maryland information and network dynamics lab semantic web agents project

OWL-S(ervices)

Planners with manners (no more deadplan humor)

The Semantic Web

- "Next generation", "machine friendly" Web
 Interlinked information for programs
- The "original vis...Wait this sounds familiar!
- Two steps beyond traditional Web content
 Past Web *data* (XML)
 - To Web knowledge (RDF, OWL, and Beyond)
- But what about Web *behavior* (programs!)?
 - Java applets, Javascript, CGIs, etc.

maryland information and network dynamics lab semantic web agents project

Web Services

- A competing vision
 - Programs who need programs
 - Components
 - Discover, manipulate, interact, react, etc. to functionality
- Data interoperability via XML and related standards
- Language/system/etc. interop achieved by very loose coupling

naryland information and network dynamics lab semantic web agents project

(Semantic (Web) Services)

- Services for the Semantic Web
 - Reasoners, datastores, planners, schedulers, etc.
- Semantic Web enabled Web Services
 - Services are complex entities
 - Automated manipulation of services requires rich descriptions and flexible "understanding" of the service, as well as ultimate users goals, preferences, etc.
- Agents reborn?

maryland information and network dynamics lab semantic web agents project

A Picture

maryland information and network dynamics lab semantic web agents project

Web Service Tasks

- Discovery and Selection
- Negotiation and Contracting
- Coordination
- Composition
- Execution, Monitoring, Simulation

maryland information and network dynamics lab semantic web agents project

OWL-S

- A collection of foundational ontologies
 - Intended to be a framework
 - In practice, it has made significant choices
 - And what flexibilty has come from underspecification
 - OWL centered
 - Fluctuating between Full and DL
 - Quickly embracing much more expressivity (e.g., SWRL)
- *Encodes* what OWL cannot express
 - In particular, the Process Model
 - But plenty of other things!

maryland information and network dynamics lab semantic web agents project

Service

- Service is a specific functionality

 Which might be quite complex
- In the ontology, Service is the "hook" to connect the various parts

– And it's the parts that are of interest

- To my knowledge, no one has used the Service Class in any significant way
- I find that curious

maryland information and network dynamics lab semantic web agents project

OWL-S Service Description Three components of OWL-S descriptions Service supports describedBy (how to access it) (how it works) (what is does) presents Grounding Process Model Profile

MINDSWAP

maryland information and network dynamics lab semantic web agents project

Someone Else's Drawing

Service Profile

- High-level description of a service
- Used for advertisements and requests
- A profile contains:
 - a human readable description of the service
 - functional attributes
 - Inputs, outputs, preconditions, effects
 - "non-functional" attributes
 - guarantees of response time or accuracy, cost of the service, etc.
- A profile is a *view* of the service

IOPEs

- Inputs, Outputs, Preconditions, and Effects
- Part, but not all, of the "behavioral signature" of the service
- Most (current) matchmaking done on IO, described with OWL Classes
- PE language just arriving
 - Preconditions: What must be true before I can invoke the service
 - Effects: Things the service makes true
 - Used in most planning
 - For goal directed planning (regression or progression)
- 4/2/2004 For task directed planning (to guide decomposition)

IOs cont.

- Conceived as "knowledge" Pes

 Things told to and from a service
- Typically corresponding to in and out messages (or some decomposition or synthesis of such)
- OWL classes as type system

 Can use XML Schema, but discouraged
 Indeed, XML types are treated as wire format
- Big issues with using OWL this way

Decker Problems

- OWL is based on open world assumptions
 - Just because you don't know, don't mean it's false
 - Absence of information doesn't cause (necessarily) cause problems
- OWL is first order and inference directed
 - No bound on the "relevant" information
- No data validation!
 - Easy to have too much or too little information!

PEs encore

- Preconditions and effects are described by formulas in some logic language
 - The 1.1 default is SWRL
 - But not quite SWRL
 - A precondition (or effect) expression is a conjunction of SWRL atoms (I.e., 1- and 2-place predicates with variables)
 - The variables can be bound in funny ways
 - Deletion is problematic
 - Inferred assertions
 - Even if deleted, perhaps merely unknown
 - Query is expensive

4/2/2004

- DL satisfiability test (potentially) for each permuation of individuals!
- Expect very large KBs
- Not clear service descriptions need PFs

ServiceParamters

- Top Down vs. Bottom up
 - Describe the services with their properties
 - Build up requests as class descriptions
 - Can have many class hierarchies and organizations
 - Can be "local" in both the service descriptions and the class expressions
- Taxonomies require global organization
 DL classes are more like self-organizing queries
- BUT! Matchmaking can be tricky

Matchmaking

- Primary current mechanism is subsumption
 Or, perhaps, other DL based inferences
- Should the request be more or less general than the match?
- Standard categorization
 - Exact
 - Plug-in
 - Relaxed

DAML-S Matchmaker

4/2/2004

maryland information and network dynamics lab semantic web agents project

UDDI Components

- White Pages
 - contains business name, text description, contact info and other related info.
- Yellow Pages
 - contains classification information about the business entity and types of the services the entity offers
- Green Pages
 - contains information about how to invoke the offered services

maryland information and network dynamics lab semantic web agents project

OWL-S to Tmodels

maryland information and network dynamics lab semantic web agents project

Matchmaking/discovery encore

- Feels like a big, easy win
 - UDDI TC solicit input
 - RDF & OWL all about metadata, right?
- But where is the win?
 - Serious dearth of success stories
 - Matching algorithms perhaps overhyped
 - Similarity measures seem more appropriate
 - Matching over what parts of the Service description?
- Negotiation seems critical
- Simple query broading seems useulf

From Discovery to Composition

- Thus far, discussed finding existing, complete, existing services
 - But what if there is no service that does what you want?
 - But you have a rich description of what you want?
 - And there are combinations of services that achieve your desires?
- Discovering *virtual*, dynamically composed services

maryland information and network dynamics lab semantic web agents project

Process Model

- Atomic processes
 - directly invocable
 - black box
- Composite processes
 - consists of other processes
 - defined by a control construct
 - Sequence
 - Split
 - ...
 - RepeatUntil
 - Simple processes
 - abstract views, not executable
 - atomic process without a grounding
 - simplified representation of a composite process 23

maryland information and network dynamics lab semantic web agents project

maryland information and network dynamics lab semantic web agents project

ParameterTypes

- Pushes us toward OWL Full
 - Processes are instances
 - They have parameters
 - Which "have" (are related to) types
 - Which are classes....oops
- Unclear how type checking should work
 - Preliminary efforts in terms of execution traces
 - Requires enormous amount of modeling
 - Perhaps requires rules or other extra DL reasoning behavior

CompositeProcesses

- Primarily derived from the Golog work from University of Toronto and Stanford
- Situation Calculus based
- Complex Actions/Processes are "macro" expansions for a large number of sitcalc axioms
- Compile those axioms to a Prolog program
- Bit like HTN, but rather idiosyncratic!

maryland information and network dynamics lab semantic web agents project

Orchestration or Choreography?

- Or both!
- There were presumptions and assumptions
- These Ps & As were more or less ratified
 - Partly inherited from WSDL of the RPC days
 - Planning tends to be "central control" oriented
 - But, really, that can work either way
- Trying to be a better BPEL

– Is this a sane strategy?

 The Irreality of Control Constructs and CompositeProcesses

maryland information and network dynamics lab semantic web agents project

SimpleProcesses

- Dark Horse
 - OWL-S has at least 4 abstraction points
 - WSDL
 - Grounding
 - Profile
 - SimpleProcess
 - Probablly essential for Process Templetes
 - Can stand for Atomic or Composite process
 - Could have constraints and inferred replacements
 - Would need lots of stuff from Profile

Planning

- Given a state of the world, a goal, and a domain, find a sequence of actions that achieves the goal
- State of the world == (RDF/OWL KB)
- Goal == (RDF/OWL KB (but small))
- Domain
 - set of operators, i.e., primative tasks, i.e., AtomicProcesses
 - Set of methods, i.e., task *decompositions*, i.e., CompositeProcesses
- Planning proceeds by replacing tasks in the task lists with their decomposition until you have a list of primative tasks (the plan)

HTN Planning

- Given a state of the world, a task list, and a domain, find a sequence of actions that achieves the tasks
- State of the world == (RDF/OWL KB)
- Goal == (RDF/OWL KB (but small))
- Domain == set of operators, i.e., AtomicProcesses

Information Gathering

- During plan time or during execution time?
 - Planning for sensing
 - Contingency/conditional plans
 - On line planning
 - Recovery and replanning
 - Planning for infogathering at plan time
- Services seem more info/computational
 - Traditional operators are more physical
 - Perhaps rethink what it is to plan

Grounding

- Specifies how to execute a service
- Each AtomicProcess has a grounding
- Current specification
 - Mapping to WSDL
 - AtomicProcess -> Operation
 - Input/Output -> Message Parts
- (New, WSDL 2.0 OWL/RDF coming soon)

maryland information and network dynamics lab semantic web agents project

WSDL2DAMLS

yrand mormation and network dynamics iab semanic web agents project

Translation and Data integration

- Heterogenuous information formats
 - Not just data formats, but concepts
 - Plus the concept/data divide
 - Currently use XSLT to/from RDF/XML
 - Clunky and hardcoded but solves many Decker problems
 - Ontology mapping
 - By compution or by inference
 - A service based approach
- Active mediation
 - Send the translation/massage closer to the data

maryland information and network dynamics lab semantic web agents project

Metaservices

- Services for services
 - Creating, destroying, moving, managing, discovering
 - UDDI good example
 - Mobile services?
- Where to specify?
 - ServiceParmeters seem to be the catch all

Acknowledgements

- Evren Sirin, for lifesaving slides, a noble effort, and general fellowship
- Terry Payne for more stolen slides than expected
- Jen Golbeck for slides I didn't really use but did crib some stuff from
- #mindswap for listening to my meltdown
- Aditya for a valient effort
- Me! For not breaking anything and having old but somewhat useful slides