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The NCBO and PharmGKB
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• A joint project

• Content of PharmGKB

- Current: 

pharmacogenomics (PGx) relationships

Gene – Drug ; Gene – Disease ; Drug – Disease

- Goal: 

to provide more precise relationships
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Outline

1. Limitations of co-occurrences

2. Construction of semantic network

1. Algorithm to extract raw relationships

2. Semi-automated ontology building

3. Comprehensive knowledge network from 1 & 2
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1. Avoid false positive connections

Limitations of co-occurrence 

(that we wanted to solve)

“Trimethoprim inhibits activity of CYP2C8 

while sulfamethoxazole inhibits CYP2C9 

activity.”
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1. Avoid false positive connections

2. Characterize fine-grain semantics of relationships
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1. Avoid false positive connections

2. Characterize fine-grain semantics of relationships

3. To consolidate synonyms (normalize):

• Between complex entity names: 

• Between relationships: 

Limitations of co-occurrence 

(that we wanted to solve)

inhibit

repress          � INHIBIT

antagonize

synthesis of PGE2

PGE2 formation   �dinoprostone_synthesis

Prostaglandin E2 production 

“Trimethoprim inhibits activity of CYP2C8 

while sulfamethoxazole inhibits CYP2C9 

activity.”

“CYP3A4 mRNA expression was increased 

significantly by rifampicin exposure in 

human hepatocytes.”
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Several steps of text processing enable 

extracting relationship semantics
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~87,000,000 

dependency graphs

~41,000 raw 

relationships

The method extracts 

high quality typed relationships
Evaluation:

Randomly selected 220 raw relationships: 

classified into 3

“polymorphisms in VKORC1 are associated 

with warfarin dose.”

•associated(VKORC1_polymorphisms,warfarin_dose)

= true and complete

• associated (VKORC1_polymorphisms, warfarin)

= true and incomplete

•polymorphisms (VKORC1, warfarin_dose) 

= false

Results:

• 87.7% were complete or incomplete 

true positives

• 70%    true and complete

• 17.7%  true and incomplete

• 12.3% were false positives

~17,000,000 

abstracts
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Issue: we extracted 

heterogeneous relationships
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•There is no relation 

ontology for most of 

specialized domains

•We created one from 

extracted relationships
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We built and use an ontology to 

normalize relationships

ontology
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An ontology organizes the “world” into

concepts and roles (1/2)
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An ontology organizes the “world” into

concepts and roles (2/2)
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We manually created a PGx ontology 

“bottom-up”
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We manually created a PGx ontology 

“bottom-up”
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We manually created a PGx ontology 

“bottom-up”

237 concepts

76 roles

12



We use the ontology to normalize the raw 

relationship (subject, relation and object)
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We use the ontology to normalize the raw 

relationship (subject, relation and object)
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Example: two sentences but one fact
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Example of network (1/3): VKORC1
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Example of network (2/3): 

VKORC1_something
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Example of network (3/3): AD
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Example of network (3/3): AD
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Conclusion

• A method to build semantic network

• Used in PGx:

– For curation and knowledge summarization

@PharmGKB

– For knowledge discovery

e.g.Predicting Drug-Drug interaction

=>Yael Garten’s PhD thesis
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Coulet et al. Journal of Biomedical Informatics, In Press, 2010

or

adrien.coulet@loria.fr

Thanks

And thanks to Yael Garten for many slides

Questions?
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