
Mobile Ajax for Java ME
Technology

Akhil Arora, Senior Staff Engineer, Sun
Microsystems Inc. akhil@sun.com

Vincent Hardy, Senior Staff Engineer, Sun
Microsystems Inc. vincent.hardy@sun.com

Introduction
There are many Sun Microsystems technologies
that use Ajax [Ajax], and more than one way to use
Ajax on mobile platforms. For example,
applications written using the Java Platform,
Enterprise Edition (Java EE, formerly known as
J2EE) may generate XML, JSON [JSON],
XHTML and/or ECMAScript destined for mobile
browsers.

One of the recent advances on the Java Platform,
Mobile Edition (Java ME, formerly known as
J2ME) is the Mobile Service Architecture [MSA].
MSA is a Java Specification Request (JSR-248)
which defines a set of APIs for Java ME which
include a wide variety of features, from Bluetooth
to payment, multimedia APIs and support for rich,
animated graphics.

This paper discusses an effort to provide Java ME
developers with tools to create Mobile Ajax
applications, combining the simplicity and
familiarity of the Ajax programming model with
the richness and secure environment of the MSA
APIs. This effort takes the form of an open-source
library that can be added to any Java ME
application. The paper briefly describes this library
along with some sample use cases.

Mobile Ajax For The Java ME
Platform

Ajax is typically used in the context of Web
applications running in a browser and using
XmlHttpRequest from ECMAScript to retrieve
XML or JSON data from RESTful Web Services.
The results are applied as updates to the current

browser's page DOM (Document Object Model
[DOM]).

In the scope of this paper, Mobile Ajax on the Java
ME platform is used to mean the following:

● Asynchronous call to the network (using
the Mobile Information Device Profile's
[MIDP] Generic Connection Framework
[GCF]).

● Use of a data serialization format (such as
XML or JSON).

● A presentation layer using a DOM-based
User Interface (such as XHTML or SVG).

Figure 1 illustrates a typical Mobile Ajax
interaction on the Java ME platform.

Why Ajax For Java ME
Applications?

There are multiple reasons why using the Ajax
model is useful in Java ME programs.

Using an Ajax library, the application is simpler
and needs only implement synchronous calls or
handle callbacks instead of having to deal with the
complexities of multi-threaded programming. The
library also abstracts low-level data format parsers,
which helps reduce application complexity,
maintenance and debugging costs.

Web developers can apply their knowledge of the
Ajax paradigm to the Java ME platform, reducing
the learning curve.

Figure 1: A Java ME Mobile Ajax Interaction

mailto:akhil@sun.com
mailto:vincent.hardy@sun.com

The Java ME platform lets developers leverage the
full capabilities of the platform, such as the phone
camera, location information, the address book or
persistent storage, all of which are not available
from a browser environment.

The library's small footprint along with Java ME's
strong security architecture and wide deployment
make it a robust environment for developing
applications using the Mobile Ajax programming
model.

Asynchronous Requests

In order to help Java ME developers build Web 2.0
applications more easily, there was a need for a
library to easily deal with the following:

● Asynchronous handling of HTTP Get and
Post

● Progress callbacks.

● HTTP Basic/Digest Authentication

● URL-encoding

● Multi-part MIME encoding

An asynchronous HTTP Get call sequence is
shown in Figure 2.

The Request abstraction provided by the library
has the following interface:

// synchronous methods
static Response get(String url, Arg[]
inputArgs, Arg[] httpArgs,
ProgressListener listener)
static Response post(String url, Arg[]
inputArgs, Arg[] httpArgs,
ProgressListener listener, PostData
data)
// asynchronous methods
static void get(String url, Arg[]
inputArgs, Arg[] httpArgs,
RequestListener listener, Object
context)
static void post(String url, Arg[]
inputArgs, Arg[] httpArgs,
RequestListener listener, PostData data,
Object context)

The inputArgs parameter above is used for
specifying args that will get URL-encoded, for
example:

String url = "http://host.com/webapi";
Arg[] args = {
 new Arg(“arg1”, “val1”),
 new Arg(“arg2”, “val2”)
};

The encoded URL becomes
"http://host.com/webapi?arg1=val1&arg2=val2".

If the application needs to listen to the progress of
a query, for a synchronous or an asynchronous
call, it needs to provide an implementation of the
ProgressListener interface described below:

interface ProgressListener {
 void readProgress(Object context,

int bytes, int total);
 void writeProgress(Object context,

int bytes, int total);
}

Finally, the application gets notified of an
asynchronous request result through a callback to

Figure 2: Asynchronous Get
Request

http://host.com/webapi?arg1=val1&arg2=val2

its RequestListener implementation's done()
method:

interface RequestListener extends
ProgressListener {
 void done(Object context, Response
result);
}

Parsing A Response
In addition to making it easy to generate
synchronous and asynchronous requests, the library
helps in extracting information from results
returned from RESTful Web Services. The results
can be in XML or JSON formats. The following
paragraphs detail how the Response abstraction is
used.

The Response class has a few simple methods:

class Response {
 // Result contains the parsed
 // returned data
 Result getResult();
 // HTTP response code
 int getCode();
 // HTTP response headers
 Arg[] getHeaders();
 // Exception, if any
 Exception getException();
}

The library described in this paper uses a
declarative approach similar to XPath to extract
information from structured data. XPath was not
used because of its large footprint and because it
was questionable it would be appropriate to apply
XPath expressions to JSON data. The expression
language used is very small and simple - it uses
".", "[" and "]" to select specific elements from
results. Some examples of paths are:

statuses.status[1].text
statuses.status[2].user.screen_name
users.user[3].id

The Result class provides methods which
understand this syntax and return the requested data
elements:

// accessors for primitive types
boolean getAsBooleanString path);
int getAsInteger(String path);
long getAsLong(String path);
double getAsDouble(String path);
String getAsString(String path);
// accessors for arrays
int getSizeOfArray(String path);
String[] getAsStringArray String path);
int[] getAsIntegerArray(String path);
...

The following illustrates how an application may
use this API.

Result result = response.getResult();
int size =
 result.getSizeOfArray("users.user");
for (int i=0; i < size; i++) {
 String base
 = "users.user[" + i + "].";
 userName =
 result.getAsString(base + "name");
 userId =
 result.getAsInteger(base + "id");
 ...

One of the advantages of this approach is that it
abstracts the infoset encoding away from the
application. The API allows application code to
remain unchanged as the underlying encoding is
switched between XML or JSON, as shown
below:

XML
<users>
 <user>
 <name>User 1</name>
 </user>
 <user>
 <name>User 2</name>
 <user>
</users>
JSON
{ “users”:
 { “user”: [
 { “name”: “User 1” },
 { “name”: “User 2” }
]
 }
}

Whichever form of encoding was used, the
application can retrieve the data as follows:

String name =
result.getAsString(“users.user[1].name”);
assert “User 2”.equals(name);

User Interface

On the Java ME platform, there are several APIs
which use user interface markup for presentation.
The JSR 226 « Scalable 2D Vector Graphics » API,
supports rendering, manipulating, interacting with,
rendering and playing images in the SVG Tiny 1.1
format. Its follow-on JSR 287 will bring support
for SVG Tiny 1.2 and an improved API feature set.
Finally, JSR 290 brings support for WICD Mobile
Profile 1.0, i.e., XHTML, CSS, SVG and
ECMAScript combined.

All these APIs let applications follow the
traditional Ajax model and apply the results of
synchronous or asynchronous queries to the DOM
tree.

Playing a DOM User Interface in a
Java ME Application.
The following code snippet illustrates how to load
and play an SVG image, using the JSR 226 API.

import javax.microedition.m2g.SVGImage;
SVGImage image =
 SVGImage.createImage(url, null);
// Play the image
SVGAnimator animator
= SVGAnimator.createAnimator(image);

Canvas canvas =
(Canvas)animator.getTargetComponent();
getDisplay().setCurrent(canvas);
animator.play();

In this model, the Java ME application plays the
role of a user agent.

Updating the DOM tree in a Java ME
Application,
Let's look at a simple example where the
application needs to display the progress of an on-
going Ajax query and display an animation when
the query is completed.

On the user interface side, this might be done with
an SVG images such as the following (this
example is simplistic, for the purpose of the
explanation, a real-life SVG would have more
visual appeal).

<svg ...>
<rect id=”progress”
 x=”20” y=”200” width=”1”
 height=”30” fill=”blue”/>
<animateTransform id=”doneAnimation”
 attributeName=”transform”
 type=”translate”
 values=”0,0;400,0”
 begin=”indefinite”
 dur=”0.5s” />
</rect>

<text id=”progressText” x=”120”
 height=”240”>0%</text>
</svg>

In response to a query, the application could
manipulate the DOM tree, for example to scale a
rectangle to show the query progress and to start
an animation (the "doneAnimation") when the
request is complete. This is shown below.

class ProgressBar implements
 ProgressListener {
SVGAnimationElement doneAnimation;
SVGLocatableElement progress;
SVGElement progressText;
public ProgressBar(Document doc) {
doneAnimation = (SVGAnimationElement)
doc.getElementById(“doneAnimation”);
progress = (SVGLocatableElement)
doc.getElementById(“progress”);

 progressText =
(SVGElement)
doc.getElementById(“progressText”);
}

public void readProgress
 (int bytes, int total) {
float pos = (bytes / (float) total);
// Scale the progress bar graphic
SVGMatrix scale =
computeScaleMatrix(pos);
progress.setMatrixTrait("transform",
scale);
progressText.setTrait("#text",
(int) Math.ceil(pos * 100) + "%");
}
void done
 (Object context, Response result) {
doneAnimation.beginElementAt(0);
}

Conclusion

For applications that need to use a mobile device's
capabilities that are not available in a mobile
browser (such as camera, location, bluetooth, etc),
a small library that offers the familiar Ajax
programming model can ease a Web developer's
task.

References

[Ajax] Asynchronous JavaScript And XML,
http://en.wikipedia.org/wiki/Ajax_(programming)

[JSON] JavaScript Object Notation,
http://en.wikipedia.org/wiki/JavaScript_Object_No
tation

[MIDP] Mobile Information Device Profile,
http://jcp.org/en/jsr/detail?id=118

[MSA] Mobile Service Architecture,
http://jcp.org/en/jsr/detail?id=248

[DOM] Document Object Model,
http://www.w3.org/TR/DOM-Level-3-Core/

Resources

Open Source Library for Ajax on Java ME,
https://meapplicationdevelopers.dev.java.net/mobil
eajax.html

Examples of Mobile Ajax Java ME Application,
https://meapplicationdevelopers.dev.java.net/phon
eme_ui_labs.html

https://meapplicationdevelopers.dev.java.net/phoneme_ui_labs.html
https://meapplicationdevelopers.dev.java.net/phoneme_ui_labs.html
https://meapplicationdevelopers.dev.java.net/mobileajax.html
https://meapplicationdevelopers.dev.java.net/mobileajax.html
http://www.w3.org/TR/DOM-Level-3-Core/
http://jcp.org/en/jsr/detail?id=118
http://jcp.org/en/jsr/detail?id=248
http://en.wikipedia.org/wiki/JavaScript_Object_Notation
http://en.wikipedia.org/wiki/JavaScript_Object_Notation
http://en.wikipedia.org/wiki/Ajax_(programming)

	Mobile Ajax for Java ME Technology
	Introduction
	Mobile Ajax For The Java ME Platform
	Why Ajax For Java ME Applications?
	Asynchronous Requests
	Parsing A Response
	XML
	JSON

	User Interface
	Playing a DOM User Interface in a Java ME Application.
	Updating the DOM tree in a Java ME Application,

	Conclusion
	References
	Resources

