Semantic Web Storage with 3store

Stephen Harris and Nicholas Gibbins
Department of Electronics and Computer Science,
University of Southampton, United Kingdom
{swh,nmg}@ecs.soton.ac.uk

October 24, 2003

1 Introduction

The development and deployment of practical Semantic Web applications re-
quires technologies for the storage and retrieval of RDF data that are robust
and scalable. We have developed 3store, an RDF storage and query engine,
within the Advanced Knowledge Technologies (AKT) [1] project with the ex-
plicit requirement of efficient handling of large RDF knowledge bases.

Our experiences of constructing Semantic Web applications have involved
large datasets of up to twenty-five million RDF triples. For our CS AKTiveS-
pace application [9], we used the hyphen.info dataset, a constantly-updated
knowledge base describing computer science research in the UK. This was con-
structed by members of the AKT project as a testbed for Semantic Web research,
and to use as a foundation on which to build Semantic Web applications and
investigate tools. This dataset is expressed in RDF form using the AKT Refer-
ence Ontology [2], which consists of around 200 classes and 150 properties. We
expect other applications under development to include separate ontologies and
sub-ontologies of a similar size.

2 Requirements

We determined the base scale requirements for an RDF store from our expe-
riences and made the decision to construct a system which would be able to
handle at least 20 million triples and 5000 classes and properties. Our specific
requirements relate to the performance of such a system for query processing,
for its ancillary capabilities and for its inferential capabilities..

Many of the applications under development in AKT require interactive-
level performance while evaluating queries containing significant numbers of
constraints. For example, when formulated in RDQL, the CS AKTiveSpace user
interface uses queries with between four and twelve triple patterns in the WHERE
clause, returning a few hundred result rows. These applications are commonly



based around a Web browser interface; the expectation of most users is that such
an interface should be no less responsive than simple Web browsing, so response
time for the queries used must be kept to the order of a few milliseconds on
available hardware, in order to maintain the responsiveness of the interfaces.

An orthogonal concern is that of the time taken to assert new knowledge.
The knowledge sources that the AKT project uses as a testbed for its re-
search applications are gathered on a variety of schedules ranging from daily
to monthly. Maintaining the integrity of the data while it is being reasserted is
an important concern, and for this reason the time during which the knowledge
base is potentially inconsistent or incomplete should be kept to a minimum.
The store must also be able to import and replace RDF data sufficiently quickly
to be able to refresh its contents on a daily basis, in order to deal with rapidly
changing knowledge bases. Given the minimum gathering schedule, it should
be possible to assert the entire AKT RDF knowledge base in a few hours and
replace significant portions of it in a reasonable time for an overnight batch
process.

Finally, if an RDF store is to be more than just a database for storing triples,
it should be able to perform some inference over the data asserted within it. Fol-
lowing our requirements for scale and performance, and based on the expected
inference requirements for our applications, we required only the entailments
described in the RDF semantics [6], rather than those of any more expressive
language such as DAML+OIL or OWL [8].

3 Implementation Details

3store is implemented in C as an RDF abstraction layer on top of an RDBMS
using a schema which has been designed for the efficient storage and retrieval
of triples, and uses the Raptor toolkit [3] for parsing RDF/XML syntax. Our
implementation records the origin of the triples it contains at the granularity of
(RDF/XML) files. Such simple context provides the basis of a mechanism for
managing provenance. In our experience of building SW applications, we have
found file-level provenance to be sufficient, especially compared to the cost of
triple-level provenance.

The inferential capabilities of 3store are implemented as a hybrid of forward-
and backward-chaining production rules, in which we have tried to find a com-
promise between eager entailment evaluation (which leads to efficient querying)
and lazy entailment evaluation (which reduces the size of the stored data).

The previous (prototype) version of our 3store software supported an RDF-
based dialect of the Open Knowledge Base Connectivity (OKBC)[5] API which
used HTTP as its transport layer. This was intended as a lightweight interface
by which RDF-aware clients could invoke the knowledge base through a set of
web services which provided specific competences relating to the manipulation
of a knowledge base in a frame-based manner. Typical examples of such ser-
vices are get-class-subclasses (return the subclasses of a class), slot-has-value
(return the value of a property on an object) or get-frame-sentences (return the



assertions involving a given object). The OKBC-HTTP interface was used in a
number of our existing applications, so the maintenance of this interface was a
requirement to ensure backwards compatibility with previous versions, as well
as an opportunity to reimplement it in a more efficient manner.

In addition to this OKBC API, we felt it appropriate to implement a more
natural and versatile RDF query interface, based on the RDQL query lan-
guage [7]. Our existing applications made heavy use of the stored procedure
capability of the OKBC API, indicating that the simple API calls were not ex-
pressive enough to support the development of sophisticated applications. This
RDQL interface provides an HTTP interface that returns the results in an XML
format, and a database-style C API that queries the knowledge base directly
and which could be used to provide bindings in other languages.

4 Future Work

Our development of 3store has identified a expanded set of requirements which
present a number of avenues for future development:

Limited OWL Support: Although our applications do not require sophisti-
cated description logic reasoning, there are aspects of the OWL ontology
language which we feel it would be advantageous to implement in iso-
lation as a complement to the existing RDFS support. These include
owl:sameAs, owl:InverseFunctionalProperty and owl:FunctionalProperty
(for the identification and coalescing of coreferent resources), and owl:-
TransitiveProperty, owl:SymmetricProperty and owl:inverseOf (in order
to provide a more expressive characterisation of properties in our ontolo-

gies).

Truth maintenance: The experiences of the Sesame developers with their im-
plementation of a triple-level justification-based truth maintenance sys-
tem [?] suggest that fine-grained TM is overly costly. As an alternative,
we propose to implement TM at a context-level, in order to provide more
coarse-grained TM at what we hope will be a more acceptable cost.

‘Web Services integration: Our development of SW applications is increas-
ing focussed on a service-level characterisation of system components, pos-
sibly mediated through some broker. To fit in this model, we intend to
write an OWL-S description of the services offered by 3store and im-
plement a SOAP interface to complement the existing HTTP RDQL in-
terface. Our longer term goals include the ad-hoc generation of service
descriptions that correspond to ad-hoc query templates, so providing an
application domain-specific characterisation of 3store knowledge services.

API rationalisation and deprecation: In the 3store prototype, all appli-
cations used the OKBC API, but all subsequent applications under the
current version use the RDQL query interface. Given the complexity of



maintaining both, we propose to deprecate the OKBC interface within
3store and replace it with an OKBC abstraction layer which sits above
the RDQL query interface.

Distribution: There are two areas in which we intend to address distribution.

In the short term, distribution of the underlying RDBMS may improve
overall system performance. In the longer term, our goal is the develop-
ment of a federated RDF store, although this raises many issues relating
to the efficient implementation of sound and complete inference in a dis-
tributed environment.

References

[1]
2]

[3]

Advanced Knowledge Technologies. http://www.aktors.org/, 2000.

The AKT Reference Ontology. http://www.aktors.org/publications/
ontology/, 2002.

Dave Beckett. Raptor RDF Parser Toolkit. http://www.redland.
opensource.ac.uk/raptor/, 2003.

Jeen Broekstra and Arjohn Kampman. Sesame: A generic architecture for
storing and querying RDF and RDF Schema. Technical report, Aidminis-
trator Nederland b.v., October 2001. http://sesame.aidministrator.nl/
publications/dell0.pdf.

Vinay Chaudhri, Adam Farquhar, Richard Fikes, Peter D. Karp, and
James P. Rice. Open knowledge base connectivity. Technical report, OKBC

Working Group, April 1998. http://www.ai.sri.com/~okbc/spec.html.

Patrick Hayes. RDF Semantics. Working draft, World Wide Web Consor-
tium, January 2003. http://www.w3.org/TR/rdf-mt/.

Hewlett-Packard Labs. RDQL - RDF data query language. http://www.
hpl.hp.com/semweb/rdql.htm, 2003.

Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology
Language Overview. Working draft, World Wide Web Consortium, March
2003. http://www.w3.org/TR/owl-features/.

Nigel R. Shadbolt, monica m.c. schraefel, Nicholas Gibbins, and Stephen
Harris. CS AKTive Space: or how we stopped worrying and learned
to love the semantic web. http://eprints.ecs.soton.ac.uk/archive/
00007440/, 2003.



