


Option A: Web Workers w/ transferable everything

Step 1: Make everything constructable in a web worker (or transferable)

IceTransport(?)
DtlsTransport
SctpTransport
QuicTransport
SourceBuffer
RtpSender/RtpReceiver

Transfer all the things!

Step 2. Make MediaStreamTrack and/or HtmIMediaElement transferable
(something needs to escape the web worker)

Step 3: Run the pipeline in a web worker; communicate with ports (streams not needed)




Example (everything in worker)

// In main.js

var worker = new Worker("workers.js");

worker.onmessage = function(event) {
signalIceCandidate(event.data);

}s

// In worker.js

var ice = new RTCIceTransport(...);

var quic = new RTCQuicTransport(ice);

var ms = new MediaSource();

var mse = ms.appendSourceBuffer(...);

var parser = new TransformStream(parseMessage);
quic.receiveStreams().pipeThrough(parser).pipeInto(mse.appendStream());

self.postMessage(iceCandidate)



Option B: Web Workers w/ streaming MessagePorts

Step 1. Make WHATWG streams that cross worker boundary, like MessagePorts

Step 2: Run parts of the pipeline in a web worker

// Allow pipeThrough(port)

partial interface MessagePort {
ReadableStream writable;
WritableStream readable;

}

// Allow pipeThrough(worker)

partial interface Worker {
ReadableStream writable;
WritableStream readable;

}




Example (just transform in worklet)

// In main.js

var quic = ...;

var mse = ...;

var parser = new Worker("parser.js");
quic.receiveStreams().pipeThrough(parser).pipeInto(mse.appendStream());

// In worker.js
var parser = new TransformStream(parseMessage);
self.readable.pipeThrough(parser).pipeInto(self.writable)



Option C: TransformStream w/ worklet

Step 1: Make a special WorkletTransformStream
interface WorkletTransformStream {
registerTransformerName(DOMString name);
[SameObject] readonly attribute Worklet worklet;
}
[Global=(Worklet, TransformStreamWorklet), i [
Exposed=TransformStreamWorklet] ; & = = = ,.{ i
interface TransformStreamWorkletGlobalScope | ﬁ” 1 E.“]Tﬂ1” 5
: WorkletGlobalScope { : |- LHTJ‘]
void registerTransformer(DOMString name, — s T gt
Transformer ()); ; ' &b

¥ ELE S

}s

Step 2: Attach S to the pipeline
Serializer, Parser



https://docs.google.com/presentation/d/1-qK8DCb9Vf6yZ9E0k5WBQb3LusEd2oDlb-Hx5SobU1U/edit#slide=id.p

Example (just transform in worker)

// In main .js

var parser = WorkletTransformStream();
parser.worklet.addModule("parser.js");
parser.registerTransformerName("parser");
quic.receiveStreams().pipeThrough(parser).pipeInto(mse.appendStream());

// In "parser.js"
registerTransformer("parser", class {
transform(chunk, controller) {
controller.enqueue(parseMessage(chunk));

}
})s



Option D: Transferable Streams

https://github.com/whatwg/streams/blob/master/transferable-streams
-explainer.md

TL;DR: var w = new Worker("x.js"); w.postMessage(streams, streams)



https://github.com/whatwg/streams/blob/master/transferable-streams-explainer.md
https://github.com/whatwg/streams/blob/master/transferable-streams-explainer.md

Example (transform and piping in worker)

// In main .js

var messages = quic.receiveStreams();

var chunks = mse.appendStream();

var parser = new Worker(parser.js');
parser.postMessage([messages, chunks], [messages, chunks]);

// In parser.js

onmessage = async (evt) => {
var {messages, chunks} = evt.data;
var parser = new TransformStream(parseMessage);
messages.pipeThrough(parser).pipelnto(chunks)

s



Questions

Which of these is the easiest to implement?
If we could do any of them, which would be better for developers?

Do we still need WHATWG streams?



