


* Need an API to...
* Manage RDF services
* Manage multiple RDF store states
* Managing queries

* Describe relationships between
services

(3



CRUD operations for services

CRUD operations for named queries
Hypermedia links resources together
Cacheable and serial evaluation
Simple named query parameters
Distributed revision control




* All resources are represented using

* application/spargl-query

Explicit linking

* No “well-known locations”
Queries link using SERVICE

Services and graphs link using WITH

Service descriptions may link to name
queries using rdf+xml|

d

(3




HTTP/1.1 200 Ok
Content-Type: application/spargl-query:

DESCRIBE 7book
FROM </graph>
WHERE {
SERVICE </service> {
?book dc:creator "$Sauthor"

¥
¥

(3



* Named queries can be evaluated using
cacheable GET requests

* Named queries can also be evaluated
serially using POST requests

* Ad-hoc queries can be serially evaluated
using POST requests to a service or
graph




HTTP/1.1 200 Ok
Content-Type: text/turtle
Cache-Control: max-age=30
Age: 0

<http://example.com/book3> dc:title "A new book" ;

dc:creator "A.N.Other"




« Query parameter are explicitly identified
« Each query parameter is exclusively
e Absolute IRI or relative IRI
e plain literal with an explicit language
e typed literal with an explicit datatype

e Only string values of literal labels and relative
|IRIs need to be passed for evaluation

e The BINDINGS clause can be used to combine
query parameters




POST /query HTTP/1.1
Accept: text/turtle
Content-Type: application/x-www-form-urlencoded

author=A.N.Other

(3



Services maybe compossed of others

Services may store only a delta against

other services

Anybody can create their own virtual
service from an accessible service

Services can reject merging deltas to
enforce data consistency

(3



PUT /branch HTTP/1.1
Content-Type: application/sparql-query

INSERT { ?s 7?p 70 }
WHERE {
SERVICE </service> {
’s ?p 70
}
H

(3




SELECT *
WHERE {
’subj dc:title "A new book";
dc:creator "A.N.Other".

-



SELECT *
WHERE {
{ ?subj dc:title "A new book" }
UNION { SELECT ?subj {}
BINDINGS ?subj { (<book3>) (<bookd>) }
FILTER ?subj = <book3> || 7subj = <book4d> ||
EXISTS { ?subj dc:cregtor "A.N. Other" })

-




=
(1

RDF Agent




PUT /union HTTP/1.1
Content-Type: application/spargl-query-fed

INSERT { ?s 7p 70 }

WHERE {
SERVICE <//example.com/service> {
?s 7p 70
FILTER regex(str(?s), "“http://example.com/", "1")
}
SERVICE <//example.org/service> {
?s ?p 7?0 A
FILTER regex(str(?s), "“http://example.org/", "1i")
}







	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

