
Samantha Niroshan Kahadawa

 Telephone : 0714-311669
Address : No. 26, Horagollagama, Nittambuwa, Sri Lanka

.
E-mail : samanthan@inbox.com

+++

Event-Driven Architecture: Achieving Architectural Agility

Event Driven Architecture (EDA) can seem quite esoteric, but it provides

unique benefits and capabilities that can enable business systems to become

more agile and responsive. What's even better is that you don't have to

abandon any of your hard-learned SOA lessons since EDA and SOA can not

only happily coexist but also thrive by leveraging each other's strengths.

Event-based systems are systems in which the constituent modules (or

components) have no direct connection to each other. I agree that this

statement by itself is quite vague. So, let's explore it further using a typical

service-oriented, N-tiered Web application.

An end user submits an order form using a Web browser, which results in a

boundary service on the server side being invoked. This boundary service

then finds and invokes the appropriate business components, which in turn

may invoke a series of other business and data components, and so on. Each

component in this system, including those on the client side, knows exactly

which component (or set of components) it needs to invoke next, and

furthermore, this logic is built into the application itself rather rigidly. Changing

this logic in most cases entails a developer making a change to the

application code.

The reason for this is simple: components in such a system are directly

connected (or coupled) to each other. There are two generally accepted ways

of establishing this connection between the two components. The more

common approach is through the use of a factory pattern. (There is actually a

third way to establish the connection. The "caller" component could simply

create the "callee" component itself. This is the least desirable way of the

three and should be avoided in all except the simplest of systems.)

What Sets An Event-Based System Apart

An event-based system is different from the system described above in that

the components never really know about each other. More specifically, the

components don't communicate by invoking methods on each other. There

are no "caller" and "callee" components as was the case in the scenario

described above. Rather, in an event-based system the components

communicate by publishing and subscribing events. So in an event-based

system we have "publisher" and "subscriber" components instead of "caller"

and "callee" components. And just as in the scenario described above where

the same component could be a "caller" and a "callee", the same component

in an event-based system can be both a publisher and subscriber of events.

Finally, multiple components may publish an event of the same type just as

multiple components can subscribe to an event of the same type.

A more technical description of the difference between the system described

above and an event- based system can be offered in terms of the degree of

coupling between the constituent components within the system. In the

system described above, the degree of coupling between the components

varies from being very tight to very loose depending on which one of the three

strategies was used to form the connections between the components (with

the least desirable, third strategy creating the tightest coupling). In an event-

based system, the components are completely decoupled from each other,

since they communicate only through the publication and subscription of

events and never directly with each other.

A system that is architected from ground up to be event-based is said to have

an Event Driven Architecture (EDA). At its core, an EDA based system is

implemented on a special class of middleware that supports at least the

following three functions:

--Allows a component to register the events that it can publish.

--Allows a component to see what events are being published by other

components and subscribe to the event it is interested in.

--Provides efficient event handling. For example, there is no need to

broadcast an event published by a component that no other component is

interested in.

The middleware may also support other features, such as transactions that

span multiple components that are publishing and consuming an event or

allowing event publishers to attach security criteria/requirements to their

publications that subscribers must fulfill to subscribe to the event. The

middleware would ensure that all subscribers to such an event satisfied the

security requirements specified by the publisher.

Common Misconceptions

As is the case with the popular acronym SOA, EDA has a number of

misconceptions associated with it too. One prevalent myth is that there is an

EDA product. EDA is not a product that you just go out and buy on the open

market. Rather, EDA is an architecture pattern that describes a style for

implementing solutions.

Another common myth is that EDA and SOA are opposites. That is not true

either. Despite the complexity of a properly implemented SOA, at its heart, an

SOA based system is a set of business services with each service having a

well-defined interface contract. However, an SOA imposes no restrictions on

how these services get invoked. That is, there is nothing preventing these

services from waiting for certain events to occur within the system and as the

events occur the services execute their business logic. Thus, each node (i.e.

publishing or subscribing component) in an EDA can be implemented as an

SOA.

The Benefits of EDA And SOA Together

So, what are the benefits of combining EDA and SOA? A combination of the

two architectural styles continues to provide all the commonly touted benefits

of an SOA, such as increased levels of reusability, higher interoperability

between systems, and improved scalability. In addition to these benefits, an

EDA allows dynamic reconfiguration of business logic by the addition of new

or the replacement of existing event subscribers. For example, if a new

federal regulation requires that all banking transactions over $1M be recorded

in a new federal registry that is monitored by the Dept. of Homeland Security,

then a new subscriber that satisfies this need can be added to the system that

subscribes to the events that are published whenever a transaction occurs.

Code changes to the existing system are not required and it continues to

function in the same way as it did before. This is possible because, as I

described previously, the application logic in an EDA is not programmed as a

series of connections; rather it is implemented by publishing and subscribing

of decoupled events. Thus, an EDA by its very nature supports many-to-many

connections in multiple dynamic, parallel, and asynchronous paths through

the system.

