
RIF Framework for Logic Dialects

W3C Editor's Draft 4 September 2009

This version:
http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

Latest editor's draft:
http://www.w3.org/2005/rules/wg/draft/rif-fld/

Previous version:
http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090702/ (color-coded diff)

Editors:
Harold Boley, National Research Council Canada
Michael Kifer, State University of New York at Stony Brook, USA

This document is also available in these non-normative formats: PDF version.

Copyright © 2009 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

Abstract

This document, developed by the Rule Interchange Format (RIF) Working Group,
defines a general RIF Framework for Logic Dialects (RIF-FLD). The framework
describes mechanisms for specifying the syntax and semantics of logic RIF dialects
through a number of generic concepts such as signatures, symbol spaces,
semantic structures, and so on. The actual dialects should specialize this
framework to produce their syntaxes and semantics.

Status of this Document

May Be Superseded

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C publications
and the latest revision of this technical report can be found in the W3C technical
reports index at http://www.w3.org/TR/.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 1 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/
http://www.w3.org/2005/rules/wg/draft/rif-fld/
http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090702/
http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/diff-from-20090702
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://www.w3.org/TR/
http://www.w3.org/TR/

Set of Documents

This document is being published as one of a set of 10 documents:

1. RIF Core Dialect
2. RIF Basic Logic Dialect
3. RIF Framework for Logic Dialects (this document)
4. RIF RDF and OWL Compatibility
5. RIF Datatypes and Built-Ins 1.0
6. RIF Production Rule Dialect
7. RIF Use Cases and Requirements
8. RIF Test Cases
9. RIF Combination with XML data

10. OWL 2 RL in RIF

Summary of Changes

There have been no substantive changes since the previous version. For details on
the minor changes see the change log and color-coded diff.

Please Comment By 23 October 2009

The Rule Interchange Format (RIF) Working Group seeks to gather experience
from implementations in order to increase confidence in the language and meet
specific exit criteria. This document will remain a Candidate Recommendation until
at least 23 October 2009. After that date, when and if the exit criteria are met, the
group intends to request Proposed Recommendation status.

Please send reports of implementation experience, and other feedback, to public-
rif-comments@w3.org (public archive). Reports of any success or difficulty with the
test cases are encouraged. Open discussion among developers is welcome at
public-rif-dev@w3.org (public archive).

No Endorsement

Publication as a Editor's Draft does not imply endorsement by the W3C
Membership. This is a draft document and may be updated, replaced or obsoleted
by other documents at any time. It is inappropriate to cite this document as other
than work in progress.

Patents

This document was produced by a group operating under the 5 February 2004
W3C Patent Policy. W3C maintains a public list of any patent disclosures made in
connection with the deliverables of the group; that page also includes instructions

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 2 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/2005/rules/wg/draft/ED-rif-core-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-bld-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-rdf-owl-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-ucr-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-test-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-xml-data-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-owl-rl-20090904/
http://www.w3.org/2005/10/Process-20051014/tr#substantive-change
http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090702/
http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/diff-from-20090702
http://www.w3.org/2005/rules/wg.html
http://www.w3.org/2005/rules/wiki/Implementations
http://www.w3.org/2005/rules/wiki/CR_Exit_Criteria
http://www.w3.org/2005/10/Process-20051014/tr.html#RecsPR
mailto:public-rif-comments@w3.org
mailto:public-rif-comments@w3.org
http://lists.w3.org/Archives/Public/public-rif-comments/
http://www.w3.org/2005/rules/wiki/Category:Test_Case
mailto:public-rif-dev@w3.org
http://lists.w3.org/Archives/Public/public-rif-dev/
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/38457/status

for disclosing a patent. An individual who has actual knowledge of a patent which
the individual believes contains Essential Claim(s) must disclose the information in
accordance with section 6 of the W3C Patent Policy.

Table of Contents

• 1 Overview of RIF-FLD
• 2 Syntactic Framework

◦ 2.1 Syntax of a RIF Dialect as a Specialization of RIF-FLD
◦ 2.2 Alphabet
◦ 2.3 Symbol Spaces
◦ 2.4 Terms
◦ 2.5 Schemas for Externally Defined Terms
◦ 2.6 Signatures
◦ 2.7 Presentation Syntax of a RIF Dialect
◦ 2.8 Well-formed Terms and Formulas
◦ 2.9 Annotations in the Presentation Syntax
◦ 2.10 EBNF Grammar for the Presentation Syntax of RIF-

FLD
• 3 Semantic Framework

◦ 3.1 Semantics of a RIF Dialect as a Specialization of RIF-
FLD

◦ 3.2 Truth Values
◦ 3.3 Datatypes
◦ 3.4 Semantic Structures
◦ 3.5 Annotations and the Formal Semantics
◦ 3.6 Interpretation of Non-document Formulas
◦ 3.7 Interpretation of Documents
◦ 3.8 Intended Semantic Structures
◦ 3.9 Logical Entailment

• 4 XML Serialization Framework
◦ 4.1 XML for the RIF-FLD Language
◦ 4.2 Mapping from the RIF-FLD Presentation Syntax to the

XML Syntax
▪ 4.2.1 Mapping of the Non-annotated RIF-FLD

Language
▪ 4.2.2 Mapping of RIF-FLD Annotations

• 5 Conformance of RIF Processors with RIF Dialects
• 6 References

◦ 6.1 Normative References
◦ 6.2 Informational References

• 7 Appendix: XML Schema for RIF-FLD
◦ 7.1 Baseline Schema Module
◦ 7.2 Skyline Schema Module

• 8 Appendix: Change Log (Informative)

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 3 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

1 Overview of RIF-FLD

The RIF Framework for Logic Dialects (RIF-FLD) is a formalism for specifying all
logic dialects of RIF, including the RIF Basic Logic Dialect [RIF-BLD] and [RIF-
Core] (albeit not [RIF-PRD], as the latter is not a logic-based RIF dialect). RIF-FLD
is a formalism in which both syntax and semantics are described through a number
of mechanisms that are commonly used for various logic languages, but are rarely
brought all together. Amalgamation of several different mechanisms is required
because the framework must be broad enough to accommodate several different
types of logic languages and because various advanced mechanisms are needed
to facilitate translation into a common framework. RIF-FLD gives precise definitions
to these mechanisms, but allows well-defined aspects to vary. The design of RIF
envisions that future standard logic dialects will be based on RIF-FLD. Therefore,
for any RIF dialect to become a standard, its development should start as a
specialization of FLD and extensions to (or, deviations from) FLD should be
justified.

The framework described in this document is very general and captures most of the
popular logic rule languages found in Databases, Logic Programming, and on the
Semantic Web. However, it is anticipated that the needs of future dialects might
stimulate further evolution of RIF-FLD. In particular, future extensions might include
a logic rendering of actions as found in production and reactive rule languages.
This would support Semantic Web services languages such as [SWSL-Rules] and
[WSML-Rules].

This document is mostly intended for the designers of future RIF dialects. All logic
RIF dialects should be derived from RIF-FLD by specialization, as explained in
Sections Syntax of a RIF Dialect as a Specialization of RIF-FLD and Semantics of
a RIF Dialect as a Specialization of RIF-FLD. In addition to specialization, to lower
the barrier of entry for their intended audiences, a dialect designer may choose to
also specify the syntax and semantics in a direct, but equivalent, way, which does
not require familiarity with RIF-FLD. For instance, the RIF Basic Logic Dialect [RIF-
BLD] is specified by specialization from RIF-FLD and also directly, without relying
on the framework. Thus, the reader who is only interested in RIF-BLD can proceed
directly to that document.

RIF-FLD has the following main components:

• Syntactic framework. This framework defines the mechanisms for
specifying the formal presentation syntax of RIF logic dialects by
specializing the presentation syntax of the framework. The presentation
syntax is used in RIF to define the semantics of the dialects and to
illustrate the main ideas with examples. This syntax is not intended to be a
concrete syntax for the dialects; it leaves out details such as the delimiters
of the various syntactic components, parenthesizing, precedence of
operators, and the like. Since RIF is an interchange format, it uses XML
as its only concrete syntax.

• Semantic framework. The semantic framework describes the mechanisms
that are used for specifying the models of RIF logic dialects.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 4 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

• XML serialization framework. This framework defines the general
principles that logic dialects are to use in specifying their concrete XML-
based syntaxes. For each dialect, its concrete XML syntax is a derivative
of the dialect's presentation syntax. It can be seen as a serialization of that
syntax.

Syntactic framework. The syntactic framework defines eleven types of RIF terms:

• Constants and variables. These terms are common to most logic
languages.

• Positional terms. These terms are commonly used in first-order logic. RIF-
FLD defines positional terms in a slightly more general way in order to
enable dialects with higher-order syntax, such as HiLog [CKW93] and
Relfun [RF99].

• Terms with named arguments. These are like positional terms except that
each argument of a term is named and the order of the arguments is
immaterial. Terms with named arguments generalize the notion of rows in
relational tables, where column headings correspond to argument names.

• Lists. These terms correspond to lists in logic programming, and are used
in the Basic Logic Dialect. Restricted versions of these terms are used in
the Core Dialect and the Production Rules Dialect.

• Frames. A frame term represents an assertion about an object and its
properties. These terms correspond to molecules of F-logic [KLW95].
There is syntactic similarity between terms with named arguments and
frames, since properties (or attributes) of an object resemble named
arguments. However, the semantics of these terms are different (see
Section Semantic Structures).

• Classification. These terms are used to define the subclass and class
membership relationships. There are two kinds of classification terms:
membership terms and subclass terms. Like frames, these terms were
borrowed from F-logic [KLW95].

• Equality. These terms are used to equate other terms.

It should be noted that [RIF-DTB] introduces a number of built-in equality
predicates for the various data types (for instance, pred:numeric-
equal or pred:boolean-equal). Those predicates have fixed
interpretations, which coincide with the interpretation of the equality terms
defined in this document when the latter are evaluated over data types.
However, outside of the data types, the interpretation of the equality terms
may vary and is determined by the contents of RIF documents. General
use of equality terms is supported in systems such as FLORA-2 [FL2],
and special cases are also allowed in Relfun [RF99].

• Formula terms. These terms are the ones for which truth values are
defined by the RIF semantic framework. Most dialects would treat such
terms in a special way and will impose various restrictions on the contexts
in which such terms will be allowed to occur. Some advanced dialects,
however, will have fewer such restrictions, which will make it possible to
reify formulas and manipulate them as objects.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 5 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/2005/rules/wg/draft/ED-rif-bld-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-core-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#pred-numeric-equal
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#pred-numeric-equal
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#pred-numeric-equal
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#pred-numeric-equal
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#pred-boolean-equal
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#pred-boolean-equal

• External. These terms are used to represent built-ins and external data
sources that are treated as "black boxes."

• Aggregation. These are the terms that are used to represent aggregation
functions over sets.

• Remote. These terms are used to represent queries to RIF documents
that are not part of the RIF document that contains these terms.

Terms are then used to define several types of RIF-FLD formulas. RIF dialects can
choose to permit all or some of the aforesaid categories of terms. In addition, RIF-
FLD introduces extension points, one of which allows the introduction of new kinds
of terms. An extension point is a keyword that is not a syntactic construct per se,
but a placeholder that is supposed to be replaced by specific syntactic constructs of
an appropriate kind. RIF-FLD defines several types of extension points: symbols
(NEWSYMBOL), connectives (NEWCONNECTIVE), quantifiers (NEWQUANTIFIER),
aggregate functions (NEWAGGRFUNC), and terms (NEWTERM).

The syntactic framework also defines the following specialization mechanisms:

• Symbol spaces.

Symbol spaces partition the set of non-logical symbols that correspond to
individual constants, predicates, and functions, and each partition is then
given its own semantics. A symbol space has an identifier and a lexical
space, which defines the "shape" of the symbols in that symbol space.
Some symbol spaces in RIF are used to identify Web entities and their
lexical space consists of strings that syntactically look like
internationalized resource identifiers [RFC-3987], or IRIs (e.g.,
http://www.w3.org/2007/rif#iri). Other symbol spaces are used to
represent the datatypes required by RIF (for example, http://www.w3.org/
2001/XMLSchema#integer).

• Signatures.

Signatures determine which terms and formulas are well-formed. They
constitute a generalization of the notion of sorts in classical first-order
logic [Enderton01]. Each nonlogical symbol (and some logical symbols,
like =) has an associated signature. A signature defines, in a precise way,
the syntactic contexts in which the symbol is allowed to occur.

For instance, the signature associated with a symbol p might allow p to
appear in a term of the form f(p), but disallow it to occur in a term like
p(a,b). The signature for f, on the other hand, might allow that symbol
to appear in f(p) and f(p,q), but disallow f(p,q,r) and f(f). In this
way, it is possible to control which symbols are used for predicates and
which for functions, where variables can occur, and so on.

Depending on their needs, dialects can decide which symbols have which
signatures.

• Restriction.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 6 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#rif-iri-space
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#xs-integer-space
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#xs-integer-space

A dialect might impose further restrictions on the form of a particular kind
of term or formula. For example, variables or aggregate terms might not
be allowed in certain places.

• Extension points. RIF dialects are required to replace extension points
with zero or more specific syntactic constructs of an appropriate kind.
Note that in this way extension becomes part of specialization.

Semantic framework. This framework defines the notion of a semantic structure
(also knows as interpretation in the literature [Enderton01, Mendelson97]).
Semantic structures are used to interpret formulas and to define logical entailment.
As with the syntax, this framework includes a number of mechanisms that RIF logic
dialects can specialize to suit their needs. These mechanisms include:

• Set of truth values. RIF-FLD is designed to accommodate dialects that
support reasoning with inconsistent and uncertain information. Most of the
logics that are designed to deal with these situations are multi-valued.
Consequently, RIF-FLD postulates that there is a set of truth values, TV,
which includes the values t (true) and f (false) and possibly others. For
example, the RIF Basic Logic Dialect [RIF-BLD] is two-valued, but other
dialects can have additional truth values.

• Semantic structures. Semantic structures determine how the different
symbols in the alphabet of a dialect are interpreted and how truth values
are assigned to formulas.

• Datatypes. Some symbol spaces that are part of the RIF syntactic
framework have fixed interpretations. For instance, symbols in the symbol
space http://www.w3.org/2001/XMLSchema#string are always interpreted
as sequences of Unicode characters, and a ≠ b for any pair of distinct
symbols. A symbol space whose symbols have a fixed interpretation in
any semantic structure is called a datatype.

• Entailment. This notion is fundamental to logic-based dialects. Given a set
of formulas (e.g., facts and rules) G, entailment determines which other
formulas necessarily follow from G. Entailment is the main mechanism
underlying query answering in Databases, Logic Programming, and the
various reasoning tasks in Description Logics.

A set of formulas G logically entails another formula g if for every semantic
structure I in some set S, if G is true in I then g is also true in I. Almost all
logics define entailment this way. The difference lies in which set S they
use. For instance, logics that are based on the classical first-order
predicate calculus, such as most Description Logics, assume that S is the
set of all semantic structures. In contrast, most Logic Programming
languages use default negation. Accordingly, the set S contains only the
so-called "minimal" Herbrand models [Lloyd87] of G and, furthermore, only
the minimal models of a special kind. See [Shoham87] for a more detailed
exposition of this subject.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 7 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#xs-string-space

XML serialization framework. This framework defines the general principles for
mapping the presentation syntax of RIF-FLD to the concrete XML interchange
format. This includes:

• A specification of the XML syntax for RIF-FLD, including the associated
XML Schema document.

• A specification of a one-to-one mapping from the presentation syntax of
RIF-FLD to its XML syntax. This mapping must map any well-formed
formula of RIF-FLD to an XML instance document that is valid with
respect to the aforesaid XML Schema document.

This specification is the latest draft of the RIF-FLD definition. Each RIF dialect that
is derived from RIF-FLD will be described in its own document. The first such
dialect, the RIF Basic Logic Dialect, is described in [RIF-BLD]. A core dialect, which
is defined by further specializing RIF-BLD, is specified in [RIF-Core].

2 Syntactic Framework

The next subsection explains how to derive the presentation syntax of a RIF dialect
from the presentation syntax of the RIF framework. The actual syntax of the RIF
framework is given in subsequent subsections.

In the (normative) subsections 2 to 9, the presentation syntax is defined using
"mathematical English," a special form of English for communicating mathematical
definitions, examples, etc. In the non-normative final subsection EBNF Grammar
for the Presentation Syntax of RIF-FLD, a grammar for a superset of the
presentation syntax is given using Extended Backus–Naur Form (EBNF).

2.1 Syntax of a RIF Dialect as a Specialization of RIF-FLD

The presentation syntax for a RIF dialect can be obtained from the general
syntactic framework of RIF by specializing the following parameters, which are
defined later in this document:

1. The alphabet of RIF-FLD can be restricted by omitting symbols; it can also
be expanded by actualizing the extension points NEWSYMBOL,
NEWCONNECTIVE, NEWQUANTIFIER, and NEWAGGRFUNC, i.e., by
replacing them with zero or more actual symbols of the appropriate kind.

2. An assignment of signatures to each constant and variable symbol.

Signatures determine which terms in the dialect are well-formed and
which are not.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 8 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

The exact way signatures are assigned depends on the dialect. An
assignment can be explicit or implicit (for instance, derived from the
context in which each symbol is used).

3. The choice of the types of terms supported by the dialect.

The RIF logic framework introduces the following types of terms:

◦ constant
◦ variable
◦ positional
◦ with named arguments
◦ lists
◦ equality
◦ frame
◦ class membership
◦ subclass
◦ aggregates
◦ remote term reference
◦ external
◦ formulas

A dialect might support all of these terms or just a subset. For instance,
some dialects might not support terms with named arguments or frame
terms or certain forms of external terms (e.g., external frames). A dialect
might even support additional kinds of terms that are not listed above (for
instance, typing terms of F-logic [KLW95]). This is done by actualizing the
extension point NEWTERM, i.e., by replacing it with zero or more new kinds
of terms.

4. The choice of symbol spaces supported by the dialect.

Symbol spaces determine the syntax of the constant symbols that are
allowed in the dialect. All RIF dialects are expected to support certain
symbols spaces (see the section Symbol Spaces). Dialects can also
introduce additional symbol spaces, such as a symbol space to represent
Skolem constants and functions.

5. The choice of the formulas supported by the dialect.

RIF-FLD offers the following kinds of formula terms "out of the box":

◦ Atomic
◦ Conjunction
◦ Disjunction
◦ Symmetric negation (classical, explicit, or strong)
◦ Default negation (as in logic programming)
◦ Rule (as in logic programming as opposed to the classical

material implication)
◦ Quantification (universal and existential)

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 9 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

◦ Remote (for querying remote RIF documents)
◦ External (built-in predicates and external black-box sources of

information)

A dialect might support all of these formulas or it might impose various
restrictions. For instance, the formulas allowed in the conclusion and/or
premises of implications might be restricted (e.g., [RIF-BLD] essentially
allows Horn rules only), certain types of quantification might be prohibited
(e.g., [RIF-BLD] disallows existential quantification in the rule head),
symmetric or default negation (or both) might not be allowed (as in RIF-
BLD), etc. The Core subdialect of RIF-BLD disallows equality formulas in
the conclusions of rules.

More interestingly, dialects can introduce additional types of formulas by
adding new connectives (e.g., classical implication or bi-implication) and
quantifiers through actualizing the extension points NEWCONNECTIVE and
NEWQUANTIFIER.

Note that although the presentation syntax of a RIF logic dialect is normative, since
semantics is defined in terms of that syntax, the presentation syntax is not intended
as a concrete syntax, and conformant systems are not required to implement it.

2.2 Alphabet

Definition (Alphabet). The alphabet of the presentation syntax of RIF-FLD
consists of the following disjoint subsets of symbols:

• A countably infinite set of constant symbols Const.

Constants are written as "literal"^^symspace, where literal is a
sequence of Unicode characters and symspace is an identifier for a
symbol space. This syntax is explained in Section Symbol Spaces.

• A countably infinite set of variable symbols Var.

Variables are written as Unicode strings preceded by the symbol ? (e.g.,
?x, ?ABC). This makes the sets Var and Const disjoint.

• A countably infinite set of argument names ArgNames. The set
ArgNames is disjoint from both Const and Var.

Argument names in ArgNames are written as Unicode strings that do not
start with a ? (e.g., Name, age). They are used in predicates and functions
that have named arguments.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 10 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

• A finite set of connective symbols, which includes And, Or, Naf, Neg,
:-, and NEWCONNECTIVE.

NEWCONNECTIVE is not an actual symbol in the alphabet, but rather a
RIF-FLD extension point, which must be actualized. Dialects are expected
to specialize the set of connectives by

◦ Replacing NEWCONNECTIVE with zero or more new connective
symbols. Dialects cannot keep the extension point.

◦ Dropping zero or more of the predefined connective symbols
listed above. Dialects cannot redefine the semantics of the
predefined connectives, however.

• A countably infinite set of quantifiers, which consists of the symbols
Exists?X1,...,?Xn and Forall?X1,...,?Xn, where ?X1, ..., ?Xn, n
≥ 1, are distinct variable symbols; plus the extension point,
NEWQUANTIFIER, which must be actualized. Dialects are supposed to
specialize this repertoire of quantifier symbols by

◦ Replacing NEWQUANTIFIER with zero or more new quantifier
symbols. Dialects cannot keep the extension point.

◦ Dropping zero or more of the predefined quantifier symbols listed
above. However, dialects cannot redefine the semantics of the
predefined quantifiers.

In the actual presentation syntax, we will be linearizing the predefined
quantifier symbols and write them as Exists ?X1,...,?Xn and
Forall ?X1,...,?Xn instead of Exists?X1,...,?Xn and
Forall?X1,...,?Xn.

Every quantifier symbol has an associated list of variables that are
bound by that quantifier. For the standard quantifiers Exists?X1,...,?Xn
and Forall?X1,...,?Xn, the associated list of variables is ?X1,...,?Xn.

• The symbols =, #, ##, ->, External, Dialect, Base, Prefix, Import,
and Module.

• The symbols for representing lists: List and OpenList.
• The symbols Group and Document.
• A countable set of aggregate symbols of the form sym ?V[?X1 ... ?Xn],

where n ≥ 0, sym is a symbol that denotes an aggregate function, and
?V, ?X1, ..., ?Xn are variable symbols. The symbol ?V is called the
comprehension variable of the aggregate symbol and ?X1, ..., ?Xn
are grouping variables.

RIF-FLD reserves the following symbols for standard aggregate functions:
Min, Max, Count, Avg, Sum, Prod, Set, and Bag. Aggregate functions
also have an extension point, NEWAGGRFUNC, which must be actualized.
Dialects can specialize the aforesaid set of aggregate functions by

◦ Replacing NEWAGGRFUNC with zero or more new symbols for
aggregate functions. Dialects cannot keep the extension point.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 11 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

◦ Dropping zero or more of the predefined aggregate functions
listed above. However, dialects cannot redefine the semantics of
the predefined aggregate functions.

• Auxiliary symbols (,), [,], {, }, <, >, |, ?, @, and ^^.
• An extension point NEWSYMBOL.

As with other extension points, this is not an actual symbol in the
alphabet, but a placeholder that dialects are supposed to replace with
zero or more actual new alphabet symbols.

The symbol Naf represents default negation, which is used in rule languages with
logic programming and deductive database semantics. Examples of default
negation include Clark's negation-as-failure [Clark87], the well-founded negation
[GRS91], and stable-model negation [GL88]. The name of the symbol Naf used
here comes from negation-as-failure but in RIF-FLD this can refer to any kind of
default negation.

The symbol Neg represents symmetric negation (as opposed to default negation,
which is asymmetric because completely different inference rules are used to
derive p and Naf p). Examples of symmetric negation include classical first-order
negation, explicit negation, and strong negation [APP96].

The symbols =, #, and ## are used in formulas that define equality, class
membership, and subclass relationships, respectively. The symbol -> is used in
terms that have named arguments and in frame terms. The symbol External
indicates that an atomic formula or a function term is defined externally (e.g., a
built-in), Dialect is a directive used to indicate the dialect of a RIF document (for
those dialects that require this), the symbols Base and Prefix enable abridged
representations of IRIs, and the symbol Import is an import directive. The Module
directive is used to connect remote terms with the actual remote RIF documents.

Finally, the symbol Document is used for specifying RIF-FLD documents and the
symbol Group is used to organize RIF-FLD formulas into collections. ☐

2.3 Symbol Spaces

Throughout this document, we will be using the following abbreviations:

• xs: stands for the XML Schema URI http://www.w3.org/2001/
XMLSchema#

• rdf: stands for http://www.w3.org/1999/02/22-rdf-syntax-
ns#

• pred: stands for http://www.w3.org/2007/rif-builtin-
predicates#

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 12 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

• rif: stands for the URI of RIF, http://www.w3.org/2007/rif#

These and other abbreviations will be used as prefixes in the compact URI-like
notation [CURIE], a notation for succinct representation of IRIs [RFC-3987]. The
precise meaning of this notation in RIF is defined in [RIF-DTB].

The set of all constant symbols in a RIF dialect is partitioned into a number of
subsets, called symbol spaces, which are used to represent XML Schema
datatypes, datatypes defined in other W3C specifications, such as
rdf:XMLLiteral, and to distinguish other sets of constants. All constant symbols
have a syntax (and sometimes also semantics) imposed by the symbol space to
which they belong.

Definition (Symbol space). A symbol space is a named subset of the set of all
constants, Const. The semantic aspects of symbol spaces will be described in
Section Semantic Framework. Each symbol in Const belongs to exactly one
symbol space.

Each symbol space has an associated lexical space and a unique identifier. More
precisely,

• The lexical space of a symbol space is a non-empty set of Unicode
character strings.

• The identifier of a symbol space is a sequence of Unicode characters
that form an absolute IRI [RFC-3987].

• Different symbol spaces cannot share the same identifier.

The identifiers for symbol spaces are not themselves constant symbols in RIF. ☐

To simplify the language, we will often use symbol space identifiers to refer to the
actual symbol spaces (for instance, we may use "symbol space xs:string"
instead of "symbol space identified by xs:string").

To refer to a constant in a particular RIF symbol space, we use the following
presentation syntax:

"literal"^^symspace

where literal is called the lexical part of the symbol, and symspace is the
identifier of the symbol space. Here literal is a sequence of Unicode characters
that must be an element in the lexical space of the symbol space symspace. For
instance, "1.2"^^xs:decimal and "1"^^xs:decimal are syntactically valid
constants because 1.2 and 1 are members of the lexical space of the XML Schema
datatype xs:decimal. On the other hand, "a+2"^^xs:decimal is not a
syntactically valid symbol, since a+2 is not part of the lexical space of
xs:decimal.

The set of all symbol spaces that partition Const is considered to be part of the
logic language of RIF-FLD.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 13 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#rif-xmlliteral-space

RIF requires that all dialects include the symbol spaces listed and described in
Section Constants and Symbol Spaces of [RIF-DTB] as part of their language.
These symbol spaces include constants that belong to several important XML
Schema datatypes, certain RDF datatypes, and constant symbols specific to RIF.
The latter include the symbol spaces rif:iri and rif:local, which are used to
represent internationalized resource identifiers (IRIs [RFC-3987]) and constant
symbols that are not visible outside of the RIF document in which they occur,
respectively. Documents that are exchanged through RIF can use additional
symbol spaces (for instance, a symbol space to represent Skolem constants and
functions).

We will often refer to constant symbols that come from a particular symbol space,
X, as X constants. For instance, the constants in the symbol space rif:iri will be
referred to as IRI constants or rif:iri constants and the constants found in the
symbol space rif:local as local constants or rif:local constants.

2.4 Terms

The most basic construct of a logic language is a term. RIF-FLD supports many
kinds of terms: constants, variables, the regular positional terms, plus terms with
named arguments, equality, classification terms, frames, and more. The word
"term" will be used to refer to any kind of term.

Definition (Term). A term can have one of the following forms:

1. Constants and variables. If t ∈ Const or t ∈ Var then t is a simple
term.

2. Positional terms. If t and t1, ..., tn are terms then t(t1 ... tn) is a
positional term.

Positional terms in RIF-FLD generalize the regular notion of a term used
in first-order logic. For instance, the above definition allows variables
everywhere, as in ?X(?Y ?Z(?V "12"^^xs:integer)), where ?X, ?Y,
?Z, and ?V are variables. Even
?X("abc"^^xs:string ?W)(?Y ?Z(?V "33"^^xs:integer)) is a
positional term (as in HiLog [CKW93]).

3. Terms with named arguments. A term with named arguments is of the
form t(s1->v1 ... sn->vn), where t, v1, ..., vn are terms, and s1, ...,
sn are (not necessarily distinct) symbols from the set ArgNames.

The term t here represents a predicate or a function; s1, ..., sn represent
argument names; and v1, ..., vn represent argument values. Terms with
named arguments are like regular positional terms except that the
arguments are named and their order is immaterial. Note that a term with

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 14 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#sec-symbol-spaces
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#rif-iri-space
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#rif-local-space

no arguments, like f(), is, trivially, both a positional term and a term with
named arguments.

For instance, "person"^^xs:string("http://example.com/
name"^^rif:iri->?Y "http://example.com/
address"^^rif:iri->?Z), ?X("123"^^xs:integer ?W)(arg-
>?Y arg2->?Z(?V)), and
"Closure"^^rif:local("http://example.com/
relation"^^rif:iri->"http://example.com/
Flight"^^rif:iri)("from"^^rif:local->?X
"to"^^rif:local->?Y) are terms with named arguments. The second
of these named-argument terms uses a positional term,
?X("123"^^xs:integer ?W), in the role of the function, and the third
term's function is itself represented by a named-argument term.

4. List terms. There are two kinds of list terms: open and closed.
◦ A closed list has the form List(t1 ... tm), where m≥0 and
t1, ..., tm are terms.

◦ An open list (or a list with a tail) has the form OpenList(t1
... tm t), where m>0 and t1, ..., tm, t are terms. Open lists
are written in the presentation syntax as follows: List(t1 ...
tm | t).

The last argument, t, represents the tail of the list and so it is
normally a list as well. However, the syntax does not restrict t in
any way: it could be an integer, a variable, another list, or, in fact,
any term. An example is List(1 2 | 3). This is not an
ordinary list, where the last argument, 3, would represent the tail
of a list (and thus would also be a list, which 3 is not). Such
general open lists correspond to Lisp's dotted lists [Steele90].
Note that they can be the result of instantiating an open list with a
variable in the tail, hence are hard to avoid. For instance,
List(1 2 | 3) is List(1 2 | ?X), where the variable ?X is
replaced with 3.

A closed list of the form List() (i.e., a list in which m=0) is called the
empty list.

5. Equality terms. An equality term has the form t = s, where t and s are
terms.

6. Classification terms. There are two kinds of classification terms: class
membership terms (or just membership terms) and subclass terms.

◦ t#s is a membership term if t and s are terms.
◦ t##s is a subclass term if t and s are terms.

Classification terms are used to describe class hierarchies.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 15 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

7. Frame terms. t[p1->v1 ... pn->vn] is a frame term (or simply a
frame) if t, p1, ..., pn, v1, ..., vn, n ≥ 0, are terms.

Frame terms are used to describe properties of objects. As in the case of
the terms with named arguments, the order of the properties pi->vi in a
frame is immaterial.

8. Externally defined terms. If t is a constant, positional term, a term with
named arguments, an equality, a classification, or a frame term then
External(t loc) is an externally defined term.

Such terms are used for representing built-in functions and predicates as
well as "procedurally attached" terms or predicates, which might exist in
various rule-based systems, but are not specified by RIF. The loc part in
an external term is intended to play the role of a locator of the source that
defines the external term t. It must uniquely identify the external source.
The exact form of the locator loc, the protocol that associates locators
with external sources, and the type of the imported documents is left to
dialects to specify. However, all dialects must support the form <IRI>,
where IRI is a sequence of Unicode characters that forms an IRI.

This syntax enables very flexible representations for externally defined
information sources: not only predicates and functions, but also frames,
classification, and equality terms can be used. In this way, external
sources can be modeled in an object-oriented way. For instance,
External("http://example.com/
acme"^^rif:iri["http://example.com/mycompany/
president"^^rif:iri(?Year) -> ?Pres]
<http://example.com/acme>) could be a representation for an
external method "http://example.com/mycompany/
president"^^rif:iri in an external object identified by the IRI
http://example.com/acme.

Since, in most cases, external terms are expected to be based on
predicates, RIF-FLD also permits a shorthand notation: If t is a positional
or a named-argument term of the form p(...), then External(t) is
considered to be a shorthand for External(t <p*>), where p* is the
IRI corresponding to p (for instance, if p is "http://example.com/
foobar"^^rif:iri then p* is http://example.com/foobar).

9. Formula term. If S is a connective or a quantifier symbol and t1, ..., tn are
terms then S(t1 ... tn) is a formula term.

Formula terms correspond to compound formulas in logic, i.e., formulas
that are constructed from atomic formulas by combining them with
connectives and quantifiers. For better visual appeal, some connectives
(e.g., rule implication, :-, and default negation, Naf) may be written in

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 16 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

infix or prefix form (e.g., a :- b and Naf a), but the above function
application form is considered to be canonical.

Let φ be a formula term of the form S(t1 ... tn), where S is a
quantifier, and let ?X1,...,?Xn be a list of variables bound by S. We say
that all occurrences of these variables are bound in the formula term φ. In
general, if τ is a term and ψ a formula term that occurs in τ then all
occurrences of the variables that are bound in φ are also said to be bound
in τ. The occurrences of variables in a term that are not bound are said to
be free. A term that has no free occurrences of variables is closed.

10. Aggregate term. An aggregate term has the form sym ?V[?X1
... ?Xn](τ), where sym ?V[?X1 ... ?Xn] is an aggregate symbol, n≥0,
and τ is a term. For readability, we will usually write aggregate terms as
sym{?V [?X1 ... ?Xn] | τ}. If n=0, we will omit the [...] part.
Note that aggregates can be nested, i.e., τ can contain aggregate terms.

In addition, it is required that the variables ?V, ?X1, ..., ?Xn have free
occurrences in τ, and all occurrences of other variables in τ are bound.

The comprehension variable ?V and the grouping variables ?X1, ..., ?Xn of
the symbol sym ?V[?X1 ... ?Xn] are also said to be the comprehension
and grouping variables of the above aggregate term. The comprehension
variable ?V is considered bound by the aggregation term, but the grouping
variables ?X1, ..., ?Xn remain free.

As a practical convenience, dialects may allow more general terms in
place of the comprehension variable, similarly to Prolog's findall/3
built-in. In this case, sym{Term [?X1 ... ?Xn] | τ} is treated as a
shorthand for sym{?V [?X1 ... ?Xn] | And(τ ?V=Term)}.

11. Remote term reference. A remote term reference (also called remote
term) is a term of the form φ@r where φ is a term other than a remote
term; r is a constant, variable, a positional, or a named-argument term.

Remote terms are used to query remote RIF documents, called remote
modules. Here φ is the actual query and r is a reference used to identify
the remote module. Remote terms should be contrasted with external
terms, which are used to query external sources that are not RIF
documents. Since remote terms refer to remote RIF documents, their
semantics is defined by RIF-FLD. In contrast, external terms are used to
query external opaque sources, which are not RIF documents. So, their
semantics is opaque in RIF.

12. NEWTERM. This is not a specific kind of term, but an extension point;
dialects are supposed to replace it with zero or more new types of terms.
☐

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 17 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

The above definitions are very general. They make no distinction between constant
symbols that represent individuals, predicates, and function symbols. The same
symbol can occur in multiple contexts at the same time. For instance, if p, a, and b
are symbols then p(p(a) p(a p c)) is a term. Even variables and general
terms are allowed to occur in the position of predicates and function symbols, so
p(a)(?v(a c) p) is also a term.

Furthermore, the extensible set of quantifiers and connectives allows dialects to
introduce additional features, which could include modal operators, bounded
quantification, rule labels, and so on. For instance, to add labels to formulas, as
required by some rule languages, a dialect could introduce a new connective,
Label, and formulas of the form Label(t φ), where t could be a positional term
and φ a formula term. (Note that RIF-FLD also supports a very general form of
annotations, which can be used to assign identifiers to rules. However, annotations
do not affect the semantics of RIF dialects, so they cannot be used to label rules in
dialects where rule labels do affect the semantics. It is in those cases that RIF
dialect designers might choose to introduce a special connective, like Label
above.)

Frame, classification, and other terms can be freely nested, as exemplified by
p(?X q#r[p(1,2)->s](d->e f->g)). Some language environments, like
FLORA-2 [FL2], OO jDREW [OOjD], NxBRE [NxBRE], and CycL [CycL] support
fairly large (partially overlapping) subsets of RIF-FLD terms, but most languages
support much smaller subsets. RIF dialects are expected to carve out the
appropriate subsets of RIF-FLD terms, and the general form of the RIF logic
framework allows a considerable degree of freedom.

Observe that the argument names of frame terms, p1, ..., pn, are terms and, as a
special case, can be variables. In contrast, terms with named arguments can use
only the symbols from ArgNames to represent their argument names. They cannot
be constants from Const or variables from Var. The reason for this restriction has
to do with the complexity of unification, which is integral part of many inference
rules underlying first-order logic. We are not aware of any rule language where
terms with named arguments use anything more general than what is defined here.

Dialects can restrict the contexts in which the various terms are allowed by using
the mechanism of signatures. The RIF-FLD language associates a signature with
each symbol (both constant and variable symbols) and uses signatures to define
well-formed terms. Each RIF dialect is expected to select appropriate signatures for
the symbols in its alphabet, and only the terms that are well-formed according to
the selected signatures are allowed in that particular dialect.

Example 1 (Terms)

• Positional term: "http://example.com/ex1"^^rif:iri(1
"http://example.com/ex2"^^rif:iri(?X 5) "abc")

• Term with named arguments: "http://example.com/
Person"^^rif:iri(id->"http://example.com/

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 18 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

John"^^rif:iri "http://example.com/age"^^rif:iri->?X
"http://example.com/spouse"^^rif:iri->?Y)

• Frame term: "http://example.com/John"^^rif:iri[age->?X
spouse->?Y]

• Lists
◦ Empty list: List()
◦ Closed list with variable inside: List("a"^^rif:local ?Y
"c"^^rif:local)

◦ Open list with variables: List("a"^^rif:local ?Y
"c"^^xs:string | ?Z)

◦ Equality term with lists inside: List(?Head | ?Tail) =
List("a"^^rif:local ?Y "c"^^xs:string)

◦ Nested list: List("a"^^rif:local List(?X
"b"^^rif:local) "c"^^xs:string)

• Classification terms
◦ Membership: ?X # ?Y
◦ Subclass: ?X ## "http://example.com/
ex1"^^rif:iri(?Y)

◦ Membership: "http://example.com/John"^^rif:iri #
"http://example.com/Person"^^rif:iri

◦ Subclass: "http://example.com/Student"^^rif:iri ##
"http://example.com/Person"^^rif:iri

• External term: External(pred:numeric-greater-than(?diffdays
10)))

• Formula terms
◦ :-("p"^^rif:local(?X) ?X("q"^^xs:string)) (usually

written as "p"^^rif:local(?X) :- ?X("q"^^xs:string))
◦ Forall?X,?Y(Exists?Z("p"^^rif:local(?X ?Y ?Z)))

(usually written as Forall ?X ?Y (Exists ?Z
("p"^^rif:local(?X ?Y ?Z)))

◦ Or("http://example.com/to-be"^^rif:iri(?X)
Neg("http://example.com/to-be"^^rif:iri(?X)))

• Aggregate term: avg{?Sal [?Dept]|Exists ?Empl
"http://example.com/
salary"^^rif:local(?Empl ?Dept ?Sal)}

• Remote term: ?O[?N -> "John"^^rif:string
"http://example.com/salary"^^rif:iri -
> ?S]@"http://acme.foo"^^xs:anyURI

2.5 Schemas for Externally Defined Terms

This section introduces the notion of external schemas, which serve as templates
for externally defined terms. These schemas determine which externally defined
terms are acceptable in a RIF dialect. Externally defined terms include RIF built-ins,

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 19 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

which are specified in [RIF-DTB], but are more general. They are designed to
accommodate the ideas of procedural attachments and querying of external data
sources. Because of the need to accommodate many different possibilities, the RIF
logical framework supports a very general notion of an externally defined term.
Such a term is not necessarily a function or a predicate -- it can be a frame, a
classification term, and so on.

Definition (Schema for external term). An external schema has the form (?X1
... ?Xn; τ; loc) where

• loc is the locator for an external source.
• τ is a term of one of these kinds: constant, positional, named-argument,

equality, classification, frame.
• ?X1 ... ?Xn is a list of all distinct variables that occur in τ

The names of the variables in an external schema are immaterial, but their order is
important. For instance, (?X ?Y; ?X["foo"^^xs:string->?Y]; loc) and
(?V ?W; ?V["foo"^^xs:string->?W]; loc) are considered to be
indistinguishable, but (?X ?Y; ?X["foo"^^xs:string->?Y]; loc) and
(?Y ?X; ?X["foo"^^xs:string->?Y]; loc) are viewed as different
schemas.

An external term External(t loc1) is an instantiation of an external schema
(?X1 ... ?Xn; τ; loc) iff loc1=loc and t can be obtained from τ by a
simultaneous substitution ?X1/s1 ... ?Xn/sn of the variables ?X1 ... ?Xn
with terms s1 ... sn, respectively. Some of the terms si can be variables
themselves. For example, External(?Z["foo"^^xs:string-
>f("a"^^rif:local ?P)] loc) is an instantiation of
(?X ?Y; ?X["foo"^^xs:string->?Y]; loc) by the substitution ?X/
?Z ?Y/f("a"^^rif:local ?P). ☐

Observe that a variable cannot be an instantiation of an external schema, since τ
in the above definition cannot be a variable. It will be seen later that this implies
that a term of the form External(?X loc) is not well-formed in RIF.

The intuition behind the notion of an external schema, such as
(?X ?Y; ?X["foo"^^xs:string->?Y] <http://example.com/acme>)
and (?V; pred:isTime(?V)" <pred:isTime>), is that
?X["foo"^^xs:string->?Y] or pred:isTime(?V) are invocation patterns for
querying external sources, and instantiations of those schemas correspond to
concrete invocations. Thus,
External("http://foo.bar.com"^^rif:iri["foo"^^xs:string-
>"123"^^xs:integer]" <http://example.com/acme>) and
External(pred:isTime("22:33:44"^^xs:time)" <pred:isTime>)
are examples of invocations of external terms -- one querying the external source
identified by the IRI http://example.com/acme and the other invoking the built-
in identified by the IRI pred:isTime.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 20 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

Recall that one-argument externals, such as External(t) are shortcuts of two-
argument externals. So, we define a one-argument external to be an instantiation
of an external schema iff its corresponding two-argument form is an instantiation of
that schema.

Definition (Coherent set of external schemas). A set Ε of external schemas is
coherent if there is no term, t, that is an instantiation of two distinct schemas in Ε.
☐

The intuition behind this notion is to ensure that any use of an external term is
associated with at most one external schema. This assumption is relied upon in the
definition of the semantics of externally defined terms. Note that the coherence
condition is easy to verify syntactically and that it implies that schemas like
(?X ?Y; ?X["foo"^^xs:string->?Y]; loc) and
(?Y ?X; ?X["foo"^^xs:string->?Y]; loc), which differ only in the order
of their variables, cannot be in the same coherent set.

It is important to keep in mind that external schemas are not part of the language in
RIF, since they do not appear anywhere in RIF expressions. Instead, like
signatures, which are defined below, they are best thought of as part of the
grammar of the language. In particular, they will be used to determine which
external terms, i.e., the terms of the form External(t loc) are well-formed.

2.6 Signatures

In this section we introduce the concept of a signature, which is a key mechanism
that allows RIF-FLD to control the context in which the various symbols are allowed
to occur. For instance, a symbol f with signature {(term term) => term,
(term) => term} can occur in terms like f(a b), f(f(a b) a), f(f(a)),
etc., if a and b have signature term. But f is not allowed to appear in the context
f(a b a) because there is no =>-expression in the signature of f to support such
a context.

The above example provides intuition behind the use of signatures in RIF-FLD.
Much of the development, below, is inspired by [CK95]. It should be kept in mind
that signatures are not part of the logic language in RIF, since they do not appear
anywhere in RIF-FLD formulas. Instead they are part of the grammar: they are
used to determine which sequences of tokens are in the language and which are
not. The actual way by which signatures are assigned to the symbols of the
language may vary from dialect to dialect. In some dialects (for example [RIF-
BLD]), this assignment is derived from the context in which each symbol occurs
and no separate language for signatures is used. Other dialects may choose to
assign signatures explicitly. In that case, they would require a concrete language

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 21 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

for signatures (which would be separate from the language for specifying the logic
formulas of the dialect).

Definition (Signature name). Let SigNames be a non-empty, partially-ordered
finite or countably infinite set of symbols, called signature names. Since
signatures are not part of the logic language, their names do not have to be disjoint
from Const, Var, and ArgNames. We require that this set includes at least the
following reserved signature names:

• atomic -- used to represent the syntactic context where atomic formulas
are allowed to appear.

• formula -- represents the context where formulas (atomic or composite)
may appear.

• ∞-connective-- the signature for the connectives, such as And and Or,
that can take any number of arguments.

• 2-connective -- the signature for the connectives, such as the rule
implication connective :-, that take exactly two arguments.

• 1-connective -- the signature for the connectives that take exactly one
argument. In our case, this signature will be used for the negation
connectives and the quantifiers Forall and Exists.

• = -- used for representing contexts where equality terms can appear.
• # -- a signature name reserved for membership terms.
• ## -- a signature reserved for subclass terms.
• -> -- a signature reserved for frame terms.
• aggregate -- a signature reserved for aggregate functions.
• remote -- a signature reserved for the symbol @ that is used to build

remote terms.
• list -- a signature reserved for the symbol List that is used to

represent closed lists.
• openlist -- a signature reserved for the symbol OpenList that is used

to represent open lists. ☐

Dialects may introduce additional signature names. For instance, RIF Basic Logic
Dialect [RIF-BLD] introduces the signature name individual. The partial order
on SigNames is dialect-specific; it is used in the definition of well-formed terms
below.

We use the symbol < to represent the partial order on SigNames. Informally, α <
β means that terms with signature α can be used wherever terms with signature β
are allowed. We will write α ≤ β if either α = β or α < β.

Definition (Signature). A signature has the form η{e1, ..., en, ...} where
η ∈ SigNames is the name of the signature and {e1, ..., en, ...} is a
countable set of arrow expressions. Such a set can thus be infinite, finite, or even
empty. In RIF-BLD, signatures can have at most one arrow expression. Other
dialects (such as one for HiLog [CKW93] and Relfun [RF99], for example) may

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 22 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

require polymorphic symbols and thus allow signatures with more than one arrow
expression in them.

An arrow expression is defined as follows:

• If κ, κ1, ..., κn ∈ SigNames, n≥0, are signature names then (κ1 ...
κn) ⇒ κ is a positional arrow expression.

For instance, () ⇒ term and (term) ⇒ term are positional arrow
expressions, if term is a signature name.

• If κ, κ1, ..., κn ∈ SigNames, n≥0, are signature names and p1, ..., pn ∈
ArgNames are argument names then (p1->κ1 ... pn->κn) => κ is
an arrow expression with named arguments.

For instance, (arg1->term arg2->term) => term is an arrow
signature expression with named arguments. The order of the arguments
in arrow expressions with named arguments is immaterial, so any
permutation of arguments yields the same expression. ☐

RIF dialects are always associated with sets of coherent signatures, defined next.
The overall idea is that a coherent set of signatures must include all the predefined
signatures (such as signatures for equality and classification terms) and the
signatures included in a coherent set must not conflict with each other. For
instance, two different signatures should not have identical names and if one
signature is said to extend another then the arrow expressions of the
supersignature should be included among the arrow expressions of the
subsignature (a kind of an arrow expression "inheritance").

Definition (Coherent signature set). A set Σ of signatures is coherent iff

1. Σ contains the special signatures atomic{ } and formula{ }, which
represent the context of atomic formulas and more generally, composite
formulas, respectively. Furthermore, it is required that atomic <
formula.

2. Σ contains the special signature ∞-connective{e1, ..., en, ...},
where each en has the form (formula ... formula) ⇒ formula
(the left-hand side of this signature is a sequence of n symbols formula).
This signature is assigned to the connectives And and Or.

3. Σ contains the special signature 2-connective{(formula formula)
⇒ formula}. This signature is assigned to the rule implication
connective.

4. Σ contains the signature 1-connective{(formula) ⇒ formula}.
This signature is assigned to the negation connectives Naf and Neg, and
to the reserved quantifiers of RIF-FLD, Exists?X1,...,?Xn and
Forall?X1,...,?Xn, for all variable sequences ?X1,...,?Xn and n ≥
0.

5. Σ contains the signature ={e1, ..., en, ...} for the equality symbol.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 23 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

All arrow expressions ei here have the form (κ κ) ⇒ γ (the arguments
in an equation must be compatible) and at least one of these expressions
must have the form (κ κ) ⇒ atomic (i.e., equation terms are also
atomic formulas). Dialects may further specialize this signature.

6. Σ contains the signature #{e1, ..., en...} for membership terms.

Here all arrow expressions ei are binary (have two arguments) and at
least one has the form (κ γ) ⇒ atomic. Dialects may further specialize
this signature.

7. Σ contains the signature ##{e1, ..., en...} for subclass terms.

Here all arrow expressions ei have the form (κ κ) ⇒ γ (the arguments
must be compatible) and at least one of these arrow expressions has the
form (κ κ) ⇒ atomic. Dialects may further specialize this signature.

8. Σ contains the signature ->{e1, ..., en...} for frames.
◦ Here all arrow expressions ei are ternary (have three

arguments) and at least one of them is of the form (κ1 κ2 κ3)
⇒ atomic. Dialects may further specialize this signature.

9. Σ contains the signatures list and openlist for representing list terms.
◦ The signature list, for closed lists, has arrow expressions of

the form () ⇒ κ, (κ) ⇒ κ, (κ κ) ⇒ κ, and so on, where κ
is a signature.

◦ The signature openlist, for open lists, has arrow expressions
of the form (κ κ) ⇒ κ, (κ κ κ) ⇒ κ, and so on, where κ is a
signature.

10. Σ contains the signature aggregate{e1, e2, ...} for aggregate
terms.

Here each arrow expression ei has the form (formula) ⇒ κi, for some
signatures κ1, κ2,

11. Σ contains the signature remote{e1, e2, ...}, where at least one of
the ei is an arrow expression of the form (formula κ) ⇒ formula for
some signature κ. This signature is assigned to the remote term symbol @.

12. Σ has at most one signature for any given signature name.
13. Whenever Σ contains a pair of signatures, ηA and κB, such that η<κ then

B⊆A.

Here ηA denotes a signature with the name η and the associated set of
arrow expressions A; similarly κB is a signature named κ with the set of
expressions B. The requirement that B⊆A ensures that symbols that have
signature η can be used wherever the symbols with signature κ are
allowed. ☐

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 24 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

The requirement that coherent sets of signatures must include the signatures for =,
#, ->, and so on is just a technicality that simplifies definitions. Some of these
signatures may go "unused" in a dialect even though, technically speaking, they
must be present in the signature set associated with that dialect. If a dialect
disallows equality, classification terms, or frames in its syntax then the
corresponding signatures will remain unused. Such restrictions can be imposed by
specializing RIF-FLD -- see Section Syntax of a RIF Dialect as a Specialization of
RIF-FLD.

An incoherent set of signatures would be exemplified by one that includes
signatures mysig{() ⇒ atomic} and mysig{(atomic) ⇒ atomic} because
it has two different signatures with the same name. Likewise, if a set contains
mysig1{() ⇒ atomic} and mysig2{(atomic) ⇒ atomic} and mysig1 <
mysig1 then it is incoherent because the set of arrow expressions of mysig1 does
not contain the set of arrow expressions of mysig2.

2.7 Presentation Syntax of a RIF Dialect

The presentation syntax of a RIF dialect is a set of well-formed formulas, as
defined in the next section. The language is determined by the following
parameters (see Syntax of a RIF Dialect as a Specialization of RIF-FLD):

• An alphabet.
• A set of symbol spaces.
• An assignment of signatures from a coherent set of signatures to the

symbols in Var, Const, connectives, and quantifiers:

Each variable symbol is associated with exactly one signature from a
coherent set of signatures. A constant symbol can have one or more
signatures, and different symbols can be associated with the same
signature. (Variables are not allowed to have multiple signatures because
then well-formed terms would not be closed under substitutions. For
instance, a term like f(?X,?X) could be well-formed, but f(a,a) could
be ill-formed.)

• Restrictions on the classes of terms allowed in the language of the dialect.
• Restrictions on the classes of formulas allowed in the language of the

dialect.
• A coherent set of external schemas.

We have already seen how the alphabet and the symbol spaces are used to define
RIF terms. The next section shows how signatures and external schemas are used
to further specialize this notion to define well-formed RIF-FLD terms.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 25 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

2.8 Well-formed Terms and Formulas

Since signature names uniquely identify signatures in coherent signature sets, we
will often refer to signatures simply by their names. For instance, if one of f's
signatures is atomic{ }, we may simply say that symbol f has signature atomic.

Definition (Well-formed term).

1. A constant or variable symbol with signature η is a well-formed term with
signature η.

2. A positional term t(t1 ... tn), 0≤n, is well-formed and has a signature
σ iff

◦ t is a well-formed term that has a signature that contains an
arrow expression of the form (σ1 ... σn) ⇒ σ; and

◦ Each ti is a well-formed term whose signature is γi such that
γi, ≤ σi.

As a special case, when n=0 we obtain that t() is a well-formed term
with signature σ, if t's signature contains the arrow expression () ⇒ σ.

3. A term with named arguments t(p1->t1 ... pn->tn), 0≤n, is well-
formed and has a signature σ iff

◦ t is a well-formed term that has a signature that contains an
arrow expression with named arguments of the form (p1->σ1
... pn->σn) ⇒ σ; and

◦ Each ti is a well-formed term whose signature is γi, such that
γi ≤ σi.

As a special case, when n=0 we obtain that t() is a well-formed term
with signature σ, if t's signature contains the arrow expression () ⇒ σ.

4. An equality term of the form t1=t2 is well-formed and has a signature κ iff
◦ The signature = has an arrow expression (σ σ) ⇒ κ
◦ ti and t2 are well-formed terms with signatures γ1 and γ2,

respectively, such that γi ≤ σ, i=1,2.
5. A membership term of the form t1#t2 is well-formed and has a signature

κ iff
◦ The signature # has an arrow expression (σ1 σ2) ⇒ κ
◦ t1 and t2 are well-formed terms with signatures γ1 and γ2,

respectively, such that γi ≤ σi, i=1,2.
6. A subclass term of the form t1##t2 is well-formed and has a signature κ

iff
◦ The signature ## has an arrow expression (σ σ) ⇒ κ

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 26 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

◦ t1 and t2 are well-formed terms with signatures γ1 and γ2,
respectively, such that γi ≤ σ, i=1,2.

7. A frame term of the form t[s1->v1 ... sn->vn] is well-formed and
has a signature κ iff

◦ The signature -> has arrow expressions (σ σ11 σ12) ⇒ κ,
..., (σ σn1 σn2) ⇒ κ (these n expressions need not be
distinct).

◦ t, sj, and vj are well-formed terms with signatures γ, γj1, and
γj2, respectively, such that γ ≤ σ and γji ≤ σji, where
j=1,...,n and i=1,2.

8. An externally defined term, External(t loc), is well-formed and has
signature κ iff

◦ t is well-formed and has signature κ.
◦ External(t loc) is an instantiation of an external schema

that belongs to a coherent set of external schemas of the
language.

Note that, according to the definition of coherent sets of
schemas, a term can be an instantiation of at most one external
schema. ☐

9. A formula term of the form S(t1 ... tn), 0≤n is well-formed if S is a
connective or a quantifier whose signature has an arrow expression (σ1
... σn) ⇒ formula and each ti is a well-formed term whose
signature is ≤ σi.

In the special case of our reserved connectives and quantifiers, t1, ...,
tn must have signatures that are below formula (i.e., ≤ formula). Also,
if S is :- then n must be equal 2 and if S is Neg, Naf, Forall, or Exists
then n=1.

10. An aggregate term of the form sym{?V [?X1 ... ?Xn] | τ} is well
formed if the aggregate symbol sym ?V[?X1 ... ?Xn] is assigned
signature aggregate and the term sym ?V[?X1 ... ?Xn](τ) is well-
formed (as a positional term).

This implies that τ must have the signature formula or < formula.
Unless a dialect introduces additional signatures, this also means that τ
must be a formula term (i.e., a compound formula) or an atomic formula
(see below).

11. A remote term of the form φ@r is well-formed if the positional term @(φ
r) is well-formed. This implies that φ must be well-formed and have the
signature formula, that r must a well-formed term, and that the term φ@r
itself has the signature formula (and, possibly, others).

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 27 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

Note that, like the constant symbols, well-formed terms can have more than one
signature. Also note that, according to the above definition, f() and f are distinct
terms.

Definition (Well-formed formula). A well-formed atomic formula is a well-
formed term one of whose signatures is atomic or < atomic. Note that equality,
membership, subclass, and frame terms are atomic formulas, since atomic is one
of their signatures. A well-formed formula is

• A well-formed term whose signature is formula or < formula; or
• A group formula; or
• A document formula.

Group and document formulas are defined below. For clarity, we will also give
explicit definitions of conjunctive, disjunctive, rule, and other formulas even though
they were already defined as special cases of the definition of well-formed formula
terms (the first of the above bullets). Recall that all terms have a canonical function
application form, but some are also written in a more familiar infix or prefix forms.
For instance, rule implication, a :- b, has the canonical form :-(a b) and the
canonical form for negation, Naf p and Neg p, is Naf(p) and Neg(p).

1. Atomic: If φ is a well-formed atomic formula then it is also a well-formed
formula.

2. Remote: A well-formed remote term φ@r is also a well-formed formula.
3. Conjunction: If φ1, ..., φn, n ≥ 0, are well-formed formula terms then so is

And(φ1 ... φn).

As a special case, And() is allowed and is treated as a tautology, i.e., a
formula that is always true.

4. Disjunction: If φ1, ..., φn, n ≥ 0, are well-formed formula terms then so is
Or(φ1 ... φn).

As a special case, Or() is treated as a contradiction, i.e., a formula that is
always false.

5. Symmetric negation: If φ is a well-formed formula term then so is Neg φ.
6. Default negation: If φ is a well-formed formula term then so is Naf φ.
7. Rule implication: If φ and ψ are well-formed formula terms then so is φ :-

ψ.
8. Universal and existential quantification: If φ is a well-formed formula term

then
◦ Forall ?V1 ... ?Vn(φ)
◦ Exists ?V1 ... ?Vn(φ)

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 28 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

are well-formed formula terms. Recall that Forall?V1,...,?Vn and
Exists?V1,...,?Vn are the reserved universal and existential quantifiers,
respectively. The notation Forall ?V1 ... ?Vn(φ) is an alternative for
Forall?V1,...,?Vn(φ), and similarly for Exists.

9. Group: If φ1, ..., φn are well-formed formula terms or Group-formulas then
Group(φ1 ... φn) is a well-formed group formula. As a special case,
the empty group formula, Group(), is well-formed and is treated as a
tautology, i.e., a well-formed formula that is always true.

Non-empty group formulas are intended to represent sets of formulas.
Note that some of the φi's can themselves be group formulas, which
means that groups can be nested.

10. Document: An expression of the form Document(directive1 ...
directiven Γ) is a well-formed document formula, if

◦ Γ is an optional well-formed group formula; it is called the group
formula associated with the document.

◦ directive1, ..., directiven is an optional sequence of directives. A
directive can be a dialect directive, a base directive, a prefix
directive, an import directive, or a remote module directive.

▪ A dialect directive has the form Dialect(D), where D
is a Unicode string that specifies the name of a dialect.
This directive specifies the dialect of a RIF document.
Some dialects may require this directive in all of its
documents, while others (notably, RIF-BLD) may not
allow it and instead may entirely rely on other syntax.
(Purely syntactic identification may not always be
possible for dialects that are syntactically identical but
semantically different, such as deductive databases with
stable model semantics [GL88] and with well-founded
semantics [GRS91]. These two dialects are examples
where the Dialect directive might be necessary.)

▪ A base directive has the form Base(<iri>), where
iri is a Unicode string in the form of an absolute IRI.

The Base directive defines a syntactic shortcut for
expanding relative IRIs into full IRIs, as described in
Section Constants and Symbol Spaces of [RIF-DTB].

▪ A prefix directive has the form Prefix(p <v>),
where p is an alphanumeric string that serves as the
prefix name and v is an expansion for p -- a string that
forms an IRI. (An alphanumeric string is a sequence of
ASCII characters, where each character is a letter, a
digit, or an underscore "_", and the first character is a
letter.)

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 29 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#sec-symbol-spaces

Like the Base directive, the Prefix directives define
shorthands to allow more concise representation of
rif:iri constants. This mechanism is explained in
[RIF-DTB], Section Constants and Symbol Spaces.

▪ An import directive can have one of these two forms:
Import(loc) or Import(loc p).

Here loc is a locator that uniquely identifies some
other document, which is to be imported. The exact
form of the locator loc, the protocol that associates
locators with documents, and the type of the imported
documents is left to dialects to specify. However, all
dialects must support the form <IRI>, where IRI is a
sequence of Unicode characters that forms an IRI. The
second argument to Import, p, is a sequence of
Unicode characters called the profile of import.

RIF-FLD gives a semantics only to the one-argument
directive Import(loc). The two-argument directive
Import(loc p) is reserved for RIF dialects, which
can use it to import non-RIF logical entities, such as
RDF data and OWL ontologies [RIF-RDF+OWL]. The
profile can specify what kind of entity is being imported
and under what semantics. For instance, the various
RDF entailment regimes are specified in [RIF-
RDF+OWL] as profiles that have the form of Unicode
strings that form IRIs.

▪ A remote module directive has the form Module(n
loc). Here n is a variable-free term that represents the
internal name of the remote module linked to the
document -- it is the name under which the module is
referenced in the document. The second argument,
loc, is a locator for the document that contains the
rules and the data of the module.

As with Import, RIF-FLD does not restrict n and loc
syntactically any further. However, we shall see that it
does impose semantic restrictions on n, and loc is
required to uniquely identify an existing RIF document.
The exact protocol that is used to associate loc with
documents and the type of those documents is left to
dialects.

Note that although Base, Prefix, and Import all make use of
symbols of the form <iri> to indicate the connection of these

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 30 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#sec-symbol-spaces

symbols to IRIs, these symbols are not rif:iri constants, as
semantically they are interpreted in a way that is quite different
from constants.

A document formula can contain at most one Dialect and at
most one Base directive. The Dialect directive, if present, must
be first, followed by an optional Base directive, followed by any
number of Prefix directives, followed by any number of
Import directives, followed by any number of Module
directives.

In the definition of a formula, the component formulas φ, φi, ψi, and Γ are said to
be subformulas of the respective formulas (conjunction, disjunction, negation,
implication, group, etc.) that are built using these components. ☐

Observe that the restrictions in (1) -- (8) above imply that groups and documents
cannot be nested inside formula terms and documents cannot be nested inside
groups.

Example 2 (Signatures, well-formed terms and formulas).

We illustrate the above definitions with the following examples. In addition to
atomic, let there be another signature, term{ }, which is intended here to
represent the context of the arguments to positional function or atomic formulas.

Consider the term p(p(a) p(a b c)). If p has the (polymorphic) signature
mysig{(term)⇒term, (term term)⇒term, (term term term)⇒term} and a, b, c
each has the signature term{ } then p(p(a) p(a b c)) is a well-formed term
with signature term{ }. If instead p had the signature mysig2{(term
term)⇒term, (term term term)⇒term} then p(p(a) p(a b c)) would not be
a well-formed term since then p(a) would not be well-formed (in this case, p would
have no arrow expression which allows p to take just one argument).

For a more complex example, let r have the signature mysig3{(term)⇒atomic,
(atomic term)⇒term, (term term term)⇒term}. Then r(r(a) r(a b c)) is
well-formed. The interesting twist here is that r(a) is an atomic formula that occurs
as an argument to a function symbol. However, this is allowed by the arrow
expression (atomic term)⇒ term, which is part of r's signature. If r's signature
were mysig4{(term)⇒atomic, (atomic term)⇒atomic, (term term
term)⇒term} instead, then r(r(a) r(a b c)) would be not only a well-formed
term, but also a well-formed atomic formula.

An even more interesting example arises when the right-hand side of an arrow
expression is something other than term or atomic. For instance, let John, Mary,
NewYork, and Boston have signatures term{ }; flight and parent have

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 31 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

signature h2{(term term)⇒atomic}; and closure has signature
hh1{(h2)⇒p2}, where p2 is the name of the signature p2{(term
term)⇒atomic}. Then flight(NewYork Boston),
closure(flight)(NewYork Boston), parent(John Mary), and
closure(parent)(John Mary) would be well-formed formulas. Such formulas
are allowed in languages like HiLog [CKW93], which support predicate constructors
like closure in the above example. ☐

2.9 Annotations in the Presentation Syntax

RIF-FLD allows every term and formula (including terms and formulas that occur
inside other terms and formulas) to be optionally preceded by an annotation of the
form (* id φ *) where id is a constant and φ is a RIF formula that is not a
document-formula. Both items inside the annotation are optional. The id part
represents the identifier of the term (or formula) to which the annotation is attached
and φ is the rest of the annotation. RIF-FLD does not impose any restrictions on φ
apart from what is stated above. This means that φ may include variables, function
symbols, rif:local constants, and so on.

Document formulas with and without annotations will be referred to as RIF-FLD
documents.

A convention is used to avoid a syntactic ambiguity in the above definition. For
instance, in (* id φ *) t[w -> v] the annotation can be attributed to the term
t or to the entire frame t[w -> v]. Similarly, for an annotated HiLog-like term of
the form (* id φ *) f(a)(b,c), the annotation can be attributed to the entire
term f(a)(b,c) or to just f(a). The convention adopted in RIF-FLD is that any
annotation is syntactically associated with the largest RIF-FLD term or formula that
appears to the right of that annotation. Therefore, in our examples the annotation
(* id φ *) is considered to be attached to the entire frame t[w -> v] and to
the entire term f(a)(b,c). Yet, since φ can be a conjunction, some conjuncts can
be used to provide metadata targeted to the object part, t, of the frame. For
instance, (* And(_foo[meta_for_frame->"this is an annotation for
the entire frame"] _bar[meta_for_object->"this is an
annotation for t" meta_for_property->"this is an annotation
for w"] *) t[w -> v]. Generally, the convention associates each annotation
to the largest term or formula it precedes.

We suggest to use Dublin Core, RDFS, and OWL properties for metadata, along
the lines of Section 7.1 of [OWL-Reference]-- specifically owl:versionInfo,
rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy,
dc:creator, dc:description, dc:date, and foaf:maker.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 32 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#rif-local-space
http://www.w3.org/TR/owl-ref/#Annotations

Example 3 (A RIF-FLD document with nested groups and annotations).

We illustrate formulas, including documents and groups, with the following
complete example (with apologies to Shakespeare for the imperfect rendering of
the intended meaning in logic). For better readability, we use the shortcut notation
defined in [RIF-DTB]. The example also illustrates attachment of annotations.

Document(
Prefix(dc <http://http://purl.org/dc/terms/>)
Prefix(ex <http://example.org/ontology#>)
Prefix(hamlet <http://www.shakespeare-literature.com/Hamlet/>)

(* hamlet:assertions hamlet:assertions[dc:title->"Hamlet" dc:creator->"Shakespeare"] *)
Group(

Exists ?X (And(?X # ex:RottenThing
ex:partof(?X <http://www.denmark.dk>)))

Forall ?X (Or(hamlet:tobe(?X) Naf hamlet:tobe(?X)))
Forall ?X (And(Exists ?B (And(ex:has(?X ?B) ?B # ex:business))

Exists ?D (And(ex:has(?X ?D) ?D # ex:desire)))
:- ?X # ex:man)

(* hamlet:facts *)
Group(

hamlet:Yorick # ex:poor
hamlet:Hamlet # ex:prince

)
)

)

The above RIF formulas are (admittedly awkward) logical renderings of the
following statements from Shakespeare's Hamlet: "Something is rotten in the state
of Denemark," "To be, or not to be," and "Every man has business and desire."

Observe that the above set of formulas has a nested subset with its own
annotation, hamlet:facts, which contains only a global IRI. ☐

The following example illustrates the use of imported RIF documents and of remote
terms.

Example 4 (A RIF-FLD document with imports, remote module references, and
aggregation).

The first document, below, imports the second document, which is assumed to be
located at the IRI http://example.org/universityontology. In addition,
the first document has references to two remote modules, which are located at
http://example.org/university#1 and http://example.org/
university#2, respectively. These modules are assumed to be knowledge
bases that provide the usual information about university enrollment, courses

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 33 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://purl.org/dc/terms/

offered in different semesters, and so on. The rules corresponding to the remote
modules are not shown, as they do not illustrate new features. In the simplest case,
these knowledge bases can simply be sets of facts for the predicates/frames that
supply the requisite information.

Document(
Prefix(u <http://example.org/universityontology#>)
Prefix(pred <http://www.w3.org/2007/rif-builtin-predicate#>)
Import(<http://example.org/universityontology>)
Module(univ(1) <http://example.org/university#1>)
Module(univ(2) <http://example.org/university#2>)

Group(
Forall ?Stud ?Crs ?Semester ?U (u:takes(?Stud ?Crs ?Semester) :-

?Stud[u:takes(?Semester)->?Crs]@univ(?U))
Forall ?Prof ?Crs ?Semester ?U (u:teaches(?Prof ?Crs ?Semester) :-

u:teaches(?Prof ?Crs ?Semester)@univ(?U))
Forall ?Crs (u:popular_course(?Crs) :-

And(?Crs#Course
pred:numeric-less-than(500

count{?Stud[?Crs]|Exists ?Semester (u:takes(?Stud ?Crs ?Semester))})))
)

)

The imported document, located at http://example.org/
universityontology, has the following form:

Document(
Group(

Forall ?Stud ?Prof ?Sem
(u:studentOf(?Stud ?Prof) :-

And(u:takes(?Stud ?Crs ?Sem) u:teaches(?Prof ?Crs ?Sem)))
)

)

In this example, the main document contains three rules, which define the
predicates u:takes, u:teaches and u:popular_course. The information for
the first two predicates is obtained by querying the remote modules corresponding
to Universities 1 and 2. The rule that defines the first predicate says that if the
remote university knowledge base says that a student s takes a course c in a
certain semester s then takes(s c s) is true in the main document. The second
rule makes a similar statement about professors teaching courses in various
semesters. Inside the main document, the external modules are refered to via the
terms univ(1) and univ(2). The Module directives tie these references to the
actual locations. Note that the remote modules use frames to represent the
enrollment information and predicates to represent course offerings. The rules in
the main document convert both of these representations to predicates. The third

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 34 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

rule illustrates a use of aggregation. The comprehension variable here is ?Stud
and ?Crs is a grouping variable. Note that these are the only free variables in the
formula over which aggregation is computed. For each course, the aggregate
counts the number of students in that course over all semesters, and if the number
exceeds 500 then the course is declared popular. Note also that the
comprehension variable ?Stud is bound by the aggregate, so it is not quantified in
the Forall-prefix of the rule.

The imported document has only one rule, which defines a new concept,
u:studentOf (a student is a studentOf of a certain professor if that student
takes a course from that professor). Since the main document imports the second
document, it can answer queries about u:studentOf as if this concept were
defined directly within the main document. ☐

2.10 EBNF Grammar for the Presentation Syntax of RIF-FLD

Until now, to specify the syntax of RIF-FLD we relied on "mathematical English," a
special form of English for communicating mathematical definitions, examples, etc.
We will now specify the syntax using the familiar EBNF notation. The following
points about the EBNF notation should be kept in mind:

• The syntax of RIF-FLD relies on the signature mechanism and is not
context-free, so EBNF does not capture this syntax precisely. As a result,
the EBNF grammar defines a strict superset of RIF-FLD (not all formulas
that are derivable using the EBNF grammar are well-formed).

• The EBNF syntax is not a concrete syntax: it does not address the details
of how constants (defined in [RIF-DTB]) and variables are represented,
and it is not sufficiently precise about the delimiters and escape symbols.
White space is informally used as a delimiter, and is implied in productions
that use Kleene star. For instance, TERM* is to be understood as
TERM TERM ... TERM, where each ' ' abstracts from one or more
blanks, tabs, newlines, etc. This is done intentionally since RIF's
presentation syntax is used as a tool for specifying the semantics and for
illustration of the main RIF concepts through examples.

• RIF defines a concrete syntax only for exchanging rules, and that syntax
is XML-based, obtained as a refinement and serialization of the EBNF
syntax via the presentation-syntax-to-XML mapping for RIF-FLD.

Keeping the above in mind, the EBNF grammar can be seen as just an
intermediary between the mathematical English and the XML. However, it also
gives a succinct view of the syntax of RIF-FLD and as such can be useful for
dialect designers and users alike.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 35 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

Document ::= IRIMETA? 'Document' '(' Dialect? Base? Prefix* Import* Module* Group? ')'
Dialect ::= 'Dialect' '(' Name ')'
Base ::= 'Base' '(' ANGLEBRACKIRI ')'
Prefix ::= 'Prefix' '(' Name ANGLEBRACKIRI ')'
Import ::= IRIMETA? 'Import' '(' LOCATOR PROFILE? ')'
Module ::= IRIMETA? 'Module' '(' (Const | Expr) LOCATOR ')'
Group ::= IRIMETA? 'Group' '(' (FORMULA | Group)* ')'
Implies ::= IRIMETA? FORMULA ':-' FORMULA
FORMULA ::= Implies |

IRIMETA? CONNECTIVE '(' FORMULA* ')' |
IRIMETA? QUANTIFIER '(' FORMULA ')' |
IRIMETA? 'Neg' FORMULA |
IRIMETA? 'Naf' FORMULA |
IRIMETA? FORMULA '@' MODULEREF |
FORM

PROFILE ::= ANGLEBRACKIRI
FORM ::= IRIMETA? (Var | ATOMIC |

'External' '(' ATOMIC LOCATOR? ')')
ATOMIC ::= Const | Atom | Equal | Member | Subclass | Frame
Atom ::= UNITERM
UNITERM ::= TERMULA '(' (TERMULA* | (Name '->' TERMULA)*) ')'
Equal ::= TERMULA '=' TERMULA
Member ::= TERMULA '#' TERMULA
Subclass ::= TERMULA '##' TERMULA
Frame ::= TERMULA '[' (TERMULA '->' TERMULA)* ']'
TERMULA ::= Implies |

IRIMETA? CONNECTIVE '(' TERMULA* ')' |
IRIMETA? QUANTIFIER '(' TERMULA ')' |
IRIMETA? 'Neg' TERMULA |
IRIMETA? 'Naf' TERMULA |
IRIMETA? TERMULA '@' MODULEREF |
TERM

TERM ::= IRIMETA? (Var | EXPRIC | List |
'External' '(' EXPRIC LOCATOR? ')' |
AGGREGATE | NEWTERM)

EXPRIC ::= Const | Expr | Equal | Member | Subclass | Frame
Expr ::= UNITERM
List ::= 'List' '(' TERM* ')' | 'List' '(' TERM+ '|' TERM ')'
AGGREGATE ::= AGGRFUNC '{' Var ('[' Var+ ']')? '|' FORMULA '}'
Const ::= '"' UNICODESTRING '"^^' SYMSPACE | CONSTSHORT
MODULEREF ::= Var | Const | Expr
CONNECTIVE ::= 'And' | 'Or' | NEWCONNECTIVE
QUANTIFIER ::= ('Exists' | 'Forall' | NEWQUANTIFIER) Var*
AGGRFUNC ::= 'Min' | 'Max' | 'Sum' | 'Prod' | 'Avg' | 'Count' |

'Set' | 'Bag' | NEWAGGRFUNC
Name ::= UNICODESTRING
Var ::= '?' UNICODESTRING
SYMSPACE ::= ANGLEBRACKIRI | CURIE

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 36 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

IRIMETA ::= '(*' Const? (Frame | 'And' '(' Frame* ')')? '*)'

The RIF-FLD presentation syntax does not commit to any particular vocabulary and
permits arbitrary sequences of Unicode characters in constant symbols, argument
names, and variables. Such sequences are denoted with UNICODESTRING in the
above syntax. Constant symbols have this form: "UNICODESTRING"^^SYMSPACE,
where SYMSPACE is a ANGLEBRACKIRI or CURIE that represents the identifier of
the symbol space of the constant, and UNICODESTRING is a Unicode string from
the lexical space of that symbol space. ANGLEBRACKIRI and CURIE are defined in
Section Shortcuts for Constants in RIF's Presentation Syntax of [RIF-DTB].
Constant symbols can also have several shortcut forms, which are represented by
the non-terminal CONSTSHORT. These shortcuts are also defined in the same
section of [RIF-DTB]. One of them is the CURIE shortcut, which is used in the
examples in this document. Names are Unicode character sequences. Variables
are composed of UNICODESTRING symbols prefixed with a ?-sign.

LOCATOR, which is used in several places in the grammar, is a non-terminal whose
definition is left to the dialects. It is intended to specify the protocol by which
external sources, remote modules, and imported RIF documents are located. This
must include the basic form <IRI>, where IRI is a Unicode string in the form of an
absolute IRI.

The symbols NEWCONNECTIVE, NEWQUANTIFIER, NEWAGGRFUNC, and NEWTERM
are RIF-FLD extension points. They are not actual symbols in the alphabet.
Instead, dialects are supposed to replace NEWCONNECTIVE, NEWQUANTIFIER, and
NEWAGGRFUNC, by zero or more actual new symbols, while NEWTERM is to be
replaced by zero or more new kinds of terms. Note that the extension point
NEWSYMBOL is not shown in the EBNF grammar, since the grammar completely
avoids mentioning the alphabet of the language (which is infinite).

RIF-FLD formulas and terms can be prefixed with optional annotations, IRIMETA,
for identification and metadata. IRIMETA is represented using (*...*)-brackets
that contain an optional rif:iri constant as identifier followed by an optional
Frame or conjunction of Frames as metadata. One such specialization is '"' IRI
'"^^' 'rif:iri' from the Const production, where IRI is a sequence of
Unicode characters that forms an internationalized resource identifier as defined by
[RFC-3987].

Note that the RIF-FLD presentation syntax (as reflected in the above EBNF
grammar) strives to have a more familiar look by avoiding some of the formal parts
of the syntax defined in Sections Alphabet and Terms. For instance, as mentioned
in those sections, the quantifier symbols Exists?X1,...,?Xn and
Forall?X1,...,?Xn are linearized as Exists ?X1,...,?Xn and
Forall ?X1,...,?Xn. Likewise, the symbol OpenList is not used. Instead,
open lists are written using the more familiar form LIST(Head|Tail). Also, some

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 37 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#sec-shortcuts-constants

connectives, such as :-, are written in infix form. Other connectives, such as Neg
and Naf, are written in prefix form without parentheses.

3 Semantic Framework

Recall that the presentation syntax of RIF-FLD allows the use of shorthand
notation, which is specified via the Prefix and Base directives, and various
shortcuts for integers, strings, and rif:local symbols. The semantics, below, is
described using the full syntax, i.e., we assume that all shortcuts have already
been expanded, as defined in [RIF-DTB], Section Constants and Symbol Spaces.

3.1 Semantics of a RIF Dialect as a Specialization of RIF-FLD

The RIF-FLD semantic framework defines the notions of semantic structures and of
models for RIF-FLD formulas. The semantics of a dialect is derived from these
notions by specializing the following parameters.

1. The effect of the syntax.
◦ The syntax of a dialect may limit the kinds of terms that are

allowed.

For instance, if a dialect's syntax excludes frames or terms with
named arguments then the parts of the semantic structures
whose purpose is to interpret those types of terms (Iframe and
INF in this case) become redundant.

◦ The dialect might introduce additonal terms and their
interpretation by semantic structures.

◦ The dialect might introduce additional connectives and
quantifiers with their interpretation.

2. Truth values.

The RIF-FLD semantic framework allows formulas to have truth values
from an arbitrary partially ordered set of truth values, TV. A concrete
dialect must select a concrete partially or totally ordered set of truth
values.

3. Datatypes.

A datatype is a symbol space whose symbols have a fixed interpretation
in any semantic structure. RIF-FLD defines a set of core datatypes that
each dialect is required to include as part of its syntax and semantics.
However, RIF-FLD does not limit dialects to just the core types: they can

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 38 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#sec-symbol-spaces

introduce additional datatypes, and each dialect must define the exact set
of datatypes that it includes.

4. Logical entailment.

Logical entailment in RIF-FLD is defined with respect to an unspecified set
of intended semantic structures. A RIF dialect must define which semantic
structures should considered intended. For instance, one dialect might
specify that all semantic structures are intended (which leads to classical
first-order entailment), another may consider only the minimal models as
intended structures, while a third one might only use well-founded or
stable models [GRS91, GL88].

These notions are defined in the remainder of this specification.

3.2 Truth Values

Definition (Set of truth values). Each RIF dialect must define the set of truth
values, denoted by TV. This set must have a partial order, called the truth order,
denoted <t. In some dialects, <t can be a total order. We write a ≤t b if either a <t b
or a and b are the same element of TV. In addition,

• TV must be a complete lattice with respect to <t, i.e., the least upper
bound (lubt) and the greatest lower bound (glbt) must exist for any subset
of TV.

• TV is required to have two distinguished elements, f and t, such that f ≤t
elt and elt ≤t t for every elt∈TV.

• TV has an operator of negation, ~: TV → TV, such that
◦ ~ is a self-inverse function: applying ~ twice gives the identity

mapping.
◦ ~t = f (and thus ~f = t). ☐

RIF dialects can have additional truth values. For instance, the semantics of some
versions of NAF, such as well-founded negation, requires three truth values: t, f,
and u (undefined), where f <t u <t t. Handling of contradictions and uncertainty
usually requires at least four truth values: t, u, f, and i (inconsistent). In this case,
the truth order is partial: f <t u <t t and f <t i <t t. The negation operator ~ is then
defined to be the identity on the new truth values u and i.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 39 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

3.3 Datatypes

Definition (Datatype). A datatype is a symbol space that has

• an associated set, called the value space, and
• a mapping from the lexical space of the symbol space to the value space,

called lexical-to-value-space mapping. ☐

Semantic structures are always defined with respect to a particular set of
datatypes, denoted by DTS. In a concrete dialect, DTS always includes the
datatypes supported by that dialect. All RIF dialects must support the datatypes
that are listed in Section Datatypes of [RIF-DTB]. Their value spaces and the
lexical-to-value-space mappings for these datatypes are described in the same
section.

Although the lexical and the value spaces might sometimes look similar, one
should not confuse them. Lexical spaces define the syntax of the constant symbols
in the RIF language. Value spaces define the meaning of the constants. The lexical
and the value spaces are often not even isomorphic. For example,
1.2^^xs:decimal and 1.20^^xs:decimal are two legal -- and distinct --
constants in RIF because 1.2 and 1.20 belong to the lexical space of
xs:decimal. However, these two constants are interpreted by the same element
of the value space of the xs:decimal type. Therefore,
1.2^^xs:decimal = 1.20^^xs:decimal is a RIF tautology. Likewise, RIF
semantics for datatypes implies certain inequalities. For instance,
abc^^xs:string ≠ abcd^^xs:string is a tautology, since the lexical-to-value-
space mapping of the xs:string type maps these two constants into distinct
elements in the value space of xs:string.

3.4 Semantic Structures

The central step in specifying a model-theoretic semantics for a logic-based
language is defining the notion of a semantic structure. Semantic structures are
used to assign truth values to RIF-FLD formulas.

Definition (Semantic structure). A semantic structure, I, is a tuple of the form
<TV, DTS, D, IC, IV, IF, INF, Ilist, Itail, Iframe, Isub, Iisa, I=, Iexternal, Iconnective, Itruth>.
Here D is a non-empty set of elements called the domain of I. We will continue to
use Const to refer to the set of all constant symbols and Var to refer to the set of
all variable symbols. TV denotes the set of truth values that the semantic structure
uses and DTS is a set of identifiers for datatypes.

The other components of I are total mappings defined as follows:

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 40 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#sec-data-types

1. IC maps Const to elements of D.

This mapping interprets constant symbols.

2. IV maps Var to elements of D.

This mapping interprets variable symbols.

3. IF maps D to total functions D* → D (here D* is a set of all finite
sequences over the domain D).

This mapping interprets positional terms.

4. INF interprets terms with named arguments. It is a total mapping from D to
the set of total functions of the form SetOfFiniteBags(ArgNames × D)
→ D.

This is analogous to the interpretation of positional terms with two
differences:

◦ Each pair <s,v> ∈ ArgNames × D represents an argument/
value pair instead of just a value in the case of a positional term.

◦ The argument to a term with named arguments is a finite bag of
argument/value pairs rather than a finite ordered sequence of
simple elements.

◦ Bags are used here because the order of the argument/value
pairs in a term with named arguments is immaterial and the pairs
may repeat: p(a->b a->b). (However, p(a->b a->b) is not
equivalent to p(a->b), as we shall see later.)

To see why such repetition can occur, note that argument names
may repeat: p(a->b a->c). This can be understood as treating
a as a bag-valued argument. Identical argument/value pairs can
then arise as a result of a substitution. For instance, p(a->?A
a->?B) becomes p(a->b a->b) if the variables ?A and ?B are
both instantiated with the symbol b.

5. Ilist and Itail are used to interpret lists. They are mappings of the following
form:

◦ Ilist : D* → D
◦ Itail : D+×D → D

In addition, these mappings are required to satisfy the following
conditions:

◦ The function Ilist is injective (one-to-one).
◦ The set Ilist(D), henceforth denoted Dlist, is disjoint from the value

spaces of all data types in DTS.
◦ Itail(a1, ..., ak, Ilist(ak+1, ..., ak+m)) = Ilist(a1, ..., ak, ak+1, ..., ak+m).

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 41 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

Note that the last condition above restricts Itail only when its last argument
is in Dlist. If the last argument of Itail is not in Dlist, then the list is a general
open one and there are no restrictions on the value of Itail except that it
must be in D.

6. Iframe is a total mapping from D to total functions of the form
SetOfFiniteBags(D × D) → D.

This mapping interprets frame terms. An argument, d ∈ D, to Iframe
represents an object and a finite bag {<a1,v1>, ..., <ak,vk>} represents
a bag (multiset) of attribute-value pairs for d. We will see shortly how
Iframe is used to determine the truth valuation of frame terms.

Bags are employed here because the order of the attribute/value pairs in a
frame is immaterial and the pairs may repeat. For instance, o[a->b a-
>b]. Such repetitions arise naturally when variables are instantiated with
constants. For instance, o[?A->?B ?C->?D] becomes o[a->b a->b]
if variables ?A and ?C are instantiated with the symbol a and ?B, ?D with
b. (We shall see later that o[a->b a->b] is equivalent to o[a->b].)

7. Isub gives meaning to the subclass relationship. It is a total function D × D
→ D.

The operator ## is required to be transitive, i.e., c1 ## c2 and
c2 ## c3 must imply c1 ## c3. This is ensured by a restriction in
Section Interpretation of Formulas.

8. Iisa gives meaning to class membership. It is a total function D × D → D.

The relationships # and ## are required to have the usual property that all
members of a subclass are also members of the superclass, i.e., o # cl
and cl ## scl must imply o # scl. This is ensured by a restriction in
Section Interpretation of Formulas.

9. I= is a total function D × D → D.

It gives meaning to the equality operator.

10. Itruth is a total mapping D → TV.

It is used to define truth valuation for formulas.

11. Iexternal is a mapping from the coherent set of schemas for externally
defined terms to total functions D* → D. For each external schema σ =
(?X1 ... ?Xn; τ; loc) in the coherent set of such schemas
associated with the language, Iexternal(σ) is a function of the form Dn → D.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 42 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

For every external schema, σ, associated with the language, Iexternal(σ) is
assumed to be specified externally in some document (hence the name
external schema). In particular, if σ is a schema of a RIF built-in predicate
or function, Iexternal(σ) is specified in [RIF-DTB] so that:

◦ If σ is a schema of a built-in function then Iexternal(σ) must be the
function defined in the aforesaid document.

◦ If σ is a schema of a built-in predicate then Itruth ο (Iexternal(σ))
(the composition of Itruth and Iexternal(σ), a truth-valued function)
must be as specified in [RIF-DTB].

12. Iconnective is a mapping that assigns every connective, quantifier, or
aggregate symbol a function D* → D.

Further restrictions on the interaction of this function with Itruth will be
imposed in order to ensure the intended semantics for each connective
and quantifier. For aggregates, Iconnective maps them to functions D → D
and additional restrictions are imposed on the mapping I defined below.

We also define the following term-interpreting mapping on well-formed terms,
which we denote using the same symbol I that is used for the semantic structure
itself. This overloading is convenient and does not lead to ambiguity.

1. I(k) = IC(k), if k is a symbol in Const
2. I(?v) = IV(?v), if ?v is a variable in Var
3. I(f(t1 ... tn)) = IF(I(f))(I(t1),...,I(tn))
4. I(f(s1->v1 ... sn->vn)) = INF(I(f))({<s1,I(v1)>,...,<sn,I(vn)>})

Here we use {...} to denote a bag of argument/value pairs.

5. For list terms, the mapping is defined as follows:
◦ I(List()) = Ilist(<>).

Here <> denotes an empty list of elements of D. (Note that the
domain of Ilist is D*, so D0 is an empty list of elements of D.)

◦ I(List(t1 ... tn)) = Ilist(I(t1), ..., I(tn)), if n>0.
◦ I(List(t1 ... tn | t)) = Itail(I(t1), ..., I(tn), I(t)), if n>0.

6. I(o[a1->v1 ... an->vn]) = Iframe(I(o))({<I(a1),I(v1)>, ..., <I(an),I(vn)>})

Here {...} denotes a bag of attribute/value pairs. Jumping ahead, we note
that duplicate elements in such a bag do not affect the meaning of a frame
formula. So, for instance, o[a->b a->b] and o[a->b] always have the
same truth value.

7. I(c1##c2) = Isub(I(c1), I(c2))
8. I(o#c) = Iisa(I(o), I(c))
9. I(x=y) = I=(I(x), I(y))

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 43 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

10. I(External(t loc)) = Iexternal(σ)(I(s1), ..., I(sn)), if External(t loc)
is an instantiation of the external schema σ = (?X1 ... ?Xn; τ;
loc) by substitution ?X1/s1 ... ?Xn/sn.

Note that, by definition, External(t loc) is well-formed only if it is an
instantiation of an external schema. Furthermore, by the definition of
coherent sets of external schemas, it can be an instantiation of at most
one such schema, so I(External(t loc)) is well-defined.

11. If S is a connective, a quantifier, or an aggregate and S(t1 ... tn) is a
well-formed formula term (for an aggregate, n=1) then

I(S(t1 ... tn)) = Iconnective(S)(I(t1) ... I(tn))

12. For standard aggregates, the mapping I is defined as follows.

Let aggr{?X [?X1 ... ?Xn] | τ} be an aggregate and let S be the
following set:

S = {(IV*(?X),IV*(?X1), ..., IV*(?Xn)) | for all semantic structures I* such that
I*(τ) = t and I* is exactly like I except that IV*(?X) can be different from
IV(?X)}.

In addition, let Sset denote the set of all elements x such that (x,x1, ..., xn)
∈ S and Sbag denote the bag of all such elements x (i.e., Sbag can have
repeated occurrences of the same element).

a. Set aggregate:
▪ I(set{?X [?X1 ... ?Xn] | τ}) = Ilist(L)

where L is a sorted list of the elements in Sset. Since
sorting requires an ordering, the above is well-defined
only for semantic structures with totally ordered
domains. If L is infinite then the value of the aggregate
in I is indeterminate (i.e., it can be any element of the
domain D).

The requirement that the list L must be sorted comes
from the fact that there can be many ways to represent
Sset as a list, while I(set{?X [?X1 ... ?Xn] | τ})
must be defined as one concrete element of the domain
D. Sorting a set is a standard way of providing the
requisite unique representation.

b. Bag aggregate:
▪ I(bag{?X [?X1 ... ?Xn] | τ}) = Ilist(L)

where L is a sorted list of the elements in Sbag. This is
well-defined only for semantic structures with totally

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 44 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

ordered domains. If L is infinite then the value of the
aggregate in I is indeterminate (i.e., it can be any
element of the domain D).

The reason for sorting L is the same as in the case of
the set aggregate.

c. Min aggregate:
▪ I(min{?X [?X1 ... ?Xn] | τ}) = min(Sbag), if the

function min is defined for Sbag in the dialect. If not, the
value of the aggregate in I is indeterminate. The bag
Sbag must have a well-defined total order and min must
compute the minimum elements of finite totally ordered
bags.

d. Max aggregate:
▪ I(max{?X [?X1 ... ?Xn] | τ}) = max(Sbag), if the

function max is defined for Sbag in the dialect. If not, the
value of the aggregate in I is indeterminate. The bag
Sbag must have a well-defined total order and max must
compute the maximum elements of finite totally ordered
bags.

e. Count aggregate:
▪ I(count{?X [?X1 ... ?Xn] | τ}) = count(Sbag), if

the function count is defined for Sbag in the dialect. If
not, the value of the aggregate in I is indeterminate. The
function count must compute the cardinality of finite
bags.

f. Sum aggregate:
▪ I(sum{?X [?X1 ... ?Xn] | τ}) = sum(Sbag), if the

function sum is defined for Sbag in the dialect. If not, the
value of the aggregate in I is indeterminate. The
function sum must compute summations of the elements
of finite bags. (For decimals, integers, floats, etc.,
summation must coincide with the usual notion.
However, this function might also be defined for other
domains in some dialects.)

g. Prod aggregate:
▪ I(prod{?X [?X1 ... ?Xn] | τ}) = prod(Sbag), if

the function prod is defined for Sbag in the dialect. If
not, the value of the aggregate in I is indeterminate. The
function prod must compute products of the elements
of finite bags. (For decimals, integers, floats, etc.,
product must coincide with the usual notion. However,
this function might also be defined for other domains.)

h. Avg aggregate:
▪ I(avg{?X [?X1 ... ?Xn] | τ}) = avg(Sbag), if the

function avg is defined for Sbag in the dialect. If not, the
value of the aggregate in I is indeterminate. The

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 45 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

function avg must compute averages (arithmetic
means) of the elements of finite bags. (For decimals,
integers, floats, etc., average must coincide with the
usual notion. However, this function might also be
defined for other domains.)

13. For remote terms of the form φ@r, the mapping I is defined in Section
Interpretation of Documents.

The effect of signatures. For every signature, sg, supported by a dialect, there is
a subset Dsg ⊆ D, called the domain of the signature. Terms that have a given
signature, sg, must be mapped by I to Dsg, and if a term has more than one
signature it must be mapped into the intersection of the corresponding signature
domains. To ensure this, the following is required:

1. If sg < sg' then Dsg⊆Dsg'.
2. If k is a constant that has signature sg then IC(k) ∈ Dsg.
3. If ?v is a variable that has signature sg then IV(?v) ∈ Dsg.
4. If sg has an arrow expression of the form (s1 ... sn)⇒s then, for every

d∈Dsg, IF(d) must map Ds1× ... ×Dsn to Ds.
5. If sg has an arrow expression of the form (p1->s1 ... pn->sn)⇒s then,

for every d∈Dsg, INF(d) must map the set {<p1,Ds1>, ..., <pn,Dsn>} to Ds.
6. If the signature -> has arrow expressions (sg,s1,r1)⇒k, ...,

(sg,sn,rn)⇒k, then, for every d∈Dsg, Iframe(d) must map {<Ds1,Dr1>,
..., <Dsn,Drn>} to Dk.

7. If the signature # has an arrow expression (s r)⇒k then Iisa must map
Ds×Dr to Dk.

8. If the signature ## has an arrow expression (s s)⇒k then Isub must map
Ds×Ds to Dk.

9. If the signature = has an arrow expression (s s)⇒k then I= must map
Ds×Ds to Dk.

The effect of datatypes. The datatype identifiers in DTS impose the following
restrictions. If dt ∈ DTS, let LSdt denote the lexical space of dt, VSdt denote its
value space, and Ldt: LSdt → VSdt the lexical-to-value-space mapping. Then the
following must hold:

• VSdt ⊆ D; and
• For each constant "lit"^^dt such that lit ∈ LSdt, IC("lit"^^dt) =

Ldt(lit).

That is, IC must map the constants of a datatype dt in accordance with Ldt. ☐

RIF-FLD does not impose special requirements on IC for constants in the symbol
spaces that do not correspond to the identifiers of the datatypes in DTS. Dialects
may have such requirements, however. An example of such a restriction could be a
requirement that no constant in a particular symbol space (such as rif:local)
can be mapped to VSdt of a datatype dt.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 46 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#rif-local-space

3.5 Annotations and the Formal Semantics

RIF-FLD annotations are stripped before the mappings that constitute RIF-FLD
semantic structures are applied. Likewise, they are stripped before applying the
truth valuation, TValI, defined in the next section. Thus, identifiers and metadata
have no effect on the formal semantics.

Note that although annotations associated with RIF-FLD formulas are ignored by
the semantics, they can be extracted by XML tools. Since annotations are
represented by frame terms, they can be reasoned with by the rules. The frame
terms used to represent metadata can then be fed to other formulas, thus enabling
reasoning about metadata. However, RIF does not define any concrete semantics
for metadata.

3.6 Interpretation of Non-document Formulas

This section defines how a semantic structure, I, determines the truth value
TValI(φ) of a RIF-FLD formula, φ, where φ is any formula other than a document
formula or a remote formula. Truth valuation of document formulas is defined in the
next section.

To this end, we define a mapping, TValI, from the set of all non-document formulas
to TV. Note that the definition implies that TValI(φ) is defined only if the set DTS of
the datatypes of I includes all the datatypes mentioned in φ.

Definition (Truth valuation). Truth valuation for well-formed formulas in RIF-FLD
is determined using the following function, denoted TValI:

1. Constants: TValI(k) = Itruth(I(k)), if k ∈ Const.
2. Variables: TValI(?v) = Itruth(I(?v)), if ?v ∈ Var.
3. Positional atomic formulas: TValI(r(t1 ... tn)) = Itruth(I(r(t1 ...

tn))).
4. Atomic formulas with named arguments: TValI(p(s1->v1 ... sk->vk))

= Itruth(I(p(s1-> v1 ... sk->vk))).
5. Equality: TValI(x = y) = Itruth(I(x = y)).

To ensure that equality has precisely the expected properties, it is
required that

◦ Itruth(I(x = y)) = t if I(x) = I(y) and that Itruth(I(x = y)) = f
otherwise.

6. Subclass: TValI(sc ## cl) = Itruth(I(sc ## cl)).

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 47 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

To ensure that the operator ## is transitive, i.e., c1 ## c2 and
c2 ## c3 imply c1 ## c3, the following is required:

◦ For all c1, c2, c3 ∈ D, glbt(TValI(c1 ## c2),
TValI(c2 ## c3)) ≤t TValI(c1 ## c3).

Note that this is a restriction on Itruth and the mapping I, which is
expressed in a more succinct form using TValI.

7. Membership: TValI(o # cl) = Itruth(I(o # cl)).

To ensure that all members of a subclass are also members of the
superclass, i.e., o # cl and cl ## scl imply o # scl, the following is
required:

◦ For all o, cl, scl ∈ D, glbt(TValI(o # cl), TValI(cl ## scl))
≤t TValI(o # scl).

Note that this is a restriction on Itruth and the mapping I, which is
expressed in a more succinct form using TValI.

8. Frame: TValI(o[a1->v1 ... ak->vk]) = Itruth(I(o[a1->v1 ... ak-
>vk])).

Since the bag of attribute/value pairs represents the conjunction of all the
pairs, the following is required:

◦ TValI(o[a1->v1 ... ak->vk]) = glbt(TValI(o[a1->v1]), ...,
TValI(o[ak->vk])).

Observe that this is a restriction on Itruth and the mapping I. For brevity, it
is expressed in a more succinct form using TValI.

9. Externally defined atomic formula: TValI(External(t loc)) =
Itruth(Iexternal(σ)(I(s1), ..., I(sn))), if External(t loc) is an atomic
formula that is an instantiation of the external schema σ = (?X1
... ?Xn; τ; loc) by substitution ?X1/s1 ... ?Xn/sn.

Note that, by definition, External(t loc) is well-formed only if it is an
instantiation of an external schema. Furthermore, by the definition of
coherent sets of external schemas, it can be an instantiation of at most
one external schema, so I(External(t loc)) is well-defined.

10. Connectives and quantifiers: if S is a connective or a quantifier and S(t1
... tn) is a well-formed formula term then TValI(S(t1 ... tn)) =
Itruth(I(S(t1 ... tn))).

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 48 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

To ensure the intended semantics for the RIF-FLD reserved connectives
and quantifiers, the following restrictions are imposed (observe that all
these are restrictions on Itruth and the mapping I, which are expressed via
TValI, for brevity):

a. Conjunction: TValI(And(c1 ... cn)) = glbt(TValI(c1), ...,
TValI(cn)).

The empty conjunction is treated as a tautology, so TValI(And())
= t.

b. Disjunction: TValI(Or(c1 ... cn)) = lubt(TValI(c1), ..., TValI(cn)).

The empty disjunction is treated as a contradiction, so
TValI(Or()) = f.

c. Negation: TValI(Neg Neg φ) = TValI(φ) and TValI(Naf φ) =
~TValI(φ).

The symbol ~ here is the self-inverse operator of negation on TV
introduced in Section Truth Values.

The symmetric negation, Neg, is sufficiently general to capture
many different kinds of such negation. For instance, classical
negation would, in addition, require TValI(Neg φ) = ~TValI(φ);
strong negation (analogous to the one in [APP96]) can be
characterized by TValI(Neg φ) ≤t ~TValI(φ); and explicit negation
(analogous to [APP96]) would require no additional constraints.

Note that both classical and default negation are interpreted the
same way in any concrete semantic structure. The difference
between the two kinds of negation comes into play when logical
entailment is defined.

d. Quantification:
▪ TValI(Exists ?v1 ... ?vn (φ)) = lubt(TValI*(φ)).
▪ TValI(Forall ?v1 ... ?vn (φ)) = glbt(TValI*(φ)).

Here lubt (respectively, glbt) is taken over all interpretations I* of
the form <TV, DTS, D, IC, I*V, IF, INF, Ilist, Itail, Iframe, Isub, Iisa, I=,
Iexternal, Iconnective, Itruth>, which are exactly like I, except that the
mapping I*V, is used instead of IV. I*V is defined to coincide with
IV on all variables except, possibly, on ?v1,... ,?vn.

e. Rule implication:
▪ TValI(head :- body) = t, if TValI(head) ≥t TValI(body).
▪ TValI(head :- body) = f otherwise.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 49 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

f. Dialects that introduce additional connectives and quantifiers
should define appropriate restrictions on TValI to give those new
elements desired semantics.

11. Groups of formulas:

If Γ is a group formula of the form Group(φ1 ... φn) then

◦ TValI(Γ) = glbt(TValI(φ1), ..., TValI(φn)).

This means that a group of formulas is treated as a conjunction. In
particular, the empty group is treated as a tautology, so TValI(Group()) =
t. ☐

Note that rule implications and equality formulas are always two-valued, even if TV
has more than two values.

3.7 Interpretation of Documents

Document formulas are interpreted using semantic multi-structures, which are sets
of semantic structures. Their purpose is to provide a semantics to RIF multi-
documents, i.e., RIF documents that import other RIF documents and/or contain
references to other RIF documents (via remote module refererence formulas). One
interesting feature of the multi-document semantics is that rif:local symbols
that belong to different documents can have different meanings.

Definition (Semantic multi-structures). A semantic multi-structure, Î, is a set of
semantic structures of the form {J, K; Ii1, Ii2, ...; Mj1, Mj2, ...}, where

• J and K are the usual RIF-FLD semantic structures; and
• Iik and Mjk, where k = 0, 1, 2, ..., are semantic structures

adorned with locators of RIF-FLD document formulas (one can think of
adorned structures as locator-structure pairs).

The locators used in Î must be of the kinds allowed in the Import and Module
directives.

The first semantic structure, J, is used to interpret non-document formulas, as we
shall see shortly. The structure K is used for document formulas. The structures in
the middle group, Iik, are optional; they are used to interpret imported documents.
All the structures in that group must be adorned with the locators of distinct
documents. The structures in the last group, Mjk, are also optional; they are used
to interpret documents that are linked as remote modules to other documents (via
the Module directive). The structures in that group must also be adorned with
locators of distinct documents. However, the same locator can adorn a structure in
the import group and a structure in the module group.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 50 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

The semantic structures J, K, and all the structures Iik in the import group are
required to be identical in all respects except that

• The mappings, JC, KC, and ICik (for all ik) may differ on the constants in
Const that belong to the rif:local symbol space.

The semantic structures Mjk in the last group have many more degrees of
freedom: they are required to agree with the other structures in Î only to the extent
that the mappings MCjk must coincide with JC, KC, and ICik on all constants in
Const except the ones in the rif:local symbol space. ☐

This definition makes the intent behind the rif:local constants clear:
occurrences of these constants in different documents can be interpreted differently
even if they have the same name. Therefore, each document can choose the
names for the rif:local constants freely and without regard to the names of
such constants used in the imported documents.

Definition (Imported document). Let Δ be a document formula and
Import(loc) be one of its import directives, where loc is a locator of another
document formula, Δ'. In this case, we say that Δ' is directly imported into Δ.

A document formula Δ' is said to be imported into Δ if it is either directly imported
into Δ or it is imported (directly or not) into another document, which itself is directly
imported into Δ. ☐

The above definition deals only with one-argument import directives, since two-
argument directives are expected to be defined on a case-by-case basis by other
specifications that need to be integrated with RIF.

Definition (Remote module). Let Δ be a document formula and let Module(n
loc) be one of its remote module directives, where loc is a locator for another
document formula, Δ'. In this case, we say that Δ' is a directly linked remote
module of Δ.

A document formula Δ' is said to be a linked remote module for Δ if it is either
directly linked to Δ or it is linked (directly or not) to another document, which is
directly linked to Δ. ☐

Next, we extend the term-interpreting mapping associated with each semantic
structure to the case of remote term references.

Definition (Term-interpreting mapping for remote term references). Let Δ be a
document formula and Î = {J, K; Ii1, Ii2, ...; Mj1, Mj2, ...} be a semantic multi-
structure that contains semantic structures for all the documents that are imported
into Δ or linked to it as remote modules (directly or indirectly). Let φ@r be a remote
term that appears in one of those documents, say Δ' and let L∈Î be a semantic
structure.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 51 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#rif-local-space
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/#rif-local-space

If there is a unique remote module directive Module(n jk) in Δ' such that L(r) =
L(n) then

• L(φ@r) = Mjk(φ).

If no such remote module directive exists or if such a directive is not unique, then
L(φ@r) is indeterminate, i.e., it can be any element in the domain of L.

Having extended the term-interpreting mapping to remote terms we can now
extend the truth valuation to such terms:

• TValL(φ@r) = Itruth(L(φ@r)). ☐

Note that although the above definition is very general, in practice the terms that
are used as remote module references (i.e., r in ...@r) make sense only if they
are interpreted by fixed and well-defined domain elements, and dialects are
expected to impose the appropriate restrictions. Examples of such fixed
interpretations include data types and Herbrand domains [Lloyd87].

We now use the notion of semantic multi-structures to define a semantics for RIF
documents.

Definition (Truth valuation of document formulas). Let Δ be a document formula
and let Δ1, ..., Δn be all the RIF-FLD document formulas that are imported (directly
or indirectly, according to the previous definition) into Δ. Let Γ, Γ1, ..., Γn denote the
respective group formulas associated with these documents. Let Î = {J, K; Ii1, Ii2,
...; Mj1, Mj2, ...} be a semantic multi-structure whose import group contains
semantic structures adorned with the locators i1, ..., in of the documents Δ1, ...,
Δn. Then we define:

• TValI(Δ) = glbt(TValK(Γ), TValIi1(Γ1), ..., TValIin(Γn)). ☐

Note that this definition considers only those document formulas that are reachable
via the one-argument import directives. Two-argument import directives are not
covered by RIF-FLD. Their semantics is supposed to be defined by other
documents, such as [RIF-RDF+OWL].

Also note that some of the Γi above may be missing since all parts in a document
formula are optional. In this case, we assume that Γi is a tautology, such as
And(), and every TVal function maps such a Γi to the truth value t.

For non-document formulas, we extend TValI(φ) from regular semantic structures
to multi-structures as follows: if Î is a multi-structure {J, K; ...} then TValÎ(φ) =
TValJ(φ).

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 52 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

Definition (Models). Let I be a semantic structure or multi-structure. We say that I
is a model of a formula, φ, written as I|=φ, iff TValI(φ) = t. Here φ can be a
document or a non-document formula. ☐

3.8 Intended Semantic Structures

The semantics of a set of formulas, Γ, is the set of its intended semantic multi-
structures. RIF-FLD does not specify what these intended multi-structures are,
leaving this to RIF dialects. Different logic theories may have different criteria for
what is considered an intended semantic multi-structure.

For the classical first-order logic, every model is an intended semantic multi-
structure. For [RIF-BLD], which is based on Horn rules, intended multi-structures
are defined only for sets of rules: an intended semantic multi-structure of a RIF-
BLD set of formulas, Γ, is the unique minimal Herbrand model [Lloyd87] of Γ. For
the dialects in which rule bodies may contain literals negated with the default
negation connective Naf, only some of the minimal Herbrand models of a set of
rules are intended. Each logic dialect of RIF must define the set of intended
semantic multi-structures precisely. The two most common such theories are the
well-founded models [GRS91] and stable models [GL88].

The following example illustrates the notion of intended semantic structures.
Suppose Γ consists of a single rule formula p :- Naf q. If Naf were interpreted
as classical negation, then this rule would be simply equivalent to Or(p q), and so
it would have two kinds of models: those where p is true and those where q is true.
In contrast to first-order logic, most rule-based systems do not consider p and q
symmetrically. Instead, they view the rule p :- Naf q as a statement that p must
be true if it is not possible to establish the truth of q. Since it is, indeed, impossible
to establish the truth of q, such theories would derive p even though it does not
logically follow from Or(p q). The logic underlying rule-based systems also
assumes that only the minimal Herbrand models are intended (minimality here is
with respect to the set of true facts). Furthermore, although our example has two
minimal Herbrand models -- one where p is true and q is false, and the other where
p is false, but q is true, only the first model is considered to be intended.

The above concept of intended semantic multi-structures and the corresponding
notion of logical entailment with respect to these intended semantic multi-
structures, defined below, is due to [Shoham87].

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 53 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

3.9 Logical Entailment

We will now define what it means for one RIF-FLD formula to entail another. This
notion is typically used for defining queries to knowledge bases and for other tasks,
such as testing subsumption of concepts (e.g., in OWL). We assume that each set
of formulas has an associated set of intended semantic structures (which depend
on RIF dialects).

Definition (Logical entailment). Let φ and ψ be (document or non-document) RIF-
FLD formulas. We say that φ entails ψ, written as φ |= ψ, if and only if for every
intended semantic multi-structure Î of φ it is the case that TValÎ(φ) ≤t TValÎ(ψ). ☐

This general notion of entailment covers both first-order logic and the non-
monotonic logics that underlie many rule-based languages [Shoham87].

Note that one consequence of the multi-document semantics is that local constants
specified in one document cannot be queried from another document. For instance,
if one document, Δ', has the fact "http://example.com/
ppp"^^rif:iri("abc"^^rif:local) while another document formula, Δ,
imports Δ' and has the rule "http://example.com/qqq"^^rif:iri(?X) :-
"http://example.com/ppp"^^rif:iri(?X) , then Δ |=
"http://example.com/qqq"^^rif:iri("abc"^^rif:local) does not
hold. This is because the symbol "abc"^^rif:local in Δ' and Δ is treated as
different constants by semantic multi-structures.

The behavior of local symbols should be contrasted with the behavior of rif:iri
symbols. Suppose, in the above scenario, Δ' also has the fact
"http://example.com/ppp"^^rif:iri("http://cde"^^rif:iri). Then
Δ |= "http://example.com/qqq"^^rif:iri("http:cde"^^rif:iri)
does hold.

4 XML Serialization Framework

The RIF-FLD XML serialization framework defines

• a normative mapping from the RIF-FLD presentation syntax to XML
(Section Mapping from the RIF-FLD Presentation Syntax to the XML
Syntax), and

• a normative XML Schema for the XML syntax (Appendix XML Schema for
FLD).

As explained in the overview section, the design of RIF envisions that the
presentation syntaxes of future logic RIF dialects will be specializations of the
presentation syntax of RIF-FLD. This means that every well-formed formula in the

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 54 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

presentation syntax of a standard logic RIF dialect must also be well-formed in a
specialization of RIF-FLD, which includes actualizing the RIF-FLD extension points
(see overview section). The goal of the XML serialization framework is to provide a
similar yardstick for the RIF XML syntax. This amounts to the requirement that any
admissible XML document for a logic RIF dialect must also be an admissible XML
document for a specialized RIF-FLD (admissibility is defined below). In terms of the
presentation-to-XML syntax mappings, this means that each mapping for a logic
RIF dialect must be a restriction of the corresponding mapping for RIF-FLD. For
instance, the mapping from the presentation syntax of RIF-BLD to XML in [RIF-
BLD] is a restriction of the presentation-syntax-to-XML mapping for RIF-FLD. In this
way, RIF-FLD provides a framework for extensibility and mutual compatibility
between XML syntaxes of RIF dialects.

Recall that the syntax of RIF-FLD is not context-free and thus cannot be fully
captured by EBNF or XML Schema. Still, validity with respect to XML Schema can
be a useful test. To reflect this state of affairs, we define two notions of syntactic
correctness. The weaker notion checks correctness only with respect to XML
Schema, while the stricter notion represents "true" syntactic correctness.

Definition (Specialization of RIF-FLD schema to a dialect schema). If a dialect,
D, specializes RIF-FLD then its XML schema must be a specialization of the XML
schema of RIF-FLD. This includes elimination of some elements and attributes,
restriction of the XML types of the others, and replacement of the extension points
with appropriate concrete elements of the specified (possibly restricted) types. ☐

Definition (Valid XML document in RIF-FLD). A valid RIF-FLD document in the
XML syntax is an XML document that is valid with respect to the XML schema in
Appendix XML Schema for RIF-FLD, where the extension points NEWCONNECTIVE,
NEWQUANTIFIER, NEWAGGRFUNC, and NEWTERM are specialized as concrete
elements of the types prescribed by the RIF-FLD XML schema.

If a dialect, D, specializes RIF-FLD then a valid XML document in dialect D is
one that is valid with respect to the specialized XML schema of D. ☐

Definition (Admissible XML document in a logic dialect). An admissible RIF-
FLD document in the XML syntax is a valid FLD document in that syntax that is the
image of a well-formed RIF-FLD document in the presentation syntax (see
Definition Well-formed formula) under the presentation-to-XML syntax mapping
χfld defined in Section Mapping from the RIF-FLD Presentation Syntax to the XML
Syntax.

If a dialect, D, specializes RIF-FLD then an XML document is admissible with
respect to D if and only if it is a valid document in D and it is an image under χD of a
well-formed document in the presentation syntax of D, where χD is the
presentation-to-XML mapping defined by the dialect D.

Note that if D requires the directive Dialect(D) as part of its syntax then this
implies that any D-admissible document must have this directive. ☐

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 55 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/2005/rules/wg/draft/ED-rif-bld-20090904/#sec-translation

A round-tripping of an admissible document in a dialect, D, is a semantics-
preserving mapping to a document in any language L followed by a semantics-
preserving mapping from the L-document back to an admissible D-document.
While semantically equivalent, the original and the round-tripped D-documents
need not be identical.

4.1 XML for the RIF-FLD Language

RIF-FLD uses [XML1.0] for its XML syntax. The XML serialization for RIF-FLD is
alternating or fully striped [ANF01]. A fully striped serialization views XML
documents as objects and divides all XML tags into class descriptors, called type
tags, and property descriptors, called role tags [TRT03]. We follow the tradition of
using capitalized names for type tags and lowercase names for role tags.

The all-uppercase classes in the EBNF of the presentation syntax, such as
FORMULA, become XML Schema groups in Appendix XML Schema for FLD. They
are not visible in instance markup. The other classes as well as non-terminals and
symbols (such as Exists or =) become XML elements with optional attributes, as
shown below.

The RIF serialization framework for the syntax of Section EBNF Grammar for the
Presentation Syntax of RIF-FLD uses the following XML tags. While there is a RIF-
FLD element tag for the Import directive and an attribute for the Dialect
directive, there are none for the Base and Prefix directives: they are handled as
discussed in Section Mapping from the RIF-FLD Presentation Syntax to the XML
Syntax.

- Document (document, with optional 'dialect' attribute, containing optional directive and payload roles)
- directive (directive role, containing Import)
- payload (payload role, containing Group)
- Import (importation, containing location and optional profile)
- Module (remote module, associating internal name with location)
- location (location role, containing ANYURICONST)
- internal (internal role, containing ground term as remote module name)
- profile (profile role, containing PROFILE)
- Group (nested collection of sentences)
- sentence (sentence role, containing FORMULA or Group)
- Forall (quantified formula for 'Forall', containing declare and formula roles)
- Exists (quantified formula for 'Exists', containing declare and formula roles)
- declare (declare role, containing a Var)
- formula (formula role, containing a FORMULA)
- termula (termula role, containing a TERMULA)
- Implies (implication, containing if and then roles)
- if (antecedent role, containing FORMULA)
- then (consequent role, containing FORMULA)

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 56 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

- And (conjunction)
- Or (disjunction)
- Neg (strong negation, containing a formula role)
- Naf (default negation, containing a formula role)
- Atom (atom formula, positional or with named arguments)
- Remote (prefix version of remote term '@', containing a formula/termula and an internal role)
- External (external call, containing a content role)
- content (content role, containing an Atom, for predicates, or Expr, for functions)
- Member (member formula)
- Subclass (subclass formula)
- Frame (Frame formula)
- object (Member/Frame role containing a TERM or an object description)
- op (Atom/Expr role for predicates/functions as operations)
- args (Atom/Expr positional arguments role, with fixed 'ordered' attribute, containing n TERMs)
- instance (Member instance role)
- class (Member class role)
- sub (Subclass sub-class role)
- super (Subclass super-class role)
- slot (Atom/Expr or Frame slot role, with fixed 'ordered' attribute, containing a Name or TERM followed by a TERM)
- Equal (prefix version of term equation '=')
- left (Equal left-hand side role)
- right (Equal right-hand side role)
- Expr (expression formula, positional or with named arguments)
- List (list term, closed or open)
- rest (list rest role, corresponding to '|')
- Min (aggregate function)
- Max (aggregate function)
- Sum (aggregate function)
- Prod (aggregate function)
- Avg (aggregate function)
- Count (aggregate function)
- Set (aggregate function)
- Bag (aggregate function)
- Const (individual, function, or predicate symbol, with optional 'type' attribute)
- Name (name of named argument)
- Var (logic variable)

- id (identifier role, containing CONST)
- meta (meta role, containing metadata as a Frame or Frame conjunction)

The name of a prefix is not associated with an XML element, since it is handled via
preprocessing as discussed in Section Mapping of the Non-annotated RIF-FLD
Language.

The id and meta elements, which are expansions of the IRIMETA element, can
occur optionally as the initial children of any Class element.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 57 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

The XML Schema Definition of RIF-FLD is given in Appendix XML Schema for
FLD.

The XML syntax for symbol spaces uses the type attribute associated with the
XML element Const. For instance, a literal in the xs:dateTime datatype is
represented as
<Const type="&xs;dateTime">2007-11-23T03:55:44-02:30</Const>.
RIF-FLD also uses the ordered attribute to indicate that the children of args and
slot elements are ordered.

Example 5 (Serialization of a nested RIF-FLD group with annotations).

This example shows an XML serialization for the formulas in Example 3. For
convenience of reference, the original formulas are included at the top. For better
readability, we again use the shortcut syntax defined in [RIF-DTB].

Presentation syntax:

Document(
Dialect(FOL)
Prefix(dc <http://http://purl.org/dc/terms/>)
Prefix(ex <http://example.org/ontology#>)
Prefix(hamlet <http://www.shakespeare-literature.com/Hamlet/>)

(* hamlet:assertions hamlet:assertions[dc:title->"Hamlet" dc:creator->"Shakespeare"] *)
Group(

Exists ?X (And(?X # ex:RottenThing
ex:partof(?X <http://www.denmark.dk>)))

Forall ?X (Or(hamlet:tobe(?X) Naf hamlet:tobe(?X)))
Forall ?X (And(Exists ?B (And(ex:has(?X ?B) ?B # ex:business))

Exists ?D (And(ex:has(?X ?D) ?D # ex:desire)))
:- ?X # ex:man)

(* hamlet:facts *)
Group(

hamlet:Yorick # ex:poor
hamlet:Hamlet # ex:prince

)
)

)

XML serialization:

<!DOCTYPE Document [
<!ENTITY dc "http://purl.org/dc/terms/">
<!ENTITY ex "http://example.org/ontology#">
<!ENTITY hamlet "http://www.shakespeare-literature.com/Hamlet/">
<!ENTITY rif "http://www.w3.org/2007/rif#">

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 58 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://purl.org/dc/terms/

<!ENTITY xs "http://www.w3.org/2001/XMLSchema#">
]>

<Document dialect="FOL">
<payload>
<Group>
<meta>

<Frame>
<object>

<Const type="&rif;iri">hamlet:assertions</Const>
</object>
<slot ordered="yes">

<Const type="&rif;iri">&dc;title</Const>
<Const type="&xs;string">Hamlet</Const>

</slot>
<slot ordered="yes">

<Const type="&rif;iri">&dc;creator</Const>
<Const type="&xs;string">Shakespeare</Const>

</slot>
</Frame>

</meta>
<sentence>
<Exists>

<declare><Var>X</Var></declare>
<formula>

<And>
<formula>

<Member>
<instance><Var>X</Var></instance>
<class><Const type="&rif;iri">ex:RottenThing</Const></class>

</Member>
</formula>
<formula>

<Atom>
<op><Const type="&rif;iri">ex:partof</Const></op>
<args ordered="yes">

<Var>X</Var>
<Const type="&rif;iri">http://www.denmark.dk</Const>

</args>
</Atom>

</formula>
</And>

</formula>
</Exists>

</sentence>
<sentence>
<Forall>

<declare><Var>X</Var></declare>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 59 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

<formula>
<Or>

<formula>
<Atom>

<op><Const type="&rif;iri">hamlet:tobe</Const></op>
<args ordered="yes"><Var>X</Var></args>

</Atom>
</formula>
<formula>

<Naf>
<formula>

<Atom>
<op><Const type="&rif;iri">hamlet:tobe</Const></op>
<args ordered="yes"><Var>X</Var></args>

</Atom>
</formula>

</Naf>
</formula>

</Or>
</formula>

</Forall>
</sentence>
<sentence>
<Forall>

<declare><Var>X</Var></declare>
<formula>

<Implies>
<if>

<Member>
<instance><Var>X</Var></instance>
<class><Const type="&rif;iri">ex:man</Const></class>

</Member>
</if>
<then>

<And>
<formula>

<Exists>
<declare><Var>B</Var></declare>
<formula>
<And>
<formula>

<Atom>
<op><Const type="&rif;iri">ex:has</Const></op>
<args>

<Var>X</Var>
<Var>B</Var>

</args>
</Atom>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 60 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

</formula>
<formula>

<Member>
<instance><Var>B</Var></instance>
<class><Const type="&rif;iri">ex:business</Const></class>

</Member>
</formula>

</And>
</formula>

</Exists>
</formula>
<formula>

<Exists>
<declare><Var>D</Var></declare>
<formula>
<And>
<formula>

<Atom>
<op><Const type="&rif;iri">ex:has</Const></op>
<args>

<Var>X</Var>
<Var>D</Var>

</args>
</Atom>

</formula>
<formula>

<Member>
<instance><Var>D</Var></instance>
<class><Const type="&rif;iri">ex:desire</Const></class>

</Member>
</formula>

</And>
</formula>

</Exists>
</formula>

</And>
</then>

</Implies>
</formula>

</Forall>
</sentence>
<sentence>

<Group>
<meta>

<Frame>
<object>

<Const type="&rif;iri">hamlet:facts</Const>
</object>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 61 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

</Frame>
</meta>
<sentence>

<Member>
<instance><Const type="&rif;iri">hamlet:Yorick</Const></instance>
<class><Const type="&rif;iri">ex:poor</Const></class>

</Member>
</sentence>
<sentence>

<Member>
<instance><Const type="&rif;iri">hamlet:Hamlet</Const></instance>
<class><Const type="&rif;iri">ex:prince</Const></class>

</Member>
</sentence>

</Group>
</sentence>

</Group>
</payload>

</Document>

4.2 Mapping from the RIF-FLD Presentation Syntax to the XML
Syntax

This section defines a normative mapping, χfld, from the presentation syntax of
Section EBNF Grammar for the Presentation Syntax of RIF-FLD to the XML syntax
of RIF-FLD. The mapping is given via tables where each row specifies the mapping
of a particular syntactic pattern in the presentation syntax. These patterns appear
in the first column of the tables and the bold-italic symbols represent
metavariables. The second column represents the corresponding XML patterns,
which may contain applications of the mapping χfld to these metavariables. When
an expression χfld(metavar) occurs in an XML pattern in the right column of a
translation table, it should be understood as a recursive application of χfld to the
presentation syntax represented by the metavariable. The XML syntax result of
such an application is substituted for the expression χfld(metavar). A sequence
of terms containing metavariables with subscripts is indicated by an ellipsis. A
metavariable or a well-formed XML subelement is marked as optional by
appending a bold-italic question mark, ?, to its right.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 62 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

4.2.1 Mapping of the Non-annotated RIF-FLD Language

The χfld mapping from the presentation syntax to the XML syntax of the non-
annotated RIF-FLD Language is given by the table below. Each row indicates a
translation χfld(Presentation) = XML. Since the presentation syntax of RIF-FLD
is context sensitive, the mapping must differentiate between the terms that occur in
the position of the individuals and the terms that occur as atomic formulas. To this
end, in the translation table, the positional and named-argument terms that occur in
the context of atomic formulas are denoted by the expressions of the form pred(...)
and the terms that occur as individuals are denoted by expressions of the form
func(...). In the table, each metavariable for an (unnamed) positional argumenti is
assumed to be instantiated to values unequal to the instantiations of named
arguments unicodestringj -> fillerj. Regarding the last but first row, we assume
that shortcuts for constants [RIF-DTB] have already been expanded to their full
form ("..."^^symspace). The AGGRFUNC metavariable stands for any of the
aggregation functions Min, Max, Count, Avg, Sum, Prod, Set, Bag, or
NEWAGGRFUNC.

Thus, the mapping of the extension point for aggregate functions (NEWAGGRFUNC)
is handled by the AGGRFUNC metavariable, along with the mapping of the specific
aggregate functions (Min etc.). The mapping of the extension points for quantifiers
(NEWQUANTIFIER) and connectives (NEWCONNECTIVE) generalizes the mapping
for the specific quantifiers (Forall, Exists) and connectives (And, Or),
respectively. The mapping of the extension point for terms (NEWTERM) keeps
NEWTERM entirely unconstrained in the presentation syntax and uses a wildcard
content model (indicated by ellipses) in the XML syntax. This is because the
content of NEWTERM is left entirely up to RIF dialects. Recall that the extension
point for symbols (NEWSYMBOL) is part of the alphabet and is not dealt with in the
EBNF and XML grammars.

Also recall that OpenList(t1 ... tm t) is just an alternative form for List(t1 ...
tm | t), so its mapping is not represented separately.

Note that the Import and Dialect directives are handled by the presentation-to-
XML syntax mapping, using an XML attribute for dialect names (values: FOL,
BLD, Core, etc.). On the other hand, the Prefix and Base directives are not
handled by this mapping but by expanding the associated shortcuts (compact
URIs). Namely, a prefix name declared in a Prefix directive is expanded into the
associated IRI, while relative IRIs are completed using the IRI declared in the Base
directive. The mapping χfld applies only to such expanded documents. RIF-FLD
also allows other treatments of Prefix and Base provided that they produce
equivalent XML documents. One such treatment is employed in the examples in
this document, especially Example 5. It replaces prefix names with definitions of
XML entities as follows. Each Prefix declaration becomes an ENTITY declaration
[XML1.0] within a DOCTYPE DTD attached to the RIF-FLD Document. The Base
directive is mapped to the xml:base attribute [XML-Base] in the XML Document

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 63 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

tag. Compact URIs of the form prefix:suffix are then mapped to
&prefix;suffix.

Presentation Syntax XML Syntax

Document(
Dialect(name)?
Import(iloc1 prfl1?)
. . .

Import(ilocn prfln?)
Module(name1 mloc1)
. . .

Module(namek mlock)
group

)

<Document dialect="name"?>
<directive>

<Import>
<location>χfld(iloc1)</location>
<profile>χfld(prfl1)</profile>?

</Import>
</directive>
. . .

<directive>
<Import>

<location>χfld(ilocn)</location>
<profile>χfld(prfln)</profile>?

</Import>
</directive>
<directive>

<Module>
<internal>χfld(name1)</internal>
<location>χfld(mloc1)</location>

</Module>
</directive>
. . .

<directive>
<Module>

<internal>χfld(namek)</internal>
<location>χfld(mlock)</location>

</Module>
</directive>
<payload>χfld(group)</payload>

</Document>

Group(
clause1
. . .

clausen
)

<Group>
<sentence>χfld(clause1)</sentence>
. . .

<sentence>χfld(clausen)</sentence>
</Group>

Forall
variable1
. . .

variablen (
body

)

<Forall>
<declare>χfld(variable1)</declare>
. . .

<declare>χfld(variablen)</declare>
<formula>χfld(body)</formula>

</Forall>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 64 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

Exists
variable1
. . .
variablen (

body
)

<Exists>
<declare>χfld(variable1)</declare>
. . .

<declare>χfld(variablen)</declare>
<formula>χfld(body)</formula>

</Exists>

NEWQUANTIFIER
variable1
. . .
variablen (

body
)

<NEWQUANTIFIER>
<declare>χfld(variable1)</declare>
. . .

<declare>χfld(variablen)</declare>
<formula>χfld(body)</formula>

</NEWQUANTIFIER>

conclusion :- condition <Implies>
<if>χfld(condition)</if>
<then>χfld(conclusion)</then>

</Implies>

And (
conjunct1
. . .
conjunctn

)

<And>
<formula>χfld(conjunct1)</formula>
. . .

<formula>χfld(conjunctn)</formula>
</And>

Or (
disjunct1
. . .
disjunctn
)

<Or>
<formula>χfld(disjunct1)</formula>
. . .

<formula>χfld(disjunctn)</formula>
</Or>

NEWCONNECTIVE (
argument1
. . .
argumentn

)

<NEWCONNECTIVE>
<formula>χfld(argument1)</formula>
. . .

<formula>χfld(argumentn)</formula>
</NEWCONNECTIVE>

Neg form <Neg>
<formula>χfld(form)</formula>

</Neg>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 65 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

Naf form <Naf>
<formula>χfld(form)</formula>

</Naf>

query @ modref <Remote>
<formula>χfld(query)</formula>
<internal>χfld(modref)</internal>

</Remote>

External (
atomframexpr

)

<External>
<content>χfld(atomframexpr)</content>

</External>

pred (
argument1
. . .
argumentn

)

<Atom>
<op>χfld(pred)</op>
<args ordered="yes">

χfld(argument1)
. . .
χfld(argumentn)

</args>
</Atom>

func (
argument1
. . .
argumentn

)

<Expr>
<op>χfld(func)</op>
<args ordered="yes">

χfld(argument1)
. . .
χfld(argumentn)

</args>
</Expr>

List (
element1
. . .
elementn

)

<List>
χfld(element1)
. . .
χfld(elementn)

</List>

List (
element1
. . .
elementm

<List>
χfld(element1)
. . .
χfld(elementm)

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 66 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

|
remainder

)

<rest>χfld(remainder)</rest>
</List>

pred (
unicodestring1 -> filler1
. . .
unicodestringn -> fillern

)

<Atom>
<op>χfld(pred)</op>
<slot ordered="yes">

<Name>unicodestring1</Name>
χfld(filler1)

</slot>
. . .

<slot ordered="yes">
<Name>unicodestringn</Name>
χfld(fillern)

</slot>
</Atom>

func (
unicodestring1 -> filler1
. . .
unicodestringn -> fillern

)

<Expr>
<op>χfld(func)</op>
<slot ordered="yes">

<Name>unicodestring1</Name>
χfld(filler1)

</slot>
. . .

<slot ordered="yes">
<Name>unicodestringn</Name>
χfld(fillern)

</slot>
</Expr>

inst [
key1 -> filler1
. . .
keyn -> fillern

]

<Frame>
<object>χfld(inst)</object>
<slot ordered="yes">

χfld(key1)
χfld(filler1)

</slot>
. . .

<slot ordered="yes">
χfld(keyn)
χfld(fillern)

</slot>
</Frame>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 67 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

inst # class <Member>
<instance>χfld(inst)</instance>
<class>χfld(class)</class>

</Member>

sub ## super <Subclass>
_{χfld(sub)}
<super>χfld(super)</super>

</Subclass>

left = right <Equal>
<left>χfld(left)</left>
<right>χfld(right)</right>

</Equal>

AGGRFUNC {
variable
variable1
. . .
variablem

|
compform

}

<AGGRFUNC>
<declare>χfld(variable)</declare>
<declare>χfld(variable1)</declare>
. . .

<declare>χfld(variablem)</declare>
<formula>χfld(compform)</formula>

</AGGRFUNC>

"unicodestring"^^space <Const type="space">unicodestring</Const>

?unicodestring <Var>unicodestring</Var>

NEWTERM <NEWTERM>...</NEWTERM>

4.2.2 Mapping of RIF-FLD Annotations

The χfld mapping from RIF-FLD annotations in the presentation syntax to the XML
syntax is specified by the table below. It extends the translation table of Section
Mapping of the Non-annotated RIF-FLD Language. The metavariable Typetag in
the presentation and XML syntaxes stands for any of the class names And, Or,
External, Document, or Group, Quantifier for Exists or Forall, and
Negation for Neg or Naf. The dollar sign, $, stands for any of the binary infix

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 68 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

operator names #, ##, =, or :-, while Binop stands for their respective class
names Member, Subclass, Equal, or Implies. The metavariable attr? is used
with Typetag to capture the optional dialect attribute (with its value) of
Document. Again, each metavariable for an (unnamed) positional argumenti is
assumed to be instantiated to values unequal to the instantiations of named
arguments unicodestringj -> fillerj.

Presentation Syntax XML Syntax

(* const? frameconj? *)
Typetag (e1 . . . en)

<Typetag attr?>
<id>χfld(const)</id>?
<meta>χfld(frameconj)</meta>?
e1' . . . en'

</Typetag>

where attr, e1', . . ., en' are defined by the equation
χfld(Typetag(e1 . . . en)) = <Typetag attr?>e1' . . . en'</Typetag>

(* const? frameconj? *)
Quantifier variable1 . . . variablen (body)

<Quantifier>
<id>χfld(const)</id>?
<meta>χfld(frameconj)</meta>?
<declare>χfld(variable1)</declare>
. . .
<declare>χfld(variablen)</declare>
<formula>χfld(body)</formula>

</Quantifier>

(* const? frameconj? *)
Negation e

<Negation>
<id>χfld(const)</id>?
<meta>χfld(frameconj)</meta>?
χfld(e)

</Negation>

(* const? frameconj? *)
pred (

argument1
. . .
argumentn

)

<Atom>
<id>χfld(const)</id>?
<meta>χfld(frameconj)</meta>?
<op>χfld(pred)</op>
<args ordered="yes">

χfld(argument1)
. . .
χfld(argumentn)

</args>
</Atom>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 69 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

(* const? frameconj? *)
func (

argument1
. . .
argumentn

)

<Expr>
<id>χfld(const)</id>?
<meta>χfld(frameconj)</meta>?
<op>χfld(func)</op>
<args ordered="yes">

χfld(argument1)
. . .
χfld(argumentn)

</args>
</Expr>

(* const? frameconj? *)
pred (

unicodestring1 -> filler1
. . .
unicodestringn -> fillern

)

<Atom>
<id>χfld(const)</id>?
<meta>χfld(frameconj)</meta>?
<op>χfld(pred)</op>
<slot ordered="yes">

<Name>unicodestring1</Name>
χfld(filler1)

</slot>
. . .

<slot ordered="yes">
<Name>unicodestringn</Name>
χfld(fillern)

</slot>
</Atom>

(* const? frameconj? *)
func (

unicodestring1 -> filler1
. . .
unicodestringn -> fillern

)

<Expr>
<id>χfld(const)</id>?
<meta>χfld(frameconj)</meta>?
<op>χfld(func)</op>
<slot ordered="yes">

<Name>unicodestring1</Name>
χfld(filler1)

</slot>
. . .

<slot ordered="yes">
<Name>unicodestringn</Name>
χfld(fillern)

</slot>
</Expr>

(* const? frameconj? *)
inst [

key1 -> filler1
. . .

<Frame>
<id>χfld(const)</id>?
<meta>χfld(frameconj)</meta>?
<object>χfld(inst)</object>
<slot ordered="yes">

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 70 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

keyn -> fillern
]

χfld(key1)
χfld(filler1)

</slot>
. . .

<slot ordered="yes">
χfld(keyn)
χfld(fillern)

</slot>
</Frame>

(* const? frameconj? *)
e1 $ e2

<Binop>
<id>χfld(const)</id>?
<meta>χfld(frameconj)</meta>?
e1' e2'

</Binop>

where Binop, e1', e2' are defined by the equation
χfld(e1 $ e2) = <Binop>e1' e2'</Binop>

(* const? frameconj? *)
unicodestring^^symspace

<Const type="symspace">
<id>χfld(const)</id>?
<meta>χfld(frameconj)</meta>?
unicodestring

</Const>

(* const? frameconj? *)
?unicodestring

<Var>
<id>χfld(const)</id>?
<meta>χfld(frameconj)</meta>?
unicodestring

</Var>

5 Conformance of RIF Processors with RIF Dialects

RIF does not require or expect conformant systems to implement the presentation
syntax of a RIF dialect. Instead, conformance is described in terms of semantics-
preserving transformations between the native syntax of a compliant system and
the XML syntax of RIF-BLD.

Let Τ be a set of datatypes and symbol spaces that includes the datatypes
specified in [RIF-DTB] and the symbol spaces rif:iri and rif:local. Suppose

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 71 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

also that Ε is a coherent set of external schemas that includes the built-ins listed in
[RIF-DTB]. Let D be a RIF dialect (e.g., [RIF-BLD]). We say that a formula φ is a
DΤ,Ε formula iff

• it is a formula in the dialect D,
• all datatypes and symbol spaces used in φ are in Τ, and
• all externally defined terms used in φ are instantiations of some external

schemas in Ε.

A RIF processor is a conformant DΤ,Ε consumer iff it implements a semantics-
preserving mapping, μ, from the set of all DΤ,Ε formulas to the language L of the
processor.

Formally, this means that for any pair φ, ψ of DΤ,Ε formulas for which φ |=D ψ is
defined, φ |=D ψ iff μ(φ) |=L μ(ψ). Here |=D denotes the logical entailment in the RIF
dialect D and |=L is the logical entailment in the language L of the RIF processor.

A RIF processor is a conformant DΤ,Ε producer iff it implements a semantics-
preserving mapping, ν, from the language L of the processor to the set of all DΤ,Ε
formulas.

Formally, this means that for any pair φ, ψ of formulas in L for which φ |=L ψ is
defined, φ |=L ψ iff ν(φ) |=D ν(ψ).

An admissible document in a logic RIF dialect D is one which conforms to all the
syntactic constraints of D, including the ones that cannot be checked by an XML
Schema validator (see Definition Admissible XML document in a logic dialect).

6 References

6.1 Normative References

[OWL-Reference]
OWL Web Ontology Language Reference, M. Dean, G. Schreiber, Editors,
W3C Recommendation, 10 February 2004. Latest version available at
http://www.w3.org/TR/owl-ref/.

[RDF-CONCEPTS]
Resource Description Framework (RDF): Concepts and Abstract Syntax,
Klyne G., Carroll J. (Editors), W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/. Latest version
available at http://www.w3.org/TR/rdf-concepts/.

[RDF-SEMANTICS]
RDF Semantics, Patrick Hayes, Editor, W3C Recommendation, 10 February
2004, http://www.w3.org/TR/2004/REC-rdf-mt-20040210/. Latest version
available at http://www.w3.org/TR/rdf-mt/.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 72 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://www.w3.org/TR/rdf-mt/

[RDF-SCHEMA]
RDF Vocabulary Description Language 1.0: RDF Schema, Brian McBride,
Editor, W3C Recommendation 10 February 2004, http://www.w3.org/TR/rdf-
schema/.

[RFC-3066]
RFC 3066 - Tags for the Identification of Languages, H. Alvestrand, IETF,
January 2001. This document is at http://www.isi.edu/in-notes/rfc3066.txt.

[RFC-3987]
RFC 3987 - Internationalized Resource Identifiers (IRIs), M. Duerst and M.
Suignard, IETF, January 2005. This document is at http://www.ietf.org/rfc/
rfc3987.txt.

[RIF-BLD]
RIF Basic Logic Dialect Harold Boley, Michael Kifer, eds. W3C Editor's Draft,
4 September 2009, http://www.w3.org/2005/rules/wg/draft/ED-rif-
bld-20090904/. Latest version available at http://www.w3.org/2005/rules/wg/
draft/rif-bld/.

[RIF-Core]
RIF Core Dialect Harold Boley, Gary Hallmark, Michael Kifer, Adrian Paschke,
Axel Polleres, Dave Reynolds, eds. W3C Editor's Draft, 4 September 2009,
http://www.w3.org/2005/rules/wg/draft/ED-rif-core-20090904/. Latest version
available at http://www.w3.org/2005/rules/wg/draft/rif-core/.

[RIF-DTB]
RIF Datatypes and Built-Ins 1.0 Axel Polleres, Harold Boley, Michael Kifer,
eds. W3C Editor's Draft, 4 September 2009, http://www.w3.org/2005/rules/wg/
draft/ED-rif-dtb-20090904/. Latest version available at http://www.w3.org/
2005/rules/wg/draft/rif-dtb/.

[RIF-PRD]
RIF Production Rule Dialect Christian de Sainte Marie, Adrian Paschke, Gary
Hallmark, eds. W3C Editor's Draft, 4 September 2009, http://www.w3.org/
2005/rules/wg/draft/ED-rif-prd-20090904/. Latest version available at
http://www.w3.org/2005/rules/wg/draft/rif-prd/.

[RIF-RDF+OWL]
RIF RDF and OWL Compatibility Jos de Bruijn, editor. W3C Editor's Draft, 4
September 2009, http://www.w3.org/2005/rules/wg/draft/ED-rif-rdf-
owl-20090904/. Latest version available at http://www.w3.org/2005/rules/wg/
draft/rif-rdf-owl/.

[XML1.0]
Extensible Markup Language (XML) 1.0 (Fourth Edition), W3C
Recommendation, World Wide Web Consortium, 16 August 2006, edited in
place 29 September 2006. This version is http://www.w3.org/TR/2006/REC-
xml-20060816/.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 73 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://tools.ietf.org/html/rfc3066
http://www.isi.edu/in-notes/rfc3066.txt
http://tools.ietf.org/html/rfc3987
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/2005/rules/wg/draft/ED-rif-bld-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-bld-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-bld-20090904/
http://www.w3.org/2005/rules/wg/draft/rif-bld/
http://www.w3.org/2005/rules/wg/draft/rif-bld/
http://www.w3.org/2005/rules/wg/draft/ED-rif-core-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-core-20090904/
http://www.w3.org/2005/rules/wg/draft/rif-core/
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-dtb-20090904/
http://www.w3.org/2005/rules/wg/draft/rif-dtb/
http://www.w3.org/2005/rules/wg/draft/rif-dtb/
http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-prd-20090904/
http://www.w3.org/2005/rules/wg/draft/rif-prd/
http://www.w3.org/2005/rules/wg/draft/ED-rif-rdf-owl-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-rdf-owl-20090904/
http://www.w3.org/2005/rules/wg/draft/ED-rif-rdf-owl-20090904/
http://www.w3.org/2005/rules/wg/draft/rif-rdf-owl/
http://www.w3.org/2005/rules/wg/draft/rif-rdf-owl/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2006/REC-xml-20060816/

[XML-Base]
XML Base, W3C Recommendation, World Wide Web Consortium, 27 June
2001. This version is http://www.w3.org/TR/2001/REC-xmlbase-20010627/.
The latest version is available at http://www.w3.org/TR/xmlbase/.

6.2 Informational References

[ANF01]
Normal Form Conventions for XML Representations of Structured Data, Henry
S. Thompson. October 2001.

[APP96]
Strong and Explicit Negation in Non-Monotonic Reasoning and Logic
Programming, J.J. Alferes, L.M. Pereira, and T.C. Przymusinski. Lecture
Notes In Computer Science, vol. 1126. Proceedings of the European
Workshop on Logics in Artificial Intelligence, 1996.

[Clark87]
Negation as failure, K. Clark. Readings in nonmonotonic reasoning, Morgan
Kaufmann Publishers, pages 311 - 325, 1987. (Originally published in 1978.)

[CK95]
Sorted HiLog: Sorts in Higher-Order Logic Data Languages, W. Chen, M.
Kifer. Sixth Intl. Conference on Database Theory, Prague, Czech Republic,
January 1995, Lecture Notes in Computer Science 893, Springer Verlag, pp.
252--265.

[CKW93]
HiLog: A Foundation for higher-order logic programming, W. Chen, M. Kifer,
D.S. Warren. Journal of Logic Programming, vol. 15, no. 3, February 1993, pp.
187--230.

[CURIE]
CURIE Syntax 1.0: A syntax for expressing Compact URIs, Mark Birbeck,
Shane McCarron. W3C Working Draft 2 April 2008. Available at
http://www.w3.org/TR/curie/.

[CycL]
The Syntax of CycL, Web site. Available at http://www.cyc.com/cycdoc/ref/
cycl-syntax.html.

[Enderton01]
A Mathematical Introduction to Logic, Second Edition, H. B. Enderton.
Academic Press, 2001.

[FL2]
FLORA-2: An Object-Oriented Knowledge Base Language, M. Kifer. Web site.
Available at http://flora.sourceforge.net.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 74 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/TR/2001/REC-xmlbase-20010627/
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/curie/
http://www.cyc.com/cycdoc/ref/cycl-syntax.html
http://www.cyc.com/cycdoc/ref/cycl-syntax.html
http://flora.sourceforge.net

[GL88]
The Stable Model Semantics for Logic Programming, M. Gelfond and V.
Lifschitz. Logic Programming: Proceedings of the Fifth Conference and
Symposium, pages 1070-1080, 1988.

[GRS91]
The Well-Founded Semantics for General Logic Programs, A. Van Gelder,
K.A. Ross, J.S. Schlipf. Journal of ACM, 38:3, pages 620-650, 1991.

[KLW95]
Logical foundations of object-oriented and frame-based languages, M. Kifer,
G. Lausen, J. Wu. Journal of ACM, July 1995, pp. 741--843.

[Lloyd87]
Foundations of Logic Programming (Second Edition), J.W. Lloyd, Springer-
Verlag, 1987.

[Mendelson97]
Introduction to Mathematical Logic, Fourth Edition, E. Mendelson. Chapman &
Hall, 1997.

[NxBRE]
.NET Business Rule Engine, Web site. Available at
http://nxbre.wiki.sourceforge.net/.

[OOjD]
Object-Oriented jDREW, Web site. Available at http://www.jdrew.org/oojdrew/.

[RDFSYN04]
RDF/XML Syntax Specification (Revised), Dave Beckett, Editor, W3C
Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-
syntax-grammar-20040210/. Latest version available at http://www.w3.org/TR/
rdf-syntax-grammar/.

[RF99]
A Tight, Practical Integration of Relations and Functions, H. Boley, Springer-
Verlag, 1999.

[Shoham87]
Nonmonotonic logics: meaning and utility, Y. Shoham. Proc. 10th International
Joint Conference on Artificial Intelligence, Morgan Kaufmann, pp. 388--393,
1987.

[Steele90]
Common LISP: The Language, Second Edition, G. L. Steele Jr. Digital Press,
1990.

[SWSL-Rules]
Semantic Web Services Language (SWSL), S. Battle, A. Bernstein, H. Boley,
B. Grosof, M. Gruninger, R. Hull, M. Kifer, D. Martin, S. McIlraith, D.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 75 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://nxbre.wiki.sourceforge.net/
http://www.jdrew.org/oojdrew/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/

McGuinness, J. Su, S. Tabet. W3C Member Submission, September 2005.
Available at http://www.w3.org/Submission/SWSF-SWSL/.

[TRT03]
Object-Oriented RuleML: User-Level Roles, URI-Grounded Clauses, and
Order-Sorted Terms, H. Boley. Springer LNCS 2876, Oct. 2003, pp. 1-16.
Preprint at http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-46502_e.html.

[vEK76]
The semantics of predicate logic as a programming language, M. van Emden
and R. Kowalski. Journal of the ACM 23 (1976), 733-742.

[WSML-Rules]
Web Service Modeling Language (WSML), J. de Bruijn, D. Fensel, U. Keller,
M. Kifer, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu. W3C Member
Submission, June 2005. Available at http://www.w3.org/Submission/WSML/.

7 Appendix: XML Schema for RIF-FLD

The namespace of RIF is http://www.w3.org/2007/rif#.

XML schemas for the RIF-FLD language are defined below and are also available
here with additional examples. For modularity, we define a Baseline schema and a
Skyline schema. Baseline is the schema module that provides the foundation up to
FORMULAs without Implies. Skyline provides the full schema by augmenting
Baseline with the Implies FORMULA as well as with Group and Document.

7.1 Baseline Schema Module

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns="http://www.w3.org/2007/rif#"
targetNamespace="http://www.w3.org/2007/rif#"
elementFormDefault="qualified"
version="Id: FLDBaseline.xsd, v. 1.2, 2009-06-25, hboley/dhirtle">

<xs:import namespace='http://www.w3.org/XML/1998/namespace'
schemaLocation='http://www.w3.org/2001/xml.xsd'/>

<xs:annotation>
<xs:documentation>

This is the Baseline module of FLD. It is the foundation of the full schema

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 76 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/Submission/SWSF-SWSL/
http://iit-iti.nrc-cnrc.gc.ca/publications/nrc-46502_e.html
http://www.w3.org/Submission/WSML/
http://www.ruleml.org/rif/fld/LC/

defined through the Skyline module. The Baseline XML schema is based on the
following EBNF (compared to the full EBNF of RIF-FLD, Group and Document are
omitted, and 'Implies' is missing from the productions for FORMULA and TERMULA).

The nonterminals starting with NEW provide extensions points for FLD
(cf. Section 4 XML Serialization Framework).

FORMULA ::= IRIMETA? CONNECTIVE '(' FORMULA* ')' |
IRIMETA? QUANTIFIER '(' FORMULA ')' |
IRIMETA? 'Neg' FORMULA |
IRIMETA? 'Naf' FORMULA |
IRIMETA? FORMULA '@' MODULEREF |
FORM

FORM ::= IRIMETA? (Var | ATOMIC |
'External' '(' ATOMIC LOCATOR? ')')

ATOMIC ::= Const | Atom | Equal | Member | Subclass | Frame
Atom ::= UNITERM
UNITERM ::= TERMULA '(' (TERMULA* | (Name '->' TERMULA)*) ')'
Equal ::= TERMULA '=' TERMULA
Member ::= TERMULA '#' TERMULA
Subclass ::= TERMULA '##' TERMULA
Frame ::= TERMULA '[' (TERMULA '->' TERMULA)* ']'
TERMULA ::= IRIMETA? CONNECTIVE '(' TERMULA* ')' |

IRIMETA? QUANTIFIER '(' TERMULA ')' |
IRIMETA? 'Neg' TERMULA |
IRIMETA? 'Naf' TERMULA |
IRIMETA? TERMULA '@' MODULEREF |
TERM

TERM ::= IRIMETA? (Var | EXPRIC | List |
'External' '(' EXPRIC LOCATOR? ')' |
AGGREGATE | NEWTERM)

EXPRIC ::= Const | Expr | Equal | Member | Subclass | Frame
Expr ::= UNITERM
List ::= 'List' '(' TERM* ')' | 'List' '(' TERM+ '|' TERM ')'
AGGREGATE ::= AGGRFUNC '{' Var ('[' Var+ ']')? '|' FORMULA '}'
Const ::= '"' UNICODESTRING '"^^' SYMSPACE | CONSTSHORT
MODULEREF ::= Var | Const | Expr
CONNECTIVE ::= 'And' | 'Or' | NEWCONNECTIVE
QUANTIFIER ::= ('Exists' | 'Forall' | NEWQUANTIFIER) Var*
AGGRFUNC ::= 'Min' | 'Max' | 'Sum' | 'Prod' | 'Avg' | 'Count' |

'Set' | 'Bag' | NEWAGGRFUNC
Name ::= UNICODESTRING
Var ::= '?' UNICODESTRING
SYMSPACE ::= ANGLEBRACKIRI | CURIE
LOCATOR ::= ANGLEBRACKIRI

IRIMETA ::= '(*' Const? (Frame | 'And' '(' Frame* ')')? '*)'

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 77 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

</xs:documentation>
</xs:annotation>

<xs:group name="FORMULA">
<!--

'Implies' omitted from Baseline schema, allowing its modular use
FORMULA ::= IRIMETA? CONNECTIVE '(' FORMULA* ')' |

IRIMETA? QUANTIFIER '(' FORMULA ')' |
IRIMETA? 'Neg' FORMULA |
IRIMETA? 'Naf' FORMULA |
IRIMETA? FORMULA '@' MODULEREF
FORM

CONNECTIVE ::= 'And' | 'Or' | NEWCONNECTIVE
QUANTIFIER ::= ('Exists' | 'Forall' | NEWQUANTIFIER) Var*

rewritten as
FORMULA ::= IRIMETA? 'And' '(' FORMULA* ')' |

IRIMETA? 'Or' '(' FORMULA* ')' |
IRIMETA? 'NEWCONNECTIVE' '(' FORMULA* ')' |
IRIMETA? 'Exists' Var* '(' FORMULA ')' |
IRIMETA? 'Forall' Var* '(' FORMULA ')' |
IRIMETA? 'NEWQUANTIFIER' Var* '(' FORMULA ')' |
IRIMETA? 'Neg' FORMULA |
IRIMETA? 'Naf' FORMULA |
IRIMETA? 'Remote' '(' FORMULA MODULEREF ')'
FORM

-->
<xs:choice>

<xs:element name="And" type="And-FORMULA.type"/>
<xs:element name="Or" type="Or-FORMULA.type"/>
<xs:element name="NEWCONNECTIVE" type="NEWCONNECTIVE-FORMULA.type"/>
<xs:element name="Exists" type="Exists-FORMULA.type"/>
<xs:element name="Forall" type="Forall-FORMULA.type"/>
<xs:element name="NEWQUANTIFIER" type="NEWQUANTIFIER-FORMULA.type"/>
<xs:element name="Neg" type="Neg-FORMULA.type"/>
<xs:element name="Naf" type="Naf-FORMULA.type"/>
<xs:element name="Remote" type="Remote-FORMULA.type"/>
<xs:group ref="FORM"/>

</xs:choice>
</xs:group>

<xs:complexType name="And-FORMULA.type">
<!-- sensitive to FORMULA context-->

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element name="formula" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 78 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

<xs:complexType name="Or-FORMULA.type">
<!-- sensitive to FORMULA context-->

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element name="formula" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="NEWCONNECTIVE-FORMULA.type">
<!-- sensitive to FORMULA context-->

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element name="formula" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Exists-FORMULA.type">
<!-- sensitive to FORMULA context-->

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="declare" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="formula"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Forall-FORMULA.type">
<!-- sensitive to FORMULA context-->

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="declare" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="formula"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="NEWQUANTIFIER-FORMULA.type">
<!-- sensitive to FORMULA context-->

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="declare" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="formula"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Neg-FORMULA.type">
<!-- sensitive to FORMULA context-->
<xs:sequence>

<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 79 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

<xs:element ref="formula" minOccurs="1" maxOccurs="1"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="Naf-FORMULA.type">
<!-- sensitive to FORMULA context-->
<xs:sequence>

<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="formula" minOccurs="1" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Remote-FORMULA.type">
<!-- sensitive to FORMULA context-->
<xs:sequence>

<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="formula"/>
<xs:element ref="internal"/>

</xs:sequence>
</xs:complexType>

<xs:element name="internal">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERM"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name="External-FORMULA.type">
<!-- sensitive to FORMULA (Atom | Frame) context-->
<xs:sequence>

<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element name="content" type="content-FORMULA.type"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="content-FORMULA.type">
<!-- sensitive to FORMULA (Atom | Frame) context-->
<xs:sequence>

<xs:choice>
<xs:element ref="Atom"/>
<xs:element ref="Frame"/>

</xs:choice>
</xs:sequence>

</xs:complexType>

<xs:element name="formula">

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 80 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

<xs:complexType>
<xs:sequence>

<xs:group ref="FORMULA"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="declare">
<xs:complexType>

<xs:sequence>
<xs:element ref="Var"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:group name="FORM">
<!--

FORM ::= IRIMETA? (Var | ATOMIC |
'External' '(' ATOMIC LOCATOR? ')')

-->
<xs:choice>

<xs:element ref="Var"/>
<xs:group ref="ATOMIC"/>
<xs:element name="External" type="External-FORM.type"/>

</xs:choice>
</xs:group>

<xs:complexType name="External-FORM.type">
<!-- sensitive to FORM (ATOMIC) context-->
<xs:sequence>

<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element name="content" type="content-FORM.type"/>
<xs:element ref="location" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="content-FORM.type">
<!-- sensitive to FORM (ATOMIC) context-->
<xs:sequence>

<xs:group ref="ATOMIC"/>
</xs:sequence>

</xs:complexType>

<xs:group name="ATOMIC">
<!--

ATOMIC ::= Const | Atom | Equal | Member | Subclass | Frame
-->
<xs:choice>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 81 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

<xs:element ref="Const"/>
<xs:element ref="Atom"/>
<xs:element ref="Equal"/>
<xs:element ref="Member"/>
<xs:element ref="Subclass"/>
<xs:element ref="Frame"/>

</xs:choice>
</xs:group>

<xs:element name="Atom">
<!--

Atom ::= UNITERM
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="UNITERM"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:group name="UNITERM">
<!--

UNITERM ::= TERMULA '(' (TERMULA* | (Name '->' TERMULA)*) ')'
-->
<xs:sequence>

<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="op"/>
<xs:choice>

<xs:element ref="args" minOccurs="0" maxOccurs="1"/>
<xs:element name="slot" type="slot-UNITERM.type" minOccurs="0" maxOccurs="unbounded"/>

</xs:choice>
</xs:sequence>

</xs:group>

<xs:element name="op">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERMULA"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="args">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERMULA" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="ordered" type="xs:string" fixed="yes"/>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 82 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

</xs:complexType>
</xs:element>

<xs:complexType name="slot-UNITERM.type">
<!-- sensitive to UNITERM (Name) context-->
<xs:sequence>

<xs:element ref="Name"/>
<xs:group ref="TERMULA"/>

</xs:sequence>
<xs:attribute name="ordered" type="xs:string" fixed="yes"/>

</xs:complexType>

<xs:element name="Equal">
<!--

Equal ::= TERMULA '=' TERMULA
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="left"/>
<xs:element ref="right"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="left">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERMULA"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="right">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERMULA"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Member">
<!--

Member ::= TERMULA '#' TERMULA
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 83 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

<xs:element ref="instance"/>
<xs:element ref="class"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Subclass">
<!--

Subclass ::= TERMULA '##' TERMULA
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="sub"/>
<xs:element ref="super"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="instance">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERMULA"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="class">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERMULA"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="sub">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERMULA"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="super">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERMULA"/>

</xs:sequence>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 84 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

</xs:complexType>
</xs:element>

<xs:element name="Frame">
<!--

Frame ::= TERMULA '[' (TERMULA '->' TERMULA)* ']'
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="object"/>
<xs:element name="slot" type="slot-Frame.type" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="object">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERMULA"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name="slot-Frame.type">
<!-- sensitive to Frame (TERMULA) context-->
<xs:sequence>

<xs:group ref="TERMULA"/>
<xs:group ref="TERMULA"/>

</xs:sequence>
<xs:attribute name="ordered" type="xs:string" fixed="yes"/>

</xs:complexType>

<xs:group name="TERMULA">
<!--

'Implies' omitted from Baseline schema, allowing its modular use
TERMULA ::= IRIMETA? CONNECTIVE '(' TERMULA* ')' |

IRIMETA? QUANTIFIER '(' TERMULA ')' |
IRIMETA? 'Neg' TERMULA |
IRIMETA? 'Naf' TERMULA |
IRIMETA? TERMULA '@' MODULEREF |
TERM

CONNECTIVE ::= 'And' | 'Or' | NEWCONNECTIVE
QUANTIFIER ::= ('Exists' | 'Forall' | NEWQUANTIFIER) Var*

rewritten as
TERMULA ::= IRIMETA? 'And' '(' TERMULA* ')' |

IRIMETA? 'Or' '(' TERMULA* ')' |
IRIMETA? 'NEWCONNECTIVE' '(' TERMULA* ')' |

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 85 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

IRIMETA? 'Exists' Var* '(' TERMULA ')' |
IRIMETA? 'Forall' Var* '(' TERMULA ')' |
IRIMETA? 'NEWQUANTIFIER' Var* '(' TERMULA ')' |
IRIMETA? 'Neg' TERMULA |
IRIMETA? 'Naf' TERMULA |
IRIMETA? 'Remote' '(' TERMULA MODULEREF ')'
TERM

-->
<xs:choice>

<xs:element name="And" type="And-TERMULA.type"/>
<xs:element name="Or" type="Or-TERMULA.type"/>
<xs:element name="NEWCONNECTIVE" type="NEWCONNECTIVE-TERMULA.type"/>
<xs:element name="Exists" type="Exists-TERMULA.type"/>
<xs:element name="Forall" type="Forall-TERMULA.type"/>
<xs:element name="NEWQUANTIFIER" type="NEWQUANTIFIER-TERMULA.type"/>
<xs:element name="Neg" type="Neg-TERMULA.type"/>
<xs:element name="Naf" type="Naf-TERMULA.type"/>
<xs:element name="Remote" type="Remote-TERMULA.type"/>
<xs:group ref="TERM"/>

</xs:choice>
</xs:group>

<xs:complexType name="And-TERMULA.type">
<!-- sensitive to TERMULA context-->

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element name="termula" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Or-TERMULA.type">
<!-- sensitive to TERMULA context-->

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element name="termula" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="NEWCONNECTIVE-TERMULA.type">
<!-- sensitive to TERMULA context-->

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element name="termula" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Exists-TERMULA.type">
<!-- sensitive to TERMULA context-->

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 86 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="declare" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="termula"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Forall-TERMULA.type">
<!-- sensitive to TERMULA context-->

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="declare" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="termula"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="NEWQUANTIFIER-TERMULA.type">
<!-- sensitive to TERMULA context-->

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="declare" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="termula"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Neg-TERMULA.type">
<!-- sensitive to TERMULA context-->
<xs:sequence>

<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="termula" minOccurs="1" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Naf-TERMULA.type">
<!-- sensitive to TERMULA context-->
<xs:sequence>

<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="termula" minOccurs="1" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Remote-TERMULA.type">
<!-- sensitive to TERMULA context-->
<xs:sequence>

<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="termula"/>
<xs:element ref="internal"/>

</xs:sequence>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 87 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

</xs:complexType>

<xs:element name="termula">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERMULA"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:group name="TERM">
<!--

TERM ::= IRIMETA? (Var | EXPRIC | List |
'External' '(' EXPRIC LOCATOR? ')' |
AGGREGATE | NEWTERM)

-->
<xs:choice>

<xs:element ref="Var"/>
<xs:group ref="EXPRIC"/>
<xs:element ref="List"/>
<xs:element name="External" type="External-TERM.type"/>
<xs:element ref="AGGREGATE"/>
<xs:element ref="NEWTERM"/>

</xs:choice>
</xs:group>

<xs:element name="List">
<!--

List ::= 'List' '(' TERM* ')' | 'List' '(' TERM+ '|' TERM ')'
rewritten as

List ::= 'List' '(' LISTELEMENTS? ')'
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="LISTELEMENTS" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:group name="LISTELEMENTS">
<!--

LISTELEMENTS ::= TERM+ ('|' TERM)?
-->
<xs:sequence>

<xs:group ref="TERM" minOccurs="1" maxOccurs="unbounded"/>
<xs:element ref="rest" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:group>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 88 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

<xs:element name="rest">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERM"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name="External-TERM.type">
<!-- sensitive to TERM (EXPRIC) context-->
<xs:sequence>

<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element name="content" type="content-TERM.type"/>
<xs:element ref="location" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="content-TERM.type">
<!-- sensitive to TERM (EXPRIC) context-->
<xs:sequence>

<xs:group ref="EXPRIC"/>
</xs:sequence>

</xs:complexType>

<xs:group name="EXPRIC">
<!--

EXPRIC ::= Const | Expr | Equal | Member | Subclass | Frame
-->
<xs:choice>

<xs:element ref="Const"/>
<xs:element ref="Expr"/>
<xs:element ref="Equal"/>
<xs:element ref="Member"/>
<xs:element ref="Subclass"/>
<xs:element ref="Frame"/>

</xs:choice>
</xs:group>

<xs:element name="Expr">
<!--

Expr ::= UNITERM
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="UNITERM"/>

</xs:sequence>
</xs:complexType>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 89 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

</xs:element>

<xs:element name="AGGREGATE" abstract="true">
<!--

AGGREGATE ::= AGGRFUNC '{' Var ('[' Var+ ']')? '|' FORMULA '}'
AGGRFUNC ::= 'Min' | 'Max' | 'Sum' | 'Prod' | 'Avg' | 'Count' |

'Set' | 'Bag' | NEWAGGRFUNC
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="declare" minOccurs="2" maxOccurs="unbounded"/>
<xs:element ref="formula"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Min" substitutionGroup="AGGREGATE"/>
<xs:element name="Max" substitutionGroup="AGGREGATE"/>
<xs:element name="Sum" substitutionGroup="AGGREGATE"/>
<xs:element name="Prod" substitutionGroup="AGGREGATE"/>
<xs:element name="Avg" substitutionGroup="AGGREGATE"/>
<xs:element name="Count" substitutionGroup="AGGREGATE"/>
<xs:element name="Set" substitutionGroup="AGGREGATE"/>
<xs:element name="Bag" substitutionGroup="AGGREGATE"/>
<xs:element name="NEWAGGRFUNC" substitutionGroup="AGGREGATE"/>

<xs:element name="NEWTERM">
<!--
This uses the XSD wildcard schema component, any, allowing a NEWTERM
to have zero or more child elements (role tags).
-->
<xs:complexType>
<xs:sequence>
<xs:any processContents="skip" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Const">
<!--

Const ::= '"' UNICODESTRING '"^^' SYMSPACE | CONSTSHORT
-->
<xs:complexType mixed="true">

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
<xs:attribute name="type" type="xs:anyURI" use="required"/>
<xs:attribute ref="xml:lang"/>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 90 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

</xs:complexType>
</xs:element>

<xs:element name="Name" type="xs:string">
<!--

Name ::= UNICODESTRING
-->

</xs:element>

<xs:element name="Var">
<!--

Var ::= '?' UNICODESTRING
-->
<xs:complexType mixed="true">

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:group name="IRIMETA">
<!--

IRIMETA ::= '(*' Const? (Frame | 'And' '(' Frame* ')')? '*)'
-->
<xs:sequence>

<xs:element ref="id" minOccurs="0" maxOccurs="1"/>
<xs:element ref="meta" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:group>

<xs:element name="id">
<xs:complexType>

<xs:sequence>
<xs:element ref="Const"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="meta">
<xs:complexType>
<xs:choice>

<xs:element ref="Frame"/>
<xs:element name="And" type="And-meta.type"/>

</xs:choice>
</xs:complexType>

</xs:element>

<xs:complexType name="And-meta.type">

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 91 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

<!-- sensitive to meta (Frame) context-->
<xs:sequence>

<xs:element name="formula" type="formula-meta.type" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="formula-meta.type">
<!-- sensitive to meta (Frame) context-->
<xs:sequence>

<xs:element ref="Frame"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="IRICONST.type" mixed="true">
<!-- sensitive to location/id context-->
<xs:sequence/>
<xs:attribute name="type" type="xs:anyURI" use="required" fixed="http://www.w3.org/2007/rif#iri"/>

</xs:complexType>

<xs:element name="location">
<xs:complexType>

<xs:sequence>
<xs:group ref="LOCATOR"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:group name="LOCATOR">
<xs:sequence>

<xs:element name="Const" type="ANYURICONST.type"/> <!-- type="&xs;anyURI" -->
</xs:sequence>

</xs:group>

<xs:complexType name="ANYURICONST.type" mixed="true">
<!-- sensitive to location/profile context-->
<xs:sequence/>
<xs:attribute name="type" type="xs:anyURI" use="required" fixed="http://www.w3.org/2001/XMLSchema#anyURI"/>

</xs:complexType>

</xs:schema>

7.2 Skyline Schema Module

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xml="http://www.w3.org/XML/1998/namespace"

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 92 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

xmlns="http://www.w3.org/2007/rif#"
targetNamespace="http://www.w3.org/2007/rif#"
elementFormDefault="qualified"
version="Id: FLDSkyline.xsd, v. 1.4, 2009-08-25, hboley/dhirtle">

<xs:annotation>
<xs:documentation>

This is the Skyline schema module of FLD. It is split off from the Baseline
schema for modularity. The Skyline XML schema is based on the following EBNF
(which adds Group and Document, and brings 'Implies' into FORMULA and TERMULA):

Document ::= IRIMETA? 'Document' '(' Dialect? Base? Prefix* Import* Module* Group? ')'
Dialect ::= 'Dialect' '(' Name ')'
Base ::= 'Base' '(' ANGLEBRACKIRI ')'
Prefix ::= 'Prefix' '(' Name ANGLEBRACKIRI ')'
Import ::= IRIMETA? 'Import' '(' LOCATOR PROFILE? ')'
Module ::= IRIMETA? 'Module' '(' (Const | Expr) LOCATOR ')'
Group ::= IRIMETA? 'Group' '(' (FORMULA | Group)* ')'
Implies ::= IRIMETA? FORMULA ':-' FORMULA
FORMULA ::= Implies |

IRIMETA? CONNECTIVE '(' FORMULA* ')' |
IRIMETA? QUANTIFIER '(' FORMULA ')' |
IRIMETA? 'Neg' FORMULA |
IRIMETA? 'Naf' FORMULA |
IRIMETA? FORMULA '@' MODULEREF |
FORM

TERMULA ::= Implies |
IRIMETA? CONNECTIVE '(' TERMULA* ')' |
IRIMETA? QUANTIFIER '(' TERMULA ')' |
IRIMETA? 'Neg' TERMULA |
IRIMETA? 'Naf' TERMULA |
IRIMETA? TERMULA '@' MODULEREF |
TERM

PROFILE ::= ANGLEBRACKIRI

Note that this is an extension of the syntax for the Baseline schema (FLDBaseline.xsd).
</xs:documentation>

</xs:annotation>

<!--
The Skyline schema extends, with Implies, the FORMULA and TERMULA groups
of the Baseline schema from the same directory
-->

<xs:redefine schemaLocation="FLDBaseline.xsd">
<!--

FORMULA ::= Implies |
IRIMETA? CONNECTIVE '(' FORMULA* ')' |

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 93 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

IRIMETA? QUANTIFIER '(' FORMULA ')' |
IRIMETA? 'Neg' FORMULA |
IRIMETA? 'Naf' FORMULA |
IRIMETA? FORMULA '@' MODULEREF |
FORM

TERMULA ::= Implies |
IRIMETA? CONNECTIVE '(' TERMULA* ')' |
IRIMETA? QUANTIFIER '(' TERMULA ')' |
IRIMETA? 'Neg' TERMULA |
IRIMETA? 'Naf' TERMULA |
IRIMETA? TERMULA '@' MODULEREF |
TERM

-->
<xs:group name="FORMULA">

<xs:choice>
<xs:group ref="FORMULA"/>
<xs:element ref="Implies"/>

</xs:choice>
</xs:group>
<xs:group name="TERMULA">

<xs:choice>
<xs:group ref="TERMULA"/>
<xs:element ref="Implies"/>

</xs:choice>
</xs:group>

</xs:redefine>

<xs:element name="Document">
<!--

Document ::= IRIMETA? 'Document' '(' Dialect? Base? Prefix* Import* Module* Group? ')'
Dialect ::= 'Dialect' '(' Name ')' represented with a dialect attribute.
Base and Prefix represented directly in XML.

-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="directive" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="payload" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
<xs:attribute name="dialect" type="xs:string"/>

</xs:complexType>
</xs:element>

<xs:element name="directive">
<xs:complexType>

<xs:choice>
<xs:element ref="DIRECTIVE-IMPORT"/>
<xs:element ref="DIRECTIVE-MODULE"/>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 94 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

</xs:choice>
</xs:complexType>

</xs:element>

<xs:element name="DIRECTIVE-IMPORT">
<xs:complexType>
<xs:sequence>

<xs:element ref="Import"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="DIRECTIVE-MODULE">
<xs:complexType>
<xs:sequence>

<xs:element ref="Module"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="payload">
<xs:complexType>

<xs:sequence>
<xs:element ref="Group"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Import">
<!--

Import ::= IRIMETA? 'Import' '(' LOCATOR PROFILE? ')'
LOCATOR ::= ANGLEBRACKIRI
PROFILE ::= ANGLEBRACKIRI

-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="location"/>
<xs:element ref="profile" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Module">
<!--

Module ::= IRIMETA? 'Module' '(' (Const | Expr) LOCATOR ')'
LOCATOR ::= ANGLEBRACKIRI

-->

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 95 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

<xs:complexType>
<xs:sequence>

<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:choice>

<xs:element ref="Const"/>
<xs:element ref="Expr"/>

</xs:choice>
<xs:element ref="location"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="profile">
<xs:complexType>

<xs:sequence>
<xs:element name="Const" type="ANYURICONST.type"/> <!-- type="&xs;anyURI" -->

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Group">
<!--

Group ::= IRIMETA? 'Group' '(' (FORMULA | Group)* ')'
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="sentence" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="sentence">
<xs:complexType>

<xs:choice>
<xs:group ref="FORMULA"/>
<xs:element ref="Group"/>

</xs:choice>
</xs:complexType>

</xs:element>

<xs:element name="Implies">
<!--

Implies ::= IRIMETA? FORMULA ':-' FORMULA
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 96 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

<xs:element ref="if"/>
<xs:element ref="then"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="if">
<xs:complexType>

<xs:sequence>
<xs:group ref="FORMULA"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="then">
<xs:complexType>

<xs:sequence>
<xs:group ref="FORMULA"/>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

8 Appendix: Change Log (Informative)

This appendix summarizes the main changes to this document since the draft of
July 3, 2009.

• "All RIF dialects are expected to support certain symbols spaces" was
added.

• "instance" of an external schema was replaced with "instantiation" of an
external schema.

• More examples were added; some examples were better explained.
• IRICONST was replaced with ANYURICONST in FLDSkyline.xsd, v. 1.3.
• The xs:include was dropped and the two xs:redefine's merged in

FLDSkyline.xsd, v. 1.4.
• A number of typos were found and fixed.

RIF Framework for Logic Dialects W3C Editor's Draft 4 September 2009

Page 97 of 97 http://www.w3.org/2005/rules/wg/draft/ED-rif-fld-20090904/

http://www.w3.org/TR/2009/WD-rif-fld-20090703/
http://www.w3.org/TR/2009/WD-rif-fld-20090703/

	RIF Framework for Logic Dialects
	W3C Editor's Draft 4 September 2009
	Abstract
	Status of this Document
	May Be Superseded
	Set of Documents
	Summary of Changes
	Please Comment By 23 October 2009
	No Endorsement
	Patents

	Table of Contents
	1 Overview of RIF-FLD
	2 Syntactic Framework
	2.1 Syntax of a RIF Dialect as a Specialization of RIF-FLD
	2.2 Alphabet
	2.3 Symbol Spaces
	2.4 Terms
	2.5 Schemas for Externally Defined Terms
	2.6 Signatures
	2.7 Presentation Syntax of a RIF Dialect
	2.8 Well-formed Terms and Formulas
	2.9 Annotations in the Presentation Syntax
	2.10 EBNF Grammar for the Presentation Syntax of RIF-FLD

	3 Semantic Framework
	3.1 Semantics of a RIF Dialect as a Specialization of RIF-FLD
	3.2 Truth Values
	3.3 Datatypes
	3.4 Semantic Structures
	3.5 Annotations and the Formal Semantics
	3.6 Interpretation of Non-document Formulas
	3.7 Interpretation of Documents
	3.8 Intended Semantic Structures
	3.9 Logical Entailment

	4 XML Serialization Framework
	4.1 XML for the RIF-FLD Language
	4.2 Mapping from the RIF-FLD Presentation Syntax to the XML Syntax
	4.2.1 Mapping of the Non-annotated RIF-FLD Language
	4.2.2 Mapping of RIF-FLD Annotations

	5 Conformance of RIF Processors with RIF Dialects
	6 References
	6.1 Normative References
	6.2 Informational References

	7 Appendix: XML Schema for RIF-FLD
	7.1 Baseline Schema Module
	7.2 Skyline Schema Module

	8 Appendix: Change Log (Informative)

