
Use Cases for extending Legacy Applications to participate in the Web Architecture

Background
In general Legacy Applications that run on IBM mainframes can be considered to fall
into three archetypes:

1. Batch flat file input/output applications
2. Terminal input/output applications
3. Queue based applications

In addition, the archetypical terminal and queue based applications may operate
upon core business data stores in real time or they may be batch transaction
collectors where input data fields are validated and batch flat file input preparation is
performed.

Archetype: Batch application

Input Output Format Process Format
File File Request ResponsReques

t

Write Read
Response Request

Archetype: Terminal based application

Transaction
Processor

Terminal Handler
DB

Flat
File

Archetype: Queue based application

The two archetype candidates for inclusion in Web architecture are the terminal
based applications and queue based application.

USE CASE 1:

With the terminal based application several factors have to be addressed:

 Fixed terminal screen field mapping to XML
 Freeform terminal screen field mapping to XML
 Terminal Function key mapping to action semantics in XML
 Security context mapping between the invocation process or end user and the

inherent terminal or transaction based security profile
 Session inheritance

Freeform screen displays were early attempts to create self defined “string” data
streams. The challenge facing the web services architecture is the definition of an
interface parser, which is able to dynamically parse legacy system data fields with
the hierarchical service interface description currently used. This use case suggests
that the current interface description become dynamic and utilize a message
dictionary to parse data from the source system into a hierarchy and from a hierarchy
into a string stream.

The security context mapping can be described as an invocation filter service that
actively restricts data and actions based upon the access profile of the invoking end
user without effecting code changes to the legacy applications.

Session inheritance must be a connective service that maintains application identity,
state information and terminal identity between invocations of the terminal based
application.

USE CASE 2:

With queue based applications the major factors needing to be addressed are the
following:

 Data type transformation
 Data Stream mapping to XML
 Security context mapping between the invocation process or end user and the

inherent message or queue based security profile

Transaction
Processor

RDBMS

Input
Queue

FLAT
FILES

Output
Queue

IBM mainframe applications that use queues in many cases contain special data
formats found in systems based upon the MVS operating system. These special cases
are bit mapped fields, packed hexadecimal numbers where every nybble represents a
decimal digit 0-9, Packed decimal fields which are varied in length but every nybble
represents a decimal digit and the last nybble represents the numbers sign (positive
or negative). The Service interface description must contain the ability to natively
transform these specialized formats into XML.

Data stream mapping has the same requirement as that mentioned above for
freeform screen mapping.

Security mapping must take into account not only the security profile of the message
queue and payload messages but also any sub functions described within the
message that have specialized security rules. This filtering layer must have access to
a similar data stream parser as that utilized for free form data streams.

Conclusion

While the batch job archetype does not lend itself to a Web Architecture, the
committee could consider establishing design guidelines for creating straight through
batch applications that move away from a file based input/output to a queue based
input/output application.

The other archetypes are adaptable to the web but come with the challenges
described above. While the IT vendor community is addressing these challenges with
specialized product extensions, it would be helpful for customers to have a reference
implementation pattern to hold the vendors accountable to.

