Web Services
Architecture Directions

Rod Smith, Donald F Ferguson, Sanjiva Weerawarana
IBM Corporation
Overview

- Today’s Realities
- Web Services Architecture Elements
- Web Services Framework
- Conclusions & Discussion
Today’s Realities

- HTML forms are a dominant form of client-server computing
- Ad hoc B2B occurs today via XML over HTTP
- Traditional B2B has focused on well-defined, standard message formats and protocols (e.g., RosettaNet, cXML)
- Common problems: messaging, message driven processing, message brokering
- Vertical groups are re-inventing the entire stack daily
Web Services

- Web services initiative is attempting to provide a common base to build on

- Web services is a new adaptive distributed computing platform built on deployed network infrastructure including XML & HTTP

- Composing & choreographing application components on a large scale
What’s new about Web services?

• Finding services by-what and by-how
 ■ Traditional distributed computing searched by name

• Looser coupling via less reliance on pre-defined interfaces
 ■ The growing role of the “service broker” to mediate between requestors and providers
 ■ No single point of failure

• Does not assume single implementation technology
 ■ Same concepts must scale from simple HTTP POST of XML to robust, reliable MOM

• Web services are starting with an ad hoc view instead of systematic approach
 ■ Focus is more on shorter term partnerships and collaborations instead of long term relationships
Web Services Framework

- Service Compositions
- Service QoS
- Service Types
- Service Instance
- Formats & Protocol

- Directory
- Security
- Context
- Transactions
- Management
What do we need to do?

- Define a Web services architecture consisting of several complimentary layers
 - Message Exchange and Function Calls
 - Security
 - Conversations and Activities
 - Business Processes and Agreements
 - Manageability
 - Intermediaries
 - Context Awareness
 - Directory Binding
XML Protocol

- Lingua franca of the Web services stack

- Simple, reliable messaging is a key feature
 - Different QoS: best-effort, at-least-once, at-most-once, exactly-once

- XML Protocol must be available over multiple transports with different native QoSs
Security

- Web services require an end-to-end security story
 - E.g., Web service request originates inside enterprise, travels via TIBCO, HTTP, MSMQ to service provider.

- Requirements:
 - End to End Authentication
 - End to End Authorization
 - End to End Integrity
 - End to End Confidentiality.
 - Audit & Non-repudiation
Conversations and Activities

- Concept of “transactions” is a key part of application processing

- Web services require incremental QoS for “transactions”
 - An activity service which allows one to define the operational context of one or a series of requests, controlling duration and participants
 - See OMG Extended Structuring Mechanism (Activity Service JSR)
 - A conversation service which provides interaction styles for Web services
 - Request atomicity
 - Conversations
 - ...
Business Processes and Agreements

- We see three levels of functions support multi-party business processes and “workflows”
 - Operational descriptions of services (WSDL)
 - Non-operational, behavioral descriptions of services (WSEL)
 - Composing and choreographing services to build larger business processes (WSFL)

- Agreements are a way to augment end-point definitions with
 - Roles that can invoke services/operations in their organization
 - Concrete values for parameters of end-point definition
 - SLAs
Web Services Description Language (WSDL)

- WSDL addresses the problem of providing a machine-readable description of a service
- More than an IDL – has everything needed to access service
- Model:
 - Types, Messages, Operations, Interfaces
 - Bindings, Ports, Services
- WSDL is a component definition language for Web service components.
WSDL Goals

- Provide a unifying way of describing new and existing services

- The language must be open with respect to
 - service platforms (multiple type systems)
 - service interaction types: message/procedural
 - protocols: WSDL is extensible to allow new protocol bindings
 - XML Schema, SOAP-XMLP will be dominant choices.

- Provide the base for a Web services component composition framework
Web Services Endpoint Language (WSEL)

- An “end-point” is more than a WSDL port(type)
 - QOS characteristics
 - Sequencing of operations (open, read/write, close…)
 - Cost characteristics
 - Security characteristics

- All of this is needed for composition and choreographing services into larger business processes

- (Under development)
Web Services Flow Language

- WSFL supports two types of composition and choreography:
 - Flow models: describes business processes
 - Global models: describe overall partner interactions

- Flow models
 - Describe how to choreograph the functionality provided by a collection of Web services to achieve a particular business need

- Global models
 - Describe how a set of Web services interact with each other

- (Under development)
Manageability

• Services need basic management interfaces

• Services have full autonomy over their infrastructure and management
 • Should publish basic reporting and recovery interfaces

• Management interfaces should be described in WSDL with appropriate bindings
 • E.g.: JMX for Java platform
Intermediaries

- Web services has intrinsic support for intermediaries
 - E.g.: An in-network 3rd party non-repudiation service

- Service providers would specify intermediaries support / required
 - WSFL-based “public flow” is specified as part of service description

- Intermediaries open the door for value added services
Context Awareness

- “Intelligent” Web services refer to being aware of the context of the user / system / provider:
 - Device type
 - User profiles
 - Temporal information
 - Geographic information

- Protocols must support context propagation

- Contexts themselves will be defined by verticals
Directory Binding

- A key value of the Web services platform is support for by-what and by-how service discovery and binding
 - Directories are key enabler

- Service providers describe their services using WSDL, WSEL and WSFL and requestors query the directory to find matching services

- Directory-driven delayed binding within Web services (compositions) enables dynamic e-business
Web Services Framework

Service Compositions
Service QoS
Service Types
Service Instance
Formats & Protocol
Directory
Security
Context
Transactions
Management
Position Papers

- The 62 position papers are a rich base to start filling in the pieces of the web services platform
 - Several “framework” papers
 - Several “component” papers

- Attempt at classifying “component” papers:
 - Formats & protocols: 39, 40, 41
 - Service descriptions, QoS, compositions: 10, 19, 20, 26, 28, 30, 49, 55,
 - Directory: 9, 37, 43, 57,
 - Security: 16, 22, 23, 47, 50,
 - Context: 29,
 - Transactions: 1, 46,
 - Management: 32,
Discussion and Conclusions

- To realize the Web services stack, the following standards efforts are needed
 - Reliable messaging support over XMLP
 - End-to-end security model
 - Service descriptions, end-point descriptions and business process compositions
 - Transactional support via activities and conversations
 - Extending directory functionality in UDDI and enabling flexible query and “look up” of services
 - Propagating application context in service interactions
If we build it, will they come?

- Will these differences make Web services the distributed computing platforms that truly achieves ubiquity?

- Right technology, at the right time?
 - KISS