
Getting of the main JS thread

Option A: Web Workers w/ transferable everything

Step 1: Make everything constructable in a web worker (or transferable)

● IceTransport(?)

● DtlsTransport

● SctpTransport

● QuicTransport

● SourceBuffer

● RtpSender/RtpReceiver

Step 2: Make MediaStreamTrack and/or HtmlMediaElement transferable
 (something needs to escape the web worker)

Step 3: Run the pipeline in a web worker; communicate with ports (streams not needed)

Transfer all the things!

Example (everything in worker)

// In main.js

var worker = new Worker("workers.js");

worker.onmessage = function(event) {

 signalIceCandidate(event.data);

};

// In worker.js

var ice = new RTCIceTransport(...);

var quic = new RTCQuicTransport(ice);

var ms = new MediaSource();

var mse = ms.appendSourceBuffer(...);

var parser = new TransformStream(parseMessage);

quic.receiveStreams().pipeThrough(parser).pipeInto(mse.appendStream());

...

self.postMessage(iceCandidate)

Option B: Web Workers w/ streaming MessagePorts

Step 1: Make WHATWG streams that cross worker boundary, like MessagePorts

Step 2: Run parts of the pipeline in a web worker

// Allow pipeThrough(port)

partial interface MessagePort {

 ReadableStream writable;

 WritableStream readable;

}

// Allow pipeThrough(worker)

partial interface Worker {

 ReadableStream writable;

 WritableStream readable;

}

Example (just transform in worklet)

// In main.js

var quic = ...;

var mse = ...;

var parser = new Worker("parser.js");

quic.receiveStreams().pipeThrough(parser).pipeInto(mse.appendStream());

// In worker.js

var parser = new TransformStream(parseMessage);

self.readable.pipeThrough(parser).pipeInto(self.writable)

Option C: TransformStream w/ worklet

Step 1: Make a special WorkletTransformStream
interface WorkletTransformStream {

 registerTransformerName(DOMString name);

 [SameObject] readonly attribute Worklet worklet;

}

[Global=(Worklet,TransformStreamWorklet),

 Exposed=TransformStreamWorklet]

interface TransformStreamWorkletGlobalScope

 : WorkletGlobalScope {

 void registerTransformer(DOMString name,

 Transformer ());

};

Step 2: Attach S to the pipeline
 (Serializer, Parser)

https://docs.google.com/presentation/d/1-qK8DCb9Vf6yZ9E0k5WBQb3LusEd2oDlb-Hx5SobU1U/edit#slide=id.p

Example (just transform in worker)

// In main .js

var parser = WorkletTransformStream();

parser.worklet.addModule("parser.js");

parser.registerTransformerName("parser");

quic.receiveStreams().pipeThrough(parser).pipeInto(mse.appendStream());

// In "parser.js"

registerTransformer("parser", class {

 transform(chunk, controller) {

 controller.enqueue(parseMessage(chunk));

 }

});

Option D: Transferable Streams

https://github.com/whatwg/streams/blob/master/transferable-streams

-explainer.md

TL;DR: var w = new Worker("x.js"); w.postMessage(streams, streams)

https://github.com/whatwg/streams/blob/master/transferable-streams-explainer.md
https://github.com/whatwg/streams/blob/master/transferable-streams-explainer.md

Example (transform and piping in worker)

// In main .js

var messages = quic.receiveStreams();

var chunks = mse.appendStream();

var parser = new Worker(parser.js');

parser.postMessage([messages, chunks], [messages, chunks]);

// In parser.js

onmessage = async (evt) => {

 var {messages, chunks} = evt.data;

 var parser = new TransformStream(parseMessage);

 messages.pipeThrough(parser).pipeInto(chunks)

};

Questions

Which of these is the easiest to implement?

If we could do any of them, which would be better for developers?

Do we still need WHATWG streams?

