
Administrative Delegation in XACML – Position Paper

Erik Rissanen (mirty@sics.se) Babak Sadighi Firozabadi (babak@sics.se)

Swedish Institute of Computer Science
Box 1263

164 29 KISTA
SWEDEN

Abstract

In this position paper we argue the need for mechanisms to support decentralised
administration of policies in highly dynamic organisations. We show how current
specification of XACML can be extended to support delegation of policies.

Use Case
We base our position paper on the following use case: A web service uses an
XACML Policy Decision Point (PDP) for its access control decisions. The service is
used by a very large and dynamic organisation, with frequent changes to the access
control policy. The rights to change the policy also change frequently.

Introduction
XACML is a highly expressive language for access control policies. The specification
of XACML includes the language and its semantics and a framework for making
access control decisions based on XACML policies. However, XACML is currently
lacking an access control model for the policy itself.

The current XACML model of policy administration puts the access control of the
administration of the policies outside the policy model. To control who may edit the
policy, mechanisms such as operating system level access control has to be used. In
large distributed systems such mechanisms may prove to be difficult to manage.
There may be a need to manage the policies in parts of the system not under the
control and within the trust of a specific Policy Decision Point, for instance from a
mobile device. The rights to change the policy may be highly dynamic themselves.
This leads to a need for an access control policy model for the policy itself. Our
research has been focused on these issues.

The main result of our research is a framework and a calculus, called privilege
calculus, for access permissions and their administrations [4,5]. In this framework, we
distinguish between access permissions and administrative permissions, both referred
to as privileges. Each privilege in the framework has an issuer and a validity-time.
The calculus allows us to deal with both privileges and their administration. The core
mechanism of privilege calculus is constrained delegation which allows one to put
constraints on how a privilege, access permission or administrative permission, can be
created for other users.

It should be pointed out that the delegation mechanism in privilege calculus is
administrative delegation, not proxy delegation between tiers in a distributed system.
It is about creating new long-term access control policies by means of delegation in a
decentralised organization.

It has recently been discussed by a number of XACML TC members to add
administrative delegation to XACML. [1,2,3] The ideas discussed within XACML TC
are very similar to the delegation mechanism of privilege calculus. We are now
looking into the possibility of extending current XACML specification and
implementing our delegation model in SUN’s open source XACML implementation.
This will be part of an ongoing project in which we investigate the use of XACML as
a policy language for distributed services in the highly dynamic and decentralised
networks needed for Network Based Defence (NBD) scenarios.

In this position paper we outline how we will extend XACML to meed the needs of
NBD.

We do not address the use case from the call for papers since it falls outside the scope
of policy administration.

Constrained Delegation
Within the privilege calculus we distinguish between administrative permissions and
access permissions. An access permission is simply a traditional permission which
grants access to a resource. An XACML 1.1 rule is an example of an access
permission. Administrative permissions specify what other permissions may be
created. XACML does not currently support administrative permissions. In the
privilege calculus an administrative permission contains an access permission and a
constraint on its delegation. The access permission constrains what accesses may
ultimately be allowed based on that administrative permission. The delegation
constraint specifies to whom the permission may be delegated. It does so by means of
a sequence of constraints that corresponds to a sequence of issuers in a chain of
delegation.

The purpose of the constrained delegation is for instance to limit the permissions to a
part of an organisation. The constraints can also be used for expressing that someone
may administer permissions of others, but cannot grant those permissions to herself,
which may be useful in e.g. outsourcing scenarios.

Proposed solution
The solution we will explore includes the following changes to XACML.

Every policy will have an issuer. We assume that policies are digitally signed by the
issuer for secure distribution.

We add new structured data-types to express chains of delegation and constraints on
delegation. We also add a new function on these types which is able to compare a
chain to a constraint.

An access level permission is like an XACML 1.1 rule, with the exception that the
policy it belongs to has an issuer and the rule has a condition that requires that there is
no chain of delegation in the access request environment.

An administrative level permission will contain an access rule, with target and
condition, but also a condition with a delegation constraint. The condition will return
true only if there is, in the environment of the access request, a chain of delegation
which satisfies the delegation constraint. Administrative level permissions also have
issuers.

When the Policy Decision Point sees an XACML policy with an issuer it will
automatically add an implicit obligation to that policy. The added obligation is to
perform another access request to check that the policy was authorized by another
policy. To construct the implied obligation the PDP takes the issuer of the policy and
adds it to the eventual existing delegation chain from the current request environment.
The new request is the same access request with the new chain of delegation in the
environment. The new request can in turn lead to a new obligation, and so on.

The recursion ends in a specific trusted root issuer. Frank Siebenlist calls it “PDP”,
while we have called it “root” in our previous work. A PDP is assumed to not accept
any “root” issued policies except from special closely located, trusted policy
information points that have been initialized by means of special procedures. As an
alternative, there could be a global agorithm to derive the root for an access request
from the service name. For instance the root authority could be a part of the service
name.

Some trade-offs
If we understand Frank Siebenlist’s proposal correctly, he suggests that rules are
combined ahead of the access time, so the recursive requests are not needed.
Compared to our suggestion, this has the advantage that there is less work to be
performed at access time. However Franks Siebenlist’s approach also has drawbacks.
Combining rules requires that it is possible to calculate whether one condition
expression is a restriction of another. As Tim Moses points out, this may be possible
in some cases, but likely not possible in general. This would mean that we would have
to give up some forms of conditions, thus XACML with delegations would not be as
expressive as without. We choose to not compare conditions, but instead test the
access request on all of the conditions, thus we can use any condition expression.

We have not seen constraints on delegation in any of the current work on adding
delegation to XACML. Constrained delegation has at least one trade-off associated
with it. We can check the delegation constraints either when a policy is added to the
policy database, or at every access time. The semantics are not the same, and it is
perhaps not obviously clear which sematics are “better”. Checking once is more
efficient, but we think that checking the delegation constraints at access time is
perhaps easier to understand for the user. Checking at access time means that if
someone issues an administrative authorisation with a delegation constraint he can
know that at any given time, an access cannot happen unless the constraints that were
specified are still valid through the whole chain of delegation. Checking only once
would mean that instead each person in the chain of delegation at some point of time
satisfied the constraints in the administrative authorisation. Unpredictable distribution

of policies means that the time when the check is done may be unpredictable. (Of
course this discussion does not rule out optimizations such as caching.)

It is desirable that there are upper bounds on how complicated an access control
decision check can be. We are currently considering a number of limitations to the
model to give such bounds. This still remains work in progress and will be explored in
the implementation experiments which we will perform in the near future. One
example is to limit the maximum length of a delegation chain. Another example is to
add an id, which will indicate the other rule which will give support to a given rule. In
this way, when the PDP encounters an obligation implied from a policy issuer, it will
know exact which rule to search for.

Furher Work
We are also interested in the administration of attributes. This currently falls outside
the scope of XACML, but we will explore the possibilities to use XACML to indicate
permissions to administer attributes. This will add additional complexity to requests
since finding the attributes of users would result in additional XACML requests.
Inherited attribute values presents another complication. These issues will also be
explored by us in the implementation experiments.

Administration of access control needs to cover the removal of permissions in
addition to the creation of them. In our earlier work we have used revocation to
remove permissions, but we have not considered revocation of XACML rules yet.

In our earlier work we have not had any negative permissions. XACML supports
negative permissions, so we need to consider their impact on our model. We have yet
to considered how to handle the rule-combining algorithms of XACML.

Examples
The last page contains some early examples (in “pseudo-XACML”) on what we wish
to do. They are for our own purposes only and do not represent any kind of proposed
changes to the XACML language at this stage.

The first request is permitted by the second policy under the indicated obligation. The
obligation leads to the second request, which is permitted by the first policy. In this
case the first policy does not lead to another obligation. If it had not been issued by
“root”, then there would have been a third request, with an environment with a
delegation sequence that was two “steps” long.

References
[1] Tim Moses, XACML delegation use-cases, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml
[2] See discussion by Frank Siebenlist, Tim Moses, Anne Andersson and others on the
XACML mailing list.
[3] Frank Siebenlist, Modeling Delegation of Rights in a simplified XACML with Haskell,
http://www-unix.mcs.anl.gov/~franks/haskell/XacmlDelegationHaskell0.html
[4] Olav Bandmann, Mads Dam, and B. Sadighi Firozabadi. Constrained Delegations. In
proceedings of 2002 IEEE Symposium on Security and Privacy, 2002
[5] B. Sadighi Firozabadi, M. Sergot, and O. Bandmann. Using Authority Certificates to Create
Management Structures. In proceedings of Security Protocols, 9th International Workshop,
Cambridge, UK, April 2001

<Policy>
 <Target>...</Target>
 <Issuer>root</Issuer>
 <Rule RuleId="Rule1" Effect="Permit">
 <Target>
 <Subjects><Subject>mirty@sics.se</Subject></Subjects>
 <Resources><AnyResource/></Resources>
 <Actions><AnyAction/></Actions>
 </Target>
 <Condition
 FunctionId="urn:sics:function:delegation-sequence-match">
 <AttributeValue
 DataType="urn:sics:data-type:delegation-constraint">
 <step><subject>babak@sics.se</subject></step>
 </AttributeValue>
 <EnvironmentAttributeDesignator
 AttributeId="urn:sics:names:environment:delegation-sequence"
 DataType="urn:sics:data-type:delegation-sequence"/>
 </Condition>
 </Rule>
</Policy>

<Policy>
 <Target>...</Target>
 <Issuer>babak@sics.se</Issuer>
 <Rule RuleId="Rule2" Effect="Permit">
 <Target>
 <Subjects><Subject>mirty@sics.se</Subject></Subjects>
 <Resources><AnyResource/></Resources>
 <Actions><AnyAction/></Actions>
 </Target>
 <Condition><!-->No delegation-sequence in environment<--></Condition>
 </Rule>

 <Obligations> <!-- Implied, not part of actual policy -->
 <Obligation
 ObligationId="urn:sics:obligation:authorize-issuer"
 FulfillOn="Permit">
 <AttributeAssignment AttributeId="urn:sics:attribute:issuer"
 >babak@sics.se</AttributeAssignment>
 </Obligation>
 </Obligations>
</Policy>

<Request>
 <Subject>mirty@sics.se</Subject>
 <Resource>vault</Resource>
 <Action>open</Action>
</Request>

<Request>
 <Subject>mirty@sics.se</Subject>
 <Resource>vault</Resource>
 <Action>open</Action>
 <Environment>
 <Attribute
 AttributeId="urn:sics:names:environment:delegation-sequence"
 DataType="urn:sics:data-type:delegation-sequence">
 <AttributeValue>
 <step><subject>babak@sics.se</subject></step>
 </AttributeValue>
 </Attribute>
 </Environment>
</Request>

