
MIME and the Web

Larry Masinter
For W3C TAG meeting

Jan 4, 2012

MIME gives the web persistent names
for languages

• MIME has a lot of other features
• What do these terms mean?

– “persistent”
– “name for”
– “language”

• How does MIME do it? Where does it break?
What can we fix?

• Some very general problems
• Focus on MIME-specific issues of general

problems

What is a language?
• A language is a way of giving meaning to data

“Given some data, what does it mean?”
• A “File format”: a kind of language

they’re just binary languages
• Languages have syntax & vocabulary
• Languages usually use other languages

– protocol element (a little language)
– abstract language (defined in terms of structure)
– layer (SVG on XML on Unicode)

• “URI” is a language, JavaScript, CSS are languages

What is a name?
How does MIME name languages?

• A name is protocol element
– with some structure
– used in other languages, protocols, apis, interfaces
– Which has some meaning

• Meaning of MIME types
– “which language should be used to interpret this

data”

Persistent names

• languages change: how can names be
persistent?

• With no evolution, updates, extensions to
languages used in the web: no problems

CORE
• How do languages change?
• What are problems with MIME during

evolution?

Languages and Implementations

• Languages (as with protocols, protocol elements,
file formats, APIs) are used between systems to
communicate

• Systems using a language should mean the
“same” thing

• Need agreement between the systems that are
communicating

Interoperability is a property of implementations,
not specifications

Languages and Specifications

• Specifications are documents that describe a
language and rules for implementations
– How implementations should “understand” the

language/API/protocol/protocol element’
Implementations to guide and validate single-
user
• Many specifications used to define a single

language
• What happens as those evolve?

Standards for Languages

• Standards represent agreements among
implementations (in the form of a
specification)

Persistent names for languages

• What is persistent about the name for a language?
• What is it that the name of a language identifies?
• How do languages evolve, grow, change over time?
• How can the name be persistent when the meaning

changes?

Persistence and Evolution

• When a language evolves, it keeps its name
• A new language, even if it isn’t very different,

would get a different name
Wait…
• How do languages evolve?
• What happens to systems that use those

names with evolving meaning?

Talking about evolution, versioning

• These are really hard problems to model
• TAG has foundered in these waters before
• Let’s try to restrict the topic to “enough to solve

MIME’s problems”
Everything should be as simple as possible, but no
simpler…
• Focus on how languages evolve and names for

languages track
• Giving version numbers: allow persistance and

also new names

“language” is over-simplification

• Languages (file formats, protocols, protocol
elements) are defined in terms of others

• Complex structure of interrelationships
between components

• Each component can evolve independently

Implementations evolve

• The language is “as spoken”, not “as defined”
• Concrete and abstract languages
• References to other specification
• Syntax and parsing

specifications describe Languages

• References in specifications: how do rules
apply when referenced specification is
updated

• Editions, version numbers

More complexities

• Content negotiation
• Polyglot
• “multi-view”

Way of managing names needs to
account for complexity

• With overlap, subsets, evolution of languages,
multiple implementations

• Need to account for these for names to be
persistent

Registry

• A way of naming something
– Organization to manage registry
– Key role of registry is to manage updates

• When there are compatibility requirements
• When there are requirements

MIME registry
• Key features to deal with permanence:

– Compatibility rule
– Change controller
– Review process
– Pointer to specification

• Email rules required backward compatibility
(old valid content should not become invalid)

• Web needs additional compatibility rules
– Sniffing, forward compatibility

• Does the web need the rules?
– After all, lots of unregistered types work “fine”
– Names are used for languages, not for specifications

Persistent name problems

• Forking (HTML)
• Versioning (javascript)
• References
• Compound languages (HTML + RDFa/lite + SVG +

MathML)
• Layering

• Generalization: other “persistent names”:

– Charset (addition of Euro)
– Other web names (codes, URLs)

Content negotiation

– Which languages do you understand?
– Which languages can you speak to me?

• MIME types don’t help much
– Wrong level of granularity
– Ambition of reader implementers doesn’t match

conservative requirements of senders

Persistent names and versions

• “version” parameter requires future proofing
• In-band version identifiers might be preferable

– Except for “quirks mode” failure cases

• Users would like “version of language”
• Best a specification can give is “version of

specification”
• Specifications and languages often don’t

evolve in sync

Important use cases for this work

• HTML and versions
• JavaScript and versions
• Sniffing
• Charsets and “willful violation”
• Privilege upgrade
• CSS and vendor prefixes
• XML languages and versioning
• SVG and XML 1.1
• User-Agent (name for implementation)

TAG work on MIME and web

• Describe the “real” web
– what’s really happening, not unattainable goal

• Not every case is the same
– JavaScript vs. HTML vs. CSS

• Manage extensibility of languages by
extending vocabulary, not syntax
– Upgrades to processors other than end consumers

are much easier
• MIME types without plugins in the web?

Success Criteria?

• Satisfy use cases for MIME types for
– HTML, CSS, JavaScript, SVG, XHTML

• In a way that we get community consensus,
not just TAG agreement

• Resolve differences between past findings and
policies & current directions

Questions for TAG:
scope too broad? How to narrow?

• Can we revisit versioning with more
modest goals and make progress?

• Can we take on “persistent reference to
language” as a focus for persistent names?

• Can we complete work on specification
reference?

	MIME and the Web
	MIME gives the web persistent names for languages
	What is a language?
	What is a name?�How does MIME name languages?
	Persistent names
	Languages and Implementations
	Languages and Specifications
	Standards for Languages
	Persistent names for languages
	Persistence and Evolution
	Talking about evolution, versioning
	“language” is over-simplification
	Implementations evolve
	specifications describe Languages
	More complexities
	Way of managing names needs to account for complexity
	Registry
	MIME registry
	Persistent name problems
	Content negotiation
	Persistent names and versions
	Important use cases for this work
	TAG work on MIME and web
	Success Criteria?
	Questions for TAG:�scope too broad? How to narrow?

