
PPL Engine: A Symmetric Architecture

for Privacy Policy Handling

Slim Trabelsi1, Akram Njeh1, Laurent Bussard2, Gregory Neven3

SAP Labs France, Sophia Antipolis, France1

European Microsoft Innovation Center (EMIC), 52072 Aachen, Germany2

IBM Zurich Research Center, Zurich, Switzerland3

Introduction
Privacy is poorly supported in Web 2.0; in one hand there are, for instance, social network and

blogging applications that increase publication of private data that can be linked, shared, aggregated,

tagged, and copied. On the other hand mechanisms to control and protect published data are not

precise enough. Social networks are is now applying face recognition technology to identify

individuals appearing on published photos [1]. At the same time these websites are still publishing a

text formatted privacy policy that cannot be read automatically by a browser for example. The

privacy protection mechanisms proposed recently in this website are only limited to a very basic

access control that concerns the access of the user and not the website owner..Although some

existing initiatives like P3P [2], EPAL [3], or XACML [4] already designed some policy based automated

solutions to handle separately the access control and the usage control but without a concrete

technical deployment. In the context of the European ICT PrimeLife
1
 we proposed an extension [5] of

the XACML 2.0 called PPL (PrimeLife Policy Language) combining access and usage control policy

language. In this paper we describe how the PPL language is deployed, interpreted, and enforced.

We developed a solution with following features:

- The language is symmetric and use similar syntax to express privacy preferences of Data

Subject (DS), privacy policies of Data Controller (DC), and sticky policies agreed upon by DS

and DC. This makes it easier to modify preferences in order to fulfill a policy.

- The architecture is symmetric as well because data subjects and data controllers have similar

requirements: deciding whether a given PII (resp. collected data) can be shared with data

controller (resp. third party); handling obligations associated with data; storing data and

associated preferences (resp. sticky policies). Using the same architecture everywhere to

handle scenarios where one party can have multiple roles (e.g. collecting data and next

disclosing it to third parties).

Data subject and data controller are obviously different, for instance the data subject can change her

privacy preferences regarding her PII while the data controller cannot change the sticky policy

associated with collected data. However we show that most of the language and components can be

used on each side.

1
 http://www.primelife.eu/

PPL Language Structure

The PPL language solution extends XACML

credential based features. The PPL

restrictions to the resources that he offers

personal information and how her

follows:

• PolicySets, Policy, Rules

“Deny”, that indicates the consequence when all conditions stated in the rule have been

satisfied. Rules are grouped together in policies. Policies, on their turn, are grouped together

in PolicySets; the effect of a PolicySet is determined by the effects of the contained policies

and the stated policy combining algorithm.

resource, the subject, and the environment variables for which this PolicySet

are applicable. Finally, the condition

rule beyond those specified in the target

• Data Handling Policies: The main purpose of the data handling policies is for the D

express what will happen to the information

can be referred to from anywhere in the rule by its unique P

policy consists of a set of authorizations, that the

information, and a set of obligations, that he promises to adhere to.

• Data Handling Preferences

a DC should be treated after the access is granted.

of a set of authorizations and obligations, just like data handling policies. When access to the

resource is requested, the data handl

data handling policy to derive the applicable sticky policy

• Sticky Policy: The sticky policy associated to a resource, meaning the agreed

granted authorizations and promised obligations with respect to a resource. The sticky policy

is usually the result of an automated matching procedure between the

preferences and the DC

PPL Language Structure

Figure 1 : PPL Policy Structure

The PPL language solution extends XACML with a number of privacy-enhancing

credential based features. The PPL language is intended to be used by the DC to specify the access

restrictions to the resources that he offers. Used by the DS to specify the access restricti

and how her data should be treated by the DC afterward

Rules, Target, Condition: Each Rule has an effect, either “Permit” or

“Deny”, that indicates the consequence when all conditions stated in the rule have been

grouped together in policies. Policies, on their turn, are grouped together

in PolicySets; the effect of a PolicySet is determined by the effects of the contained policies

and the stated policy combining algorithm. The Target (plain XACML Target), describ

resource, the subject, and the environment variables for which this PolicySet

are applicable. Finally, the condition specifies further restrictions on the applicability of the

rule beyond those specified in the target and the credential requirements.

: The main purpose of the data handling policies is for the D

express what will happen to the information collected from the DS. A data handling policy

can be referred to from anywhere in the rule by its unique PolicyId identifier. A data handling

policy consists of a set of authorizations, that the DC wants to obtain on the collected

information, and a set of obligations, that he promises to adhere to.

Data Handling Preferences: The data handling preferences specify how the

a DC should be treated after the access is granted. The preferences are expressed by means

of a set of authorizations and obligations, just like data handling policies. When access to the

resource is requested, the data handling preferences have to be matched against a proposed

data handling policy to derive the applicable sticky policy – if a match can be found.

The sticky policy associated to a resource, meaning the agreed

granted authorizations and promised obligations with respect to a resource. The sticky policy

is usually the result of an automated matching procedure between the

 data handling policy. A part of the sticky policy schema enables the

enhancing, usage control and

to specify the access

access restrictions to her

afterwards. It is structured as

Each Rule has an effect, either “Permit” or

“Deny”, that indicates the consequence when all conditions stated in the rule have been

grouped together in policies. Policies, on their turn, are grouped together

in PolicySets; the effect of a PolicySet is determined by the effects of the contained policies

Target (plain XACML Target), describes the

resource, the subject, and the environment variables for which this PolicySet, Policy or Rule

further restrictions on the applicability of the

ial requirements.

: The main purpose of the data handling policies is for the DC to

. A data handling policy

olicyId identifier. A data handling

wants to obtain on the collected

cify how the data collected by

The preferences are expressed by means

of a set of authorizations and obligations, just like data handling policies. When access to the

ing preferences have to be matched against a proposed

if a match can be found.

The sticky policy associated to a resource, meaning the agreed-upon sets of

granted authorizations and promised obligations with respect to a resource. The sticky policy

is usually the result of an automated matching procedure between the DS data handling

A part of the sticky policy schema enables the

annotation of the mismatching elements between the DS and DC. This information is only

used to display the result of the matching to the user in order to make a decision whether or

not the data should be shared. The mismatching information should not appear in the final

sticky policy related to a data.

• Obligation: Obligations in data handling preferences express actions considered as

mandatory by the data subject (e.g. delete collected data within one year). Obligations in

data handling policies describe what the service is willing to enforce. Obligations in sticky

policies specify what must be enforced. Obligations are specified as triggers and actions, i.e.

execute specific actions when given events occur.

• Authorization: authorizations specify actions that it is allowed to perform. These actions are

split in two: Authorization Purposes that defines the authorization to use information for a

particular set of purposes. Purposes are referred to by standard URIs specified in agreed-

upon vocabularies of usage purposes. These vocabularies of URIs may be organized as flat

lists or as hierarchical ontologies. The second action is called Authorization for downstream

usage and defines the authorization to forward the information to third parties, so-called

downstream DC. Optionally, this authorization enables the DS to specify the access control

policy under which the information will be made available.

• Credential Requirements: As credentials are not directly supported in the traditional policy

languages, we extended the XACML Rule element such that credentials are the basic unit for

reasoning about access control. This element of the PPL language permits to declare the

certified information needed by an entity to get access to a resource. This element is used by

the DC in order to express her requirements in terms of certified personal data that should

be provided by a DS.

• Provisional Actions: A Provisional Action element is used by the DC to specify the provisional

actions that a resource requestor must perform before being granted access to the resource.

Currently supported actions include revealing of certified and non certified attributes (to the

DC or to a third party) under the condition of a specific Data Handling Policy.

PPL Symmetric Architecture
The entire architecture of the PPL engine (see Figure 2) can be represented by 3 layers architecture.

The first one presents the user interface layer. The second, the Core layer, represent the main

elements of the PPL Engine, which is composed by different subcomponent that we will describe

their function below. And the last one represents the persistence layer that is in charge of storing the

different data and policies that are used during a transaction between the DC and DS.

Presentation Layer

The presentation layer is responsible of the display to the end user. The presentation layer contains

two types of components: the Policy editor that displays and provides a way to manage all the

information related to the DS, DC and the third party. This information can be the personal data, the

privacy policy/preference, the information involved during a transaction between the different

entities, etc. The second component is the matching handler that displays to the user the matching

result, by notifying a mismatch in case of, and provide a set of tools that allow him to manage this

mismatching. The UI layer is independent from the Core layer. For that, an interface component

might be present between these two layers to provide an abstraction level. The UI is not the same on

the DS and DC sides.

Figure 2 : PPL Engine Architecture

The Core Layer

The Core layer is composed in four main components that are implementing the new concepts

introduced within PrimeLife. These components are:

• Policy enforcement point (PEP): This component formats then dispatches the messages to

the corresponding component according to the state of the execution process. The decision

made by the PDP is enforced in the PEP, meaning that if the PDP decided to provide a data or

enforce the access of one resource, this data/resource is collected, formatted and sent to the

receiver through the PEP.

• Policy Decision Point (PDP): it is the core of the PPL engine. All the decisions are taken in this

component. This latter has two functionalities: the Matching engine that matches between

the preferences of the DS and the privacy policy of the DC. The matching is done to verify if

the intentions of the data controller in terms of private data usage are compliant with the

data subject preferences. The Access control engine is in charge of the enforcement of the

access control rules related to the local resources. It analyses the resource query, check the

access control policy of the requested resource and decides whether or not requester

satisfies the rule.

• Credential Handler: one of the new features introduced in PPL is the support of the

credential based access control. This feature is implemented by the credential handler that

manages the collection of credential held by an entity, selects the appropriate credentials in

order to generate a cryptographic proof and verifies the cryptographic proofs of the claims

received from external entities. The credential handler component contains the

subcomponent Rule Verification; the PPL policy contains a description of the credential

requirements (for access control), the Rule Verification component evaluates whether the

claim provided by a user that wants to access a resource satisfies the credential based access

control rule.

• Obligation handler: is responsible for enforcing the obligations that have to be satisfied by

the DC. This engine executes two main tasks: setup the triggers related to the actions

required by the privacy preferences of the Data Subject, and executes the actions specified

by the data subject whenever it is required.

The other components of the Core layer play a secondary role in the concept introduced by the PPL

engine like the Web server that is an embedded server that represents the entry point of the core of

the PPL Engine. It can be seen as an interface to the PEP. The persistence handler which is the

interface between the Core and persistence layer. It makes transparent to the Core layer location

and storage model of the data it manipulates. In general, this layer is supported by a Persistence

Framework. The defined objects in this layer are generally DAO (Data access Object). The persistence

handler provide management functions to handle the DAO know as CRUD (create, retrieve, update,

delete) methods.

Persistence Layer

The persistence layer is represented by the Data/Policy store contains all the information on private

data and their related policies and by the credential store which contains all the credentials and the

certified information held by an entity. The access to this store is exclusively allowed to the

Credentail Handler component.

Conclusion
In this paper we show how the PPL Privacy Policy engine is implemented. We rely on a symmetric

architecture that fits with the current data utilization model where personal data is shared and

stored by multiple parts without a real control from the owner. According to the location of the data,

the engine can react as a data owner or data collector and execute the appropriate tasks.

Bibliography
[1] Sarah Perez, “Facial Recognition Comes to Facebook”,

http://www.readwriteweb.com/archives/facial_recognition_comes_to_facebook.php

[2] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall, and J. Reagle. The Platform for Privacy

Preferences 1.0 (P3P1.0)

[3] IBM: Enterprise privacy authorization language (EPAL 1.2)

[4] Moses, T.: OASIS eXtensible Access Control Markup Language (XACML) Version 2.0. OASIS Standard

oasis-access control-xacml-2.0-core-spec-os, OASIS (February 2005)

[5] Claudio A. Ardagna, Eros Pedrini, Sabrina De Capitani di Vimercati, Pierangela Samarati, Laurent

Bussard, Gregory Neven, Franz-Stefan Preiss, Stefano Paraboschi, Mario Verdicchio Dave Raggett, Slim

Trabelsi, “PrimeLife Policy Language”, W3C Workshop on Access Control Application Scenarios,

November 2009, Luxembourg.

