
 1 of 4

Position Paper

Toward a More Secure Web 15/16 March 2006
W3C Workshop on Transparency and Usability of Web Authentication

Approaches to Simplify Server Authentication

Frederick Hirsch, Nokia
Hubert A. Le Van Gong, Sun

Abstract
Much work has been dedicated to authenticating clients to service providers, ranging
from the use of client TLS in the Web to the development of Single Sign-On mechanisms
to enable usable authentication in a circle of trust, as outlined in the Liberty Alliance ID-
FF [ID-FF] and SAML Single Sign-On profiles [SAML2]. What remains hard is the
effective authentication of Service Providers to clients, due in part to client device
limitations, provisioning issues and user understanding and education. For these reasons
PKI based solutions including the use of TLS server authentication, have not been
particularly effective, even though such processing has been developed for years.

We suggest two approaches. One is creating and re-using a shared client secret unique to
each server to enable the client to authenticate the server (an approach we did not invent).
The second is what we call Simplified Server Authentication (SSA), an analog of SSO
for server authentication that can reuse many of those mechanisms and infrastructure and
which can be integrated with shared client secrets. This approach is typically appropriate
within a community of trust, such as a group of enterprise servers that have established
relationships with an identity provider.

Introduction
The need for server authentication is clear with the many risks associated with a client
accessing a false site purporting to be a real site and sharing private information at that
false site, be it passwords, financial information, or other private information leading to
identity theft and other losses of privacy.

The traditional approach has been to use SSL/TLS [TLS] that includes a PKI based
mechanism for establishing the identity of the server. This relies upon the server
supporting SSL/TLS and being configured with a key pair and certificate suitable for
TLS. If all goes well the client TLS software executes the TLS protocol, validates a
signature as part of that protocol and establishes that the server is as expected.

There are a few potential flaws with this approach:

1. In addition to validating a signature, additional steps are required and not always
performed – steps to establish trust in the entire mechanism. These include
certificate path validation, leading to a trusted root authority and timely certificate
status validation.

 2 of 4

2. The browser needs to be configured with the correct root certificates and not with
inappropriate certificates. Management of this configuration is beyond most users.
A related concern is the use of self-signed certificates or sites that do not use
certificates issued by a commonly accepted certificate issuer.

3. SSL/TLS checks that the domain name accessed matches information in the

certificate, but this does not prevent attacks against DNS in conjunction with the
use of inappropriate certificates.

4. Export regulations and configuration can cause unexpectedly weak cryptography

to be used.

5. Finally the user has no idea how to confirm that the process is operating properly
or what to do if a pop-up message occurs, other than to simply go on, regardless.

6. The user must trust the entire infrastructure, including the browser security

implementation.

These concerns also exist if an alternative but similar approach is deployed, such as
signing metadata with an XML Signature and then providing that signature with the
client. Similar validation, trust and end-user issues remain, although use of services like
XKMS [XKMS] can move some of the problems from the client.

There are two potential solutions that can be used in different circumstances.

In the case that a client establishes a long-standing relationship with relatively few sites,
the user can manage this with minimal cooperation of each site. By sharing a secret with
the site, and expecting the site to provide this information upon each access, a user can
recognize a false site by the fact that it is unable to provide this information. This
information may be protected and provided in a variety of means discussed below.

For a more scalable solution within a community, SSO mechanisms may be re-used to
provide server authentication on behalf of the client. For example, when a client accesses
a service provider the initial request can be redirected to an identity provider that can
perform authentication of the service provider before redirecting the client back to the it.
In this case it is reasonable to expect the identity provider to support a variety of
mechanisms for server authentication and to be able to correctly perform PKI or other
validation checks in conjunction with signature verification. This approach may be used
to establish a shared client secret to simplify subsequent server authentication and access.

Shared Secret Approach

The use of shared secret requires a registration process at the server, where the user
establishes an “account” and provides a private piece of information (essentially a
password for the server to use to authenticate to the client). Many common web sites
establish accounts for a variety of reasons – buying (e.g. amazon.com), travel (e.g.
aa.com), online communities (to have a handle and maintain state) and so on, so this is an
incremental change to the data maintained at the server.

 3 of 4

This does require a standard means for the server to present the password, both in format
and protocol. The password also needs to be protected on the wire, in storage, and care
must be taken to prevent replay attacks. Thus one could expect an additional HTTP
header on the request containing a nonce, with an additional response header containing a
Hash of the nonce, password hash, and server domain name for example.

The browser must also be modified to generate the nonce and HTTP header on the
request, and to recognize and process the response value. It is also necessary for the
browser user to maintain a list of sites where such server authentication is required.
Modern browsers offer the possibility to develop relatively sophisticated plugins that
could provide such functionality.
Although the simplified server authentication approach we described below offers more
flexibility and a smaller impact on the browser we believe the shared secret approach is
relevant when 3rd party authentication is undesirable (or not possible).

Simplified Server Authentication (SSA)
Much work has been done on simplifying and making client authentication to servers
usable, especially when a client needs to access multiple service providers that share a
business relationship. Standards from the Liberty Alliance on the Identity Federation
Framework (ID-FF) have addressed this problem, taking special care to address privacy
requirements based on laws, regulations and best practices. This work has also been
standardized and reflected in the latest OASIS SAML 2.0 single sign-on profile.

A single sign-on approach like this makes use of the ability of Web servers to redirect
browser requests, enabling a service provider to redirect a client request to an
infrastructure component, an Identity Provider, obtain authentication information for the
user based on a previous authentication act, or to require a new authentication interaction
with the client. Once all the necessary steps have been taken by the identity provider
(IDP), the client is redirected back to the service provider and able to take advantage of
the service.

This approach allows authentication mechanisms to be implemented by an IDP,
simplifying service provider implementation, and most importantly avoids the need for
the client to establish passwords at multiple sites and to authenticate repeatedly to
multiple sites. This increases usability and reduces the risks associated with password re-
use and repeated authentication.

This concept, and in fact the infrastructure, may be also applied to server authentication
to the client. In this case when a client accesses a service provider it may require that the
service provider authenticate to a trusted identity provider (not to the client) and that the
response for the request come from the identity provider, containing an authentication
assertion for that provider. This may be an XML Signature signed XML quantity for
example. In this case key management is simplified since there are many fewer trusted
identity providers. Once the authentication artifact is verified, the client can reconnect to
the IDP to be redirected to the correct service provider. Alternatively, the authentication
process could have provided the SP with a shared secret that it can now present to the
client as mentioned in the shared secret approach, allowing a subsequent direct

 4 of 4

connection to the SP. In this case the client may rely upon the IDP and use a trusted
SSL/TLS channel to obtain a server secret from the IDP to be used in subsequent
authentication. (In this case more care may be used in establishing and securing the use of
SSL/TLS).
If the Identity Provider and the service provider had already been federated (around the
customer's identity) then the same operation could lead to mutual (and seamless)
authentication between the service provider and the customer: the end-result of the
aforementioned sequence is that the user is directly logged in to his account at the service
provider.

This SSA approach will require the definition of some HTTP headers and other
mechanisms similar to SSO approaches, and can re-use assertions such as SAML 2.0
assertions, but much of the work may already have been done. We have not implemented
this, but are speculating that this is the case.

The Liberty Alliance and OASIS SSTC have also defined the concept of an “Enhanced
Client or Proxy”, a component that is either integrated into a client (e.g. the browser) or
that exists as a proxy. This component knows how to reach an IDP on behalf of a client.
A similar component could be defined that knows how to reach an IDP on behalf of a
Service Provider, and integrated as a server component or as part of a proxy. More
thought on this is required, but we suggest that many of the mechanisms used for SSO
can be recast to approach the server problem.

We find the combination of a mechanism to establish and share a server password and
then subsequently use it particularly promising.

References

[ID-FF] Liberty Alliance Federation Framework ID-FF 1.1
https://www.projectliberty.org/resources/specifications.php#box1

[SAML2] Security Assertions Markup Language, OASIS
http://www.oasis-open.org/apps/org/workgroup/security/#samlv20

[SimplifiedClientAuth] see http://weblog.infoworld.com/udell/2005/05/31.html#a1241

[TLS], RFC 2246, The TLS Protocol,
http://www.ietf.org/rfc/rfc2246.txt

[XKMS] XML Key Management, W3C
http://www.w3.org/2001/XKMS/

