
Redefining the RDFS Closure to be Decidable

Jesse Weaver

Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY, USA
weavej3@cs.rpi.edu

1 Introduction

In this position paper, I review a problem with the way the current RDF Semantics [1] defines

the RDFS closure. In particular, the concern is with the treatment of container membership

properties which causes the RDFS closure to be infinite. This problem has been known for over

half a decade [2]. I present some statistics on the usage of container membership properties that

suggest that container membership properties are used widely enough to advocate continued

support and thus modification to the definition of the RDFS closure. I look at some previously

suggested solutions and then propose a solution which involves adding four rules to the RDFS

entailment rules and removing some RDF and RDFS axiomatic triples.

2 Problem

The current recommendation of the RDF semantics states the RDFS entailment lemma as fol-

lows:

“S rdfs-entails E if and only if there is a graph which can be derived from S plus the

RDF and RDFS axiomatic triples by the application of rule lg, rule gl and the RDF

and RDFS entailment rules and which either simply entails E or is an XML clash.” [1]

As pointed out by ter Horst [2, 3], the problem is that the RDFS closure is defined to be an

infinite number of triples. (This was also noted by Mika [4].) This is because the first step of

computing the RDFS closure is to add the RDF and RDFS axiomatic triples, and these sets of

triples contain the following set of infinite triples:

rdf:_1 a rdf:Property, rdfs:ContainerMembershipProperty ;
rdfs:domain rdfs:Resource ; rdfs:range rdfs:Resource .

rdf:_2 a rdf:Property, rdfs:ContainerMembershipProperty ;
rdfs:domain rdfs:Resource ; rdfs:range rdfs:Resource .

...

This requirement renders the problem of computing the complete RDFS closure undecidable.

3 Usage

Before considering solutions to the problem, one might consider whether support for container

membership properties is even warranted as it may be a less desirable feature of RDF(S). To this

end, I take a cursory look at some statistics on the usage of container membership properties in

the 2009 Billion Triples Challenge dataset
1
.

1 http://vmlion25.deri.ie/, last accessed April 5, 2010.



The 2009 Billion Triples Challenge dataset is a mixed quality dataset of approximately 1.14

billion quads crawled from the web. It contains 898,966,813 unique triples, of which 22,282,626

(nearly 2.5%) contain a container membership property (rdf: i) as the predicate. To put that in

perspective, if all the rdf: i predicates are considered the same property, then container member-

ship properties are the 6th most common predicate after rdf:type, dbpedia:wikilink, rdfs:seeAlso,

foaf:knows, and foaf:nick. In fact, out of 136,188 unique predicates in the dataset, rdf: 1 is the 91st

most commonly occurring predicate showing up in 757,506 triples. This suggests that container

membership properties enjoy significant usage.
2

Having suggested that container membership properties are widely (enough) used, the ques-

tion remains as to whether their entailments are useful. I believe they are. RDFS entailment

infers triples of the form (C rdfs:member M) from triples like (C rdf: i M). Such inferences

allow us to ask the question “does M belong to C?” without asking “is M the first item in C?

the second? the third?” and so forth, or asking “is C a container that is related to M in a way

that looks like rdf: i?”.

4 Previous Approaches

4.1 Muñoz et al.’s ρdf Fragment

In my experience, many systems simply choose to ignore entailments of container membership

properties. Muñoz et al. [5, 6] propose the ρdf fragment, a simple fragment of RDFS that excludes

(among other things) container membership properties. However, in maintaining a high level of

backward compatibility with the current standard of RDF(S), appropriate handling of container

membership properties is still a concern.

4.2 Ter Horst’s Partial D* Closure

Ter Horst [2, 3] discusses this very issue, and as a solution, he defines the partial D* closure. The

beginning of the process for computing the partial D* closure is stated as follows:

“Suppose that G is a generalized RDF graph and D a datatype map. Suppose that

K is a nonempty subset of the positive integers {1, 2, ...} chosen in such a way that for

rdf: i ∈ V (G) we have i ∈ K. The partial D* closure Gs,K of G is defined in the following

way. In the first step, all RDF and RDFS axiomatic triples and D-axiomatic triples are

added to G, except for the axiomatic triples including rdf: i such that i /∈ K.”

[3]

In other words, include only those axiomatic triples about rdf: i resources for which the rdf: i
resources are actually mentioned in the original graph (G).

4.3 Exhaustive Scan

Jena2’s RDFS Reasoner [7] (using the “full compliance level”) essentially follows ter Horst’s

recommendation by first determining which rdf: i resources are in the original graph and then

adding their respective axiomatic triples. This is considered a preprocessing step in which a full

scan is performed over the graph.

2 other interesting statistics: cpan.org, craigslist.org, and musicbrainz.org are the top three domains
with the most container membership properties. rdf:Seq is the most commonly occurring container
and is the 15th most commonly occurring instance type.



“The identification of which container membership properties (properties like rdf: 1) are

present is implemented using a preprocessing hook. The rest of the RDFS operations are

implemented by explicit rule sets executed by the general hybrid rule reasoner.” [7]

Ianni et al. [8] provide entailment rules in their answer set programming system that also result

in a complete scan of the triples.

5 Proposed Solution

Similar to the previously defined finite RDFS closure in [9], I propose a solution that complies

with ter Horst’s suggestion. Simply define a set of additional entailment rules which generates

only the axiomatic triples for the rdf: i resources that are actually used.

CMPa: ?n rdf:type rdfs:Resource ∧ [?n has the form rdf: i where i ∈ {1, 2, ...}]
→ ?n rdf:type rdf:Property

CMPb: ?n rdf:type rdfs:Resource ∧ [?n has the form rdf: i where i ∈ {1, 2, ...}]
→ ?n rdf:type rdfs:ContainerMembershipProperty

CMPc: ?n rdf:type rdfs:Resource ∧ [?n has the form rdf: i where i ∈ {1, 2, ...}]
→ ?n rdfs:domain rdfs:Resource

CMPd: ?n rdf:type rdfs:Resource ∧ [?n has the form rdf: i where i ∈ {1, 2, ...}]
→ ?n rdfs:range rdfs:Resource

Note that all of the CMP rules have the same body with only one triple pattern. The triple

pattern (?n rdf:type rdfs:Resource) is sufficient for finding all occurrences of rdf: i resources

by the following reasoning. If an rdf: i resource occurs in the original graph, then it occurs in

at least one of the subject, predicate, or object positions of at least one triple. If it occurs in a

subject position, then rule rdfs4a3
generates (rdf: i rdf:type rdfs:Resource). If it occurs in

an object position, then rule rdfs4b4
generates the same result. It is occurs in a predicate position,

then rule rdf1 5
generates (rdf: i rdf:type rdf:Property), and then that triple satisfies rule

rdfs4a to produce (rdf: i rdf:type rdfs:Resource).
This approach differs from previous approaches in that producing the axiomatic triples for

rdf: i resources may be performed more selectively as part of rule-based reasoning rather than

as an exhaustive scan of all the triples. In other words, only subjects of triples matching (?n
rdf:type rdfs:Resource) must be inspected for rdf: i resources instead of all positions of all

triples (?n1 ?n2 ?n3).

6 Conclusion

Container membership properties are the predicates of nearly 2.5% of the triples in the 2009

Billion Triples Challenge dataset suggesting that they enjoy common usage, and I argue that

container membership property entailments (namely rdfs:member) are useful. While many sys-

tems ignore container membership properties, I recommend following ter Horst’s suggestion of

3 u a v → u rdf:type rdfs:Resource
4 u a v → v rdf:type rdfs:Resource
5 u a y → a rdf:type rdf:Property



including only the axiomatic triples about rdf i resources for those container membership prop-

erties that occur in the original graph. Whereas previous systems following this suggestion have

implemented an exhaustive scan of the triples, I recommend four rules that can be used during

rule-based reasoning to more efficiently produce said axiomatic triples and which can be used to

effectively redefine the RDFS closure to make it decidable while maximally backward-compatible.

References

1. Hayes, P.: Rdf semantics. W3C Recommendation: http://www.w3.org/TR/2004/REC-rdf-mt-
20040210/, last accessed April 5, 2010

2. ter Horst, H.J.: Extending the rdfs entailment lemma. In: Proceedings of the Third International
Semantic Web Conference. (2004)

3. ter Horst, H.J.: Completeness, decidability and complexity of entailment for rdf schema and a semantic
extension involving the owl vocabulary. Journal of Web Semantics (2005)

4. Mika, P.: Social Networks and the Semantic Web. PhD thesis, Vrije Universiteit (2006)
5. Munoz, S., Perez, J., Gutierrez, C.: Minimal Deductive Systems for RDF. In: Proceedings of the 4th

European Semantic Web Conference. (2007)
6. Munoz, S., Perez, J., Gutierrez, C.: Simple and Efficient Minimal RDFS. Journal of Web Semantics

(2009) 220–234
7. Reynolds, D.: Jena 2 inference support. http://jena.sourceforge.net/inference/, last accessed April 5,

2010
8. Ianni, G., Martello, A., Panetta, C., Terracina, G.: Efficiently Querying RDF(S) Ontologies with

Answer Set Programming. Journal of Logic and Computation 19(4) (2008) 671–695
9. Weaver, J., Hendler, J.A.: Parallel Materialization of the Finite RDFS Closure for Hundreds of

Millions of Triples. In: Proceedings of the 8th International Semantic Web Conference. (2009) 682–
697


