
1

OWL 2 Update

Christine Golbreich
<cgolbrei@gmail.com>

2

OWL 2

• W3C OWL working group is developing OWL 2

– see http://www.w3.org/2007/OWL/wiki/

– Extends OWL with a small but useful set of features

– Fully backwards compatible with OWL:

• Every OWL ontology is a valid OWL 2 ontology

• Every OWL 2 ontology − not using new features − is a valid OWL ontology

• A community effort − features included are those

– That are needed in applications

– For which semantics and reasoning techniques are well understood

– That tool builders are willing and able to support

• Already supported by many popular OWL tools

– Protégé, Swoop, TopBraid Composer, FaCT++, Pellet, OWL API

3

What’s New in OWL 2?

• OWL 2 is an update to OWL adding several new features

– Increased expressive power, e.g., w.r.t. properties

– Extended support for datatypes

– Simple metamodelling capabilities

– Extended annotation capabilities

– Database style keys

• OWL 2 also defines several profiles

– language subsets

• that may better meet certain performance requirements

• or may be easier to implement

4

Increased expressive power

• Qualified cardinality restrictions

– Minimum, Maximum, or Exact - Object or Data Property - Qualified or not

E.g., Set of objects bound to at most three Hydrogen

MaxCardinality(3 boundTo Hydrogen)

MinCardinality(1 hasSSN)

• Property chain inclusion axioms

– allows to chain several object properties

E.g., If x is locatedIn y, and y is partOf z, then x is locatedIn z;

SubPropertyOf(PropertyChain(locatedIn partOf) locatedIn)

– provides a means to represent some types of rules under certain global
restrictions on axioms for decidability

E.g., the Uncle rule !

SubPropertyOf(PropertyChain

(hasParent hasBrother) hasUncle)

5

Increased expressive power

• Reflexive, Irreflexive, Asymmetric

E.g., each one has the same blood group as himself

ReflexiveProperty(hasSameBloodGroup)

E.g., Nothing can be a proper part of itself

IrreflexiveProperty(proper_part_of)

E.g., if x is preceded by y, then y cannot be preceded by x

AsymmetricProperty(preceded_by) [e.g., process]

• Local reflexivity

E.g., Auto-regulating processes regulate themselves

SubClassOf(AutoRegulatingProcess ExistsSelf(regulate))

• Disjoint properties

E.g., no individuals can be both homozygous and heterozygous twins

DisjointProperties(homozygousTwin heterozygousTwin)

6

Syntactic sugar

• DisjointUnion

E.g., a brain hemispehere is either a left or right hemisphere but not both

DisjointUnion(BrainHemisphere LeftHemisphere RightHemisphere)

• DisjointClasses

E.g., Middle and upper, middle and lower, upper and lower lungs are exclusive

DisjointClasses(MiddleLung UpperLung LowerLung)

• NegativePropertyAssertion

E.g., This patient is not five years old.

NegativePropertyAssertion(hasAge ThisPatient 5^^xsd:integer)

7

Extended datatypes
• A richer set of datatypes for representing

– various kinds of numbers, adding support of a wider range of XML
Schema Datatypes

E.g.; integer, real, double, float, decimal, …

– strings with a Language Tag (or without)

E.g.; the class with ID 0000003 has label ‘anatomical structure’ in English

EntityAnnotation(Class(CARO:0000003) Label(“anatomical structure”@en))

– Boolean values, Binary Data, URIs, Time Instants, etc.

• Datatype restriction

– User-defined datatypes using facets from XML Schema Datatypes for
range

E.g.; Individuals that are more than 18

DatatypeRestriction(xsd:integer minInclusive "18"^^xsd:integer)

8

Simple metamodelling

• Based on punning

– The same name can refer to different types of entities, with certain restrictions

E.g., both individual and :

class | datatype | object property | data property | annotation property

– Punning forbidden for

• ObjectProperty ↔ DatatypeProperty Class ↔ Datatype

states that located_in is an

Individual of the class

Deprecated_Properties.

ClassAssertion(Deprecated_Properties
located_in)

Declares located_in to be

an ObjectProperty

Declaration(ObjectProperty(located_in))

Declares

Deprecated_Properties to

be a Class

Declaration(Class(Deprecated_Properties))

9

Extended annotations

• Annotations of axioms as well as entities

E.g., SubClassOf(Comment("Middle lobe are necessary right

lobe.") MiddleLobe RightLobe)

• Even annotations of annotations

• Value of an annotation can be either

– a literal (e.g., string, integer, or any other OWL datatype)

E.g. EntityAnnotation (Class(CARO: anatomical structure)
hasId("0000003"^^xsd:integer))

– an ontology entity (such as a class or individual)

– an anonymous individual

10

Keys

• OWL 2 allows to define Database style keys for a given class

• A HasKey axiom states that each (named) instance of a class is

uniquely identified by a property or a set of properties

– if two (named) instances coincide on all the values of key

properties, then these two individuals are the same.

E.g., Each person is uniquely identified by his social security number.

HasKey(Person hasSSN)

11

Profiles (Tractable Fragments)

• Profile is a subset of vocabulary (fragment)

• OWL 1 defines only one fragment (OWL Lite)

– And it isn’t very tractable!

• OWL 2 defines several different fragments with

– Useful computational properties

• E.g., reasoning complexity in range LOGSPACE to PTIME

– Useful implementation possibilities

• E.g., Smaller fragments implementable using RDBs

• OWL 2 profiles

– OWL 2 EL, OWL 2 QL, OWL 2 RL

12

OWL 2 EL

• Useful for applications employing ontologies that contain very

large number of properties and/or classes

• Captures expressive power used by many large-scale

ontologies E.g.; SNOMED CT, NCI thesaurus

• Features

– Included: existential restrictions, intersection, subClass,

equivalentClass, disjointness, range and domain, object property

inclusion possibly involving property chains, and data property

inclusion, transitive properties, keys …

– Missing: include value restrictions, Cardinality restrictions (min, max
and exact), disjunction and negation

• Maximal language for which reasoning (including query
answering) known to be worst-case polynomial

13

OWL 2 QL

• Useful for applications that use very large volumes of data,

and where query answering is the most important task

• Captures expressive power of simple ontologies like thesauri,

classifications, and (most of) expressive power of ER/UML schemas

E.g., CIM10, Thesaurus of Nephrology, ...

• Features

– Included: limited form of existential restrictions, subClass,

equivalentClass, disjointness, range & domain, symmetric properties, …

– Missing: existential quantification to a class, self restriction, nominals,

universal quantification to a class, disjunction etc.

• Can be implemented on top of standard relational DBMS

• Maximal language for which reasoning (including query answering) is known

to be worst case logspace (same as DB)

14

OWL 2 RL

• Useful for applications that require scalable reasoning without
sacrifying too much expressive power, and where query

answering is the most important task

• Support most OWL features but

– with restrictions placed on the syntax of OWL 2

– standard semantics only apply when they are used in a restricted way

• Can be implemented on top of rule extended DBMS

– E.g., Oracle’s OWL Prime implemented using forward chaining rules

in Oracle 11g

– Related to DLP [DLP] and pD* [pD*]

• Allows for scalable (polynomial) reasoning using rule-based

technologies

15

OWL 2 Public Working Drafts

• Seven OWL 2 Drafts Published (2008-10-08)

W3C News http://www.w3.org/

2008-10-08: The OWL Working Group published seven
documents relating to the OWL 2 Web Ontology Language

…
1. Structural Specification and Functional-Style Syntax
2. Direct Semantics
3. RDF-Based Semantics (First Public Draft)
4. Mapping to RDF Graphs
5. XML Serialization
6. Profiles
7. Conformance and Test Cases (First Public Draft)

16

OWL 2 Public Working Drafts

• Seven OWL 2 Drafts Published (2008-10-08)

see http://www.w3.org/2007/OWL/wiki/OWL_Working_Group#Deliverables

– First three documents form the technical core of OWL 2 specifying its

1. Syntax: both the structure of the language and its functional-style syntax

2. & 3. Semantics: both a traditional "direct" and a new "RDF-based" semantics

– Documents 4 & 5 specify two different serializations for OWL ontologies

• one based on a Mapping to RDF and one using XML more directly

– Document 6 defines the Profiles

– Document 7 specifies Conformance and will later enumerate Test cases

– Five other documents are under development

17

OWL 2 Public Working Drafts on Wiki

http://www.w3.org/2007/OWL/wiki/OWL_Working_Group#Deliverables

Thank you for listening

Thanks to Ian Horrocks (slides)
&

OWL WG (work)

18

Any questions?

