Application of OWL 1.1 to Systems Engineering

01 April 2008

Henson Graves

Ian Horrocks
Use of Knowledge Representation and Reasoning in Product Development

- **Current Systems Engineering languages, standards, and tools are**
 - Restricted in (certain aspects of) their expressiveness and do not provide formal semantics
 - Yet many activities involve (some form of) reasoning, e.g., requirements verification

- **Long history of attempts to use formal methods for engineering**
 - Too hard to use, don’t scale

- **Can OWL 1.1 provide a semantic integration framework?**
 - For engineering domain, with ontology capturing meaning independent of interpretation by subject matter experts?
 - So automated reasoning can be used to check design properties such as consistency and conformance with specification?
 - Not to replace SysML, UML, and engineering tools, but incorporate them into an integrated framework
We Are Developing an Air System Ontology in Protégé 4.0 Using the Fact++ Reasoner and DOLCE Ultra Lite (DUL)

...use of a foundation ontology saves a lot of time
Achievements

- Used class constructors to define (requirements) classes of physical objects with structural and measurable properties
- Resulting ontology has about 300 classes
- Verified that requirements class is consistent
- Defined (design) classes characterized by generic instances
- Gone outside the logic to database that represents results of measurement analysis & simulation to conclude additional properties of design instance
- Verified that resulting extended generic design instance still satisfies requirements
Benefits and Shortcomings of OWL 1.1

- **OWL 1.1 with DUL classes works well for representation of product structure and (static) properties**
 - Used \textit{partOf} relations, \textit{Quality}, with values in \textit{Region}

- **New OWL 1.1 features crucial**
 - Complex role inclusions
 - Transfer of properties across part-whole relations
 - Extended support for datatypes
 - Numerous design constraints relate to concrete values such as weight, speed, temperature, distance, …
 - Complex datatypes, representing, e.g., shapes or performance measures
 - Extended annotation
 - E.g., for provenance of information
Benefits and Shortcomings of OWL 1.1

- Some requirements not (easily) expressible OWL DL
 - Extended reasoning with datatypes and values, e.g., aggregation
 - Weight of product is sum of weights of components
 - Behavioral and other dynamic requirements
 - I.e., statements involving state change
 - Interfacing and integrating with other systems
 - Storage and representation systems such as DBs
 - Testing and measurement systems such as simulators
Lessons Learned

- OWL 1.1 is not a replacement for systems engineering language and tools
 - But is a good candidate for semantic integration

- Potential for reasoning in OWL for systems engineering is great
 - Achieved reasoning experiments for requirements consistency, and design satisfaction of requirements

- Further language and tool development is needed
 - Ontology management
 - Explanation and annotation
 - Modularization
 - Architecture to integrate with other computational and reasoning systems