

RIF Core Design

W3C Editor's Draft @@not-published

This version:
@@not-published

Latest version:

Previous version:

Editors:
Harold Boley
Michael Kifer

Copyright © 2006 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

Abstract

This document, developed by the Rule Interchange Format (RIF) Working Group,
specifies the core design for a format that allows rules to be translated between
rule languages and thus transferred between rule systems.

In Phase 1, the RIF Working Group is first defining a Core Condition Language.
These conditions are then used as rule bodies to define a Core Horn Language.
A human-oriented syntax, an XML syntax, and the semantics of the condition
language and of the Horn rule language are given.

Status of this Document

May Be Superseded

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C
publications and the latest revision of this technical report can be found in the
W3C technical reports index at http://www.w3.org/TR/.

Please Comment By @@no-due-date

Send comments to public-rif-wg@w3.org (assuming you're in the WG)

No Endorsement

Publication as a Working Draft does not imply endorsement by the W3C
Membership. This is a draft document and may be updated, replaced or
obsoleted by other documents at any time. It is inappropriate to cite this
document as other than work in progress.

Patents

This document was produced under the 5 February 2004 W3C Patent Policy.
The Working Group maintains a public list of patent disclosures relevant to this
document; that page also includes instructions for disclosing [and excluding] a
patent. An individual who has actual knowledge of a patent which the individual
believes contains Essential Claim(s) with respect to this specification should
disclose the information in accordance with section 6 of the W3C Patent Policy.

Table of Contents

• 1. RIF Condition Language
o 1.1. Positive Conditions

• 2. RIF Rule Language
o 2.1. Horn Rules

• 3. RIF Compatibility
o 3.1. RIF-OWL Compatibility
o 3.2. RIF-RDF Compatibility

1. RIF Condition Language

(Editor's Note: This text is maintained on wiki page RIF Condition Language).

This proposal develops a set of fundamental concepts shared by the rule
languages of interest to the RIF WG as outlined in the Design Roadmap
http://lists.w3.org/Archives/Public/public-rif-wg/2006Feb/0255.html. Here we
focus on the one part that is shared by Logic Programming rules, Production
(Condition-Action) rules, Reactive (Event-Condition-Action) rules, Normative
rules (Integrity Constraints), and queries. We call this part 'Conditions' and the
proposed sublanguage 'RIF Condition Language' (as a working title).

The RIF Condition Language is common ground for specifying syntactic
fragments in several different dialects of RIF:

• Rule bodies in a declarative logic programming dialect (LP)

Comment [AG1]: Are these official
dialects at this time?

Should the notions of “dialect” and

“sublanguage” be defined or elaborated in

some way?

• Rule bodies in a first-order dialect (FO)
• Conditions in the bodies in production rules dialects (PR)
• The event and condition parts of the rule bodies in reactive rules dialects

(RR)
• Integrity constraints (IC)
• Queries in LP dialects (QY)

Note that for rules this sublanguage is intended to be used only in the bodies, not
their heads. The various RIF dialects diverge in the way they specify rule heads
and other parts of their rules. We believe that by focusing on the condition part of
the rule bodies we can achieve maximum syntactic (and some semantic) reuse
among RIF dialects.

Since different semantics are possible for syntactically identical rule sets, we
propose that the semantics of a RIF rule set be specified by a predefined
attribute. We elaborate on this proposal in A.6 Semantics, but the idea is to
organize the most important known semantic and syntactic features into a
taxonomy (which could be extended to accommodate new semantics/syntax),
and the values of the aforementioned attribute would come from that taxonomy.

The assumptions underlying the RIF Condition Language are explicated in A.
Assumptions.

1.1. Positive Conditions

(Editor's Note: This text is maintained on wiki page Positive Conditions).

Introduction

The basis of the language is formed by conditions that can appear in the bodies
of Horn-like rules with equality -- conjunctions and disjunctions of atomic
formulas and equations (such rules reduce to pure Horn). We later extend our
proposal to include builtins. As indicated in RIF Condition Language, the
motivation is that this sublanguage can be shared among the bodies of the rules
expressed in the RIF dialects LP, FO, PR, RR, and can also be used to uniformly
express the body-like IC and QY sublanguages.

This document proposes a positive-condition syntax and semantics to account
for webizing (the use of URIs for constants, predicates, and functions) and
primitive data types (integers, floats, time, date, etc.). The main novelty is that
there is no longer a wall between the domains of constants, functions, and
predicates. Instead, all these symbols are drawn from the same domain.
Separation between the different kinds of symbols is introduced through the
mechanism of sorts. For instance, we can introduce a sort URI for URIs, and the
sorts integer, float, time, string, etc. for the corresponding data types. We can
decide that certain sorts must be disjoint (integers, time) and others are not (eg,

Formatted: Font: Bold, Italic

Comment [AG2]: In formal logic the
notion of “domain” is equivalent to

“universe of discourse” which is a)

specified as part of an interpretation and
b) includes everything that exists for that

interpretation. I don’t think that is the use

of the term you have in mind here. Do

you want to say that there isonly one

namespace for the non-logical

vocabulary, as opposed to the classical
procedure of requiring different syntactic

elements for individual constants,

predicates, and functions?

URI can be a subsort of string). We can control what sorts can be used for
relation symbols (predicates), function symbols, etc. For example, we can decide
that only strings can be predicates (which includes URIs, if URI is a subsort of
string). Or we can decide that only URI and localSymbol (where localSymbol
is some kind of a subsort of string) can be predicates and functions.

The first few sections on the syntax and semantics use a single domain for
constants, functions, and predicates. The multisorted extension is described in
the section "Multisorted Extensions".

SYNTAX

The following BNF syntax is for illustration/explanation purposes only. This is the
essential BNF for a human-readable syntax, where Expressions and Atoms
abstract from the underlying data model in that they can take a Herbrand
(positional) or another form:

 Var ::= '?' NAME?
 TERM ::= Con | Var | Expr
 Expr ::= Con '(' TERM* ')'
 Atom ::= Expr
 LITFORM ::= Atom | TERM '=' TERM
 QUANTIF ::= 'Exists' Var+ '(' CONDIT ')'
 CONJ ::= 'And' '(' CONDIT* ')'
 DISJ ::= 'Or' '(' CONDIT* ')'
 CONDIT ::= LITFORM | QUANTIF | CONJ | DISJ

Here the Herbrand form (Expr or Atom) applies its operator (Con) to positional
TERM arguments using round parentheses, (... TERM ...). Notice that LITFORM
stands for Literal Formula and anticipates the introduction of negated atoms later
on. QUANTIF stands for Quantified Formula, which for Horn-like conditions can
only be 'Exists' Formulas (Var+ variables should occur free in the scoped
CONDIT, so 'Exists' can quantify them; free variables are discussed below).
More explicitly than in logic programming, CONJ expresses formula conjunctions,
and DISJ expresses disjunctions. Finally, CONDIT combines everything and
defines RIF conditions, which can later be extended beyond LITFORM,
QUANTIF, CONJ, or DISJ.

We initially assume that all constants (Con) belong to one logical sort: the sort of
elementary entities. Relation names and function symbols are also in Con.
Likewise, variables are initially not sorted and thus can range over all constants,
expressions, etc. Both of these assumptions will be subsequently refined to allow
multiple sorts for different data types. See section "Multisorted Extensions".

At this point we do not commit to any particular vocabulary for the names of
variables and for constants. For instance, NAME could be any alphanumeric
string and a variety of options could be used for Con. We leave the decision till

Comment [AG3]: I don’t understand

this production. What is the role of the

2nd question mark? Given what you say

about anonymous variables below, this
would make more sense to me as

Var ::= ‘?’ | ?NAME

later time. A stand-alone '?' denotes an anonymous variable, each of whose
occurrences is equivalent to a variable with a fresh NAME.

Note that there are two uses of variables in the RIF Condition Language: free
and quantified. All quantified variables are quantified explicitly, existentially (and
also universally, later). We adopt the usual scoping rules for quantification from
first-order logic. Variables that are not explicitly quantified are free.

The free variables are needed because we are dealing with conditions that occur
in rule bodies only. When a condition occurs in such a rule body, the free
variables in the condition are precisely those that also occur in the rule head.
Such variables are quantified universally outside of the rule, and the scope of
such quantification is the entire rule. For instance, the variable ?X in the rule
below is free in the condition that occurs in the rule body, but it is universally
quantified outside of the rule.

Condition with a free variable ?X:
 ... Exists ?Y (condition(..?X..?Y..))
...

Rule using the condition in its body:
Forall ?X (head(...?X...) :- ... Exists ?Y (condition(..?X..?Y..))
...)

When conditions are used as queries, their free variables are to be bound to
carry the answer bindings back to the caller.

The semantics of conditions is defined in the section "SEMANTIC
STRUCTURES".

Example 1 (A Herbrand RIF condition in human-readable syntax):

 In this condition, ?Buyer is quantified existentially, while
?Seller
 and ?Author are free:

 And (Exists ?Buyer (purchase(?Buyer ?Seller book(?Author LeRif)
$49))
 ?Seller=?Author)

This syntax is similar in style, and compatible to, the OWL Abstract Syntax
http://www.w3.org/TR/owl-semantics/syntax.html.

The following XML syntax is for illustration purposes only. It can be obtained from
the above BNF as shown below. The XML syntax is stripe-skipped in that it omits
role (or property) elements since the Herbrand terms to be serialized have
positional arguments and the positional information of the left-to-right ordered
subelements of an XML element is unique. The only place in the Condition
Language where role elements ('declare' and 'formula') are provided is within the

Comment [AG4]: See comment

above.

Comment [AG5]: Not that it is
necessarily a bad thing, but the specs

given allow the same variable to appear

bound and free in the same expression,
for example,

And (Exists ?X (Foo ?X) (Bar ?X)).

Scoping rules would give the result that
?X is bound in (Foo ?X) and free in (Bar

?X). In practice this is something that

should be avioided.

Comment [AG6]: I am not sure what
this means.

'Exists' element. Notice that Java's familiar case convention for distinguishing
methods and classes is adopted, using lower-cased role elements and upper-
cased class elements.

The non-terminals in all-upercase such as CONDIT become XML entities, which
act like macros and will not be visible in instance markups. The other non-
terminals as well as symbols ('Exists' etc. as well as '=') become XML elements,
which are adapted from RuleML as shown below.

- Con (constant individual, function, or relation)
- Var (logic variable, empty for anonymous variable)
- Expr (expression formula)
- Atom (atomic formula)
- Equal (prefix version of term equation '=')
- Exists (quantified formula for 'Exists')
- declare (declare role, containing a Var)
- formula (formula role, containing a CONDIT formula)
- And (conjunction)
- Or (disjunction)

This can be directly rewritten as a DTD (adapting PositiveConditions.dtd) or an
XML Schema.

The condition formula in Example 1 can be serialized in XML as shown below.

Example 2 (A Herbrand RIF condition in XML syntax):

 <And>
 <Exists>
 <declare><Var>Buyer</Var></declare>
 <formula>
 <Atom>
 <Con>purchase</Con>
 <Var>Buyer</Var>
 <Var>Seller</Var>
 <Expr>
 <Con>book</Con>
 <Var>Author</Var>
 <Con>LeRif</Con>
 </Expr>
 <Con>$49</Con>
 </Atom>
 </formula>
 </Exists>
 <Equal>
 <Var>Seller</Var>
 <Var>Author</Var>
 </Equal>
 </And>

Using the DTD spec, Richard Goerwitz' STG Validator succeeds with the
conjunction of Example 2:

Comment [AG7]: Needs to updated to

be consistent with text.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE And SYSTEM
"http://www.jdrew.org/rif/PositiveConditions.dtd">
<And>
 ... content of Example 2 ...
</And>

This XML version can be derived from a 'fully striped' version in the abstract
syntax notation (cf. asn06), which permits metasyntax interoperation with OWL,
RDF, etc.

SEMANTIC STRUCTURES (a.k.a. INTERPRETATIONS)

The first step in defining a model-theoretic semantics for a logic-based language
is to define the notion of a semantic structure, also known as an interpretation,
and then to define the notion of truth valuation for the formulas in the language.

In case of the first-order semantics, the setting given here is one of the standard
common definitions. Although it is not as frequently used as some other well-
known definitions of semantic structures, it has the advantage of being easy to
generalize to non-first-order cases --- for instance, rule sets with negation as
failure (NAF), some of which (e.g., well-founded negation) use three-valued
semantic structures, and settings, such as the Web, where information can be
uncertain or contradictory. In the latter case, four-valued and other multi-valued
semantic structures are used. (See, for example, M. Fitting, Fixpoint Semantics
for Logic Programming A Survey, Theoretical Computer Science, 1999.)

A semantic structure is a mapping of the form

I: Set of formulas → TV

where TV is the set of all truth values. Thus, if Φa formula then I(Φ) is its truth
value.

The set of truth values TV typically has only two values, t and f. However, some
versions of NAF have three, t, u (undefined), and f, and, as we remarked,
treatment of contradictions and uncertainty requires at least four: t, u, f, and i
(inconsistent).

The set TV is assumed to have a total or partial order, called the truth order; it is
denoted <t. For instance, in the first-order case, f <t t, and it is a total order. In the
well-founded semantics, f <t u <t t, and it is again a total order. But in Belnap-
style four-valued logics, which are suitable for dealing with uncertain or
inconsistent information, the truth order is partial: f <t u <t t and f <t i <t t.

As a side remark, Belnap-style logics also have another order, called the
knowledge order <k: u <k t <k i; and u <k f <k i. Under the knowledge order, true

Comment [AG8]: This is a little

confusing, since below you equate a

semantic structure with a mapping to

truth values.

Deleted: s

and false are incomparable, and facts that are both true and false receive the
truth value i, which is the least upper bound of f and t in the knowledge order.

More formally, let us define the following sets:

• D - a non-empty set (of domain elements),
• Con - the set of syntax elements recognized by the Con / entity

production,
• Var - the set of syntax elements recognized by the Var / ?name production

An interpretation I consists of four mappings:

• IC from Con to elements of D
• IV from Var to elements of D
• IF from Con to functions from D* into D (D* is a set of all tuples over

domain D)
• IR from Con to truth-valued mappings D* -> TV

Using these mappings, we can define a more general mapping, I, as follows:

• I(k) = IC(k) if k is a constant
• I(?v) = IV(?v) if v is a variable
• I(f(t1,...,tn)) = IF(f)(I(t1),...,I(tn))

As explained earlier, an interpretation is supposed to map formulas to truth
values. We define this mapping now:

• Atomic formulas: I(r(t1,...,tn)) = IR(r)(I(t1),...,I(tn))
• Equality: I(t1=t2) = t iff I(t1) = I(t2) and it is f otherwise.
• Conjunction: I(And(c1,...,cn)) = mint(I(c1),...,I(cn)), where mint is minimum

with respect to the truth order.
• Disjunction: I(Or(c1,...,cn)) = maxt(I(c1),...,I(cn)), where maxt is maximum

with respect to the truth order.
• Quantification: I(Exists v1 ... vn (c)) = maxt(I*(c)), where maxt is taken over

all interpretations I* of the form <IC, I*V, IF, IR>, where I*V is the same as IV
except possibly on the variables v1,...,vn (i.e., I* agrees with I everywhere
except possibly in its interpretation of the mappings of variables v1 ... vn).

Multisorted Extensions

The classical idea of sorted logic can easily account for the ideas of primitive
data types, URIs as identifiers of objects and concepts, and more. Many logic
languages (e.g., Prolog, HiLog, F-logic, RDF) allow the same symbol to play
multiple roles. For instance, the same symbol foo can be used as a constant, a
predicate of several different arities, and as a function symbol of different arities.
To account for such languages, we will use a multisorted logic.

Comment [AG9]: Why introduce this?

Comment [AG10]: see comment 2
above. I would just delete the word

“domain” here, or put in an intrepretive
remark like “D is the universe of

discourse”

Comment [AG12]: See comment 3
above

Comment [AG11]: No such
production exists in the BNF given above

Comment [AG13]: According to the
syntax above, there shouldn’t be any

commas here. Should say “if ‘f’ is a
constant followed by n terms”

Comment [AG14]: same as 13

Comment [AG15]: ditto

Comment [AG16]: ditto

In a multisorted RIF core, each constant from Con is associated with one or more
sorts. A sort can be primitive, an arrow sort, or a Boolean sort. Arrow sorts are
also known as function sorts and Boolean sorts are also known as predicate
sorts.

Primitive sorts are drawn from a fixed collection of sorts PS1, ..., PSn. These sorts
are intended to model primitive data types. For instance, we could have the sorts
integer, strings, time, dates, etc. The same constant can be associated with more
than one primitive sort, so it is possible that the sort of short integers will be a
subsort of the sort of long integers (i.e., every constant that is associated with the
sort short will also be associated with the sort long). It is a common practice to
distinguish the constants of different primitive sorts syntactically. For instance,
constants of the primitive sort integer, would have a different syntax from
constants of sort string, and constants of primitive type URI would have yet
another syntax.

An arrow sort is a statement of the form s1 X ... X sk →s, where s1, ..., sk, s are
names of primitive sorts (i.e., one of the PS1, ..., PSn). A Boolean sort is a
statement of the form s1 X ... X sk, where, again, s1, ..., sk are names of primitive
sorts.

Recall that RIF core uses the symbols from Con to denote constants, predicates,
and function symbols alike, so the same symbol can occur in multiple contexts.
However, it is useful to restrict the contexts in which various symbols are allowed
to occur. For instance, Prolog or RDF don't place any such restrictions, but OWL-
DL has a unique role for each symbol. This restriction of the context is
accomplished by controlling the sorts that are associated with each constant. For
instance, if one doesn't want integers to occur as predicate and function symbols
then we don't associate any arrow or Boolean sorts with the constants that are
associated with primitive sort integer. On the other hand, we do want URIs to
denote concepts and other predicates. In that case, we would associate every
Boolean sort with every constant that has a primitive sort URI. If we want to also
allow local names for concepts and other predicates, then we might introduce a
separate primitive sort, localPred, and endow it with every Boolean type.

Multisorted Syntax

MULTISORTED SYNTAX OF PRIMITIVE SORTS

The human-readable syntax for primitive sorts (types) can use an infix operator

between a term and its type. For example, reusing the ^^ infix of N3/Turtle, the

term 6 can be given the type #Perfect_number by writing 6^^#Perfect_number. A

correspondingly typed variable xyz is written as xyz^^#Perfect_number.

The XML syntax can be obtained by using a 'type' attribute on XML term

elements such as Con. Thus, the above example becomes <Con

Comment [AG17]: I find this a bit
confusing. I would rewrite it, for

example, as “Primitive sorts can form a

logical heirarchy. For example the sort

short intergers is a subsort of the sort

integers. In that case any constant that is

associate with the former sort will
automatically be associate with the latter

sort.”

Comment [AG18]: In what language
are these statements? And what is their

meaning?

type="#Perfect_number">6</Con>. A correspondingly typed variable xyz is

written as <Var type="#Perfect_number">xyz</Var>.

Formalization of Multisorted Extensions

Formally, the syntax of RIF core needs the following adjustments. We introduce
new functions:

• PSort: Con → powerset(Primitive_Sorts)
• ASort: Con → powerset(Arrow_Sorts)
• BSort: Con → powerset(Boolean_Sorts)

Each of these functions associates a (possibly empty) set of sorts (primitive,
arrow, or Boolean) with every constant c ∈ Con.

PSort is also defined on variables:

PSort: Var → powerset(Primitive_Sorts)

The intended meaning is that if ?v ∈ Var and PSort(?v) = {s1, ..., sk} then ?v can
be bound only to function terms that are simultaneously of sorts s1, ..., sk (we
define what it means for a function term to belong to a primitive sort below). In
theory, PSort(?v) can be an empty set. However, such a variable would be
useless, since it cannot be bound to anything.

Well-formed function terms. If c ∈ Con is a constant and s ∈PSort(c) then we

say that c (and c(), which we identify with c) is a well-formed function term of
sort s. Note that the same constant can be a well-formed term of several
different sorts because we allow several primitive sorts to be associated with the
same constant. The informal meaning of such a happenstance is that the term
belongs to the "intersection" of all the sorts with which it is associated.

By induction, if f(t1, ..., tk) is a function term then it is a well-formed function
term of sort s if there is an arrow sort s1, ..., sk → s ∈ ASort(f) such that t1, ..., tk
are well-formed function terms of sorts s1, ..., sk, respectively.

It is convenient to extend the mapping PSort from constants to function terms as
follows:

•

PSort(t) = { s | t is a well-formed term of sort s }

Comment [AG19]: commas again

Well-formed atomic formula. We can now say that an atomic formula p(t1, ..., tk)
is well-formed if and only if t1, ..., tk are well-formed function terms and there is a
Boolean sort s1 X ... X sk ∈ BSort(p) such that s1 ∈PSort(t1), ..., sk ∈ PSort(tk).

The only other modification to the definition of the RIF syntax is that we must
require that all atomic formulas that occur in RIF conditions and rules must be
well-formed.

Semantics of the Multisorted RIF Core

The semantics of RIF core needs the following adjustments in order to be
compatible with the multisorted syntax:

• The domain D of an interpretation is now split into several subdomains:
o D = Ds1 ∪ ... ∪ Dsn, where each Dsi is the domain of interpretation

of the primitive sort si.
• If c ∈ Con or ?v ∈ Var is a constant or a variable of

o primitive sort s then IC(c) ∈ Ds and IV(?v) ∈ Ds.
• If f has an arrow type s1, ..., sk → s ∈ ASort(f) then

o IF(f) should be a (possibly polymorphic) function of type Ds1 ... Dsk
→ Ds, i.e., if d1 ∈ Ds1, ..., dk ∈ Dsk then IF(d1,...,dk) must be in Dsk
(if the arguments are not in Ds1 ... Dsk then the result does not need
to be in Ds, but IF(f) might have other types, which restrict its
behavior).

• The definition of IP requires no adjustments.

2. RIF Rule Language

(Editor's Note: This text is maintained on wiki page RIF Rule Language).

This proposal develops a RIF Rule Language as an extension of the RIF
Condition Language, where conditions become rule bodies. The Rule Language
starts with rules having Horn logic expressiveness (positive conditions) and then
proceeds to increased expressiveness, mainly by reusing generalized conditions
of the Condition Language as rule conditions.

2.1. Horn Rules

(Editor's Note: This text is maintained on wiki page Horn Rules).

Based on RIF's positive conditions, this section defines Horn rules for RIF (Phase
1).

SYNTAX

Comment [AG20]: Shouildn’t this be

Ds ?

Comment [AG21]: Shouldn’t this be

IR ?

The following BNF syntax is for illustration/explanation purposes only. To specify
Horn clauses we just need to add these productions to the human-readable
syntax of Positive Conditions:

 . . .
 HEAD ::= LITFORM
 BODY ::= CONDIT
 Implies ::= HEAD ':-' BODY
 CLAUSE ::= 'Forall' Var* '(' Implies ')' | 'Forall' Var* '('
HEAD ')'

where CONDIT and LITFORM are defined in Positive Conditions, and :-
(pronounced 'IF') is an implication connective.

Rules are generated by the Implies production. Facts are generated by the HEAD
production, where such a factual HEAD is regarded as a shorthand for a rule with
an empty, hence true, conjunctive BODY condition of the form

 Implies ::= HEAD ':-' And '(' ')'

Finally, a CLAUSE generates a universally closed rule or fact.

By 'inheritance' from Positive Conditions through CONDIT and LITFORM, all
Expressions and Atoms in Horn rules have a Herbrand (positional) form.

Note also that, since CONDIT permits disjunction and existential quantification, the

rules defined by the Implies production look more general than Horn. However, it
is well-known that such extended rules reduce to Horn via a simple syntactic
transformation.

The document RIF Use Cases and Requirements describes the use case
"Negotiating eBusiness Contracts Across Rule Platforms", containing this first
rule proposed in a hypothetical negotiation by some agent John:

If an item is perishable and it is delivered more than 10 days
after the scheduled delivery date
then the item will be rejected.

This can be formalized in equivalent human-readable syntax as the following
three ways: 1) assuming the universal closure when generated directly by the

Implies production (Example 3a), 2) showing the universal closure when

generated through the CLAUSE production (Example 3b), and 3) transforming
BODY-only variables to existentials as introduced in the language of Positive
Conditions (Example 3c):

Example 3a (A RIF rule in human-readable syntax using implicit
quantification):

Deleted: equivalently

Deleted: s

Deleted: ,

 In this rule, the HEAD is a user-defined relation of two
arguments, one a constant.
 The BODY is a conjunction of five Atoms, the first three user-
defined relations, the
 fourth and fifth user-defined or built-in relations.

 reject(John ?item) :-
 And (perishable(?item)
 delivered(?item ?deliverydate)
 scheduled(?item ?scheduledate)
 timediff(?diffdate ?deliverydate ?scheduledate)
 greaterThan(?diffdate 10))

Example 3b (A RIF rule in human-readable syntax using explicit top-
level quantification):

 In this rule, the HEAD is a user-defined relation of two
arguments, one a constant.
 The BODY is a conjunction of five Atoms, the first three user-
defined relations, the
 fourth and fifth user-defined or built-in relations.

 Forall ?item ?deliverydate ?scheduledate ?diffdate
 (
 reject(John ?item) :-
 And (perishable(?item)
 delivered(?item ?deliverydate)
 scheduled(?item ?scheduledate)
 timediff(?diffdate ?deliverydate ?scheduledate)
 greaterThan(?diffdate 10))
)
Example 3c (A RIF rule in human-readable syntax using existential
BODY quantification):

 In this rule, the HEAD is a user-defined relation of two
arguments, one a constant.
 The BODY is a conjunction of five Atoms, the first three user-
defined relations, the
 fourth and fifth user-defined or built-in relations.

 Forall ?item
 (
 reject(John ?item) :-
 Exists ?deliverydate ?scheduledate ?diffdate
 (
 And (perishable(?item)
 delivered(?item ?deliverydate)
 scheduled(?item ?scheduledate)
 timediff(?diffdate ?deliverydate
?scheduledate)
 greaterThan(?diffdate 10))
)
)

The following XML syntax is for illustration purposes only. It can be obtained from
the above BNF and from Positive Conditions as shown below. The 'Forall'

element uses the role elements ('declare' and 'formula') introduced for the 'Exists'
element in the Condition Language. The 'Implies' element uses role elements
('head' and 'body') to get rid of any order information, permitting serializations in
both the consequent-first style of logic programming and the antecedent-first
style of production rules.

 . . .
- head (consequent role, containing LITFORM)
- body (antecedent role, containing CONDIT)
- Implies (implication, containing head and body roles in any
order)
- Forall (quantified CLAUSE formula with 'Forall')

This can be directly rewritten as a DTD (adapting HornRules.dtd) or an XML
Schema.

The rule in Example 3b can be serialized in XML, e.g. again having the head first,
as shown below (since serializations are to be explicit, no direct serialization of
Example 3a is offered, while the serialization of Example 3c is offered but not
shown here).

Example 4 (A RIF rule in XML syntax using consequent-first
serialization):

<Forall>
 <declare><Var>item</Var></declare>
 <declare><Var>deliverydate</Var></declare>
 <declare><Var>scheduledate</Var></declare>
 <declare><Var>diffdate</Var></declare>
 <formula>
 <Implies>
 <head>
 <Atom>
 <Con>reject</Con>
 <Con>John</Con>
 <Var>item</Var>
 </Atom>
 </head>
 <body>
 <And>
 <Atom>
 <Con>perishable</Con>
 <Var>item</Var>
 </Atom>
 <Atom>
 <Con>delivered</Con>
 <Var>item</Var>
 <Var>deliverydate</Var>
 </Atom>
 <Atom>
 <Con>scheduled</Con>
 <Var>item</Var>
 <Var>scheduledate</Var>

Comment [AG22]: This DTD also
needs to be updated to be in accord with

the text.

 </Atom>
 <Atom>
 <Con>timediff</Con>
 <Var>diffdate</Var>
 <Var>deliverydate</Var>
 <Var>scheduledate</Var>
 </Atom>
 <Atom>
 <Con>greaterThan</Con>
 <Var>diffdate</Var>
 <Con>10</Con>
 </Atom>
 </And>
 </body>
 </Implies>
 </formula>
</Forall>

Using the DTD spec, Richard Goerwitz' STG Validator succeeds with the Horn
clause of Example 4:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE Forall SYSTEM "http://www.jdrew.org/rif/HornRules.dtd">
<Forall>
 ... content of Example 4 ...
</Forall>

SEMANTICS

Interpretation and Models of Rules

In Positive Conditions we defined the notion of semantic structures and what it
means for such a structure to satisfy a RIF condition. Here we extend this notion
and define what it means for such a structure to satisfy a rule.

While semantic structures can be multivalued, rules are typically two-valued even
in logics that support inconsistency and uncertainty. Consider a rule of the form
Q head :- body, where Q is a quantification prefix for all the variables in the rule.
For the Horn subset, Q is a universal prefix, i.e., all variables in the rule are
universally quantified outside of the rule. We first define the notion of rule
satisfaction without the quantification prefix Q:

I |= head :- body

iff I(head) ≥ I(body).

We define I |= Q head :- body iff I* |= head :- body for every I* that agrees with I
everywhere except possibly on some variables mentioned in Q. In this case we
also say that I is a model of the rule. I is a model of a rule set R if it is a model

of every rule in the set, i.e., if it is a semantic structure such that I |= r for every
rule r R.

Intended Models of Rules

The notion of a model is only the basic ingredient in the definition of a semantics
of a rule set. In general, a semantics of a rule set R is the set of its intended
models (see Y. Shoham. Nonmonotonic logics: meaning and utility. In: Proc.
10th International Joint Conference on Artificial Intelligence, Morgan Kaufmann,
pp. 388--393, 1987). There are different theories of what the intended sets of
models are supposed to look like depending on the features of the different rule
sets.

For Horn rules, which we use in this section, the intended set of models of R is
commonly agreed upon: it is the set of all models of R.

However, when rules contain negation-as-failure (naf) literals in the body, only
some of the models of a rule set are accepted as intended. This issue will be
addressed in future extensions of RIF. The two most common theories of
intended models are based on the so called well-founded models and stable
models. Here we will just illustrate the problem with an example.

Suppose R has a single rule p:-naf q. If naf is interpreted as classical negation,

not, then this rule is simply p\/q, and so it has two kinds of models: one in which

p is true and one where q is true. In contrast, most current rule-based systems do

not consider p and q symmetrically. Instead, they view this as a specification of

an intent that p must be true if it is not possible to establish the truth of q. Since it

is, indeed, impossible to establish the truth of q, such theories will derive p even

though it does not logically follow from p:-not q. The logic underlying rule-based
systems also considers that only the minimal models as intended (minimality
here means minimization of the set of true facts). Therefore, the intended models

of our rule set must have the property that not only p is true but also that q is
false.

3. RIF Compatibility

(Editor's Note: This text is maintained on wiki page RIF Compatibility).

The compatibility of RIF Core is currently focussed on the Semantic Web
standards OWL and RDF, as explained in RIF-OWL Compatibility and RIF-RDF
Compatibility.

3.1. RIF-OWL Compatibility

(Editor's Note: This text is maintained on wiki page RIF-OWL Compatibility).

Formatted: Font: Italic

Deleted: agreed

RIF-OWL Compatibility will be described here on the basis of OWL Compatibility,
A.5 Extension: Ontology Conditions, and (email) discussions.

3.2. RIF-RDF Compatibility

(Editor's Note: This text is maintained on wiki page RIF-RDF Compatibility).

RIF-RDF Compatibility will be described here on the basis of RDF Compatibility,
A.4 Extension: Resource Conditions, and (email) discussions.

