

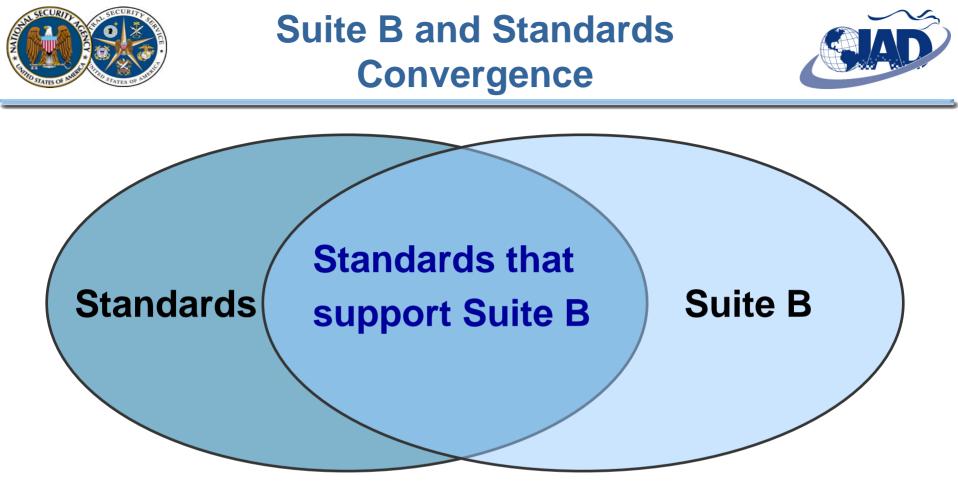
XML Cryptographic Security and Suite B

National Security Agency 25 September 2007

The National Security Agency would like to see appropriate Suite B algorithms incorporated into XML Signature and XML Encryption.

Symmetric Key Size (bits)	RSA and Diffie- Hellman Key Size (bits)	Elliptic Curve Key Size (bits)
80	1024	160
112	2048	224
128	3072	256
192	7680	384
256	15360	521

NIST Recommended Key Sizes


- In general, elliptic curve cryptosystems:
 - Offer more security per bit increase in key size than first generation public key systems.
 - Are more computationally efficient than the first generation public key systems.
 - Require less channel overhead to perform key exchanges and digital signatures on a communications link.

Suite B is comprised of:

Encryption	Advanced Encryption Standard (AES)	FIPS 197	Key sizes: 128 bits and 256 bits
Digital Signature	Elliptic Curve Digital Signature Algorithm (ECDSA)	FIPS 186-2	Curves: P-256 and P-384
Key Exchange	Elliptic Curve Diffie- Hellman	NIST Special Publication 800-56A	Curves: P-256 and P-384
	Elliptic Curve Menzes- Qu-Vanstone (ECMQV)	NIST Special Publication 800-56A	Curves: P-256 and P-384
Hashing	Secure Hash Algorithm	FIPS 180-2	SHA-256 and SHA-384

- Current standards supporting Suite B include:
 - Suite B Cryptographic Suites for IPSec (RFC 4869)
 - Suite B Cipher Suites for TLS (Internet Draft)
 - Suite B in Secure/Multipurpose Internet Mail Extensions (S/MIME) (Internet Draft)

- Next steps for incorporating appropriate Suite B algorithms into XML Signature and XML Encryption could include, but are not limited to:
 - XML Signature
 - Signature Algorithms: Define ECDSA integration with XML Signature
 - Digest: Define SHA-256 and SHA-384 integration with XML Signature
 - XML Encryption
 - Key Agreement: Define ECDH integration with XML Encryption
 - Message Digest: Define SHA-384 integration with XML Encryption

Incorporation of appropriate Suite B algorithms into XML Encryption and XML Signature is an important next step.

- NSA ECC license information:
 - National Security Agency
 Attn: IAD Business Affairs Office
 9800 Savage Road, Suite 6740
 Fort Meade, MD 20755-6740
 - 410-854-6091
 - -<u>bao@nsa.gov</u>

- FIPS 140-2, Security Requirements for Cryptographic Modules: <u>http://csrc.nist.gov/cryptval/140-2.htm</u>
- FIPS 197, Advanced Encryption Standard: <u>http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf</u>
- FIPS 186-2, Digital Signature Standard (Elliptic Curve Digital Signature Algorithm): <a href="http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-
- Draft NIST Special Publication 800-56, Recommendation on Key Establishment Schemes (Elliptic Curve D-H or Elliptic Curve MQV): <u>http://csrc.nist.gov/CryptoToolkit/kms/keyschemes-Jan03.pdf</u>
- FIPS 180-2, Secure Hash Standard (SHA -256 and SHA-384): http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
- NSA Suite B Fact Sheet: <u>http://www.nsa.gov/ia/industry/crypto_suite_b.cfm</u>