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Abstract 

This document, developed by the Rule Interchange Format (RIF) Working Group, 
specifies the core design for a format that allows rules to be translated between 
rule languages and thus transferred between rule systems.  

In Phase 1, the RIF Working Group is first defining a Core Condition Language. 
These conditions are then used as rule bodies to define a Core Horn Language. 
A human-oriented syntax, an XML syntax, and the semantics of the condition 
language and of the Horn rule language are given.  

Status of this Document 

May Be Superseded 

This section describes the status of this document at the time of its publication. 
Other documents may supersede this document. A list of current W3C 
publications and the latest revision of this technical report can be found in the 
W3C technical reports index at http://www.w3.org/TR/. 
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Send comments to public-rif-wg@w3.org (assuming you're in the WG)  

No Endorsement 

Publication as a Working Draft does not imply endorsement by the W3C 
Membership. This is a draft document and may be updated, replaced or 
obsoleted by other documents at any time. It is inappropriate to cite this 
document as other than work in progress. 

Patents 

This document was produced under the 5 February 2004 W3C Patent Policy. 
The Working Group maintains a public list of patent disclosures relevant to this 
document; that page also includes instructions for disclosing [and excluding] a 
patent. An individual who has actual knowledge of a patent which the individual 
believes contains Essential Claim(s) with respect to this specification should 
disclose the information in accordance with section 6 of the W3C Patent Policy. 
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1. RIF Condition Language 

(Editor's Note: This text is maintained on wiki page RIF Condition Language). 

This proposal develops a set of fundamental concepts shared by the rule 
languages of interest to the RIF WG as outlined in the Design Roadmap 
http://lists.w3.org/Archives/Public/public-rif-wg/2006Feb/0255.html. Here we 
focus on the one part that is shared by Logic Programming rules, Production 
(Condition-Action) rules, Reactive (Event-Condition-Action) rules, Normative 
rules (Integrity Constraints), and queries. We call this part 'Conditions' and the 
proposed sublanguage 'RIF Condition Language' (as a working title).  

The RIF Condition Language is common ground for specifying syntactic 
fragments in several different dialects of RIF:  

• Rule bodies in a declarative logic programming dialect (LP)  
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• Rule bodies in a first-order dialect (FO)  
• Conditions in the bodies in production rules dialects (PR)  
• The event and condition parts of the rule bodies in reactive rules dialects 

(RR)  
• Integrity constraints (IC)  
• Queries in LP dialects (QY)  

Note that for rules this sublanguage is intended to be used only in the bodies, not 
their heads. The various RIF dialects diverge in the way they specify rule heads 
and other parts of their rules. We believe that by focusing on the condition part of 
the rule bodies we can achieve maximum syntactic (and some semantic) reuse 
among RIF dialects.  

Since different semantics are possible for syntactically identical rule sets, we 
propose that the semantics of a RIF rule set be specified by a predefined 
attribute. We elaborate on this proposal in A.6 Semantics, but the idea is to 
organize the most important known semantic and syntactic features into a 
taxonomy (which could be extended to accommodate new semantics/syntax), 
and the values of the aforementioned attribute would come from that taxonomy.  

The assumptions underlying the RIF Condition Language are explicated in A. 
Assumptions.  

1.1. Positive Conditions 

(Editor's Note: This text is maintained on wiki page Positive Conditions). 

Introduction 

The basis of the language is formed by conditions that can appear in the bodies 
of Horn-like rules with equality -- conjunctions and disjunctions of atomic 
formulas and equations (such rules reduce to pure Horn). We later extend our 
proposal to include builtins. As indicated in RIF Condition Language, the 
motivation is that this sublanguage can be shared among the bodies of the rules 
expressed in the RIF dialects LP, FO, PR, RR, and can also be used to uniformly 
express the body-like IC and QY sublanguages.  

This document proposes a positive-condition syntax and semantics to account 
for webizing (the use of URIs for constants, predicates, and functions) and 
primitive data types (integers, floats, time, date, etc.). The main novelty is that 
there is no longer a wall between the domains of constants, functions, and 
predicates. Instead, all these symbols are drawn from the same domain. 
Separation between the different kinds of symbols is introduced through the 
mechanism of sorts. For instance, we can introduce a sort URI for URIs, and the 
sorts integer, float, time, string, etc. for the corresponding data types. We can 
decide that certain sorts must be disjoint (integers, time) and others are not (eg, 
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URI can be a subsort of string). We can control what sorts can be used for 
relation symbols (predicates), function symbols, etc. For example, we can decide 
that only strings can be predicates (which includes URIs, if URI is a subsort of 
string). Or we can decide that only URI and localSymbol (where localSymbol 
is some kind of a subsort of string) can be predicates and functions.  

The first few sections on the syntax and semantics use a single domain for 
constants, functions, and predicates. The multisorted extension is described in 
the section "Multisorted Extensions".  

SYNTAX 

The following BNF syntax is for illustration/explanation purposes only. This is the 
essential BNF for a human-readable syntax, where Expressions and Atoms 
abstract from the underlying data model in that they can take a Herbrand 
(positional) or another form:  

  Var        ::= '?' NAME? 
  TERM       ::= Con | Var | Expr 
  Expr       ::= Con '(' TERM* ')' 
  Atom       ::= Expr 
  LITFORM    ::= Atom | TERM '=' TERM 
  QUANTIF    ::= 'Exists' Var+ '(' CONDIT ')' 
  CONJ       ::= 'And' '(' CONDIT* ')' 
  DISJ       ::= 'Or' '(' CONDIT* ')' 
  CONDIT     ::= LITFORM | QUANTIF | CONJ | DISJ 

Here the Herbrand form (Expr or Atom) applies its operator (Con) to positional 
TERM arguments using round parentheses, (... TERM ...). Notice that LITFORM 
stands for Literal Formula and anticipates the introduction of negated atoms later 
on. QUANTIF stands for Quantified Formula, which for Horn-like conditions can 
only be 'Exists' Formulas (Var+ variables should occur free in the scoped 
CONDIT, so 'Exists' can quantify them; free variables are discussed below). 
More explicitly than in logic programming, CONJ expresses formula conjunctions, 
and DISJ expresses disjunctions. Finally, CONDIT combines everything and 
defines RIF conditions, which can later be extended beyond LITFORM, 
QUANTIF, CONJ, or DISJ.  

We initially assume that all constants (Con) belong to one logical sort: the sort of 
elementary entities. Relation names and function symbols are also in Con. 
Likewise, variables are initially not sorted and thus can range over all constants, 
expressions, etc. Both of these assumptions will be subsequently refined to allow 
multiple sorts for different data types. See section "Multisorted Extensions".  

At this point we do not commit to any particular vocabulary for the names of 
variables and for constants. For instance, NAME could be any alphanumeric 
string and a variety of options could be used for Con. We leave the decision till 
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later time. A stand-alone '?' denotes an anonymous variable, each of whose 
occurrences is equivalent to a variable with a fresh NAME.  

Note that there are two uses of variables in the RIF Condition Language: free 
and quantified. All quantified variables are quantified explicitly, existentially (and 
also universally, later). We adopt the usual scoping rules for quantification from 
first-order logic. Variables that are not explicitly quantified are free.  

The free variables are needed because we are dealing with conditions that occur 
in rule bodies only. When a condition occurs in such a rule body, the free 
variables in the condition are precisely those that also occur in the rule head. 
Such variables are quantified universally outside of the rule, and the scope of 
such quantification is the entire rule. For instance, the variable ?X in the rule 
below is free in the condition that occurs in the rule body, but it is universally 
quantified outside of the rule.  

Condition with a free variable ?X: 
                             ... Exists ?Y (condition(..?X..?Y..)) 
... 
 
Rule using the condition in its body: 
Forall ?X (head(...?X...) :- ... Exists ?Y (condition(..?X..?Y..)) 
...) 

When conditions are used as queries, their free variables are to be bound to 
carry the answer bindings back to the caller.  

The semantics of conditions is defined in the section "SEMANTIC 
STRUCTURES".  

Example 1 (A Herbrand RIF condition in human-readable syntax): 
 
  In this condition, ?Buyer is quantified existentially, while 
?Seller 
  and ?Author are free: 
 
  And ( Exists ?Buyer (purchase(?Buyer ?Seller book(?Author LeRif) 
$49)) 
        ?Seller=?Author ) 

This syntax is similar in style, and compatible to, the OWL Abstract Syntax 
http://www.w3.org/TR/owl-semantics/syntax.html.  

The following XML syntax is for illustration purposes only. It can be obtained from 
the above BNF as shown below. The XML syntax is stripe-skipped in that it omits 
role (or property) elements since the Herbrand terms to be serialized have 
positional arguments and the positional information of the left-to-right ordered 
subelements of an XML element is unique. The only place in the Condition 
Language where role elements ('declare' and 'formula') are provided is within the 
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'Exists' element. Notice that Java's familiar case convention for distinguishing 
methods and classes is adopted, using lower-cased role elements and upper-
cased class elements.  

The non-terminals in all-upercase such as CONDIT become XML entities, which 
act like macros and will not be visible in instance markups. The other non-
terminals as well as symbols ('Exists' etc. as well as '=') become XML elements, 
which are adapted from RuleML as shown below.  

- Con (constant individual, function, or relation) 
- Var (logic variable, empty for anonymous variable) 
- Expr   (expression formula) 
- Atom   (atomic formula) 
- Equal  (prefix version of term equation '=') 
- Exists (quantified formula for 'Exists') 
- declare (declare role, containing a Var) 
- formula (formula role, containing a CONDIT formula) 
- And    (conjunction) 
- Or     (disjunction) 

This can be directly rewritten as a DTD (adapting PositiveConditions.dtd) or an 
XML Schema.  

The condition formula in Example 1 can be serialized in XML as shown below.  

Example 2 (A Herbrand RIF condition in XML syntax): 
 
  <And> 
    <Exists> 
      <declare><Var>Buyer</Var></declare> 
      <formula> 
        <Atom> 
          <Con>purchase</Con> 
          <Var>Buyer</Var> 
          <Var>Seller</Var> 
          <Expr> 
            <Con>book</Con> 
            <Var>Author</Var> 
            <Con>LeRif</Con> 
          </Expr> 
          <Con>$49</Con> 
        </Atom> 
      </formula> 
    </Exists> 
    <Equal> 
      <Var>Seller</Var> 
      <Var>Author</Var> 
    </Equal> 
  </And> 

Using the DTD spec, Richard Goerwitz' STG Validator succeeds with the 
conjunction of Example 2:  
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<?xml version="1.0" standalone="no"?> 
<!DOCTYPE And SYSTEM 
"http://www.jdrew.org/rif/PositiveConditions.dtd"> 
<And> 
  ... content of Example 2 ... 
</And> 

This XML version can be derived from a 'fully striped' version in the abstract 
syntax notation (cf. asn06), which permits metasyntax interoperation with OWL, 
RDF, etc.  

SEMANTIC STRUCTURES (a.k.a. INTERPRETATIONS) 

The first step in defining a model-theoretic semantics for a logic-based language 
is to define the notion of a semantic structure, also known as an interpretation, 
and then to define the notion of truth valuation for the formulas in the language.  

In case of the first-order semantics, the setting given here is one of the standard 
common definitions. Although it is not as frequently used as some other well-
known definitions of semantic structures, it has the advantage of being easy to 
generalize to non-first-order cases --- for instance, rule sets with negation as 
failure (NAF), some of which (e.g., well-founded negation) use three-valued 
semantic structures, and settings, such as the Web, where information can be 
uncertain or contradictory. In the latter case, four-valued and other multi-valued 
semantic structures are used. (See, for example, M. Fitting, Fixpoint Semantics 
for Logic Programming A Survey, Theoretical Computer Science, 1999.)  

A semantic structure is a mapping of the form  

I: Set of formulas → TV 

where TV is the set of all truth values. Thus, if  Φa formula then I(Φ) is its truth 
value.  

The set of truth values TV typically has only two values, t and f. However, some 
versions of NAF have three, t, u (undefined), and f, and, as we remarked, 
treatment of contradictions and uncertainty requires at least four: t, u, f, and i 
(inconsistent).  

The set TV is assumed to have a total or partial order, called the truth order; it is 
denoted <t. For instance, in the first-order case, f <t t, and it is a total order. In the 
well-founded semantics, f <t u <t t, and it is again a total order. But in Belnap-
style four-valued logics, which are suitable for dealing with uncertain or 
inconsistent information, the truth order is partial: f <t u <t t and f <t i <t t.  

As a side remark, Belnap-style logics also have another order, called the 
knowledge order <k: u <k t <k i; and u <k f <k i. Under the knowledge order, true 
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and false are incomparable, and facts that are both true and false receive the 
truth value i, which is the least upper bound of f and t in the knowledge order.  

More formally, let us define the following sets:  

• D - a non-empty set (of domain elements),  
• Con - the set of syntax elements recognized by the Con / entity 

production,  
• Var - the set of syntax elements recognized by the Var / ?name production  

An interpretation I consists of four mappings:  

• IC from Con to elements of D  
• IV from Var to elements of D  
• IF from Con to functions from D* into D (D* is a set of all tuples over 

domain D)  
• IR from Con to truth-valued mappings D* -> TV  

Using these mappings, we can define a more general mapping, I, as follows:  

• I(k) = IC(k) if k is a constant  
• I(?v) = IV(?v) if v is a variable  
• I(f(t1,...,tn)) = IF(f)(I(t1),...,I(tn))  

As explained earlier, an interpretation is supposed to map formulas to truth 
values. We define this mapping now:  

• Atomic formulas: I(r(t1,...,tn)) = IR(r)(I(t1),...,I(tn))  
• Equality: I(t1=t2) = t iff I(t1) = I(t2) and it is f otherwise.  
• Conjunction: I(And(c1,...,cn)) = mint(I(c1),...,I(cn)), where mint is minimum 

with respect to the truth order.  
• Disjunction: I(Or(c1,...,cn)) = maxt(I(c1),...,I(cn)), where maxt is maximum 

with respect to the truth order.  
• Quantification: I(Exists v1 ... vn (c)) = maxt(I*(c)), where maxt is taken over 

all interpretations I* of the form <IC, I*V, IF, IR>, where I*V is the same as IV 
except possibly on the variables v1,...,vn (i.e., I* agrees with I everywhere 
except possibly in its interpretation of the mappings of variables v1 ... vn).  

Multisorted Extensions 

The classical idea of sorted logic can easily account for the ideas of primitive 
data types, URIs as identifiers of objects and concepts, and more. Many logic 
languages (e.g., Prolog, HiLog, F-logic, RDF) allow the same symbol to play 
multiple roles. For instance, the same symbol foo can be used as a constant, a 
predicate of several different arities, and as a function symbol of different arities. 
To account for such languages, we will use a multisorted logic.  
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In a multisorted RIF core, each constant from Con is associated with one or more 
sorts. A sort can be primitive, an arrow sort, or a Boolean sort. Arrow sorts are 
also known as function sorts and Boolean sorts are also known as predicate 
sorts.  

Primitive sorts are drawn from a fixed collection of sorts PS1, ..., PSn. These sorts 
are intended to model primitive data types. For instance, we could have the sorts 
integer, strings, time, dates, etc. The same constant can be associated with more 
than one primitive sort, so it is possible that the sort of short integers will be a 
subsort of the sort of long integers (i.e., every constant that is associated with the 
sort short will also be associated with the sort long). It is a common practice to 
distinguish the constants of different primitive sorts syntactically. For instance, 
constants of the primitive sort integer, would have a different syntax from 
constants of sort string, and constants of primitive type URI would have yet 
another syntax.  

An arrow sort is a statement of the form s1 X ...  X sk  →s, where s1, ..., sk, s are 
names of primitive sorts (i.e., one of the PS1, ..., PSn). A Boolean sort is a 
statement of the form s1 X ... X sk, where, again, s1, ..., sk are names of primitive 
sorts.  

Recall that RIF core uses the symbols from Con to denote constants, predicates, 
and function symbols alike, so the same symbol can occur in multiple contexts. 
However, it is useful to restrict the contexts in which various symbols are allowed 
to occur. For instance, Prolog or RDF don't place any such restrictions, but OWL-
DL has a unique role for each symbol. This restriction of the context is 
accomplished by controlling the sorts that are associated with each constant. For 
instance, if one doesn't want integers to occur as predicate and function symbols 
then we don't associate any arrow or Boolean sorts with the constants that are 
associated with primitive sort integer. On the other hand, we do want URIs to 
denote concepts and other predicates. In that case, we would associate every 
Boolean sort with every constant that has a primitive sort URI. If we want to also 
allow local names for concepts and other predicates, then we might introduce a 
separate primitive sort, localPred, and endow it with every Boolean type.  

Multisorted Syntax 

MULTISORTED SYNTAX OF PRIMITIVE SORTS 

The human-readable syntax for primitive sorts (types) can use an infix operator 

between a term and its type. For example, reusing the ^^ infix of N3/Turtle, the 

term 6 can be given the type #Perfect_number by writing 6^^#Perfect_number. A 

correspondingly typed variable xyz is written as xyz^^#Perfect_number.  

The XML syntax can be obtained by using a 'type' attribute on XML term 

elements such as Con. Thus, the above example becomes <Con 
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type="#Perfect_number">6</Con>. A correspondingly typed variable xyz is 

written as <Var type="#Perfect_number">xyz</Var>.  

Formalization of Multisorted Extensions 

Formally, the syntax of RIF core needs the following adjustments. We introduce 
new functions:  

• PSort: Con → powerset(Primitive_Sorts)  
• ASort: Con → powerset(Arrow_Sorts)  
• BSort: Con → powerset(Boolean_Sorts)  

Each of these functions associates a (possibly empty) set of sorts (primitive, 
arrow, or Boolean) with every constant c ∈ Con.  

PSort is also defined on variables:  

 

PSort: Var → powerset(Primitive_Sorts) 

The intended meaning is that if ?v ∈ Var and PSort(?v) = {s1, ..., sk} then ?v can 
be bound only to function terms that are simultaneously of sorts s1, ..., sk (we 
define what it means for a function term to belong to a primitive sort below). In 
theory, PSort(?v) can be an empty set. However, such a variable would be 
useless, since it cannot be bound to anything.  

Well-formed function terms. If c ∈ Con is a constant and s ∈PSort(c) then we 

say that c (and c(), which we identify with c) is a well-formed function term of 
sort s. Note that the same constant can be a well-formed term of several 
different sorts because we allow several primitive sorts to be associated with the 
same constant. The informal meaning of such a happenstance is that the term 
belongs to the "intersection" of all the sorts with which it is associated.  

By induction, if f(t1, ..., tk) is a function term then it is a well-formed function 
term of sort s if there is an arrow sort s1, ..., sk →  s ∈ ASort(f) such that t1, ..., tk 
are well-formed function terms of sorts s1, ..., sk, respectively.  

It is convenient to extend the mapping PSort from constants to function terms as 
follows:  

•  

PSort(t) = { s | t is a well-formed term of sort s } 
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Well-formed atomic formula. We can now say that an atomic formula p(t1, ..., tk) 
is well-formed if and only if t1, ..., tk are well-formed function terms and there is a 
Boolean sort s1 X ... X sk ∈ BSort(p) such that s1  ∈PSort(t1), ..., sk  ∈ PSort(tk).  

The only other modification to the definition of the RIF syntax is that we must 
require that all atomic formulas that occur in RIF conditions and rules must be 
well-formed.  

Semantics of the Multisorted RIF Core 

The semantics of RIF core needs the following adjustments in order to be 
compatible with the multisorted syntax:  

• The domain D of an interpretation is now split into several subdomains:  
o D = Ds1  ∪ ... ∪   Dsn, where each Dsi is the domain of interpretation 

of the primitive sort si.  
• If c ∈  Con or ?v ∈  Var is a constant or a variable of  

o primitive sort s then IC(c)   ∈  Ds and IV(?v)  ∈ Ds.  
• If f has an arrow type s1, ..., sk →  s ∈ ASort(f) then  

o IF(f) should be a (possibly polymorphic) function of type Ds1  ... Dsk  
→  Ds, i.e., if d1 ∈   Ds1, ..., dk  ∈  Dsk then IF(d1,...,dk) must be in Dsk 
(if the arguments are not in Ds1 ... Dsk then the result does not need 
to be in Ds, but IF(f) might have other types, which restrict its 
behavior).  

• The definition of IP requires no adjustments.  

2. RIF Rule Language 

(Editor's Note: This text is maintained on wiki page RIF Rule Language). 

This proposal develops a RIF Rule Language as an extension of the RIF 
Condition Language, where conditions become rule bodies. The Rule Language 
starts with rules having Horn logic expressiveness (positive conditions) and then 
proceeds to increased expressiveness, mainly by reusing generalized conditions 
of the Condition Language as rule conditions.  

2.1. Horn Rules 

(Editor's Note: This text is maintained on wiki page Horn Rules). 

Based on RIF's positive conditions, this section defines Horn rules for RIF (Phase 
1).  

SYNTAX 
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The following BNF syntax is for illustration/explanation purposes only. To specify 
Horn clauses we just need to add these productions to the human-readable 
syntax of Positive Conditions:  

  . . . 
  HEAD     ::= LITFORM 
  BODY     ::= CONDIT 
  Implies  ::= HEAD ':-' BODY 
  CLAUSE   ::= 'Forall' Var* '(' Implies ')' | 'Forall' Var* '(' 
HEAD ')' 

where CONDIT and LITFORM are defined in Positive Conditions, and :- 
(pronounced 'IF') is an implication connective.  

Rules are generated by the Implies production. Facts are generated by the HEAD 
production, where such a factual HEAD is regarded as a shorthand for a rule with 
an empty, hence true, conjunctive BODY condition of the form  

  Implies  ::= HEAD ':-' And '(' ')' 

Finally, a CLAUSE generates a universally closed rule or fact.  

By 'inheritance' from Positive Conditions through CONDIT and LITFORM, all 
Expressions and Atoms in Horn rules have a Herbrand (positional) form.  

Note also that, since CONDIT permits disjunction and existential quantification, the 

rules defined by the Implies production look more general than Horn. However, it 
is well-known that such extended rules reduce to Horn via a simple syntactic 
transformation.  

The document RIF Use Cases and Requirements describes the use case 
"Negotiating eBusiness Contracts Across Rule Platforms", containing this first 
rule proposed in a hypothetical negotiation by some agent John:  

If an item is perishable and it is delivered more than 10 days 
after the scheduled delivery date 
then the item will be rejected. 

This can be formalized in  equivalent human-readable syntax as the following 
three ways: 1) assuming the universal closure when generated directly by the 

Implies production (Example 3a), 2 ) showing the universal closure when 

generated through the CLAUSE production (Example 3b), and 3) transforming 
BODY-only variables to existentials as introduced in the language of Positive 
Conditions (Example 3c):  

Example 3a (A RIF rule in human-readable syntax using implicit 
quantification): 
 

Deleted: equivalently 

Deleted: s

Deleted: ,



  In this rule, the HEAD is a user-defined relation of two 
arguments, one a constant. 
  The BODY is a conjunction of five Atoms, the first three user-
defined relations, the 
  fourth and fifth user-defined or built-in relations. 
 
  reject(John ?item) :- 
    And ( perishable(?item) 
          delivered(?item ?deliverydate) 
          scheduled(?item ?scheduledate) 
          timediff(?diffdate ?deliverydate ?scheduledate) 
          greaterThan(?diffdate 10) ) 
 
Example 3b (A RIF rule in human-readable syntax using explicit top-
level quantification): 
 
  In this rule, the HEAD is a user-defined relation of two 
arguments, one a constant. 
  The BODY is a conjunction of five Atoms, the first three user-
defined relations, the 
  fourth and fifth user-defined or built-in relations. 
 
  Forall ?item ?deliverydate ?scheduledate ?diffdate 
        ( 
          reject(John ?item) :- 
             And ( perishable(?item) 
                   delivered(?item ?deliverydate) 
                   scheduled(?item ?scheduledate) 
                   timediff(?diffdate ?deliverydate ?scheduledate) 
                   greaterThan(?diffdate 10) ) 
        ) 
Example 3c (A RIF rule in human-readable syntax using existential 
BODY quantification): 
 
  In this rule, the HEAD is a user-defined relation of two 
arguments, one a constant. 
  The BODY is a conjunction of five Atoms, the first three user-
defined relations, the 
  fourth and fifth user-defined or built-in relations. 
 
  Forall ?item 
        ( 
          reject(John ?item) :- 
             Exists ?deliverydate ?scheduledate ?diffdate 
                    ( 
                      And ( perishable(?item) 
                            delivered(?item ?deliverydate) 
                            scheduled(?item ?scheduledate) 
                            timediff(?diffdate ?deliverydate 
?scheduledate) 
                            greaterThan(?diffdate 10) ) 
                    ) 
        ) 

The following XML syntax is for illustration purposes only. It can be obtained from 
the above BNF and from Positive Conditions as shown below. The 'Forall' 



element uses the role elements ('declare' and 'formula') introduced for the 'Exists' 
element in the Condition Language. The 'Implies' element uses role elements 
('head' and 'body') to get rid of any order information, permitting serializations in 
both the consequent-first style of logic programming and the antecedent-first 
style of production rules.  

  . . . 
- head (consequent role, containing LITFORM) 
- body (antecedent role, containing CONDIT) 
- Implies (implication, containing head and body roles in any 
order) 
- Forall (quantified CLAUSE formula with 'Forall') 

This can be directly rewritten as a DTD (adapting HornRules.dtd) or an XML 
Schema.  

The rule in Example 3b can be serialized in XML, e.g. again having the head first, 
as shown below (since serializations are to be explicit, no direct serialization of 
Example 3a is offered, while the serialization of Example 3c is offered but not 
shown here).  

Example 4 (A RIF rule in XML syntax using consequent-first 
serialization): 
 
<Forall> 
  <declare><Var>item</Var></declare> 
  <declare><Var>deliverydate</Var></declare> 
  <declare><Var>scheduledate</Var></declare> 
  <declare><Var>diffdate</Var></declare> 
  <formula> 
    <Implies> 
      <head> 
        <Atom> 
          <Con>reject</Con> 
          <Con>John</Con> 
          <Var>item</Var> 
        </Atom> 
      </head> 
      <body> 
        <And> 
          <Atom> 
            <Con>perishable</Con> 
            <Var>item</Var> 
          </Atom> 
          <Atom> 
            <Con>delivered</Con> 
            <Var>item</Var> 
            <Var>deliverydate</Var> 
          </Atom> 
          <Atom> 
            <Con>scheduled</Con> 
            <Var>item</Var> 
            <Var>scheduledate</Var> 

Comment [AG22]: This DTD also 
needs to be updated to be in accord with 

the text. 



          </Atom> 
          <Atom> 
            <Con>timediff</Con> 
            <Var>diffdate</Var> 
            <Var>deliverydate</Var> 
            <Var>scheduledate</Var> 
          </Atom> 
          <Atom> 
            <Con>greaterThan</Con> 
            <Var>diffdate</Var> 
            <Con>10</Con> 
          </Atom> 
        </And> 
      </body> 
    </Implies> 
  </formula> 
</Forall> 

Using the DTD spec, Richard Goerwitz' STG Validator succeeds with the Horn 
clause of Example 4:  

<?xml version="1.0" standalone="no"?> 
<!DOCTYPE Forall SYSTEM "http://www.jdrew.org/rif/HornRules.dtd"> 
<Forall> 
  ... content of Example 4 ... 
</Forall> 

SEMANTICS 

Interpretation and Models of Rules 

In Positive Conditions we defined the notion of semantic structures and what it 
means for such a structure to satisfy a RIF condition. Here we extend this notion 
and define what it means for such a structure to satisfy a rule.  

While semantic structures can be multivalued, rules are typically two-valued even 
in logics that support inconsistency and uncertainty. Consider a rule of the form 
Q head :- body, where Q is a quantification prefix for all the variables in the rule. 
For the Horn subset, Q is a universal prefix, i.e., all variables in the rule are 
universally quantified outside of the rule. We first define the notion of rule 
satisfaction without the quantification prefix Q:  

I |= head :- body 

iff I(head)  ≥ I(body).  

We define I |= Q head :- body iff I* |= head :- body for every I* that agrees with I 
everywhere except possibly on some variables mentioned in Q. In this case we 
also say that I is a model of the rule. I is a model of a rule set R if it is a model 



of every rule in the set, i.e., if it is a semantic structure such that I |= r for every 
rule r R.  

Intended Models of Rules 

The notion of a model is only the basic ingredient in the definition of a semantics 
of a rule set. In general, a semantics of a rule set R is the set of its intended 
models (see Y. Shoham. Nonmonotonic logics: meaning and utility. In: Proc. 
10th International Joint Conference on Artificial Intelligence, Morgan Kaufmann, 
pp. 388--393, 1987). There are different theories of what the intended sets of 
models are supposed to look like depending on the features of the different rule 
sets.  

For Horn rules, which we use in this section, the intended set of models of R is 
commonly agreed upon: it is the set of all models of R.  

However, when rules contain negation-as-failure (naf) literals in the body, only 
some of the models of a rule set are accepted as intended. This issue will be 
addressed in future extensions of RIF. The two most common theories of 
intended models are based on the so called well-founded models and stable 
models. Here we will just illustrate the problem with an example.  

Suppose R has a single rule p:-naf q. If naf is interpreted as classical negation, 

not,  then this rule is simply p\/q, and so it has two kinds of models: one in which 

p is true and one where q is true. In contrast, most current rule-based systems do 

not consider p and q symmetrically. Instead, they view this as a specification of 

an intent that p must be true if it is not possible to establish the truth of q. Since it 

is, indeed, impossible to establish the truth of q, such theories will derive p even 

though it does not logically follow from p:-not q. The logic underlying rule-based 
systems also considers that only the minimal models as intended (minimality 
here means minimization of the set of true facts). Therefore, the intended models 

of our rule set must have the property that not only p is true but also that q is 
false.  

3. RIF Compatibility 

(Editor's Note: This text is maintained on wiki page RIF Compatibility). 

The compatibility of RIF Core is currently focussed on the Semantic Web 
standards OWL and RDF, as explained in RIF-OWL Compatibility and RIF-RDF 
Compatibility.  

3.1. RIF-OWL Compatibility 

(Editor's Note: This text is maintained on wiki page RIF-OWL Compatibility). 
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RIF-OWL Compatibility will be described here on the basis of OWL Compatibility, 
A.5 Extension: Ontology Conditions, and (email) discussions.  

3.2. RIF-RDF Compatibility 

(Editor's Note: This text is maintained on wiki page RIF-RDF Compatibility). 

RIF-RDF Compatibility will be described here on the basis of RDF Compatibility, 
A.4 Extension: Resource Conditions, and (email) discussions.  


