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MIME gives the web persistent names 
for languages 

• MIME has a lot of other features 
• What do these terms mean? 

– “persistent” 
– “name for” 
– “language” 

• How does MIME do it? Where does it break? 
What can we fix? 

• Some very general problems 
• Focus on MIME-specific issues of general 

problems 



What is a language? 
• A language is a way of giving meaning to data 

“Given some data, what does it mean?” 
• A “File format”: a kind of language 

they’re just binary languages 
• Languages have syntax & vocabulary 
• Languages usually use other languages 

– protocol element (a little language) 
– abstract language (defined in terms of structure) 
– layer (SVG on XML on Unicode) 

• “URI” is a language, JavaScript, CSS are languages 



What is a name? 
How does MIME name languages? 

• A name is protocol element 
– with some structure  
– used in other languages, protocols, apis, interfaces 
– Which has some meaning 

• Meaning of MIME types 
– “which language should be used to interpret this 

data” 



Persistent names 

• languages change: how can names be 
persistent? 

• With no evolution, updates, extensions to 
languages used in the web: no problems 
 

CORE 
• How do languages change?  
• What are problems with MIME during 

evolution? 
 



Languages and Implementations 

• Languages (as with protocols, protocol elements, 
file formats, APIs) are used between systems to 
communicate 

• Systems using a language should mean the 
“same” thing 

• Need agreement between the systems that are 
communicating 
 

Interoperability is a property of implementations, 
not specifications 
 



Languages and Specifications 

• Specifications are documents that describe a 
language and rules for implementations 
– How implementations should “understand” the 

language/API/protocol/protocol element’ 
Implementations to guide and validate single-
user 
• Many specifications used to define a single 

language 
• What happens as those evolve? 



Standards for Languages 

• Standards represent agreements among 
implementations (in the form of a 
specification) 



Persistent names for languages 

• What is persistent about the name for a language? 
• What is it that the name of a language identifies? 
• How do languages evolve, grow, change over time? 
• How can the name be persistent when the meaning 

changes? 



Persistence and Evolution 

• When a language evolves, it keeps its name 
• A new language, even if it isn’t very different, 

would get a different name 
Wait… 
• How do languages evolve? 
• What happens to systems that use those 

names with evolving meaning? 



Talking about evolution, versioning 

• These are really hard problems to model 
• TAG has foundered in these waters before 
• Let’s try to restrict the topic to “enough to solve 

MIME’s problems” 
Everything should be as simple as possible, but no 
simpler… 
• Focus on how languages evolve and names for 

languages track 
• Giving version numbers: allow persistance and 

also new names 



“language” is over-simplification 

• Languages (file formats, protocols, protocol 
elements) are defined in terms of others 

• Complex structure of interrelationships 
between components 

• Each component can evolve independently 



Implementations evolve 

• The language is “as spoken”, not “as defined” 
• Concrete and abstract languages 
• References to other specification 
• Syntax and parsing 

 



specifications describe Languages 

• References in specifications: how do rules 
apply when referenced specification is 
updated 

• Editions, version numbers 
 
 



More complexities 

• Content negotiation 
• Polyglot 
• “multi-view” 



Way of managing names needs to 
account for complexity 

• With overlap, subsets, evolution of languages, 
multiple implementations 

• Need to account for these for names to be 
persistent 



Registry 

• A way of naming something 
– Organization to manage registry 
– Key role of registry is to manage updates 

• When there are compatibility requirements 
• When there are requirements  



MIME registry 
• Key features to deal with permanence: 

– Compatibility rule 
– Change controller 
– Review process 
– Pointer to specification 

• Email rules required backward compatibility 
(old valid content should not become invalid) 

• Web needs additional compatibility rules 
– Sniffing, forward compatibility 

• Does the web need the rules? 
– After all, lots of unregistered types work “fine” 
– Names are used for languages, not for specifications 



Persistent name problems 

• Forking (HTML) 
• Versioning  (javascript) 
• References 
• Compound languages (HTML + RDFa/lite + SVG + 

MathML) 
• Layering 

 
• Generalization: other “persistent names”: 

– Charset (addition of Euro) 
– Other web names (codes, URLs) 

 



Content negotiation 

– Which languages do you understand? 
– Which languages can you speak to me? 

• MIME types don’t help much 
– Wrong level of granularity 
– Ambition of reader implementers doesn’t match 

conservative requirements of senders 



Persistent names and versions 

• “version” parameter requires future proofing 
• In-band version identifiers might be preferable 

– Except for “quirks mode” failure cases 

• Users would like “version of language” 
• Best a specification can give is “version of 

specification” 
• Specifications and languages often don’t 

evolve in sync 



Important use cases for this work 

• HTML and versions 
• JavaScript and versions 
• Sniffing 
• Charsets and “willful violation” 
• Privilege upgrade 
• CSS and vendor prefixes 
• XML languages and versioning 
• SVG and XML 1.1 
• User-Agent (name for implementation) 



TAG work on MIME and web 

• Describe the “real” web 
– what’s really happening, not unattainable goal 

• Not every case is the same 
– JavaScript vs. HTML vs. CSS 

• Manage extensibility of languages by 
extending vocabulary, not syntax 
– Upgrades to processors other than end consumers 

are much easier 
• MIME types without plugins in the web? 



Success Criteria? 

• Satisfy use cases for MIME types for 
– HTML, CSS, JavaScript, SVG, XHTML 

• In a way that we get community consensus, 
not just TAG agreement 

• Resolve differences between past findings and 
policies & current directions 
 
 
 



Questions for TAG: 
scope too broad? How to narrow? 

• Can we revisit versioning with more  
modest goals and make progress? 

• Can we take on “persistent reference to 
language” as a focus for persistent names? 

• Can we complete work on specification 
reference? 
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