maryland information and network dynamics lab semantic web agents project

The Web Ontology Language

A(n Over)View not entirely without bias

The Semantic Web

- The "next generation", "machine processable" Web
 - Interlinked information for programs
- The "original vision" and "ultimate destiny"
- "Webized" Knowledge Represenation
 - To do for KR what the Web did for hypertext
 - The Web as giant Semantic Net
 - Like most Semantic Net tech, it has been *logicized*
 - Though, like Semantic Nets, there is still resistence

Web identifiers: URIs

- Core bit of Web Architecture
 - Constraint: Identify with URIs
 - Principle of URI assignment
 - URIfy resources others wish to refer to
 - Good Practice: avoid aliases
 - Good Practice: avoid ambiguity
- In Web Hyperlinks, explicit URIs primarily name link *targets*
 - Either in a source, e.g., <a href=...
 - Or in a target, e.g., <a name=...

But the source tends to be a target for others
 ^{4/2/2}00⁴Link arcs tend to remain unnamed

maryland information and network dynamics lab semantic web agents project

From Links to Assertions

-
- Three parts
 - Source = The containing document
 - Arc = href
 - Target = http://www.example.com/test
- href(Source, Target), that is, a relation
- Name the relation with a URI
 - Name the *predicate*
 - Now we have an RDF triple

RDF Graphs

- A RDF graph is a collection of triples
 - A conjunction of assertions
 - A chunk of the Semantic Web/Net
 - A set of resources connected to other resource in a certain pattern
 - A *view* of the Web
- RDF graphs are entirely asserted
 - There are no *quoted* triples
 - There may be encoded triples (e.g., reification)

MINDSWA

RDF Syntax

• Many syntactic quirks, but the triple lives:

<rdf:Description rdf:ID="Jen">

<hasTitle rdf:resource="#AdjunctProfessor"/>

</rdf:Description>

- Many syntax alternatives
 - Some of you may have heard of N3
- Even the raw triples have assertional weight
 - It's logic all the way down, not data structures
 - Ground RDF graphs are the closest
 - Consider bnodes

RDF Inference

- What is a KR with out licenced and encouraged inferences?
 - Not much of one!
 - See: What is a Knowledge Representation?
 - http://medg.lcs.mit.edu/ftp/psz/k-rep.html
- Not a lot in RDF alone
 - The predicate rdf:type is special
 - Bnodes are significant (instance lemma)
 - Simple entailment: S entails E iff some subgraph(S) is an instance of E
 - Few other things

From Facts to Taxonomies

- RDF graphs are close to relational database – Bit other, actually, but close
- RDF alone lacks structuring
 - We know things are rdf:Properties and rdf:XMLLiteral, but not much more
 - Things can be members of classes (rdf:type), but we don't know what classes are
 - We don't have any class/class relations
 - Except for membership
- We can do better!

- Add more standard meaning to certain triples

maryland information and network dynamics lab semantic web agents project

RDF Schema

- Classes, Properties, and Resources
 - New classes: rdfs:Class, rdfs:Resource
 - Certain relations between
 - classes and classes: rdfs:subClassOf
 - properties and properties: rdfs:subPropertyOf
 - properties and classes: rdfs:range and rdfs:domain
 - New inferences:
 - a rdf:type B, B rdfs:subClassOf C
 - a rdf:type C
- But very weak!
 - Only explicit connected class and property hierarchies
 - Inference (without negation), not validation!
- 4/2/2004 a prop b, a rdf:type C, prop rdfs:range D
 - a rdf:type C and a rdf:type D

From Taxonomies to Ontologies

- Taxonomies are useful
 - Dmoz, Yahoo, et al.
- But they tend to be inexpressive
 - The are defined in very weak languages
 - The relation between class and class, and class and instance, and everything is explicit (mostly)
 - Fall prey to the Metacrap problems
- Rough rule:
 - If you need to classify, you have an ontology

maryland information and network dynamics lab semantic web agents project

What is an Ontology?

- Ontologies in CS
 - We philosophers weep!
 - Shared formalization of a conceptualization
 - A logical *theory* encoded as input to an automated *reasoner* (or other program
- Thus, an ontology (typically)
 - is a collection of axioms (and other assertions)
 - is connected with human intentions and understanding
 - is connected to program behavior
- So, the ontology language should be

For people (epistemically adequate)
 ^{4/2/2004} For programs (sensibly computable)

What is an Ontology? II

- something rdf:type owl:Ontology?
- An application/rdf+xml document?
- A collection of classes and properties (and individuals?)
 - With some degree of axiomization?

maryland information and network dynamics lab semantic web agents project

Desiderata for a Web Ontology Language

- Expressive
 - Negation, cardinality restrictions, class construction, property features
 - Classes as instances and other metamodeling
 - Self-axiomatizable
- Web centered
 - Use URIs
 - Use the Web (owl:imports anyone?)
- Implementable
 - The reasoning procedures should be "practical"

maryland information and network dynamics lab semantic web agents project

Two varieties of OWL

- OWL DL
 - OWL Lite
- OWL Full

maryland information and network dynamics lab semantic web agents project

Class Expression Constructors

- Boolean (and, or, not, enumerated)
 - owl:intersectionOf
 - owl:unionOf
 - owl:complementOf
 - owl:oneOf
- Quantification (restrictions)
 - Universal (owl:allValuesfrom)
 - Existential (owl:someValuesFrom)
 - Nominals (owl:hasValue)
 - Number restrictions (owl:minC/maxC/cardinality)

MINDSWAP

Class Axioms

- These relate two *class expressions*
 - Class names (that is, URIs)
 - Class expressions
 - Anything formed by the Class Expression Constructors
 - Class names to class expressions
- subClassOf
 - From name to expression == necessary conditions
 - From expression to name == *sufficient* conditions
 - equivalentClass == both
- Class expressions on both sides:

– General constraints

maryland information and network dynamics lab semantic web agents project

Property Axioms

- subPropertyOf and equivalentProperty
- inverseOf
- FunctionalProperty and InverseFunctionalProperty
- SymmetricProperty
- range and domain
- AnnotationProperty, OntologyProperty, DatatypeProperty, ObjectProperty

MINDSWAP

Facts

- Class expressions, and Class and Property Axioms are encoded in *triples* <rdf:Description rdf:ID="HedgeHog">
 <rdfs:subClassOf rdf:resource="#Pet"/></rdf:Description>
 <owl:Class rdf:ID="#Pet"/>
- The rest of the triples are facts
 The syntax triples are (in OWL Full) facts too!

Ontology Headers

- All the properties hanging off a rdf:type owl:Ontology
 - Includes metadata
 - owl:versionInfo
 - rdfs:comment
- And a key modularity/webizing feature
 - owl:imports
 - <owl:Ontology rdf:about="">
 - <owl:imports>
 - <owl:Ontology rdf:about="http://www.someotherontology.org/..."/>
 </owl:imports>
 - </owl:Ontology>

Multiple Ontologies: owl:imports

- owl:imports is either obvious or mysterious
 - Key members of WG (e.g., Pat Hayes and Dan Connelly) have claimed not to understand it
 - Operational meaning (roughly):
 - include all the axioms and facts of the imported ontology (which includes all the axioms and facts of *its* imported ontologies, etc.)
 - This is (barring syntax tricks like entities) the only way external meanings get into your ontology
 - That is, just *using* a URI from some other URI space is not enough
 - Transclusion: owl:imports is like <img src=...
 - Link: URI use is (a bit) like <a href=...
 - Work underway (C-OWL, E-connections, PECs, syntactic, etc.)

4/2/2004 The imports closure is *flat*

Metamodeling

- *Everything* is an element of the domain
 - In common FOL, only individuals
 - Classes, properties, syntax are not
 - Quantifying over classes, etc. moves to second order
 - OWL (Full)
 - Classes are individuals
 - owl:Class rdf:type owl:Class
 - Properties are individuals
 - ex:trueLove rdf:type owl:SymmetricProperty
 - And syntax
 - owl:unionOf rdf:type rdf:Property

Metamodeling II

- OWL Full has second order syntax and first order semantics
 - Axiomatics (LBase, DAML+OIL)
 - Everything is a triple
 - Rules express consequences of those triples
 - Model theory
 - Classes are objects with relations to their extentions
 - Following HiLog, SKIF
- This is very expressive! Perhaps Web like
 - Everything really *is* a resource
 - Anyone can say anything about anything

_{4/2/2004} Self-describing, partial/bootstrap understanding

Difficulties with OWL Full

- Expressive, but not expressive enough
- Inference procedures not well worked out
- Semantics are non-traditional
 - Some common metamodeling schemes (e.g., UML) are stratified
 - Have to reinvent a lot
- No complete implementation
 - Not clear what strategies are best

maryland information and network dynamics lab semantic web agents project

OWL DL

- The Description Logic SHION(Dn) (plus a bit)
 - A decidable subset of FOL (and of OWL Full)
 - Metalogical terms
 - Sound
 - Complete
 - Decidable (has a decision procedure)
 - Semi-decidable: every yes question answering terminates
 - High complexity (NExpTime, ExpTime for major subsets)
 - "Practical", highly optimized algorithms
 - Several implementations and lots of experience
 - Strong user, theory, implementor communities
- A more traditional FOL fragment

Description Logics

- Semantic Nets were Scruffy
 - Coming out linguistic and cognative modeling
 - Lots of pointer chasing
 - And other implementation dependent moves
 - Some notable innovations
 - Some notable "confusions" (isa/instanceOf)
 - "Intuitively" Object Oriented
- Send in the neats
 - Pat Hayes: "The logic of frames"
 - Brachman & friends, KL-One
 - Trade expressivity for tractability

4/2/2004 Trade tractability for "practical" expressivity

Traditional Semantics

- Classes are 1-place predicates
 - Person == Person(x)
 - bob rdf:type Person == Person(bob)
- Properties are 2-place predicates
- Axioms (typically) are conditionals
 C subClassOf D == if C then D
- Syntactic distinctions between categories
 - ObjectProperty disjointWith DatatypeProperty
 - Class disjointWith Thing (and ObjectProperty, etc.)
 - Syntax triples disappear when converting to abstract syntax
- 4/2/2004 Hard to enforce in RDF graphs!
- Then inherit the semantic of FOL

Annotation Properties

- We regain a bit of syntactic higher order
 - Classes, Ontologies, Properties, etc. can have AnnotationProperties
 - Within the ontology, AnnotationProperties obey a lot of restrictions
 - Disjoint from all other Property types, classes, etc.
 - Cannot participate in axioms
 - AnnotationProperties are *invisible* to the reasoner
- More like structured comments

Difficulties with OWL DL

- Pretty expressive, but not *that* expressive
 Can't define uncleOf!
- Pretty scalable, but not *that* scalable
 - This ain't no database
 - Pathological cases are crippling
 - It remains to be seen if the Semantic Web normal case is pathological
 - Simple implementations fair quite poorly
 - No known (or published) OWL DL algorithm
- Layered DL in RDF/XML is painful to write

MINDSWAP

Problems with OWL

- Closed vs. open world
- Inference vs. data validation
- No Unique Names Assumption
- Scalability
- Rules
- Other Expressivity

SWRL (neé OWL Rules)

- *Very* expressive superset of OWL
- Extends the permissible material conditionals
 - Allows class and property *atoms* with arbitrary number of variables
 - Used in OWL-S for precondition/effect formulas
- Relies on OWL for much of its expressivity
- Not very closed world/Datalog/Prolog friendly