Indexing and retrieving
Semantic Web resources: the
RDFStore model

Alberto Reggiori, Dirk-Willem van Gulik, Zavisa Bjelogrlic

Asemantics S.r.l., Milan, Rome - Italy, Leiden - Netherlands
{alberto, dirkx, z}@asemantics.com

Abstract

The Semantic Web is a logical evolution of the existing
Web. It is based on a common conceptual data model of
great generality that allows both humans and machines to
work with interrelated, but disjoint, information as if it was a
single global database. The design and implementation of a
general, scalable, federated and flexible data storage and
indexing model, which corresponds to the data model of the
Semantic Web, is fundamental for the success and
deployment of such a system. The generality of the RDF data
model presents unique challenges to efficient storage,
indexing and querying engines. This paper presents our
experience and work related to RDFStore which implements
a new flexible indexing and query model. The model is
tailored to RDF data and is designed around the Semantic
Web from the ground up. The paper describes the underlying
indexing algorithm, together with comparisons to other
existing RDF storage and query strategies.

Towards a lightweight database
architecture

The generality of the RDF data model presents unique
challenges to efficient storage, indexing and querying
software. Even if the Entity-Relational (ER) data model [1] is
the dominant technology for database management systems
today, it has limitations in modeling RDF constructs.

RDF being unbounded, the resulting data structures are
irregular, expressed using different data granularity, deeply
nested or even cyclic. As a consequence, it is not possible to
easily fix the "structural view" of a piece of information
(object), which is instead one of the fundaments of
traditional RDBMS systems trying to be much narrower and
precise as possible and where an update not conforming to a
single static schema is rejected. Database systems also
optimize data storage and retrieval by knowing ahead of time
how records are structured and interrelated and tend to use
very inefficient nested SQL SELECT statements to process
nested and cyclic structures.

All this is too restrictive for RDF data. Like most
semi-structured formalisms [2][3] RDF is self-describing.
This means that the schema information is embedded with
the data, and no a priori structure can be assumed, giving a
lot of flexibility to manage any data and deal with changes in
the data's structure seamlessly at the application level. The
only basic structure available is the RDF graph itself, which
allows describing RDF vocabularies as groups of related
resources and the relationships between these resources [4].
All new data can be "safely" accepted, eventually at the cost
of tailoring the queries to the data. On the other side, RDF
data management systems must be much more generic and
polymorphic like most of dynamically-bound object-oriented
systems [5]; changes to the schema are expected to be as
frequent as changes to the data itself and could happen while
the data is being processed or ingested.

A drawback of RDF heterogeneity is that the schema is
relatively large compared to the data itself [6]; this in
contrast to traditional RDBMS where the data schema is
generally several orders of magnitude smaller than the data.
This also implies that RDF queries over the schema
information are as important as queries on the data. Another
problem is that most RDF data (e.g. metadata embedded into
an HTML page or RSS1.0 news feed) might exist
independently of the vocabulary schemas used to mark-up
the data, further complicating data structure "validation"
(RDF Schema validation). This de-coupling aspect also
makes the data "de-normalization" more difficult [7][8][9].
"De-normalization" is needed in RDBMS to overcome query
performance penalties caused by the very general
"normalized" schemas. De-normalization must be done
taking into account to how the database will be used and how
data is initially structured. In RDF this is not generally
possible, unless all the RDF Schema definitions of the
classes and properties used are known a-priori and available
to the software application. Even if that might be the case, it
is not a general rule and it would be too restrictive and make
RDF applications extremely fragile. In the simplest and most
general case, RDF software must associate the semantics to a
given property exclusively using the unique string
representation of its URIs. This will not stop of course more
advanced and intelligent software to go a step further and
retrieve, if available, the schema of the associated namespace
declarations for validation, optimization or inference
purposes.

It is interesting to point out that a large part of queries
foreseen for Web applications are information discovery and
retrieval queries (e.g. Google) that can "ignore" the data
schema taxonomy. Simple browsing through the RDF data
itself or searching for some sub-string into literals, or using
common patterns is generally enough for a large family of
RDF applications.

On the other hand, we strongly believe that RDBMS has
proven to be a very effective and efficient technology to
manage large quantities of well-structured data. This will
continue to be true for the foreseeable future. We thus see
RDF and similar less rigid, or semi-structured data
technologies as complementary to traditional RDBMS
systems. We expect to see RDF increasingly appear in the
middle layer where lightweight systems that focus on
interoperability, flexibility and a certain degree of
decoupling of rigid formats are desired.

We believe that a fundamentally different storage and query
architecture is required to support the efficiently and the
flexibility of RDF and its query languages.

At a minimum such storage system needs to be:

Lightweight

Native implementation of the graph

Fundamentally independent from data structure
Allow for very wide ranges in value sizes; where the
size distribution is not known in advance, most
certainly is not Gaussian and will fluctuate wildly.

e Be efficient - it should not be necessary to retrieve
very large volumes of data in order to reconstruct part
of the graph.

Allow built support for arbitrary complex
regular-path-expressions on the graph to match RDF
queries like RDQL [50] statement triple-patterns.
Have some free-text support
Context/provenance/scope or flavoring of triples

Furthermore given that RDF and the Semantic Web are
relatively new, and will require significant integration and
experimentation - it is important that its technology matches
that of the Internet:

e Easy to interface to C, Perl and Java at the very least.
Ruby, Python, Visual Basic and .NET are a pre.

e Easy to distribute (part of) the solution across physical
machines or locations in order match scaling and
operational habits of existing key Internet
infrastructure.

e Very resistant to "missing links" and other noise.

Contexts and provenance

A RDF statement represents a fact that is asserted as true in a
certain context - space - time, situation, scope, etc. The
circumstances where the statement has been stated represent
its "contextual" information [10][11].

For example, it may be useful to track the origin of triples
added to the graph, e.g. the URI of the source where triples
are defined, e.g. in an RDF/XML file, when and by whom
they where added and the expiration date (if any) for the
triples. Such context and provenance information can be
thought of as an additional and orthogonal dimension to the
other components of a triple. The concept is called in the
literature "statement reification". Context and provenance are
currently not included in the RDF standardisation process
48][49], but will hopefully adressed in a next release of the
specification.

From the application developer point of view there is a clear
need for such primitive constructs to layer different levels of
semantics on top of RDF which can not be represented in the
RDF triples space. Applications normally need to build
meta-levels of abstraction over triples to reduce complexity
and provide an incremental and scaleable access to
information. For example, if a Web robot is processing and
syndicating news coming from various on-line newspapers,
there will be overlap. An application may decide to filter the
news based not only on a timeline or some other property,
but perhaps select sources providing only certain information
with unique characteristics. This requires the flagging of
triples as belonging to different contexts and then describing
in the RDF itself the relationships between the contexts. At
query time such information can then be used by the
application to define a search scope to filter the results.
Another common example of the usage of provenance and
contextual information is about digital signing RDF triples to
provide a basic level of trust over the Semantic. In that case
triples could be flagged for example with a PGP key to
uniquely identify the source and its properties.

There have been several attempts [12][13][14][15] trying to
formalize and use contexts and provenance information in
RDF but a common agreement has not been reached yet.
However, context and provenance information come out as
soon as a real application is built using RDF. Some first
examples are presented below.

Our approach to model contexts and provenance has been
simpler and motivated by real-world RDF applications we
have developed [16a][16b][16c]. We found that an additional
dimension to the RDF triple can be useful or even essential.
Given that the usage of full-blown RDF reification is not
feasible due to its verbosity and inefficiency we developed a

different modeling technique that flags or mark a given
statement as belonging to a specific context. First example
considers subjective assertions. The Last Minute News
(LMN) [16b] and The News Blender (NB) [16¢] demos
allow an user rating and qualifying the source - newspapers.
The user can "say" that a newspaper is "liberal" or
"conservative". Of course, two users, X and Y, will show two
different opinions. Without considering the context, this will
result in two triples:

Newspaper A -> Quality -> "liberal"
Newspaper A -> Quality -> "conservative"

Which will be interpreted later as two quality properties
assigned to the same newspaper. In reality, these triples were
defined in a different contexts (which can also be expressed
as triples):

Quality -> Defined by -> User X : Newspaper A -> Quality -> "liberal"
Quality -> Defined by -> User Y : Newspaper A -> Quality -> "conservative"

Next example of context needed in a Semantic Web
application comes from a practical example the Image
ShowCase (ISC) [16a] where RDF/XML descriptors of
resources were used. RDF files were created by parsing
free-formatted HTML pages. Triples were created subseq
reated causing a set of wrong triples. After the correction of
the RDF description (e.g. Al), new set of triples will be
created, but these will be added to the old ones created form
A. This will result, e.g. after a correction of the Track
attribute, in something like:

Image X -> Track -> 3333
Image X -> Track -> 3334

A more correct presentation will consider the source from
which the triples were derived:

Source RDF -> is -> A : Image X -> Track -> 3333
Source RDF -> is -> Al : Image X -> Track -> 3334

This type of context will allow removing (or ignoring) all
triples created from the source RDF file A.

Last example is taken again from the Last Minute News
demo system [16b]. One of newspapers use a solution which
reuses URLs of articles day after day and the article - a
resource - disappear after 24 hours. Triples, created for an
article A, identified by URLa will be mixed with triples for
article B, published a day after and identified by the same
URLa. In this case, we can say, the original resource expires
after 24 hours and we can decide, e.g. to make triples expire
after same time. Of course, different solutions can be used
here, like referencing the article "by description" instead of
using URI and saving old articles but in any of these
solutions we will need an information about the time where
triples was defined and its expiration date. It shall be noted
that this is not a specific case, in any realistic application the
time component must be considered. Even if assertions about
the resource can be "eternal truths", the subject - resource
described may expire and disappear after some time.

A simpler example, with less theoretical implications, is
simple house-keeping where knowledge about a domain can
be refreshed from time to time. In this case existence of an
older triple must be considered to avoid mixing of same
triples defined ad different time.

Another important example of the usage of provenance and
contextual information is about digital signing RDF triples to
provide a basic level of trust over the Semantic Web. In that
case triples could be flagged for example with a PGP key to
uniquely identify the source and its properties.

Related work

Several groups have developed technology to store RDF
nodes, arcs and labels into database management systems
like PostgreSQL, MySQL, Oracle, IBM DB2, Interbase (and
many others) and significant progress has been made.
Examples are:
[171[18][19][20][21][22][23][24][25][26][27][28]. Each
design strikes a careful balance between flexibility,
scalability, query facilities, efficiency and optimization. The
major drawback of these systems is that they force RDF data
into few tables having a lot of rows, resulting in multiple
joins and slow retrieval time. Even though joins are
relatively cheap in modern databases, the number of disk
operations and query requests remains very high; even for
the simplest of requests. The number of 'sub queries' needed
to satisfy a single RDF query is often several orders of
magnitude larger than commonly seen in RDBMS
applications. Also, very often to save space DBAs design
tables using significant number of indirect references,
deferring to the application, or a stored procedure layer, for
expanding the operation into large numbers of additional join
operations just to store, retrieve or delete a single atomic
statement from the database and maintaining consistency.
Existing RDF implementations using object-relational
database models have partially overcame this limitation by
de-normalizing tables into more domain specific objects
using RDF Schema taxonomy information. Such models are
generally easier and more efficient to store and query, but
less flexible [20][29]. The key limitation of such approach is
the requirement to bundle the complete machine-readable
schema definition (RDF Schema), a-priori, with the data to
best structure the tables. As already explained this will rarely

be the case in the RDF world.
Due to the fact that most data is already stored into
traditional RDBMS other approaches simply try to turn the
problem of storing RDF efficiently upside down by
producing various mapping schemas to export SQL data into
RDF [30][31][32]. Other systems being more XML oriented
focus on providing document centric views of RDF/ XML
from relational tables [33]. Recently so-called "query
rewriters" started to appear; these function by directly
mapping RDF graphical queries inside applications (e.g.
RDQL statements) to SQL SELECT statements onto the
native RDBMS and as such leaves the problem of storage
efficiency, query optimization heuristics and performance to
the RDBMS - leveraging existing database experience.
Significant progress been made in this area by
34][35][36][37]. The SWAD-e project deliverable from
Dave Beckett [38] is a good introduction.
The BerkeleyDB [39] is a good example of lightweight,
portable and fast data management solution; it is suited for
applications having to deal with a large amount of
unbounded data of any type with an arbitrary complexity.
Having no notion of schema, like traditional relation
databases do, the BerkeleyDB is ideal for applications that
cannot predict in advance the access and query patterns to
the actual data, while needing high performance in the
storage of records. The key/value paradigm also at the base
of the database library results to be quite natural to store and
retrieve RDF descriptions of resources having properties with
some specific property values. The most common
implementations use multiple B-Tree hash tables with
duplicates containing pre-canned indexes of outbound nodes
from a resource with a given arc, inbound nodes with a
given arc and destination and the arcs between two given
nodes; some implementations have additional indexes for
inbound and outbound arcs of particular nodes or statement
contexts [18][40][41][42]. Even if such indexes are quite fast
to access and to write they only support a small subset of the
possible combinations of the indexes and some queries can
not be answered; such indexes use a flat storage which is in
general not compact and space consuming by not avoiding
repeated strings being stored. Free-text indexing of literal
values is not trivial to implement unless using an
off-the-shelf database or free-text indexing software.
Other approaches provide very efficient and scalable RDF
storage support by using memory-mapped files on disk and
ad-hoc designed in-memory data structures to hash properties
and their values [43][44]. Such systems can index data quite
efficiently and the size of the database can grow to the
maximum address space without consuming swap space.
Possible queries are limited and free-text search can only be
obtained by installing third party packages.

Our solution

‘We have been developing a new BerkeleyDB based hashed
storage which unlike most of other hashed indexers and SQL
approaches uses various compressed multi-dimensional
sparse matrix inverted indexes instead of B-Tree (s). Such
indexes map the RDF nodes, contexts and free-text words
contained into the literals to statements. There are several
advantages to this approach. First, the use of a hybrid
run-length and variable-length encoding to compress the
indexes makes the resulting data store much more compact.
Second, the use of bitmaps and Boolean operations allows
matching arbitrary complicated queries with conjunction,
disjunction and free-text words without using backtracking
and recursion techniques. Third, this technique gives
fine-grained control over the actual database content.
Although our implementation of RDF indexing and storage
uses custom developed software, this does not limit the
potential use of the algorithm in other storage software or
commercial RDBMSes. In fact our technique does not dictate
a particular storage architecture beyond requiring (efficient)
key/arbitrary-length-value pair operations such as GET,
STORE, INCREMENT, DECREMENT and DELETE on a
small number of tables.

Modeling the RDF graph data

An RDF Directed-Labeled-Graph (DLG) consists of nodes
that are either resources or literals (valid Unicode strings);
resources can be URI references or anonymous resources
(bNodes). Nodes into a graph are connected via named
resource nodes having a valid URI picked up from one or
more vocabularies. A statement or triple (or fact) consists of
a subject node (URI or bNode), a predicate node (URI) and
an object (URI, bNode or string). Optionally, even if it is
outside the RDF model, a context node (URI or bNode)
might be associated to a triple.

In this section we will present a complete example taken
from the RDF/XML Syntax Specification (Revised) [45] and
how it can be stored and indexed into a generic hashed
storage (for generic hashed storage we refer to a system
supporting some algorithm for hash-addressing which
provides direct retrieval of a specific row of a table or
matrix. BerkleyDB systems support hashed-storage natively.
Others traditional database management systems like Oracle
allows to structure ad-hoc database structure as
hashed-storage. Most programming languages such as Perl,
Java, C++ and others also support hash-tables which could

be used to store the RDF as an in-memory structure which
could be stored on a secondary storage with several
serialisation techniques available. Other options might be to
use some XML based vocabulary to markup ad-hoc
hash-table and use an XML toolkit to manage the structure)
using ad-hoc designed tables to store RDF information.
Particularly we will use one extra table to support free-text
indexing of Unicode strings contained into RDF literal
values.

Here is the RDF/XML [45], N-Triples [46] and graphical
representation of the Example 7 from the RDF M&S
document [45]:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns "http://purl.org/dc/elements/1.1/"
xmlns:ex="http://example.org/stuff/1.0/">
<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"
dc:title="RDF/XML Syntax Specification (Revised)">

<ex:editor>
<rdf:Description ex:fullName="Dave Beckett">
<ex:homePage rdf:resource="http://purl.org/net/dajobe/" />
</rdf:Description>
</ex:editor>
</rdf:Description>
</rdf :RDF>

Which gives the following N-Triples:

<http://www.w3.org/TR/rdf-syntax-grammar> <http://purl.org/dc/elements/1.1/title> "RDF/XML Syntax Specification (Revised)"
_:genidl <http://example.org/stuff/1.0/fullName> "Dave Beckett"

_:genidl <http://example.org/stuff/1.0/homePage> <http://purl.org/net/dajobe/> .

<http://www.w3.org/TR/rdf-syntax-grammar> <http://example.org/stuff/1.0/editor> _:genidl

See the picture below for a graphical representation of the
resulting RDF graph:

hitp:iwww.example.orgiermsieditor http:iipurl.orgide/elementsi1.1rtitle

+
RDF/XML Syntax Specification (Revised)

pwerw. example.

http:/iwww.example.orglterms/fullName

Dave Beckett

st_num

<http://www.w3.org/TR/rdf-syntax-grammar>

0 ||<http://purl.org/dc/elements/1.1/title> "RDF/XML
Syntax Specification (Revised)" .

1 _:genidl <http://example.org/stuff/1.0/fullName>
"Dave Beckett" .

) |- genidl <http://example.org/stuff/1.0/homePage>
<http://purl.org/net/dajobe/> .

3 <http://www.w3.org/TR/rdf-syntax-grammar>
<http://example.org/stuft/1.0/editor> _:genidl .

Each statement gets a sequential number from zero on; then
for any given statement number we have associated a
specific bitno (offset) the gives some kind of unique key for
the given component. It results to be handy to interpret such
offsets in different ways in different tables. A statement
context (statement group) is represented by a resource with a
specific URI or bNode nodeID.

In the example above we assume that each statement has
some provenance URI (statement-group, context or whatever
:) which for semplicity we assume to be equal to
'http://www.w3.org/TR/rdf-syntax-grammar/example07.rdf" -
then the above N-Triples maps to Quads[13] as follow:

st_num

<http://www.w3.org/TR/rdf-syntax-grammar>
<http://purl.org/dc/elements/1.1/title> "RDF/XML Syntax

0 Specification (Revised)"
<http://www.w3.org/TR/rdf-syntax-grammar/example07.rdf>

_:genidl <http://example.org/stuff/1.0/fullName> "Dave
Beckett"
<http://www.w3.org/TR/rdf-syntax-grammar/example07.rdf>

_:genidl <http://example.org/stuff/1.0/homePage>
2 <http://purl.org/net/dajobe/>
<http://www.w3.org/TR/rdf-syntax-grammar/example07.rdf>

<http://www.w3.org/TR/rdf-syntax-grammar>
3 <http://example.org/stuff/1.0/editor> _:genid1
<http://www.w3.org/TR/rdf-syntax-grammar/example07.rdf>

For efficient storage and retrieval of statements and their
components we assume there exist some hash functions
which generates a unique CRC64 integer number for a given
MDS5 or SHA-1 cryptographic digest representation of
statements and nodes of the graph as follow:

st0 = get_statement_hashCode('<http://www.w3.org/TR/rdf-syntax-grammar>
<http://purl.org/dc/elements/1.1/title>
"RDF/XML Syntax Specification (Revised)"
<http://www.w3.org/TR/rdf-syntax-grammar/example07.rdf> .')

s0 = get_node_hashCode (
p0 = get_node_hashCode(

'http://www.w3.org/TR/rdf-syntax-grammar"'

'http://purl.org/dc/elements/1.1/title’
'RDF/XML Syntax Specification (Revised)

<http://example.org/stuff/1.0/fullName>

"Dave Beckett"

<http://www.w3.org/TR/rdf-syntax-grammar/example07.rdf> .'

o0 get_node_hashCode (
stl = get_statement_hashCode('_:genidl
sl get_node_hashCode (

pl = get_node_hashCode(

'_:genidl')

)
)

'<http://example.org/stuff/1.0/fullName>'

<http://example.org/stuff/1.0/homePage>

<http://www.w3.org/TR/rdf-syntax-grammar/example07.rdf> .

<http://www.w3.org/TR/rdf-syntax-grammar/example07.rdf> .'
s0

)

)

)

)

)

)

ol get_node_hashCode('"Dave Beckett"')

st2 = get_statement_hashCode('_:genidl
<http://purl.org/net/dajobe/>

s2 = get_node_hashCode('_:genidl') = sl

p2 = get_node_hashCode('<http://example.org/stuff/1.0/homePage>"

02 = get_node_hashCode('<http://purl.org/net/dajobe/>"

st3 = get_statement_hashCode('<http://www.w3.org/TR/rdf-syntax-grammar>
<http://example.org/stuff/1.0/editor>
_:genidl

s3 = get_node_hashCode('<http://www.w3.org/TR/rdf-syntax-grammar>"

p3 = get_node_hashCode('<http://example.org/stuff/1.0/editor>'

o3 = get_node_hashCode('_:genidl') = sl = s2

c0 = get_node_hashCode(

Here is list of the hash tables used with a little bit of

explaination:
table description notes
Used to store statement
counters and other
model misc options
MODEL (free-text, source URI,
compression algorithms
and so on)
It is
generally
needed to
Maps statements hash g;l;l]ily
STATEMENTS |€0des to sequential whether or
integer numbers of .
statements st(n) not a
statement is
already
stored in the!
db
Contains all the actual
content more or less like
NODES in the
N-Triples[46]/Quads[13
syntax
. Sparse
SUBJECTs [Maps a subject resource i iy
node to a certain st(n) .
compression,
Maps a predicate Sparse
PREDICATES |resource node to a matrix with
certain st(n) compression
. . Sparse
OBJECTs | Maps anobjectnode to)\ it
a certain st(n) .
COmpression
Maps resources Sparse
CONTEXTS representing contexts to ||matrix with
st(n) compression;
Maps an object node Sparse
LANGUAGES |xml:lang to a certain matrix with
st(n) compression:
Maps a resource node Sparse
DATATYPES which 1sAthe rdf:datatype matrix with
of an object node to a .
certain st(n) compression
Maps a subject resource
node to statements Sparse
S_CONNECTIONS || ;. S matrix with
directly or indirectly .
. compression
connected to it
resoured node |7
P_CONNECTIONS . matrix with
statements directly or compression
indirectly connected to it P
Maps an object node to ||Sparse
O_CONNECTIONS ||statements directly or matrix with
indirectly connected to it ||compression
Maps Unicode
case-folded
representations of Sparse
WINDEX free-text words present ||matrix with
into statement object compression
literals and their
stemming literals to st(n)

After having parsed and ingested the above RDF/XML
example statements (quads) the storage hash tables looks like

as follow:
MODEL hash table
KEY VALUE notes
counter 4 we have got 4 statements

'<http://www.w3.org/TR/rdf-syntax-grammar/example07.rdf>"

)

)

)

Hcounler_removed” 0 Hnone removed yet H

I STATEMENTS hash table
KEY|[VALUE|| notes
st0 0 MODEL->{counter} is counting statements
from one but we start from zero anyway
stl 1
st2 2
st3 3
NODES hash table (template)
KEY VALUE
C .
data (strings
int || int || int int int int int char of
type
content)
——>
spo
st_num s_len||p_len||o_len|jo_lang_len |o_dt_len||c_len|[st_res_len|[special_byte||olang
odt ¢ sr
where:
s_len = length in bytes of the subject resource identifier
p_len = length in bytes of the predicate resource identifier
o_len = length in bytes of the object resource identifier or literal string
o_lang_len = length in bytes of the object xml:lang property value
o_dt_len = length in bytes of the object rdf:datatype property resource identifier
c_len = length in bytes of the context resource identifier

NOTE: possible

st_res_len

bits

special_byte = 01234567

32 statement is reified
16 context is bNode

8 object is bnode

4 predicate is bNode

2 subject is bNode

1 object is literal

Then for the above four quads we have:

length in bytes of the statement resource identifier

128 (reserved for future use)
64 (reserved for future use)

NODES hash table (values for given example)

KEY VALUE

39, 37,38,0,0,53,0, 1,
"http://www.w3.org/TR/rdf-syntax-grammar>",

0 |"http://purl.org/dc/elements/1.1/title", "RDF/XML Syntax

Specification (Revised)",

"http://www.w3.org/TR/rdf-syntax-grammar/example07.rdf"

8,37,12,0,0,53,0,3,"_:genidl",

1 ||"http://example.org/stuff/1.0/fullName", "Dave Beckett",
"http://www.w3.org/TR/rdf-syntax-grammar/example07.rdf"

8,37,27,0,0,53,0,2,"_:genidl",
"http://example.org/stuff/1.0/homePage",

2 "http://purl.org/net/dajobe/",
"http://www.w3.org/TR/rdf-syntax-grammar/example07.rdf"
39,37,8,0,0,53,0,8,

3 "http://www.w3.org/TR/rdf-syntax-grammar",

"http://example.org/stuft/1.0/editor", "_:genid1",

"http://www.w3.org/TR/rdf-syntax-grammar/example07.rdf"

bits/bytes map explaination for nodes table)

Adjacency matrixes:

add ons: object_xmlencoding (e.g. if different from UTF-8)

NOTE: eventually nodes hash table will also store the rdf:datatype and xml:lang values (see above

SUBJECTS hash table PREDICATES hash table OBJECTS hash table
| VALUE | VALUE | VALUE
St—_f‘:mHoul 203 4H5H6 709 St—_{':“‘Ho 1 2”3 4/5/6/7)9) ... St—_{':“‘Ho 1 2”3 4/5/6/7)9) ..
KEY | [xEY KEY

50=s3 1]fo[fol[1][o]fo][ol[ol[o]jooo] | [p0 1][o[[ol[o][o][o][ol[o][o][o0o] | 00 1][o][o[[ol[o][o][ol[olo]jo00
s1=52=03 o|[1][1][oo][o[ol[o]fo[oool| [p1 0|[1]jof[o][o]jo][of[o]o] 000l | o1 0/[1]/o][o[[ol[o]jol[o][o][ooo
p2 o|[o[[1][ol[o][o][o[ol[o][o00] | o2 0][o[[1][ol[o][o][ol[olo]jo00
p3 of[ol[o][1][o[[o][o]jo][o/jo00] | [03=s1=s2 o][ol[o][1][o[[o]fol[o][oloo0!

In the simple example considered the LANGUAGES and
DATATYPES hash tables are empty because the RDF triples
resulting do not contain any xml:lang or rdf:datatype
information - we could eventually default them to some
sensible values or set them accordingly to the input
RDF/XML synyax. The generated tables will store values as
sparse matrixes with compression.

Until now we did not cover the statement context
component, which can also be represented quite efficiently in
a matrix form. For example if we assume that the above 4
statements have been stated into a context e.g.
'http://www.w3.org/TR/rdf-syntax-grammar/example07.rdf'
(from which a hashcode c0 is generated), we can represent
the contextual information of statements into a separated
sparse matrix as follow:

CONTEXTS hash table |

| VALUE | notes |
stnum ‘0 1 2H3 4/s/6/79) ...
KEY
all four triples are
0 1111100 o|o/o]jo0]nto the given
context i.e. they are
quads

The WINDEX hash table needs a little bit of explaination.
The scope of having an additional table to index free-text
words is to provide the flexibility needed to run very generic
RDF queries over the database using wild-card style
regular-expressions [51] on arbitrary match nodes in a graph.
This is generally very useful to find a starting point where to
navigate up or down the graph connections to extract
meaningful data. The matrix maps the pure raw UTF-8
case-folded text representation [52] of each word present into
the literal part of each statement to the correspondent
statement number. The stemming of the first and last chars
present in each such literals is also stored. Case-folding is
used to improve query recall. This is useful in real-live
applications when finding a starting point from where to
navigate up or down the graph connections to extract
meaningful data. Query precision is not jeopardized by this
as the full, non-case folded, value is stored separately in
another table. The splitting algorithm for a given object
literal splits the string up into words by removing all blank
spaces and special chars; each single lowercased word
resulting is separately indexed for each statement. The full
text of the literal is being stored separately into the NODES
table above. The splitting algorithm for a given object literal
splits the string up into pieces removing all blank spaces and
special chars; each single lowercased word resulting is
separately indexed for each statement.

The resulting WINDEX table for the above RDF/ XML
example is the following:

WINDEX hash table
VALUE [notes |
stnum 0”1 2”3 4”5”6 709 ..
KEY
the word
dave 0/1/0/0fo0]ojo/0|o0o 'I‘)jr‘:;;‘fm he
literal of st(1)
beckett o|[1]jo][o[[ol[o][ol[o][o][oco
rdf 1][oo][o[[ol[o][ol[o][o][ooo
xml 1/[o][ol[ol[o]fo][ol[o][o]fooo
syntax 1][of[ol[ol[o]fo][ol[o][o]jooo
specification 1][o][ol[ol[o]fo][ol[o][o]fooo
revised 1][of[ol[ol[o]fo][ol[o][o]jooo
d o|[1][o[ol[o][o][o][ol[oljo00
da o][1][o[ol[o][o][o][ol[oljo0o
dav o|[1][o[ol[o][o][o][ol[oljo0o
b o][1][o[ol[o][o][o][ol[oljo0o
be o|[1][o[ol[o][o][o][ol[oljo0o
bec o|[1]jo]fo[[ol[o][ol[o][o][ooo
beck o|[1]jo]fo[[ol[o][ol[o][o][oco
stemming up
to
becke 0{1(/0//0/|0/|0/{0{/0/|0/|000/|(configurable)
5 chars
stemming
r 1][ol[o][o[[ol[o][ol[o][o][ooo
rd 1/[o][ol[ol[o]fo][ol[o][o]fooo
x 1][of[ol[ol[o]fo][ol[o][o]jooo
xm 1/[o][ol[ol[o]fo][ol[o][o]jooo
s 1][of[ol[ol[o]fo][ol[o][o]jooo
sy 1][o][ol[ol[o]fo][ol[o][o]fooo
syn 1][of[ol[ol[o]fo][ol[o][o]jooo
synt 1][o][ol[ol[o]fo][ol[o][o]fooo
synta 1][of[ol[ol[o]fo][ol[o][o]jooo
sp 1][o][ol[ol[o]fo][ol[o][o]fooo
spe 1][of[ol[ol[o]fo][ol[o][o]jooo
spec 1][o][ol[ol[o]fo[ol[o][o]fooo
speci 1][of[ol[ol[o]fo][ol[o][o]jooo
re 1][o][ol[ol[o]fo][ol[o][o]fooo
rev 1][of[ol[ol[o]fo][ol[o][o]jooo
revi 1/[o][ol[ol[o]fo][ol[o][o]fooo
revis 1][of[ol[ol[o]fo][ol[o][o]jooo

In the above table we do not represent the reverse stemming
(last 5 chars) from the end of each indexed word for
simplicity.

By using the above hash tables is possible to run very
generic queries over the RDF storage but the are generally
limited to match one set of statements at time. Even so, the
usage of sparse matrixes to represent the indexes of RDF
statements allow to run basic triple-pattern queries simply
using boolean logic operations.

For example, we could run a simple query to find the
resource who as title "RDF/XML Syntax Specification
(Revised)" as follows:

find(?x,,"RDF/XML Syntax Specification (Revised)") # i.e. ?x = http://www.w3.org/TR/rdf-syntax-grammar
or a more generic free-text query like:
find(?x,, %"syn"%) # i.e. ?x = http://www.w3.org/TR/rdf-syntax-grammar

The result of such queries is generally stored into an iterator,
which uses a sparse matrix to represent which statements
match a specific query - for example the two queries above
would return the following iterator structure:

st_num -->[0][1][2][3]4][s][6][7][9]] -.. notes
.result ollollollo/lollo/lollo/loco if matched st_num
iterator 0

This would allow to then scan the result set (iterator) in a
second time and return the actual matching statements (or
their parts) using the STATEMENTS and NODES tables.
More complicated queries can be composed in a similar
fashion which would match different bits of an RDF graph.
The whole graph would generate a resulting iterator with bits
set for any statement acutally stated into the RDF storage.
Arbitrary triple-patterns can be run on RDF graphs using
combinations of the above sparse matrixes and specific
boolean operations.

Even if the above queries can model most of simple RDF
application requirements to build simple Web pages or data
conversion, it is is not generally possible to soley combine
SUBJECTS, PREDICATES and OBJECTS tables to map
connections between different nodes inside an RDF graph. In
other words, it is not possible to search connected statements
(or nodes) without using expensive and inefficient recursion
algorithms. To make the RDF storage and query scaleable
and guarantee that any arbitrary query can be run efficently
over a stored RDF graph, a bunch of additional tables is
required. Such tables must allow to map RDF statements
connections and process their connections purely using
boolena oprations.

This problem is generally present as soon as an application
needs to aggregate and query RDF statements using a more
complete query language such RDQL [50] or XPath. In that
case, arbitrary nodes and statement connections need to be

tracked back to the application.

For example, if we would like to run a RDQL query on the 4
statements above to get the name of the fullname of the
editor of document
"http://www.w3.org/TR/rdf-syntax-grammar", we would

write:
SELECT
?fullname
WHERE
(?document, <example:editor>, ?editor),
(?editor, <example:fullName>, ?fullname)
AND
?document eq 'http://www.w3.org/TR/rdf-syntax-grammar'
USING

example FOR <http://example.org/stuff/1.0/>

By using the basic set of tables as describe above is not
generally possible to get the value of '?fullName' variable
without running the first query find(?document, , ?editor)
and then recursively try (backtracking) on all possible values
of ?editor returned on the second query find(?editor, ,
?fullname) and keep track of the matching statements.

‘What is needed instead, is some way to efficently run the
above triple-pattern searches independently and "join" then
using some kind of common logical AND operation, which
would return all the statement representing the biggest
sub-graph matching the above query.

To overcome this problem, the RDFStore model uses 3
addional tables called S_CONNECTION,
P_CONNECTIONS and O_CONNECTIONS, which sotres
the connections of specific RDF nodes (resources or literals)
to other nodes in the graph in an arbitrary way. In fact, a
certain node in a statement (either subject, proedicate or
object) can be connected to other statements via any other
nodes present in the statement itself. Only resource nodes
can connect to other nodes (either resources or bNodes),
while literals are generally indireclty connected to other
resources.

The S_CONNECTIONS hash table maps all possibile
connections of a given resource node present as subject in a
certain statement to all the other statements connected to the
statement it belongs to via itself (e.g. if the same subject

node would be the predicate or the object of another
statement) or the predicate or the object (if is a resource).
Here is the S_CONNECTIONS table as being stored for the
above 4 statements:

S_CONNECTIONS hash table |
[VALUE [notes |
s
KEY |
[[sois (directly
50=s3 10llo] 1 oo/ lo]jo jooo o indirectly)
connected to
st(0) and st(3)
s1=52=03 o[[1][1][1]jol[o][ol[o][o/[oco

Similarly we can generate the P_CONNECTIONS and
O_CONNECTIONS table to map in the connections to the
other statement components:

P_CONNECTIONS hash table | O_CONNECTIONS hash table |
VALUE | | VALUE
S 1 3‘4 s|6/7 9‘1 S gy 2”3‘4 5|67 9‘
KEY |[KEY |
p0 [1][o[[ol[][oo][o][ol[o]fooq] | [o0 [olfo[[1]jol[o]fo[ol[o]joo0
pl fo/[t][1][x][ol[o][ol[ol[o]fo0o]| [o1 lol[1][1][1][ol[o][ol[ol[o][oo]
p2 o[[1][1][1][o][o]fo[o][o][oo0] | o2 o[[1][1][1][o][o]fol[o][oloo0!
p3 [1[11][1]o]jol[o[[ol[o]jo00] | fo3=s1=s2 [1][1t][1]jo]jo]fol[o]folooo]

By using the above 3 additional tables is then possible to
very efficenlty run RDQL (or XPath) queries spawming
different connected statements, on the same storage, or even
on different storages distributed over the Web as RDF/XML
(or stored in soem kind of RDF storage). What the storage
code has to do, is to simply AND logically the resulting
bitmaps (bitmasks or iterators) for each triple pattern. The
resulting sub-graph then would be further processed to
extract the values of the single variabels as resquested by the
application. The apporach can as well be used to run very
efficently nested RDQL queries, disjuntion (OR) queries or
exclude certain specific RDF graph branches. Coupeld with
free-text indexing and contexts it turned out to be a very
good compromise between RDF storage and retirval for the
Semantic Web.

Even if the graph is extremely large it is generally possible to
store the above (sparse) matrix efficiently by making use of
some specific properties. We will briefly discuss these and
the hybrid run-length/variable-length encoding algorithm
used by the RDFStore software in the next paragraph.

The compression algorithm

Both the graph as well as the free-text words index are
relatively sparsely populated which make simple
compression possible. The bit arrays used in each can grow
to very significant sizes; in the order of several, if not tens of
page multiples. Combined with the intensive use of unique
keys and a hashed storage a fair percentage of the data
needed for any given query is unlikely to be needed often
enough as to rely on natural caching of for example the disk
system and the operating system. This makes compression
attractive as it reduces the data volume that needs to be
transferred from the relatively slow disk and/or networked
storage; and instead relies on the CPU working off main
memory and the CPU level cache. However as one typically
operates in a stateless manner on just a few rows it is
important to avoid global dictionary based compression
methods. And given that the rows are relatively simple; and
operated on a lot; care must be taken that any pattern search
is of order(1) or better and for a "normal" row is able to
(de)compress more than 1Mbyte/second on the target
hardware platform. The latter is to ensure that it is still
"worthwhile" versus disk-backed storage speed. Though it
has been observed that even on memory based systems
compression is effective. We suspect that this is due to
compiler optimization with respect to the L2 or L3 cache(s)
of the CPUs.

Initially a Run Length Encoding method was used; with two
small optimizations. The first optimization was early
termination; i.e. if the remainder of the row would solely
contain zero's it would simply not list those explicitly. The
second optimization was a bias towards sequences of 0's
rather than 1's. With respect to the graph a number of issues
make the above method not ideal.

The first issue is that certain values, such as a reference to a
schema or a common property are dis-proportionally over
represented; by several orders of magnitude (e.g rdf:type
property or contextual information). Secondly certain other
values; such as the unique reference to an item only appear
once. And the final issue is that (in this release) triples and
their context; i.e. the 4 values, are stored sequentially this
means that not all bits are equal and certain patterns will
happen more often than others.

So for this reason a variant of the Variable Run Length
encoding is used along with part of the above RLE method.

This method is still applicable to the word indexing but adds
the ability to recognize short patterns; and code the patterns
which occur most often with short tokens, code the frequent
patterns with a token which is an order to half an order
shorter than the pattern and then use RLE for the remainder.
At this point in time (de-)compression is such that the storage
volumes are reasonable, that transfer volumes are
manageable and we do not expect to give priority to work in
this area. However we expect to examine this issue again and
will be looking at a variant of LZ77 and/or replacement of
the key pattern matching as soon as we have access to a
more varied range of datasets from a wider range of
operational applications.

Conclusion: RDFStore

RDFStore [47] is a perl/C toolkit to process, store, retrieve
and manage RDF; it consists of a programming API,
streaming RDF/XML and N-Triples parsers and a generic
hashed data storage which implements the indexing
algorithm as described in this paper using a few additional
tables to store the raw content of the RDF nodes and other
various fields (literal data types, parse type, language,
statement reification and so on). RDFStore implements the
RDQL query language which allows to query RDF
repositories using an SQL like syntax directly from standard
database interfaces like DBI, JDBC and ODBC. The storage
sub-system allows transparent storage and retrieval of RDF
nodes, arcs and labels, either from an in-memory hashed
storage, from the local disk using BerkleyDB or from a very
fast and scaleable remote storage. The latter is a fast
networked TCP/IP based transactional storage library which
uses multiple single key hash based BerkeleyDB files
together with an optimized network routing daemon with a
single thread/process per database. The API supports RDF
contexts, reification, bNodes, typed and muli-lingual literals.

RDFStore has been successfully used for the development of
several Semantic Web applications [16a][16b][16¢] which
read/write and query RDF descriptions using RDQL.

References

[1] "A Relational Model of Data for Large Shared Data
Banks", E.F. Codd, Communications of the ACM, Vol. 13,
No. 6, June 1970, pp. 377-387.

http://www.acm.org/s cs/mov95/toc.html

[2] P. Buneman, S. Davidson, G. Hillebrand and D. Suciu,
"A query language and optimization techniques for
unstructured data". In SIGMOD, San Diego, 1996

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom and J.
Wiener "The lorel query language for semistructured data"
1996 ftp://db.stanford.edu/pub/papers/lorel96.ps

[4] Dan Brickley, R.V. Guha "RDF Vocabulary Description
Language 1.0: RDF Schema" (W3C Working Draft 23
January 2003) http://www.w3.org/TR/rdf-schema/

[5] Grady Booch "Object-Oriented Analysis and Design with
Applications" p. 71-72

[6] Aimilia Magkanaraki, Sofia Alexaki, Vassilis
Christophides, Dimitris Plexous "Benchmarking RDF
Schemas for the Semantic Web"
http://139.91.183.30:9090/RDF/publications/iswc02.PDF
[7] S. Abiteboul "Querying Semi-Structured Data" 1997
http://citeseer.nj.nec.com/abiteboul97querying.html

[8] S. Abiteboul and Victor Vianu, "Queries and
Computation on the Web" 1997
http://citeseer.nj.nec.com/abiteboul97queries.html

[9] Dan Suciu, "An overview of semistructured data"
http://citeseer.nj.nec.com/160105.html

[10] Graham Klyne, 13-Mar-2002 "Circumstance,
provenance and partial knowledge - Limiting the scope of

RDF assertions"
http://www.ninebynine.org/RDFNotes/UsingContextsWithRDF.html
[11] John F. Sowa, "Knowledge Representation: Logical,
Philosophical, and Computational Foundations", Brooks

Cole Publishing Co., ISBN 0-534-94965-7

[12] Graham Klyne, 18 October 2000 "Contexts for RDF
Information Modelling"
http://public.research.mimesweeper.com/RDF/RDFContexts.html
[13] Seth Russel, 7 August 2002 "Quads"
http://robustai.net/sailor/grammar/Quads.html
[14] T. Berners-Lee, Dan Connoly "Notation3"
http://www.w3.0rg/2000/10/swap/doc/Overview.html
[15] Dave Beckett, "Contexts Thoughts"
http://www.redland.opensource.ac.uk/notes/contexts.html
[16a] Asemantics S.r.l. "Image ShowCase (ISC)"
http://demo.asemantics.com/biz/isc/

[16b] Asemantics S.r.l. "Last Minute News (LMN)"
http://demo.asemantics.com/biz/radio/

[16¢] Asemantics S.r.l. "The News Blender (NB)"
http://demo.asemantics.com/biz/lmn/nb/

[17] GINF http://www-diglib.stanford.edu/diglib/gint/
[18] Jena http://www.hpl.hp.com/semweb/

[19] Algae
http://www.w3.0rg/1999/02/26-modules/User/Algae-HOWTO.html
[20] RDFSuite http://139.91.183.30:9090/RDF/

[21] Wraf http://wraf.org/RDF-Service/doc/html/wraf.html

[22] PARKA-DB
http://www.cs.umd.edu/projects/plus/Parka/parka-db.html

[23] RDFGateway
http://www.intellidimension.com/pages/site/products/rdfgateway.rsp

[24] 3Store http://sourceforge.net/projects/threestore/

[25] TAP http://tap.stanford.edu/

[26] Inkling http:/swordfish.rdfweb.org/rdfquery/

[27] RubyRDF
http://www.w3.0rg/2001/12/rubyrdf/intro.html

[28] 4RDF http://Fourthought.com/

[29] Sesame http://sesame.aidministrator.nl/

[30] KAON REVERSE
http://kaon.semanticweb.org/alphaworld/reverse/view

[31] D2R
http://www.wiwiss.fu-berlin.de/suhl/bizer/d2rmap/D2Rmap.htm
[32] DBVIEW
http://www.w3.0rg/2000/10/swap/dbork/dbview.py

[33] Virtuoso http://www.openlinksw.com/virtuoso/

[34] Federate
http://www.w3.0rg/2003/01/21-RDFE-RDB-access/

[35] Triple querying with SQL
http://www.picdiary.com/triplequerying/

[36] Squish-to-SQL
http://rdfweb.org/2002/02/java/squish2sql/intro.html

[37] Jena2 Database interface
http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/*checkout*/jena/jena2/doc/DB/index.html
[38] Mapping Semantic Web data with RDBMSes
http://www.w3.0rg/2001/sw/Europe/reports/scalable rdbms mapping report/
[39] BerkeleyDB Sleepycat http:/www.sleepycat.com/

[40] rdfdb http://www.guha.com/rdfdb/

[41] Redland http://www.redland.opensource.ac.uk/

[42] rdflib http://rdflib.net/

[43] DAML DB http://www.daml.org/2001/09/damldb/
[44] ODP Search http://dmoz.org/ODPSearch/

[45] Dave Beckett "RDF/XML Syntax Specification
(Revised)" (W3C Working Draft 23 January 2003)
http://www.w3.org/TR/rdf-syntax-grammar/

[46] Jan Grant, Dave Beckett "RDF Test Cases" (W3C
Working Draft 23 January 2003)
http://www.w3.org/TR/rdf-testcases/

[47] Alberto Reggiori, Dirk-Willem van Gulik, RDFStore,
http://rdfstore.sourceforge.net

[48] Graham Klyne, Jeremy J. Carroll "Resource Description
Framework (RDF): Concepts and Abstract Syntax" (W3C
Working Draft 23 January 2003)
http://www.w3.org/TR/rdf-concepts/

[49] Patrick Hayes "RDF Semantics" (W3C Working Draft
23 January 2003) http://www.w3.org/TR/rdf-mt/

[50] Miller L., Seaborne A., Reggiori 'Implementations of
SquishQL, a simpler RDF Query Language", 1st
International Semantic Web Conference, Sardinia, 2002
[51] Mastering Algorithms with Perl By JonOrwant ,Jarkko
Hietaniemi ,JohnMacdonald 1st Edition August 1999 ISBN
1-56592-398-7 p.287

[52] Unicode Caseless Matching

http://www.unicode.org/unicode/reports/tr2 1/#Caseless Matching
Last modified 2003/10/23

