W3C RDF Schema Validation Workshop

Experiences with the

W3C XML Schema Definition Language

Noah Mendelsohn

Tufts University
Email: nrm@arcanedomain.com

Web:

Copyright 2013 - Noah Mendelsohn


http://www.arcanedomain.com/
http://www.arcanedomain.com/

I was for many years a member of the W3C
XML Schema working group, and am a co-
editor of the original W3C XML Schema
Definition Language Structures 1.0
Recommendation.

This talk is based on my experiences with the
design of that language, and with the
response it has received from users.

The opinions expressed here are my own. They do not necessarily represent the position
of current or past schema working group members, or of any of my present or past
employers.



Topics

=Use cases

What gets validated & why?
*The form of a schema
*Combining schemas

=Versioning

For each topic I will describe XML Schema experiences and
suggest insights pertinent to RDF schema design.



Use cases

= XML Experience

— Different communities have different expectations
— Tons of use cases

— Very important to understand them, but...

— Addressing all of them led to complex design

= Suggestions:

— Clarify use cases carefully and early

— Important to exclude as well as include

— Don’t over-simplify but...

— ...simpler goals allow for simpler solutions



I
What gets validated and why?

= XML Experience

— Validating a text XML document was obvious choice
— We had “need” to support in memory and abstract
documents for databases & APIs

— Whole document vs. elements?

- Element in context or context-free (do your parents/sibblings matter?)
« Constructs like IDREF inherenetly context-sensitive

— We chose context-free elements in infoset

= Suggestions:

— Decide carefully the form of what gets validated?
» Abstract triples seems an obvious answer for RDF

— How much gets validated?

+ Always in context of global graph?
* Bounded subgraph? Who specifies it? How?



How are schemas modeled & exchanged?

= XML Experience

— Assumption: schemas should be XML documents --
never seriously challenged

— Resulting syntax was very clumsy for users, some of
whom chose the non-XML syntax of RelaxNG

= Suggestions:

— Consider the underlying model for RDF schemas. Is it
(presumably) triples?

— WIill RDF schemas be exchanged using a generic
RDF syntax (N3, RDR/XML) or something more
convenient?



How are schemas combined

= XML Experience

— Use cases: schemas for types and fragments of XML must

be composable:

* Shipping address

* Version control

+ Employee element

« Different namespaces

— 1 think we did OK on this at the element level, the
underlying composition mathematics was hard to specify
and never done right

= Suggestions:

— Decide whether RDF users need to combine schemas
— Obviously: hatch a design that meets the need



How are schemas combined

= XML Experience

— Use cases: schemas for types and fragments of XML must

be composable:

* Shipping address

* Version control

+ Employee element

« Different namespaces

— 1 think we did OK on this at the element level, the
underlying composition mathematics was hard to specify
and never done right

= Suggestions:

— Decide whether RDF users need to combine schemas
— Obviously: hatch a design that meets the need



Anticipate versioning

= XML Experience

— User’s data models aren’t static

— User’s expect schemas to help them deal with data
from the past (backwards compatibility) and the future
(forwards compatibility

— In XSD 1.1 we built mechanisms to distinguish
content that’s truly expected vs. tolerated

= Suggestions:

— Consider the need for versioning and partial
validation



