Proposal: Actions in Schema.org (2013-05-11)

Editors: Yaar Schnitman (Google), Steve Macbeth (Microsoft)

Status: This document builds upon and supercedes earlier proposals from the schema.org
team for describing Actions and Activities. See
http://www.w3.org/wiki/WWebSchemas/ActivityActions for earlier work. Discussion on the design
is welcomed via the W3C WebSchemas public-vocabs@w3.org list. See W3C Wiki for details
and archives.

Overview

This document proposes the introduction of "verbs" to the schema.org vocabulary, in the form of
a new Class of Things, called Actions.

Problems Actions are supposed to solve:

1. ldentifying the semantic purpose of web forms: User agents would like to understand
the semantic meaning of a form in an HTML page. For example, know whether its a form
that performs a search across the site, register a new account, or make an order.

2. Actionable data: Schema.org is used in various communication channels, such as web,
email, notifications and social posts. In such contexts it is useful if the semantic items
also describes interactive aspects of them selves. For example:

a. An event could describe how to RSVP to the event.
b. A movie could describe how to buy tickets for the movie.
c. A website could describe how to register for the site.

3. Activity confirmations and activity logs: Once an action has been performed, there
needs to be a way to record and describe it in schema.org. For example:
a. A confirmation email would need to describe a completion of an action.
b. An activity stream would need to describe the execution of an action.

4. Delegation of Action Execution to other applications: Typically publishers of data
would also be in charge of executing actions on the data. However, we want to allow
publishers to define actions, but let other parties execute actions. For example:

a. A website that presents restaurant recommendations suggests a 3rd party tool

http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2Fwiki%2FWebSchemas%2FActivityActions&sa=D&sntz=1&usg=AFQjCNFvtzdw8Qy4Iyv3jD9aSrexE45_OA
mailto:public-vocabs@w3.org

for booking restaurant tables.

The motivations for solving the problems above are:

Improve search of both public web and personal private web history (browser history)
Improve accessibility

Improve interoperability between applications

Help user agents to perform tasks on behalf of users

Executing Actions

Once actions are standardized in Schema.org, user-agents can standardize the way actions are
presented to users and are executed.

User-agents can follow the following algorithm when trying to execute actions:

1.

Web Page: If an action has a URL, user-agent can execute the action by opening the
URL in a web browser and presenting it to the user. Alternatively, user-agent may open a
dedicated installed app if it knows that such URLs are mapped to that app (via
platform-specific deeplinking mechanisms).

Web Form: If the action is declared for a <form> element, user-agent can execute the
action by presenting the webpage containing the form to the user, or possibly, executing
the form on behalf of the user (assuming the user-agent has all the required information).
Installed Application: If the action has a handler of type ApplicationHandler, the
user-agent should open the Application, and pass the action description to the application
(exact format is platform-specific). See "Declaring an Installed App Handler" below for
details.

Inline Handler: If the action has a handler of type InlineHandler, the user-agent may
render a specialized input-capturing Ul for that specific type of action, capture the user's
input and send the data to the action publisher. The user-agent however needs some
extra information in order to perform this. See "Declaring an Inline Handler" below for
details.

Multiple Levels of Execution Specificity

This proposal described above allows for varying degrees of specificity of which actions apply to
an item, and how to execute items.

1.

An item can be declared with no actions at all. For example, a web page may contain a
description of a Movie. Applications may register as handlers for such items. This is
described here: Associating an Application with an ltem Type or an Action Type.

An item can be declared with tentative actions but no explicit way to execute these
actions. For example, a movie web page may declare that is available for sale, but not
specify how it can be bought, leaving that up to user-agents to figure it out. See Declaring
an Action for an Item.

https://docs.google.com/a/google.com/document/d/s35iKas77MOvDjxWyNLQE1Q/headless/print#bookmark=id.jesondimmao6
https://docs.google.com/a/google.com/document/d/s35iKas77MOvDjxWyNLQE1Q/headless/print#bookmark=id.j13i2ze1k49c
https://docs.google.com/a/google.com/document/d/s35iKas77MOvDjxWyNLQE1Q/headless/print#bookmark=id.kex0asjvtd4u
https://docs.google.com/a/google.com/document/d/s35iKas77MOvDjxWyNLQE1Q/headless/print#bookmark=id.40sj19ek0u06
https://docs.google.com/a/google.com/document/d/s35iKas77MOvDjxWyNLQE1Q/headless/print#bookmark=id.40sj19ek0u06

3. An item can be declared with a tentative action as well as instructions of how to execute
it. The instructions can be:
a. A url of a web page where the action can be performed.
b. A web form that can be used to perform the action.
c. An installed application that can perform the action.
d. Aninline action handler that user agents can execute directly.

Definitions

Thing > Action

Base type for all schema.org Actoins. Whereas most of schema.org types represent "Nouns",
an action represents a "Verb", making it possible to describe potential and concrete actions on
schema.org types.

Property Type Description

status ActionStatus The status of the action.

handler ActionHandler Handler that can potentially execute the action.
performedBy Thing The performer of the action.

startTime Datetime When was the action performed (start time). An action

with no startTime and endTime is typically in
TENTATIVE or PENDING state.

endTime Datetime When was the action performed (end time). An action
with no startTime and endTime is typically in
TENTATIVE or PENDING state.

location Location Where the action is performed.

Thing > Enumeration > ActionStatus

Value Description

TENTATIVE The action is proposed.

PENDING Action is in the process of being executed.
COMPLETED Action has been executed.

CANCELLED

Action was executed but was cancelled.

Additions to Thing
Property Type Description
action Action Action that apply to the thing.

Action Sub-Types
SearchAction, LogInAction, ... These are defined in Appendix A.Thing > ActionHandler

No properties

Thing > ActionHandler > ApplicationHandler
Used to declare how which installed application can execute the action.

Property Type Description

application SoftwareApplicatio | Information about the application that can perform the
n action.

url URL URL to invoke the application (deep link)

Additions to the existing Thing > SoftwareApplication

Property

Type

Description

handles

HandlerTarget

Action that apply to the thing.

Think > HandlerTarget
Uses in SoftwareApplication to declare type & action combinations that application can handle.

Property Type Description

targetType Type Schema.org types that the handler is applicable to.

actionType Type Schema.org action sub-types that hte handler is
applicable to.

Thing > ActionHandler > InlineHandler

https://docs.google.com/a/google.com/document/d/s35iKas77MOvDjxWyNLQE1Q/headless/print#bookmark=id.bojr41nv3v8k

Used to declare how to perform inline action execution.

Property Type Description

method HttpMethod Enum Values: GET or POST.

url URL Where to send completed actions
encoding Encoding Enum Values: urlencoding or json-Id

Thing > ActionHandler > WebHandler
Declares a handler that is a web page where the action can be completed.

Property Type Description

url URL The web page where the action can be completed.

Thing > ActionHandler > WebFormHandler
Declares a handler that is a web form where the action can be completed.

Property Type Description
url URL The web form where the action can be completed.
formld String The id of the form in the web page.

Use Cases

Declaring the purpose of a webpage

Many webpages are not about a specific item (Movie, book, or article), but are functional pages,
such as landing pages, search pages, registration forms, order forms, etc. For example, the
following markup (in blue) can be added to any purchase order web page to describe the
functional purpose of the page:

<div itemscope itemtype="http://schema.org/BuyAction">
<meta itemprop="product” content="Diapers"/>
</div>

http://schema.org/BuyAction

Notes:
1. The url of the webpage where the action is declared is the action's url property.
2. The "product" property of the BuyAction indicates indicates what is the item being bought.
Each action type has its own properties that provide more semantic information about the

action.

3. When stated in this form, the action's default state is TENTATIVE. The COMPLETED
state may be used for web pages that are confirmations of performed actions.

4. This form of declaration is equivalent of declaring a http://schema.org/WebPage item
with the action property as above.

Declaring the purpose of forms in a web page

The following markup (in blue) can be added to a <form> element to describe semantic
meaning of the form:

<form action="http://mysite/search” method="get" itemscope
itemtype="http://schema.org/SearchAction">
<input itemprop="query" type="text" name="search"/>
<input type="button" title="Search"/>
</form>

Notes:
1. The <form> is marked as an item of type SearchAction. SearchAction is defined in

Appendix A.
2. The form's text input field is marked as the SearchAction's queryString property.
3. When stated in this form, the action's default state is TENTATIVE.

Declaring the semantic of a link in a web page
The following markup (in blue) can be added to a <a> element to describe the semantic
meaning of the hyperlink:

<a href="http://mysite.com/login" itemscope
itemtype="http://schema.org/LogInAction">

http://schema.org/LogInAction

<meta itemprop="service" content="mysite.com"/>
Log In

Notes:
5. Theurl"http://mysite.com/login" is where the LoglnAction can be performed.

6. The "service" property of the LogInAction indicates the service name that the user going
to be logged-in into.

7. When stated in this form, the action's default state is TENTATIVE.

8. This form of declaration can be seen a shorthand for using an action handler of type
WebHandler. See below.

Other supported ways to declare the same thing as above which are more verbose but may
have :

<script type="application/json-1d">

{
‘@context': 'schema.org',
'@type': 'http://schema.org/LogInAction’,
'service': 'mysite.com’,

"handler': {
'@type’': 'http://schema.org/WebHandler',
'url': 'http://mysite.com/login’,
}
}

</script>

which is also equivalent to:

<script type="application/json-1d">

{
'@context': 'schema.org',
'@type': 'http://schema.org/LogInAction’,
'service': 'mysite.com’,
'url': 'http://mysite.com/login’',
}
</script>

Declaring an Action for an Item
The following markup (in blue) can be added to existing microdata elements to specify actions:

http://www.google.com/url?q=http%3A%2F%2Fmysite.com%2Flogout&sa=D&sntz=1&usg=AFQjCNE2lJq_gdcKP2T6gf5n564raq9nPw

<div itemscope itemtype="http://schema.org/SportEvent”>
Miami Heat at Philadelipa 76ers - Game 3
<meta itemprop="startDate" content="2016-04-21T720:00">
<a itemprop="action" itemscope
itemtype="http://schema.org/BuyAction"
href="http://mysite/buyTickets?event=123">
Buy Ticket
</div>

Notes:
1. A "BuyAction" is specified as an "action" property of a "SportEvent".
2. Theurl "http://mysite/buyTickets?event=123" is where the action can be

performed.
. When stated in this form, the action's default state is TENTATIVE.
10. The "name" property of the action is infered from the text of the hyperlink "BuyTicket".

Recording an Action

The following markup (using json-Id) can be used to record an action that has been performed.
Such records are useful in confirmation web-pages, an activity streams, or in confirmation email.

<script type="application/json-1d">

{
'@context': 'schema.org',
'@type': 'http://schema.org/BuyAction’,
'startTime': '2013-04-02T12:31-0800"',
‘endTime': '2013-04-02T12:31-0800',
"performer': [Person or Organization],
"status': 'COMPLETED',
"bought': [Product or Service],

}

</script>

Notes:

1. The BuyAction has the status 'COMPLETED'. If not specified, this status can be inferred
from the existance of startTime & endTime.

Declaring an Installed App Handler

An action can refer the user to a specific installed application that may be used to execute the
action. This is done by specifying an explicit hander of type ApplicationHandler on the action. The
following example shows how a website that describes the movie "Skyfall" may add a Buy
Tickets action that is fulfilled by the "Fandango for Android" application:

<script type="application/json-1d">
{
'@context': 'schema.org',
'@type': 'http://schema.org/Movie’,
"name': 'Skyfall',
‘url': 'http://skyfallmovie.com/',
. information about the movie ...
‘action': {
'@type:': 'http://schema.org/ViewAction',
"handler:' {
'@type': 'http://schema.org/ApplicationHandler’,
'application’: {
'@type': 'http://schema.org/SoftwareApplication’,
'name’': 'Netflix.com',
'platform’': 'Android’,
'platformversion': '2.1°,
'appId': '123456abcdef’,
}s
'url’': 'netflix://play?movie=skyfall’,
3
}
}

</script>

Notes:
1. The User-Agent should delegate the execution of the action to an installed App specified
in the action.handler.application property.
2. action.handler.application property can alternatively contain the name or URL of a
webpage containing the application specification.
3. action.url is the deeplink (=command line argument) that is passed to the invoked
application.
4. More than a single handler can be specified.
More than a single handler.application can be specified.
6. User agents may also infer the application based on the deeplink in action.handler.url.

o

Associating an Application with a Type or an Action Type

Application developers may want to tell the OS or App Store which schema.org Types and
Action Types they can handle. For example, the Netflix Android Application can be used to
perform the ViewAction and RentAction on Movies. We suggest the following markup to
describe an application and the types+action types it can handle.

<script type="application/json-1d">
{
'@context': 'schema.org',
'@type': 'http://schema.org/SoftwareApplication’,
'name': 'Netflix for Android',
'platform': 'Android',
‘platformVersion’': '2.1°',
"appId’': '123456abcdef’, // Platform-specific unique application id
'handles': {
'@type': 'http://schema.org/HandlerTarget',
"targetType': 'http://schema.org/Movie’,
'actionType': {
'http://schema.org/ViewAction',
"http://schema.org/RentAction’

1
}

</script>

Notes:

1. Netflix may not support viewing or renting ANY movie, but only movies that are in in its
catalogue. User Agents should therefore present to Netflix the movie that the user is
interested in viewing or renting, or access Netflix's catalogue somehow, in order to make
a decision whether to suggest the Netflix App to the user as a way to execute the View
action.

2. This markup can be placed in the application's download page (so web crawlers can find
it) and/or in its manifest.

Declaring an Inline Action Handler

As actions are standardizing by schema.org, user-agents may provide standardized handling for
some actions. That however requires some extra help from the publisher of the action when data

needs to be sent back from the publisher.

A good example is Event RSVP, which is a pretty common action. Event is already defined in
schema.org and we are introducing EventRsvpAction, with "answer" (=Yes/No/Maybe),
"comment" and "bringingOthers" properties. A publisher may embed the following in a post or an
email to suggest to user agents how to complete the action:

<script type="application/json-1d">
{
'@context': 'schema.org',
'@type': 'http://schema.org/Event’,
"name’': 'John's Dinner Party’,
'url': 'http://events.com/event?id=123",
‘startDate’': '2013-04-03T19:00-0800"',
. more information about the event ...
‘action': {
'@type:': 'http://schema.org/EventRsvpAction’,
"handler:' {
'@type': 'http://schema.org/InlineHandler’,
'method': 'post'’,
'encoding': 'uri-encoded',
'url’': 'http://events.com/rsvp?event=123"',
'requiredProperties': ['answer'],
'optionalProperties': ['comment', 'bringingOthers'],
}
}
}

</script>

Notes:

1. action.handler.requiredProperties indicates which properties need to be completed by the
user agent (done by asking the user for the information). Note that these properties are
defined on http://schema.org/EventRsvpAction, so the user agent knows the semantics
of each property.

2. action.handler.optionalProperties indicates which properties can be completed by the
user agent, but are not mandatory.

3. action.handler.method, encoding and url indicate where and how to send the completed
action information.

Relationship with Intent Systems

Typical intent systems, like Android Intents or Web Intent consist of 2 main components:
1. Intents: Data objects that express a tentative operation that needs to be performed.
2. Intent Handlers: Components that can execute intents.

This proposal is designed to match these concepts. Actions map to Intents. Action Handlers
map to Intent Handlers. User-Agent may therefore bridge platform specific intent systems with
the schema.org actions.

For example, a ViewAction for an item of type Image, can be automatically mapped by the user
agent to a platform intent for viewing images. A platform application that registers itself as intent
handled for viewing images can be used by the user-agent as an ActionHandler for image
ViewAction.

Custom Actions

This proposal includes adding a vocabulary of pre-defined actions to schema.org. Actions, like
any schema.org type, have semantic meanings, and therefore it makes sense to standardize.

However, its expected that various parties will want to extend the actions vocabulary.
Schema.org has an extensions mechanism (see http://schema.org/docs/extension.html) which
can be used to introduce custom actions.

For example, say that Netflix want to define a special verb for adding movies to their queue. They
could name the action:

http://schema.org/Action/NetflixAddToQueueAction

Since the action is not part of the schema.org vocabulary, user-agents might not make sense of
it. However, they will know it is an action. Netflix might help user-agents make sense of it, by
populating common properties such as "name", "url" and even basic handlers, which will make
the action executable. For more enhanced user experience, Netflix and its collaborators may
create installed applications associated with this action type.

Furthermore, instead of extending Action, Netflix may extend a more specific action sub-type,
such as http://schema.org/RentAction:

http://schema.org/RentAction/NetflixAddToQueueAction

This will give user-agents even more understanding what the action is, which might help them
index, render and execute it better.

http://schema.org/docs/extension.html

Appendix - Preliminary Action Sub-Type Definitions

Following is a list of Action sub-types. Each action corresponds with a "verb", and has properties
corresponding with the qualifiers of the action.

This is an initial list that covers all examples in this document. Over time, Schema.org will
extend this list with more actions corresponding with more verbs.

In addition, schema.org may also standardize more specialized actions: For example, in
addition to Thing > Action > BuyAction, schema.org might introduce more specific actions,
such as:

e Thing > Action > BuyAction > BuyTicketAction

e Thing > Action > BuyAction > BuyTicketAction > BuyMovieTicketAction.

Note that such actions can be declared using solely with BuyAction. The intention of
introducing more specialized actions in the vocabulary is to make markup simpler. For
example, instead of:

{
"@type": "BuyAction",
"product": {
"@type": "Ticket", // Note that Ticket is not in schema.org vocabulary.
"ticketFor": {
"@type": "Movie",
... details about the movie ...
}
"seat": "14F",
... other ticket details ...
}
}

publishers would declare:

"@type": "BuyMovieTicketAction",
"movie": { ... movie details ..." }
"seat": "14F",

... ticket details ...

}

Thing > Action > SearchAction

Property Type Description

query Text The search query string

Thing > Action > EventRsvpAction

Property Type Description

event Event The event being RSVP-ed

guest Person The person being invited

answer EventRsvpAnswer | Values: Yes/No/Maybe

comment Comment An RSVP comment

bringingOthers | Number How many other guests the guest is bringing with her
bringingKids Number How many kids the guest is bringing with her

Thing > Action > BuyAction

Property Type Description
product Product or Service | The product that is being bought
order Order The order details

Thing > Action > LogIinAction

Property

Type

Description

service

Text or URL

The service being logged out from

Thing > Action > ViewAction

Property

Type

Description

item

Thing

The item that is being viewed

Thing > Action > RentAction

Property

Type

Description

item

Thing

The item that is being rented

