MANCHESTER 1824

The Semantics of Genomic Analysis

Robert Stevens
BioHealth Informatics Group
School of Computer Science
University of Manchester

robert.stevens@manchester.ac.uk

MANCHESTER 1824

The Collaboration

"Developing a GRID-based system for integrating and exploring data from comparative genomics, to discover biological knowledge that can not be discovered from any one source"

Collaborative BBSRC project

- 5 sites across the UK

http://www.comparagrid.org

Introduction

- The general problem
- An architecture for getting answers
- Forming the questions and making distinctions
- Some observations

Sleeping Cows: Unknown Genes

???

Chromosome 1

Known Genes

Genes

Cow Infected with African Trypanosomiasis

Cow chromosome and known Genes

The University of Manchester

Sleeping Mouse Model with QTL

Mouse QTL region on chromosome, encompassing multiple genes

The Universit

We can Find Out About Mouse Resistance

Genes A, B, C, D in QTL are involved in Trypanosomiasis resistance

Mouse QTL region on chromosome, encompassing multiple genes

Use Mouse to Tell us about Cow

Infer presence and order of Cow genes from presence and order of Mouse genes

Requirements

- Ask for maps that that contain *marker* from species x in species y, z, etc
- What chromosome or part of chromosome does a map model?
- What is the gene order in species x and species y?
- Also notions of similarity, homology, and, of course, synteny
- Orthology and paralogy

e University Manchester

The Fluxion Stack

Query Semantics

- Query OWL class interpreted as
 - K query (poor man's) epistemic closure of query
 - Against knowledge-base exposed by that data-source, not The World
- Result is a knowledge-base
 - All entailed by queried KB (it's a subset)
 - Can be statements in the original KB, or any statements that always follow
- Contains at least the statements needed to
 - Allow a reasoner to classify all the individuals who match the query correctly
 - Preferably using properties, not asserted types (a-box preferred over t-box,don't over-commit)
 - Speed for accuracy
 - Implementation complexity for data-volume
- Return all instances of known classes e.g. db table with minimal filtering if in doubt, return it

Role of Ontology in Fluxion

- Fluxion
 - Uses semantics of OWL
 - Not any domain-specific information
 - Any domain
- A domain ontology defines what Fluxion integrates
- Developing a 'good' domain ontology is
 - Hard work
 - Poorly scoped
 - No widely-validated methodology
 - Biologist ≠ Modeller so language gap

The University of Manchester

ComparaGRID Ontology Scope

Genetics

- Markers and Maps
- Genomics
 - Genomes and Sequences
- Comparative Aspects
 - Evolutionary relationships,
 Similarities
- Physical entities
 - Chromosome, Organism

Models and Representations

We 'know' things about physical biological things

- We know other things about the way we render information about these things
- What reconciles a map and a sequence of a thing is the thing itself
- A "knowledge anchor"

Modelling Maps

A map is an abstract model of a physical thing

Good for ordering limited knowledge

within line

- Minimal explicit biology in a map, just implicit biology in the labelling of things
- Maps can be modelled as a combination of lines and blobs:

The University of Manchester

Modelling 'Markers'

- 'Marker' is overloaded term
- Meaning here is captured by linking lines and blobs up to physical things

Strategy: Domain and Application Ontologies

TAMBIS AllOver Again

- ..., but now we have different technologies; bio-ontologies galore; different resources.
- Mainly SQL queries over RDBMS
- Can actually answer the questions we ask
- Rather than mapping down to the resources; we map down from the global model and up from the resources into an OWL world

Main Points

- Its hard: Sophisticated ontologies don't appear by magic
- Open world good, open world bad
- Need to do local closure: A poor man's epistemic operator...
- It isn't completely correct
- A sophisticated ontology in a SW application
- Highly axiomatised ontologies for the Semantic Web?

