
Policies are good for business

Francis G. McCabe∗

August 28, 2004

Abstract

This note addresses the role and promise of declarative policies as a means
for bringing large-scale software systems under the control of their owners – the
businesses that they are to serve.

1 Introduction

Traditionally, policies and policy frameworks are seen as a way of encoding security
constraints – and perhaps quality of service expressed as Service Level Agreements.
Certainly these are important applications of explicit policies; however, a greater po-
tential for policies – one that we hope to highlight in this paper – is in the systematic
description – and enforcement – of application policies and of the exchange of informa-
tion about policies via Web services.

These policies can be about issues such as privacy, or they can be about issues more
closely related to the business carried out – such as delivery preferences and customer
credit ratings. Sometimes there will be community agreement – much like standards –
about the form and meaning of these policies, other times more personal policies which
reflect the requirements of individuals and companies in their use of Web services will
be used.

In effect, policies, specifically declarative policies, are not only useful to business but
essential to cope with the world of instant services offered across the public Internet.

2 The Web Services Architecture

The W3C Web Services Architecture[1] identifies a policy model as one of its five main
models. This prominence is intended to reinforce the central nature of policies in the

∗Fujitsu Labs of America

1



architecture; not only are policies a core element needing explication but they also form
an integral binding structure relating many other aspects of the architecture.

The WSA defines a policy as

A policy is a constraint on the behavior of agents or people or organizations.

Of particular interest are those policies that can be written down; more precisely that
can be processed mechanically.

2.1 Policy framework

The policy model within the WSA is intended to capture the key features of policies
that are important to their use in automated systems. The model classifies policies and
talks about the relationship between any declarative policy document and the systems
governed by the policy.

agentperson or 
organization

policy

resource action

subject toestablishes

about
about

Policy 101 – from the WSA

The key architectural aspects of policies are that they are constraints, typically
about resources and actions, and that policies themselves require enactment – someone
has to decide that a policy is to be in force: usually the owner of affected resources
decides policy about those resources.

The WSA refers to two main kinds of policies: permission policies and obligation
policies.

A permission is a kind of policy that prescribes the allowed actions and
states of an agent and/or resource.

Permission policies are perhaps the most obvious kind of policy as they relate to
what a subject is, or is not, allowed to do.

2



An obligation is a kind of policy that prescribes actions and/or states of an
agent and/or resource

Note that policies are not necessarily about actions: they can also concern the per-
mitted states of resources. A classic example of this is the constraint that a bank account
must be kept in credit: the bank is not concerned with how a customer maintains a
credit balance – only that the account is always in credit.

Closely associated with policies are enforcement mechanisms. In parallel with the
two kinds of polices are two types of enforcement: permission guards and audit guards.
A permission guard is a mechanism that can be queried to test if a proposed action is
permitted; an audit guard is a mechanism that can be used to verify the discharge of
obligations. By their nature, obligations cannot be enforced a priori – their discharge
can be verified however.

Although very abstract, the WSA policy model captures enough detail to allow the
use of policies in Web services to be illustrated. The next necessary step is to develop
specifications for policy descriptions that can be widely deployed and enforced.

2.2 Policies within the WSA

The WSA uses policies within the architecture in a number of ways:

• to express the owning relationship between a Web service and the entities respon-
sible for it,

• to express security constraints,

• to express quality of service issues, such as for message transport, and

• to express the manageability of Web services.

For example, a given service may have a set of policies associated with it. Abstractly
these could be about any aspect of the service; however, in practice this is likely to be
both about the service being delivered – such as whether an eBusiness service can offer
credit terms to a particular customer – and about the means used to deliver the service
– such as whether SOAP over SMTP is supported as well as SOAP over HTTP.

2.3 Ingredients of a policy architecture

The WSA does not attempt to explain how policies are implemented – either the de-
tails of the kinds of policy descriptions or the mechanisms needed to enforce policies.
However, we can surmise that any large scale policy enforcement architecture will share
most if not all the following features:

3



• A base ontology of policy terms – such as permissions, obligations, subject, action,
state and so on. This domain independent ontology would have specific elabora-
tions to capture requirements in areas such as security – such as access control
lists, file permissions, authentication and so on.

• A language for expressing relationships between policies: such as one policy de-
pending on another, conditional policies, priorities between policies. This lan-
guage should allow a domain independent policy interpreter to be to make policy
decisions that form the basis of policy enforcement.

Activities

next step

Event 
calculus 
engine

event

Contracts

obligationspolicies

new activity/cancel activity

skills

skills

next stepnew contract

A Policy engine

• Policy enforcement mechanisms are likely to fall into several distinct levels: domain
independent mechanisms that result in policy decisions of one form or another and
domain and application specific mechanisms that ensure that policy decisions are
adhered to. An example of the former would be a policy interpreter that can
generate policy decisions based on proposed actions or events and a set of policies.
An example of the latter mechanism might be the operating system support for
access control lists that govern which users can access a given file and ensures that
the user does not violate the access permissions to the file.

Implications for existing systems Incorporating policies in applications may well
require some re-engineering of those applications. This is especially true in the case of
obligation policies where it is important to be able to prove that obligations have been
satisfied.

Systems that are able to reason about policies and in particular are able to reason
about their obligations has been demonstrated in research systems but is not currently
widespread in Industry.

4



Permission based policies, however, have a long history; originating in various policy-
based security environments.

2.4 Business role of policies

Although the WSA focuses on the role of polices within the architecture itself, it is fair to
say that the working group imagined that the policy framework would also be applicable
to applications: i.e., policies could have a role within Web services themselves.

A key feature of the WSA (inherited from SOAP 1.2) is the structure and processing
model for Web service messages. A significant part of this model is the so-called inter-
mediary. An intermediary can be thought of as a kind of sub-service – a service function-
ality with a narrow scope that does not necessarily encompass the entire functionality
of a service. Examples of intermediaries include security enforcement mechanisms and
application-level mechanisms.

One example of an application level intermediary might be a customer information
sub-service – that is capable of examining any SOAP message that has customer infor-
mation and verifying that the referenced information is known to the service provider.
In practice there are likely to be many varieties of customer information and also of cus-
tomers themselves. Furthermore, the extent to which the service trusts the customer
and even the service itself it quite likely to vary from customer to customer.

Such variety is best managed using explicit policies that express the constraints on
the service provided depending on the characteristics of the customer. These policies
themselves can be managed by the owning controllers of the Web service.

Fundamentally, explicit declarative policies can enable the owners of Web services to
control the business semantics of the Web service. The greater the inherent complexity
and variability of an application – whether a Web service or any other application –
the greater the potential for explicit policies to enable businesses to control their Web
services.

3 Policies on the Web

We see a significant role for explicit policies in the deployment of Web services and in
the use of Web services. In managing the security aspects, the manageability aspects
and other meta-level aspects of services, policies and standard specifications for policies
will greatly aid in Web service deployment. Furthermore, the use of policies within Web
services has the possibility of greatly enhancing businesses’ control over the function-
ality of Web services – including the possibility for exchanging policy documents and
forwarding policy documents.

In practical terms policies will be used for a variety of system-level and application-
level aspects. For example, a Web service provider may have policies about how au-

5



thentication tokens such as X.509 certificates should be present in SOAP messages.
Conversely a client of a Web service may wish to interact with the privacy policies of
the provider – perhaps by querying the P3P policies published by the provider linked
from a WSDL document. These two case represent two distinct cases in policy ap-
plication: one imposed by the provider and one negotiated between the provider and
requester of the service.

3.1 Security policies

In the classic SOAP 1.2 model, the role of a header is to signal – in a standardized way
– some particular aspect of the message. In the case of a X.509 certificate it is a means
of authenticating the subject of the message (typically).

Given a policy engine, and given an architecture that is capable of processing SOAP
messages using intermediaries (service roles in the parlance of the WSA), a service
provider can enforce a requirement that customers are authenticated by requiring that
incoming messages bear the appropriate X.509 certificates – within WS-Security spec-
ified headers. This might be enforced with a combination of a software agent that
is actually capable of processing the certificate, a policy engine that is capable of re-
questing that that service role be applied and a policy document that determines the
requirement.

Essentially, this is a straightforward application of business logic to the processing of
incoming messages. The only aspect that is novel is the fact that the policies expressing
the constraints are expressed in a standard notation.

3.2 Privacy policies

On the other hand, the processing of a privacy policy is necessarily quite different to
authentication processing. The reason is that privacy involves a negotiation and, in
the event that the Service provider may have service relationships with other Service
providers, may involve a transitive application of the Service requester’s policies.

For example, in Europe, the various Data Protection Acts require that certain per-
sonal information may only be collected in certain registered databases. Furthermore,
any organization that collects personal information may only transmit it to other orga-
nizations that are similarly registered.

A customer wishing to interact with a service provider may wish to query the Ser-
vice provider about the provider’s policies. This information may be published by the
provider in a searchable registry, or it may be available more directly by querying the
provider – in effect making it part of the Service interface.

Once a customer agent decides to interact with the service, it may wish to impose
its privacy policy on the provider – for example by requiring that the provider does not

6



forward certain personal details to third parties.
The policy can be declared by the Service requester agent in a similar manner to

the authentication policy – by using a standardized header encoding a P3P policy (for
example). In addition, however, is an implied obligation on the part of the Service
provider to respect the privacy policy.

As noted above, obligations can not often be enforced a priori. However, they can
potentially be audited ; i.e., evidence may be given that the obligations are properly
discharged. In this case, part of the policy negotiation may be a commitment to com-
municate back to the Service requester sufficient information to prove that the Service
provider has abided by the privacy policy – perhaps by copying SOAP messages sent
to third parties back to the originating Service requester or by identifying an escrow
service that the requester agent may query at a later date. For example, the message
sent by a book store service to a delivery service should not, and need not, contain the
credit card details of the customer. Showing the messages sent is evidence that you are
abiding by such a constraint.

It is in the nature of privacy policies that it is hard to prove that you have not
violated them – however, it may be in your interest to attempt to give evidence of your
good faith to the requester by copying messages or digests of messages you send to help
fulfill the request.

4 Very large scale systems

In assuming that policies are explicitly written down we implicitly introduce a new class
of document into the world: policy documents. Managing large collections of these
documents is similar to managing large collections of any kind of document; however,
policy documents introduce some special considerations.

A policy is always enacted by someone – i.e., the policy document is a record of
the constraints that someone has decided should be applied. In managing large sets of
policy documents it is important to keep track of the provenance of the enacted policies.

There are two senses in which Web services may give rise to large complex collec-
tions of policy documents: large numbers of individuals with their own sets of policy
documents and complex enterprise systems with associated policy networks. These two
extremes require different approaches.

Where an individual – or small enterprise – has policies, they are likely to be rel-
atively few in number. Moreover, more importantly, the provenance of individual pol-
icy documents is clear: they are originated and enacted by the individual or business
owner. The fact that there are large numbers of individuals is not important except
where individuals exchange policy documents with others. Provenance reduces, in such
circumstances, to clearly identifying the enactor of a given policy recorded in a policy

7



document. That, in turn may require that the policy specification language requires
this level of documentation.

In the case of a more complex enterprise class system, there may be many thousands
of policy documents within one system. Furthermore, two additional factors arise: the
provenance of a given policy document is likely to be much more complex and the ratio
of system administrators to documents is likely to be much lower.

For example, the policies that apply to particular e-commerce transactions may
originate from many stakeholders within a company: the sales and marketing team, the
fiduciary team and the executives of the company. Furthermore, a given policy is much
more likely to be enacted in a role-based manner. For example, the discount applied to
customers in good standing is likely to be enacted by the head of the sales division –
acting as that head – rather than by P. J. Seller – acting on his own behalf – even if P.
J. Seller is currently the head of the sales division.

This latter complexity of policy management requires approaches to managing doc-
uments that is not currently very common in business. It requires that given documents
have clear meta-documentation as to their origin. It also requires some discipline in the
process of establishing policies; which in turn requires some modeling of the organiza-
tions themselves – the powers and authorities that officers of the organization have. In
effect, it may become necessary to be able to explicitly model trust and authority and
to reference these from within policy documents.

5 Conclusion

Policies represent a cornerstone of the Web services architecture. The policy frame-
work explicates the role of policies in the deployment of Web services. However, a
greater potential lies in controlling the functionality of Web services using a policy-
based framework. In addition, permitting the exchange of policies opens the possibility
of constraint-based interactions between Web services agents.

Finally, it should not be forgotten that policies introduce a new class of document
into the world – with associated complexities in managing those documents.

References

[1] Web services Architecture Working Group. Web services architecture, 2004.

8


