
W3C Workshop on Privacy and data usage control
Position Paper “Distributed Privacy Policy
Enforcement by using Sticky Policies”

David Chadwick and Kaniz Fatema, University of Kent

Introduction
 Today users have very little control over the privacy of their personal information
(PII) once it has been submitted to a web site. The site may inform them about what it
will do with their PII, and give them the option of agreeing to this or not, but once the
PII has been submitted the user simply has to trust that the site will act in good faith.

As sites start to adopt policy based systems, it should become easier for them
to allow their users to select their preferred privacy policies (probably from a small
limited set of policies initially) and have these automatically processed by the site’s
PDP. However, if the site wishes to transfer a user’s PII to another site with which it
has a business relationship, this means that the remote site with either have to support
the same policy language as the sending site, or have a policy language convertor, or
we are back to square one with the sending site having to trust the recipient site to
behave in good faith according to some written contractual policy. Even if the
recipient site does support the same policy language, we could end up with conflicts
between the user’s policy and the site’s policy.

In order to overcome these problems, in the EC TAS3 project we are
constructing a policy enforcement infrastructure that will support the transfer between
sites of PII together with its sticky policies, be capable of handling multiple policy
languages (and their corresponding PDPs), and have a Master PDP that will resolve
any policy decision conflicts. We use obligations to guarantee that sending sites will
attach sticky policies to the outgoing PII and that receiving sites will store the sticky
policies.

In our design we also had the following non-functional objectives:
• implement as much as possible of the functionality in an application

independent infrastructure
• require the minimum of alterations to existing applications that already hold

PII
• make the infrastructure as standards compliant as possible
• release the code as platform independent open source

The Architecture
The architecture is shown in Figure 1 below. We have introduced several new
components to the traditional PEP and PDP, as described below.

Application Independent PEP
One can regard the AIPEP as a much richer functional version of the XACML context
handler. The AIPEP is responsible for coordinating the actions of the various
components of the application independent authorization infrastructure. It presents a
single interface to the application PEP, in order to make integration easy. To the PEP
it appears to be a single PDP as it responds to authorization decision queries in the
standard way. When the AIPEP receives either an authorization decision query
message or a credential validation message (step 1 in figure 1), it first calls the CVS

to validate any credentials that are contained in the message (step 2 in figure 1). If the
message contains a sticky policy (see figure 2) then this will be stored in the policy
store. The AIPEP retains a manifest which records which CVSs and PDPs are
currently spawned and which policies each is configured with. If the AIPEP has
policies for which there are currently no spawned CVSs or PDPs, then a PDP/CVS
factory object is used to spawn new PDPs and/or CVSs as appropriate. The PDP/CVS
factory object is configured to know each policy language that each PDP and CVS
class supports. When it is passed a sticky policy it knows how to construct the
appropriate PDP and/or CVS instances and to give them the correct components of
the sticky policy. Once the correct CVS and PDPs have been spawned, the AIPEP
calls the CVS to validate the credentials on the incoming message, and then tells the
Master PDP which set of spawned PDPs to use for a particular authorization decision
request. Finally the AIPEP calls the inbuilt Obligations Service to perform any
returned obligations that the infrastructure knows about.

AppDep
PEP

App Indep
PEP

Master
PDP

Policy
PDPPolicy

PDPPolicy
PDP

3

4

1

6

CVS

Will Enforce
Conflict
Resolution
Policy

Will evaluate each
policy according to
the languages they
support

Will enforce
Authz Decisions

0. User’s request

Will validate
presented
credentials
and pull more

AA
AA

AA Various
attribute

authorities will
issue credentials

Obligations
Service

7
8

9

10

11

12

Will coordinate “before”
obligation

enforcement

2

5

Obligations
Service

Will coordinate “with”
and “after” obligations

Target
Resource

13

14

13

14

Policy
Store

Sticky
Store

Figure 1. A Multi-Policy Application Independent Authorization Infrastructure

Credential Validation Service
The CVS is a specialized Policy Information Point (PIP) that is configured with a
credential validation policy and cryptographic validation functions. The latter validate
the signatures on the credentials, whilst the former tells it which credentials are valid,
in terms of who the trusted authorities (IdPs) are and which attributes each is trusted
to issue to which groups of users. Once the CVS has finished validating the subject’s
credentials, these are returned to the AIPEP as standard XACML formatted attributes
(step 5). The CVS can work in either pull mode, push mode or pull and push mode.
Pull mode means that the requester did not present any credentials and requires the

CVS to pull them itself from its configured trusted authorities, or a subset of them. In
push mode the PEP pushes the credentials to the AIPEP, and in pull push mode some
credentials are pushed and the remainder have to be pulled. The CVS is described in
detail in [1].

Master PDP
The Master PDP is responsible for calling multiple subordinate PDPs (step 7) as
directed by the AIPEP, obtaining their authorization decisions (step 8), and then
resolving any conflicts between these decisions, before returning the overall
authorization decision and any resulting obligations to the AIPEP (in step 9). The
Master PDP has a conflict resolution policy which tells it, for each request context,
which conflict resolution rule to use (e.g. Deny overrides, Grant overrides, First
applicable etc.) Each of the policy PDPs supports the same interface, which is the
XACML request-response context. This allows the Master PDP to call any number of
subordinate PDPs, each configured with its own policy in its own language. This
design isolates the policy language from the rest of the authorization infrastructure,
and the Master PDP will not be affected by any changes to any policy language as it
evolves or by the introduction of any new policy language. Of course, new policy
languages will require new PDPs to be written to interpret them, and these new PDPs
will require new code in the PDP/CVS factory object so that it knows how to spawn
them on demand. But this is a one-off occurrence for each new policy language and
PDP that needs to be supported by the infrastructure. Our first implementation will
have built-in support for three different PDPs/policy languages, namely: XACMLv2,
PERMIS [2] and SWI-Prolog (used in a trust based PDP built by TU-Eindhoven).

Policy Store
The policy store is the location where policies can be safely stored and retrieved. If
the store is trusted then policies can be placed there in an unsecured manner. If the
store is not trustworthy then policies will need to be protected e.g. digitally signed
and/or encrypted, to ensure that they remain confidential and are not tampered with.
Each policy has an id, the PID, which the policy store returns to the AIPEP when
asked to store a policy. The AIPEP can subsequently use the PID when asking either
the PDP/CVS factory to spawn a new PDP/CVS or the sticky store to stick this policy
to some PII. This design cleanly separates the implementation details of the policy
store from the rest of the infrastructure, and allows different types of policy store to be
constructed e.g. built on an LDAP directory or RDBMS.

Sticky Store
The sticky store holds the mapping between sticky policies and the resources to which
they are stuck. This is a many to many mapping so that one policy can apply to many
resources and one resource can have many sticky policies applied to it. The design
requires that each policy id (PID) is globally unique so that when a sticky policy is
moved from system to system, the receiver can determine if it needs to analyse each
received policy or not. Already known PIDs don’t need to be analysed, whereas
unknown PIDs will need to be evaluated to ensure that they can be supported,
otherwise the incoming data and sticky policy will need to be rejected. The RID is
locally unique and may be constructed by applying a one way hash function such as
SHA1 to the resource. We currently do not have any requirement to pass the RID
from system to system so each system can compute its own.

Obligations Service
Obligations may be required before the user’s action is performed, after the user’s
action has been performed, or simultaneously with the performance of the user’s
action. We call this the temporal type of the obligation. According to the XACML
model, each obligation has a unique ID (a URI). We follow this scheme in our
infrastructure. Each obligations service is configured at construction time with the
obligation IDs it can enforce and the obligation handling services that are responsible
for enacting them. It is also configured with the temporal type(s) of the obligations it
is to enforce. When passed a set of obligations by the AIPEP, the internal obligations
service will walk through this set, ignore any obligations of the wrong temporal type
or unknown ID, and call the appropriate obligation handling service for the others. If
any single obligation handling service returns an error, then the obligations service
stops further processing and returns an error to the AIPEP. If all obligations are
processed successfully, a success result is returned. Each of the obligations enforced
by the AIPEP must be of temporal type before.

Walkthrough of user input of PII and sticky privacy policy
The user is presented with an application dependent GUI and is asked to enter their
PII. Existing GUIs will need to be enhanced to invite the user to enter their privacy
policy. We do not specify how this is done, but it is most likely that organisations will
have a limited number of options that a user can choose from, with a default policy
for users who don’t really mind. When the application server receives the user’s input,
it must extract the subject’s privacy policy from the application layer message and
pass this to the AIPEP along with an authorisation decision request “can this user
submit this PII (with this unique RID) to the data store, using this policy in
conjunction with the existing policies”. The AIPEP takes the policy, stores it in the
policy store and is returned the PID of the policy. It then constructs a new PDP that
can process this policy. The AIPEP has a manifest that records the number of PDPs
that are currently active, along with their PIDs. These include the PDPs that were
initialised when the authorisation infrastructure was started, plus any additional PDPs
that have been dynamically constructed since then. Once the PDP has been
constructed the AIPEP passes the authorisation decision request to the Master PDP
along with the set of PDPs that should be used to process this request.

The Master PDP consults its conflict resolution policy for this request context and
obtains the conflict resolution rule (CRR) to use. It then calls the subordinate PDPs,
either sequentially (first applicable CRR) or in parallel (all other rules) and analyses
the returned decisions according to the rule. If the CRR is deny or grant overrides, and
there is more than one such response of the same type, then the obligations from all
such similar responses are combined together in the response that is returned to the
AIPEP by the Master PDP. If a grant is returned this will contain at least one “before”
obligation which instructs the authorisation system to store the subject’s sticky policy
in the sticky store.

The AIPEP calls the obligations service passing it the set of received obligations.
This obligations service is only configured to process “before” type obligations, one
of which will be instructions to the sticky store obligation service to store the
subject’s sticky policy. Other “before” type obligation handling services may be
configured into the internal obligations service, such as “audit the authz decision” etc.
Only if all “before” type obligations that are known about are successfully enacted
will the AIPEP return granted to the PEP. If any of the known obligations fail to be
enacted, then the AIPEP will return a deny response and will rollback its actions i.e.

remove the subject’s privacy policy from the policy store, terminate the appropriate
subordinate PDP and remove it from its manifest. When the PEP receives the granted
response it will store the user’s PII in its application dependent storage.

AppDep
PEP

App Indep
PEP

Master
PDP

Policy
PDPPolicy

PDPPolicy
PDP

8. Resolves conflicts

Will evaluate each
policy according to
the languages they
support

1. Subject enters PII and
Privacy Policy via some
application dependent GUI

Obligations
Service

6.
7. Authz decision plus “before” obligations

9 Authz decision plus obligations

10. Before obligations

12. Granted

PII
Store

13. Store
PII with
RID

Policy
Store

Sticky
Store

2. Authz Decision
Req + subject’s
privacy policy

11. Store
PID + RID

3. Store
policy

4. Create new
PDP instance with
privacy policy

5. Authz Decision Req
+ set of PDPs/Policies to use

5.

Figure 2. User input of PII plus privacy policy

References
[1] Chadwick DW, Otenko S and Nguyen A T. “Adding Support to XACML for
Multi-Domain User to User Dynamic Delegation of Authority”. International Journal
of Information Security. April 2009; Volume 8: Number 2:pp 137-152.
[2] Chadwick DW, Zhao G, Otenko S, Laborde R, Su L and Nguyen A T. “PERMIS:
a modular authorization infrastructure”. Concurrency And Computation: Practice And
Experience. 10 August 2008; Volume 20: Issue 11: Pages 1341-1357.

Acknowledgements
The research leading to these results has received funding from the European
Community's Seventh Framework Programme (FP7/2007-2013) under grant
agreement n° 216287 (TAS³ - Trusted Architecture for Securely SharedServices)1.

1 The information in this document is provided "as is", and no guarantee or warranty is given that the
information is fit for any particular purpose. The above referenced consortium members shall have no
liability for damages of any kind including without limitation direct, special, indirect, or consequential
damages that may result from the use of these materials subject to any liability which is mandatory due
to applicable law.

	W3C Workshop on Privacy and data usage control Position Paper “Distributed Privacy Policy Enforcement by using Sticky Policies”
	Introduction
	The Architecture
	Application Independent PEP
	Credential Validation Service
	Master PDP
	Policy Store
	Sticky Store
	Obligations Service

	Walkthrough of user input of PII and sticky privacy policy
	References
	Acknowledgements

