
Practical Privacy Concerns in a Real World Browser

Ian Fette ifette@google.com

Google Inc, 1600 Amphitheatre Parkway, Mountain View, CA 94043 USA

Jochen Eisinger eisinger@google.com

Google Germany GmbH, Dienerstraße 12, D-80331 Munich, Germany

Abstract

Google Chrome has implemented a number of
“HTML5” APIs, including the Geolocation
API and various storage APIs. In this pa-
per we discuss some of our experiences on the
Google Chrome team in implementing these
APIs, as well as our thoughts around privacy
for new APIs we are considering implement-
ing. Specifically, we discuss our ideas of how
providing access to things such as speech,
web cameras, and filesystems can be done in
ways that are understandable and in the nat-
ural flow of users.

1. Introduction

Over the past three years, the rate at which browsers
are innovating and introducing additional APIs has
skyrocketed (Pichai, 2010). Over the same time, we
have not seen any significant new user experience
paradigms take hold in widely deployed user agents.
By and large, there is still an over-reliance on the tra-
ditional fallback of being able to consult an authori-
tative source, be that the user or a policy defined by
some third party. We believe that new APIs being
proposed for use on the web must either be “safe” by
default, or where some capability is being granted that
may negatively impact the user’s security or privacy,
this capability should be granted through a user inter-
action that is natural and understandable to the user.

We will begin by giving some background information
on the APIs we discuss in this paper and on browser
security. We will continue by discussing our experience
in implementing the W3C geolocation API (Popescu,
2009), after which we will discuss some upcoming APIs

Preliminary work. Under review by the W3C Workshop on
Privacy for Advanced Web APIs. Do not distribute.

around speech, web cameras, and filesystems. We end
our paper with concluding remarks on what will be
required for a suscessful development platform that
meets users’ privacy and security concerns while still
being attractive to developers.

2. Background

Traditionally, applications running in the web browser
have had little access to capabilities of the device they
were running on. For the purposes of this paper, we
define a “web application” as a page or collection of
pages and resources accessible via a web browser that
is designed to provide a service to a user. There are
many examples of web applications, including mail ap-
plications such as Gmail and Hotmail, mapping appli-
cations like Google Maps and Bing Maps, as well as
applications with no desktop analog, such as Facebook.
Many of these applications were written using mostly
HTML 4.01 (Raggett et al., 1999) and JavaScript (Ful-
man & Wilmer, 1999). These languages provide the
capability for information to be processed and dis-
played within a user agent, but with a few notable
exceptions (cookies), provide no further access to ca-
pabilities of the device on which the user agent runs,
such as persistent storage, access to devices such as
GPS units, video cameras and microphones, and the
like.

Today, specifications such as HTML5 (HTML 5) and
contemporary specifications being published by work-
ing groups such as the Web Applications Working
Group and the Device APIs and Policy Working Group
give capabilities to web applications that have previ-
ously only been accessible to native applications, or
accessible via running native code (e.g. plugins) in
the browser. The W3C Geolocation API (Popescu,
2009) lets a web application request, via JavaScript,
the user’s location as a (latitude, longitude) pair, as
well as the capability to receive updates to this loca-
tion as they become available. The specification in-



Practical Privacy Concerns in a Real World Browser

cludes a section on security considerations, which pro-
vides motivation for the security concerns expressed
as well as some guidance on what information is rel-
evant in making security decisions around this API.
The specification does not mandate a particular flow
or user experience that must be followed to determine
whether to give the requesting website access to the
user’s location, nor do most other APIs prescribe a
prcecise user experience. In the next section, we will
discuss our experience in trying to come up with a suit-
able user experience for the Google Chrome browser.

3. Geolocation Experiences

The relevant requirements from the W3C Geoloca-
tion API specification can be distilled into four succint
points.

• User agents must not send location information
to web sites without the express permission of the
user.

• User agents must acquire permission through a
user interface, unless they have prearranged trust
relationships with users.

• The user interface must include the URI of the
document origin.

• Those permissions [. . . ] that are preserved be-
yond the current browsing session [. . . ] must be
revocable and User Agents must respect revoked
permissions.

The Android browser was the first Google product
to implement the W3C Geolocation API. When you
visit a site that requests your location using this API,
you are prompted for your location as shown in Fig-
ure 1. When we were ready to implement this API
in Google Chrome, it seemed as if it ought to be rel-
atively straightforward, as we as a company already
had experience creating a compliant UI once. How-
ever, when the Chrome user experience team designed
the interface for Chrome, they asked a critical question
- what about <iframe>s, and other resources embed-
ded from other origins? For instance, if the user has
granted maps.google.com permission to use the Geolo-
cation API, and example.com embeds a Google Maps
gadget, should the user’s location be shown, or not?

We considered various scenarios to answer the question
of permission models for embedded resources request-
ing a user’s location, from embedded maps used to pro-
vide directions to advertisements and more. We con-
sidered using the origin of the top level document, the

Figure 1. Geolocation access request prompt on the An-
droid browser

origin of the resource or frame requesting the location,
a permissive “OR”ing of the two, and a more restric-
tive cross-product of the two. From a purely security
standpoint, the answer should not matter as code run-
ning in an <iframe> that had access to your location
should not be able to be interrogated by code from
an other site, thanks to the same origin policy (sam,
2009). However, a user’s perception of the security
and privacy implications may be very different than a
browser implementer’s perception.

As implementers, we understand the security model of
the browser, and understand the notion of sites embed-
ding resources from other origins, and the protections
afforded to the data within such other origins by poli-
cies such as the same origin policy. Many users do not



Practical Privacy Concerns in a Real World Browser

share this same level of understanding, however. We
believed that users might be surprised if they visited
a site for the first time, and saw on that site a maps
gadget showing their exact location. As developers we
could rationalize that we had granted access to the ori-
gin of the maps gadget in the past, and it’s still the
same origin getting our location data. As a user how-
ever, it appears that a totally new site now has access
to location data, and whether or not this is technically
true, it can create a perception issue and unexpected
behavior that we wish to avoid.

To meet the user’s expectations, we came up with a
scheme whereby a user’s preference was stored for a
tuple of the origin of the top-level document, as well
as the origin of the resource requesting the user’s loca-
tion. In order for the user’s location to be disclosed to
a page, a user must have explicitly allowed the com-
bination of the top-level origin and the origin of the
resource requesting the location, and if this condidi-
ton is not met, then the user is asked and has the
option of allowing or denying the request. The result
can be seen in Figure 2, which shows an example of
how the list of allowed combinations appears in the
settings dialog.

Figure 2. Google Chrome’s Geolocation Settings Dialog

Implementing the Geolocation API in Chrome was a
much more difficult task than expected. This difficulty
is largely because there exist multiple mismatches be-
tween the actual security model of the Web, and what
users perceive. In designing new APIs for the web, and
new security models for these APIs, we must keep in
mind how the capabilities will be perceived by users,
especially in an era where pages are increasingly lever-
aging shared components and “widgets” provided by
third parties. Simply saying “prompt the user” is not
an acceptable answer, unless one can be sure that the
question the user is prompted with is a question that

the user can understand, and is not a question that
assumes a mental model radically different or more
complicated than the model the user posesses.

4. Upcoming APIs

4.1. Audio and Video

We are working on providing APIs to give webpages
access to audio and video capabilities of the plat-
form – specifically, a speech recognition and text to
speech API, as well as access to the video camera (if
available). Where possible, we prefer leveraging the
<input> tag for as many of these capabilities as pos-
sible. As a concrete example, we are planning to ex-
pose a speech recognition API. Rather than letting a
website call RecognizeSpeech() as a JavaScript API
however, we are planning to offer an API of the form
<input type=“speech”> that will appear as a text in-
put field, with a microphone icon next to it. When
the user clicks the microphone, a visual element will
appear that clearly indicates the microphone is being
used, and the browser will begin analyzing microphone
input, making a text transcription available via the
input form element. By doing so, we can provide an
API where we have an intuitive user interaction (the
user clicks a clearly identifiable button), that avoids
prompting the user with a question. We want to limit
the number of permissions we have to request in the
form of “This site wants to do X, is that OK?” and
instead implicitly grant permissions based on user ac-
tions, whenever possible.

4.2. Filesystem

Another API under development is a filesystem
API (Uhrhane, 2010), which exposes a sandboxed, per-
origin filesystem to web applications. Many web ap-
plications wish to store arbitrary data (email, attach-
ments, photos as an example) on a user’s disk, either
for access whilst offline, or as a cache for performance
reasons. While there are great benefits to such an API,
there is also a concern that a malicious attacker could
use such an API to fill up a user’s hard disk. As such,
we are proposing that there be two types of filesystem
stores – one that is persistent, and one that is tem-
porary. By default, we will allow applications access
to a temporary filesystem. This provides a safe de-
fault path, as the user agent can delete data from this
temporary filesystem at any time (for instance, should
disk space become scarce, the browser could delete the
contents of temporary filesystems). At the same time,
websites can use the API for many use cases where
strong persistence guarantees are not required, and so
in the default case, we provide a useful API without



Practical Privacy Concerns in a Real World Browser

burdening the user with a series of permission ques-
tions. In the case of persistent quota, user consent can
still be requested, though this use case is likely rarer,
and so for what we believe to be the default use case,
we have managed to provide an API that is safe by
default and does not require yet another user prompt.

5. Bundling Permissions

While we believe it is important to reduce the num-
ber of permissions that must be explicitly requested
by an application by providing safe-by-default APIs,
and modeling APIs as <input> elements where ap-
propriate, there is a limit to how far this will take us.
Eventually, when building complex applications, we
will hit cases where the number of permissions that
must be requested, or the number of user interactions
that must be completed to grant permissions in in-line
workflows, exceeds what is reasonable to expect from
a user. Imagine, for instance, a video-conferencing ap-
plication written solely with web standard APIs. One
could imagine requiring access to video cameras, mi-
crophones, allowing a peer-to-peer connection, allow-
ing geolocation access, and more, such that the number
of user interactions to start a video conference would
be prohibitive. There are also some permissions, such
as the ability to access the clipboard, that while they
could be requested of the user, are too fine-graned and
nuianced to actually express as a meaningful question
to the user. For these scenarios where a large num-
ber of permissions are to be requested, or where per-
missions are too fine-graned to make sense as a user
prompt, we need a better answer.

One answer that the Chrome team is working on is
the notion of an installable application. In the desk-
top environment, a user installs an application once,
and grants virtually all privileges to that application.
This has clear downsides as is evidenced by the num-
ber of computers with viruses and malware installed,
but does have the advantage of bundling everything
up into a single question – do you, the user, trust
this application? We believe that with new efforts,
we can help users answer this trust question by pro-
viding additional data about the application (includ-
ing reputation data such as the number of other users
using the application). More importantly, we can re-
verse this trust decision and actually revoke access in
a single action if the user desires that, or we discover
that the application is malicious. As such, we believe
that the packaging of permissions into a single ques-
tion makes sense, where the application specifies up
front exactly which permissions it would like, and are
pursuing various options along this vein. This will en-

able more natural user experiences, and avoid forcing
a user to grant multiple permissions serially (and po-
tentially spread out over a period of time), before a
web application is useable.

6. Conclusion

In this paper, we have discussed our experience with
implementing the W3C Geolocation API, and how it
has motivated us to be particularly sensitive to the fact
that implementers of user agents and end users have
different mental models. As such, we believe that it
is critical for other implementers and spec authors to
keep in mind the mental model of the user, and make
sure it is possible to phrase questions to the user that
match their mental model of what is happening on a
website. We have discussed new APIs we are in the
process of implementing, and how we are attempting
whenever possible to avoid creating more permissions
for which we must prompt the user. Finally, we have
discussed the need for a mechanism where multiple
permissions can be granted, and revoked, in a single
action. We hope that these proposals prove useful for
others, and provide an interesting starting point for
discussion in the workshop.

References

Same origin policy for JavaScript. Mozilla
Specification, June 2009. URL https:
//developer.mozilla.org/en/Same_origin_
policy_for_JavaScript.

Fulman, Jason and Wilmer, Elizabeth L. Ec-
mascript language specification. http://www.ecma-
international.org/publications/files/ecma-st/ecma-
262.pdf. Ann. Appl. Probab, 9:1–13, 1999.

HTML 5. HTML 5: A vocabulary and associated
APIs for HTML and XHTML. W3C Working Draft,
August 2009. URL http://www.w3.org/TR/2009/
WD-html5-20090825/.

Pichai, Sundar. Google I/O Keynote. May 2010. URL
http://code.google.com/events/io/2010/.

Popescu, Andrei. Geolocation API Specification. W3C
Recommendation, July 2009.

Raggett, Dave, Hors, Arnaud Le, and Jacobs, Ian.
Html 4.01 specification. W3C Recommendation, De-
cember 1999. URL http://www.w3.org/TR/html4.

Uhrhane, Eric. File api: Directories and system. W3C
Editor’s Draft, June 2010. URL http://dev.w3.
org/2009/dap/file-system/file-dir-sys.html.

https://developer.mozilla.org/en/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/en/Same_origin_policy_for_JavaScript
https://developer.mozilla.org/en/Same_origin_policy_for_JavaScript
http://www.w3.org/TR/2009/WD-html5-20090825/
http://www.w3.org/TR/2009/WD-html5-20090825/
http://code.google.com/events/io/2010/
http://www.w3.org/TR/html4
http://dev.w3.org/2009/dap/file-system/file-dir-sys.html
http://dev.w3.org/2009/dap/file-system/file-dir-sys.html

