
Flat triples approach to RDF graphs in JSON

Dominik Tomaszuk
Institute of Computer Science, University of Bialystok, Poland

Abstract. This paper  describes  a syntax that  can be used to  write  Resource Description Framework 

(RDF) graphs for presentation and editing purposes. It propose a alternative mean of serializing RDF 

triples using JavaScript Object Notation (JSON), a lightweight representation format which emphasizes 

legibility and brevity. RDF/JSON is a textual syntax for RDF that allows RDF graphs to be completely 

written  in  a  compact  form.  This  means  the  format  is  quick  and  easy  to  read  and  write.  This  new 

serialization format is developed in response to a demand from a wide range of users, who do not have an 

XML, Notation3 and Turtle background.

Keywords. Semantic Web, Resource Description Framework (RDF), JavaScript Object Notation (JSON), 

relational model

1. Introduction
JavaScript  Object  Notation  (JSON)  is  a  lightweight  data-interchange  format.  It  is  effortless  for 

humans to read and write. It is easy for machines to parse and generate. JSON is based on a subset of the [2]. 

JSON is a text format that is completely independent from programming languages. These properties make 

JSON a perfect data-interchange language.

JSON [3] is built on two structures: a collection of name/value pairs and an ordered list of values. In 

most languages, collection of name/value pairs is realized as an object, struct, record, hash table, associative 

array, dictionary, or keyed list. In various languages, ordered list of values is realized as an array, list, vector, 

or sequence.

JSON's  basic  types  are  numbers,  strings,  booleans,  arrays,  object  and null.  Number  in  JSON is 

integer, real, or floating point1. The string is double-quoted Unicode with backslash escaping. The boolean 

contains true or false value. The array is an ordered sequence of values, comma-separated and enclosed in 

square brackets. The object is collection of key:value pairs, comma-separated and enclosed in curly brackets. 

Null contains empty value.

Main advantage of JSON is that it translates directly into universal data structures.

2. RDF/JSON serialization
RDF as an abstract model has several serialization formats. XML is one of the formats for storing 

and transmitting data. A quick read through of the W3C RDF web pages [4] leaves no room for doubt that 

the preferred RDF syntax is RDF/XML, but RDF is not strictly an XML format.

The verbosity of XML, complexity of N3, non-readable for humans of Turtle and N-Triples causes 

that there is no simple syntax model that can be quickly edited in a concise manner. 

1 The octal and hexadecimal formats are not used.



Considering the above difficulties it is proposed to introduce a new, universal syntax representing 

RDF graphs in JSON. Such syntax, being the equivalent to RDF model, would be more legible and brief. 

The proposed RDF/JSON is a lightweight textual syntax that can be easy modified by humans, servers and 

clients. The advantage of this syntax is  that it can easily convert other syntaxes, eg RDF/XML using XSLT 

[5] or XQuery [18, 19] to its own format. Another benefit of serializing RDF graphs in JSON is that there are 

many  software  libraries  and  build-in  functions  which  support  the  syntax  [8].  One  more  advantage  of 

RDF/JSON  is  that  this  syntax  does  not  have  XML and  N-triples  restrictions.  Another  benefit  of  the 

serialization is that it may be easily manageable by ECMAScript [2].

This paper presents the option of either requesting RDF as an output, or responding RDF as an input 

from JSON type services in order to make the data accessible in scripting language environments without the 

overhead of other syntax parsers.

Listing 1 presents an example of JSON syntax.

{ 

  "triples" : 

        [ 

          { 

            "subject" : { "type" : "uri" , "value" : "http://example.org/" } , 

            "predicate" : { "type" : "uri" , "value" : "http://purl.org/dc/elements/1.1/creator" } , 

            "object" : { "type" : "literal" , "value" : "John Smith" } 

          } 

       ] 

}

Listing 1. Simple RDF/JSON document

2.1. Flat triples approach
Clients and servers need to process data into triples, and denote those triples in some type of data 

structure. In addiction this data structure should be easy to read and write to humans and machines. This is 

the area I see for serialization RDF/JSON through the flat triples approach. The proposal shows the RDF 

triples in a simple understandable, and easy to serialization manner. It describes JSON structure for RDF 

graph that expresses the whole RDF model that does not lose information.

This method uses only JSON root object named 'triples', and arrays of objects symbolizing subject, 

predicate and object. The objects should contain keys named 'type' and key named 'value'. The members of 

these objects are unordered. Values of key named 'type' are defined in table 1. Values of key named 'value' 

depend on types. When type equals literal it optionally can be define with language, than it should contain 

key named 'xml:lang'.  Allowed value of 'xml:lang' is defined in [1] and if supplied, it must not be empty. 

When the type equals 'typed-literal' it should contain key named 'datatype'. Value of 'datatype' should be 

declared as URI. When the type is 'uri', value should be full URI, not just short QName.

types subject predicate object

uri yes yes yes

bnode yes no yes

literal no2 no yes



typed-literal no3 no yes

Table 1. Types of RDF terms

Algorithm 1 presents an idea of generate flat triples.

Input: triples

Create a JSON root object named triples

Create a JSON array in root object

Foreach triples do

  Create a JSON object named 'subject' in array

  Get the subject from a triple

  Add a key/value pair to object named 'subject' with key being the string named 'type' and value being one of the 

types from table 1

  Add a key/value pair to object named 'subject' with key being the string named 'value' and value being lexical 

value of the subject

  Create a JSON object named 'predicate' in array

  Get the predicate from a triple

  Add a key/value pair to object named 'predicate' with key being the string named 'type' and value being 'uri'

  Add a key/value pair to object named 'predicate' with key being the string named 'value' and value being lexical 

value of the predicate

  Create a JSON object named 'object' in array

  Get the object from a triple

  Add a key/value pair to object named 'object' with key being the string named 'type' and value being one of types 

from table 1

  Add a key/value pair to object named 'object' with key being the string named 'value' and value being lexical 

value of the object

  If the triple value is plain text and has language then

    Add a key/value pair to object named 'object' with key being the string named 'xml:lang' and value being the 

language token

  If end

  If the type triple is a typed literal then

    Add a key/value pair to object named 'object' with key being the string named 'datatype' and value being the the 

datatype URI

  If end

Foreach end

Algorithm 1. Generating RDF/JSON

2.2. A relational model of RDF terms in RDF/JSON
The flat triples approach used in RDF/JSON propose could be a substitute of the relational  model.

The relational model for database management is a database model based on first-order predicate 

2 A future Working Gropu with a less restrictive charter may extend the syntaxes to allow literals as the subjects of statements.
3 A future Working Gropu with a less restrictive charter may extend the syntaxes to allow typed literals as the subjects of 

statements.



logic, first formulated and proposed in 1969 by Edgar F. Codd [21, 22].

In set theory, an n-tuple is a sequence of n elements, where n is a positive integer. An RDF tuple is a partial 

function from variables to RDF terms.

An RDF tuple  is  totally  different  from an RDF triple.  A triple  always has  three  parts  with not 

changing names: subject, predicate and object, while an RDF tuple can have any number of components with 

names not based on any principle. A triple is a statement – it implies a semantic relationship between its 

parts. A tuple does not carry meaning, it is just a container than maps some variables to some RDF terms 

[11]. 

However, any triple could be represented as a tuple. There is a one-to-one mapping from RDF triples 

to tuple with subject, predicate and object.

Sample of mapped triple to tuple present in fig. 1.

Fig. 1. Tuple with subject, predicate and object

The triples are 3-tuples and the well-known relational model of data which is explicitly designed to 

represent tuples and the collections of them.

2.3. Depending on the SPARQL
RDF tuples are just term of SPARQL solutions. The variables in a tuple are named its attributes.

An RDF relation is a set of RDF tuples. It can be described as a table or just another flat format. 

Each row is an RDF tuple and each column is an attribute, named by a variable.

A graph  relation  is  any  relation  whose  heading  is  {?subject,  ?predicate,  ?object}.  Each  of  the 

attributes must be bound in every tuple. Every tuple of subject, predicate and object is similar to an RDF 

triple. Every graph relation has an equivalent RDF graph and inversely.

The  term  tuple  is  used  universally  in  relational  algebra.  To  obtain  RDF/JSON  serialization 

projection operator has been used.

In relational algebra, a projection is a unary operation written as πa1,a2, …, an(R) where a1, a2, ..., an is a 

set of attribute names. The result of such projection is defined as the set obtained when the components of 

the tuple R are restricted to the set {a1, a2, ..., an}. The projection operator restricts the relation to subset of its 

attributes [12].

Listing  2  presents  an  idea  of  flat  triples  generated  using  projection  operation  that  could  be 

compatible with RDF/JSON syntax. The evaluation of triple pattern is the set of mappings that make triple 

pattern to match the graph and have as domain the variables in triple pattern. All mappings are compatible if 

they agree in their shared variables.

SELECT ?subject ?predicate ?object WHERE { ?subject ?predicate ?object }

Listing 2. SPARQL query that generated flat triples



3. Comparison with other JSON serialization approaches
There is several other existing approaches to the problem of representing RDF data in JSON. 

One of  the  approach is  Talis  resource-centric serialization of  RDF in JSON [14].  This  proposal 

represents a set of RDF triples as a series of nested data structures. Each unique subject in the set of triples is 

represented as a key in JSON object. The value of each key is a object whose keys are the URIs of the 

properties associated with each subject. The value of each property key is an array of objects representing the 

value of each property. Main advantage of this approach is that it similar to RDF/XML. Disadvantages are 

that it is  more difficult to process because it is less regular then flat approach and this  incompatible with 

SPARQL Query Results in JSON [13].

Another approach is RDF in canonical JSON objects – RDFj [15]. This proposal is is a very close 

relative of RDFa [16]. It allows JSON objects to be part of the graph, which is particularly useful when 

functions are part of the JSON object. This proposal has several complicated expressions, eg '$' to set the 

subject, 'a' to indicate a type, 'context' to indicate context information and 'graph' to indicate a graph. Main 

advantage of this approach is that it can be transform into something that could be used more broadly in 

JavaScript programming [2]. Main disadvantage is that it is very complicated so this serialization is difficult 

to write and read.  It  is also incompatible with SPARQL Query Results  in JSON [13].  Additionally it  is 

difficult to generate the serialization from SPARQL query.

4. Conclusions
The problem of how to serialize RDF has produced many proposals. Most of them are hard to read 

and write by humans and machines, hence making the problem seem difficult. I have produced a thought-out 

and simple proposal. I suggest that it is time that the Semantic Web community support a simple serialization 

such as mine. I believe my JSON syntax is an interesting approach. 

RDF/JSON is  a  textual  syntax  for  RDF that  allows  RDF graphs to  be  completely  written in  a 

compact form and easily processed. I propose algorithm that generate these flat triples. This algorithm does 

not  answer  how  to  treat  the  exceptions  like  literals  as  subjects  or  blank  nodes  as  predicates.  Further 

improvements are in process.

Another way to handle this syntax by mapping the RDF triples by a tuple using the relational model. 

Next I plan to relate my RDF/JSON to SPARQL Query Results in JSON Working Draft [13] and extend of 

the RDF containers and RDF collections. My syntax is still under development.

Acknowledgements
The author  would like  to  thank Ivan Herman from the World Wide Web Consortium. Professor 

Henryk Rybinski’s comments and support were invaluable.

References
[1] H. Alvestrand, Tags for the Identification of Languages. Internet Engineering Task Force, 2001. 

[2]  M.  Cowlishaw,  ECMAScript  language  specification.  International  Organization  for  Standardization, 

1998.



[3]  D.  Crockford,  The  application/json  Media  Type  for  JavaScript  Object  Notation  (JSON).  Internet 

Engineering Task Force, 2006.

[4] D. Beckett, RDF/XML Syntax Specification (Revised). World Wide Web Consortium, 2004.

[5] M. Kay, XSL Transformations (XSLT) Version 2.0. World Wide Web Consortium, 2007.

[6] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie and J. Siméon, XQuery 1.0: An XML 

Query Language. World Wide Web Consortium, 2007.

[7] J. Robie, The syntactic Web: Syntax and semantics on the Web. In Extreme Markup Languages'2001, 

2001.

[8] P. Lakshman and A. Wirfs-Brock, ECMAScript language specification 5th Edition. Ecma International, 

2009.

[9] E. F. Codd, Derivability, Redundancy, and Consistency of Relations Stored in Large Data Banks. IBM 

Research Report, 1969. 

[10] E. F. Codd, A Relational Model of Data for Large Shared Data Banks, in Communications of the ACM, 

1970.

[11] R. Cyganiak, A relational algebra for SPARQL, HP Labs, 2005.

[12] R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, Addison-Wesley, 2010.

[13] K. G. Clark, L. Feigenbaum and E. Torres, Serializing SPARQL Query Results in JSON. World Wide 

Web Consortium, 2007.

[14] K. Alexander, RDF JSON Specification. Talis, 2008

[15] M. Birbeck, Description of the RDFj syntax. Backplane, 2009.

[16] B. Adida, M. Birbeck, S. McCarron, S. Pemberton, RDFa in XHTML: Syntax and Processing. World 

Wide Web Consortium, 2008.


	Flat triples approach to RDF graphs in JSON
	1. Introduction
	2. RDF/JSON serialization
	2.1. Flat triples approach
	2.2. A relational model of RDF terms in RDF/JSON
	2.3. Depending on the SPARQL
	3. Comparison with other JSON serialization approaches
	4. Conclusions
	Acknowledgements
	References


