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Abstract 
Much work has been dedicated to authenticating clients to service providers, ranging 
from the use of client TLS in the Web to the development of Single Sign-On mechanisms 
to enable usable authentication in a circle of trust, as outlined in the Liberty Alliance ID-
FF [ID-FF] and SAML Single Sign-On profiles [SAML2].  What remains hard is the 
effective authentication of Service Providers to clients, due in part to client device 
limitations, provisioning issues and user understanding and education. For these reasons 
PKI based solutions including the use of TLS server authentication, have not been 
particularly effective, even though such processing has been developed for years.  
 
We suggest two approaches. One is creating and re-using a shared client secret unique to 
each server to enable the client to authenticate the server (an approach we did not invent). 
The second is what we call Simplified Server Authentication (SSA), an analog of SSO 
for server authentication that can reuse many of those mechanisms and infrastructure and 
which can be integrated with shared client secrets. This approach is typically appropriate 
within a community of trust, such as a group of enterprise servers that have established 
relationships with an identity provider. 

Introduction 
The need for server authentication is clear with the many risks associated with a client 
accessing a false site purporting to be a real site and sharing private information at that 
false site, be it passwords, financial information, or other private information leading to 
identity theft and other losses of privacy. 
 
The traditional approach has been to use SSL/TLS [TLS] that includes a PKI based 
mechanism for establishing the identity of the server. This relies upon the server 
supporting SSL/TLS and being configured with a key pair and certificate suitable for 
TLS. If all goes well the client TLS software executes the TLS protocol, validates a 
signature as part of that protocol and establishes that the server is as expected. 
 
There are a few potential flaws with this approach: 
 

1. In addition to validating a signature, additional steps are required and not always 
performed – steps to establish trust in the entire mechanism. These include 
certificate path validation, leading to a trusted root authority and timely certificate 
status validation. 
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2. The browser needs to be configured with the correct root certificates and not with 
inappropriate certificates. Management of this configuration is beyond most users. 
A related concern is the use of self-signed certificates or sites that do not use 
certificates issued by a commonly accepted certificate issuer. 

 
3. SSL/TLS checks that the domain name accessed matches information in the 

certificate, but this does not prevent attacks against DNS in conjunction with the 
use of inappropriate certificates. 

 
4. Export regulations and configuration can cause unexpectedly weak cryptography 

to be used. 
 

5. Finally the user has no idea how to confirm that the process is operating properly 
or what to do if a pop-up message occurs, other than to simply go on, regardless. 

 
6. The user must trust the entire infrastructure, including the browser security 

implementation.  
 
These concerns also exist if an alternative but similar approach is deployed, such as 
signing metadata with an XML Signature and then providing that signature with the 
client. Similar validation, trust and end-user issues remain, although use of services like 
XKMS [XKMS] can move some of the problems from the client. 
 
There are two potential solutions that can be used in different circumstances. 
 
In the case that a client establishes a long-standing relationship with relatively few sites, 
the user can manage this with minimal cooperation of each site. By sharing a secret with 
the site, and expecting the site to provide this information upon each access, a user can 
recognize a false site by the fact that it is unable to provide this information. This 
information may be protected and provided in a variety of means discussed below. 
 
For a more scalable solution within a community, SSO mechanisms may be re-used to 
provide server authentication on behalf of the client. For example, when a client accesses 
a service provider the initial request can be redirected to an identity provider that can 
perform authentication of the service provider before redirecting the client back to the it. 
In this case it is reasonable to expect the identity provider to support a variety of 
mechanisms for server authentication and to be able to correctly perform PKI or other 
validation checks in conjunction with signature verification. This approach may be used 
to establish a shared client secret to simplify subsequent server authentication and access. 

Shared Secret Approach  
 
The use of shared secret requires a registration process at the server, where the user 
establishes an “account” and provides a private piece of information (essentially a 
password for the server to use to authenticate to the client). Many common web sites 
establish accounts for a variety of reasons – buying  (e.g. amazon.com), travel (e.g. 
aa.com), online communities (to have a handle and maintain state) and so on, so this is an 
incremental change to the data maintained at the server. 
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This does require a standard means for the server to present the password, both in format 
and protocol. The password also needs to be protected on the wire, in storage, and care 
must be taken to prevent replay attacks. Thus one could expect an additional HTTP 
header on the request containing a nonce, with an additional response header containing a 
Hash of the nonce, password hash, and server domain name for example. 
 
The browser must also be modified to generate the nonce and HTTP header on the 
request, and to recognize and process the response value. It is also necessary for the 
browser user to maintain a list of sites where such server authentication is required. 
Modern browsers offer the possibility to develop relatively sophisticated plugins that 
could provide such functionality. 
Although the simplified server authentication approach we described below offers more 
flexibility and a smaller impact on the browser we believe the shared secret approach is 
relevant when 3rd party authentication is undesirable (or not possible). 

Simplified Server Authentication (SSA) 
Much work has been done on simplifying and making client authentication to servers 
usable, especially when a client needs to access multiple service providers that share a 
business relationship. Standards from the Liberty Alliance on the Identity Federation 
Framework (ID-FF) have addressed this problem, taking special care to address privacy 
requirements based on laws, regulations and best practices. This work has also been 
standardized and reflected in the latest OASIS SAML 2.0 single sign-on profile.  
 
A single sign-on approach like this makes use of the ability of Web servers to redirect 
browser requests, enabling a service provider to redirect a client request to an 
infrastructure component, an Identity Provider, obtain authentication information for the 
user based on a previous authentication act, or to require a new authentication interaction 
with the client. Once all the necessary steps have been taken by the identity provider 
(IDP), the client is redirected back to the service provider and able to take advantage of 
the service. 
 
This approach allows authentication mechanisms to be implemented by an IDP, 
simplifying service provider implementation, and most importantly avoids the need for 
the client to establish passwords at multiple sites and to authenticate repeatedly to 
multiple sites. This increases usability and reduces the risks associated with password re-
use and repeated authentication. 
 
This concept, and in fact the infrastructure, may be also applied to server authentication 
to the client. In this case when a client accesses a service provider it may require that the 
service provider authenticate to a trusted identity provider (not to the client) and that the 
response for the request come from the identity provider, containing an authentication 
assertion for that provider. This may be an XML Signature signed XML quantity for 
example. In this case key management is simplified since there are many fewer trusted 
identity providers. Once the authentication artifact is verified, the client can reconnect to 
the IDP to be redirected to the correct service provider. Alternatively, the authentication 
process could have provided the SP with a shared secret that it can now present to the 
client as mentioned in the shared secret approach, allowing a subsequent direct 
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connection to the SP.  In this case the client may rely upon the IDP and use a trusted 
SSL/TLS channel to obtain a server secret from the IDP to be used in subsequent 
authentication. (In this case more care may be used in establishing and securing the use of 
SSL/TLS). 
If the Identity Provider and the service provider had already been federated (around the 
customer's identity) then the same operation could lead to mutual (and seamless) 
authentication between the service provider and the customer: the end-result of the 
aforementioned sequence is that the user is directly logged in to his account at the service 
provider. 
 
This SSA approach will require the definition of some HTTP headers and other 
mechanisms similar to SSO approaches, and can re-use assertions such as SAML 2.0 
assertions, but much of the work may already have been done. We have not implemented 
this, but are speculating that this is the case. 
 
The Liberty Alliance and OASIS SSTC have also defined the concept of an “Enhanced 
Client or Proxy”, a component that is either integrated into a client (e.g. the browser) or 
that exists as a proxy. This component knows how to reach an IDP on behalf of a client. 
A similar component could be defined that knows how to reach an IDP on behalf of a 
Service Provider, and integrated as a server component or as part of a proxy. More 
thought on this is required, but we suggest that many of the mechanisms used for SSO 
can be recast to approach the server problem.  
 
We find the combination of a mechanism to establish and share a server password and 
then subsequently use it particularly promising. 
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