
● No changes to creation/closing algorithms, methods definitions
● Minor changes to other algorithms (6.2.4 to 6.2.7)
● Garbage collection handled as part of transfer algorithm
● Transfer algorithm similar to streams transfer algorithm

Implementation check (based on webrtc.org code base)
● No change needed to allow processing data without hitting main thread
● Feasible to directly go from network thread to worker thread

Issue 64: Transferable RTCDataChannel (2/3)

https://streams.spec.whatwg.org/#rs-transfer
https://github.com/w3c/webrtc-extensions/issues/64

Conclusion
● Transferring data channels can help existing web applications
● Reduced complexity compared to creating data channels in workers

Alternative
● Apply WebSocketStream to RTCDataChannel

○ ReadableStream/WritableStream getters
● Piggy back on transferable streams to transfer data processing to workers

Is there interest?

Issue 64: Transferable RTCDataChannel (3/3)

https://github.com/ricea/websocketstream-explainer/
https://github.com/w3c/webrtc-extensions/issues/64

Expose counterpart of RTCRtpScriptTransform in workers
● Named RTCRtpScriptTransformer

● Proposal
○ Adopt 'rtctransform' event

Issue 48: Expose RTC transforms in workers

// HTML page
const pc = new RTCPeerConnection()
const worker = new Worker("worker-module.js")

const sender = pc.addTrack(track, stream)
sender.transform = new RTCRtpScriptTransform(worker, "myTransform")

// worker-module.js - event based variant
onrtctransform = (e) => {
 const transformer = e.transformer
 if (transformer.options === "myTransform") {
 ...
 return
 }
}

// worker-module.js - callback based variant
class MyTransform extends RTCRtpScriptTransformer {
 constructor() {
 ...
 }
}
self.registerRTCRtpScriptTransformer("myTransform",
 MyTransform);

https://github.com/w3c/webrtc-insertable-streams/issues/48

RTCRtpScriptTransformer as a dictionary with Readable/Writable stream members

Pros: small API surface

Issue 48: RTCRtpScriptTransformer API - option 1

// worker-module.js - event based variant
onrtctransform = (e) => {
 const transformer = e.transformer;
 if (transformer.options === "myTransform") {
 transformer.readable
 .pipeThrough(createTransform(transformer))
 .pipeTo(transformer.writable);
 return
 }
}

// WebDL
dictionary RTCTransformEventData {
 ReadableStream readable;
 WritableStream writable;
 any options;
}

[Exposed=Worker]
interface RTCTransformerEvent : Event {
 readonly attribute RTCTransformEventData transformer;
}

https://github.com/w3c/webrtc-insertable-streams/issues/48

RTCRtpScriptTransformer as an object with Readable/Writable stream attributes

Pros: easy to expose additional API surface
● State getters: sender/receiver, bitrate...
● Mutators: request a key frame

Issue 48: RTCRtpScriptTransformer API - option 2

// worker-module.js - event based variant
onrtctransform = (e) => {
 const transformer = e.transformer;
 if (transformer.options === "myTransform") {
 transformer.readable
 .pipeThrough(createTransform(transformer))
 .pipeTo(transformer.writable);
 return
 }
}

// WebDL
[Exposed=Worker]
class RTCScriptTransformer {
 readonly attribute ReadableStream readable;
 readonly attribute WritableStream writable;
 readonly attribute any options;
}

[Exposed=Worker]
interface RTCTransformerEvent : Event {
 readonly attribute RTCScriptTransformer transformer;
}

https://github.com/w3c/webrtc-insertable-streams/issues/48

RTCRtpScriptTransformer as an object with events or callbacks

Close to option 2
● Option 2 and 3 are shimable one with the other
● Other similar options available (TransformerTransformCallback)

Issue 48: RTCRtpScriptTransformer API - option 3

// worker-module.js - event based variant
onrtctransform = (e) => {
 const transformer = e.transformer;
 if (transformer.options === "myTransform") {
 transformer.onframe = (event) =>
transformer.enqueue(encrypFrame(event.data))
 return
 }
}

// WebDL
[Exposed=Worker]
class RTCScriptTransformer {
 attribute EventHandler onframe;
 void enqueue(RTCEncodedFrame frame);
 readonly attribute any options;
}

[Exposed=Worker]
interface RTCTransformerEvent : Event {
 readonly attribute RTCScriptTransformer transformer;
}

https://streams.spec.whatwg.org/#callbackdef-transformertransformcallback
https://github.com/w3c/webrtc-insertable-streams/issues/48

Expose dictionary or interface
● Interface is more extensible
● Proposal

○ Expose a RTCRtpScriptTransformer interface

Expose ReadableStream+WritableStream or event+method
● Existing transform ecosystem (SFrameTransform, TransformStream)
● Existing methods that are not useful (dangerous?)

○ ReadableStream.cancel, ReadableStreamWriter.close
● Proposal

○ Stick with ReadableStream/WritableStream for now
○ Continue investigating pros and cons

Issue 48: RTCRtpScriptTransformer API - tentative conclusion

https://github.com/w3c/webrtc-insertable-streams/issues/48

For extra credit

39

Name the bird!

Thank you

Special thanks to:

WG Participants, Editors & Chairs
The bird

40

