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ABSTRACT 

Motivation: To support translational research and external 

innovation, we are evaluating the potential of the semantic 

web to integrate data from discovery research through to the 

clinical environment. This paper describes our experiences 

in mapping relational databases to RDF for data sets relating 

to neuroscience. 

Implementation: We describe how classes were identified 

in the original data sets and mapped to RDF, and how con-

nections were made to public ontologies. Special attention 

was paid to the mapping of experimental measures to RDF 

and how it was impacted by the relational schemata. 

Results: Mapping from relational databases to RDF can 

benefit from techniques borrowed from dimensional model-

ing. However, current tools like D2R are still evolving. Never-

theless, mapping data in RDF, if done properly and consis-

tently, facilitates data integration efforts. 

1 INTRODUCTION 

Translational research has emerged over recent years as an 

important enabler of personalized medicine. It encompasses 

bridging the gap between discovery research insights in the 

molecular biology of a disease and predicted clinical re-

sponse of an individual patient to a medicine. It also in-

volves finding gene signatures or other biomarkers that 

separate responders from non-responders and understanding 

how these insights may contribute to disease mechanisms. 

To counterbalance compound attrition and fill short or 

medium term pipeline gaps, pharmaceutical companies are 

seeking collaboration and licensing opportunities outside 

company boundaries. Internally and externally derived re-

sources need to be viewed alongside each other in order to 

gain a comprehensive understanding of a company’s devel-

opment pipeline. 

The translational medicine and external innovation trends 

are both leading to a more data intensive environment that 

requires well defined strategies for data integration and 

governance. 

  
* To whom correspondence should be addressed (rverbeec@its.jnj.com). 

Relational database technology has been developed as an 

approach for managing and integrating data in a highly 

available, secure and scalable architecture. With this ap-

proach, all metadata is embedded or implicit in the applica-

tion or metadata schema itself, which results in performant 

queries. However, this architecture makes it difficult to 

share data across a large organization where different data-

base schemata and applications are being used. 

Semantic web offers a promising approach to interconnect 

databases across an organization, since the technology was 

designed to function within the distributed environment of 

the web. Resource Description Framework (RDF) and Web 

Ontology Language (OWL) are the two main semantic web 

standard recommendations. RDF represents data using sub-

ject-predicate-object triples, which connects data in a flexi-

ble piece-by-piece and link-by link fashion that forms a 

directed labeled graph. The components of each RDF state-

ment can be identified with Uniform Resource Identifiers 

(URIs). Alternatively, they can be referenced via links to 

RDF Schemas (RDFS), OWL ontologies, or to other (non-

schema) RDF documents. Data in a semantic web represen-

tation can be queried using the SPARQL query language. 

Data can gradually be made available on the semantic web, 

without intensive coordination between data source provid-

ers [1,2]. Further, as semantics are added to the data, it be-

comes self-describing, so applications can be made agnostic 

of the data domain. 

To verify if semantic web can facilitate data integration, a 

Linked Data project [3] was established. The primary goal 

of the project was to enable scientists to answer novel trans-

lational questions related to Alzheimer’s Disease (AD) by 

providing a flexible integrative data layer. The project hypo-

theses were that new, valuable scientific insights can be 

gained through the interrogation of Linked Data, and that 

Linked Data simplifies the incorporation of data sources 

from collaborators. This paper focuses on describing the 

mapping of data sources to RDF. More details regarding the 

Linked Data framework are described in reference [4]. 

In the next section we describe the data sources used in 

the Linked Data project. Section 3 reviews the modeling 

choices we took for mapping and translating the data 
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sources to RDF. The final section discusses some considera-

tions in the implementation of a successful data integration 

platform. 

2 METHODS 

2.1 Data sources 

An internal and a publicly available data source relating to 

AD were selected for the project. 

 In 2005, the National Institutes of Health (NIH) and a 

number of partners started the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI). This multi-site, longi-

tudinal study was designed to evaluate imaging and ge-

netic biomarkers for the onset and progression of Mild 

Cognitive Impairment (MCI) and AD [5]. The study of 

around 800 subjects distributed over 3 cohorts (normal, 

MCI and AD) resulted in the collection of a wide varie-

ty of data, ranging from clinical, cognitive, functional 

and behavioral assessments, imaging derived anatomi-

cal volumes, and blood and Cerebro-Spinal Fluid (CSF) 

biomarker measurements. 

 Internal clinical study data relating to AD that contains 

demographic and treatment information, vital signs, 

cognitive assessments and image derived measure-

ments. 

2.2 Data source formats 

2.2.1 ADNI data The clinical data that are collected by 

participant sites in the ADNI study are deposited into an 

ADNI hosted, web accessible database according to pub-

lished guidelines. Data sets reflecting the entry forms are 

made available to researchers in a flat file format 

(http://www.loni.ucla.edu/ADNI/). 

A Microsoft SQL Server Database was used to host the 

ADNI data within Johnson & Johnson. The flat files were 

mapped to a star schema (Fig. 1), using SQL server integra-

tion services and Perl scripts. This has facilitated access to 

the data through SQL based query and analysis tools. 

2.2.2 Internal clinical study data Clinical data was ex-

tracted from SAS files and loaded in an Oracle Database 

reflecting the original pivoted table structure of the files. 

2.3 Ontologies 

BioPortal (http://bioportal.bioontology.org) was used to 

identify public ontologies that best map to the entities in the 

clinical data sets. Selected ontologies included the Neuros-

cience Information Framework (NIF) [6], the National Can-

cer Institute’s thesaurus (NCIt) and the Clinical Terms sec-

tion of the Systematized Nomenclature of Medicine 

(SNOMED). 

Relevant terms from the ontologies were linked into a 

Common Resource Ontology (CRO) that was loaded into an 

instance of an openRDF triple store from Sesame. 

2.4 The D2RQ platform 

The SQL Server Database and Oracle Database were 

mapped to RDF using D2R server 0.7 (http://www4.wiwiss. 

fu-berlin.de/bizer/d2r-server/). 

3 D2R MAPPING PATTERNS 

There are many options as to how to publish relational data 

to RDF. For general guidelines, see reference [7]. In this 

section, we describe the patterns we used and design options 

we selected to develop the D2R mapping files to ease the 

integration of complex longitudinal data sources. 

3.1 Identifying RDF classes 

D2R provides an automated process to generate the map-

ping file, which converts every table into a class. This ap-

proach did not yield satisfactory results for a database with a 

normalized schema, largely because Third Normal Form 

modeling seeks to eliminate data redundancies, not reflect 

real world objects – such as patients, medical images, etc. 

In dimensional modeling, a logical design technique for 

data warehouses [8], data are grouped into coherent catego-

ries
1
 that more closely mimic reality. This makes the map-

ping of dimensional representations to RDF classes more 

straightforward, and enables the default D2R mapping 

process to yield better results. Further, hierarchies in the 

dimension tables may help to indicate RDF classes and their 

relationships. 

The ADNI data were loaded into a star schema (Fig. 1). 

The Single Nucleotide Polymorphism (SNP) dimension 

contained hierarchical information relating to genes and 

chromosomes. By converting table column headers to 

classes, instead of the default literal values, they could be 

used to link to external ontologies. Fig. 2 shows the high 

level graph that was created when ADNI was mapped to 

OWL. 

  
1 In a star schema implementation, data are stored in fact tables, and cate-

gories in dimension tables. A fact table is joined to dimension tables creat-

ing a star-like representation. 

Fig. 1. High level representation of the star schema used to 

represent ADNI within J&J. 
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3.2 Local namespaces and ontology mappings 

The classes in Fig. 2 were defined in the CRO to avoid 

repeating class definitions for every data source. For classes 

available in public ontologies, the CRO builds a compre-

hensive representation of a domain by importing a standard 

set of complementary ontologies using the guidelines de-

scribed in MIREOT [9]. Using an internal ontology presents 

some advantages: 

 Scientists may have strong preferences for particular 

ontologies. When there is no general agreement about 

which ontology to use, we can include the definition of 

a proxy class in the CRO. The proxy can be linked to a 

number of public ontologies using URI aliases. 

 Not all class definitions that were required for the map-

pings were available in public ontologies (e.g. sub-

scores for the AD Assessment Scale Cognition). These 

definitions could be included within the CRO in antici-

pation of acceptance of the terms in public ontologies. 

 Building a SPARQL query requires knowledge as to 

which ontology was selected during the mapping phase. 

This information can be retrieved from the CRO. 

 Using Semantic MediaWiki technology, scientists can 

discuss CRO term definitions or suggest extensions. 

 Data owners can use the wiki to enter metadata about 

their sources using terminology from the CRO. As Se-

mantic MediaWiki stores its data in RDF it can be used 

as a metadata repository for data source discovery. This 

functionality is not well supported by SPARQL [10]. 

BioPortal is a valuable tool for searching for terms within 

public ontologies. Once the term has been identified, the 

mapping to public ontologies can be handled in a number of 

ways by D2R. For example, volume measurements of brain 

regions on MRI images were linked to the gross anatomy 

section of NIF using lookup tables. The lookup table can be 

stored in the D2R file (using d2rq:TranslationTable) or in the 

database (and used in a d2rq:join). We prefer the latter solu-

tion, but note that this approach restricts the lookup table to 

being in the same database as the data. When SNPs or genes 

were mapped to Bio2RDF (http://bio2rdf.org/), the database 

values were used directly to generate the URI of the object 

in the public ontology at runtime (using d2rq:uriPattern or 

d2rq:uriSqlExpression). 

3.3 Experimental measures 

To encode experimental results in RDF, the experimental 

conditions need to be uniquely specified. For example, to be 

able to correctly interpret a measured value, it needs to be 

clear which patient is being referred to, on which visit, and 

what exactly was measured. 

One option is to define properties for the Patient class for 

every type of experiment. Reification
2
 could be used to 

specify additional conditions (e.g. the visit and the imaging 

modality). However, this option was not selected because 

several levels of reification would be needed to specify the 

experimental conditions completely. This would lead to 

ballooning of the data and such queries are not well sup-

ported by SPARQL. 

We decided to encode every experimental result (the 

measured value and the experimental conditions) in an Ex-

perimentalResult class and link out to the corresponding 

Patient, Visit and Image classes (Fig. 2). However, this still 

leaves several options as to how to encode all of the details 

surrounding the experiment. 

Defining a subclass of the ExperimentalResult class for 

every measurement type (e.g. ClinicalDementiaRating, 

HippocampalVolume, SystolicBloodPressure) was imprac-

tical due to the large number of observation types in the data 

sets. Alternatively, the measurement type can be encoded in 

an ExperimentalResult property name (e.g. hasClinicalDe-

mentiaRating). Contrary to subclass definitions, we can 

avoid writing D2R code for property definitions for a large 

number of measurement types using a d2rq:dynamicProperty 

statement, which specifies a pattern to generate the property 

URI at runtime. However, some experimental conditions are 

hard to describe in a property name
3
 and are difficult to use 

in queries. We therefore took a different approach. 

We decided to use two properties to specify the experi-

mental conditions and measurement value of an Experimen-

talResult, namely hasResultType and hasValue. The Re-

sultType class can contain multiple properties to specify the 

  
2 Reification is a process that uses RDF to make statements about other 

RDF triples. The RDF vocabulary to describe a reified statement uses three 

triples to specify a single assertion, thus inflating the database. 
3 For example, take a property like hasStandardDeviationOfCorticalThick-

nessOfRightTransverseTemporalCortex. 

Fig. 2. Ontology used to represent content of the ADNI data  

(ER=ExperimentalResult, RT=ResultType). 
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experimental conditions fully and can be used as a bridge to 

public ontologies. 

3.4 Pivoted and depivoted tables 

The depivoted format of the fact tables in Fig. 1 can be 

converted to RDF using the previously described tech-

niques. Occasionally, a column in the fact table may contain 

values that can be used as predicates. In this case, using a 

d2rq:dynamicProperty may be sufficient to define all proper-

ties for the fact table at once. The mapping becomes inde-

pendent of the properties listed in the fact table, and remains 

valid as rows introducing new properties are added to the 

table. 

For statistical analysis, clinical data are mostly 

represented in a pivoted table format, where each patient is 

represented as a single row and columns represent clinical, 

laboratory and image results for each visit. Table columns 

can easily be mapped to properties connected to a Patient 

class. But as discussed above, we may have to introduce 

impractical property names to specify the experimental 

conditions. 

Forming ExperimentalResult classes on a pivoted table 

requires that column names of the table are parsed and 

mapped to literal values or URIs. Where a D2R mapping 

would normally create an instance for every table row, this 

use case requires the mapping to create a new instance for 

every table cell (for selected columns). This is equivalent to 

depivoting the table before applying the mapping. The D2R 

release we used did not have this functionality. Consequent-

ly, we did the depivoting operation in the database instead. 

4 DISCUSSION 

This paper highlights many design considerations that need 

to be taken into account when mapping relational databases 

to RDF. The approach taken for the mapping influences the 

ease with which data sources can be integrated, and the 

simplicity with which they can be queried. Further, although 

D2R is able to map most relational schemata to RDF, there 

are strong benefits to dimensional modeling over norma-

lized approaches. This should be taken into consideration 

when designing schemata for data sources that are being 

brought into an organization. 

Mapping data sources to public ontologies is a time con-

suming process. It also requires that subject matter experts 

are involved to ensure that the work is done accurately. This 

is especially the case when data sources are referencing 

brain regions, as the neuroscience domain does not have a 

common lexicon. 

The Linked Data approach has the significant advantage 

that experts can incrementally and independently add data 

sources to the RDF graph. This enables the gradual creation 

of an integrated ecosystem of data. To allow domain experts 

to contribute requires an architecture for ontology curation 

and data source discovery, a strategy on data governance 

and stewardship and a culture of data caring and sharing. 

In this paper, we focused on lessons learned using D2R to 

map clinical data to RDF for a Linked Data project. As 

more data sources are added, we will need to adapt the do-

main model in our CRO to accommodate new class defini-

tions. Going forwards, it is likely that we will use the 

emerging Translational Medicine Ontology (http://esw.w3. 

org/HCLSIG/PharmaOntology) to meet our needs. This is 

because it includes a broader set of class definitions, and 

uses the Basic Formal Ontology (http://www.ifomis.org/ 

bfo). 
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