

 Page 1

Position Paper:
Enhancing browsers & servers with Anti-Spoof data elemets

Or, thinking outside the box

Background
Users are never going to be safe as long as they are required to manually enter sensitive
information into login forms. The current trend of protecting users from attacks is by the use
of browser toolbars or enhanced browsers which try to detect a fraudulent website when users
navigate to such a site.

While these methods are helpful, they still leave the door open for attacks. Currently, most
Phishing sites use ‘static cloning’ of real sites. However, there is nothing to prevent Phishers
from creating dynamically cloned sites. Such sites implement a real-time man-in-the-middle
(MITM) attack vector against web surfers and servers.

Even when servers use a secure SSL protocol to communicate with users, they still leave the
door open for several MITM modes of attack. That is, unless they enforce a non anonymous
mutual authentication using digital certificates.

When a server requires a secure session form a client, a Phisher can start such a secure session
with the server on one end and start another session with a user on the other end. All a Phisher
has to do is decrypt whatever messages are sent to it and pass them along to the other end. In
such a scenario, a user will not even notice that her password has been compromised.

Using One Time Passwords does not help. Intercepting OTP by a Phisher is not as rewarding
as when intercepting a regular password but when a real-time MTIM is active, there is
nothing to prevent an attacker from add bots which would take a captured OTP and use it to
immediately effect a transaction. Even if such attempts are thwarted by a server requiring
constant manual interaction with a human being (which is unlikely), the door is still open for
targeted Phishing whereby a Phisher manually intervenes once a session is created.

Enhancing Transport Layer Security (SSL/TLS)
A basic solution is to enhance the TLS layer connecting servers and clients to the level
possible when employing digital certificates for users, but without requiring such certificates.
A possible mechanism is that of “Zero Knowledge Password Proof”.

Such mechanisms are based on methods whereby two parties prove to each other that each
one is in possession of a shared “weak” secret such as a password are well known and some
are proposed as standards. IEEE 1363.2, SRP-6 (RFC 2945), SPEKE etc. Using these
techniques as an authentication protocol for TLS is also described by
http://www.ietf.org/internet-drafts/draft-ietf-tls-srp-10.txt and
http://www.semper.org/sirene/publ/SBEW_01EKETLS.pdf .

Implementing a new TLS protocol requires infrastructure upgrades for both client work
stations and servers. While this is a worthwhile venue to explore, there is an immediate need
for a less demanding solution that can achieve a similar level of security.

Enhancing HTTP Layer Security
An alternative to enhancing the TLS layer is one of enhancing the HTTP layer security. This
proposed new method is simple to implement, both on a client side as well as a server side. It

http://www.ietf.org/internet-drafts/draft-ietf-tls-srp-10.txt
http://www.semper.org/sirene/publ/SBEW_01EKETLS.pdf

 Page 2

does not require any modifications to exiting infrastructure, nor any changes to databases used
by servers to store users’ credentials.

Actually the name “HTTP layer security”, is somewhat misleading. While the proposed
method can be implemented as an extension to HTTP, it can also be implemented by existing
HTTP where HTML forms are used to communicate security parameters between client and
server. This second method is described in this paper.

The proposed method is based on a modified SRP-6 a “Zero Knowledge Password Proof”
method (ZKPP). In addition, the proposed method relies on a new Anti-Spoof data element
exchanged between a client and a server. The Anti-Spoof data element is what protects this
method from session hijacking.

The following is one description of a process for authenticating a client to server, but it can be
easily extended to mutual authentication.

Although this paper does not attempt to cover all SRP methods, it will be helpful for
understanding the proposed method, if the SRP parameters are explained. Please refer to the
cited references for proper background.

N and q = (N-1)/2 are both prime (N is a safe prime and q is a Sophie Germain prime). All
arithmetic is performed modulo N.
G is a generator of the multiplicative group modulo N,
U is a username,
x is a value derived from user's password and stored at Server’s database. It could be the
password itself.
H() is a hash function, e.g. SHA-1
a and b are random.
and | denotes concatenation, * denotes multiplication and ^ denotes exponentiation.

In the proposed method (Please see Fig 1 below), a server sends a first login form to a user.
The login form is an HTML form containing a user name field and other fields that provide
parameters to a client software (a browser toolbar or an enhanced browser) for executing
ZKPP functions.

The client software detects the special login form. It saves the ZKPP parameters, then it
computes A=G^a. It enters A into a hidden field provided by the login form and lets a user
enter her user name U and submit the form.

When a server receives U and A in the first login form it computes B=G^b + 3*G^x. Then the
server sends B as a hidden field in a second login form which also prompts for a user’s
password.

After a user enters her password to the second login form and hits ‘submit’, the client
software intervenes and removes the password from that login form. (Alternatively, a client
software could popup a special login dialog and take the password from there).

It then computes x from the captured password. Computing x depends on the method that x
was calculated by the server. Please recall that x is the value stored in the server’s database.
To be able to calculate x, client software needs to learn from a server what function and what
parameters were used for such a calculation. This information can be conveyed to the client
software in one of the login forms as a set of hidden fields.

After computing x, the client software computes the following:
u =H(A,B)
S = (B-3*G^x)^(a+u*x).
C = IP address of Server.
M1=H(A,B,S,C)

http://en.wikipedia.org/wiki/Hash

 Page 3

C is the Anti-Spoof element introduced earlier. It holds a string which is the IP address of the
server as resolved by the client software.

After computing the values above, the client software enters them into the second login form.
If the form had a password field, then M1 replaces that value. Otherwise, it can be entered
into a predestinated hidden field. The value C is also entered into a hidden field in that form.

Upon receiving the second login form, the server verifies that C matches at least one IP
address used by the server. It then computes the following:
u=H(A,B)
S’=(A*(G^x)^u)^b
C’= C
M1’=H(A,B,S’,C’)

Now, if M1 = M1’ we have authentication. In addition we also have a proof that the IP
address to which the client is connected is that of the server and not a MITM attacker. Thus,
server can safely continue the session it has with the client software knowing that there is no
MITM involved.

Warning users
All this is nice but not complete as an attacker could simply send a standard login form to a
user and prompt her for a password and then use the password to initiate the above protocol
with a server.

That brings us back to square one, or, does it?

If users choose to install this enhanced browser or toolbar, they will know that when they
enter information to a real site, it will be fully secure. On the other hand, when the client
software detects a login form with a password field it will now alert them to that event raising
awareness of users to a possible Phishing attack.

When a login page is not compliant with the proposed protocol, client software can invoke
legacy protection or, simply alert users that a “non-safe” server asks for authentication. As
more and more websites and users migrate to the new method, such incidents will decline in
frequency.

Client Server

Determine ZKPP parameters G, N.
Send indication to Client of
password & session protection
methods supported by Server.
Attach also data elements required
for each supported method.

 Authentication Parameters
in a first login form

Present to user a login form
with user name (U)
Create random a.
Compute A=G^a.

 A , U

 Retrieve x using U.
Create random b.

 Page 4

Client Server

Calculate B=G^b + 3*G^x

 B in a second login form

Present to user a login form
with a password field p.
Capture password p.
Compute x from p.
Compute u=H(A,B) and
S=(B-3*G^x)^(a+u*x).
Set C=IP address of Server.
Compute M1=H(A,B,S,C)

 M1, C

Compute u=H(A,B) and
S’=(A*(G^x)^u)^b
Set C’=IP address of Server.
Compute M1’=H(A,B,S’,C’)
Create session if M1=M1’

 Fig 1.

Summary
The proposed method is incremental in nature. It does not require major modification on
either side – client or server. It can leverage the existing database use by servers with no
change.

Author: Ami Grynberg

 Protecteer, LLC
 15 Constitution Drive
 Bedford, NH 03110 USA
 Email: www1.7426@ami.susw.com
 Tel: (603) 589-6539

mailto:www1.7426@ami.susw.com

