
3/19/06 23:27

2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary. 1

An XML based architecture
for Web 2.0 applications
(: all or nothing about XML:)
Daniela Florescu
Oracle Corporation

2

Disclaimer
This is not Oracle’s point of view
This is architectural work
This is an industrial point of view
(pragmatic)
The solutions aren’t complete

It is almost a research agenda at this point
This isn’t implemented (or partially)
I have no performance graphs
I have 80 slides…

3

Outline
How do people build applications now ?
Why is the situation so bad ?
Requirements for a new architecture
Can XML help ? Why ?
The current XML infrastructure, the role of
XQuery
What is missing in the XML stack ?
Putting things together: a proposal for a
new architecture.
The XML information hub.

4

Example application
My pet application: an open, community-based
digital review database research system

We just finished the Sigmod review cycle :-)
All papers should be publicly available

Storage, archive, index, search
Everybody should be able to review any paper
Discussions about a certain paper or topic should
be open

Correlated information, text not enough
Blogging, authorities system, etc
Security, anti-spam, user identification, etc
Notification system built in the system
Serious enterprise applications: CRM, ERP, supply
management, telcoms, SAP, Siebel, Salesforce, etc

5

Current implementation
Probably now: 6 months for 10 people
My goal: 2 weeks for 2 people
What functionality do people need

Data storage, persistence
Application logic
Communication with the rest of the world

What guarantees people need:
Reliability, availability
Performance
Security

How do they obtain this ?
Persistence: relational databases (SQL, Oracle :-)
Code: application servers (J2EE, Oracle :-)
Communication with the rest of the world: the XML
stack -- XML, XML Schema, Web services, etc

6

Why is everyone complaining?
The situation is extremely bad

Thousands of developers for a simple application
Costs are extremely high
The pain reached the point were people are totally blocked. No more
new applications are being built now, or very little.

Too much software to be acquired, installed, maintained, and
upgraded
Productivity

Needs skills in a variety of technologies, each VERY difficult (SQL stack,
J2EE stack, XML stack…). Thousands or pages of documentations.
Lots of new glue clue code to be written

Performance
So many overlaying layers. Glue code is very expensive too.

Applications are brittle
Impossible to change, customize and evolve

3/19/06 23:27

2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary. 2

7

Problems of the current
architectures

Unrealistic expectations
Methodology too rigid
Wrong architecture

Three tier architecture
Client server architecture

Jungle of technologies
Imperative logic paradigm
No natural support for events and notification

8

Unrealistic expectations
Remember your first database lesson ?

Data has to be 100% accurate, 100% complete, 100% consistent,
available 100% of the time, etc

There are of course applications that DO have such
requirements

Bank applications
We designed the database field to solve the bank
applications….but…

Those are unrealistic expectations for many information
management application on the Web

Does anything happens if a review isn’t accessible for 3 hours ?
What is really important is to be able to recover from
mistakes, not to avoid at all cost to make them (the cost
might be unacceptably high!)
Programs have to learn to deal with incomplete,
inconsistent and partially unavailable information

9

Methodology too rigid
Methodology we teach the database students:

1. Gather requirements from the application domain
2. Design (and agree on) a schema
3. Write the code (queries + application)
4. Populate the database
5. Execute the code
Big problems

Domain requirements often not known until the database
is up and running (e.g. Ebay)
Agreeing on schemas is the most expensive step in
software design
The data is often obtained after the code is written

The current information management technology
doesn’t allow us to apply the previous steps in other
order 10

Three tier architecture
Invented by SAP in 1990, no good technical justification for it
Principle

The state of the application resides in the database server (back end)
The application logic is executed in the application server (middle tier)
The user interaction of the application is executed on the client (front
end)

Duplication of functionality and concepts between layers
Clustering and scalability
Security
Data verification and integrity constraints
Access control
Application logic

Data replication between layers
The overall code is unnecessarily complex and slow
Tension between the tiers; each one is trying to incorporate
the functionality of the other one
Each layer has its own technological stack (J2EE vs. SQL)

11

Imperative logic paradigm
Most of the application code today is written in old programming paradigms
and programming languages (e.g. Java, C, C#, etc)

Oracle’s PL/SQL an exception
Problems with such languages

Too low level of abstraction, impose an order of execution, specify where
and how the code has to be executed

Impossible to optimize automatically
Caching, automatic indexing and rewriting based on the physical
organization of the data, replication and paralellization of the code on a
cluster of machines, semantic based rewritings

Hard to introspect (analyze) the code automatically
Hard to evolve the code
Hard to adapt the programs automatically to the changes in the environment

E.g. metadata driven code rewriting
Functionality problems. No good support for

Parallelism, asyncronicity, semi-structured data structures, event-based
notifications

We need the entire application logic to be written in a declarative language
12

Jungle of technologies
Each technological layer is designed separately

J2EE, SQL, XML, Semantic Web, BPEL, Web services,
HTTP/HTML, scripting languages

In today’s environment it is likely that we need all
of the above even for very simple applications

None of the layers provides full functionality
Each technology is growing, independently of the
rest of the architecture
No “global architectural optimization strategy” for
an entire application
Each technological layer uses a different data
model (relational, objects, XML trees, RDF
graphs)
We need a complete architecture based on a
single technological layer

3/19/06 23:27

2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary. 3

13

No natural support for events
and notification on the Web

Web 1.0 is request/response
Web 2.0 will likely be push information
RSS made the push paradigm on the Web popular

Infinite stream of XML elements
Has a unique URI
The information provider does not store the state of the information
consumers => scale at the level of the Web
Initially designed for blogs, now used as a general mechanism of
publish/subscribe
Very low cost technology. Requires only HTTP and XML.
Many RSS readers available
Unfortunately RSS wars (RSS versions, Atom, etc)

We do not have low cost technologies to process and react
to this large amount of information coming from the Web

filter, join, aggregate, sort, prioritize, transform, enrich, archive 14

Some requirements for a new
architecture

Single data model
Single technological paradigm (single stack)
Declarative specifications
Support for events and notification
No tiered architecture, peer-to-peer
Flexible methodology
Basic principles:

accept chaos and uncertainty as a fact of life
expect that everything can change at any moment in
time

Open standards, open protocols

15

Proposed solution : an XML-
based information hub

Single data model (XML)
Single stack of technologies (the XML
stack of technologies)
Declarative specifications (XQuery and
extensions)
Support for events and notification (RSS)
Flexible methodology (the semi-structure
nature of XML)

16

Principles of an XML based
information hub

Data is modeled only as XML through its
entire lifecycle
XQuery is the only programming language

With many extensions of course, see later
RSS is the event/notification mechanism
Dataflow architecture (channels, actors,
etc)

No tiers in the architecture
No client-serve, but peer-to-peer

17

Why XML ? What is XML ?
My most feared question from executives: “What
is XML ?”
A format for almost all digital textual information,
a new way of representing the information, and
process it
Huge misconceptions about XML

 in the database community
XML is a flexible way of representing entities and
relationships
Database people usually miss the notion of mixed content
XQuery is a query language

in the applications community
XML is a syntax for serialization (of objects, of course..)

18

XML Users Communities
XML liked by various communities for very different reasons

1. Inter-application data exchange format
♣ This is where the $$$ is

2. Markup for natural languages
♣ This is where the information is

3. Rich model for declarative metadata
♣ This is where the potential for innovation is

4. Model for information with flexible schemas
♣ This is where the pain is

5. Syntax for push information (RSS, Atom)
♣ This is where the people are

6. Cleaner HTML (XHTML)
♣ This is where the browsers are

English

lawyers mathematicians policemenpoets

XML

markup
flexible
schemas

browserRSSWS metadata

3/19/06 23:27

2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary. 4

19

Inter-application data
exchange format

User communities: Web Services (.., and REST)
Why XML ?

Protocol, vendor, platform independent
Coarsed grained syntax
Human readable (more psychological then practical)

What subset/features they use:
Conceptual “Purchase orders” : simple schemas

What features/subset they usually dislike:
mixed content
Open, rich schemas

They don’t use any of the killer advantages of XML.
20

Markup for natural languages
User communities: documentation writers, news writers,
librarians, manual writers, all of us.
Tools:

SGML editors, XML Spy, Microsoft Office (PowerPoint, Word, Excell, etc),
Adobe, etc

Why XML ?
Mixed content. Continuous spectrum between structured data and
natural language.

XML is the only tractable abstract information model that is not
Entity/Relationship based
It is the only format that:

can be processed automatically and
preserves the structure and essence of natural
language(**1**)

21

Rich model for declarative
metadata
Our century will be the century of metadata
Variety of metadata about our information:

origin, lineage, properties, security, roles, behavior, relationships,
classification, formatting info, etc.

Pressure to:
make the metadata explicit; do not burry and hide it into code
automatically exploit the metadata while processing the data

Why XML ?
Schema independence, rich schemas
Explicit syntax (platform, vendor and protocol independent)

XML

data codemetadata Blurs the distinction between data,
metadata and code (**2**)

22

Model for information with
flexible schemas
Existing (long term) malaise in IT infrastructure:

Data cannot exist without a schema
Existing schema languages are too simple

Information very rarely has simple structure
Schemas are evolving in time
Differ from community to community, agreements on
vocabularies and schemas very expensive
Data dependent, context dependent
Structure of information is evolving as the information is
processed

Why XML ?
Dissociating schemas from data. Complex schemas. Open
schemas. The power of “//*”. (**3**)

23

Why XML for Web 2.0
applications ?

Killer XML advantages as a basic model for
building Web 2.0 applications:

1. Continuous spectrum from natural language to
structured data

2. Flexible schemas (no schemas, open schemas,
dynamic schemas)

3. Blurring the distinction between data, metadata and
code

No other technology with similar advantages.
Essential advantages in Web 2.0
Unfortunately, current XML stack is a good
starting point, but not sufficient for the moment

24

Outline
How do people build applications now ?
Why is the situation so bad ?
Requirements for a new architecture
Can XML help ? Why ?
The current XML infrastructure, the role of
XQuery
What is missing in the XML stack ?
Putting things together: a proposal for a
new architecture.
The XML information hub.

3/19/06 23:27

2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary. 5

25

XML as a family of technologies
XML Information Set
XML Schema
XML Query
The Extensible Stylesheet Transformation Language (XSLT)
XLink, XPointer
XML Forms
XML Protocol
XML Encryption
XML Signature
Others

… almost all the pieces needed for a good
XML-based information hub 26

Processing XML
• Let’s assume a perfect world :-)

• information modeled only in XML inside an application
• What do we need to do with it ?

• Store, replicate, warehouse it
• Verify the correctness
• Filter, search, select, join, aggregate
• Create new data
• Modify existing data
• Take actions based on the content of the existing data
• Exchange the data (send/receive)
• Create complex execution flows

• Current existing solutions
• Use generic programming APIs (e.g. DOM, SAX)
• Manually or automatically map XML to non-generic programming

structures (e.g. code generators)
• Use XML extensions of existing languages (Python, Perl, C#, ECMA) (*)
• Shredding for relational stores
• Native XML processing through XSLT and XQuery (***)

27

What is XQuery
Declarative XML to XML mapping language
XML := abstract XML Data Model (not the syntax)
XQuery properties

Preserves the logical/physical data independence
Declarative (describes the “what”, not the “how”)
Turing complete
Side-effect free
Strongly typed. Typing optional.
Processed schema validated and non-validated data

XQuery is an embeddable expression language
XQuery is not a query language. Misnomer.
XQuery vs. XSLT: same language, different programming
paradigms

28

A fraction of a real customer
Xquery
(i.e. Xquery is not a query language
Xquery is a programming language)

29

let $wlc := document("tests/ebsample/data/ebSample.xml")
let $ctrlPackage := "foo.pkg"
let $wfPath := "test"

let $tp-list :=
for $tp in $wlc/wlc/trading-partner
return
<trading-partner
 name="{$tp/@name}"
 business-id="{$tp/party-identifier/@business-id}"
 description="{$tp/@description}"
 notes="{$tp/@notes}"
 type="{$tp/@type}"
 email="{$tp/@email}"
 phone="{$tp/@phone}"
 fax="{$tp/@fax}"
 username="{$tp/@user-name}"

30

{
 for $tp-ad in $tp/address
 return
 $tp-ad
 }
 {
 for $eps in $wlc/extended-property-set
 where $tp/@extended-property-set-name eq $eps/@name
 return
 $eps
 }
 {
 for $client-cert in $tp/client-certificate
 return
 <client-certificate
 name="{$client-cert/@name}"
 >
 </client-certificate>
 }

3/19/06 23:27

2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary. 6

31

 {
 for $server-cert in $tp/server-certificate
 return
 <server-certificate
 name="{$server-cert/@name}"
 >
 </server-certificate>
 }
 {
 for $sig-cert in $tp/signature-certificate
 return
 <signature-certificate
 name="{$sig-cert/@name}"
 >
 </signature-certificate>
 }
 {
 for $enc-cert in $tp/encryption-certificate
 return
 <encryption-certificate
 name="{$enc-cert/@name}"
 >
 </encryption-certificate>
 } 32

 {
 for $eb-dc in $tp/delivery-channel
 for $eb-de in $tp/document-exchange
 for $eb-tp in $tp/transport
 where $eb-dc/@document-exchange-name eq $eb-de/@name
 and $eb-dc/@transport-name eq $eb-tp/@name
 and $eb-de/@business-protocol-name eq "ebXML"
 return
 <ebxml-binding
 name="{$eb-dc/@name}"
 business-protocol-name="{$eb-de/@business-protocol-name}"
 business-protocol-version="{$eb-de/@protocol-version}" \

 is-signature-required="{$eb-dc/@nonrepudiation-of-origin}"
 is-receipt-signature-required="{$eb-dc/@nonrepudiation-of-receipt}"

 signature-certificate-name="{$eb-de/EBXML-binding/@signature-certificate-n}"
 delivery-semantics="{$eb-de/EBXML-binding/@delivery-semantics}"
 {
 if(xf:empty($eb-de/EBXML-binding/@ttl))
 then()
 else attribute persist-duration
 {concat(($eb-de/EBXML-binding/@ttl div 1000), " seconds")}

 }

33

 {
 if(xf:empty($eb-de/EBXML-binding/@retries))
 then ()
 else $eb-de/EBXML-binding/@retries
 }
 {
 if(xf:empty($eb-de/EBXML-binding/@retry-interval))
 then ()
 else attribute retry-interval
 {concat(($eb-de/EBXML-binding/@retry-interval div 1000), " seconds")}
 }

 <transport
 protocol="{$eb-tp/@protocol}"
 protocol-version="{$eb-tp/@protocol-version}"
 endpoint="{$eb-tp/endpoint[1]/@uri}"
 >
 {

34

 for $ca in $wlc/wlc/collaboration-agreement
 for $p1 in $ca/party[1]
 for $p2 in $ca/party[2]
 for $tp1 in $wlc/wlc/trading-partner
 for $tp2 in $wlc/wlc/trading-partner
 where $p1/@delivery-channel-name eq $eb-dc/@name
 and $tp1/@name eq $p1/@trading-partner-name
 and $tp2/@name eq $p2/@trading-partner-name
 or $p2/@delivery-channel-name eq $eb-dc/@name
 and $tp1/@name eq $p1/@trading-partner-name
 and $tp2/@name eq $p2/@trading-partner-name

35

 return
 if ($p1/@trading-partner-name=$tp/@name)
 then
 <authentication
 client-partner-name="{$tp2/@name}"
 client-certificate-name="{$tp2/client-certificate/@name}"
 client-authentication="{
 if(xf:empty($tp2/client-certificate))
 then "NONE"
 else "SSL_CERT_MUTUAL"
 }"
 server-certificate-name="{
 if($tp1/@type="REMOTE")
 then
 $tp1/server-certificate/@name
 else ""
 }"
 server-authentication="{
 if($eb-tp/@protocol="http")
 then "NONE"
 else "SSL_CERT"
 }"

36

 >
 </authentication>
 else
 <authentication
 client-partner-name="{$tp1/@name}"
 client-certificate-name="{$tp1/client-certificate/@name}"
 client-authentication="{
 if(xf:empty($tp1/client-certificate))
 then "NONE"
 else "SSL_CERT_MUTUAL"
 }"
 server-certificate-name="{
 if($tp2/@type="REMOTE")
 then $tp2/server-certificate/@name
 else ""
 }"
 server-authentication="{
 if($eb-tp/@protocol="http")
 then "NONE"
 else "SSL_CERT"
 }"
 >
 </authentication>

3/19/06 23:27

2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary. 7

37

 }
 </transport>
 </ebxml-binding>
 }
{-- RosettaNet Binding --}
 {
 for $eb-dc in $tp/delivery-channel
 for $eb-de in $tp/document-exchange
 for $eb-tp in $tp/transport
 where $eb-dc/@document-exchange-name eq $eb-de/@name
 and $eb-dc/@transport-name eq $eb-tp/@name
 and $eb-de/@business-protocol-name eq "RosettaNet"
 return
 <rosettanet-binding
 name="{$eb-dc/@name}"
 business-protocol-name="{$eb-de/@business-protocol-name}"
 business-protocol-version="{$eb-de/@protocol-version}"

38

 is-signature-required="{$eb-dc/@nonrepudiation-of-origin}"
 is-receipt-signature-required="{$eb-dc/@nonrepudiation-of-receipt}"
 signature-certificate-name="{$eb-de/RosettaNet-binding/@signature-certi\
ficate-name}"
 encryption-certificate-name="{$eb-de/RosettaNet-binding/@encryption-cer\
tificate-name}"
 cipher-algorithm="{$eb-de/RosettaNet-binding/@cipher-algorithm}"
 encryption-level="{
 if ($eb-de/RosettaNet-binding/@encryption-level = 0)
 then "NONE"
 else if($eb-de/RosettaNet-binding/@encryption-level = 1)
 then "PAYLOAD"
 else "ENTIRE_PAYLOAD"
 }"
 {-- process-timeout="{$eb-de/RosettaNet-binding/@time-out}" --}

 >
 {
 if(xf:empty($eb-de/RosettaNet-binding/@retries))
 then ()
 else $eb-de/RosettaNet-binding/@retries
 }

39

 {
 if(xf:empty($eb-de/RosettaNet-binding/@retry-interval))
 then ()
 else attribute retry-interval
 {concat(($eb-de/RosettaNet-binding/@retry-interval div 1000), "\
 seconds")}
 }
 {
 if(xf:empty($eb-de/RosettaNet-binding/@time-out))
 then()
 else attribute process-timeout
 {concat(($eb-de/RosettaNet-binding/@time-out div 1000), " secon\
ds")}

 }
 <transport
 protocol="{$eb-tp/@protocol}"
 protocol-version="{$eb-tp/@protocol-version}"
 endpoint="{$eb-tp/endpoint[1]/@uri}"
 >
 {

40

 for $ca in $wlc/wlc/collaboration-agreement
 for $p1 in $ca/party[1]
 for $p2 in $ca/party[2]
 for $tp1 in $wlc/wlc/trading-partner
 for $tp2 in $wlc/wlc/trading-partner
 where $p1/@delivery-channel-name eq $eb-dc/@name
 and $tp1/@name eq $p1/@trading-partner-name
 and $tp2/@name eq $p2/@trading-partner-name
 or $p2/@delivery-channel-name eq $eb-dc/@name
 and $tp1/@name eq $p1/@trading-partner-name
 and $tp2/@name eq $p2/@trading-partner-name

 return
 if ($p1/@trading-partner-name=$tp/@name)
 then
 <authentication

41

 <authentication
 client-partner-name="{$tp2/@name}"
 client-certificate-name="{$tp2/client-certificate/@name}"
 client-authentication="{
 if(xf:empty($tp2/client-certificate))
 then "NONE"
 else "SSL_CERT_MUTUAL"
 }"
 server-certificate-name="{
 if($tp1/@type="REMOTE")
 then
 $tp1/server-certificate/@name
 else ""
 }"
 server-authentication="{
 if($eb-tp/@protocol="http")
 then "NONE"
 else "SSL_CERT"
 }"

 >
 </authentication>

42

 else
 <authentication
 client-partner-name="{$tp1/@name}"
 client-certificate-name="{$tp1/client-certificate/@name}"
 client-authentication="{
 if(xf:empty($tp1/client-certificate))
 then "NONE"
 else "SSL_CERT_MUTUAL"
 }"
 server-certificate-name="{
 if($tp2/@type="REMOTE")
 then
 $tp2/server-certificate/@name
 else ""
 }"
 server-authentication="{
 if($eb-tp/@protocol="http")
 then "NONE"
 else "SSL_CERT"
 }"
 >
 </authentication>

3/19/06 23:27

2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary. 8

43

 }
 </transport>
 </rosettanet-binding>
 }

</trading-partner>

let $sv :=
for $cd in $wlc/wlc/conversation-definition
for $role in $cd/role

where xf:not(xf:empty($role/@wlpi-template) or $role/@wlpi-template="") and
 $cd/@business-protocol-name="ebXML" or $cd/@business-protocol-name="RosettaNet"

 return
 <servicePair>
 <service
 name="{xf:concat($wfPath, $role/@wlpi-template, '.jpd')}"
 description="{$role/@description}"
 note="{$role/@note}"
 service-type="WORKFLOW"
 business-protocol="{xf:upper-case($cd/@business-protocol-name)}"
 > 44

. . . (60 % more to come)

45

XQuery vs. SQL: beyond the
tree vs. table

Persistent
data

SQL

Transacted
data Declarative

processing

Persistent
data

Transacted
data Declarative

processing

XQuery

“XQuery: the XML replacement for SQL ?”
No, it’s more likely that in the long term will be the declarative
replacement for imperative programming languages like Java or C#.

46

XQuery Use Case Scenarios (1)
XML transformation language in Web Services

Large and very complex queries
Input message + external data sources
Small and medium size data sets
Transient and streaming data (no indexes)
With or without schema validation

XML message brokers
Simple path expressions, single input message
Small data sets
Transient and streaming data (no indexes)
Mostly non schema validated data

Semantic data verification
Mostly messages
Potentially complex (but small) queries

Mid-tier

Mid-tier

Mid-tier, server, client

47

XQuery Usage Scenarios (2)
Data Integration

Complex but smaller queries (FLOWRs, aggregates, constructors)
Large, persistent, external data repositories
Dynamic data (via Web Services invocations)

Large volumes of blend relational and XML data
Structured data with unstructured/semistructured extensions
Complex queries
Read/write data

Large volumes of XML logs and archives
Web services, RFIDs, etc
Complex queries (statistics, analytics)
Mostly read only

Large content repositories
Large volume of data (books, manuals, etc)
With or without schema validation
Full text essential, update required

Mid-tier, server, client

Database server

Content server

Database server

48

Large volumes of distributed textual data
XML search engines
High volume of data sources
Full text, semantic search crucial

RSS aggregation
High number of input data channels
Data is pushed, not pulled
Structure of the data very simple, each item bounded size
Aggregators using mostly full-text search

XML data transformation and integration on mobile devices
Small XML messages
Transformation or aggregation queries
Caching is important
Streaming very important

XQuery Usage Scenarios (3)

Web

Web

Mobile devices

3/19/06 23:27

2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary. 9

49

“Where do XML and XQuery fit
in my Web 2.0 application
architecture ?”

In theory everywhere.
In practice, my most feared question.
My honest answer: “nowhere without you paying a

large price.”
The Russian old man and his beard.

Significant changes will happen as result of this
question:
- either XML and/or XQuery will fail or
- the existing architectures will have to change (***)

50

What is missing from a
complete XML picture ?
Missing technical pieces:

At the XML data model/representation level
At the XML Schema level
At the XML processing level (XQuery)
At the protocol level

Requires changing the overall architecture

51

Changes in the XML Data
Model

Make the XQuery Data Model an XML first class
citizen (must)

APIs in various programming languages
Support in Binary XML

Make XML be a graph, not a tree (*) (must)
XML cannot be the primary information model until this
happens

Integrate the XML Data Model with RDF
Deprecate the document nodes (nothing but
calories)

52

XML: graph, not tree
HealthCare Level 7 lesson. XBRL lesson. Etc.
Any information model needs an E/R model
An E/R model is by definition cyclic
We need native references in XML
“Hack” solutions; no global and standard solution
Possible (simplistic) solution:

1) Define xs:ref be a subtype of xs:anyUri (XML Schema)
2) Nodes have node identifiers in XML Data Model; make

those node identifiers be exposed externally as values of
xs:ref (XML Data Model)

3) Support ref() and deref() operations (XQuery and XSLT)

53

XML and RDF
“When should I use XML and when should I
use RDF ?” -- does it sound familiar !!?

“XML is for syntax; RDF is for semantics.”
“XML is for data; RDF is for the metadata.”
Our community must work harder at the
integration of XML and RDF.

<a:uri1/>

<b:uri2/>
<c:uri3/>

<d:uri4/>

<A:uri5/>

<B:uri6/>

Supporting RDF links directly the XML Data Model.

<a xml:ref=“uri1”>
 <c>uri5</c/>
…..

<A xml:ref=“uri5”>
….

54

Extensions to XML Schemas
• Integrate references into XML Schemas (must)
• Add integrity constraints and flexible structures

definitions (must)
• The “flexible schemas” community is waiting

• Integrate with XML Forms
• Same here

• Embed code/behavior into schemas (must)
• The “metadata” community is waiting

• Automatic support for “historical” data
• Deprecate xsi:nil (another bunch of calories)

3/19/06 23:27

2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary. 10

55

Extending XML processing
capabilities (I.e. XQuery)

More processing power and user facilities
(group-by, outer-joins, etc)

Full text and updates (work already in progress)
Error handling: try/catch
Assertions (*)
Continuous queries (*)
Better integration with XSLT (*)
Integration with Web Services (*)
Integration with Semantic Search and ontologies (*)
Procedural logic (*)
Metadata extraction functions
eval(XML-code)
Second order functions 56

XQuery Full Text
XML is primarily about text and markup
XQuery Full Text extension provides search
capabilities
Use case example: RSS/blogs filtering
FTSelections: special kind of Boolean predicates

Operators
words, and, or, not, mild not, order, scope, distance, window,
times)

Match options
Case, diacritics, stemming, thesauri, stop words, language,
wildcards

Scoring

57

XQuery Full Text Example
for $book in

doc("http://bstore1.example.com/full-
text.xml")/books/book

for $section score $s := $book/section[.
ftcontains "improving" && "usability"
distance at most 2 words ordered at
start]

where count($section/subsection)>0
return $section/title

58

XML Update facility
NEW: XML Update Facility Working Draft
Ability to do side effects (e.g. modify nodes in
an XDM instance) in a declarative fashion
Primitive update operations

insert <age>24</age> into $person[name=“Jim”]
delete $book[@year<2000]
rename $article as “publication”
replace ($books/book)[1] with <book>….</book>
replace value of $title with “New Title”

59

XQuery Update Facility (2)
Conditional updates
if($book/year<2000)
then delete $book/year
else rename $book/year as “publicationTime”

Collection-oriented updates
for $x in $book
where $x/year<200
do rename $x as “oldBook”
XML transformations using the update syntax

60

Extending XML processing
capabilities (I.e. XQuery)

More processing power and user facilities
(group-by, outer-joins, etc)

Full text and updates (work already in progress)
Error handling: try/catch
Assertions (*)
Continuous queries (*)
Better integration with XSLT (*)
Integration with Web Services (*)
Integration with Semantic Search and ontologies (*)
Procedural logic (*)
Metadata extraction functions
eval(XML-code)
Second order functions

3/19/06 23:27

2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary. 11

61

Assertions
Declarativity requires explicit assertions

No more imperative code !
Useful for:

Productivity: improve user code quality
Execution: check correctness
Efficiency: code rewriting, inference

define function my:foo($x as xs:integer) as element()
{ (:precondition:) assert $x <= 25;
 (:postcondition:) assert $result instanceof element(a, xs:string);
}
{ document(“uri1”)//*[@b=$x] }

assert <expr> return <expr> (: assertion expressions :)

XQuery assertions have to be designed consistently with XML
Schema integrity constraints 62

Continuous queries
XQuery supports iterations over sequences

FOR: one item at a time
LET: all items at once

We need support for infinite sequences (aka streams)
RSS is an infinite XML stream
We need iterations by windowing and subsequencing

Sliding window
Chunking window
Predicate based windowing

SQL has extensive support for this; adaptation required
XSLT 2.0 has a similar capability using grouping (e.g. pagination)

for $x in $seq [sliding] window by 3
where max($x) >=25
return <a>{$x}

63

Continuous queries (2)
Example:

Stream of XML elements containing information:
ATM cash withdraws (time, amount, bank account, etc)

Aggregated stream of ALL ATMs machines
Continuous stream

Queries:
“for every sequence of withdraws infos related to a single bank
account done within 10 minutes from ATM that are further apart then
10 miles do update a database and send an alarm message”

Foreach (non-continuous) subsequence of the infinite stream
that satisfies a predicate, apply an action.
Challenges:

Formally define a language (syntax and formal semantics)
Optimization and execution

64

Integration with XSLT
“What should I use: XSLT or XQuery ?”

XSLT easier when shape of the data unknown
XQuery easier when shape of the data known

XQuery easier to
Optimize
Type check ==> Data flow analysis is possible

Many query engines support both languages with the
same runtime (e.g. Saxon)
Mix and match !
We need a standard way.

define function my:foo($x)
import from template “uri1”
my:foo(<a/>)

Data model,
type system, function library

Runtime

XSLT XQuery

65

Integration with Semantic Search
Semantic Web activity:

Standards: RDF, OWL, SPARQL
Concepts/services: ontologies, classification, inference
Concepts orthogonal to the data model (XML or RDF)

Useful concepts also for XML
“My data is in XML, but I need support for ontologies”

import owl “uri1”
$x// ~car [@price = 25] result <automobile price=“25”/>

Search nodes not by name, but by semantic classification in an ontology
Classification: system magic sauce, or user specified using rules
Final goal for schema flexibility: write code that works for any schema that
talks about a certain domain.
Relational db: code independence from physical representation of data.
Now we need: code independence from logical schema of the data

66

Integration with Web Services
WS are the standard way of sending and receiving XML data
XQuery and XSLT are the standard way to program XML data
We should design them consistently

XQuery Web Services
module service
functions/operations operations
arguments ports
values for arguments and value for input and output
Result: XML messages: XML

We need:
A standard way of importing a Web Service into an XQuery program
A standard way of invoking a WS operation as a normal function
A standard way of exporting an XQuery module as a Web Service

Many XQuery implementations already support this. We need
to make it a standard.

 Another case of bottom up design.

3/19/06 23:27

2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary. 12

67

Making XQuery a full
programming language (1)

XQuery is Turing complete, yet “incomplete”
Users need to write application logic on their data
The killer advantages of XML erased by Java
Huge pressure to integrate native XML processing with
existing programming languages:

C-omega, EcmaScript, Python, PhP extensions, etc, etc

JavaScript
XML

XQuery

XML procedural

extension
s 68

Making XQuery a full
programming language (2)
Users are already using XQuery as a
scripting language !
Major missing pieces in XQuery:

Order of evaluation has to be deterministic
Updates
Variable assignment
Error handling

Mental shift
Adding procedural support does not mean
making the language un-optimizable !

If this happens: big architectural shift !
No more reasons for three different tiers on
the server side
No more reasons to distinguish between
clients and servers

Storage
(supports XML)

Application logic
(Java)

Communication
(XML)

Client
(XHTML, scripts)

XQuery

XQuery

69

Declarativity and the loss of
control (1)

Programming with declarative programming
languages is perceived by programmers as a loss of
control, at several levels:

1. Loss of the understanding of semantics
• Programmers can more easily follow the logic of a program step by

step, not in big (logic) steps
2. Loss of the ability to debug

• Programmers cannot follow the exact execution to find flaws in the
program

3. Loss of the ability to control the performance
• No direct correlation between the written algorithm and the

executed algorithm. This can sometimes be good news, but it can
also be bad news. Scary.

4. Loss of the ability to discover a posteriori “what happened”
70

Declarativity and the loss of
control (2)
What can we do about this ?

1. Understanding the semantics
• Teach students.

2. Debugging.
• Build good and intuitive debuggers.

3. Performance.
• Static complexity guarantees. Better feedback loop optimizers.
• Simply relax. This happens every 10 years. Programmers were

scared when they lost control over memory with Java. Productivity
vs. fear and control freaks. Productivity generally wins.

4. Tracing.
Build-in tracing execution. Logs.

The success of declarative programming languages like
XQuery and XSLT depends on those factors

71

HTTP-based protocol for XML
exchange

XML processors are invoked today through programming
languages APIs (JSR 225, JDBC, etc)

Very expensive way of using XQuery

Client-server in many cases
Often inappropriate for the XML case as it isn’t clear who is the “client”
and who is the “server” and what is the responsibility of each

In the future we need:
Simple protocol built directly in top of HTTP
Services: query and update XML repositories (get and post)
Ideally extension to simple protocols as Amazon’s OpenSearch
No programming language dependence and intermediary

Free the information from the dependence from Microsoft and Sun
Peer-2-peer architecture for a network of XML repositories 72

Putting all things together…

3/19/06 23:27

2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary. 13

73

The XML information hub

input
XML feeds/channels

Dataflow architecture: channels and actors
Information modeled only as XML through the hub

Declarative specification of actors, rules

XML request/response
(WS, REST)

output
XML feeds

XML channel :=
stream of XML elements

74

XML information hub: the data
Channels

Contain infinite streams of XML nodes
Append only
Communication with the external world, but also internal

Stores
Contain finite collections of XML nodes
Updatable (XQuery updates)

Both:
Identified by a URI
Can be constructed or deleted programmatically
Can be constraint by XML schema and/or integrity
constraints
All changes are automatically archived (100% logging)
Modifications (appends, updates) are not necessarily
transacted

75

XML information hub: the code
Actors

Snippets of XQuery code (extended with all the goodies:
updates, XSLT, ontologies, full text, procedural logic, etc)
Independent of each other
Can access all channels and stores (modulo security)
Describe “How to react when a certain event happens.”
Get invoked when an event happens:

A new entry in a channel
A state change of interest in a certain store

Allow for organic growth of the code
Declarative in nature
No global orchestration
Raising errors => sending an entry on an error channel

76

XML information hub: the
constraints

Assertions:
Linked to a channel or store
Global
Snippets of XQuery code (boolean)

Guaranteed by the system to be satisfied
Declarative specification

77

XML information hub
Channels
Stores
Actors
Constraints
All code is XQuery++

78

The XML information hub: the
execution

input
XML feeds/channels

How to execute it in a cluster of machines?
Automatic scaling ?

XML request/response
(WS, REST)

output
XML feeds

XML channel :=
stream of XML elements

3/19/06 23:27

2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary. 14

79

Counter-argument to this
proposal: the complexity
Yes, indeed, the XML stack is complex
Risk of designing a monster
But:

today people use the XML stack + thousands of
other things !
The problem is inherently complex

XQuery, XML Schemas aren’t for humans :-)
Most XQueries today are automatically
generated from GUIs
Imperative to find good 4GL programming
paradigms for the XML stack

80

Conclusion
Right time to make a revolutionary architectural
change for application development

pain >>> fear
People are willing to take the risk
XML is the right basic model for a new architecture
A dataflow, declarative, XML-based information hub
Programming language: XQuery
Extensions, research agenda

Continuous extensions
Imperative extensions
Ontology-based search

Optimization and execution of such a declarative
XML hub in a cluster of cheap machines

