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1 Motivation

Jointly with the release of RDF in 1999 as recommendation of the W3C, the
natural problem of querying RDF data was raised. Since then, several designs and
implementations of RDF query languages have been proposed (see [9] and [7] for
detailed comparisons of RDF query languages). In 2004, the RDF Data Access
Working Group released a first public working draft of a query language for
RDF, called SPARQL [13]. Since then, SPARQL has been rapidly adopted as
the standard for querying Semantic Web data. In fact, SPARQL became a W3C
Recommendation in January 2008.

In spite of being the standard query language for RDF, the design of SPARQL
was made to keep the efficiency of the language considering the current database
technology. In this direction, the current definition of the semantics of SPARQL
does not consider the combined treatment of two of the distinctive features
of RDF graphs, namely the semantics of blank nodes and RDFS vocabulary
recommended by the W3C in the definition of RDF [10]. In fact, the semantics
of SPARQL does not match in some constructions the semantics for blank nodes
recommended by the W3C in [10]. To see that this is the case, consider the RDF
graphs G1 and G2 shown in Figure 1. In these graphs, :b1, :b2 and :b3 are
blank nodes, which are used to represent objects that are owned by John and
Peter. According to the semantics for blank nodes proposed by the W3C [10, 8],
these two graphs are equivalent as they can be mapped into each other 4. Thus,
one would expect that the answer to any SPARQL query over G1 is the same as
over G2. However, this is not the case for the following SPARQL query Q:

SELECT DISTINCT ?X
WHERE { ?X owns ?Y .

?X owns ?Z .
FILTER (?Y != ?Z) }

According to the semantics of SPARQL, the answer to Q over G1 is John
since :b1 and :b2 are distinct values, while the answer to Q over G2 is the
empty set.

4 Function f defined as f( :b1) = f( :b2) = :b3 is a homomorphism from G1 into
G2, while function g defined as g( :b3) = :b1 is a homomorphism from G2 into G1.



John owns :b1 .
Peter owns :b1 .
John owns :b2 .

John owns :b3 .
Peter owns :b3 .

RDF graph G1 RDF graph G2

Fig. 1. Two equivalent RDF graphs.

The preceding example shows a mismatch between the semantics of blank
nodes in RDF and SPARQL. In RDF, two distinct blank symbols are not as-
sumed to represent distinct objects, as explicitly mentioned in the W3C docu-
ment defining the semantics of RDF: “Blank nodes are treated as simply indicat-
ing the existence of a thing, without using, or saying anything about, the name
of that thing” [10]. On the other hand, two distinct blank symbols are treated
as distinct objects in SPARQL, as shown by the fact that condition ( :b1 !=
:b2) holds in this query language.

The difference in the treatment of blank nodes in RDF and SPARQL poses
an obvious question, what is the right semantics for these nodes? In this position
paper, we argue in favor of a unique semantics for blank nodes. In particular,
this issue is considered from different perspectives in Section 2, and then our
position about this matter is given in Section 3.

2 What is the right semantics for blank nodes?

2.1 A practical perspective: Blank nodes in real-life RDF graphs

Our first approach to the question of what is the right semantics for blank nodes
is to see how these nodes are being used in real-life RDF data. For this, we have
downloaded and analyzed RDF datasets freely available on the Web, searching
for triples with blank nodes and trying to understand their structure.

We have observed that, on the few occasions that blank nodes are actually
used, they are intended to be pointers to more data. For example, the RDF
dump of the US Census data [1] uses blank nodes to represent households, each
one connected to several statistics pertaining to it. At the same time, other
blank nodes represented streets, each one connected to several houses, and so
on. In this context, it makes sense to use blank nodes as anonymous entities (to
keep privacy). Another example of this type of use of blank nodes is given by
ordered collections of concepts as recommended in SKOS Primer [2]. As shown
in Figure 2, blank nodes are used in SKOS to point to the value of the current
element and to the next element in an ordered collection of concepts.

In the previous examples, as well as in more than 1 terabyte of RDF data
analyzed, blank nodes shared the property of having in-degree 1 and out-degree
greater or equal than 1. Roughly speaking, this means that blank nodes are
being used as identifiers for collections of data intended to be together, but that
for some reason are better off without a dereferenceable URI. It is important
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Fig. 2. An ordered collection in SKOS.

to notice that this semantics corresponds with the semantics of blank nodes in
SPARQL, as two distinct blank nodes are treated as distinct values in all these
RDF graphs.

2.2 A theoretical perspective: Complexity of query evaluation

To study the complexity of evaluating a query language, the notions of data
complexity and combined complexity were introduced in [14]. The data com-
plexity of a query language is the complexity of evaluating a query as a function
of the size of the data, while the combined complexity is defined in the same
way but considering both the size of the data and the query [14]. In general, the
size of a query is considerably smaller than the size of the data, and, therefore,
the notion of data complexity is usually considered as a good way to measure
whether a query language can be used in practice. In fact, most of the query
languages used in real-life systems (such as SQL) have a low data complexity.

In the context of RDF, it has been shown that SPARQL has a low data
complexity [12]. This result was proved by using the current semantics of blank
nodes in SPARQL, that is, distinct blank symbols were considered as distinct
values. But this immediately raises the question of what would be the complex-
ity of evaluating SPARQL if one decides not to use this semantics, but instead
sticking to the semantics of blank nodes in the normative specification of RDF
[10]. According to [10], blank nodes represent incomplete information. As such,
it would be natural to incorporate this semantics into SPARQL by considering
RDF graphs as incomplete databases [11, 4]. But unfortunately this would in-
crease the data complexity of SPARQL. In fact, it is possible to conclude, from
the results in [3], that in this case the data complexity would be coNP-hard, even
for the fragment of SPARQL consisting of basic graph patterns and operators
SELECT, UNION and FILTER (?X != ?Y).

It should be noticed that the previous coNP lower bound depends on the size
of RDF graphs. Thus, given that real-life RDF graphs can be very large, the
previous result tells us that it would very costly to evaluate SPARQL queries if
blanks nodes are treated as proposed by the W3C in the definition of RDF [10].



2.3 The Linked Data perspective

One of the most significant scenarios for RDF usage (and likely the fastest grow-
ing in terms of data and users) is publishing Linked Data on the Web [5]. Linked
Data represents an evolution of the Web that incorporates new ways of pub-
lishing and interacting with information. Instead of relying only on information
expressed at a document-level granularity, semi-structured descriptions of Web
resources that are represented by dereferenceable URIs can be expressed using
RDF. Linked Data is a simple mechanism for sharing semi-structured descrip-
tions of Web resources across datasets via the creation of RDF links between Web
resources. The Linking Open Data community project is promoting a Web of
Linked Open Data (LOD), and many interlinked datasets have been contributed
to what has been referred to as the LOD Cloud.

The first architectural principle for Linked Data is to Use URIs as names
for things. This clearly discourages the use of blanks. In fact, the tutorial [6] put
forward by the Linked Data community explicitly says that:

“We discourage the use of blank nodes. It is impossible to set exter-
nal RDF links to a blank node, and merging data from different sources
becomes much more difficult when blank nodes are used. Therefore, all
resources of any importance should be named using URI references.”

The tutorial also points out how the Linked Data scenario has influenced the
design of the commonly used ontologies (in particular, the FOAF specification
has abandoned the use of blank nodes in favour of URI references).

As a recent example, consider the Evaluation for the Entity Search Track
that is part of the Semantic Search Workshop at WWW 2010, and has the goal
of developing a benchmark, based on which semantic search systems can be
compared and analyzed in a systematic fashion. The Evaluation initiative has
modified datasets to eliminate blank nodes. The initiative provides a corpus of
datasets, which contain entity descriptions in the form of RDF representing a
sample of Web data crawled from publicly available sources. The corpus is based
on the well known Billion Triple Challenge 2009 dataset, which contains blank
nodes. The evaluation initiative required participants to encode blank nodes
according to the following rule: map each BNID (i.e., each blank node identifier)
to http://example.org/URLEncode(BNID). Since the blank node ids across this
specific dataset are unique, this simple convention allows mapping blank nodes
to obtain distinct URIs. It is important to notice that this approach corresponds
with the semantics of blank nodes in SPARQL, as two distinct blank nodes are
treated as distinct values in the previous rule.

3 Our position

In the previous section, we gave evidence that the semantics of blank nodes in
real-life RDF graphs corresponds with the semantics of blank nodes in SPARQL.
Moreover, we also gave theoretical evidence of the high cost of evaluating SPARQL



under the semantics for blank nodes in the normative specification of RDF [10].
Given this evidence, we advocate for the modification of the semantics of blank
nodes in RDF to align it with SPARQL. In particular, blank nodes could be
used as identifiers without a URI, and two distinct blank nodes symbols :b1
and :b2 should always be considered as different values (that is, condition ( :b1
!= :b2) should hold as it is the case in SPARQL). As a consequence of this
modification, the implication of RDF graphs without RDF/S vocabulary would
be reduced to subset testing.

The previous suggestion represents a compromise between the Linked Data
position of eliminating blank node usage altogether, and the actual usage ob-
served in practice (and embraced by ontologies such as SKOS). We observe that
blanks nodes under our proposed semantics are effectively syntactic sugar, and
they can be easily replaced by URIs in a systematic way (e.g., the URIs can be
generated based on URLEncode(BNID) with a suitable prefix).
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