
RIF Production Rule Dialect

W3C Editor's Draft 18 December 2008

This version:
http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

Latest editor's draft:
http://www.w3.org/2005/rules/wg/draft/rif-prd/

Previous version:
http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081125/ (color-coded diff)

Editors:
Christian de Sainte Marie, ILOG
Adrian Paschke, Free University Berlin
Gary Hallmark, Oracle

This document is also available in these non-normative formats: PDF version.

Copyright © 2008 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

Abstract

This document specifies RIF-PRD, a Rule Interchange Format (RIF) dialect to
enable the interchange of production rules.

Status of this Document

May Be Superseded

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C publications
and the latest revision of this technical report can be found in the W3C technical
reports index at http://www.w3.org/TR/.

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 1 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/
http://www.w3.org/2005/rules/wg/draft/rif-prd/
http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081125/
http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/diff-since-20081125
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/2005/rules
http://www.w3.org/TR/
http://www.w3.org/TR/

Set of Documents

This document is being published as one of a set of 5 documents:

1. RIF Use Cases and Requirements
2. RIF Core
3. RIF Datatypes and Built-Ins 1.0
4. RIF Production Rule Dialect (this document)
5. RIF Test Cases

Please Comment By 23 January 2009

The Rule Interchange Format (RIF) Working Group seeks public feedback on these
Working Drafts. Please send your comments to public-rif-comments@w3.org
(public archive). If possible, please offer specific changes to the text that would
address your concern. You may also wish to check the Wiki Version of this
document for internal-review comments and changes being drafted which may
address your concerns.

No Endorsement

Publication as a Working Draft does not imply endorsement by the W3C
Membership. This is a draft document and may be updated, replaced or obsoleted
by other documents at any time. It is inappropriate to cite this document as other
than work in progress.

Patents

This document was produced by a group operating under the 5 February 2004
W3C Patent Policy. W3C maintains a public list of any patent disclosures made in
connection with the deliverables of the group; that page also includes instructions
for disclosing a patent. An individual who has actual knowledge of a patent which
the individual believes contains Essential Claim(s) must disclose the information in
accordance with section 6 of the W3C Patent Policy.

Contents

• 1 Overview
• 2 Conditions

◦ 2.1 Abstract syntax
▪ 2.1.1 Terms
▪ 2.1.2 Atomic formulas
▪ 2.1.3 Formulas

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 2 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/2005/rules/wg/draft/ED-rif-ucr-20081218/
http://www.w3.org/2005/rules/wg/draft/ED-rif-core-20081218/
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/
http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/
http://www.w3.org/2005/rules/wg/draft/ED-rif-test-20081218/
http://www.w3.org/2005/rules/wg.html
mailto:public-rif-comments@w3.org
http://lists.w3.org/Archives/Public/public-rif-comments/
http://www.w3.org/2005/rules/wiki/PRD
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/38457/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

▪ 2.1.4 Well-formed formulas
◦ 2.2 Semantics of condition formulas

▪ 2.2.1 Semantic structures
▪ 2.2.2 Interpretation of condition formulas
▪ 2.2.3 Satisfaction of a condition
▪ 2.2.4 Matching substitution

• 3 Actions
◦ 3.1 Abstract syntax

▪ 3.1.1 Atomic actions
▪ 3.1.2 Action blocks
▪ 3.1.3 Well-formed action blocks

◦ 3.2 Operational semantics of atomic actions
• 4 Production rules and rulesets

◦ 4.1 Abstract syntax
▪ 4.1.1 Rules
▪ 4.1.2 Groups
▪ 4.1.3 Well-formed rules and groups

◦ 4.2 Operational semantics of rules and rule sets
▪ 4.2.1 Motivation and example
▪ 4.2.2 Definitions and notational conventions
▪ 4.2.3 Operational semantics of a production rule

system
▪ 4.2.4 Conflict resolution
▪ 4.2.5 Halting test

• 5 XML Syntax
◦ 5.1 Notational conventions

▪ 5.1.1 Namespaces
▪ 5.1.2 BNF pseudo-schemas
▪ 5.1.3 Syntactic components

◦ 5.2 Conditions
▪ 5.2.1 TERM

▪ 5.2.1.1 Const
▪ 5.2.1.2 Var
▪ 5.2.1.3 External

▪ 5.2.2 ATOMIC
▪ 5.2.2.1 Atom
▪ 5.2.2.2 Equal
▪ 5.2.2.3 Member
▪ 5.2.2.4 Subclass
▪ 5.2.2.5 Frame
▪ 5.2.2.6 External

▪ 5.2.3 FORMULA
▪ 5.2.3.1 ATOMIC
▪ 5.2.3.2 And
▪ 5.2.3.3 Or
▪ 5.2.3.4 NmNot
▪ 5.2.3.5 Exists

◦ 5.3 Actions
▪ 5.3.1 ATOMIC_ACTION

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 3 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

▪ 5.3.1.1 Assert
▪ 5.3.1.2 Retract

▪ 5.3.2 INITIALIZATION
▪ 5.3.2.1 New
▪ 5.3.2.2 Frame

▪ 5.3.3 ACTION_BLOCK
▪ 5.3.3.1 Do
▪ 5.3.3.2 And
▪ 5.3.3.3 ATOMIC

◦ 5.4 Rules and Groups
▪ 5.4.1 RULE

▪ 5.4.1.1 ACTION_BLOCK
▪ 5.4.1.2 Implies
▪ 5.4.1.3 Forall

▪ 5.4.2 Group
◦ 5.5 Constructs carrying no semantics

▪ 5.5.1 Document
▪ 5.5.2 Metadata

• 6 Presentation syntax
• 7 References
• 8 Appendix: XML schema
• 9 Appendix: Compatibility with RIF-BLD

◦ 9.1 Syntactic compatibility between RIF-PRD and RIF-BLD
◦ 9.2 Semantic compatibility between RIF-PRD and RIF-BLD

1 Overview

This document specifies the production rule dialect of the W3C rule interchange
format (RIF-PRD), a standard XML serialization format for many production rule
languages.

Production rules are rule statements defined in terms of both individual facts or
objects, and groups of facts or classes of objects. They have an if part, or
condition, and a then part, or action. The condition is like the condition part of logic
rules (as covered by the basic logic dialect of the W3C rule interchange format,
RIF-BLD). The then part contains actions, which is different to the conclusion part
of logic rules which contains only a logical statement. Actions can add, delete, or
modify facts in the knowledge base, and have other side-effects.

Example 1.1. «A customer becomes a "Gold" customer as soon as his cumulative
purchases during the current year top $5000»; «Customers that become "Gold"
customers must be notified immediately, and a golden customer card will be printed
and sent to them within one week»; «For shopping carts worth more than $1000,
"Gold" customers receive an additional discount of 10% of the total amount», are
all examples of production rules. ☐

As a production rule interchange format, RIF-PRD specifies an abstract syntax that
shares most features with many concrete production rule languages, and it

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 4 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

associates each abstract construct with normative semantics and a normative XML
concrete syntax.

Production rules are statements of programming logic that specify the execution of
one or more actions in the case that their conditions are satisfied. Production rules
therefore have an operational semantic (formalizing state changes, e.g., on the
basis of a state transition system formalism). The OMG Production Rule
Representation specification [PRR] summarizes it as follows:

1. Match: the rules are instantiated based on the definition of the rule
conditions and the current state of the data source;

2. Conflict resolution: a decision algorithm, often called the conflict resolution
strategy, is applied to select the rule instances to be executed;

3. Act: the state of the data source is changed, by executing the selected
rule instances’ actions. If a terminal state has not been reached, the
control loops back to the first step (Match).

In the section Operational semantics of rules and rule sets, the semantics for rules
and rule sets is specified, accordingly, as a labeled terminal transition system
(PLO04), where state stransitions result from executing the action part of
instantiated rules. When several rules are deemed able to be executed during the
rule execution process, a conflict resolution strategy is used to determine the order
of rules to execute Sub-section Instance Selection specifies how an intended
conflict resolution strategy can be attached to a rule set interchanged with RIF-
PRD, and defines a default conflict resolution strategy.

However, as a RIF dialect, RIF-PRD has also been designed to allow
interoperability between rule languages over the World Wide Web. In RIF, this is
achieved by sharing the same syntax for constructs that have the same semantics
across multiple dialects. As a consequence, RIF-PRD shares most of the syntax for
rule conditions with RIF-BLD [RIF-BLD], and the semantics associated to the
syntactic constructs used for representing the condition part of rules in RIF-PRD is
specified, in Section Semantics of condition formulas, in terms of a model theory,
as it is in the specification of RIF-BLD as well. In addition to exploiting similarities
between the two dialects, it allows them to share the same RIF definitions for data
types and built-ins [RIF-DTB].

In the section Operational semantics of actions, the semantics associated with the
constructs used to represent the action part of rules in RIF-PRD is specified in
terms of a transition relation between successive states of the data source, as
defined by the condition formulas that they entail, thus making the link between the
model-theoretic semantics of conditions and the operational semantics of rules and
rulesets.

The abstract syntax is specified in mathematical english, and the abstract syntactic
constructs defined in the sections Abstract Syntax of Conditions, Abstract Syntax of
Actions and Abstract Syntax of Rules and Rulesets, are mapped one to one onto
the concrete XML syntax in Section XML syntax. A lightweight notation is also
defined along with the abstract syntax, to allow for a human-friendlier specification

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 5 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

of the semantics. A more complete presentation syntax is specified using an EBNF
in Section Presentation Syntax. However, only the XML syntax and the associated
semantics are normative. A normative XML schema will also be provided in future
versions of the document.

Example 1.2. In RIF-PRD presentation syntax, the first rule in example 1.1. might
be represented as follows:

Prefix(ex1 http://rif.example.com/2008/prd#)
(* ex1:rule_1 *)
Forall ?customer ?purchasesYTD (
If And(?customer#ex1:Customer

?customer[ex1:purchasesYTD->?purchasesYTD]
External(pred:numeric-greater-than(?purchasesYTD 5000)))

Then ex1:Gold(?customer))

The condition languages of RIF-PRD and RIF-BLD have much in common,
including much of their semantics. Although their abstract syntax and rule
semantics are different, due to the operational nature of the actions in production
rules, there is a subset for which they are equivalent: essentially, rules with no
negation and no uninterpreted functions in the condition, and with only assertions in
the action part. For that subset, the XML syntax is the same, so many XML
documents are valid in both dialects and have the same meaning. The
correspondence between RIF-PRD and RIF-BLD is detailed in Appendix
Compatibility with RIF-BLD.

This document is mostly intended for the designers and developers of RIF-PRD
implementations, that is, applications that serialize production rules as RIF-PRD
XML (producer applications) and/or that deserialize RIF-PRD XML documents into
production rules (consumer applications).

2 Conditions

This section specifies the language of the rule conditions that can be serialized
using RIF-PRD, by specifying:

• the abstract syntax that all production rule languages interchanging rules
using RIF-PRD must have in common for expressing conditions;

• and the intended semantics of the condition formulas in a RIF-PRD
document.

Note to the reader: this section depends on Section Constants, Symbol Spaces,
and Datatypes of RIF data types and builtins [RIF-DTB].

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 6 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/#sec-constants
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/#sec-constants

2.1 Abstract syntax

For a production rule language to be able to interchange rules using RIF-PRD, its
alphabet for expressing the condition parts of a rule must, at the abstract syntax
level, consist of:

• a countably infinite set of constant symbols Const;
• a countably infinite set of variable symbols Var (disjoint from Const);
• a countably infinite set of argument names, ArgNames (disjoint from
Const and Var);

• syntactic constructs to denote:
◦ Function calls;
◦ Relations, including equality, class membership and subclass

relations;
◦ conjunction, disjunction and negation;
◦ existential conditions.

For the sake of readibility and simplicity, this specification introduces a notation for
these constructs. That notation is not intended to be a concrete syntax, so it leaves
out many details: the only concrete syntax for RIF-PRD is the XML syntax.

Notice that the production rule systems for which RIF-PRD aims to provide a
common XML serialization use only externally specified functions, e.g. builtins. RIF-
BLD specifies, in addition, a construct to denote uninterpreted function symbols,
which RIF-PRD does not require: this is one of two differences between the
alphabets used in the condition languages of RIF-PRD and RIF-BLD.

The second point of difference is that RIF-PRD does support a form of negation.
RIF-BLD does not support negation because logic rule languages use many
different kinds of negations, none of them prevalent enough to justify inclusion in
the basic logic dialect of RIF (see also the RIF framework for logic dialects).

2.1.1 Terms

The most basic construct that can be serialized using RIF-PRD is the term. RIF-
PRD provides for the representation and interchange of several kinds of terms:
constants, variables, positional terms and terms with named arguments

Definition (Term).

1. Constants and variables. If t ∈ Const or t ∈ Var then t is a simple
term.

2. Positional terms. If t ∈ Const and t1, ..., tn, n≥0, are terms then t(t1
... tn) is a positional term.
Here, the constant t represents a function and t1, ..., tn represent
argument values.

3. Terms with named arguments. A term with named arguments is of the
form t(s1->v1 ... sn->vn), where n≥0, t ∈ Const and v1, ..., vn are

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 7 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/TR/2008/WD-rif-fld-20080730/

terms and s1, ..., sn are pairwise distinct symbols from the set ArgNames.
The constant t here represents a function; s1, ..., sn represent argument
names; and v1, ..., vn represent argument values. The argument names,
s1, ..., sn, are required to be pairwise distinct. Terms with named
arguments are like positional terms except that the arguments are named
and their order is immaterial. Note that a term of the form f() is, trivially,
both a positional term and a term with named arguments. ☐

2.1.2 Atomic formulas

The atomic truth-valued constructs that can be serialized using RIF-PRD are called
atomic formulas.

Definition (Atomic formula). An atomic formula can have several different forms
and is defined as follows:

1. Positional atomic formulas. If t ∈ Const and t1, ..., tn, n≥0, are terms
then t(t1 ... tn) is a positional atomic formula (or simply a
positional atom).

2. Atomic formulas with named arguments. An atomic formula with named
arguments (or simply a atom with named arguments) is of the form
t(s1->v1 ... sn->vn), where n≥0, t ∈ Const and v1, ..., vn are
terms and s1, ..., sn are pairwise distinct symbols from the set ArgNames.
The constant t here represents a predicate; s1, ..., sn represent argument
names; and v1, ..., vn represent argument values. The argument names,
s1, ..., sn, are required to be pairwise distinct. Atoms with named
arguments are like positional Atoms except that the arguments are named
and their order is immaterial. Note that an atom of the form t() is, trivially,
both a positional atom and an atom with named arguments.

3. Equality atomic formulas. t = s is an equality atomic formula (or,
simply, an equality), if t and s are terms.

4. Class membership atomic formulas (or just membership). t#s is a
membership atomic formula if t and s are terms. the term t is the
object and the term s is the class.

5. Subclass atomic formulas. t##s is a subclass atomic formula if t and s
are terms.

6. Frame atomic formulas. t[p1->v1 ... pn->vn] is a frame atomic
formula (or simply a frame) if t, p1, ..., pn, v1, ..., vn, n ≥ 0, are terms.
The term t is the object of the frame; the pi are the property or attribute
names; and the vi are the property or attribute values. In this document,
an attribute/value pair is sometimes called a slot.
Membership, subclass, and frame atomic formulas are used to describe
objects, classifications and class hierarchies.

7. Externally defined atomic formulas. If t is a positional, named-argument,
or a frame atomic formula then External(t) is an externally defined
atomic formula. Such atomic formulas are used for representing built-in
predicates. ☐

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 8 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

Note that not only predicates, but also frame atomic formulas can be externally
defined. Therefore, external information sources can be modeled in an object-
oriented way via frames.

Editor's Note: Objects are commonly used in PR systems. In this draft, we reuse
frame, membership, and subclass formulas (from RIF-BLD) to model objects. We
are aware of current limits, such as difficulty expressing datatype and cardinality
constraints. Future drafts will address that problem. We are interested in
feedback on the merits and limitations of this approach.

Observe that the argument names of frames, p1, ..., pn, are terms and so, as a
special case, can be variables. In contrast, atoms with named arguments can use
only the symbols from ArgNames to represent their argument names, which can
neither be constants from Const nor variables from Var.

Note that atomic formulas are sometimes also called terms, e.g. in the realm of
logic languages: the specification of RIF-BLD, in particular, follows that usage. The
abstract syntactic elements that are called terms in this specification, are called
basic terms in the specification of RIF-BLD.

2.1.3 Formulas

Composite truth-valued constructs that can be serialized using RIF-PRD are called
formulas.

Note that terms (constants, variables and functions) are not formulas.

More general formulas are constructed out of the atomic formulas with the help of
logical connectives.

Definition (Condition formula). A condition formula can have several different
forms and is defined as follows:

1. Atomic formula: If φ is an atomic formula then it is also a condition
formula.

2. Conjunction: If φ1, ..., φn, n ≥ 0, are condition formulas then so is
And(φ1 ... φn), called a conjunctive formula. As a special case,
And() is allowed and is treated as a tautology, i.e., a formula that is
always true.

3. Disjunction: If φ1, ..., φn, n ≥ 0, are condition formulas then so is Or(φ1
... φn), called a disjunctive formula. As a special case, Or() is
permitted and is treated as a contradiction, i.e., a formula that is always
false.

4. Negation: If φ is a condition formula, then so is Not(φ), called a negative
formula.

5. Existentials: If φ is a condition formula and ?V1, ..., ?Vn, n>0, are
variables then Exists ?V1 ... ?Vn(φ) is an existential formula. ☐

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 9 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

In the definition of a formula, the component formulas φ and φi are said to be
subformulas of the respective condition formulas that are built using these
components.

The function Var(e) that maps a term, atomic formula or formula e to the set of its
free variables is defined as follows:

• if e ∈ Const, then Var(e) = {};
• if e ∈ Var, then Var(e) = {e};
• if p and argi, i = 0...n, are terms, then, Var(p(argi) = Var(p) ∪i=0...n

Var(argi);
• if p and argi, i = 0...n, are terms, then, Var(External(p(argi)) = Var(p)

∪i=0...n Var(argi);
• if t1 and t2 are terms, then Var(t1 [=|#|##] t2) Var(t1) ∪ Var(t2);
• if o', ki, i = 1...n, and vi, i = 1...n, are terms, then Var(o[k1->v1 ... kn->vn])

Var(o) ∪i=1...n Var(ki) ∪i=1...n Var(vi);
• if fi, i = 0...n, are condition formulas, then Var([AND|OR|NOT](fi)) ∪i=0...n

Var(fi);
• if f is a condition formula and xi ∈ Var for i = 1...n, then, Var(Exists x1 ... xn

(f)) = Var(f) - {xi | i = 1...n}.

Definition (Ground formula). A condition formula φ is a ground formula if and
only if Varφ = {} and φ does not contain any existential subformula. ☐

In other words, a ground formula does not contain any variable term.

2.1.4 Well-formed formulas

The specification of RIF-PRD does not assign a standard meaning to all the
formulas that can be serialized using its concrete XML syntax: formulas that can be
meaningfully serialized are called well-formed. Not all formulas are well-formed with
respect to RIF-PRD: it is required that no constant appear in more than one
context. What this means precisely is explained below.

The set of all constant symbols, Const, is partitioned into several subsets as
follows:

• A subset of individuals.
The symbols in Const that belong to the primitive datatypes are required
to be individuals.

• A number of subsets for predicate symbols such that there is one subset
per symbol arity (defined below) for externally defined predicates and one
for non-external predicates.
Note that this implies that symbols used for external predicate names
cannot be used for other predicates. Also, the definition of arity, below,
implies that the arities for positional predicate symbols and for predicate
symbols with named arguments are distinct even if the numbers of
arguments are the same. Therefore, symbols that are used for positional

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 10 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

predicates cannot be used for predicates with named arguments, and vice
versa.

• A number of subsets of function symbols (only externally defined function
can be serialized using RIF-PRD). As with predicate symbols, there are
separate subsets for symbols with different arities; function symbols with
named arguments are in their own subsets. The only exception is the case
of nullary symbols, which take zero arguments as in f(), since they are
considered to be both positional and named-argument symbols.

Each predicate and function symbol that take at least one argument has precisely
one arity. For positional predicate and function symbols, an arity is a non-negative
integer that tells how many arguments the symbol can take. For symbols that take
named arguments, an arity is a set {s1 ... sk} of argument names (si ∈
ArgNames) that are allowed for that symbol. Nullary symbols (which take zero
arguments) are said to have the arity 0.

An important point is that neither the above partitioning of constant symbols nor the
arity are specified explicitly. Instead, the arity of a symbol and its type is determined
by the context in which the symbol is used.

Definition (Context of a symbol). The context of an occurrence of a symbol,
s∈Const, in a formula, φ, is determined as follows:

• If s occurs as a function symbol in a term of the form s(...) with arity α
then s occurs in the context of an external function symbol with arity α (or
simply the context of a function symbol with arity α, since RIF-PRD knows
only external functions);

• If s occurs as a predicate in an atomic subformula of the form s(...)
with arity α then s occurs in the context of a predicate symbol with arity α;

• If s occurs as a predicate in an atomic subformula External(s(...))
with arity α then s occurs in the context of an external predicate symbol
with arity α;

• If s occurs in any other context (in a frame: s[...], ...[s->...], or
...[...->s]; or in a positional/named argument term: p(...s...),
q(...->s...)), it is said to occur as an individual. ☐

Definition (Well-formed formula). A formula φ is well-formed iff:

• every constant symbol mentioned in φ occurs in exactly one context.
• Whenever a formula contains a function term t or an external atomic

formula External(t), t must be an instance of the coherent set of
external schemas (Section Schemas for Externally Defined Terms of RIF
data types and builtins [RIF-DTB]) associated with the language of RIF-
PRD.

• If t is an instance of the coherent set of external schemas associated with
the language then t can occur only as a function term t or as an external
atomic formula External(t), i.e., as an external term or atomic formula.
☐

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 11 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/#app-external-schema

Definition (RIF-PRD condition language). The RIF-PRD condition language
consists of the set of all well-formed formulas. ☐

2.2 Semantics of condition formulas

This section specifies the intended semantics of the condition formulas in a RIF-
PRD document.

For compatibility with other RIF specifications (in particular, RIF data types and
builtins), and to make the interoperability with RIF logic dialects (in particular RIF
Core [RIF-Core] and RIF-BLD), the intended semantics for RIF-PRD condition
formulas is specified in terms of a model theory.

2.2.1 Semantic structures

Definition (Semantic structure). A semantic structure, I, is a tuple of the form
<TV, DTS, D, Dind, Dfunc, IC, IV, IF, Iframe, INF, Isub, Iisa, I=, Iexternal, Itruth>. Here D
is a non-empty set of elements called the Herbrand domain of 'I, i.e., the set of all
ground terms which can be formed by using the elements of Const. Dind, Dfunc are
nonempty subsets of D. Dind is used to interpret the elements of Const that are
individuals and Dfunc is used to interpret the elements of Const that are function
symbols. Const denotes the set of all constant symbols and Var the set of all
variable symbols. TV denotes the set of truth values that the semantic structure
uses and DTS is a set of identifiers for primitive datatypes (please refer to Section
Datatypes of RIF data types and builtins [RIF-DTB] for the semantics of datatypes).
The set of all ground (positional|named|frame|external) formulas which can be
formed by using the function symbols with the ground terms in the Herbrand
domain is the Herbrand base, HB. A semantic structure I is a Herbrand
interpretation, IH, if the corresponding subset of HB is the set of all ground
formulas which are true with respect to I. ☐

As far as the assignment of a standard meaning to formulas in the RIF-PRD
condition language is concerned, the set TV of truth values consists of just two
values, t and f.

The other components of I are total mappings defined as follows:

1. IC maps Const to D.

This mapping interprets constant symbols. In addition:

◦ If a constant, c ∈ Const, is an individual then it is required that
IC(c) ∈ Dind.

◦ If c ∈ Const, is a function symbol (positional or with named
arguments) then it is required that IC(c) ∈ Dfunc.

2. IV maps Var to Dind.

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 12 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/#sec-data-types

This mapping interprets variable symbols.

3. IF maps D to functions D*ind → D (here D*ind is a set of all sequences of
any finite length over the domain Dind).

This mapping interprets positional terms and gives meaning to positional
predicate function.

4. INF maps D to the set of total functions of the form
SetOfFiniteSets(ArgNames × Dind) → D.

This mapping interprets function symbols with named arguments and
gives meaning to named argument functions. This is analogous to the
interpretation of positional terms with two differences:

◦ Each pair <s,v> ∈ ArgNames × Dind represents an argument/
value pair instead of just a value in the case of a positional term.

◦ The arguments of a term with named arguments constitute a
finite set of argument/value pairs rather than a finite ordered
sequence of simple elements. So, the order of the arguments
does not matter.

5. Iframe maps Dind to total functions of the form SetOfFiniteBags(Dind ×
Dind) → D.

This mapping interprets frame terms and gives meaning to frame
functions. An argument, d ∈ Dind, to Iframe represents an object and the
finite bag {<a1,v1>, ..., <ak,vk>} represents a bag of attribute-value
pairs for d. Iframe is used to determine the truth valuation of frame terms.

Bags (multi-sets) are used here because the order of the attribute/value
pairs in a frame is immaterial and pairs may repeat: o[a->b a->b].
Such repetitions arise naturally when variables are instantiated with
constants. For instance, o[?A->?B ?C->?D] becomes o[a->b a->b]
if variables ?A and ?C are instantiated with the symbol a and ?B, ?D with
b.

6. Isub gives meaning to the subclass relationship. It is a mapping of the form
Dind × Dind → D.

The operator ## is required to be transitive, i.e., c1 ## c2 and
c2 ## c3 must imply c1 ## c3. TThis is ensured by a restriction in
Section Interpretation of condition formulas;

7. Iisa gives meaning to class membership. It is a mapping of the form Dind ×
Dind → D.

The relationships # and ## are required to have the usual property that all
members of a subclass are also members of the superclass, i.e., o # cl

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 13 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

and cl ## scl must imply o # scl. This is ensured by a restriction in
Section Interpretation of condition formulas;

8. I= is a mapping of the form Dind × Dind → D.

It gives meaning to the equality operator.

9. Itruth is a mapping of the form D → TV.

It is used to define truth valuation for formulas.

10. Iexternal is a mapping from the coherent set of schemas for externally
defined functions to total functions D* → D. For each external schema σ
= (?X1 ... ?Xn; τ) in the coherent set of external schemas
associated with the language, Iexternal(σ) is a function of the form Dn → D.

For every external schema, σ, associated with the language, Iexternal(σ) is
assumed to be specified externally in some document (hence the name
external schema). In particular, if σ is a schema of a RIF built-in predicate
or function, Iexternal(σ) is specified in [RIF-DTB] so that:

◦ If σ is a schema of a built-in function then Iexternal(σ) must be the
function defined in the aforesaid document.

◦ If σ is a schema of a built-in predicate then Itruth ο (Iexternal(σ))
(the composition of Itruth and Iexternal(σ), a truth-valued function)
must be as specified in [RIF-DTB].

For convenience, we also define the following mapping I from terms to D:

• I(k) = IC(k), if k is a symbol in Const;
• I(?v) = IV(?v), if ?v is a variable in Var;
• I(p(t1 ... tn)) = IP(I(p))(I(t1),...,I(tn));
• I(p(s1->v1 ... sn->vn)) = INF(I(p))({<s1,I(v1)>,...,<sn,I(vn)>})

Here we use {...} to denote a set of argument/value pairs;
• I(o[a1->v1 ... ak->vk]) = Iframe(I(o))({<I(a1),I(v1)>, ..., <I(an),I(vn)>})

Here {...} denotes a bag of attribute/value pairs.
• I(c1##c2) = Isub(I(c1), I(c2));
• I(o#c) = Iisa(I(o), I(c));
• I(x=y) = I=(I(x), I(y));
• I(External(t)) = Iexternal(σ)(I(s1), ..., I(sn)), if t is an instance of the

external schema σ = (?X1 ... ?Xn; τ) by substitution ?X1/s1
... ?Xn/s1.
Note that, by definition, External(t) is well-formed only if t is an
instance of an external schema. Furthermore, by the definition of coherent
sets of external schemas, t can be an instance of at most one such
schema, so I(External(t)) is well-defined.

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 14 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/#def-external-schema-set
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/#def-external-schema-set
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/#def-external-schema-set

The effect of datatypes. The set DTS must include the datatypes described in
Section Primitive Datatypes of RIF data types and builtins [RIF-DTB].

The datatype identifiers in DTS impose the following restrictions. Given dt ∈ DTS,
let LSdt denote the lexical space of dt, VSdt denote its value space, and Ldt: LSdt
→ VSdt the lexical-to-value-space mapping (for the definitions of these concepts,
see Section Primitive Datatypes of RIF data types and builtins [RIF-DTB]. Then the
following must hold:

• VSdt ⊆ Dind; and
• For each constant "lit"^^dt such that lit ∈ LSdt, IC("lit"^^dt) =

Ldt(lit).

That is, IC must map the constants of a datatype dt in accordance with Ldt.

RIF-PRD does not impose restrictions on IC for constants in symbol spaces that are
not datatypes included in DTS.

2.2.2 Interpretation of condition formulas

This section defines how a semantic structure, I, determines the truth value
TValI(φ) of a condition formula, φ. In PRD a semantic structure is represented as a
Herbrand interpretation.

We define a mapping, TValI, from the set of all condition formulas to TV. Note that
the definition implies that TValI(φ) is defined only if the set DTS of the datatypes of I
includes all the datatypes mentioned in φ and Iexternal is defined on all externally
defined functions and predicates in φ.

Definition (Truth valuation). Truth valuation for well-formed condition formulas in
RIF-PRD is determined using the following function, denoted TValI:

• Positional atomic formulas: TValI(r(t1 ... tn)) = Itruth(I(r(t1 ...
tn)));

• Atomic formulas with named arguments: TValI(p(s1->v1 ... sk->vk))
= Itruth(I(p(s1->v1 ... sk->vk)));

• Equality: TValI(x = y) = Itruth(I(x = y)).
To ensure that equality has precisely the expected properties, it is
required that:

◦ Itruth(I(x = y)) = t if I(x) = I(y) and that Itruth(I(x = y)) = f
otherwise. This is tantamount to saying that TValI(x = y) = t iff
I(x) = I(y);

• Subclass: TValI(sc ## cl) = Itruth(I(sc ## cl)).
To ensure that the operator ## is transitive, i.e., c1 ## c2 and
c2 ## c3 imply c1 ## c3, the following is required:

◦ For all c1, c2, c3 ∈ D, if TValI(c1 ## c2) = TValI(c2 ## c3)
= t then TValI(c1 ## c3) = t;

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 15 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/#sec-data-types
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/#sec-data-types

• Membership: TValI(o # cl) = Itruth(I(o # cl)).
To ensure that all members of a subclass are also members of the
superclass, i.e., o # cl and cl ## scl implies o # scl, the following
is required:

◦ For all o, cl, scl ∈ D, if TValI(o # cl) = TValI(cl ## scl) =
t then TValI(o # scl) = t;

• Frame: TValI(o[a1->v1 ... ak->vk]) = Itruth(I(o[a1->v1 ... ak-
>vk])).
Since the bag of attribute/value pairs represents the conjunctions of all the
pairs, the following is required, if k > 0:

◦ TValI(o[a1->v1 ... ak->vk]) = t if and only if TValI(o[a1-
>v1]) = ... = TValI(o[ak->vk]) = t;

• Externally defined atomic formula: TValI(External(t)) =
Itruth(Iexternal(σ)(I(s1), ..., I(sn))), if t is an atomic formula that is an
instance of the external schema σ = (?X1 ... ?Xn; τ) by substitution
?X1/s1 ... ?Xn/s1.
Note that, by definition, External(t) is well-formed only if t is an
instance of an external schema. Furthermore, by the definition of coherent
sets of external schemas, t can be an instance of at most one such
schema, so I(External(t)) is well-defined;

• Conjunction: TValI(And(c1 ... cn)) = t if and only if TValI(c1) = ... =
TValI(cn) = t. Otherwise, TValI(And(c1 ... cn)) = f.
The empty conjunction is treated as a tautology, so TValI(And()) = t;

• Disjunction: TValI(Or(c1 ... cn)) = f if and only if TValI(c1) = ... = TValI(cn)
= f. Otherwise, TValI(Or(c1 ... cn)) = t.
The empty disjunction is treated as a contradiction, so TValI(Or()) = f;

• Negation: TValI(Not(c)) = f if and only if TValI(c) = t. Otherwise,
TValI(Not(c)) = t;

• Existence: TValI(Exists ?v1 ... ?vn (φ)) = t if and only if for some
I*, described below, TValI*(φ) = t.
Here I* is a semantic structure of the form <TV, DTS, D, Dind, Dpred, IC,
I*V, IP, Iframe, INP, Isub, Iisa, I=, Iexternal, Itruth>, which is exactly like I,
except that the mapping I*V, is used instead of IV. I*V is defined to
coincide with IV on all variables except, possibly, on ?v1,...,?vn. ☐

2.2.3 Satisfaction of a condition

We now define what it means for a set of ground formulas to satisfy a condition
formula. The satisfaction of condition formulas by a set of ground formulas provides
formal underpinning to the operational semantics of rulesets interchanged using
RIF-PRD.

Definition (State). A state S is a Herbrand Interpretation IH. ☐

Definition (Condition Satisfaction). A condition formula, φ is satisfied under
variable assignment σ in a state S, written as S |= φ[σ], iff TValS(φ[σ]) = t. ☐

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 16 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/#def-external-schema-set
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/#def-external-schema-set

2.2.4 Matching substitution

At the syntactic level, the interpretation of the variables by a valuation function IV is
realized by a substitution. The matching substitution of constants to variables, as
defined below, provides the formal link between the model-theoretic semantics of
condition formulas and the operational semantics of rule sets in RIF-PRD.

Let Term be the set of the terms in the RIF-PRD condition language (as defined in
section Terms).

Definition (Substitution). A substitution is a finitely non-identical assignment of
terms to variables; i.e., a function σ from Var to Term such that the set {x ∈ Var | x
≠ σ(x)} is finite. This set is called the domain of σ and denoted by Dom(σ). Such a
substitution is also written as a set such as σ = {ti/xi}i=0..n where Dom(σ) = {xi}i=0..n
and σ(xi) = ti, i = 0..,n. ☐

Definition (Ground Substitution). A ground substitution is a substitution σ that
assigns only ground terms to the variables in Dom(σ): ∀ x ∈ Dom(σ), Var(σ(x)) = ∅
☐

Notice that since RIF-PRD covers only externally defined interpreted functions, a
ground term can always be replaced by a constant. In the remainder of this
document, it will always be assumed that a ground substitution assigns only
constants to the variables in its domain.

Definition (Matching Substitution). Let ψ be a condition formula, and φ be a set
of ground formulas that satisfies ψ. We say that ψ matches φ with substitution σ :
Var -> Terms if and only if there is a syntactic interpretation I such that for all ?xi in
Var(σ), I(?xi) = I(σ(?xi)). ☐

3 Actions

This section specifies the action part of the rules that can be serialized using RIF-
PRD (the conclusion of a production rule is often called the action part, or, simply,
the action; the then part, with reference to the if-then form of a rule statement; or
the right-hand side, or RHS. In the latter case, the condition is usually called the
left-hand side of the rule, or LHS). Specifically, this section specifies:

• the abstract syntax that all production rule languages interchanging rules
using RIF-PRD must have in common for expressing actions;

• and the intended semantics of the individual action formulas in a RIF-PRD
document.

In production rule systems, the action part of the rules is used, in particular, to add,
delete or modify facts in the data source with respect to which the condition of rules

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 17 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

are evaluated and the rules instantiated. As a rule interchange format, RIF-PRD
does not make any assumption regarding the nature of the data source that the
producer or the consumer of a RIF-PRD document uses (e.g. a rule engine's
working memory, an external data base, etc). As a consequence, the syntax of the
actions that RIF-PRD supports are defined with respect to the RIF-PRD condition
formulas that represents the facts that the actions are intended to affect. In the
same way, the semantics of the actions is specified in terms of how the effects of
their execution are intended to affect the evaluation of rule condition.

Editor's Note: This version of the draft specifies only a very limited set of basic
atomic actions. Future draft will extend that set, in particular to support actions
whose effect is not, or not only, to modify the fact base.

3.1 Abstract syntax

For a production rule language to be able to interchange rules using RIF-PRD, its
alphabet for expressing the action part of a rule must, at the abstract syntax level,
consist of syntactic constructs to denote:

• the assertion of a positional atom, an atom with named arguments, or a
frame, membership, or subclass atomic formula;

• the retraction of a positional atom, an atom with named arguments, or a
frame;

• the addition of a new frame object;
• the removal of a frame object and the retraction of the corresponding

frame and class atomic formulas;
• a sequence of these actions, including local variables and a mechanism to

bind a local variable to a frame slot value or a new frame object.

Editor's Note: These actions may seem foreign to a reader who is familiar with
typical production rule language actions, such as assert an object, modify/update
a field of an object, and retract/remove an object. As noted in Section Atomic
formulas, in this draft, objects are modeled using frame, membership, and
subclass formulas that are re-used from RIF-BLD and RIF-Core. Therefore, the
object-oriented actions are defined to act upon frame, membership, and subclass
relations. Mappings from a typical Java-like object model to RIF-PRD maps
"instanceof" to membership, "extends" and "implements" to subclass, and object
properties/fields to frame slots. To assert an object requires asserting both its
class membership and its frame slots. To modify a slot, e.g. change color from
red to blue, requires retracting the old frame slot and asserting the new frame
slot. Indeed, frame slots are multi-valued and, therefore, merely asserting a
frame slot does not overwrite a prior value, it adds to the set of values. Frame
slots do not inherently constrain either the datatype or the cardinality of their
values. Future drafts will address the issue of object representation in RIF-PRD.
We are open to suggestions.

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 18 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

3.1.1 Atomic actions

Atomic action constructs take constructs from the RIF-PRD condition language as
their arguments.

Definition (Atomic action). An atomic action can have several different forms
and is defined as follows:

1. Assert: If φ is a positional atom, an atom with named arguments, a frame,
a membership atomic formula, or a subclass atomic formula in the RIF-
PRD condition language, then Assert(φ) is an atomic action. φ is called
the target of the action.

2. Retract: If φ is a positional atom, an atom with named arguments, or a
frame in the RIF-PRD condition language, then Retract(φ) is an atomic
action. φ is called the target of the action.

3. Retract object: If t is a term in the RIF-PRD condition language, then
Retract(t) is an atomic action. t is called the target of the action. ☐

Editor's Note: Whether and under what restrictions, if any, membership and
subclass atomic formulas are allowable targets for atomic assert actions is still
under discussion in the working group. We welcome feedback on that issue.

Definition (Ground atomic action). An atomic action with target t is a ground
atomic action if and only if Var(t) = ∅. ☐

3.1.2 Action blocks

The action block is the top level construct to represent the conclusions of the
production rules that can be serialized using RIF-PRD. An action block contains a
non-empty sequence of atomic actions. It may also include action variable
declarations.

The action variable declaration construct is used to declare variables that are local
to the action block, called action variables, and to assign them a value within the
action block.

Editor's Note: This version of RIF-PRD supports only a limited mechanism to
initialize local action variables. Action variables may be bound to newly created
frame objects or to slot values of frames. Future versions may support different or
more elaborate mechanisms.

Definition (Action variable declaration). An action variable declaration is a
pair, (v p) made of an action variable, v, and an action variable binding (or, simply,
binding), p, where p has one of two forms:

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 19 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

1. frame object declaration: if the action variable, v, is to be assigned the
identifier of a new frame, then the action variable binding is a frame object
declaration: New(v). In that case, the notation for the action variable
declaration is: (?o New(?o));

2. frame slot value: if the action variable, v, is to be assigned the value of a
slot of a ground frame, then the action variable binding is a frame:
p = o[s->v], where o is a term that represents the identifier of the ground
frame and s is a term that represents the name of the slot. The associaed
notation is: (?value o[s->?value]). ☐

Definition (Action block). If (v1 p1), ..., (vn pn), n ≥ 0, are action variable
declarations, and if a1, ..., am, m ≥ 1, are atomic actions, then
Do((v1 p1), ..., (vn pn) a1 ... al) denotes an action block. ☐

3.1.3 Well-formed action blocks

The specification fo RIF-PRD does not assign a standard meaning to all the action
blocks that can be standardized using its concrete XML syntax. Action blocks that
can be meaningfully serialized are called well-formed. The notion of well-
formedness, already defined for condition formulas, is extended to atomic actions,
action variable declarations and action blocks.

The main restrictions are that one and only one action variable bindings can assign
a value to each action variable binding, and that the assertion of a membership
atomic formula is meaningful only if for a new frame object.

Definition (Well-formed atomic action). An atomic action is well-formed if and
only if one of the following is true:

• it is an Assert and its target is a well-formed atom (positional or with
named arguments), or a well-formed frame, membership or subclass
atomic formula;

• it is a Retract and its target is a well-formed term or a well-formed atom
(positional or with named arguments), or a well-formed frame atomic
formula. ☐

Definition (Well-formed action variable declaration). An action variable
declaration (?v p) is well-formed if and only if one of the following is true:

• the action variable binding, p, is the declaration of a new frame object:
p = New(?v), and its argument is the action variable that is declared in
the same action variable declaration, ?v;

• the action variable binding, p, is a well formed frame atomic formula,
p = o[a1->t1...an->tn], n ≥ 1, and the action variable, v occurs in the
position of a slot value, and nowhere else, that is:
v ∉ Var(o) ∪ Var(a1) ∪ ... ∪ Var(an) and v ∈ {t1 ... tn}. ☐

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 20 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

For the definition of a well-formed action block, the function Var(f), that has been
defined for condition formulas, is extended to atomic actions and frame object
declarations as follows:

• if f is an atomic action with target t, then Var(f) = Var(t);
• if f is a frame object declaration, New(?v), then Var(f) = {?v}.

Definition (Well-formed action block). An action block is well-formed if and only
if all of the following is true:

• all the action variable declarations, if any, are well-formed;
• each action variable, if any, is assigned a value by one and only one

action binding, that is: if b1 = (v1 p1) and b2 = (v2 p2) are two action
variable declarations in the action block, then v2 ∉ Var(p1) if
v1 ∈ Var(p2), and, reciprocally, v1 ∉ Var(p2) if v2 ∈ Var(p1);

• all the actions in the action block are well-formed atomic actions;
• if an atomic action in the action block, a, asserts a membership atomic

formula, a = Assert(t1 # t2), then the object term in the
membership atomic formula, t1, is an action variable that is declared in
the action block and the action variable binding is the declaration of a new
frame object. ☐

Definition (RIF-PRD action language). The RIF-PRD action language consists
of the set of all the well-formed action blocks. ☐

3.2 Operational semantics of atomic actions

This section specifies the intended semantics of the atomic actions in a RIF-PRD
document.

The effect intended of the ground atomic actions in the RIF-PRD action language is
to modify the state of the fact base, in such a way that it changes the set of
conditions that are satisfied before and after each atomic action is performed.

As a consequence, the intended semantics of the ground atomic actions in the RIF-
PRD action language determines a relation, called the RIF-PRD transition relation:
→RIF-PRD ⊆ W × L × W, where W denotes the set of all the states of the fact base,
and where L denotes the set of all the ground atomic actions in the RIF-PRD action
language.

Since the satisfaction of condition formulas is defined with respect to the Herbrand
interpretation of ground formulas (Section Satisfaction of a condition), we will
assume in the following that the states of the fact base are represented by such
sets, for the purpose of specifying the intended operational semantics of atomic
actions, or rules and of rule sets serialized using RIF-PRD.

Definition (RIF-PRD transition relation). The intended semantics of RIF-PRD
atomic actions is completely specified by the transition relation →RIF-PRD ⊆ W × L

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 21 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

× W. (w, α, w') ∈ →RIF-PRD if and only if w ∈ W, w' ∈ W, α is a ground atomic action,
and one of the following is true:

1. α is Assert(φ), where φ is a ground atomic formula, and w' = w + φ;
2. α is Retract(φ), where φ is a ground atomic formula, and w' = w - φ;
3. α is Retract(o), where o is a constant, and w' = w - {o[s->v] | for all

the values of terms s and v} - {o#c | for all the values of term c}. ☐

Rule 1 says that all the condition formulas that were satisfied before an assertion
will be satisfied after, and that, in addition, the condition formulas that are satisfied
by the asserted ground formula will be satisfied after the assertion.

Rule 2 says that all the condition formulas that were satisfied before a retraction will
be satisfied after, except if they are satisfied only by the retracted fact.

Rule 3 says that all the condition formulas that were satisfied before the removal of
a frame object will be satisfied after, except if they are satisfied only by one of the
frame or membership formulas about the removed object or a conjunction of such
formulas.

4 Production rules and rulesets

This section specifies the rules and rulesets that can be serialized using RIF-PRD,
by specifying:

• the abstract syntax that all production rule languages interchanging rules
using RIF-PRD must have in common for rules and rule sets;

• and the intended semantics of the rules and ruleset in a RIF-PRD
document.

4.1 Abstract syntax

For a production rule language to be able to interchange rules using RIF-PRD, in
addition to the RIF-PRD condition and action languages, its alphabet must, at the
abstract syntax level, contain syntactic constructs:

• to associate a condition and an action block into a rule;
• to declare the variables that are free in a rule, to specify their bindings,

and to associate them with that rule into a rule with less free variables;
• to group rules and to associate specific operational semantics to groups of

rules.

4.1.1 Rules

Definition (Rule). A rule can be either:

• an unconditional action block;

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 22 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

• a conditional action block: if condition is a formula in the RIF-PRD
condition language, and if action is a well-formed action block, then
If condition, Then action is a conditional action;

• a rule with bound variables: if ?v1 ... ?vn, n > 0, are variables; p1 ...
pm, m ≥ 0, are condition formulas (called binding patterns), and rule is a
rule, then Forall ?v1...?vn (p1...pm) (rule) is a rule. ☐

RIF-BLD compatibility. A rule If condition, Then action can be
equivalently written action :- condition, that is, using RIF-BLD notation.
Indeed, the normative XML syntax is the same for a conditional assertion in RIF-
BLD and for a conditional action in RIF-PRD. The use of RIF-BLD notation is
especially useful if the condition formula, condition, contains no negation, and if
the action block, action, contains only Assert atomic actions. The use of the
same notation emphasizes that such a rule has the same semantics in RIF-PRD
and RIF-BLD.

Editor's Note: At this stage, the above assertion regarding the equivalence of a
specific fragment of RIF-PRD and RIF-BLD is mostly the statement of an
objective of the working group. That issue will be addressed more completely in a
future version of this document.

To emphasize that equivalence even further, an action block can be written as
simply And(φ1 ... φn), if it contains only atomic assert actions:
Do(Assert(φ1) ... Assert(φn)), n ≥ 1. If the action block consists of a
single atomic assert action: Do(Assert(φ)), then it can be written as simply φ.

Notice that the notation for a rule with bound variables uses the keyword Forall
for the same reasons, that is, to emphasize the overlap with RIF-BLD. Indeed,
Forall does not indicate the universal quantification of the declared variables, in
RIF-PRD, but merely that the execution of the rule must be considered for all their
bindings as constrained by the binding patterns. However, when no negation is
used in the conditions and only assertions in the actions, the XML serialization of a
RIF-PRD rule with bound variables is exactly the same as the XML serialization of
a RIF-BLD universally quantified rule, and their semantics coincide.

4.1.2 Groups

As was already mentioned in Section Overview, production rules have an
operational semantics that can be described in terms of matching rules against
states of the fact base, selecting rule instances to be executed, and executing rule
instances' actions to transition to new states of the fact base.

When production rules are interchanged, the intended rule instance selection
strategy, often called the conflict resolution strategy, need be interchanged along
with the rules : in RIF-PRD, the group is the construct that is used to group sets of
rules and to associate them with a conflict resolution strategy. Many production rule
systems use priorities associated with rules as part of their conflict resolution

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 23 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

strategy: in RIF-PRD, the group is also used to carry the priority information that
may be associated to the interchanged rules.

Definition (Group). If strategy is an IRI that denotes a conflict resolution
strategy, if priority is an integer, and if each rgj, 0 ≤ j ≤ n, is either a rule or a
group, then any of the following is a group:

• Group rg0 ... rgn, n ≥ 0;
• Group strategy rg0 ... rgn, n ≥ 0;
• Group priority rg0 ... rgn, n ≥ 0;
• Group strategy priority rg0 ... rgn, n ≥ 0. ☐

4.1.3 Well-formed rules and groups

The function Var(f), that has been defined for condition formulas and extended to
actions, is further extended to rules, as follows:

• if f is an action block that declares action variables ?v1 ... ?vn, n ≥ 0,
and that contains actions a1 ... am, m ≥ 1, then Var(f) = U1 ≤ i ≤ m
Var(ai) - {?v1 ... ?vn};

• if f is an conditional action where c is the condition formula and a is the
action, then Var(f) = Var(c) ∪ Var(a);

• if f is a quantified rule where ?v1 ... ?vn, n > 0, are the declared
variables; p1 ... pm, m ≥ 0, are the binding patterns, and r is the rule,
then Var(f) = (Var(r) ∪ Var(p1) ∪ ... ∪ Var(pm)) - {?v1 ... ?vn}.

Definition (Well-formed rule). A rule, r, is a well-formed rule if and only if it
contains no free variable, that is, Var(r) = ∅, and either:

• it is an unconditional well-formed action block, a;
• or it is a conditional action where the condition formula, c, is a well-formed

condition formula, and the action block, a, as a well-formed action block,
and no atomic action in a has a subclass atomic formula as its target;

• or it is a quantified rule, Forall V (P) (r), and the quantified rule, r is
a well-formed rule, and each of the declared variables in V = {?vi}0 ≤ i
≤ n is free in some of the binding patterns in P = {pj}0 ≤ j ≤ m or in the
quantified rule, r; that is, V ⊆ Var(r) ∪ Var(p1) ∪ ... ∪ Var(pm), m ≥ 0. ☐

Definition (Well-formed group). A well-formed group is either a group that
contains only well-formed rules and well-formed groups, or a group that contains no
rule or group (an empty group). ☐

The set of the well-formed groups contains all the production rulesets that can be
meaningfully interchanged using RIF-PRD.

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 24 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

4.2 Operational semantics of rules and rule sets

4.2.1 Motivation and example

As already mentioned in Section Overview, the description of a production rule
system as a transition system can be used to specify the intended semantics that is
associated with production rules and rulesets interchanged using RIF-PRD.

The intuition of describing a production rule system as a transition system is that,
given a set of production rules RS and a fact base w0, the rules in RS that are
satisfied, in some sense, in w0 determine an action a1, whose execution results in a
new fact base w1; the rules in RS that are satisfied in w1 determine an action a2 to
execute in w1, and so on, until the system reaches a final state and stops. The
result is the fact base wn when the system stops.

Example 3.1. Judicael, a chicken and potato farmer, uses a rule based system to
decide on the daily grain allowance for each of her chicken. Currently, Judicael's
rule base contains one single rule, the chicken and mashed potatoes rule:

(* ex:ChickenAndMashedPotatoes *)
Forall ?chicken ?potato ?weight

(And(?chicken#ex:Chicken
(Exists ?age

And(?chicken[ex:age->?age]
External(pred:numeric-greater-than(?age, 8)))))

And(?potato#ex:Potato
ex:owns(?chicken ?potato)
(Exists ?weight

And(?potato[ex:weight->?weight]
External(pred:numeric-greater-than(?weight External(func:numeric-divide(?age 2)))))))

If And(External(pred:string-not-equals(External(ex:today()), "Tuesday"))
Not(External(ex:foxAlarm())))

Then Do((?allowance ?chicken[ex:allowance->?allowance])
Execute(ex:mash(?potato))
Retract(?potato)
Retract(ex:owns(?chicken ?potato))
Retract(?chicken[ex:allowance->?allowance])
Assert(?chicken[ex:allowance->External(func:numeric-multiply(?allowance 1.1))]))

Judicael has four chickens, Jim, Jack, Joe and Julia, that own three potatoes
(BigPotato, SmallPotato, UglyPotato) among them:

• Jim (daily grain allowance = 10) is 12 months old, Jack (daily grain
allowance = 12) is 9 months old, Joe (daily grain allowance = 6) is 6
months old and Julia (daily grain allowance = 14) is 10 months old;

• BigPotato weights 70g, SmallPotato weights 10g, UglyPotato weights 50g;

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 25 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

• Jim owns BigPotato, Jack and Woof own SmallPotato jointly (Woof is the
farm's dog. It inherited joint ownership of SmallPotato from its aunt
Georgette) and Joe owns UglyPotato.

That is the initial set of facts w0.

When the rule is applied to w0:

• the first pattern selects {Jim/?chicken, Jack/?chicken, Julia/?chicken} as
possible values for variable ?chicken (Joe is too young);

• the second pattern selects {(Jim/?chicken, BigPotato/?potato)} as the only
possible substitution for the variables ?chicken and ?potato (UglyPotato
does not belong to either Joe, Jack or Julia and SmallPotato is too small);

Suppose that Judicael's implementation of today() returns Monday and that the
foxAlarm() is false when the Chicken and mashed potatoes rule is applied: the
condition is satisfied, and the actions in the conclusion are executed with BigPotato
substituted for ?potato, Jim substituted for ?chicken, and 10 substituted for
?allowance. This results in the following changes in the set of facts:

• BigPotato is mashed (and removed from the list of potatoes to be
considered in future applications of the Chicken and mashed potatoes
rule);

• the daily grain allowance of Jim is now 11;
• Jim does not own a potato anymore.

The resulting set of facts w1 is thus:

• Jim (daily grain allowance = 11) is 12 months old, Jack (daily grain
allowance = 12) is 9 months old, Joe (daily grain allowance = 6) is 6
months old and Julia (daily grain allowance = 14) is 10 months old;

• SmallPotato weights 10g, UglyPotato weights 50g;
• Jack and Woof own SmallPotato jointly and Joe owns UglyPotato.

When the Chicken and mashed potatoes rule in applied to w1, the first pattern still
selects {Jim/?chicken, Jack/?chicken, Julia/?chicken} as possible values for
variable ?chicken, but the second pattern does not select any possible substitution
for the couple (?chicken, ?potato) anymore: the rule cannot be satisfied, and the
system, having detected a final state, stops.

The result of the execution of the system is w1. ☐

4.2.2 Definitions and notational conventions

More precisely, a production rule system is defined as a labeled terminal transition
system (e.g. PLO04), for the purpose of specifying the intended semantics of a
RIF-PRD rule or group of rules.

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 26 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

Definition (labeled terminal transition system): A labeled terminal transition
system is a structure {C, L, →, T}, where

• C is a set of elements, c, called configurations, or states;
• L is a set of elements, a, called labels, or actions;
• → ⊆ C × L × C is the transition relation, that is: (c, a, c') ∈ → iff there is a

transition labeled a from the state c to the state c' or, more appropriately in
the case of a production rule system, the execution of action a in the state
c causes a transition to state c' ;

• T ⊆ C is the set of final states, that is, the set of all the states c from which
there are no transitions: T = {c ∈ C | ∀ a ∈ L, ∀ c' ∈ C, (c, a, c') ∉ →}. ☐

For many purposes, a representation of the states of the fact base is an
appropriate representation of the states a production rule system seen as a
transition system. However, the most widely used conflict resolution strategies
require information about the history of the system, in particular with respect to the
rule instances that have been selected for execution in previous states. Therefore,
each state of the transition system used to represent a production rule system must
keep a memory of the previous states and the rule instances that where selected
and triggered the transition in those states.

To avoid the confusion between the states of the fact base and the states of the
transition system, the latter will be called production rule system states.

Definition (Production rule system state). A production rule system state (or,
simply, a system state), s, is characterized by

• a state of the fact base, facts(s);
• if s is not the initial state: a previous system state, previous(s), such that,

given two system states s1 and s2, s1 = previous(s2) if and only if the
production rule system the sequential execution of the action parts of the
rule instances in picked(s1) transitioned the system from system state s1
to system state s2;

• if s is not the current state: the ordered set of rule instances, picked(s),
that the conflict resolution strategy picked, among the all the rule
instances that matched facts(s). ☐

In the following, we will write previous(s) = NIL to denote that a system state s is
the initial state.

Here, a rule instance is defined as the result of the substitution of constants for all
the rule variables in a rule.

Let R denote the set of all the rules in the rule language under consideration.

Definition (Rule instance). Given a rule, r ∈ R and a ground substitution, σ, such
that Var(r) ⊆ Dom(σ), where Var(r) denotes the set of the rule variables in r, the
result, ri = σ(r), of the substitution of the constant σ(?x) for each variable
?x ∈ Var(r) is a rule instance (or, simply, an instance) of r. ☐

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 27 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

Given a rule instance ri, let rule(ri) identify the rule from which ri is derived by
substitution of constants for the rule variables, and let substitution(ri) denote the
substitution by which ri is derived from rule(ri).

In the following, two rule instances ri1 and ri2 of a same rule r will be considered
different if and only if substitution(ri1) and substitution(ri2) substitute a different
constant for at least one of the rule variables in Var(r).

In the definition of a production rule system state, a rule instance, ri, is said to
match a state of a fact base, w, if its defining substitution, substitution(ri), matches
the RIF-PRD condition formula that represents the condition of the instantiated rule,
rule(ri), to the ground formula that represents the state of facts w.

Let W denote the set of all the possible states of a fact base.

Definition (Matching rule instance). Given a rule, ri, and a state of the fact base,
w ∈ W, ri is said to match w if and only if one of the following is true:

• rule(ri) is an unconditional action block;
• rule(ri) is a conditional action block: If condition, Then action,

and substitution(ri) matches the condition formula condition to the
ground condition formula that represents w;

• rule(ri) is a rule with bound variables: Forall ?v1...?vn (p1...pn)
(r'), n ≥ 0, m ≥ 0, and substitution(ri) matches each of the condition
formulas pi, 0 ≤ i ≤ m, to the ground condition formula that represents w,
and the rule instance ri' matches w, where ri' is the instance of rule r' such
that substitution(ri') = substitution(ri). ☐

Definition (Conflict set). Given a rule set, RS ⊆ R, and a system, s, the set,
conflictSet(RS, s) of all the different instances of the rules in RS that match the
state of the fact base, facts(s) ∈ W is called the conflict set determined by RS in
s. ☐

In each non-final state, s, of a production rule system, a subset, picked(s), of the
rule instances in the conflict set is selected and ordered; their action parts are
instantiated, and they are executed. This is sometimes called: firing the selected
instances.

Definition (Action instance). Given a system state, s; given a rule instance, ri, of
a rule in a rule set, RS; and given the action block in the action part of the rule
rule(ri): Do((v1 p1)...(vn pn) a1...am), n ≥ 0, m ≥ 1, where the (v1 p1), 0
≤ i ≤ n, represent the action variable declarations and the aj, 1 ≤ j ≤ m, represent
the sequence of atomic actions in the action block; if ri is a matching instance in the
conflict set determined by RS in system state s: ri ∈ conflictSet(RS, s), the
substitution σ = substitution(ri) is extended to the action variables v1...vn, n ≥ 0, in
the following way:

• if vi is assigned the identifier of a new frame by the action variable
declaration: (vi New(vi), then σ(vi) = cnew, where cnew is a constant of

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 28 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

type rif:IRI that does not occur in any subformula of the ground
formula that represents the state of the fact base that is associated to s,
facts(s);

• if vi is assigned the value of a frame's slot by the action variable
declaration: (vi o[s->vi]), then σ(vi) is a constant such that the frame
formula o[s->vi]) matches the state of the fact base facts(s) with
subtitution σ.

The sequence of ground atomic actions that is the result of substituting a constant
for each variable in the atomic actions of the action block of the rule instance, ri,
according to the extended substitution, is the action instance associated to ri. ☐

Let actions(ri) denote the action instance that is associated to a rule instance ri. By
extension, given an ordered set of rule instances, ori, actions(ori) denotes the
sequence of ground atomic actions that is the concatenation, preserving the order
in ori, of the action instances associated to the rule instances in ori.

4.2.3 Operational semantics of a production rule system

All the elements that are required to define a production rule system as a labeled
terminal transition system have now been defined.

Definition (RIF-PRD Production Rule System). A RIF-PRD production rule
system is defined as a labeled terminal transition system PRS = {S, A, →PRS, T},
where :

• S is a set of system states;
• A is a set of transition labels, where each transition label is a sequence of

ground RIF-PRD atomic actions;
• The transition relation →PRS ⊆ S × A × S, is defined as follows:

∀ (s, a, s') ∈ S × A × S, (s, a, s') ∈ →PRS if and only if all of the following
hold:

1. (facts(s), a, facts(s')) ∈ →*
RIF-PRD, where →*

RIF-PRD denotes the
transitive closure of the transition relation →RIF-PRD that is
determined by the specification of the semantics of the atomic
actions supported by RIF-PRD;

2. a = actions(picked(s));
• T ⊆ S, a set of final system states. ☐

Intuitively, the first condition in the definition of the transition relation →PRS states
that a production rule system can transition from one system state to another only if
the state of facts in the latter system state can be reached from the state of facts in
the former by performing a sequence of ground atomic actions supported by RIF-
PRD, according to the semantics of the atomic actions.

The second condition states that the allowed paths out of any given system state
are determined only by how rules instances are picked from the conflict set for
execution by the conflict resolution strategy.

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 29 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

Given a ruleset RS ⊆ R, the associated conflict resolution strategy LS, and an
initial state of the fact base, w ∈ W, the input function to a RIF-PRD production rule
system is defined as:

Eval(RS, LS, w) →PRS s ∈ S, such that facts(s) = w and previous(s) = NIL.
Given a set T of final system states, the output function is defined as:

∀ s' ∈ T, s' →PRS w'= facts(s')
Or, using →*

PRS to denote the transitive closure of the transition relation →PRS:
∀ w ∈ W, ∃ s' ∈ T, ∃ w' ∈ W, w'= facts(s') and Eval(RS, LS, w) →*

PRS w'

Therefore, the exact behavior of a RIF-PRD production rule system depends on:

1. the conflict resolution strategy, that is, how rule instances are, precisely,
selected for execution from the rule instances that match a given state of
the fact base;

2. and how the set T of final system states is, precisely, defined.

4.2.4 Conflict resolution

The process of selecting one or more rule instances from the conflict set for firing is
often called: conflict resolution.

In RIF-PRD the conflict resolution algorithm (or conflict resolution strategy) that is
intended for a set of rules is denoted by a keyword or a set of keywords that is
attached to the rule set. In this version of the RIF-PRD specification, a single
conflict resolution strategy is specified normatively: it is denoted by the keyword
rif:forwardChaining (a constant of type rif:IRI), for it accounts for a common
conflict resolution strategy used in most forward-chaining production rule systems.

Future versions of the RIF-PRD specification may specify normatively the intended
conflict resolution strategies to be attached to additional keywords. In addition, RIF-
PRD documents may include non-standard keywords: it is the responsability of the
producers and consumers of such document to agree on the intended conflict
resolution strategies that are denoted by such non-standard keywords.

Conflict resolution strategy: rif:forwardChaining
Most existing production rule systems implement conflict resolution algorithms that
are a combination of the following elements (under these or other, idiosyncratic
names; and possibly combined with additional, idiosyncratic rules):

• Refraction. The essential idea of refraction is that a given instance of a
rule must not be fired more than once as long as the reasons that made it
eligible for firing hold. In other terms, if an instance has been fired in a
given state of the system, it is no longer eligible for firing as long as it
satisfies the states of facts associated to all the subsequent system
states;

• Priority. The rule instances are ordered by priority of the instantiated rules,
and only the rule instances with the highest priority are eligible for firing;

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 30 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

• Recency. the rule instances are ordered by how long a rule instance has
been continuously satisfied in the states of facts associated to previous
system states, and only the most recent ones are eligible for firing.

The RIF-PRD keyword rif:forwardChaining denotes the common conflict
resolution strategy that can be summarized as follows: given a conflict set

1. Refraction is applied to the conflict set, that is, all the refracted rule
instances are removed from the conflict set;

2. The remaining rule instances are ordered by decreasing priority, and only
the rule instances with the highest priority are kept in the conflict set;

3. The remaining rule instances are ordered by decreasing recency, and only
the most recent rule instances are kept in the conflict set;

4. Any remaining tie is broken arbitrarily, and a single rule instance is kept
for firing.

As specified earlier, picked(s) denotes the ordered list of the rule instances that
were picked in a system state, s. Under the conflict resolution strategy denoted by
rif:forwardChaining, the list denoted by picked(s) contains a single rule
instance, for any given system state, s.

Given a system state, s, a rule set, RS, and a rule instance, ri ∈ conflictSet(RS, s),
let recency(ri, s) denote the number of system states before s, in which ri has been
continuously a matching instance: if s is the current system state, recency(ri, s)
provides a measure of the recency of the rule instance ri. recency(ri, s) is specified
recursively as follows:

• if previous(s) = NIL, then recency(ri, s) = 1;
• else if ri ∈ conflictSet(RS, previous(s)), then recency(ri, s) = 1 +

recency(ri, previous(s));
• else, recency(ri, s) = 1.

In the same way, given an rule instance, ri, and a system state, s, let lastPicked(ri,
s) denote the number of system states before s, since ri has been last fired.
lastPicked(ri, s) is specified recursively as follows:

• if previous(s) = NIL, then lastPicked(ri, s) = 1;
• else if ri ∈ picked(previous(s)), then lastPicked(ri, s) = 1;
• else, lastPicked(ri, s) = 1 + lastPicked(ri, previous(s)).

Finally, given a rule instance, ri, let priority(ri) denote the priority that is associated
to rule(ri), or zero, if no priority is associated to rule(ri). If rule(ri) is inside nested
Groups, priority(ri) denotes the priority that is associated with the innermost Group
to which a priority is explicitely associated, or zero.

Given a conflict set, cs, the conflict resolution strategy rif:forwardChaining
can now be described with the help of four rules, where ri and ri' are rule instances:

1. Refraction rule: if ri ∈ cs and lastPicked(ri, s) ≤ recency(ri, s), then cs =
cs - ri;

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 31 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

2. Priority rule: if ri ∈ cs and ri' ∈ cs and priority(ri) < priority(ri'), then cs =
cs - ri;

3. Recency rule: if ri ∈ cs and ri' ∈ cs and recency(ri, s) > recency(ri', s),
then cs = cs - ri;

4. Tie-break rule: if ri ∈ cs, then cs = {ri}.

The refraction rule removes the instances that have been in the conflict set in all
the system states at least since they were last fired, that is, it removes the refracted
instances from the current conflict set; the priority rule removes the instances such
that there is at least one instance with a higher priority; the recency rule removes
the instances such that there is at least one instance that is more recent; and the
tie-break rule keeps one rule from the set, arbitrarily.

To select the singleton rule instance, picked(s), to be fired in a system state, s,
given a rule set, RS, the conflict resolution strategy denoted by the keyword
rif:forwardChaining consists in the following sequence of steps:

1. start with the conflict set, cs, that a rule set RS determines in a system
state s: cs = conflictSet(RS, s);

2. apply the refraction rule to all the rule instances in cs;
3. then apply the priority rule to all the remaining instances in cs;
4. then apply the recency rule to all the remaining instances in cs;
5. then apply the tie-break rule.

4.2.5 Halting test

Editor's Note: This section is still under discussion (see ISSUE-65). This version
specifies a single, default halting test: future version of this draft may specify
additional halting tests, and/or a different default. The Working Group seeks
feedback on which halting tests and which combinations of tests should be
supported by RIF-PRD and/or required from RIF-PRD implementations; and
which halting test should be the default, if any.

By default, a system state is final, given a rule set, RS, and a conflict resolution
strategy, LS, if there is no rule instance available for firing after application of the
conflict resolution strategy.

For the conflict resolution strategy identified by the RIF-PRD keyword
rif:forwardChaining, a system state, s, is final given a rule set, RS if and only
if the remaining conflict set is empty after application of the refraction rule to all the
rule instances in conflictSet(RS, s). In particular, all the system states, s, such that
conflictSet(RS, s) = ∅ are final.

5 XML Syntax

This section specifies a common concrete XML syntax to serialize any production
rule set written in a language that share the abstract syntax speicifed in section 4.1,

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 32 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/2005/rules/wg/track/issues/65

provided that its intended semantics agrees with the semantics that is described in
section 4.2.

In the following, after the notational conventions are introduced, we specify the RIF-
PRD XML constructs that carry a normative semantics with respect to the intended
interpretation of the interchanged rules. They are specified with respect to the
abstract syntax, and their specification is structured according to the specification
of the abstract syntax in sections 2.1, 3.1 and 4.1.

The root element of any RIF XML document, Document and other XML constructs
that do not carry a normative semantics with respect to the intended interpretation
of the interchanged rules are specified in the last sub-section.

5.1 Notational conventions

5.1.1 Namespaces

Throughout this document, the xsd: prefix stands for the XML Schema
namespace URI http://www.w3.org/2001/XMLSchema#, the rdf: prefix
stands for http://www.w3.org/1999/02/22-rdf-syntax-ns#, and rif:
stands for the URI of the RIF namespace, http://www.w3.org/2007/rif#.

Syntax such as xsd:string should be understood as a compact URI (CURIE) --
a macro that expands to a concatenation of the character sequence denoted by the
prefix xsd and the string string. The compact URI notation is used for brevity
only, and xsd:string should be understood, in this document, as an abbreviation
for http://www.w3.org/2001/XMLSchema#string.

5.1.2 BNF pseudo-schemas

The XML syntax of RIF-PRD is specified for each component as a pseudo-schema,
as part of the description of the component. The pseudo-schemas use BNF-style
conventions for attributes and elements: "?" denotes optionality (i.e. zero or one
occurrences), "*" denotes zero or more occurrences, "+" one or more occurrences,
"[" and "]" are used to form groups, and "|" represents choice. Attributes are
conventionally assigned a value which corresponds to their type, as defined in the
normative schema. Elements are conventionally assigned a value which is the
name of the syntactic class of their content, as defined in the normative schema.

<!-- sample pseudo-schema -->
<defined_element

required_attribute_of_type_string="xs:string"
optional_attribute_of_type_int="xs:int"? >

<required_element />
<optional_element />?
<one_or_more_of_these_elements />+

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 33 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

[<choice_1 /> | <choice_2 />]*
</defined_element>

5.1.3 Syntactic components

Three kinds of syntactic components are used to specify RIF-PRD:

• Abstract classes are defined only by their subclasses: they not visible in
the XML markup and can be thought of as extension points. In this
document, abstract constructs will be denoted with all-uppercase names;

• Concrete classes have a concrete definition and they are associated with
specific XML markup. In this document, concrete constructs will be
denoted with CamelCase names with leading capital letter;

• Properties, or roles, define how two classes relate to each other. They
have concrete definitions and are associated with specific XML markup. In
this document, properties will be denoted with camelCase names with
leading smallcase letter.

5.2 Conditions

This section specifies the XML constructs that are used in RIF-PRD to serialize
condition formulas.

5.2.1 TERM

The TERM class of constructs is used to serialize terms, be they simple terms, that
is, constants and variables; or positional terms or terms with named arguments,
both being, per the definition of a well-formed formula, representations of externally
defined functions.

As an abstract class, TERM is not associated with specific XML markup in RIF-PRD
instance documents.

[Const | Var | External]

5.2.1.1 Const

In RIF, the Const element is used to serialize a constant.

The Const element has a required type attribute and an optional xml:lang
attribute:

• The value of the type attribute is the identifier of the Const symbol
space. It must belong to the type xsd:anyURI. In the RIF data types and
builtins document, the section about
[DTB#Constants.2C_Symbol_Spaces.2C_and_Datatypes|Constants,
Symbol spaces and Datatypes]] lists the builtin symbol spaces and data

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 34 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

types that all implementations of RIF-PRD must support. Rule sets that
are exchanged through RIF-PRD can use additional, user-defined symbol
spaces;

• The xml:lang attribute, as defined by 2.12 Language Identification of
XML 1.0 or its successor specifications in the W3C recommendation track,
is optionally used to identify the language for the presentation of the
Const to the user. It is allowed only in association with constants of the
type rif:text. A compliant implementation MUST ignore the xml:lang
attribute if the type of the Const is not rif:text.

The content of the Const element is the constant's litteral, which can be any
Unicode character string.

<Const type=xsd:anyURI [xml:lang=xsd:language]? >
Any Unicode string

</Const>

\{\{EdNote|text=The case of non-standard data types, that is, of constants that do
not belong or cannot be cast in one of RIF builtin types for interchange purposes, is
still under discussion in the WG. The WG seeks feedback on whether they should
be allowed and why.\}\}

Example 2.1. In each of the examples below, a constant is first described, followed
by its serialization in RIF-PRD XML syntax.

a. A constant with builtin type xsd:integer and value 123:

<Const type="xsd:integer">123</Const>

b. A constant which symbol today is defined in Joe the Hen Public's namespace
http://rif.example.com/2008/joe#. The type of the constant is rif:iri:

<Const type="rif:iri">
http://rif.example.com/2008/joe#today

</Const>

c. A constant with symbol BigPotato that is local to the set of rules where it appears
(e.g. a RuleSet specific to Paula's farm). The type of the constant is rif:local:

<Const type="rif:local">BigPotato</Const>

d. A constant with non-builtin type xsd:int and value 123:

<Const type="xsd:int">123</Const>

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 35 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/TR/REC-xml/#sec-lang-tag
http://www.w3.org/TR/2000/REC-xml-20001006

5.2.1.2 Var

In RIF, the Var element is used to serialize a variable.

The content of the Var element is the variable's name, serialized as an Unicode
character string.

<Var> any Unicode string </Var>

Example 2.2. The example below shows the XML serialization of a reference to a
variable named: ?chicken.

<Var> chicken <Var>

5.2.1.3 External

As a TERM, the External element is used to serialize a positional term or a term
with named arguments. In RIF-PRD, a positional or a named-argument term
represents always a call to an externally specified function, e.g. a builtin, a user-
defined function, a query to an external data source...

The External element contains one content element, which in turn contains
one Expr element that contains one op element, followed zero or one args
element or zero of more slot elements:

• The content and Expr element ensure compatibility with the RIF Basic
Logic Dialect [RIF-BLD] that allows non-evaluated (that is, logic) functions
to be serialized using an Expr element;

• The content of the op element must be a Const. When the External is
a TERM, the content of the op element serializes a constant symbol of type
rif:iri that must uniquely identify the evaluated function to be applied
to the args TERMs. In the RIF data types and builtins document, the
section List of RIF Builtin Predicates and Functions lists the builtin
functions that all implementations of RIF-PRD must support. The content
of the op element can also identify an user-defined function: it is the
responsibility of the producers and consumers of RIF-PRD rulesets that
reference non-builtin functions to agree on their semantics;

• The optional args element contains zero or more constructs from the
TERM abstract class. The args element is used to serialize the arguments
of a positional term. The order of the args sub-elements is, therefore,
significant and MUST be preserved. This is emphasized by the required
value "yes" of the required attribute rif:ordered;

• Each optional slot element contains one required Name sub-element,
that contains an Unicode string that serializes the slot key, and a required
TERM that serializes its value. The slot element is used to serialize an
argument name-value pair in a term with named arguments. The order of
the slot elements is, therefore, not significant;

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 36 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/#List_of_RIF_Built-in_Predicates_and_Functions

<External>
<content>

<Expr>
<op> Const </op>
[<args rif:ordered="yes"> TERM* </args>?

|
<slot rif:ordered="yes">

<Name> Any Unicode string </Name>
TERM

<slot>*]
</Expr>

</content>
</External>

Editor's Note: The slotted, or named arguments form of the External TERM
construct is still under discussion (see also ISSUE-68). The working group seeks
feedback on whether or not it should be included in PRD.

Example 2.3.

a. The first example below shows one way to serialize, in RIF-PRD, the sum of
integer 1 and a variable ?x, where the addition conforms to the specification of the
builtin fn:numeric-add.

The prefix fn is associated with the namespace http://www.w3.org/2007/
rif-builtin-function#.

<External>
<content>

<Expr>
<op> <Const type="rif:iri"> fn:numeric-add </Const> </op>
<args rif:ordered="yes">

<Const type="xsd:integer"> 1 </Const>
<Var> x </Var>

</args>
</Expr>

</content>
</External>

b. Another example, that shows the RIF XML serialization of a call to the
application-specific nullary function today(), which symbol is defined in the
example's namespace http://rif.example.com/2008/joe#:

<External>
<content>

<Expr>
<op>

<Const type="rif:iri">

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 37 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/2005/rules/wg/track/issues/68
http://www.w3.org/2007/rif-builtin-function
http://www.w3.org/2007/rif-builtin-function

http://rif.example.com/2008/joe#today
</Const>

</op>
</Expr>

</content>
</External>

5.2.2 ATOMIC

The ATOMIC class is used to serialize atomic formulas: positional and named-
arguments atoms, equality, membership and subclass atomic formulas, frame
atomic formulas and externally defined atomic formulas.

As an abstract class, ATOMIC is not associated with specific XML markup in RIF-
PRD instance documents.

[Atom | Equal | Member | Subclass | Frame | External]

5.2.2.1 Atom

In RIF, the Atom element is used to serialize a positional atomic formula or an
atomic formula with named arguments.

The Atom element contains one op element, followed by zero or one args element
or zero or more slot arguments:

• The content of the op element must be a Const. It serializes the predicate
symbol (the name of a relation);

• The optional args element contains zero or more constructs from the
TERM abstract class. The args element is used to serialize the arguments
of a positional atomic formula. The order of the arg's sub-elements is,
therefore, significant and MUST be preserved. This emphasized by the
required value "yes" of the required attribute rif:ordered;

• Each optional slot element contains one required Name sub-element,
that contains an Unicode string that serializes the slot key, and a required
TERM that serializes its value. The slot element is used to serialize an
argument name-value pair in an atomic formula with named arguments.
The order of the slot elements is, therefore, not significant;

<Atom>
<op> Const </op>
[<args rif:ordered="yes"> TERM* </args>?

|
<slot rif:ordered="yes">

<Name> Any Unicode string </Name>
TERM

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 38 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

<slot>*]
</Atom>

Editor's Note: The slotted, or named arguments form of the Atom construct is
still under discussion (see also ISSUE-68). The working group seeks feedback
on whether or not it should be included in PRD.

Example 2.4. The example below shows the RIF XML serialization of the positional
atom owns(?c ?p), where the predicate symbol owns is defined in the example
namespace http://rif.example.com/2008/joe#.

<Atom>
<op>

<Const type="rif:iri">
http://rif.example.com/2008/joe#owns

</Const>
</op>
<args rif:ordered="yes">

<Var> c </Var>
<Var> p </Var>

</args>
</Atom>

5.2.2.2 Equal

In RIF, the Equal element is used to serialize equality atomic formulas.

The Equal element must contain one left sub-element and one right sub-
element. The content of the left and right elements must be a construct from
the TERM abstract class. The order of the sub-elements is not significant.

<Equal>
<left> TERM </left>
<right> TERM </right>

</Equal>

5.2.2.3 Member

In RIF, the Member element is used to serialize membership atomic formulas.

The Member element contains two unordered sub-elements:

• the instance elements must be a construct from the TERM abstract
class. It is required;

• the class element must be a construct from the TERM abstract class. It is
required as well.

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 39 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/2005/rules/wg/track/issues/68

<Member>
<instance> TERM </instance>
<class> TERM </class>

</Member>

Example 2.5. The example below shows the RIF XML serialization of a boolean
expression that tests whether the individual denoted by the variable ?c is a member
of the class Chicken that is defined in the example namespace
http://rif.example.com/2008/joe#.

<Member>
<instance> <Var> c </Var> </instance>
<class>

<Const type="rif:iri">
http://rif.example.com/2008/joe#Chicken

</Const>
</class>

</Member>

5.2.2.4 Subclass

In RIF, the Subclass element is used to serialize subclass atomic formulas.

The Subclass element contains two unordered sub-elements:

• the sub element must be a construct from the TERM abstract class. It is
required;

• the super elements must be a construct from the TERM abstract class. It
is required.

<Subclass>
_{TERM}
<super> TERM </super>

</Subclass>

5.2.2.5 Frame

In RIF, the Frame element is used to serialize frame atomic formulas.

Accordingly, a Frame element must contain:

• an object element, that contains an element of the TERM abstract class,
the content of which serializes the individual;

• zero to many slot elements, each containing a Prop element that
serializes an attribute-value pair as a pair of elements of the TERM
abstract class, the first one that serializes the name of the attribute (or
property); the second that serializes the attribute's value. The order of the
slot's sub-elements is significant and MUST be preserved. This is

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 40 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

emphasized by the required value "yes" of the required attribute
rif:ordered.

<Frame>
<object> TERM </object>
<slot rif:ordered="yes"> TERM TERM </slot>*

</Frame>

Example 2.6. The example below shows the RIF XML syntax that serializes an
expression that states that the object denoted by the variable ?c has the value
denoted by the variable ?a for the property Chicken/age that is defined in the
example namespace http://rif.example.com/2008/joe#.

<Frame>
<object> <Var> c </Var> </object>
<slot rif:ordered="yes">

<Const type="rif:iri">
ttp://rif.example.com/2008/joe#Chicken/age

</Const>
<Var> a </Var>

</slot>
</Frame>

Editor's Note: The example uses an XPath style for the key. How externally
specified data models and their elements should be referenced is still under
discussion (see ISSUE-37).

5.2.2.6 External

In RIF-PRD, the External element is also used to serialize an externally defined
atomic formula.

When it is a ATOMIC (as opposed to a TERM; that is, in particular, when it appears
in a place where an ATOMIC is expected, and not a TERM), the External element
contains one content element that contains one Atom element. The Atom
element serializes the externally defined atom properly said:

<External>
<content>

Atom
</content>

</External>

The op Const in the Atom element must be a symbol of type rif:iri that must
uniquely identify the externally defined predicate to be applied to the args TERMs.
It can be one of the builtin predicates specified for RIF dialects, as listed in section
List of RIF Builtin Predicates and Functions of the RIF data types and builtins
document, or it can be application specific. In the latter case, it is up to the

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 41 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/2005/rules/wg/track/issues/37
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/#List_of_RIF_Built-in_Predicates_and_Functions

producers and consumers of RIF-PRD rulesets that reference non-builtin
predicates to agree on their semantics.

Example 2.7. The example below shows the RIF XML serialization of an externally
defined atomic formula that tests whether the value denoted by the variable named
?a (e.g. the age of a chicken) is greater than the integer value 8, where the test is
intended to behave like the builtin predicate op:numeric-greater-than as specified in
XQuery 1.0 and XPath 2.0 Functions and Operators.

In the example, the prefix op: is associated with the namespace
http://www.w3.org/2007/rif-builtin-predicate#.

<External>
<content>

<Atom>
<op> <Const type="rif:iri"> op:numeric-greater-than </Const> </op>
<args rif:ordered="yes">

<Var> ?a </Var>
<Const type="xsd:decimal"> 8 </Const>

</args>
</Atom>

</content>
</External>

5.2.3 FORMULA

The FORMULA class is used to serialize condition formulas, that is, atomic formulas,
conjunctions, disjunctions, negations and existentials.

As an abstract class, FORMULA is not associated with specific XML markup in RIF-
PRD instance documents.

[ATOMIC | And | Or | NmNot | Exists]

5.2.3.1 ATOMIC

An atomic formula is serialized using a single ATOMIC statement. See specification
of ATOMIC, above.

5.2.3.2 And

A conjunction is serialized using the And element.

The And element contains zero or more formula sub-elements, each containing
an element of the FORMULA group.

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 42 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/TR/xpath-functions/#func-numeric-greater-than
http://www.w3.org/TR/xpath-functions/
http://www.w3.org/2007/rif-builtin-predicate

<And>
<formula> FORMULA </formula>*

</And>

5.2.3.3 Or

A disjunction is serialized using the Or element.

The Or element contains zero or more formula sub-elements, each containing an
element of the FORMULA group.

<Or>
<formula> FORMULA </formula>*

</Or>

5.2.3.4 NmNot

A negation is serialized using the NmNot element.

The NnNot element contains exactly one formula sub-element. The formula
element contains an element of the FORMULA group, that serializes the negated
statement.

<NmNot>
<formula> FORMULA </formula>

</NmNot>

Editor's Note: The name of that construct may change, including the tag of the
XML element.

5.2.3.5 Exists

An existentially quantified formula is serialized using the Exists element.

The Exists element contains:

• one or more declare sub-elements, each containing a Var element that
serializes one of the existentially quantified variables;

• exactly one required formula sub-element that contains an element from
the FORMULA abstract class: the FORMULA serializes the formula in the
scope of the quantifier.

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 43 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

<Exists>
<declare> Var </declare>+
<formula> FORMULA </formula>

</Exists>

Example 2.8. The example below shows the RIF XML serialization of a boolean
expression that tests whether the chicken denoted by variable ?c is older than 8
months, by testing the existence of a value, denoted by variable ?a, that is both the
age of ?c, as serialized as a Frame element, as in example 2.6, and greater than 8,
as serialized as an External ATOMIC, as in example 2.7.

<Exists>
<declare> <Var> a </Var> </declare>
<formula>

<And>
<Frame>

<object> <Var> c </Var> </object>
<slot rif:ordered="yes">

<Const type="rif:iri">
http://rif.example.com/2008/joe#Chicken/age

</Const>
<Var> a </Var>

</slot>
</Frame>
<External>

<content>
<Atom>

<op> <Const type="rif:iri"> op:numeric-greater-than </Const> </op>
<args rif:ordered="yes">

<Var> a </Var>
<Const type="xsd:decimal"> 8 </Const>

</args>
</Atom>

</content>
</External>

</And>
</formula>

</Exists>

5.3 Actions

This section specifies the XML syntax that is used to serialize the action part of a
rule supported by RIF-PRD.

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 44 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

5.3.1 ATOMIC_ACTION

The ATOMIC_ACTION class of elements is used to serialize the atomic actions:
assert and retract.

[Assert | Retract]

5.3.1.1 Assert

An atomic assertion action is serialized using the Assert element.

An atom (positional or with named arguments), a frame, a membership atomic
formula and a subclass atomic formula can be asserted.

The Assert element has one target sub-element that contains an Atom, a
Frame, a Member or a Subclass element that represents the facts to be added on
performing the action.

<Assert>
<target> [Atom | Frame | Member | Subclass] </target>

</Assert>

5.3.1.2 Retract

The Retract construct is used to serialize retract atomic actions, that result in
removing a fact from the fact base. Only atoms (positional or with named
arguments), frames and frame objects can be retracted.

The Retract element has one target sub-element that contains an Atom, a
Frame, or a TERM construct that represents the facts or the object to be removed
on performing the action.

<Retract>
<target> [Atom | Frame | TERM] </target>

</Retract>

Example 2.10. The example below shows the RIF XML representation of an action
that updates the chicken-potato ownership table by removing the predicate that
states that the chicken denoted by variable ?c owns the potato denoted by variable
?p. The predicate is represented as in example 2.4.

<Retract>
<target>

<Atom>

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 45 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

<op>
<Const type="rif:iri">

http://rif.example.com/2008/joe#owns
</Const>

</op>
<args rif:ordered="yes">

<Var> c </Var>
<Var> p </Var>

</args>
</Atom>

</target>
</Retract>

5.3.2 INITIALIZATION

The INITIALIZATION class of elements is used to serialized the constructs that
specify the initial value assigned an action variable, in an action variable
declaration: it can be a new frame identifier or the slot value of a frame.

As an abstract class, INITIALIZATION is not associated with specific XML
markup in RIF-PRD instance documents.

[New | Frame]

5.3.2.1 New

The New element is used to serialize the construct used to create a new frame
identifer.

The New element has an instance sub-element that contains a Var, which
serializes the action variable intended to be assigned the new frame identifier.

<New>
<instance> Var </instance>?

</New>

5.3.2.2 Frame

The Frame element is used, with restrictions, to the serialize the construct used to
assign an action variable the slot value of a frame.

In that position, a Frame must contain, in addition to its object sub-element, one
and only one slot sub-element, that contains a sub-element of the TERM class,
serializing the slot name, and a Var sub-element, that serializes the action variable
intended to be assigned the slot value.

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 46 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

<Frame>
<object> TERM </object>
<slot rif:ordered="yes">

TERM
Var

</slot>
</Frame>

5.3.3 ACTION_BLOCK

The ACTION_BLOCK class of constructs is used to represent the conclusion, or
action part, of a production rule serialized using RIF-PRD.

If action variables are declared in the action part of a rule, or if some atomic actions
are not assertions, the conclusion must be serialized as a full action block, using
the Do element. However, simple action blocks that contain only one or more assert
actions can be serialized like the conclusions of logic rules using RIF-Core or RIF-
BLD, that is, as a single asserted ATOMIC or as a conjunction of the asserted
ATOMICs.

As an abstract class, ACTION_BLOCK is not associated with specific XML markup
in RIF-PRD instance documents.

[Do | And | ATOMIC]

5.3.3.1 Do

An action block is serialized using the Do element.

A Do element contains:

• zero or more actionVar sub-elements, each of them used to serialize
one action variable declaration. Accordingly, an actionVar element must
contain a Var sub-element, that serializes the declared variable; followed
by a sub-element of the INITIALIZATION class, that serializes the initial
value assigned to the declared variable;

• one actions sub-element that serializes the sequence of atomic actions
in the action block, and that contains, accordingly, a sequence of one or
more sub-elements of the ATOMIC_ACTION class.

<Do>
<actionVar rif:ordered="yes">

Var
INITIALIZATION

</actionVar>*
<actions rif:ordered="yes">

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 47 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

ATOMIC_ACTION+
</actions>

</Do>

Example 2.9. The example below shows the RIF XML representation of an action
block that asserts a new 100 decigram potato.

<Do>
<actionVar>

<Var>p</Var>
<New>

<instance><Var>p</Var></instance>
</New>

</actionVar>
<actions rif:ordered="yes">

<Assert>
<target>

<Member>
<instance><Var>p</Var></instance>
<class>

<Const type="rif:iri">http://rif.example.com/2008/joe#Potato</Const>
</class>

</Member>
</target>

</Assert>
<Assert>

<target>
<Frame>

<object><Var>p</Var></object>
<slot rif:ordered="yes">

<Const type="rif:iri">http://rif.example.com/2008/joe#weight</Const>
<Const type="xsd:decimal">100</Const>

</slot>
</Frame>

</target>
</Assert>

</actions>
</Do>

5.3.3.2 And

An action block that contains only assert atomic actions can be serialized using the
And element, for compatibility with RIF-Core and RIF-BLD.

However, the atomic formulas allowed as conjuncts are restricted to atoms
(positional or with named arguments), frames, and membership or subclass atomic
formulas.

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 48 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

In that position, an And element must contain at least one sub-element.

<And>
<formula> [Atom | Frame | Member | Subclass] </formula>+

</And>

5.3.3.3 ATOMIC

For compatibility with RIF-Core and RIF-BLD, an action block that contains only a
single assert atomic action can be serialzed as the ATOMIC that serializes the
target of the assert action.

However, the only atomic formulas allowed in tat position are the ones that are
allowed as targets to an atomic assert action: atoms (positional or with named
arguments), frames, and membership or subclass atomic formulas.

[Atom | Frame | Member | Subclass]

5.4 Rules and Groups

This section specifies the XML constructs that are used, in RIR-PRD, to serialize
rules and groups.

5.4.1 RULE

In RIF-PRD, the RULE class of constructs is used to serialize rules, that is,
unconditional as well as conditional actions, or rules with bound variables.

As an abstract class, RULE is not associated with specific XML markup in RIF-PRD
instance documents.

[Implies | Forall | ACTION_BLOCK]

5.4.1.1 ACTION_BLOCK

An unconditional action block is serialized, in RIF-PRD XML, using the
ACTION_BLOCK class of construct.

5.4.1.2 Implies

Conditional actions are serialized, in RIF-PRD, using the XML element Implies.

The Implies element contains an optional if sub-element and a then sub-
element:

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 49 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

• the optional if element contains an element from the FORMULA class of
constructs, that serializes the condition of the rule;

• the required then element contains one element from the
ACTION_BLOCK class of constructs, that serializes its conlusion.

<Implies>
<if> FORMULA </if>?
<then> ACTION_BLOCK </then>

</Implies>

5.4.1.3 Forall

The Forall construct is used, in RIF-PRD, to represent rules with bound
variables.

The Forall element contains:

• one or more declare sub-elements, each containing a Var element that
represents one of the universally quantified variable;

• zero or more pattern sub-elements, each containing an element from
the FORMULA group of constructs, serializing one binding pattern;

• exactly one formula sub-element that serializes the formula in the scope
of the variables binding, and that contains an element of the RULE group.

<Forall>
<declare> Var </declare>+
<pattern> FORMULA </pattern>*
<formula> RULE </formula>

</Forall>

Editor's Note: Nested Foralls make explicit the scope of the declared
variables, and, thus, impose an order on the evaluation of the pattern and if
FORMULAs in a rule. That ordering and the use of patterns to constrain the
binding of variables may be of practical significance for some production rule
systems, but they are irrelevant with respect to the intended semantics of the
rules being interchanged (although they would be relevant if RIF-PRD was to be
extended to support some kind of "else" or "case" construct). In addition, RIF-
BLD does not allow nested Forall and does not support the association of
contraining patterns to declared variables. The working group seeks feedback
regarding whether nested Forall and constrainting pattern should be
supported in RIF-PRD, to the cost of reducing the interoperability with RIF-BLD.

Example 2.10. The example below shows how the CMP rule extract: "if a chicken
owns a potato and ..." could be serialized using a binding pattern FORMULA:

<Forall>
<declare><Var>chicken</Var></declare>

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 50 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/2005/rules/wiki/

<formula>
<Forall>

<declare><Var>potato</Var></declare>
<pattern>

<External>
<content>

<Atom>
<Const type="rif:iri">

http://rif.example.com/2008/joe#owns
</Const>
<Args rif:ordered="yes">

<Var>chicken</Var>
<Var>potato</Var>

</Args>
</Atom>

</content>
</External>

</pattern>
<formula>

...
</formula>

</Forall>
</formula>

</Forall>

5.4.2 Group

The Group construct is used to serialize a group.

The Group element has zero or one behavior sub-element and zero or more
sentence sub-elements:

• the behavior element contains
◦ zero or one ConflictResolution sub-element that contains

exactly one IRI. The IRI identifies the conflict resolution strategy
that is associated with the Group; and

◦ zero or one Priority sub-element that contains exactly one
signed integer between -10,000 and 10,000. The integer
associates a priority with the Group's sentences;

• a sentence element contains either a Group element or an element of
the RULE abstract class of constructs.

<Group>
<behavior>

<ConflictResolution> xsd:anyURI </ConflictResolution>?
<Priority> -10,000 ≤ xsd:int ≤ 10,000 </Priority>?

</behavior>?

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 51 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

<sentence> [RULE | Group] </sentence>*
</Group>

5.5 Constructs carrying no semantics

5.5.1 Document

The Document is the root element in a RIF-PRD instance document.

The Document contains zero or one payload sub-element, that must contain a
Group element.

<Document>
<payload> Group </payload>?

</Document>

5.5.2 Metadata

Metadata can be associated with any concrete class element in RIF-PRD: those
are the elements with a CamelCase tagname starting with an upper-case
character:

CLASSELT = [TERM | ATOMIC | FORMULA | ACTION | RULE | Group | Document]

An identifier can be associated to any instance element of the abstract CLASSELT
class of constructs, as an optional id sub-element that MUST contain a Const of
type rif:local or rif:iri.

Metadata can be included in any instance of a concrete class element using the
meta sub-element.

The RIF-PRD Frame construct is used to serialize metadata: the content of the
Frame's object sub-element identifies the object to which the metadata is
associated:, and the Frame's slots represent the metadata properly said as
property-value pairs.

If the all the metadata is related to the same object, the meta element can contain
a single Frame sub-element. If metadata related to several different objects need
be serialized, the meta role element can contain an And element with zero or more
formula sub-elements, each containing one Frame element.

<CLASSELT>
<id> Const </id>?
<meta>

[Frame
|

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 52 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

<And>
<formula> Frame </formula>*

</And>
]

</meta>?
other CLASSELT content

</CLASSELT>

Notice that the content of the meta sub-element of an instance of a RIF-PRD class
element is not necessarily associated to that same instance element: only the
content of the object sub-element of the Frame that represents the metadata
specifies what the metadata is about, not where it is included in the instance RIF
document.

It is suggested to use Dublin Core, RDFS, and OWL properties for metadata, along
the lines of http://www.w3.org/TR/owl-ref/#Annotations -- specifically
owl:versionInfo, rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy,
dc:creator, dc:description, dc:date, and foaf:maker.

Example 2.11. TBC

6 Presentation syntax

To make it easier to read, a non-normative, lightweight notation was introduced to
complement the mathematical english specification of the abstract syntax and the
semantics of RIF-PRD. This section specifies a presentation syntax for RIF-PRD,
that extends that notation. The presentation syntax is not normative. However, it
may help implementers by providing a more succinct overview of RIF-PRD syntax.

Editor's Note: An uptodate version of the RIF-PRD presentation synatx will be
included in a future version of this document.

7 References

[CIR04]
Production Systems and Rete Algorithm Formalisation, Cirstea H., Kirchner
C., Moossen M., Moreau P.-E. Rapport de recherche n° inria-00280938 -
version 1 (2004).

[CURIE]
CURIE Syntax 1.0 - A compact syntax for expressing URIs, W3C note 27
October 2005, M. Birbeck (ed.).

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 53 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/TR/owl-ref/#Annotations
http://hal.inria.fr/docs/00/28/09/38/PDF/rete.formalisation.pdf
http://www.w3.org/2001/sw/BestPractices/HTML/2005-10-27-CURIE

[HAK07]
Data Models as Constraint Systems: A Key to the Semantic Web, Hassan Ait-
Kaci, Constraint Programming Letters, 1:33--88, 2007.

[PLO04]
A Structural Approach to Operational Semantics, Gordon D. Plotkin, Journal of
Logic and Algebraic Programming, Volumes 60-61, Pages 17-139 (July -
December 2004).

[PRR07]
Production Rule Representation (PRR), OMG specification, version 1.0, 2007.

[RDF-CONCEPTS]
Resource Description Framework (RDF): Concepts and Abstract Syntax,
Klyne G., Carroll J. (Editors), W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/. Latest version
available at http://www.w3.org/TR/rdf-concepts/.

[RDF-SCHEMA]
RDF Vocabulary Description Language 1.0: RDF Schema, Brian McBride,
Editor, W3C Recommendation 10 February 2004, http://www.w3.org/TR/2004/
REC-rdf-schema-20040210/. Latest version available at http://www.w3.org/
TR/rdf-schema/.

[RFC-3066]
RFC 3066 - Tags for the Identification of Languages, H. Alvestrand, IETF,
January 2001, http://www.isi.edu/in-notes/rfc3066.txt.

[RFC-3987]
RFC 3987 - Internationalized Resource Identifiers (IRIs), M. Duerst and M.
Suignard, IETF, January 2005, http://www.ietf.org/rfc/rfc3987.txt.

[RIF-BLD]
RIF Basic Logic Dialect Harold Boley, Michael Kifer, eds. W3C Working Draft,
30 July 2008, http://www.w3.org/TR/2008/WD-rif-bld-20080730/. Latest
version available at http://www.w3.org/TR/rif-bld/.

[RIF-Core]
RIF Core Harold Boley, Gary Hallmark, Michael Kifer, Adrian Paschke, Axel
Polleres, Dave Reynolds, eds. W3C Editor's Draft, 18 December 2008,
http://www.w3.org/2005/rules/wg/draft/ED-rif-core-20081218/. Latest version
available at http://www.w3.org/2005/rules/wg/draft/rif-core/.

[RIF-DTB]
RIF Datatypes and Built-Ins 1.0 Axel Polleres, Harold Boley, Michael Kifer,
eds. W3C Editor's Draft, 18 December 2008, http://www.w3.org/2005/rules/
wg/draft/ED-rif-dtb-20081218/. Latest version available at http://www.w3.org/
2005/rules/wg/draft/rif-dtb/.

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 54 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf
http://www.omg.org/spec/PRR/1.0/Beta1/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://tools.ietf.org/html/rfc3066
http://www.isi.edu/in-notes/rfc3066.txt
http://tools.ietf.org/html/rfc3987
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/2008/WD-rif-bld-20080730/
http://www.w3.org/TR/2008/WD-rif-bld-20080730/
http://www.w3.org/TR/rif-bld/
http://www.w3.org/2005/rules/wg/draft/ED-rif-core-20081218/
http://www.w3.org/2005/rules/wg/draft/ED-rif-core-20081218/
http://www.w3.org/2005/rules/wg/draft/rif-core/
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20081218/
http://www.w3.org/2005/rules/wg/draft/rif-dtb/
http://www.w3.org/2005/rules/wg/draft/rif-dtb/

[XDM]
XQuery 1.0 and XPath 2.0 Data Model (XDM), W3C Recommendation, World
Wide Web Consortium, 23 January 2007. This version is http://www.w3.org/
TR/2007/REC-xpath-datamodel-20070123/. Latest version available at
http://www.w3.org/TR/xpath-datamodel/.

[XML-SCHEMA2]
XML Schema Part 2: Datatypes Second Edition, W3C Recommendation,
World Wide Web Consortium, 28 October 2004, http://www.w3.org/TR/2004/
REC-xmlschema-2-20041028/. Latest version available at http://www.w3.org/
TR/xmlschema-2/.

[XPath-Functions]
XQuery 1.0 and XPath 2.0 Functions and Operators, W3C Recommendation,
World Wide Web Consortium, 23 January 2007, http://www.w3.org/TR/2007/
REC-xpath-functions-20070123/. Latest version available at
http://www.w3.org/TR/xpath-functions/.

8 Appendix: XML schema

TBD

9 Appendix: Compatibility with RIF-BLD

9.1 Syntactic compatibility between RIF-PRD and RIF-BLD

Editor's Note: RIF-PRD and RIF-BLD [RIF-BLD]] share essentially the same
presentation syntax and XML syntax. Future versions of this, or another, RIF
document will include a complete, construct by construct, comparison table of
RIF-PRD and RIF-BLD presentation and XML syntaxes.

9.2 Semantic compatibility between RIF-PRD and RIF-BLD

The intended semantics of any RIF XML document which is both a syntactically
valid RIF-PRD document and a syntactically valid RIF-BLD document is the same
whether it is considered a RIF-PRD or a RIF-BLD document. For any input set of
facts, the set of rules contained in the document must produce the same output set
of facts whether it is consumed as a RIF-PRD or a RIF-BLD document.

Proof. TBC

RIF Production Rule Dialect W3C Editor's Draft 18 December 2008

Page 55 of 55 http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20081218/

http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123/
http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2007/REC-xpath-functions-20070123/
http://www.w3.org/TR/2007/REC-xpath-functions-20070123/
http://www.w3.org/TR/xpath-functions/

	RIF Production Rule Dialect
	W3C Editor's Draft 18 December 2008
	Abstract
	Status of this Document
	May Be Superseded
	Set of Documents
	Please Comment By 23 January 2009
	No Endorsement
	Patents

	Contents
	1 Overview
	2 Conditions
	2.1 Abstract syntax
	2.1.1 Terms
	2.1.2 Atomic formulas
	2.1.3 Formulas
	2.1.4 Well-formed formulas

	2.2 Semantics of condition formulas
	2.2.1 Semantic structures
	2.2.2 Interpretation of condition formulas
	2.2.3 Satisfaction of a condition
	2.2.4 Matching substitution

	3 Actions
	3.1 Abstract syntax
	3.1.1 Atomic actions
	3.1.2 Action blocks
	3.1.3 Well-formed action blocks

	3.2 Operational semantics of atomic actions

	4 Production rules and rulesets
	4.1 Abstract syntax
	4.1.1 Rules
	4.1.2 Groups
	4.1.3 Well-formed rules and groups

	4.2 Operational semantics of rules and rule sets
	4.2.1 Motivation and example
	4.2.2 Definitions and notational conventions
	4.2.3 Operational semantics of a production rule system
	4.2.4 Conflict resolution
	4.2.5 Halting test

	5 XML Syntax
	5.1 Notational conventions
	5.1.1 Namespaces
	5.1.2 BNF pseudo-schemas
	5.1.3 Syntactic components

	5.2 Conditions
	5.2.1 TERM
	5.2.1.1 Const
	5.2.1.2 Var
	5.2.1.3 External

	5.2.2 ATOMIC
	5.2.2.1 Atom
	5.2.2.2 Equal
	5.2.2.3 Member
	5.2.2.4 Subclass
	5.2.2.5 Frame
	5.2.2.6 External

	5.2.3 FORMULA
	5.2.3.1 ATOMIC
	5.2.3.2 And
	5.2.3.3 Or
	5.2.3.4 NmNot
	5.2.3.5 Exists

	5.3 Actions
	5.3.1 ATOMIC_ACTION
	5.3.1.1 Assert
	5.3.1.2 Retract

	5.3.2 INITIALIZATION
	5.3.2.1 New
	5.3.2.2 Frame

	5.3.3 ACTION_BLOCK
	5.3.3.1 Do
	5.3.3.2 And
	5.3.3.3 ATOMIC

	5.4 Rules and Groups
	5.4.1 RULE
	5.4.1.1 ACTION_BLOCK
	5.4.1.2 Implies
	5.4.1.3 Forall

	5.4.2 Group

	5.5 Constructs carrying no semantics
	5.5.1 Document
	5.5.2 Metadata

	6 Presentation syntax
	7 References
	8 Appendix: XML schema
	9 Appendix: Compatibility with RIF-BLD
	9.1 Syntactic compatibility between RIF-PRD and RIF-BLD
	9.2 Semantic compatibility between RIF-PRD and RIF-BLD

