
Device Orientation ‘alpha’ 
Calibration

Implementation Status and Challenges

W3C TPAC 2014 - Geolocation Working Group Meeting

richt at opera dot com



Current Definition (1/2)
DeviceOrientationEvent.alpha = The amount of rotation, in a counter-clockwise 
direction, around a reference Z axis denoted by z.

DeviceOrientationEvent.alpha is of type ‘double’ in the range [0, 360). i.e. 0 <= event.alpha < 360.

Y

Z

X

World Frame:



Current Definition (2/2)
The DeviceOrientationEvent.absolute property indicates 
in which direction the corresponding alpha value ‘points’.

○ When `event.absolute === true` then when `event.alpha 
=== 0` the device faces due north by the compass.

● a.k.a. World-based Calibration

○ When `event.absolute === false` then when `event.alpha 
=== 0` the device is facing the direction that the device faced at 
deviceorientation event initialization. 

● a.k.a. Game-based Calibration



Implementation Status
Browser Name Platform Is Device Orientation supported? evt.absolute

Chrome Android Yes true

Opera Android Yes true

Firefox Android Yes true

Safari iOS Yes false

Chrome iOS Yes false

Opera iOS Yes false

● In Android browsers, DeviceOrientationEvent.alpha is world-based.
● In iOS browsers, DeviceOrientationEvent.alpha is game-based.



Y

Typical Situation
Initializing Device Orientation Events with the device pointing in an arbitrary 
direction will give us different event.alpha values in different browsers:

Z

X

Android [*]:

event.alpha === 268.342

iOS:

event.alpha === 0

[*] event.alpha === ( 360 - current compass heading )

World Frame:



Game-based calibration on Android
var initialOffset = null;

window.addEventListener('deviceorientation', function(evt) {

    

    if(initialOffset === null) {

        initialOffset = evt.alpha;

    }

    

    var alpha = evt.alpha - initialOffset;

    if(alpha < 0) {

        alpha += 360;

    }

    

    // Now use our derived game-based `alpha` instead of raw `evt.alpha` value

    

}, false);



World-based calibration on iOS
var initialOffset = null;

window.addEventListener('deviceorientation', function(evt) {

    

    if(initialOffset === null && evt.absolute !== true 

            && +evt.webkitCompassAccuracy > 0 && +evt.webkitCompassAccuracy < 50) {

        initialOffset = evt.webkitCompassHeading || 0;

    }

    

    var alpha = evt.alpha - initialOffset;

    if(alpha < 0) {

        alpha += 360;

    }

    

    // Now use our derived world-based `alpha` instead of raw `evt.alpha` value

    

}, false);



The good

It is currently possible to derive ‘world’ or 
‘game’ based calibration frames for web apps 
across implementations...



The bad

...but the process of deriving ‘world’ or ‘game’ 
based calibration frames for web apps is 
currently complex, non-intuitive and non-trivial.



Additional Issues
● Inconsistencies exist between different implementations.

○ webkitCompassAccuracy/webkitCompassHeading on iOS
○ absolute === undefined on iOS

● Different ‘warm-up periods’ for obtaining compass readings exist on 
different platforms.

● alpha values often ‘drift’ over time.

● Local magnetic interference can affect provided alpha values on 
Android (e.g. from the Google Cardboard Magnetic Button).



Proposal

DeviceOrientation Events should either always 
provide a game-based reference frame or 
always provide a world-based reference frame. 
Not both depending on the platform used.



Converging on a Standard (1/3)

Current Android browsers:
● DeviceOrientation = Accelerometer + Gyroscope 

+ Magnetometer

Current iOS browsers:
● DeviceOrientation = Accelerometer + Gyroscope



Converging on a Standard (2/3)

Future Android browsers:
● DeviceOrientation = Accelerometer + Gyroscope 

+ Magnetometer

Future iOS browsers:
● DeviceOrientation = Accelerometer + Gyroscope



Converging on a Standard (3/3)

*All* future browsers:
● DeviceOrientation = Accelerometer + Gyroscope
● i.e. DeviceOrientationEvent.absolute === false

Then provide additional tooling to derive world-based orientation frames:

+ Magnetometer API ?
or

+ DeviceOrientationEvent.worldAlphaOffset ?



Benefits
● All browsers use the same game-based reference frame for 

DeviceOrientationEvent.alpha.
● Very few current uses of the DeviceOrientation data rely on having 

a world-based reference frame.
○ Removing Magnetometer from DeviceOrientationEvent.alpha 

derivation provides the least disruptive way to fix current 
differences without affecting existing web applications.

● If/when web developers need a world-based reference frame for e.
g. Virtual Reality use cases they should be able to mix additional 
magnetometer-derived data in to game-based DeviceOrientation 
reference frames.



Use Cases for a Magnetometer API
● Virtual Reality in the browser:

○ derived from Magnetometer + Accelerometer-derived Gravity
○ and/or derived from Magnetometer + DeviceOrientation data

■ Enable Sensor Fusion: more accurate world-orientation derivation 
with improved drift compensation

● Respond to local magnetic field events:
○ Detect Google Cardboard Magnetic Button ‘clicks’ http:

//youtu.be/DFog2gMnm44?t=18m36s
○ Use magnets to control web apps. 

■ e.g. MagiTact http://magitact.com/

http://youtu.be/DFog2gMnm44?t=18m36s
http://youtu.be/DFog2gMnm44?t=18m36s
http://youtu.be/DFog2gMnm44?t=18m36s
http://magitact.com/


Q&A


