OWL 1.1 Design Decisions

OWL 1.1 Draft Team

Contents

- General Design Principles
- Structural Specification
- Expressivity Enhancements
- Metamodeling
- Anonymous Individuals
- Imports
- Annotations on Axioms
- RDF Mapping

General Design Principles

- Extend OWL with things that users need
 - expressivity enhancements
- Bring the spec closer to tools
 - features of OWL have never been implemented (correctly) should be reconsidered
- Make specification cleaner and clearer
 - OWL 1.0 spec is rather cumbersome
 - important questions are not answered by the spec
 - many implementations interpret the spec wrongly
 - for some parts of the spec we even do not know whether they can be implemented correctly

Structural Specification (I)

- Example ontology O:
 - Class (Student partial Person)
- Questions:
 - What are the classes contained in this ontology?
 - I.e., is the class Person a part of this ontology?
 - Is such an ontology syntactically valid?
 - I.e., should all classes be defined before they are used?
 - Is this axiom the same thing as the following axiom:

SubClassOf (Student Person)

• Answers to these questions in OWL 1.0...

- ...varied from user to user
- ...were difficult to give because an ontology is just a bunch of text

Structural Specification (II)

- Solution: define OWL 1.1 (DL) as an object model
- Structural spec allows us to...
 - ...to give precise answers to questions mentioned
 by talking about properties of structures, not of text
 - …talk explicitly about the constructs of the language
 - ...define operations on ontologies (= DIG 2.0)
 defined in terms of operations on data structures
 - ...talk about OWL constructs at a higher abstraction level
 several RDF triples often define one construct
 - …easily derive a storage model for OWL 1.1 (DL)
 - it was used as basis for OWL 1.1 API
- Target audience: implementors and modelers

Expressivity Enhancements

Qualified number restrictions

- "A quadruped is an animal that has four legs."
 - A. Rector and G. Schreiber. Qualified Cardinality Restrictions (QCRs): Constraining the Number of Values of a Particular Type for a Property. W3C Working Draft, November 2 2005.

Role composition

- A "Abnormality of a part of an anatomical structure constitutes an abnormality of the structure as a whole."
- needed in numerous domains (e.g. medicine)
 - A. Rector. Analysis of Propagation along Transitive Roles: Formalisation of the Galen Experience with Medical Ontologies. In Proc. DL 2002, Toulouse, France, 2002.
 - A. Rector and C. Welty. Simple Part-whole Relations in OWL Ontologies. W3C Working Draft, August 11 2005.
- reflexive, irreflexive, antisymmetric, exists-self
- negative role assertions
- Datatype enhancements

Metamodeling

- Metamodeling is often needed in practice
 - even in applications of OWL DL
 - G. Schreiber. The Web is not well-formed. IEEE Intelligent Systems, 17(2):79–80, 2002.
 - L. Stojanovic, A. Abecker, N. Stojanovic, R. Studer: On Managing Changes in the Ontology-Based E-government, CoopIS/DOA/ODBASE (2) 2004: 1080–1097

• Possible approach: punning

- simple and does not require changing existing implementations
- most applications do not expect new consequences
 - only syntactic metamodeling is needed

Alternative approaches:

- OWL-Full
 - undecidable
 - no tool implements it (correctly and completely)
- HiLog-semantics
 - decidable and could be implemented with minor changes to reasoners
 - requires changing the existing semantics of OWL 1.0 DL
- B. Motik. On the Properties of Metamodeling in OWL. Journal of Logic and Computation, 17(4):617–637, 2007.

Anonymous Individuals (aka B-nodes)

- Lead to undecidaiblity if allowed freely
- No tool implements the real semantics
 * RDF- or DL-based
- Solution: legalize their status as Skolems

Imports

- Ontology files rarely live on the Web
- Most applications use ontology files locally

- If imports refer to the physical location, then copying breaks the dependency
- OWL 1.1 spec does not specify how to locate imports
 resolving ontology to physical URIs is implementation specific

Annotations on Axioms

- Applications often need to...
 - ...store information about axioms
 - who created an axiom
 - when was the axiom added to the ontology
 - …associate special status to axioms

integrity constraints

B. Motik, I. Horrocks, and U. Sattler. Bridging the Gap Between OWL and Relational Databases. WWW 2007, 807–816, 2007

fuzzy or certainty values

G. Stoilos, G. Stamou, V. Tzouvaras, J. Z. Pan, and I. Horrocks. Fuzzy OWL: Uncertainty and the semantic web. OWL-ED 2005

Such information is metalogical

- treat it as comments
- A can be thrown away without affecting the entailments

RDF Mapping (I): Requirements

- Capture all features of OWL 1.1
 - annotations on axioms
 - negative property assertions
 - punning
 - ...
- Fix clarity issues in OWL 1.0 mapping
- Make it easier to implement
 - should reduce bugs in tools
 - should improve interoperability between tools

RDF Mapping (II): Two-Way Translation

- Parsing OWL 1.0 RDF is really hard
 - there is even a paper about it:
 - S. Bechhofer, J. J. Carroll. OWL DL: Trees or Triples? WWW2004, New York, June 2004.
 - in practice, it is based on nonnormative documents
 - S. Bechhofer. Parsing OWL in RDF/XML. W3C Working Group Note, January 21 2004.
 - there is no one well-defined defined solution
 - source of numerous errors in practice

Species validation is hard

- An RDF graph G is in OWL DL is an OWL ontology O exists such that the translation of O produces the triples of G
- really hard to interpret in practice
- Is it decidable?
- How to tell whether an implementation is correct?

RDF Mapping (II): Two-Way Translation

- So we provided an explicit inverse translation
- Relationship between them:

- OWL 1.1 should support full round-tripping
 - We need n-ary versions of all constructs!

RDF Mapping (III): Typed Vocabulary

- Required if punning is allowed
 - otherwise, we do not know the context in which a URI is used
- Assume that we ban punning from OWL 1.1 (DL)
 - h c owl:someValuesFrom d i, h c owl:onProperty p i
 - Is p an object or a data property?
 - ♣ we must know this
 - object and data properties are interpreted separately
 - required for a clean semantics and decidability
 - How do we disambiguate the types?
 - Solution 1: we type vocabulary usage
 - simple solution
 - easy to parse
 - Solution 2: we have explicit type specifications

RDF Mapping (III): Typed Vocabulary

- Solution 2: we have explicit type specifications
- How does typing interact with imports?
 - parsing is really difficult if one should look into imported files
 - Can I parse an ontology if imports are broken?
 - Can different ontologies provide the type for the same property?
 one might expect "redeclaration" errors
- How does typing interact with the structural spec?
 - structural spec is naturally typed
 - we have an ObjectProperty and a DataProperty class
 - there is no explicit notion of typing in structural spec
 - How to import a functional-style syntax ontology into an RDF ontology?
- How does typing interact with RDF?
 - OWL-Full semantics adds certain typing triples
 - the domain of owl:someValuesFrom is owl:Class
 - Should we look at inferred typing triples during parsing?
 - Should we compute RDF entailments before parsing?