
Browser Enhancements to Support SSL/TLS
Session-Aware User Authentication

Rolf Oppliger1, Ralf Hauser2, and David Basin3

1 eSECURITY Technologies Rolf Oppliger
Beethovenstrasse 10, CH-3073 Gümligen, Switzerland

Phone/Fax: +41 (0)79 654 8437
E-mail: rolf.oppliger@esecurity.ch

2 PrivaSphere AG
Fichtenstrasse 61, CH-8032 Zürich, Switzerland

Phone: +41 (0)43 299 5588, Fax: +41 (0)1 382 2133
E-mail: hauser@privasphere.com

3 Department of Computer Science, ETH Zurich
Haldeneggsteig 4, CH-8092 Zürich, Switzerland

Phone: +41 (0)44 632 7245, Fax: +41 (0)44 632 1172
E-Mail: basin@inf.ethz.ch

Abstract. SSL/TLS session-aware user authentication is a new ap-
proach that can be used to protect browser- and SSL/TLS-based online
applications, like Internet banking, against man-in-the-middle (MITM)
attacks. In this position paper, we suggest three browser enhancements
that simplify the implementation of MITM-resistant authentication with
minimum changes to the SSL/TLS protocol stacks in use.

1 Introduction

Man-in-the-middle (MITM) attacks pose a serious threat to browser- and SSL/
TLS-based online applications, like Internet banking, one reason being that the
average user has difficulties validating a server certificate. There are only a few
technologies available to mitigate these risks. In [OHB06a], we introduced the
notion of SSL/TLS session-aware user authentication to protect SSL/TLS-based
online applications against MITM attacks. The main idea is to make the user
authentication depend not only on the user’s (secret) credentials, such as a pass-
word or personal identification number (PIN), but also on state information
related to the SSL/TLS session in which the credentials are being transferred
to the server. The rationale behind this idea is that the server should have the
possibility to determine whether the SSL/TLS session in which it receives the
credentials is the same as the user employed when he sent out the credentials in
the first place.

– If the two sessions are the same, then there is probably no MITM involved.
– If the two sessions are different, then something abnormal is taking place.

It is likely that a MITM is located between the user’s client system and the
server.



Using SSL/TLS session-aware user authentication, the user authenticates
himself by providing a user authentication code (UAC) that depends on both
his credentials and the SSL/TLS session (in particular, information from the
SSL/TLS session state). A MITM who gets hold of the UAC can no longer
misuse it by simply retransmitting it. The key point is that the UAC is bound to
a particular SSL/TLS session, and if the UAC is submitted on another session,
then the server can easily recognize this fact and drop the session. As such,
SSL/TLS session-aware user authentication provides a lightweight alternative
to the deployment and rollout of a public key infrastructure (PKI) to protect
against MITM attacks.4

There are a number of possibilities to implement SSL/TLS session-aware user
authentication. In [OHB06a], we argued (i) that software-based implementations
are inherently vulnerable, (ii) that one should therefore pursue hardware-based
implementations in the first place, and (iii) that a particularly promising possi-
bility is the use of hardware tokens, preferably in the form of impersonal PKCS
#11-compliant authentication tokens. In [OHB06b], we broadened the scope of
our ideas and we also considered possibilities to implement (parts of) SSL/TLS
session-aware user authentication in software, and investigated the security im-
plications of doing this. We discussed possibilities to make 2- and 3-factor ap-
proaches, such as one-time password (OTP) and/or challenge-response (C/R)
systems be SSL/TLS session-aware. This includes, for example, one-time pass-
words that are distributed on scratch lists (an approach that is still widely used
in Internet banking applications).

In the rest of this position paper, we suggest three browser enhancements
that would simplify the implementation and deployment of SSL/TLS session-
aware user authentication considerably. The first enhancement is very simple
and consists of making an internally used hash value available. The two other en-
hancements are more involved and require internal modifications in the browser
or its SSL/TLS protocol implementation. It goes without saying that the server
side must also be enhanced to support SSL/TLS session-aware user authentica-
tion. These enhancements, however, are quite simple and can be restricted to the
servers that actually employ SSL/TLS session-aware user authentication. The
handshake protocol messages remain the same. Only an “observer” is needed
that calculates extra values using the messages exchanged. In one variant, the
signature of the CertificateVerify message is overloaded with additional infor-
mation, thus the implementation of the SSL/TLS protocol stack must allocate
sufficiently large buffers to transparently pass-on this amended value.

2 Enhancement I: Making the Session-Identifying Hash
Available

In [OHB06a, OHB06b], we described several possibilities to implement SSL/TLS
session-aware user authentication that logically link the user authentication to an
4 Of course, the deployment of a PKI often has other objectives, e.g., the ability to

provide nonrepudiation services.



SSL/TLS session by using the cryptographic hash value Hash that is computed
from all messages previously exchanged during the execution of the SSL/TLS
handshake protocol.

If the user authentication method under consideration has access to Hash,
then it is simple to make the user authentication be SSL/TLS session-aware. In
the case of a one-time password system, for example, Hash is taken as another
input argument to generate the one-time password (in addition to the secret
key). In the case of a C/R system, an appropriately compressed version of Hash
may serve as challenge. In the case of a scratch list, again an appropriately
compressed version of Hash can determine the currently valid scratch list entry.
It seems to be the case that—given a possibility to make Hash available to
the user authentication method—there is always a possibility to make a user
authentication be SSL/TLS session-aware.

Against this background, we suggest that browsers should be modified in a
way that they can be configured to make Hash available to user authentication
methods. A simple possibility is to have the browser show (parts of) Hash next
to the SSL/TLS padlock and to copy it to the clipboard when appropriately
clicking on the padlock. It goes without saying that the encoding of (parts of)
Hash must be configurable by the user. For example, it may be necessary to show
only the leading characters of the hash value in a specific encoding. A simple
step-by-step scenario with an external soft-C/R device has been described in
RFE https://bugzilla.mozilla.org/show_bug.cgi?id=322661.

3 Enhancement II: Integrating OTP and C/R
Mechanisms

Most browsers in use today have mechanisms in place to manage user passwords
(in a password store). Instead of using an external password store for an OTP
or C/R mechanism, it seems reasonable to adapt the internal one. In fact, the
password store can be enhanced to also support OTP and C/R mechanisms. If
the browser supports such a mechanism, then it is straightforward to make it
SSL/TLS session-aware. Note that the browser always has access to its SSL/TLS
session state, and hence it can easily take into account the Hash value to generate
a UAC.

One possibility that looks promising and deserves further study is to redefine
HTTP Digest Access Authentication (RFC 2617) to be SSL/TLS session-aware.
The use of HTTP Digest Access Authentication on top of an SSL/TLS session
is somehow unorthodox; if made SSL/TLS session-aware, however, it may still
provide an interesting alternative to the use of client-certificate based SSL/TLS.
The major advantage we see is that users can keep on using their current pass-
words and that they do not need any additional hardware, software, or public
key certificate.



4 Enhancement III: Overloading the SSL/TLS
CertificateVerify Message

Provided the allocated, opaque buffers in the browser’s current SSL/TLS proto-
col stack implementation (that transport, for example, the PKCS#11- or CAPI-
based external signatures) are sufficiently large, the CertificateVerify message
can be overloaded within a specially crafted device driver as per [OHB06a]. For
broader user acceptance, it is preferable not to require such a MITM-resistance-
providing external device driver to be installed by each user, but to have the cor-
responding logic available within the browser. So, if one modifies the SSL/TLS
CertificateVerify message in a way that it is able to additionally encode the UAC
when receiving the request for client certificate authentication from a set of
reserved CA DNs,5 then SSL/TLS session-aware user authentication can be im-
plemented in a transparent way (from the user’s viewpoint). In fact, there are
at least three possibilities:

1. The browser can digitally sign both the Hash value and the UAC.
2. The browser can digitally sign a keyed hash value (instead of the hash value

Hash), where the UAC represents the key, Hash represents the argument,
and the HMAC construction is used to key the hash function.

3. The browser can only send the keyed hash value (instead of the digital signa-
ture). This possibility is similar to the second possibility—the only difference
is that the keyed hash value is not digitally signed. Consequently, there is
no need to have a private signing key on the token.

4. The browser encrypts the Hash and the scratch-list OTP (plus some nonces)
with a hard-coded server public key.

Among the advantages of doing this are:

– MITM-resistant authentication is not only available to HTTPS, where the
UAC can be provided to the server in HTML forms, but also other protocols
a client may support, such as SFTP.

– There is a new set of protocols possible that do not require a shared secret be-
tween the personally transferable device, but having a pre-distributed server
public key should be sufficient (see option 4).

5 Conclusions and Outlook

In this position paper, we suggested three browser enhancements that simplify
the implementation of SSL/TLS session-aware user authentication that is resis-
tant against MITM attacks. In the short-term, we think that enhancement I is
appropriate and sufficiently simple to implement and deploy (because it neither
requires modifying any content in the SSL/TLS handshake protocol messages nor
altering the sequence of them—it only observes them). In fact, we are currently

5 Note that all browsers should handle the DNs in a similar way.



working on a proof-of-concept implementation for a large financial institution
in Switzerland. In the medium- or long-term, however, we think that browser
manufacturers should consider the possibility to implement enhancement II or
III. These possibilities are interesting, mainly because they can be implemented
in a way that negligibly changes in the user behaviour. The user only enters his
credentials, and the rest goes under the hood. In particular, no new hardware
or software is needed.

References

[OHB06a] Oppliger, R., Hauser, R., and D. Basin, “SSL/TLS Session-Aware User
Authentication—Or How to Effectively Thwart the Man-in-the-Middle,” submit-
ted for publication, http://www.esecurity.ch/OHB06a.pdf

[OHB06b] Oppliger, R., Hauser, R., and D. Basin, “SSL/TLS Session-Aware User
Authentication Revisited,” submitted for publication,
http://www.esecurity.ch/OHB06b.pdf


