

 RDFa — RDF in Attributes

 W3C Recommendation

 Ben Adida, Mark Birbeck, Ivan Herman, Gregg Kellogg, Shane McCarron, Steven Pemberton, and Manu Sporny (eds.)

 World Wide Web Consortium (W3C)

 17 March, 2015

 [image: W3C main logo]

 Note: this ePub edition does
 notrepresent the authoritative texts of the specifications; please consult the
 originalson the
 W3C Web Sitefor those

 Copyright© of the original documents:
 2015W3C
 ®(
 MIT,
 ERCIM,
 Keio,
 Beihang).

All right reserved. W3C
 liability,
 trademark, and
 document userules apply.

 Original, authoritative documents:

 	
 RDFa 1.1 Primer:

 http://www.w3.org/TR/2015/NOTE-rdfa-primer-20150317/

 	
 RDFa 1.1 Core:

 http://www.w3.org/TR/2015/REC-rdfa-core-20150317/

 	
 RDFa 1.1 Lite:

 http://www.w3.org/TR/2015/REC-rdfa-lite-20150317/

 	
 HTML+RDFa 1.1:

 http://www.w3.org/TR/2015/REC-html-rdfa-20150317/

 	
 XHTML+RDFa 1.1:

 http://www.w3.org/TR/2015/REC-xhtml-rdfa-20150317/

 Table of Contents

 	
 Cover

 	
 Table of Contents

 	
 RDFa 1.1 Primer

 	
 Introduction

 	
 Using RDFa

 	
 You Said Something about RDF?

 	
 RDFa Tools

 	
 Acknowledgments

 	
 References

 	
 RDFa 1.1 Core

 	
 Motivation

 	
 Syntax Overview

 	
 RDF Terminology

 	
 Conformance

 	
 Attributes and Syntax

 	
 CURIE Syntax Definition

 	
 Processing Model

 	
 RDFa Processing in detail

 	
 RDFa Initial Contexts

 	
 RDFa Vocabulary Expansion

 	
 CURIE Datatypes

 	
 The RDFa Vocabulary

 	
 Changes

 	
 Acknowledgments

 	
 References

 	
 RDFa 1.1 Lite

 	
 Introduction

 	
 The Attributes

 	
 Conformance

 	
 Change History Since the Last Published Recommentation

 	
 References

 	
 HTML+RDFa 1.1

 	
 Introduction

 	
 Conformance

 	
 Extensions to RDFa Core 1.1

 	
 Extensions to the HTML5 Syntax

 	
 Backwards Compatibility

 	
 About this Document

 	
 References

 	
 XHTML+RDFa 1.1

 	
 Introduction

 	
 Conformance

 	
 Additional RDFa Processing Rules

 	
 XHTML+RDFa 1.1 Definition

 	
 Metainformation Attributes Module

 	
 XHTML+RDFa XML Schema

 	
 XHTML+RDFa Document Type Definition

 	
 Deployment Advice

 	
 Change History

 	
 Acknowledgments

 	
 References

 	Begin reading

 	Table of Contents

 [image: W3C]

 RDFa 1.1 Primer - Third Edition

 Rich Structured Data Markup for Web Documents

 W3C Working Group Note 17 March 2015

 	This version:

 	http://www.w3.org/TR/2015/NOTE-rdfa-primer-20150317/

 	Latest published version:

 	http://www.w3.org/TR/rdfa-primer/

 	Latest editor's draft:

 	http://www.w3.org/2010/02/rdfa/sources/rdfa-primer/Overview-src.html

 	Previous version:

 	http://www.w3.org/TR/2013/NOTE-rdfa-primer-20130822/

 	Editors:

 	Ivan Herman, W3C, ivan@w3.org

	Ben Adida, Creative Commons, ben@adida.net

	Manu Sporny, Digital Bazaar, msporny@digitalbazaar.com

	Mark Birbeck, webBackPlane.com, mark.birbeck@webBackplane.com

 Please check the errata for any errors or issues
 reported since publication.

 This document is also available in this non-normative format:

 diff to previous version

 Copyright ©
 2010-2015

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang).

 W3C liability,
 trademark and

 document use

 rules apply.

 Abstract

 The last couple of years have witnessed a fascinating evolution: while the Web was initially
 built predominantly for human consumption, web content is increasingly consumed by machines
 which expect some amount of structured data. Sites have started to identify a page's title,
 content type, and preview image to provide appropriate information in a user's newsfeed when
 she clicks the "Like" button. Search engines have started to provide richer search results by
 extracting fine-grained structured details from the Web pages they crawl. In turn, web
 publishers are producing increasing amounts of structured data within their Web content to
 improve their standing with search engines.

 A key enabling technology behind these developments is the ability to add structured data to
 HTML pages directly. RDFa (Resource Description Framework in Attributes) is a technique that
 allows just that: it provides a set of markup attributes to augment the visual information on
 the Web with machine-readable hints. In this Primer, we show how to express data using RDFa
 in HTML, and in particular how to mark up existing human-readable Web page content to express
 machine-readable data.

 This document provides only a Primer to RDFa 1.1. The complete specification of RDFa, with
 further examples, can be found in the RDFa 1.1 Core [rdfa-core], RDFa Lite [rdfa-lite],
 XHTML+RDFa 1.1 [xhtml-rdfa], and the HTML5+RDFa 1.1 [html-rdfa] specifications.

 Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

 This document was published by the RDFa Working Group as a Working Group Note.

 If you wish to make comments regarding this document, please send them to
 public-rdfa@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 Publication as a Working Group Note does not imply endorsement by the W3C
 Membership. This is a draft document and may be updated, replaced or obsoleted by other
 documents at any time. It is inappropriate to cite this document as other than work in
 progress.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

 This document is governed by the 14 October 2005 W3C Process Document.

Table of Contents
	1.
 Introduction
 	1.1
 HTML vs. XHTML

	1.2
 Validation

	2.
 Using RDFa
 	2.1
 The Basics of RDFa: RDFa Lite
 	2.1.1
 The First Steps: Adding Machine-Readable Hints to Web Pages
 	2.1.1.1
 Hints on Social Networking Sites

	2.1.1.2
 Links with Flavor

	2.1.1.3
 Setting a Default Vocabulary

	2.1.1.4
 Multiple Items per Page

	2.1.2
 Exploring Further: Social networks
 	2.1.2.1
 Contact Information

	2.1.2.2
 Describing Social Networks

	2.1.3 Repeated Patterns
	2.1.4
 Internal References

	2.1.5
 Using Multiple Vocabularies
 	2.1.5.1
 Repeating properties

	2.1.5.2
 Default Prefixes (Initial Context)

	2.2
 Going Deeper: RDFa Core
 	2.2.1
 Using the content attribute

	2.2.2
 Datatypes

	2.2.3
 Alternative for setting the context: about

	2.2.4
 Alternative for setting the property: rel

	3.
 You Said Something about RDF?
 	3.1
 Custom Vocabularies

	4.
 RDFa Tools

	5.
 Acknowledgments

	A. References	A.1 Informative references

 1.
 Introduction

 The web is a rich, distributed repository of interconnected information. Until recently, it
 was organized primarily for human consumption. On a typical web page, an HTML author might
 specify a headline, then a smaller sub-headline, a block of italicized text, a few paragraphs
 of average-size text, and, finally, a few single-word links. Web browsers will follow these
 presentation instructions faithfully. However, only the human mind understands what the
 headline expresses-a blog post title. The sub-headline indicates the author, the italicized
 text is the article's publication date, and the single-word links are subject categories.
 Computers do not understand the nuances between the information; the gap between what
 programs and humans understand is large.

 [image: presentation vs. semantics]

 Figure 1: On the left, what browsers see. On the right, what
 humans see. Can we bridge the gap so that browsers see more of what we see?

 Fig. 1 presentation vs. semantics

 What if the browser, or any machine consumer such as a Web crawler, received information on
 the meaning of a web page's visual elements? A dinner party announced on a blog could be
 copied to the user's calendar, an author's complete contact information to the user's address
 book. Users could automatically recall previously browsed articles according to
 categorization labels (i.e., tags). A photo copied and pasted from a web site to a school
 report would carry with it a link back to the photographer, giving him proper credit. A link
 shared by a user to his social network contacts would automatically carry additional data
 pulled from the original web page: a thumbnail, an author, and a specific title. When web
 data meant for humans is augmented with hints meant for computer programs, these programs
 become significantly more helpful, because they begin to understand the data's structure.

 RDFa allows HTML authors to do just that. Using a few simple HTML attributes, authors can
 mark up human-readable data with machine-readable indicators for browsers and other programs
 to interpret. A web page can include markup for items as simple as the title of an article,
 or as complex as a user's complete social network.

 1.1
 HTML vs. XHTML

 Historically, RDFa 1.0 [rdfa-syntax] was specified only for XHTML. RDFa 1.1 [rdfa-core]
 is the newer version and the one used in this document. RDFa 1.1 is
 specified for both XHTML [xhtml-rdfa] and HTML5 [html-rdfa]. In fact, RDFa 1.1 also
 works for any XML-based languages like SVG [svg11]. This document uses HTML in all of
 the examples; for simplicity, we use the term "HTML" throughout this document to refer to
 all of the HTML-family languages.

 1.2
 Validation

 RDFa is based on attributes. While some of the HTML attributes (e.g., href,
 src) have been re-used, other RDFa attributes are new. This is important
 because some of the (X)HTML validators may not properly validate the HTML code until they
 are updated to recognize the new RDFa attributes. This is rarely a problem in practice
 since browsers simply ignore attributes that they do not recognize. None of the
 RDFa-specific attributes have any effect on the visual display of the HTML content.
 Authors do not have to worry about pages marked up with RDFa looking any different to a
 human being from pages not marked up with RDFa.

 2.
 Using RDFa

 2.1
 The Basics of RDFa: RDFa Lite

 We begin the introduction to RDFa by using a subset of all the possibilities called RDFa
 Lite 1.1 [rdfa-lite]. The goal, when defining that subset, was to define a set of
 possibilities that can be applied to most simple to moderate structured data markup
 tasks, without burdening the authors with additional complexities. Many Web authors will
 not need to use more than this minimal subset.

 2.1.1
 The First Steps: Adding Machine-Readable Hints to Web Pages

 Consider Alice, a blogger who publishes a mix of professional and personal articles
 at http://example.com/alice. We will construct markup examples to
 illustrate how Alice can use RDFa. A more complete markup of these examples is
 available on a
 dedicated page.

 2.1.1.1
 Hints on Social Networking Sites

 Alice publishes a blog and would like to provide extra structural information on
 her pages like the publication date or the title. She would like to use the terms
 defined in the Dublin Core vocabulary [dc11], a set of terms that are widely
 used by, for example, the publishing industry or libraries. Her blog already
 contain that information:

 Example 1
<html>
<head>
 ...
</head>
<body>
 ...
 <h2>The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
</body>

 This information is, however, aimed at humans only; computers need some
 sophisticated methods to extract it. But, using RDFa, she can annotate her
 page to make the structured data clear:

 Example 2
<html>
<head>
 ...
</head>
<body>
 ...
 <h2 property="http://purl.org/dc/terms/title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
</body>

 (Notice the markup colored in red: these are the RDFa "hints".)

 One useful way to visualize the structured data is:

 [image: relationship value is text]

 Figure 2: A visualization of the structured data
 for a blog post with a title of "The Trouble with Bob" and a creation date.

 Fig. 2 relationship value is text

 It is worth emphasizing that RDFa uses URLs to identify just about everything.
 This is why, instead of just using properties like title or
 created, we use http://purl.org/dc/terms/title and
 http://purl.org/dc/terms/created. The reason behind this design
 decision is rooted in data portability, consistency, and information sharing.
 Using URLs removes the possibility for ambiguities in terminology. Without
 ensuring that there is no ambiguity, the term "title" might mean "the title of a
 work", "a job title", or "the deed for real-estate property". When each
 vocabulary term is a URL, a detailed explanation for the vocabulary term is just
 one click away. It allows anything, humans or machines, to follow the link to
 find out what a particular vocabulary term means. By using a URL to identify a
 particular creation time, for example
 http://purl.org/dc/terms/created, both humans and machines can
 understand that the URL unambiguously refers to the "Date of creating the
 resource", such as a web page.

 By using URLs as identifiers, RDFa provides a solid way of disambiguating
 vocabulary terms. It becomes trivial to determine whether or not vocabulary terms
 used in different documents mean the same thing. If the URLs are the same, the
 vocabulary terms mean the same thing. It also becomes very easy to create new
 vocabulary terms and vocabulary documents. If one can publish a document to the
 Web, one automatically has the power to create a new vocabulary document
 containing new vocabulary terms.

 2.1.1.2
 Links with Flavor

 The previous example demonstrated how Alice can markup text to make it machine
 readable. She would also like to mark up the links in a machine-readable way, to
 express the type of link being described. RDFa lets the publisher add a "flavor",
 i.e., a label, to an existing clickable link that processors can understand. This
 makes the same markup help both humans and machines.

 In her blog's footer, Alice already declares her content to be freely reusable,
 as long as she receives due credit when her articles are cited. The HTML includes
 a link to a Creative Commons [cc-about] license:

 Example 3
<p>All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>

 A human clearly understands this sentence, in particular the meaning of
 the link with respect to the current document: it indicates the document's
 license, the conditions under which the page's contents are distributed.
 Unfortunately, when Bob visits Alice's blog, his browser sees only a plain link
 that could just as well point to one of Alice's friends or to her CV. For Bob's
 browser to understand that this link actually points to the document's licensing
 terms, Alice needs to add some flavor, some indication of what
 kind of link this is.

 She can add this flavor using again the property attribute. Indeed,
 when the element contains the href (or src) attribute,
 property is automatically associated with the value of this
 attribute rather than the textual content of the a element. The
 value of the attribute is the http://creativecommons.org/ns#license,
 defined by the Creative Commons:

 Example 4
<p>All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>

 With this small update, Bob's browser will now understand that this link has a
 flavor: it indicates the blog's license:

 [image: two Web pages connected by a link labeled 'license' and two notes with a 'license' relationship]

 Figure 3: A link with flavor: the link indicates
 the web page's license. We can represent web pages as nodes, the link as an
 arrow connecting those nodes, and the link's flavor as the label on that
 arrow.

 Fig. 3 two Web pages connected by a link labeled 'license' and two notes with a 'license' relationship

 Alice is quite pleased that she was able to add only structured-data hints via
 RDFa, never having to repeat the content of her text or the URL of her clickable
 links.

 2.1.1.3
 Setting a Default Vocabulary

 In a number of simple use cases, such as our example with Alice's blog, HTML
 authors will predominantly use a single vocabulary. However, while generating
 full URLs via a CMS system is not a particular problem, typing these by hand may
 be error prone and tedious for humans. To alleviate this problem RDFa introduces
 the vocab attribute to let the author declare a single vocabulary
 for a chunk of HTML. Thus, instead of:

 Example 5
<html>
<head>
 ...
</head>
<body>
 ...
 <h2 property="http://purl.org/dc/terms/title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
</body>

 Alice can write:

 Example 6
<html>
<head>
 ...
</head>
<body vocab="http://purl.org/dc/terms/">
 ...
 <h2 property="title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
</body>

 Note how the property values are single "terms" now; these are simply
 concatenated to the URL defined via the vocab attribute. The
 attribute can be placed on any HTML element (i.e., not only on the
 body element like in the example) and its effect is valid for all
 the elements below that point.

 Default vocabularies and full URIs can be mixed at any time. I.e., Alice could
 have written:

 Example 7
<html>
<head>
 ...
</head>
<body vocab="http://purl.org/dc/terms/">
 ...
 <h2 property="title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
</body>

 Perhaps a more interesting example is the combination of the header with the
 licensing segment of her web page:

 Example 8
<html>
<head>
 ...
</head>
<body vocab="http://purl.org/dc/terms/">
 ...
 <h2 property="title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
 <p>All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
</body>
</html>

 The full URL for the license term is necessary to avoid mixing vocabularies. As
 an alternative, Alice could have also chosen to use the vocab
 attribute again:

 Example 9
<html>
<head>
 ...
</head>
<body vocab="http://purl.org/dc/terms/">
 ...
 <h2 property="title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
 <p vocab="http://creativecommons.org/ns#">All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
</body>
</html>

 because the vocab in the license paragraph overrides the definition
 inherited from the body of the document.

 Note
The vocab attribute references structured data vocabularies, identified using URLs.
 RDFa does not limit the form of these URLs or the document formats accessible by de-referencing them;
 however users SHOULD aim to use widely shared, conventional values for identifying such vocabularies,
 following conventions of case, spelling etc. established by their publishers.

 2.1.1.4
 Multiple Items per Page

 Alice's blog page may contain, of course, multiple entries. Sometimes, Alice's
 sister Eve guest blogs, too. The front page of the blog lists the 10 most recent
 entries, each with its own title, author, and introductory paragraph. How, then,
 should Alice mark up the title of each of these entries individually even though
 they all appear within the same web page? RDFa provides resource, an
 attribute for specifying the "context", i.e., the exact URL to which the
 contained RDFa markup applies:

 Example 10
<body vocab="http://purl.org/dc/terms/">
 ...
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 <h3 property="creator">Alice</h3>
 ...
 </div>
 ...
 <div resource="/alice/posts/jos_barbecue">
 <h2 property="title">Jo's Barbecue</h2>
 <p>Date: 2011-09-14</p>
 <h3 property="creator">Eve</h3>
 ...
 </div>
 ...
</body>

 (Note that we used relative URLs in the example; the value of
 resource could have been any URLs, i.e., relative or
 absolute.) We can represent this, once again, as a diagram connecting URLs to
 properties:

 [image: two separate nodes, each with two properties]

 Figure 4: Multiple Items per Page: each blog entry
 is represented by its own node, with properties attached to each.

 Fig. 4 two separate nodes, each with two properties

 Alice can use the same technique to give her friend Bob proper credit when she
 posts one of his photos:

 Example 11
<div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 ...
 The trouble with Bob is that he takes much better photos than I do:
 ...
 <div resource="http://example.com/bob/photos/sunset.jpg">

 Beautiful Sunset
 by Bob.
 </div>
 </div>

 Notice how the innermost resource value,
 http://example.com/bob/photos/sunset.jpg, "overrides" the outer
 value /alice/posts/trouble_with_bob for all markup inside the
 containing div. Once again, here is a diagram that represents the
 underlying data of this new portion of markup:

 [image: two separate nodes, each with two properties]

 Figure 5: Describing a Photo

 Fig. 5 two separate nodes, each with two properties

 2.1.2
 Exploring Further: Social networks

 2.1.2.1
 Contact Information

 Alice would also like to make information about herself, such as her email
 address, phone number, and other details, easily available to her friends'
 contact management software. This time, instead of describing the properties of a
 web page, she's going to describe the properties of a person: herself.

 Alice already has contact information displayed on her blog.

 Example 12
<div>
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
</div>

 The Dublin Core vocabulary does not provide property names for describing contact
 information, but the Friend-of-a-Friend [foaf] vocabulary does. Alice therefore
 decides to use the FOAF vocabulary. As a first step, she declares a FOAF
 "Person". For this purpose, Alice uses typeof, an RDFa attribute
 that is specifically meant to declare a new data item with a certain type:

 Example 13
<div typeof="http://xmlns.com/foaf/0.1/Person">
 ...

 Alice realizes that she only intends to use the FOAF vocabulary at this point, so
 she uses the vocab attribute to simplify her markup further (and
 overriding the effects of any vocab attributes that may have been
 used in, for example, the body element at the top).

 Example 14
<div vocab="http://xmlns.com/foaf/0.1/" typeof="Person">
 ...

 Then, Alice indicates which content on the page represents her full name, email
 address, and phone number:

 Example 15
<div vocab="http://xmlns.com/foaf/0.1/" typeof="Person"><p>
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
</div>

 Note how Alice did not specify a resource like she did when adding
 blog entry metadata. But, if she is not declaring what she is talking about, how
 does the RDFa Processor know what she's identifying? In RDFa, in the absence of a
 resource attribute, the typeof attribute on the
 enclosing div implicitly sets the subject of the properties marked
 up within that div. That is, the name, email address, and phone
 number are associated with a new node of type Person. This node has
 no URL to identify it, so it is called a blank node as shown on the
 figure:

 [image: single 'blank' node with 4 properties]

 Figure 6: A Blank Node: blank nodes are not
 identified by URL. Instead, many of them have an RDFa typeof
 attribute that identifies the type of data they represent.

 (We've used a short-hand to label the arrows, in order to save space and
 clarify the diagram. The actual labels are always the full URLs.)

 Fig. 6 single 'blank' node with 4 properties

 2.1.2.2
 Describing Social Networks

 Alice continues to mark up her page by adding information about her friends,
 including at least their names and homepages. She starts with plain HTML:

 Example 16
<div>

 Bob

 Eve

 Manu

</div>

 First, Alice indicates that the friends she is describing are people, as opposed
 to animals or imaginary friends, by using again the Person type in
 typeof attributes.

 Example 17
<div vocab="http://xmlns.com/foaf/0.1/">

 <li typeof="Person">
 Bob

 <li typeof="Person">
 Eve

 <li typeof="Person">
 Manu

</div>

 Beyond declaring the type of data we are dealing with, each typeof
 creates a new blank node with its own distinct properties. Thus, Alice can
 indicate each friend's homepage:

 Example 18
<div vocab="http://xmlns.com/foaf/0.1/">

 <li typeof="Person">
 Bob

 <li typeof="Person">
 Eve

 <li typeof="Person">
 Manu

</div>

 Alice would also like to improve the markup by expressing each person's name
 using RDFa, too. That can be done by adding a separate span element
 and the relevant property:

 Example 19
<div vocab="http://xmlns.com/foaf/0.1/">

 <li typeof="Person">
 Bob

 <li typeof="Person">
 Eve

 <li typeof="Person">
 Manu

</div>

 Alice is happy that, with so little additional markup, she's able to fully
 express both a pleasant human-readable page and a machine-readable dataset.

 Alice is a member of 5 different social networking sites. She is tired of
 repeatedly entering information about her friends in each new social networking
 site, so she decides to list her friends in one place-on her website, combining
 it with her own FOAF data. With RDFa, she can indicate her friendships on her own
 web page and let social networking sites read it automatically. So far, Alice has
 listed three individuals but has not specified her relationship with them; they
 might be her friends, or they might be her favorite 17th century poets. To
 indicate that she knows them, she uses the FOAF property foaf:knows:

 Example 20
<div vocab="http://xmlns.com/foaf/0.1/" typeof="Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>

 <li property="knows" typeof="Person">
 Bob

 <li property="knows" typeof="Person">
 Eve

 <li property="knows" typeof="Person">
 Manu

</div>

 With this, Alice could describe here social network:

 [image: 8 node network with 12 relationships]

 Figure 7: Alice's social network. Note that, with
 RDFa, Alice could express a fairly complex set of information that others can
 use.

 Fig. 7 8 node network with 12 relationships

 2.1.3 Repeated Patterns

 We have seen, in a previous section, how Alice can use RDFa to include Creative Commons statements on her blog. However, the solution in that section assigned these statements to the whole page, and not to individual blog items. This may be an issue if the page includes multiple items. Indeed, Alice may be forced to repeat the relevant statements like this:

 Example 21
<body vocab="http://purl.org/dc/terms/">
 ...
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 <h3 property="creator">Alice</h3>
 ...
 <p vocab="http://creativecommons.org/ns#">All content on this blog item is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
 </div>
 ...
 <div resource="/alice/posts/jims_concert">
 <h2 property="title">I was at Jim's concert the other day</h2>
 <p>Date: 2011-10-22</p>
 <h3 property="creator">Alice</h3>
 ...
 <p vocab="http://creativecommons.org/ns#">All content on this blog item is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
 </div>
 ...
</body>

 which may be tedious and error prone.

 HTML+RDFa introduces the notion of "Property copying" to alleviate this situation. Using this feature Alice can "collect" a number of statements as a pattern, and refer to that pattern from other parts of the page. This is done using the magic property rdfa:copy and the magic type rdfa:Pattern as follows:

 Example 22
<body vocab="http://purl.org/dc/terms/">
 ...
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 <h3 property="creator">Alice</h3>
 ...
 <link property="rdfa:copy" href="#ccpattern"/>
 </div>
 ...
 <div resource="/alice/posts/jims_concert">
 <h2 property="title">I was at Jim's concert the other day</h2>
 <p>Date: 2011-10-22</p>
 <h3 property="creator">Alice</h3>
 ...
 <link property="rdfa:copy" href="#ccpattern"/>
 </div>
 ...

 <div resource="#ccpattern" typeof="rdfa:Pattern">
 <p vocab="http://creativecommons.org/ns#">All content on this blog item is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
 </div>

</body>

 (Alice may choose to use CSS to make the CC statements invisible on the screen if she wants.) The effect of this structure is to, conceptually, "copy" all the RDFa statements appearing in the pattern to replace the link element, yielding the following structure:

 [image: 8 node network with 12 relationships]

 Figure 8: Creative Commons statements added to each blog item separately.

 Fig. 8 8 node network with 12 relationships

 2.1.4
 Internal References

 Alice may want to add her personal data to her individual blog items, too. She
 decides to combine her FOAF data with the blog items, i.e.:

 Example 23
<div vocab="http://purl.org/dc/terms/">

 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 ...
 <h3 vocab="http://xmlns.com/foaf/0.1/" property="http://purl.org/dc/terms/creator" typeof="Person">
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </h3>
 ...
 </div>
 ...
</div>

 The structured data she generates looks like this:

 [image: The simple blog structure extended with Alice's foaf data as blank node]

 Figure 9: Alice's blog item with data about herself.

 Fig. 9 The simple blog structure extended with Alice's foaf data as blank node

 Unfortunately, this solution is not optimal in two respects. First of all, notice
 that Alice had to use the full URI for the creator property: this is
 because the vocab attribute is used to set the FOAF terms, i.e., the
 simple creator value would have been misinterpreted. We will come back
 to the issue of using several vocabularies in another
 section below.

 The other issue is that Alice would like to design her Web page so that her personal
 data would not appear on the page in each individual blog item but, rather, in one
 place like a footnote or a sidebar. I.e., what she would like to see is something
 like:

 [image: Mock-up of Alice's blog page design, with blogs on the left and personal data on the right]

 Figure 10: Structure of Alice's Site: individual blog
 items on the left, personal data, linked from the blog using RDFa terms, in a
 sidebar.

 Fig. 10 Mock-up of Alice's blog page design, with blogs on the left and personal data on the right

 If the FOAF data were included in each blog item, Alice would have to create a
 complex set of CSS rules to achieve the visual effect she wants.

 To solve this, Alice decides to make use of the structure she already used for her
 FOAF data but, this time, assigning it a separate URI using the resource
 attribute:

 Example 24
<div vocab="http://xmlns.com/foaf/0.1/" resource="#me" typeof="Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...
</div>

 It is actually considered as a good practice to use real URIs whenever possible,
 i.e., Alice's new alternative should be preferred in general. Indeed, if a real URI
 is used, then it becomes possible to unambiguously refer to that particular piece of
 information, whereas that becomes more complicated with blank nodes.

 Note

 The resource="#me" markup (which, by the way, also presupposes that the target is in the
 same HTML scope) is a FOAF convention: the URL that represents
 the person Alice is http://example.com/alice#me. It should not
 be confused with Alice's homepage, http://example.com/alice. Of course,
 Alice could have used a different URI if, for example, her blog and her personal
 homepage were kept separate; e.g., she could have used
 resource="http://alice.example.com/alice/home#myself" instead of
 resource="#me".

 Using the explicit URI for her FOAF data Alice can add a direct reference to the blog
 item using again the resource attribute:

 Example 25
<div vocab="http://purl.org/dc/terms/">
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...
 </div>
</div>
 ...
<div class="sidebar" vocab="http://xmlns.com/foaf/0.1/" resource="#me" typeof="Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...
</div>

 The resource attribute appears, in this case, together with
 property on the same element: in this situation
 resource indicates the "target" of the relation. Usage of this attribute
 allows Alice to "distribute" the various parts of her structured data on her page.
 What she gets is a slightly modified version of the previous structure, where the
 only difference is the usage of an explicit URI instead of a blank node:

 [image: The simple blog structure extended with Alice's foaf data with an explicit URI]

 Figure 11: Alice's blog item with data about herself,
 using an explicit URI for her FOAF data.

 Fig. 11 The simple blog structure extended with Alice's foaf data with an explicit URI

 Using this approach, it becomes very easy to also add references to the same data from different blog posts:

 Example 26
<div vocab="http://purl.org/dc/terms/">
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...
 </div>
</div>
 ...
<div vocab="http://purl.org/dc/terms/">
 <div resource="/alice/posts/my_photos">
 <h2 property="title">I will post my photos nevertheless…</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...
 </div>
</div>
 ...
<div class="sidebar" vocab="http://xmlns.com/foaf/0.1/" resource="#me" typeof="Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...
</div>

 Leading to the following structure:

 [image: The simple blog structure with two blogs extended with Alice's foaf data with an explicit URI]

 Figure 12: Several of Alice's blog items with data
 about herself, using an explicit URI for her FOAF data.

 Fig. 12 The simple blog structure with two blogs extended with Alice's foaf data with an explicit URI
 Note

 Combined with property, the resource attribute plays
 exactly the same role as href, already used for "links with flavor",
 except that it does not provide a clickable link to the browser like
 href does. Also, the resource attribute can be used on
 any HTML element, as opposed to href whose usage is restricted,
 in HTML, to the a and link elements.

 Note
There is a similarity between this issue and its solution and the issue and the approach taken in the section on property copying. There is, however, a subtle but important difference between the two. The solution using the resource attribute introduces a new node in the graph, as shown on Figure 12, whereas copying the properties does not. Which of the two approaches should be adopted is often based on the vocabulary that is used.

 2.1.5
 Using Multiple Vocabularies

 The previous examples show that, for more complex cases, multiple vocabularies have
 to be used to express the various aspects of structured data. We have seen Alice
 using the Dublin Core, as well as the FOAF and the Creative Commons vocabularies, but
 there may be more. For example. Alice may want to add vocabulary elements defined by
 search engines on their schema.org site [schema].

 Alice can use either full URLs for all the terms, or can use the vocab
 attribute to abbreviate the terms for the predominant vocabulary. But, in some cases,
 the vocabularies cannot be separated easily, which means that the usage of
 vocab may become awkward. Here is, for example, the kind of HTML she
 might end up with:

 Example 27
<html>
 <head>
 ...
 </head>
 <body vocab="http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="BlogPosting">
 <h2 property="http://purl.org/dc/terms/title">The trouble with Bob</h2>
 ...
 <h3 property="http://purl.org/dc/terms/creator" resource="#me">Alice</h3>
 <div property="articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 ...
 </body>
 </html>

 Note that the schema.org and the Dublin Core terms are intertwined for a specific
 blog, and it becomes an arbitrary choice whether to use the vocab
 attribute for http://purl.org/dc/terms/ or for
 http://schema.org/. We have seen the same problem in a previous section when FOAF and Dublin Core terms were
 mixed.

 To alleviate this problem, RDFa offers the possibility of using prefixed
 terms: a special prefix attribute can assign prefixes to represent URLs
 and, using those prefixes, the vocabulary elements themselves can be abbreviated. The
 prefix:reference syntax is used: the URL associated with
 prefix is simply concatenated to reference to create a full
 URL. (Note that we have already used this convention to simplify our figures.) Here
 is how the HTML of the previous example looks like when prefixes are used:

 Example 28
<html>
 <head>
 ...
 </head>
 <body prefix="dc: http://purl.org/dc/terms/ schema: http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="schema:BlogPosting">
 <h2 property="dc:title">The trouble with Bob</h2>
 ...
 <h3 property="dc:creator" resource="#me">Alice</h3>
 <div property="schema:articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>
</html>

 The usage of prefixes can greatly reduce possible errors by concentrating the
 vocabulary choices to one place in the file. Just like vocab, the
 prefix attribute can appear anywhere in the HTML file, only affecting
 the elements below. prefix and vocab can also be mixed, for
 example:

 Example 29
<html>
 <head>
 ...
 </head>
 <body vocab="http://purl.org/dc/terms/" prefix="schema: http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="schema:BlogPosting">
 <h2 property="title">The trouble with Bob</h2>
 ...
 <h3 property="creator" resource="#me">Alice</h3>
 <div property="schema:articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>
</html>

 Note

 An important issue may arise if the html element contains a large number
 of prefix declarations. The character encoding (i.e., UTF-8, UTF-16, ASCII, etc.)
 used for an HTML5 file is declared using a meta element in the header.
 In HTML5 this meta declaration must fall within the first 512 bytes of the page, or
 the HTML5 processor (browser, parser, etc.) will try to detect the encoding using
 some heuristics. A very "long" html tag may therefore lead to problems.
 One way of avoiding the issue is to place most of the prefix declarations on the
 body element.

 2.1.5.1
 Repeating properties

 The previous example, whereby the Dublin Core and the schema.org vocabularies are
 used within the same blog post, raises another issue. It so happens that not only
 Dublin Core, but also schema.org has a property called creator.
 Because RDFa uses URIs to denote properties that, by itself, is not a problem.
 However, if Alice wants to use both these properties in the same blog
 post (e.g., because she wants search engines to manage her blog post but, at the
 same times, she wants Dublin Core aware applications, like catalogs, to handle
 her blog post, too) this is what she may have to do:

 Example 30
<html>
 <head>
 ...
 </head>
 <body prefix="dc: http://purl.org/dc/terms/ schema: http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="schema:BlogPosting">
 <h2 property="dc:title">The trouble with Bob</h2>
 ...
 <h3 property="dc:creator" resource="#me">Alice</h3>
 <div property="schema:articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>
</html>

 Which is a bit awkward. Fortunately, RDFa allows the value of a
 property attribute to be a list of values, i.e., she can also write:

 Example 31
<html>
 <head>
 ...
 </head>
 <body prefix="dc: http://purl.org/dc/terms/ schema: http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="schema:BlogPosting">
 <h2 property="dc:title">The trouble with Bob</h2>
 ...
 <h3 property="dc:creator schema:creator" resource="#me">Alice</h3>
 <div property="schema:articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>
</html>

 yielding the structure:

 [image: The simple blog structure with two different creator properties]

 Figure 13: Alice's blog item using two different
 vocabularies, including two properties with the same context and target.

 Fig. 13 The simple blog structure with two different creator properties
 Similarly to property, typeof also accepts a list of values. For example,
 schema.org also has a notion of a Person, similar to FOAF; Alice may choose to use both:

 Example 32
<div class="sidebar" prefix="foaf: http://xmlns.com/foaf/0.1/ schema: http://schema.org/"
 resource="#me" typeof="foaf:Person schema:Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...
</div>

 2.1.5.2
 Default Prefixes (Initial Context)

 A number of vocabularies are very widely used by the Web community with
 well-known prefixes—the Dublin Core vocabulary is a good example. These common
 vocabularies tend to be defined over and over again, and sometimes Web page
 authors forget to declare them altogether.

 To alleviate this issue, RDFa introduces the concept of an initial
 context that defines a set of default prefixes. These prefixes, whose list
 is maintained and regularly updated by the W3C, provide a number of pre-defined
 prefixes that are known to the RDFa processor. Prefix declarations in a document
 always override declarations made through the defaults, but if a web page author
 forgets to declare a common vocabulary such as Dublin Core or FOAF, the RDFa
 Processor will fall back to those. The list of default prefixes are available on the Web for
 everyone to read.

 For example, the following example does not declare the dc:
 prefix using a prefix attribute:

 Example 33
<html>
 <head>
 ...
 </head>
 <body>
 <div>
 <h2 property="dc:title">The trouble with Bob</h2>
 ...
 <h3 property="dc:creator" resource="#me">Alice</h3>
 ...
 </div>
 </body>
</html>

 However, an RDFa processor still recognizes the dc:title and
 dc:creator short-hands and expands the values to the corresponding
 URLs. The RDFa processor is able to do this because the dc prefix is
 part of the default prefixes in the initial context.

 Note

 Default prefixes are used as a mechanism to correct RDFa documents where authors
 accidentally forgot to declare common prefixes. While authors may rely on these
 to be available for RDFa documents, the prefixes may change over the course
 of 5-10 years, although the policy of W3C is that once a prefix is defined as
 part of a default profile, that particular prefix will not be changed or
 removed. Nevertheless, the best way to ensure that the prefixes that document
 authors use always map to the intent of the author is to use the
 prefix attribute to declare these prefixes.

 Since default prefixes are meant to be a last-resort mechanism to help novice
 document authors, the markup above is not recommended. The rest of this document
 will utilize authoring best practices by declaring all prefixes in order to make
 the document author's intentions explicit.

 2.2
 Going Deeper: RDFa Core

 As we have seen in the previous sections, RDFa Lite is fairly powerful. Alice could
 indeed express complex sets of structured information. However, there are cases when the
 set of attributes presented so far does not cover all the needs, or make the resulting HTML
 structure a bit awkward and possibly error-prone. In those cases additional RDFa
 possibilities, provided through additional RDFa attributes, may come to the rescue; some
 of these will be presented in this section.

 Note

 RDFa Lite does not define a separate class of RDFa processors. In other words conforming
 RDFa processors are supposed to handle all RDFa features, not only those listed used by
 RDFa Lite.

 2.2.1
 Using the content attribute

 When creating her blog, Alice decided to use this simple structure to add Dublin Core
 information to her blog post (see also Figure 2):

 Example 34
<html>
 <head>
 ...
 </head>
 <body>
 ...
 <h2 property="http://purl.org/dc/terms/title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
 </body>
</html>

 However, to do that, Alice had to accept a small compromise. Indeed, although the
 string "2011-09-10" unambiguously identifies a date for a machine, it does not looks
 very natural for a human reader. Surely a native English reader would prefer
 something like "10th of September, 2011". On the other hand, although it is of course
 possible for a machine to parse and interpret that string as a date, too, it is
 clearly more complicated to do so. The problem is that, as a default, RDFa uses the
 textual content of the element for the property value. While this works well in most
 of the cases, sometimes, like in this example, this has awkward consequences.

 To alleviate this problem RDFa makes it possible to re-use the content
 attribute of HTML. The blog entry could be written as follows:

 Example 35
<html>
 <head>
 ...
 </head>
 <body>
 ...
 <h2 property="http://purl.org/dc/terms/title">The Trouble with Bob</h2>
 <p>Date: 10th of September, 2011</p>
 ...
 </body>
</html>

 The resulting structure is exactly the same as before (i.e., Figure
 2). The difference is the presence of the content attribute: it
 instructs the RDFa processor to overrule the default behavior of using the textual
 content, and to use the value of the content attribute instead. Using
 this attribute Alice could provide a more readable date, while maintaining an
 unambiguous content for machines using the structured data.

 The content attribute has another important usage. The "traditional"
 approach to add simple metadata to a Web page has been to use the document header
 through the link and the meta elements. While there is no
 problem using link in RDFa Lite (which uses the href
 attribute, i.e., can be used to define "flavored" links), the fact that, in a
 conforming HTML file, the meta element may have no text content means
 that the only way of using the header for such statements is to use the
 content attribute. For example, using the meta element is
 the approach suggested by Facebook for the Open Graph Protocol [ogp] vocabulary;
 i.e., if Alice wants to make use of the "Like" button in her posts, this is what she
 would add to her header:

 Example 36
<html>
 <head prefix="og: http://ogp.me/ns#" >
 ...
 <meta property="og:title" content="The Trouble with Bob" />
 <meta property="og:type" content="text" />
 <meta property="og:image" content="http://example.com/alice/bob-ugly.jpg" />
 ...
 </head>
 <body>
 ...
 </body>
</html>

 Note

 In this example the prefix for the Open Graph Protocol vocabulary is defined via the
 prefix attribute. Alas, many authors forget to do so. Fortunately, the
 og prefix is part of the initial context for RDFa, i.e., the resulting
 information will be valid even without the prefix declaration…

 2.2.2
 Datatypes

 Alice has already put license information on her page:

 Example 37
<p>All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>

 but she would like to complete this by recording the date of her copyright statement
 as a structured data, too. She can use the date term of Dublin Core:

 Example 38
<p>All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>

 However, the value used for the date may be ambiguous for machines. Of course, if a
 program "knows" that that http://purl.org/dc/terms/date refers to a
 date, then of course it can find out that the string "2011" stands for a year. But
 there may be processors that, for example, provide a visual presentation of all the
 structured data on a specific page, and would like to use a different "widget" to
 represent a year and again another one to represent, say, an integer number. How
 would such a processor know which one to choose?

 Alice may decide to be helpful by adding an additional information to that item in
 the form of a datatype. This additional information can be conveyed to the
 RDFa processor using the datatype RDFa attribute as follows:

 Example 39
<p>All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>

 where xsd:gYear stands for
 http://www.w3.org/2001/XMLSchema#gYear, and is one of the standard
 datatypes defined by W3C's Datatype
 specification [xmlschema11-2] which contains such types as booleans, integers, dates,
 or doubles. (xsd is one of the default
 prefixes for RDFa.)

 2.2.3
 Alternative for setting the context: about

 Alice has used the following patterns to define structured data for the individual
 blogs:

 Example 40
<div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...
</div>

 The role of the resource attribute in the div element is to
 set the "context", i.e., the subject for all the subsequent statements. Also, when
 combined with the property attribute, resource can be used
 to set the "target", i.e., the object for the statement (much as href).

 This pattern is perfectly fine, but it may become too verbose in some cases. Indeed,
 let us suppose that Alice would like to set up a separate index page for all her
 blog posts, and the only information she would like to put there, as structured data, is
 references to the titles. Following the same pattern, she would have to do something
 like:

 Example 41

 <li resource="/alice/posts/trouble_with_bob">The trouble with Bob
 <li resource="/alice/posts/jos_barbecue">Jo's Barbecue
 ...

 This of course works, but it is a bit convoluted. Merging the information into one
 element, i.e.:

 Example 42
<ul resource="/alice/posts/trouble_with_bob">
 <li resource="/alice/posts/trouble_with_bob" property="title">The trouble with Bob
 ...

 would not be correct; the combination of property and
 resource would generate a different statement than originally intended.

 RDFa introduces a separate attribute, called about, that can be used as
 an alternative to resource in setting the the context. Using that
 attribute, Alice could write:

 Example 43

 <li about="/alice/posts/trouble_with_bob" property="title">The trouble with Bob
 <li about="/alice/posts/jos_barbecue" property="title">Jo's Barbecue
 ...

 The fundamental difference between about and resource is
 that the former is only used to set the context, whether combined with the
 property attribute on the same element or not. This also means that, for
 such usage, about and resource are interchangeable; i.e.,
 in her original blog item, Alice could have chosen to write:

 Example 44
<div about="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...
</div>

 2.2.4
 Alternative for setting the property: rel

 Another pattern that Alice used in her code is as follows:

 Example 45
<div vocab="http://xmlns.com/foaf/0.1/" resource="#me">

 <li property="knows" resource="http://example.com/bob/#me" typeof="Person">
 Bob

 <li property="knows" resource="http://example.com/eve/#me" typeof="Person">
 Eve

 <li property="knows" resource="http://example.com/manu/#me" typeof="Person">
 Manu

</div>

 Each "branch" in the list sets a separate object (blank nodes in this example) and
 the same property (foaf:knows) is used to bind them to the same context.
 The property="knows" had to be repeated in each list element to define
 the corresponding property. If this structure is generated by some CMS systems, this
 is of course not a problem. However, if such structure is authored manually, it is
 clearly error prone: the property name can be misspelled or forgotten.

 Instead, Alice could use another RDFa attribute, namely rel. Using this
 attribute the corresponding HTML would look as:

 Example 46
<div vocab="http://xmlns.com/foaf/0.1/" resource="#me">
 <ul rel="knows">
 <li resource="http://example.com/bob/#me" typeof="Person">
 Bob

 <li resource="http://example.com/eve/#me" typeof="Person">
 Eve

 <li resource="http://example.com/manu/#me" typeof="Person">
 Manu

</div>

 In contrast to property, rel never considers the
 textual content of an element (or the value of the content attribute).
 Instead, if no clear target has been specified for a link via, e.g., a
 resource or an href attribute, the processor is supposed to
 go “down” and find one or more targets in the hierarchy and use those. This is what
 happens in this case: the knows attribute on the ul
 element does not include any obvious target; however, the processor finds those in
 the individual li elements and will use those. This
 pattern is typical for the usage of rel.

 Note

 In many situations, property and rel are interchangeable
 when the intended structured data involves (flavored) links. There are, however,
 subtle differences involving, for example, “chaining” that must be used with care.
 The interested reader should consult the relevant section of the RDFa 1.1
 specification for further details.
 In general, it is advised to use property, when possible.

 3.
 You Said Something about RDF?

 RDFa benefits from the power of RDF [rdf11-primer], the W3C's standard for interoperable
 machine-readable data. Although readers of this document are not expected to understand RDF,
 some may be interested in how these two specifications interrelate.

 RDF, the Resource Description Framework, is the abstract data representation we have drawn
 out as graphs in the examples above. Each arrow in the graph is represented as a
 subject-property-object triple: the subject is the node at the start of the arrow, the
 property is the arrow itself, and the object is the node or literal at the end of the arrow.
 A set of such RDF triples is often called an "RDF graph", and is typically stored in what is
 often called a "Triple Store" or a "Graph Store".

 Consider the first example graph:

 [image: relationship value is text]
 Fig. 14 relationship value is text

 The two RDF triples for this graph are written, using the Turtle syntax [turtle] for RDF,
 is as follows:

 Example 47
<http://www.example.com/alice/posts/trouble_with_bob>
 <http://purl.org/dc/terms/title> "The Trouble with Bob" ;
 <http://purl.org/dc/terms/created> "2011-09-10" .

 The TYPE arrows we drew are no different from other arrows. The
 TYPE is just another property that happens to be a core RDF property, namely
 rdf:type. The rdf vocabulary is located at
 http://www.w3.org/1999/02/22-rdf-syntax-ns#. The contact information example
 from above should thus be diagrammed as:

 [image: blank node with rdf:type foaf:Person]
 Fig. 15 blank node with rdf:type foaf:Person

 The point of RDF is to provide a universal language for expressing data and relationships. A
 unit of data can have any number of properties that are expressed as URLs. These URLs can be
 reused by any publisher, much like any web publisher can link to any web page, even ones they
 did not create themselves. Using data in the form of RDF triples, collected from various
 locations, and also using the RDF query language SPARQL [sparql11-query], one can search for
 "friends of Alice's who created items whose title contains the word 'Bob'," whether those
 items are blog posts, videos, calendar events, or other data types.

 RDF is an abstract data model meant to maximize the reuse of vocabularies. RDFa is a way to
 express RDF data within HTML, in a way that is machine-readable, and by reusing the existing
 human-readable data in the document.

 3.1
 Custom Vocabularies

 As Alice marks up her page with RDFa, she may discover the need to express data, such as
 her favorite photos, that is not covered by existing vocabularies. If she needs to, Alice
 can create a custom vocabulary suited for her needs. Once a vocabulary is created, it can
 be used in RDFa markup like any other vocabulary.

 The instructions on how to create a vocabulary, also known as an RDF Schema, are
 available in the RDF Primer [rdf11-primer]. At a high level, the creation of
 a vocabulary for RDFa involves:

 	Selecting a URL where the vocabulary will reside, for example:
 http://example.com/photos/vocab#.

 	Publishing the vocabulary document at the specified vocabulary URL. The vocabulary
 document defines the classes and properties that make up the vocabulary. For example,
 Alice may want to define the classes Photo and Camera, as well
 as the property takenWith that relates a photo to the camera with which it
 was taken.

 	Using the vocabulary in an HTML document either with the vocab attribute
 or with the prefix declaration mechanism. For example: prefix="photo:
 http://example.com/photos/vocab#" and typeof="photo:Camera".

 It is worth noting that anyone who can publish a document on the Web can publish a
 vocabulary and thus define new data fields they may wish to express. RDF and RDFa allow
 fully distributed extensibility of vocabularies.

 4.
 RDFa Tools

 There is a wide variety of tools that can be used to generate or process RDFa data. Good
 sources for these are the RDFa page of the W3C
 Semantic Web Wiki, although care should be taken that some tools may be related to a previous
 version of RDFa. Another source may be the RDFa community site’s
 implementation page. Both these sources are constantly evolving. By the way, the latter is
 part of a more general community page that
 contains further examples for using RDFa, general information, as well as information on how to get involved.
 In particular, RDFa fragments can be tested using the
 real-time RDFa 1.1 editor that can also display a
 visual representation of the underlying structural data.

 5.
 Acknowledgments

 At the time of publication, the active members of the RDF Web Application Working Group were:

 	Stéphane Corlosquet, Massachusetts General Hospital

 	Ivan Herman, W3C

 	Gregg Kellogg (Invited Expert)

 	Niklas Lindström (Invited Expert)

 	Shane McCarron, Applied Testing and Technology, Inc. (Invited Expert)

 	Steven Pemberton, Centre Mathematics and Computer Science

 	Manu Sporny, Digital Bazaar (Chair, Invited Expert)

 	Ted Thibodeau, OpenLink Software

 Thanks also to Grant Robertson and Guus Schreiber who, though not part of the Working Group,
 have provided useful comments on earlier drafts of this note.

A. References
A.1 Informative references
	[cc-about]
	Creative Commons: About Licenses URL: http://creativecommons.org/about/licenses/

	[dc11]
	Dublin Core metadata initiative. Dublin Core metadata element set, version 1.1. July 1999. Dublin Core recommendation. URL: http://dublincore.org/documents/dcmi-terms/

	[foaf]
	Dan Brickley; Libby Miller. FOAF Vocabulary Specification 0.99 (Paddington Edition). 14 January 2014. URL: http://xmlns.com/foaf/spec

	[html-rdfa]
	Manu Sporny. HTML+RDFa 1.1 - Second Edition 17 March 2015. W3C Recommendation. URL: http://www.w3.org/TR/html-rdfa/

	[ogp]
	 The Open Graph Protocol. December 2010. URL: http://ogp.me

	[rdf11-primer]
	Guus Schreiber; Yves Raimond. RDF 1.1 Primer. 24 June 2014. W3C Note. URL: http://www.w3.org/TR/rdf11-primer/

	[rdfa-core]
	Ben Adida; Mark Birbeck; Shane McCarron; Ivan Herman. RDFa Core 1.1 - Third Edition 17 March 2015. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-core/

	[rdfa-lite]
	Manu Sporny. RDFa Lite 1.1 - Second Edition 17 March 2015. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-lite/

	[rdfa-syntax]
	Ben Adida; Mark Birbeck; Shane McCarron; Steven Pemberton et al. RDFa in XHTML: Syntax and Processing. 14 October 2008. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-syntax

	[schema]
	Schemas—schema.org

	[sparql11-query]
	Steven Harris; Andy Seaborne. SPARQL 1.1 Query Language. 21 March 2013. W3C Recommendation. URL: http://www.w3.org/TR/sparql11-query/

	[svg11]
	Erik Dahlström; Patrick Dengler; Anthony Grasso; Chris Lilley; Cameron McCormack; Doug Schepers; Jonathan Watt; Jon Ferraiolo; Jun Fujisawa; Dean Jackson et al. Scalable Vector Graphics (SVG) 1.1 (Second Edition). 16 August 2011. W3C Recommendation. URL: http://www.w3.org/TR/SVG11/

	[turtle]
	Eric Prud'hommeaux; Gavin Carothers. RDF 1.1 Turtle. 25 February 2014. W3C Recommendation. URL: http://www.w3.org/TR/turtle/

	[xhtml-rdfa]
	Shane McCarron. XHTML+RDFa 1.1 - Third Edition 17 March 2015. W3C Recommendation. URL: http://www.w3.org/TR/xhtml-rdfa/

	[xmlschema11-2]
	David Peterson; Sandy Gao; Ashok Malhotra; Michael Sperberg-McQueen; Henry Thompson; Paul V. Biron et al. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. 5 April 2012. W3C Recommendation. URL: http://www.w3.org/TR/xmlschema11-2/

 [image: W3C]

 RDFa Core 1.1 - Third Edition

 Syntax and processing rules for embedding RDF through attributes

 W3C Recommendation 17 March 2015

 	This version:

 	http://www.w3.org/TR/2015/REC-rdfa-core-20150317/

 	Latest published version:

 	http://www.w3.org/TR/rdfa-core/

 	Implementation report:

 	http://www.w3.org/2010/02/rdfa/wiki/CR-ImplementationReport

 	Previous version:

 	http://www.w3.org/TR/2014/PER-rdfa-core-20141216/

 	Previous Recommendation:

 	http://www.w3.org/TR/2013/REC-rdfa-core-20130822/

 	Editors:

 	Ben Adida, Creative Commons, ben@adida.net

	Mark Birbeck, webBackplane, mark.birbeck@webBackplane.com

	Shane McCarron, Applied Testing and Technology, Inc., shane@aptest.com

	Ivan Herman, W3C, ivan@w3.org

 Please check the errata for any errors or issues
 reported since publication.

 This document is also available in these non-normative formats:

 Diff from Previous Recommendation, PostScript version, and PDF version

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2007-2015

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang).

 W3C liability,
 trademark and

 document use

 rules apply.

 Abstract

 The current Web is primarily made up of an enormous number of documents
 that have been created using HTML. These documents contain significant
 amounts of structured data, which is largely unavailable to tools and
 applications. When publishers can express this data more completely, and
 when tools can read it, a new world of user functionality becomes
 available, letting users transfer structured data between applications
 and web sites, and allowing browsing applications to improve the user
 experience: an event on a web page can be directly imported into a
 user's desktop calendar; a license on a document can be detected so that
 users can be informed of their rights automatically; a photo's creator,
 camera setting information, resolution, location and topic can be
 published as easily as the original photo itself, enabling structured
 search and sharing.

 RDFa Core is a specification for attributes to express structured data
 in any markup language. The embedded data already available in the
 markup language (e.g., HTML) can often be reused by the RDFa markup, so
 that publishers don't need to repeat significant data in the document
 content. The underlying abstract representation is RDF [RDF11-PRIMER],
 which lets publishers build their own vocabulary, extend others, and
 evolve their vocabulary with maximal interoperability over time. The
 expressed structure is closely tied to the data, so that rendered data
 can be copied and pasted along with its relevant structure.

 The rules for interpreting the data are generic, so that there is no
 need for different rules for different formats; this allows authors and
 publishers of data to define their own formats without having to update
 software, register formats via a central authority, or worry that two
 formats may interfere with each other.

 RDFa shares some of the same goals with microformats [MICROFORMATS].
 Whereas microformats specify both a syntax for embedding structured data
 into HTML documents and a vocabulary of specific terms for each
 microformat, RDFa specifies only a syntax and relies on independent
 specification of terms (often called vocabularies or taxonomies) by
 others. RDFa allows terms from multiple independently-developed
 vocabularies to be freely intermixed and is designed such that the
 language can be parsed without knowledge of the specific vocabulary
 being used.

 This document is a detailed syntax specification for RDFa, aimed at:

 	those looking to create an RDFa Processor, and who therefore need a
 detailed description of the parsing rules;

 	those looking to integrate RDFa into a new markup language;

 	those looking to recommend the use of RDFa within their
 organization, and who would like to create some guidelines for their
 users;

 	anyone familiar with RDF, and who wants to understand more about
 what is happening 'under the hood', when an RDFa Processor runs.

 For those looking for an introduction to the use of RDFa and some
 real-world examples, please consult the [RDFA-PRIMER].

 How to Read this Document

 First, if you are not familiar with either RDFa or RDF, and
 simply want to add RDFa to your documents, then you may find the RDFa
 Primer [RDFA-PRIMER] to be a better introduction.

 If you are already familiar with RDFa, and you want to examine the
 processing rules — perhaps to create an RDFa Processor — then you'll
 find the Processing Model section of most
 interest. It contains an overview of each of the processing steps,
 followed by more detailed sections, one for each rule.

 If you are not familiar with RDFa, but you are familiar
 with RDF, then you might find reading the Syntax

 Overview useful, before looking at the Processing

 Model since it gives a range of examples of markup that use
 RDFa. Seeing some examples first should make reading the processing
 rules easier.

 If you are not familiar with RDF, then you might want to take a look
 at the section on RDF Terminology
 before trying to do too much with RDFa. Although RDFa is designed to
 be easy to author — and authors don't need to understand RDF to use it
 — anyone writing applications that consume RDFa will need to
 understand RDF. There is a lot of material about RDF on the web, and a
 growing range of tools that support RDFa. This document only contains
 enough background on RDF to make the goals of RDFa more clear.

 Note
RDFa is a way of expressing RDF-style
 relationships using simple attributes in existing markup languages
 such as HTML. RDF is fully internationalized, and permits the use of
 Internationalized Resource Identifiers, or IRIs. You will see the term
 'IRI' used throughout this specification. Even if you are not familiar
 with the term IRI, you probably have seen the term 'URI' or 'URL'.
 IRIs are an extension of URIs that permits the use of characters
 outside those of plain ASCII. RDF allows the use of these characters,
 and so does RDFa. This specification has been careful to use the
 correct term, IRI, to make it clear that this is the case.

 Note
Even though this specification exclusively
 references IRIs, it is possible that a Host Language will
 restrict the syntax for its attributes to a subset of IRIs
 (e.g., @href in HTML5). Regardless of
 validation constraints in Host Languages, an RDFa Processor
 is capable of processing IRIs.

 Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

 This is an Editorial Revision of the Recommendation published on the 22nd of August, 2013. That document was a revision of RDFa Syntax 1.0 [RDFA-SYNTAX]. There are a number of substantive differences
 between this version and Version 1.0, including:

 	The removal of the specific rules for XHTML - these are now defined
 in XHTML+RDFa [XHTML-RDFA].

 	An expansion of the datatypes of some RDFa attributes so that they
 can contain Terms, CURIES, or Absolute IRIs.

 	Host languages are permitted to define collections of default terms,
 default prefix mappings, and a default vocabulary.

 	The ability to define a default vocabulary to use for Terms that are
 undefined.

 	Terms are required to be compared in a case-insensitive manner.

 	A richer behavior of the @property attribute, that can replace, in many cases the
 @rel attribute.

 	A slightly different handling of @typeof, making it better adapted to practical usage.

 There is a more thorough list of changes in Changes.

 A sample test
 harness is available. This set of tests is not intended to be
 exhaustive. Users may find the tests to be useful examples of RDFa
 usage.

 This document was published by the RDFa Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdfa@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 Please see the Working Group's implementation
 report.

 This document has been reviewed by W3C Members, by software developers, and by other W3C
 groups and interested parties, and is endorsed by the Director as a W3C Recommendation.
 It is a stable document and may be used as reference material or cited from another
 document. W3C's role in making the Recommendation is to draw attention to the
 specification and to promote its widespread deployment. This enhances the functionality
 and interoperability of the Web.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

 This document is governed by the 14 October 2005 W3C Process Document.

Table of Contents
	1. Motivation
	2. Syntax Overview	2.1 The RDFa Attributes
	2.2 Examples

	3. RDF Terminology	3.1 Statements
	3.2 Triples
	3.3 IRI References
	3.4 Plain Literals
	3.5 Typed Literals
	3.6 Turtle
	3.7 Graphs
	3.8 Compact URI Expressions
	3.9 Markup Fragments and RDFa
	3.10 A Description of RDFa in RDF Terms

	4. Conformance	4.1 RDFa Processor Conformance
	4.2 RDFa Host Language Conformance
	4.3 XML+RDFa Document Conformance

	5. Attributes and Syntax	5.1 Roles of attributes
	5.2 White space within attribute values

	6. CURIE Syntax Definition	6.1 Why CURIEs and not QNames?

	7. Processing Model	7.1 Overview
	7.2 Evaluation Context
	7.3 Chaining
	7.4 CURIE and IRI Processing	7.4.1 Scoping of Prefix Mappings
	7.4.2 General Use of CURIEs in Attributes
	7.4.3 General Use of Terms in Attributes
	7.4.4 Use of CURIEs in Specific Attributes
	7.4.5 Referencing Blank Nodes

	7.5 Sequence
	7.6 Processor Status	7.6.1 Accessing the Processor Graph
	7.6.2 Processor Graph Terms

	7.7 Vocabulary Expansion

	8. RDFa Processing in detail	8.1 Changing the Evaluation Context	8.1.1 Setting the current subject	8.1.1.1 The current document
	8.1.1.2 Using @about
	8.1.1.3 Typing resources with @typeof	8.1.1.3.1 Chaining with @property and @typeof

	8.1.1.4 Determining the subject with neither @about nor @typeof	8.1.1.4.1 Inheriting subject from @resource
	8.1.1.4.2 Inheriting an anonymous subject

	8.2 Completing incomplete triples
	8.3 Object resolution	8.3.1 Object resolution for the @property attribute	8.3.1.1 Plain Literals	8.3.1.1.1 Language Tags

	8.3.1.2 Typed Literals
	8.3.1.3 XML Literals

	8.3.2 IRI object resolution	8.3.2.1 Using @resource to set the object
	8.3.2.2 Using @href or @src to set the object
	8.3.2.3 Incomplete triples

	8.4 List Generation

	9. RDFa Initial Contexts
	10. RDFa Vocabulary Expansion	10.1 Details of the RDFa Vocabulary Expansion	10.1.1 RDFa Vocabulary Entailment

	10.2 Vocabulary Expansion Control of RDFa Processors	10.2.1 Notes to RDFa Vocabulary Implementations and Publishing

	A. CURIE Datatypes	A.1 XML Schema Definition
	A.2 XML DTD Definition

	B. The RDFa Vocabulary	B.1 Term and Prefix Assignments
	B.2 Processor Graph Reporting
	B.3 Term for vocabulary expansion

	C. Changes	C.1 Major differences since the Last Published Recommentation
	C.2 Major differences with RDFa Syntax 1.0

	D. Acknowledgments
	E. References	E.1 Normative references
	E.2 Informative references

 1. Motivation
This section is non-normative.

 RDF/XML [RDF-SYNTAX-GRAMMAR] provides sufficient flexibility to represent all
 of the abstract concepts in RDF. However, it presents a
 number of challenges; first it is difficult or impossible to validate
 documents that contain RDF/XML using XML Schemas or DTDs, which
 therefore makes it difficult to import RDF/XML into other markup
 languages. Whilst newer schema languages such as RELAX NG
 [RELAXNG-SCHEMA] do provide a way to validate documents that contain
 arbitrary RDF/XML, it will be a while before they gain wide support.

 Second, even if one could add RDF/XML directly into an XML dialect like
 XHTML, there would be significant data duplication between the rendered
 data and the RDF/XML structured data. It would be far better to add RDF
 to a document without repeating the document's existing data. For
 example, an XHTML document that explicitly renders its author's name in
 the text — perhaps as a byline on a news site — should not need to repeat
 this name for the RDF expression of the same concept: it should be
 possible to supplement the existing markup in such a way that it can
 also be interpreted as RDF.

 Another reason for aligning the rendered data with the structured data
 is that it is highly beneficial to express the web data's structure 'in
 context'; as users often want to transfer structured data from one
 application to another, sometimes to or from a non-web-based
 application, the user experience can be enhanced. For example,
 information about specific rendered data could be presented to the user
 via 'right-clicks' on an item of interest. Moreover, organizations that generate
 a lot of content (e.g., news outlets) find it easier to embed the
 semantic data inline than to maintain it separately.

 In the past, many attributes were 'hard-wired' directly into the markup
 language to represent specific concepts. For example, in XHTML 1.1
 [XHTML11] and HTML [HTML401] there is @cite;
 the attribute allows an author to add information to a document which is
 used to indicate the origin of a quote.

 However, these 'hard-wired' attributes make it difficult to define a
 generic process for extracting metadata from any document since an RDFa
 Processor would need to know about each of the special attributes. One
 motivation for RDFa has been to devise a means by which documents can be
 augmented with metadata in a general, rather than hard-wired, manner.
 This has been achieved by creating a fixed set of attributes and parsing
 rules, but allowing those attributes to contain properties from any of a
 number of the growing range of available RDF vocabularies. In most cases
 the values of those properties are the information that is
 already in an author's document.

 RDFa alleviates the pressure on markup language designers to anticipate
 all the structural requirements users of their language might have, by
 outlining a new syntax for RDF that relies only on attributes. By
 adhering to the concepts and rules in this specification, language
 designers can import RDFa into their environment with a minimum of
 hassle and be confident that semantic data will be extractable from
 their documents by conforming processors.

 2. Syntax Overview
This section is non-normative.

 The following examples are intended to help readers who are not
 familiar with RDFa to quickly get a sense of how it works. For a more
 thorough introduction, please read the RDFa Primer [RDFA-PRIMER].

 In RDF, it is common for people to shorten vocabulary terms via
 abbreviated IRIs that use a 'prefix' and a 'reference'. This mechanism
 is explained in detail in the section titled Compact URI Expressions.
 The examples throughout this document assume that the following
 vocabulary prefixes have been defined:

 	bibo:
 	http://purl.org/ontology/bibo/

 	cc:
 	http://creativecommons.org/ns#

 	dbp:
 	http://dbpedia.org/property/

 	dbp-owl:
 	http://dbpedia.org/ontology/

 	dbr:
 	http://dbpedia.org/resource/

 	dc:
 	http://purl.org/dc/terms/

 	ex:
 	http://example.org/

 	foaf:
 	http://xmlns.com/foaf/0.1/

 	owl:
 	http://www.w3.org/2002/07/owl#

 	rdf:
 	
 http://www.w3.org/1999/02/22-rdf-syntax-ns#

 	rdfa:
 	 http://www.w3.org/ns/rdfa#

 	rdfs:
 	 http://www.w3.org/2000/01/rdf-schema#

 	xhv:
 	http://www.w3.org/1999/xhtml/vocab#

 	xsd:
 	http://www.w3.org/2001/XMLSchema#

 Note
In some of the examples below we have used IRIs with
 fragment identifiers that are local to the document containing the RDFa
 fragment identifiers shown (e.g., 'about="#me"'). This
 idiom, which is also used in RDF/XML [RDF-SYNTAX-GRAMMAR] and other
 RDF serializations, gives a simple way to 'mint' new IRIs for entities
 described by RDFa and therefore contributes considerably to the
 expressive power of RDFa. The precise meaning of IRIs which include
 fragment identifiers when they appear in RDF graphs is given in
 Section 7 of [RDF-SYNTAX-GRAMMAR]. To ensure that such fragment
 identifiers can be interpreted correctly, media type registrations
 for markup languages that incorporate RDFa should directly or
 indirectly reference this specification.

 2.1 The RDFa Attributes

 RDFa makes use of a number of commonly found attributes, as well as
 providing a few new ones. Attributes that already exist in widely
 deployed languages (e.g., HTML) have the same meaning they always did,
 although their syntax has been slightly modified in some cases. For
 example, in (X)HTML there is no clear way to add new @rel
 values; RDFa sets out to explicitly solve this problem, and does so by
 allowing IRIs as values. It also introduces the concepts of terms
 and 'compact URI expressions'
 — referred to
 as CURIEs in this document — which allow a full IRI value to be
 expressed succinctly. For a complete list of RDFa attribute names and
 syntax, see Attributes and Syntax.

 2.2 Examples

 In (X)HTML, authors can include metadata and relationships concerning
 the current document by using the meta and link
 elements (in these examples, XHTML+RDFa [XHTML-RDFA] is used).
 For example, the author of the page along with the pages
 preceding and following the current page can be expressed using the
 link and meta elements:

 Example 1
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Page 7</title>
 <meta name="author" content="Mark Birbeck" />
 <link rel="prev" href="page6.html" />
 <link rel="next" href="page8.html" />
 </head>
 <body>...</body>
</html>

 RDFa makes use of this concept, enhancing it with the ability to make
 use of other vocabularies by using full IRIs:

 Example 2
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>My home-page</title>
 <meta property="http://purl.org/dc/terms/creator" content="Mark Birbeck" />
 <link rel="http://xmlns.com/foaf/0.1/topic" href="http://www.example.com/#us" />
 </head>
 <body>...</body>
</html>

 Because using full IRIs like those above can be cumbersome, RDFa also
 permits the use of compact URI expressions
 so an author can use a shorthand to reference terms in multiple
 vocabularies:

 Example 3
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="foaf: http://xmlns.com/foaf/0.1/
 dc: http://purl.org/dc/terms/"
 >
 <head>
 <title>My home-page</title>
 <meta property="dc:creator" content="Mark Birbeck" />
 <link rel="foaf:topic" href="http://www.example.com/#us" />
 </head>
 <body>...</body>
</html>

 RDFa supports the use of @rel and @rev on
 any element. This is even more useful with the addition of support for
 different vocabularies:

 Example 4
This document is licensed under the
<a prefix="cc: http://creativecommons.org/ns#"
 rel="cc:license"
 href="http://creativecommons.org/licenses/by-nc-nd/3.0/"
 >Creative Commons By-NC-ND License.

 Not only can IRIs in the document be re-used to provide metadata, but
 so can inline text when used with @property:

 Example 5
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="dc: http://purl.org/dc/terms/"
 >
 <head><title>My Home Page</title></head>
 <body>
 <h1 property="dc:title">My home-page</h1>
 <p>Last modified: 16 September 2015</p>
 </body>
</html>

 If some displayed text is different from the actual 'value' it
 represents, a more precise value can be added using
		 @content. A value can also optionally
 be typed using @datatype:

 Example 6
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="xsd: http://www.w3.org/2001/XMLSchema#
 dc: http://purl.org/dc/terms/"
 >
 <head><title>My Home Page</title></head>
 <body>
 <h1 property="dc:title">My home-page</h1>
 <p>Last modified: <span property="dc:modified"
 content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">16 September 2015.</p>
 </body>
</html>

 RDFa allows the document to contain metadata information about other
 documents and resources:

 Example 7
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="bibo: http://purl.org/ontology/bibo/
 dc: http://purl.org/dc/terms/"
 >
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White's book
 '<span about="urn:ISBN:0091808189"
 property="dc:title">Canteen Cuisine'
 is well worth getting since although it's quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span
 about="urn:ISBN:1596913614"
 property="dc:description"
 >White's autobiography.
 </body>
</html>

 In many cases a block of markup will contain a number of properties
 that relate to the same item. It's possible with RDFa to indicate the
 type of that item using @typeof:

 Example 8
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="bibo: http://purl.org/ontology/bibo/
 dc: http://purl.org/dc/terms/"
 >
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White's book
 '<span about="urn:ISBN:0091808189" typeof="bibo:Book"
 property="dc:title">Canteen Cuisine'
 is well worth getting since although it's quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span
 about="urn:ISBN:1596913614"
 typeof="bibo:Book"
 property="dc:description"
 >White's autobiography.
 </body>
</html>

 When dealing with small amounts of markup, it is sometimes easier to
 use full IRIs, rather than CURIEs. The previous example can also be
 written as follows:

 Example 9
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White's book
 '<span
 about="urn:ISBN:0091808189"
 typeof="http://purl.org/ontology/bibo/Book"
 property="http://purl.org/dc/terms/title"
 >Canteen Cuisine'
 is well worth getting since although it's quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span
 about="urn:ISBN:1596913614"
 typeof="http://purl.org/ontology/bibo/Book"
 property="http://purl.org/dc/terms/description"
 >White's autobiography.
 </body>
</html>

 A simple way of defining a portion of a document using terms from a
 specific vocabulary is to use @vocab to define a default
 vocabulary IRI. For example, to use FOAF terms:

 Example 10
<div vocab="http://xmlns.com/foaf/0.1/" about="#me">
 My name is John Doe and my blog is called
 Understanding Semantics.
</div>

 The example above will produce the following triples, expressed here
 in Turtle syntax:

 Example 11
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<#me> foaf:name "John Doe" ;
 foaf:homepage <http://example.org/blog/> .

 In simple cases the @property property can also be used
 in place of @rel. Indeed, in case when the element does
 not contain @rel, @datatype, or @content,
 but there is, for example, a @href, the effect of @property
 is analogous to the role of @rel. For example, the
 previous example could have been written:

 Example 12
<div vocab="http://xmlns.com/foaf/0.1/" about="#me">
 My name is John Doe and my blog is called
 Understanding Semantics.
</div>

 3. RDF Terminology
This section is non-normative.

 The previous section gave examples of typical markup in order to
 illustrate the structure of RDFa markup. RDFa is short for "RDF in
 Attributes". In order to author RDFa you do not need to understand RDF,
 although it would certainly help. However, if you are building a system
 that consumes the RDF output of a language that supports RDFa you will
 almost certainly need to understand RDF. This section introduces the
 basic concepts and terminology of RDF. For a more thorough explanation
 of RDF, please refer to the RDF Concepts document [RDF-SYNTAX-GRAMMAR] and
 the RDF Syntax Document [RDF-SYNTAX-GRAMMAR].

 3.1 Statements

 The structured data that RDFa provides access to is a collection of
 statements. A statement is a basic unit of information that
 has been constructed in a specific format to make it easier to
 process. In turn, by breaking large sets of information down into a
 collection of statements, even very complex metadata can be processed
 using simple rules.

 To illustrate, suppose we have the following set of facts:

 Example 13
Albert was born on March 14, 1879, in the German Empire. There is a picture of him at
the web address, http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

 This would be quite difficult for a machine to interpret, and it is
 certainly not in a format that could be passed from one data
 application to another. However, if we convert the information to a
 set of statements it begins to be more manageable. The same
 information could therefore be represented by the following shorter
 'statements':

 Example 14
Albert was born on March 14, 1879.
Albert was born in the German Empire.
Albert has a picture at
 http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

 3.2 Triples

 To make this information machine-processable, RDF defines a
 structure for these statements. A statement is formally called a triple,
 meaning that it is made up of three components. The first is the subject
 of the triple, and is what we are making our statement about.
 In all of these examples the subject is 'Albert'.

 The second part of a triple is the property of the subject that we
 want to define. In the examples here, the properties would be 'was
 born on', 'was born in', and 'has a picture at'. These properties are
 typically called predicates in RDF.

 The final part of a triple is called the object. In the
 examples here the three objects have the values 'March 14, 1879', 'the
 German Empire', and
 'http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg'.

 Note
RDFa supports internationalized
 characters in the subject,
 'predicate', and the object.

 3.3 IRI References

 Breaking complex information into manageable units helps us be
 specific about our data, but there is still some ambiguity. For
 example, which 'Albert' are we talking about? If another system has
 more facts about 'Albert', how could we know whether they are about
 the same person, and so add them to the list of things we know about
 that person? If we wanted to find people born in the German Empire,
 how could we know that the predicate 'was born in' has the same
 purpose as the predicate 'birthplace' that might exist in some other
 system? RDF solves this problem by replacing our vague terms with
 IRI references.

 IRIs are most commonly used to identify web pages, but RDF makes use
 of them as a way to provide unique identifiers for concepts. For
 example, we could identify the subject of all of our statements (the
 first part of each triple) by using the DBPedia [http://dbpedia.org]
 IRI for Albert Einstein, instead of the ambiguous string 'Albert':

 Example 15
<http://dbpedia.org/resource/Albert_Einstein>
 has the name
 Albert Einstein.
<http://dbpedia.org/resource/Albert_Einstein>
 was born on
 March 14, 1879.
<http://dbpedia.org/resource/Albert_Einstein>
 was born in
 the German Empire.
<http://dbpedia.org/resource/Albert_Einstein>
 has a picture at
 http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

 IRI references are also used to uniquely identify the objects in
 metadata statements (the third part of each triple). The picture of
 Einstein is already an IRI, but we could also use an IRI to uniquely
 identify the country 'German Empire'. At the same time we'll indicate
 that the name and date of birth really are literals (and not IRIs), by
 putting quotes around them:

 Example 16
<http://dbpedia.org/resource/Albert_Einstein>
 has the name
 "Albert Einstein".
<http://dbpedia.org/resource/Albert_Einstein>
 was born on
 "March 14, 1879".
<http://dbpedia.org/resource/Albert_Einstein>
 was born in
 <http://dbpedia.org/resource/German_Empire>.
<http://dbpedia.org/resource/Albert_Einstein>
 has a picture at
 <http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg>.

 IRI references are also used to ensure that predicates are
 unambiguous; now we can be sure that 'birthplace', 'place of birth',
 'Lieu de naissance' and so on, all mean the same thing:

 Example 17
<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/name>
 "Albert Einstein".
<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/dateOfBirth>
 "March 14, 1879".
<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/birthPlace>
 <http://dbpedia.org/resource/German_Empire>.
<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/depiction>
 <http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg>.

 3.4 Plain Literals

 Although IRI resources are always used for subjects and predicates,
 the object part of a triple can be either an IRI or a literal.
 In the example triples, Einstein's name is represented by a plain

 literal, specifically a basic string with no
 type or language information:

 Example 18
<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/name> "Albert Einstein".

 A plain literal can also be given a language tag, to capture plain
 text in a natural language. For example, Einstein's birthplace has
 different names in English and German:

 Example 19
<http://dbpedia.org/resource/German_Empire>
 rdfs:label "German Empire"@en;
 rdfs:label "Deutsches Kaiserreich"@de .

 3.5 Typed Literals

 Some literals, such as dates and numbers, have very specific
 meanings, so RDF provides a mechanism for indicating the type of a
 literal. A typed literal
 is indicated by attaching an IRI to the end of a plain literal,
 and this IRI indicates the literal's datatype. This IRI is usually
 based on datatypes defined in the XML Schema Datatypes specification
 [XMLSCHEMA11-2]. The following syntax would be used to unambiguously
 express Einstein's date of birth as a literal of type http://www.w3.org/2001/XMLSchema#date:

 Example 20
<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/dateOfBirth>
 "1879-03-14"^^<http://www.w3.org/2001/XMLSchema#date>.

 3.6 Turtle

 RDF itself does not have one set way to express triples, since the
 key ideas of RDF are the triple and the use of IRIs, and not
 any particular syntax. However, there are a number of mechanisms for
 expressing triples, such as RDF/XML [RDF-SYNTAX-GRAMMAR], Turtle
 [TURTLE], and of course RDFa. Many discussions of RDF make use of
 the Turtle syntax to explain their ideas, since it is quite
 compact. The examples we have just seen are already using this syntax,
 and we'll continue to use it throughout this document when we need to
 talk about the RDF that could be generated from some RDFa. Turtle
 allows long IRIs to be abbreviated by using an IRI mapping, which can
 be used to express a compact IRI expression as follows:

 Example 21
@prefix dbp: <http://dbpedia.org/property/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://dbpedia.org/resource/Albert_Einstein>
 foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein>
 dbp:birthPlace <http://dbpedia.org/resource/German_Empire> .

 Here 'dbp:' has been mapped to the IRI for DBPedia and 'foaf:' has
 been mapped to the IRI for the 'Friend of a Friend' vocabulary.

 Any IRI in Turtle could be abbreviated in this way. This means that
 we could also have used the same technique to abbreviate the
 identifier for Einstein, as well as the datatype indicator:

 Example 22
@prefix dbp: <http://dbpedia.org/property/> .
@prefix dbr: <http://dbpedia.org/resource/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

dbr:Albert_Einstein
 foaf:name "Albert Einstein";
 dbp:birthPlace dbr:German_Empire;
 dbp:dateOfBirth "1879-03-14"^^xsd:date;
 foaf:depiction <http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg> .

dbr:German_Empire
 rdfs:label "German Empire"@en;
 rdfs:label "Deutsches Kaiserreich"@de .

 When writing examples, you will often see the following IRI in the
 Turtle representation:

 Example 23
<>

 This indicates the 'current document', i.e., the document being
 processed. In the end there will always be a full IRI based on the
 document's location, but this abbreviation serves to make examples
 more compact. Note in particular that the whole technique of
 abbreviation is merely a way to make examples more compact, and the
 actual triples generated would always use the full IRIs.

 3.7 Graphs

 A collection of triples is called a graph. All of the
 triples that are defined by this specification are contained in the output

 graph by an RDFa Processor. For more information on graphs
 and other RDF concepts, see [RDF-SYNTAX-GRAMMAR].

 3.8 Compact URI Expressions

 In order to allow for the compact expression of RDF statements, RDFa
 allows the contraction of most IRI references into a
 form called a 'compact URI expression', or CURIE. A
 detailed discussion of this mechanism is in the section CURIE

 and IRI Processing.

 Note that CURIEs are only used in the markup and Turtle examples, and
 will never appear in the generated triples, which are
 defined by RDF to use IRI references.

 3.9 Markup Fragments and RDFa

 A growing use of embedded metadata is to take fragments of markup and
 move them from one document to another. This may happen through the
 use of tools, such as drag-and-drop in a browser, or through snippets
 of code provided to authors for inclusion in their documents. A good
 example of the latter is the licensing fragment
 provided by Creative Commons.

 However, those involved in creating fragments (either by building
 tools, or authoring snippets), should be aware that this specification
 does not say how fragments are processed. Specifically, the processing
 of a fragment 'outside' of a complete document is undefined because
 RDFa processing is largely about context. Future versions of this or
 related specifications may do more to define this behavior.

 Developers of tools that process fragments, or authors of fragments
 for manual inclusion, should also bear in mind what will happen to
 their fragment once it is included in a complete document. They should
 carefully consider the amount of 'context' information that will be
 needed in order to ensure a correct interpretation of their fragment.

 3.10 A Description of RDFa in RDF Terms

 The following is a brief description of RDFa in terms of the RDF
 terminology introduced here. It may be useful to readers with an RDF
 background:

 An RDF graph
 comprises nodes linked by relationships. The aim of RDFa is to allow a single RDF graph to be carried in various types of document markup. The basic unit
 of an RDF graph is a triple, in which a
 subject node is linked to an object node
 via a predicate. The subject node
 is always either a IRI reference or a blank
 node (or bnode), the predicate is always
 a IRI reference, and the object of a statement can be a
 IRI reference, a literal, or a bnode.

 In RDFa, a subject IRI reference is generally indicated
 using @about and predicates are represented using one of
 @property, @rel, or @rev.
 Objects which are IRI references are represented using @resource,
 @src, or @href, whilst objects that are literals
 are represented either with @content or the content of
 the element in question (with an optional datatype expressed using @datatype,
 and an optional language expressed using a Host Language-defined
 mechanism such as @xml:lang).

 4. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
 and notes in this specification are non-normative. Everything else in this specification is
 normative.

The key words MAY, MUST, MUST NOT, RECOMMENDED, SHOULD, and SHOULD NOT are
 to be interpreted as described in [RFC2119].

 4.1 RDFa Processor Conformance

 This specification uses the term output
 graph to mean all of the triples asserted by a document
 according to the Processing Model section. A conforming RDFa Processor MUST make available to a consuming application a single RDF graph containing all possible triples generated by using the rules in the Processing Model section.
 The
 term processor graph is used to denote the collection of
 all informational, warning, and error triples that MAY be generated by
 the RDFa Processor to report its status.
 The output graph and the processor graph
 are separate graphs and MUST NOT be stored in the same graph by the
 RDFa Processor. However, processors may permit the two graphs to be
 retrieved together; see Section 7.6.1 for details.

 A conforming RDFa Processor MAY make available additional triples
 that have been generated using rules not described here, but these
 triples MUST NOT be made available in the output graph.
 (Whether these additional triples are made available in one or more
 additional RDF graphs is implementation-specific, and
 therefore not defined here.)

 A conforming RDFa Processor MUST preserve white space in both plain

 literals and XML literals.
 However, it may be the case that the architecture in which a processor
 operates has made changes to the white space in a document before that
 document ever reaches the RDFa Processor (e.g., [XMLSCHEMA11-1]
 processors are permitted to 'normalize' white space in attribute
 values - see section 3.1.4). To ensure maximum consistency between
 processing environments, authors SHOULD remove any unnecessary white
 space in their plain and XML Literal content.

 A conforming RDFa Processor MUST examine the media type of a document
 it is processing to determine the document's Host Language. If the
 RDFa Processor is unable to determine the media type, or does not
 support the media type, the RDFa Processor MUST process the document
 as if it were media type application/xml. See XML+RDFa

 Document Conformance. A Host Language MAY specify additional
 announcement mechanisms.

 Note
A conforming RDFa Processor MAY use additional
 mechanisms (e.g., the DOCTYPE, a file extension, the root element, an overriding
 user-defined parameter) to
 attempt to determine the Host Language if the media type is
 unavailable. These mechanisms are unspecified.

 4.2 RDFa Host Language Conformance

 Host Languages that incorporate RDFa must adhere to the following:

 	All of the facilities required in this specification MUST be
 included in the Host Language.

 	The required attributes defined in this specification MUST be included in
 the content model of the Host Language.
 Note
For the avoidance of doubt, there is no requirement that attributes
 such as @href and @src are used in a
 conforming Host Language. Nor is there any requirement that all
 required attributes are incorporated into the content model of
 all elements. The working group recommends that Host Language designers
 ensure that the required attributes are incorporated into the content
 model of elements that are commonly used throughout the
 content model of the Host Language.

 	If the Host Language uses XML Namespaces [XML-NAMES], the
 attributes in this specification SHOULD be defined in 'no
 namespace' (e.g., when the attributes are used on elements in the
 Host Language's namespace, they can be used with no qualifying
 prefix: <myml:myElement property="license">).

 When a Host Language does not use the attributes in 'no namespace',
 they MUST be referenced via the XHTML Namespace (http://www.w3.org/1999/xhtml).

 	If the Host Language has its own definition for any attribute
 defined in this specification, that definition MUST be such that the
 processing required by this specification remains possible when the
 attribute is used in a way consistent with the requirements herein.

 	The Host Language MAY specify an initial context
 (e.g., IRI mappings and/or a definition of terms or a default
 vocabulary IRI). Such an initial context SHOULD be
 defined using the conventions defined in RDFa

 Initial Contexts.

 4.3 XML+RDFa Document Conformance

 This specification does not define a stand-alone document type. The
 attributes herein are intended to be integrated into other host
 languages (e.g., HTML+RDFa or XHTML+RDFa). However, this specification
 does define processing rules for generic XML
 documents - that is, those documents delivered as media types text/xml
 or application/xml. Such documents must meet all of the
 following criteria:

 	The document MUST be well-formed as defined in [XML10-4e].

 	The document SHOULD use the attributes defined in this
 specification in 'no namespace' (e.g., when the attributes are used on
 elements they are used with no qualifying
 prefix: <myml:myElement property="license">).
 Note
It is possible that an XML grammar will have native attributes that
 conflict with attributes in this specification. This could result in an RDFa
 processor generating unexpected triples.

 When an RDFa Processor processes an XML+RDFa document, it does so via
 the following initial context:

 	There are default terms (e.g., describedby, license, and role), defined
 in http://www.w3.org/2011/rdfa-context/rdfa-1.1.

 	There are default prefix mappings (e.g., dc),
 defined in http://www.w3.org/2011/rdfa-context/rdfa-1.1.

 	There is no default vocabulary IRI.

 	The base can be set using the @xml:base
 attribute as defined in [XML10-4e].

 	The current language can be set using @xml:lang
 attribute.

 5. Attributes and Syntax

 This specification defines a number of attributes and the way in which
 the values of those attributes are to be interpreted when generating RDF
 triples. This section defines the attributes and the syntax of their
 values.

 	about

 	a SafeCURIEorCURIEorIRI, used for stating what the
 data is about (a 'subject' in RDF terminology);

 	content

 	a CDATA string, for supplying machine-readable content
 for a literal (a 'literal object', in RDF terminology);

 	datatype

 	a TERMorCURIEorAbsIRI representing a datatype, to
 express the datatype of a literal;

 	href (optional)

 	a traditionally navigable IRI for expressing the
 partner resource of a relationship (a 'resource object', in RDF
 terminology);

 	inlist

 	An attribute used to indicate that the object
 associated with a rel or property
 attribute on the same element is to be added to the list for that
 predicate. The value of this attribute MUST be ignored.
 Presence of this attribute causes a list to be created if it does not already exist.

 	prefix

 	a white space separated list of prefix-name IRI pairs of the form
 NCName ':' ' '+ xsd:anyURI

 	property

 	a white space separated list of TERMorCURIEorAbsIRIs,
 used for expressing relationships between a subject and either a resource
 object if given or some literal
 text (also a 'predicate');

 	rel

 	a white space separated list of TERMorCURIEorAbsIRIs,
 used for expressing relationships between two resources ('predicates'
 in RDF terminology);

 	resource

 	a SafeCURIEorCURIEorIRI for expressing the partner
 resource of a relationship that is not intended to be navigable (e.g.,
 a 'clickable' link) (also an 'object');

 	rev

 	a white space separated list of TERMorCURIEorAbsIRIs,
 used for expressing reverse relationships between two resources (also
 'predicates');

 	src (optional)

 	an IRI for expressing the partner resource of a
 relationship when the resource is embedded (also a 'resource object');

 	typeof

 	a white space separated list of TERMorCURIEorAbsIRIs
 that indicate the RDF type(s) to associate with a subject;

 	vocab

 	an IRI that defines the mapping to use when a TERM
 is referenced in an attribute value. See General
 Use of Terms in Attributes and the section
 on Vocabulary Expansion.

 Note
In all cases it is possible for these attributes to be used with
 no value (e.g., @datatype="") or with a value that evaluates to
 no value after evaluation using the rules for
 CURIE and IRI Processing
 (e.g., @datatype="[noprefix:foobar]").

 5.1 Roles of attributes

 The RDFa attributes play different roles in a semantically rich document.
 Briefly, those roles are:

 	Syntax attributes: @prefix, @vocab.

 	Subject attributes: @about.

 	Predicate attributes: @property, @rel, @rev.

 	Resource attributes: @resource, @href, @src.

 	Literal attributes: @datatype, @content, @xml:lang or @lang.

 	Macro attributes: @typeof, @inlist.

 5.2 White space within attribute values

 Many attributes accept a white space separated list of tokens. This
 specification defines white space as:

 whitespace ::= (#x20 | #x9 | #xD | #xA)+

 When

 attributes accept a white space separated list of tokens, an RDFa
 Processor MUST ignore any leading or trailing white space.

 Note
This definition is consistent with the definition found
 in [XML10].

 6. CURIE Syntax Definition

 Note
The working group is currently examining the productions
 for CURIE below in light of recent comments received from the RDF
 Working Group and members of the RDFa Working
 Group. It is possible that there will be minor changes to the production
 rules below in the near future, and that these changes will be
 backward incompatible. However, any such incompatibility will be
 limited to edge cases.

 The key component of RDF is the IRI, but these are usually long and
 unwieldy. RDFa therefore supports a mechanism by which IRIs can be
 abbreviated, called 'compact URI expressions' or simply, CURIEs.

 When expanded, the resulting IRI MUST be a syntactically valid IRI
 [RFC3987]. For a more detailed explanation see CURIE

 and IRI Processing. The lexical space of a CURIE is as
 defined in curie below. The value space
 is the set of IRIs.

 A CURIE is comprised of two components, a prefix
 and a reference. The prefix is separated from the
 reference by a colon (:). In general use it is possible to
 omit the prefix, and so create a CURIE that makes use of the 'default
 prefix' mapping; in RDFa the 'default prefix' mapping is http://www.w3.org/1999/xhtml/vocab#.
 It's also possible to omit both the prefix and the colon, and
 so create a CURIE that contains just a reference which makes use of the
 'no prefix' mapping. This specification does not define a 'no prefix'
 mapping. RDFa Host Languages MUST NOT define a 'no prefix' mapping.

 Note
 The RDFa 'default prefix' should not be confused with the
 'default namespace' as defined in [XML-NAMES]. An RDFa Processor MUST NOT treat an XML-NAMES 'default namespace' declaration as if it were
 setting the 'default prefix'.

 The general syntax of a CURIE can be summarized as follows:

 prefix ::= NCName

reference ::= (ipath-absolute / ipath-rootless / ipath-empty)
 ["?" iquery] ["#" ifragment] (as defined in [[!RFC3987]])

curie ::= [[prefix] ':'] reference

safe_curie ::= '[' [[prefix] ':'] reference ']'

 Note
 The production safe_curie is not required,
 even in situations where an attribute value is permitted to be a CURIE
 or an IRI: An IRI that uses a scheme that is not an in-scope mapping cannot
 be confused with a CURIE. The concept of a safe_curie is retained for
 backward compatibility.

 Note
 It is possible to define a CURIE prefix mapping in such a way that
 it would overshadow a defined IRI scheme. For example, a document could map the prefix
 'mailto' to 'http://www.example.com/addresses/'. Then a @resource that
 contained 'mailto:user@example.com' might create a triple with the object
 'http://www.example.com/addresses/user@example.com'. Moreover, it is possible
 though unlikely, that schemes will be introduced in the future that will conflict
 with prefix mappings defined in a document (e.g., the newly proposed 'widget'
 scheme [WIDGETS-URI]). In neither case would this RDFa overshadowing of the
 underlying scheme alter the way other consumers of the IRI treat that IRI. It
 could, however, mean that the document author's intended use of the CURIE is
 mis-interpreted by another consumer as an IRI. The working group considers this
 risk to be minimal.

 In normal evaluation of CURIEs the following context information would
 need to be provided:

 	a set of mappings from prefixes to IRIs;

 	a mapping to use with the default prefix (for example, :p);

 	a mapping to use when there is no prefix (for example, p);

 	a mapping to use with the '_' prefix, which is used to generate
 unique identifiers (for example, _:p).

 In RDFa these values are defined as follows:

 	the set of mappings from prefixes to IRIs is
 provided by the current in-scope prefix declarations of the current

 element during parsing;

 	the mapping to use with the default prefix is the
 current default prefix mapping;

 	the mapping to use when there is no prefix is not
 defined;

 	the mapping to use with the '_' prefix, is not
 explicitly stated, but since it is used to generate bnodes,

 its implementation needs to be compatible with the RDF definition and
 rules in Referencing Blank Nodes. A
 document SHOULD NOT define a mapping for the '_' prefix. A Conforming
 RDFa Processor MUST ignore any definition of a mapping for the '_'
 prefix.

 A CURIE is a representation of a full IRI. The rules for determining
 that IRI are:

 	If a CURIE consists of an empty prefix and a reference,
 the IRI is obtained by taking the current default prefix mapping and
 concatenating it with the reference. If there is no
 current default prefix mapping, then this is not a valid CURIE and
 MUST be ignored.

 	Otherwise, if a CURIE consists of a non-empty prefix
 and a reference, and if there is an in-scope mapping for prefix
 (when compared case-insensitively), then the IRI is created by using
 that mapping, and concatenating it with the reference.

 	Finally, if there is no in-scope mapping for prefix,
 then the value is not a CURIE.

 Note
See General Use of Terms in Attributes
 for the way items with no colon can be interpreted in some datatypes by
 RDFa Processors.

 6.1 Why CURIEs and not QNames?
This section is non-normative.

 In many cases, language designers have attempted to use QNames for an
 extension mechanism [XMLSCHEMA11-2]. QNames do permit independent
 management of the name collection, and can map the names to
 a resource. Unfortunately, QNames are unsuitable in most cases because
 1) the use of QName as identifiers in attribute values and element
 content is problematic as discussed in [QNAMES] and 2) the syntax of
 QNames is overly restrictive and does not allow all possible IRIs to
 be expressed.

 A specific example of the problem this causes comes from attempting
 to define the name collection for books. In a QName, the part after
 the colon must be a valid element name, making an example such as the
 following invalid: isbn:0321154991

 This is not a valid QName simply because "0321154991" is not a valid
 element name. Yet, in the example given, we don't really want to
 define a valid element name anyway. The whole reason for using a QName
 was to reference an item in a private scope - that of ISBNs. Moreover,
 in this example, we want the names within that scope to map to an IRI
 that will reveal the meaning of that ISBN. As you can see, the
 definition of QNames and this (relatively common) use case are in
 conflict with one another.

 This specification addresses the problem by defining CURIEs.
 Syntactically, CURIEs are a superset of QNames.

 Note that this specification is targeted at language designers, not
 document authors. Any language designer considering the use of QNames
 as a way to represent IRIs or unique tokens should consider instead
 using CURIEs:

 	CURIEs are designed from the ground up to be used in attribute
 values. QNames are designed for unambiguously naming elements and
 attributes.

 	CURIEs expand to IRIs, and any IRI can be represented by such an
 expansion. QNames are treated as value pairs, but even if those
 pairs are combined into a string, only a subset of IRIs can be
 represented.

 	CURIEs can be used in non-XML grammars, and can even be used in
 XML languages that do not support XML Namespaces. QNames are limited
 to XML Namespace-aware XML Applications.

 7. Processing Model

 This section looks at a generic set of processing rules for creating a
 set of triples that represent the structured data present in an RDFa
 document. Processing need not follow the DOM traversal technique
 outlined here, although the effect of following some other manner of
 processing must be the same as if the processing outlined here were
 followed. The processing model is explained using the idea of DOM
 traversal which makes it easier to describe (particularly in relation to
 the evaluation context).

 Note that in this section, explanations about the
 processing model or guidance to implementors are enclosed in sections
 like this.

 7.1 Overview

 Evaluating a document for RDFa triples is carried out by starting at
 the document object, and then visiting each of its child elements in
 turn, in document order, applying processing rules. Processing is
 recursive in that for each child element the processor also visits
 each of its child elements, and applies the same processing
 rules.

 Note
 In some environments there will be little difference
 between starting at the root element of the document, and starting at
 the document object itself. It is defined this way because in some
 environments important information is present at the document object
 level which is not present on the root element.

 As processing continues, rules are applied which may generate
 triples, and may also change the evaluation context
 information that will then be used when processing descendant
 elements.

 Note
 This specification does not say anything about what
 should happen to the triples generated, or whether more triples might
 be generated during processing than are outlined here. However, to be
 conforming, an RDFa Processor MUST act as if at a minimum the rules in
 this section are applied, and a single RDF graph
 produced. As described in the RDFa Processor
 Conformance section, any additional triples generated MUST NOT
 appear in the output graph. They MAY be included in
 the processor graph.

 7.2 Evaluation Context

 During processing, each rule is applied using information provided
 by an evaluation context. An initial context
 is created when processing begins. That context has the following
 members:

 	 The base. This will usually be the IRI of the
 document being processed, but it could be some other IRI, set by
 some other mechanism, such as the (X)HTML base
 element. The important thing is that it establishes an IRI against
 which relative paths can be resolved.

 	 The parent subject. The initial
 value will be the same as the initial value of base,
 but it will usually change during the course of processing.

 	 The parent object. In some
 situations the object of a statement becomes the subject of any
 nested statements, and this member is used to convey this value.
 Note that this value may be a bnode, since in some
 situations a number of nested statements are grouped together on one
 bnode. This means that the bnode must be
 set in the containing statement and passed down.

 	A list of current, in-scope IRI

 mappings.

 	A list of incomplete triples. A triple can be
 incomplete when no object resource is provided alongside a predicate
 that requires a resource (i.e., @rel or @rev).

 The triples can be completed when a resource becomes available,
 which will be when the next subject is specified (part of the
 process called chaining).

 	A list mapping that associates IRIs with lists.

 	The language. Note that there is no default
 language.

 	The term mappings, a list of terms and their
 associated IRIs. This specification does not define an initial list.
 Host Languages MAY define an initial list.

 	The default vocabulary, a value to use as the prefix
 IRI when a term unknown to the RDFa
 Processor is used. This specification does not
 define an initial setting for the default vocabulary. Host Languages
 MAY define an initial setting.

 During the course of processing, new evaluation contexts
 are created which are passed to each child element. The initial rules
 described below will determine the values of the items in the context.
 Then the core rules will cause new triples to be created by
 combining information provided by an element with information from the
 evaluation context.

 During the course of processing a number of locally scoped values are
 needed, as follows:

 	An initially empty list of IRI mappings, called the
 local list of IRI mappings.

 	An initially empty list of incomplete triples,
 called the local list of incomplete triples.

 	An initially empty language value.

 	 A skip element flag, which indicates whether the current

 element can safely be ignored since it has no relevant RDFa
 attributes. Note that descendant elements will still be processed.

 	 A new subject value, which once calculated will set
 the parent subject in an evaluation
 context, as well as being used to complete any incomplete

 triples, as described in the next section.

 	 A value for the current
 property value, the literal to use when creating triples
 that have a literal object, or IRI-s in the absence of @rel
 or @rev.

 	 A value for the current
 object resource, the resource to use when creating triples
 that have a resource object.

 	 A value for the typed resource,
 the source for creating rdf:type relationships to
 types specified in @typeof.

 	 The local term mappings, a list of terms and their
 associated IRIs.

 	 The local list mapping, mapping IRIs to lists

 	 A local default vocabulary, an IRI to use as a
 prefix mapping when a term is used.

 7.3 Chaining

 Statement chaining is an RDFa feature that allows the
 author to link RDF statements together while avoiding unnecessary
 repetitive markup. For example, if an author were to add statements as
 children of an object that was a resource, these statements should be
 interpreted as being about that resource:

 Example 24
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire
 </div>
</div>

 In this example we can see that an object resource
 ('German_Empire'), has become the subject for nested statements. This
 markup also illustrates the basic chaining pattern of 'A has a B has a
 C' (i.e., Einstein has a birth place of the German Empire, which has a
 long name of 'the German Empire').

 It's also possible for the subject of nested statements to provide
 the object for containing statements — essentially the
 reverse of the example we have just seen. To illustrate, we'll take an
 example of the type of chaining just described, and show how it could
 be marked up more efficiently. To start, we mark up the fact that
 Albert Einstein had, at some point in his life, a residence both in
 the German Empire and in Switzerland:

 Example 25
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp-owl:residence" resource="http://dbpedia.org/resource/German_Empire"></div>
 <div rel="dbp-owl:residence" resource="http://dbpedia.org/resource/Switzerland"></div>
</div>

 Now, we show the same information, but this time we create an incomplete

 triple from the residence part, and then use any number of
 further subjects to 'complete' that triple, as follows:

 Example 26
<div about="http://dbpedia.org/resource/Albert_Einstein" rel="dbp-owl:residence">

</div>

 In this example, the incomplete triple actually gets
 completed twice, once for the German Empire and once for Switzerland,
 giving exactly the same information as we had in the earlier example:

 Example 27
<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/Switzerland> .

 Chaining can sometimes involve elements containing relatively
 minimal markup, for example showing only one resource, or only one
 predicate. Here the img element is used to carry a
 picture of Einstein:

 Example 28
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="foaf:depiction">

 </div>
</div>

 When such minimal markup is used, any of the resource-related
 attributes could act as a subject or an object in the chaining:

 Example 29
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp-owl:residence">

 </div>
</div>

 Note that, as noted above, in many situations the @property
 and @rel are interchangeable. This is not true
 for chaining. Taking the first example, if that example was used as
 follows:

 Example 30
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div property="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire
 </div>
</div>

 The subject for 'the German Empire' would remain Albert Einstein (and
 that would, of course, be an error). This is the main difference
 between @property and @rel: the latter
 induces chaining, whereas the former, usually, does not.

 7.4 CURIE and IRI Processing

 Since RDFa is ultimately a means for transporting RDF, a key concept
 is the resource and its manifestation as an IRI. RDF deals
 with complete IRIs (not relative paths); when converting RDFa to
 triples, any relative IRIs MUST be resolved relative to the base IRI,
 using the algorithm defined in section 6.5 of RFC 3987 [RFC3987], Reference

 Resolution. The values of RDFa attributes
 that refer to IRIs use three different datatypes: IRI,
 SafeCURIEorCURIEorIRI, or TERMorCURIEorAbsIRI.
 All these attributes are mapped, after processing, to IRIs. The
 handling of these attributes is as follows:

 	IRI

 	The content is an IRI, and is used as such.

 	SafeCURIEorCURIEorIRI

 	

 	When the value is surrounded by square brackets, then the
 content within the brackets is evaluated as a CURIE according to
 the CURIE Syntax Definition. If it is
 not a valid CURIE, the value MUST be ignored.

 	Otherwise, the value is evaluated as a CURIE. If it is a valid
 CURIE, the resulting IRI is used; otherwise, the value is
 processed as an IRI.

 Note
A consequence of this is that when the value of an attribute of this
 datatype is the empty string (e.g., @about=""), that value resolves to an
 IRI. An IRI of "" is a relative IRI that is interpreted as being the same as the base.
 In other words, a value of "" will usually resolve to the IRI of the current document.

 Note
A related consequence of this is that when the value of an attribute of this datatype is an empty SafeCURIE (e.g., @about="[]"), that value does not result in an IRI and therefore the value is ignored.

 	TERMorCURIEorAbsIRI

 	

 	If the value is a term
 then it is evaluated as a term according to General Use of Terms in Attributes. Note that this step may mean
 that the value is to be ignored.

 	If the value is a valid CURIE, then the resulting IRI is used.

 	If the value is an absolute IRI, that value is used.

 	Otherwise, the value is ignored.

 Note

 that it is possible for all values in an attribute to be ignored. When
 that happens, the attribute MUST be treated as if it were empty.

 For example, the full IRI for Albert Einstein on DBPedia is:

 Example 31
http://dbpedia.org/resource/Albert_Einstein

 This can be shortened by authors to make the information easier to
 manage, using a CURIE. The first step is for the author to create a
 prefix mapping that links a prefix to some leading segment of the IRI.
 In RDFa these mappings are expressed using @prefix:

 Example 32
<div prefix="db: http://dbpedia.org/">
 ...
</div>

 Once the prefix has been established, an author can then use it to
 shorten an IRI as follows:

 Example 33
<div prefix="db: http://dbpedia.org/">
 <div about="db:resource/Albert_Einstein">
 ...
 </div>
</div>

 The author is free to split the IRI at any point.
 However, since a common use of CURIEs is to
 make available libraries of terms and values, the prefix will usually
 be mapped to some common segment that provides the most re-use, often
 provided by those who manage the library of terms. For example, since
 DBPedia contains an enormous list of resources, it is more efficient
 to create a prefix mapping that uses the base location of the
 resources:

 Example 34
<div prefix="dbr: http://dbpedia.org/resource/">
 <div about="dbr:Albert_Einstein">
 ...
 </div>
 <div about="dbr:Baruch_Spinoza">
 ...
 </div>
</div>

 Note that it is generally considered a bad
 idea to use relative paths in prefix declarations. Since it is
 possible that an author may ignore this guidance, it is further
 possible that the IRI obtained from a CURIE is relative. However,
 since all IRIs must be resolved relative to base before
 being used to create triples, the use of relative paths should not
 have any effect on processing.

 7.4.1 Scoping of Prefix Mappings

 CURIE prefix mappings are defined on the current element and its
 descendants. The inner-most mapping for a given prefix takes
 precedence. For example, the IRIs expressed by the following two
 CURIEs are different, despite the common prefix, because the prefix
 mappings are locally scoped:

 Example 35
<div prefix="dbr: http://dbpedia.org/resource/">
 <div about="dbr:Albert_Einstein">
 ...
 </div>
</div>
<div prefix="dbr: http://someotherdb.org/resource/">
 <div about="dbr:Albert_Einstein">
 ...
 </div>
</div>

 Note
In general it is a bad practice to redefine prefix
 mappings within a document. In particular, while it is permitted, mapping a
 prefix to different values at different places within a document could lead to
 confusion. The working group recommends that document authors use the same
 prefix to map to the same vocabulary throughout a document. Many vocabularies
 have recommended prefix names. The working group recommends that these names
 are used whenever possible.

 7.4.2 General Use of CURIEs in Attributes

 There are a number of ways that attributes make use of CURIEs, and
 they need to be dealt with differently. These are:

 	An attribute may allow one or more values that are a mixture of
 TERMs, CURIEs, and absolute IRIs.

 	An attribute may allow one or more values that are a mixture of
 CURIEs and IRIs. In this case any value that is not a CURIE, as
 outlined in section CURIE Syntax Definition,
 will be processed as an IRI.

 	If the value is surrounded by square brackets, then
 the content within the brackets is always evaluated according to
 the rules in CURIE Syntax Definition -
 and if that content is not a CURIE, then the content MUST be
 ignored.

 Note
An empty attribute value (e.g., typeof='')
 is still a CURIE, and is processed as such. The rules
 for this processing are defined in Sequence.
 Specifically, however, an empty attribute value is never
 treated as a relative IRI by this specification.

 An example of an attribute that can contain a CURIEorIRI is @about.
 To express an IRI directly, an author might do this:

 Example 36
<div about="http://dbpedia.org/resource/Albert_Einstein">
 ...
</div>

 whilst to express the IRI above as a CURIE an author would do this:

 Example 37
<div about="dbr:Albert_Einstein">
 ...
</div>

 The author could also use a safe CURIE, as follows:

 Example 38
<div about="[dbr:Albert_Einstein]">
 ...
</div>

 Since non-CURIE values MUST be ignored, the following value in @about
 would not set a new subject, since @about
 does not permit the use of TERMs, and the CURIE
 has no prefix separator.

 Example 39
<div about="[Albert_Einstein]">
 ...
</div>

 However, this markup would set a subject, since it is not
 a CURIE, but a valid relative IRI:

 Example 40
<div about="Albert_Einstein">
 ...
</div>

 Note that several RDFa attributes are able to also take TERMS as their value.
 This is discussed in the next section.

 7.4.3 General Use of Terms in Attributes

 Some RDFa attributes have a datatype that permits a term to be referenced.
 RDFa defines the syntax of a term as:

 term ::= NCNameStartChar termChar*
termChar ::= (NameChar - ':') | '/'

 Note
For the avoidance of doubt, this production
 means a 'term' in RDFa is an XML NCName that also permits
 slash as a non-leading character.

 When an RDFa attribute permits the use of a term, and the value
 being evaluated matches the production for term above, it is
 transformed to an IRI using the following logic:

 	If there is a local default vocabulary the IRI is
 obtained by concatenating that value and the term.

 	Otherwise, check if the term matches an item in the list of local
 term mappings. First compare against the list case-sensitively,
 and if there is no match then compare case-insensitively.
 If there is a match, use the associated IRI.

 	Otherwise, the term
 has no associated IRI and MUST be ignored.

 Note
A local default vocabulary can be defined by the
 Host Language as part of the initial context, and can be overridden on
 the current element and its children using @vocab.

 7.4.4 Use of CURIEs in Specific Attributes

 The general rules discussed in the previous sections apply to the
 RDFa attributes in the following ways:

 	@about and @resource support the
 datatype SafeCURIEorCURIEorIRI - allowing a
 SafeCURIE, a CURIE, or an IRI.

 	@href and @src are as defined in the
 Host Language (e.g., XHTML), and support only an IRI.

 	@vocab supports an IRI.

 	@datatype supports the datatype TERMorCURIEorAbsIRI
 - allowing a single Term, CURIE, or Absolute IRI.

 	@property, @typeof, @rel,
 and @rev support the datatype TERMorCURIEorAbsIRIs
 - allowing one or more Terms, CURIEs, or Absolute IRIs.

 Any value that matches a defined term MUST be expanded into a
 reference to the corresponding IRI. For example in
 the following examples:

 Example 41
<link rel="license" href="http://example.org/license.html" />
<link rel="xhv:license" href="http://example.org/license.html" />

 would each generate the following triple:

 Example 42
<> <http://www.w3.org/1999/xhtml/vocab#license> <http://example.org/license.html> .

 7.4.5 Referencing Blank Nodes

 In RDFa, it is possible to establish relationships using various
 types of resource references, including bnodes. If a
 subject or object is defined using a CURIE, and that CURIE
 explicitly names a bnode, then a Conforming Processor
 MUST create the bnode when it is encountered during
 parsing. The RDFa Processor MUST also ensure that no bnode
 created automatically (e.g., as a result of chaining) has a
 name that collides with a bnode that is defined by
 explicit reference in a CURIE.

 Consider the following example:

 Example 43
<link about="_:john" rel="foaf:mbox"
 href="mailto:john@example.org" />
<link about="_:sue" rel="foaf:mbox"
 href="mailto:sue@example.org" />
<link about="_:john" rel="foaf:knows"
 resource="_:sue" />

 In the above fragment, two bnodes are
 explicitly created as the subject of triples. Those bnodes
 are then referenced to demonstrate the relationship between the
 parties. After processing, the following triples will be generated:

 Example 44
_:john foaf:mbox <mailto:john@example.org> .
_:sue foaf:mbox <mailto:sue@example.org> .
_:john foaf:knows _:sue .

 Note

 RDFa Processors use, internally, implementation-dependent
 identifiers for bnodes. When triples are retrieved, new
 bnode indentifiers are used, which usually bear no relation to the
 original identifiers. However, implementations do ensure that these
 generated bnode identifiers are consistent: each bnode will have its
 own identifier, all references to a particular bnode will use the
 same identifier, and different bnodes will have different
 identifiers.

 As a special case, _: is also a valid reference for one
 specific bnode.

 7.5 Sequence

 Processing would normally begin after the document to be parsed has
 been completely loaded. However, there is no requirement for this to
 be the case, and it is certainly possible to use a stream-based
 approach, such as SAX [SAX] to extract the RDFa information.
 However, if some approach other than the DOM traversal technique
 defined here is used, it is important to ensure that Host
 Language-specific processing rules are applied (e.g., XHTML+RDFa
 [XHTML-RDFA] indicates the base element can be used,
 and base will affect the interpretation of IRIs in meta
 or link elements even if those elements are before the base
 element in the stream).

 Note

 In this section the term 'resource' is used to mean 'IRI
 or bnode'. It is possible that this term will be replaced with
 some other, more formal term after consulting with other groups. Changing this
 term will in no way change this processing sequence.

 At the beginning of processing, an initial evaluation

 context is created, as follows:

 	the base is set to the IRI of the document (or
 another value specified in a language specific manner such as the
 HTML base element);

 	the parent subject is set to the base
 value;

 	the parent object is set to null;

 	the list of incomplete triples is empty;

 	the list mapping is empty;

 	the language is set to null.

 	
 the list of IRI mappings is empty (or a list defined
 in the initial context of the Host
 Language).

 	the

 term mappings is set to null (or a list defined in the
 initial context of the Host
 Language).

 	the

 default vocabulary is set to null (or an IRI defined in
 the initial context of the Host
 Language).

 Processing begins by applying the processing rules below to the
 document object, in the context of this initial evaluation
 context. All elements in the tree are also processed
 according to the rules described below, depth-first, although the evaluation

 context used for each set of rules will be based on previous
 rules that may have been applied.

 Note
This specification defines processing rules for optional
 attributes that may not be present in all Host Languages (e.g., @href).
 If these attributes are not supported in the Host Language, then the
 corresponding processing rules are not relevant for that language.

 The processing rules are:

 	 First, the local values are initialized,
 as follows:

 	the skip element flag is set to 'false';

 	new subject is set to null;

 	current object resource is set to null;

 	typed resource is set to null;

 	the local list of IRI mappings is set to the
 list of IRI mappings from the evaluation context;

 	the local list of incomplete triples is set to
 null;

 	the list mapping is set to (a reference of) the
 list mapping from the evaluation context;

 	the current language value is set to the language
 value from the evaluation context.

 	the local term mappings is set to the term

 mappings from the evaluation context.

 	the local default vocabulary is set to the default

 vocabulary from the evaluation context.

 Note that some of the local variables are
 temporary containers for values that will be passed to descendant
 elements via an evaluation context. In some cases
 the containers will have the same name, so to make it clear which
 is being acted upon in the following steps, the local version of
 an item will generally be referred to as such.

 Note that the local term mappings is always reset to a global
 value, provided by the initial context.
 Future versions of this specification may introduce
 a mechanism whereby the local term mappings
 can be set dynamically, in which case the
 local term mappings would inherit from the parent's values.

 	 Next the current element
 is examined for any change to the default vocabulary
 via @vocab. If @vocab is present and contains
 a value, the local default vocabulary is updated
 according to the section on CURIE and IRI Processing.
 If the value is empty, then the local
 default vocabulary MUST be reset to the Host Language
 defined default (if any).
 The value of @vocab is used
 to generate a triple as follows:

 	subject

 	base

 	predicate

 	http://www.w3.org/ns/rdfa#usesVocabulary

 	object

 	value from @vocab

 A Host Language is not required to define
 a default vocabulary. In such a case, setting @vocab
 to the empty value has the effect of setting the local
 default vocabulary to null.

 	Next, the current element is
 examined for IRI mappings and these are added to the local

 list of IRI mappings. Note that an IRI mapping
 will simply overwrite any current mapping in the list that has the
 same name;
 Mappings are defined via @prefix.
 Values

 in this attribute are evaluated from beginning to end (e.g.,
 left to right in typical documents). For

 backward compatibility, RDFa Processors SHOULD also permit the
 definition of mappings via @xmlns. In
 this case, the value to be mapped is set by the XML namespace
 prefix, and the value to map is the value of the attribute — an
 IRI. (Note that prefix mapping via @xmlns
 is deprecated, and may be removed in a future version of this
 specification.) When xmlns is
 supported, such mappings MUST be processed before processing any
 mappings from @prefix on the same element.
 Regardless of how the mapping is declared, the value to be
 mapped MUST be converted to lower case, and the IRI is
 not processed in any way; in particular if it is a relative path
 it MUST NOT be resolved against the current base.
 Authors SHOULD NOT use relative paths as the IRI.

 	
 The current element is also parsed for any language
 information, and if present, current language is set
 accordingly;
 Host Languages that incorporate RDFa MAY
 provide a mechanism for specifying the natural language of an
 element and its contents (e.g., XML provides the general-purpose
 XML attribute @xml:lang).

 	 If the current element contains
 no @rel or @rev attribute, then the next
 step is to establish a value for new subject. This
 step has two possible alternatives.

 	
 If the current element contains the @property
 attribute, but does not contain either the @content
 or @datatype attributes, then
 new subject is set to
 the resource obtained from the first match from the following rule:

 	by using the resource from @about, if present,
 obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, if the element is the root element of the document, then
 act as if there is an empty @about present,
 and process it according to the rule for @about,
 above;

 	otherwise, if parent object is
 present, new subject is set to the value of
 parent object.

 If @typeof is present then typed resource
 is set to the resource obtained from the first match from the following rules:

 	by using the resource from @about, if present,
 obtained according to the section on CURIE and IRI Processing;

 	otherwise, if the element is the root element of the document, then
 act as if there is an empty @about present and process it according to the previous
 rule;

 	otherwise,

								by using the resource from @resource, if present,
							 obtained according to the section on CURIE
	
								and IRI Processing;

								otherwise, by using the
							IRI from @href,
							 if present, obtained according to the section on CURIE
	
								and IRI Processing;

								otherwise, by using the IRI from @src,
							 if present, obtained according to the section on CURIE
	
								and IRI Processing;

								otherwise, the value of typed resource is
							 set to a newly created bnode.

								The value of the current object resource
							 is then set to the value of typed resource.

 	otherwise:

 	If the element contains an @about, @href,
 @src, or @resource attribute,
 new subject is set to the resource obtained as follows:

 	by using the resource from @about, if present,
 obtained according to the section on CURIE
 and IRI Processing;

 	otherwise, by using the resource from @resource, if present,
 obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, by using the
 IRI from @href,
 if present, obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, by using the IRI from @src,
 if present, obtained according to the section on CURIE

 and IRI Processing.

 	otherwise, if no resource is provided by a resource attribute, then the
 first match from the following rules will apply:

 	if the element is the root element of the document, then
 act as if there is an empty @about present,
 and process it according to the rule for @about,
 above;

 	otherwise, if @typeof is present, then new
 subject is set to be a newly created bnode;

 	otherwise, if parent object is
 present, new subject is set to the value of
 parent object. Additionally, if @property
 is not present then the skip element
 flag is set to 'true'.

 	
 Finally, if

 @typeof is present, set the
 typed resource to the value of new subject.

 	 If the current element
 does contain a @rel or @rev
 attribute, then the next step is to establish both a value
 for new subject and a value for current object
 resource:
 new subject is set to the
 resource obtained from the first match from the following rules:

 	by using the resource from @about, if present,
 obtained according to the section on CURIE

 and IRI Processing;

 if the @typeof attribute is present, set typed

 resource to new subject.

 If no resource is provided then the first match from the following
 rules will apply:

 	if the element is the root element of the document then act
 as if there is an empty @about present, and
 process it according to the rule for @about,
 above;

 	otherwise, if parent object is
 present, new subject is set to that.

 Then the current object resource is set to the
 resource obtained from the first match from the following rules:

 	by using the resource from @resource, if present,
 obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, by using the
 IRI from @href,
 if present, obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, by using the IRI from @src,
 if present, obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, if @typeof is present and @about
 is not, use a newly created bnode.

 If @typeof is present and @about is
 not, set typed resource to current object
 resource.

 Note that final value of the current object resource
 will either be null (from initialization) or a full IRI or bnode.

 	
 If in any of the previous steps a typed resource was
 set to a non-null value, it is now used to provide a subject for
 type values;
 One or more 'types' for the typed
 resource can be set by using @typeof. If
 present, the attribute may contain one or more IRIs, obtained
 according to the section on CURIE
 and IRI Processing, each of which is used to generate a
 triple as follows:

 	subject

 	typed resource

 	predicate

 	http://www.w3.org/1999/02/22-rdf-syntax-ns#type

 	object

 	current full IRI of 'type' from typed resource

 	 If in any of the previous steps a new

 subject was set to a non-null value different
 from the parent object;
 The list mapping taken from
 the evaluation context is set to a new, empty
 mapping.

 	 If in any of the previous steps a current

 object resource was set to a non-null value, it is now used
 to generate triples and add entries to the local list mapping:
 If the element contains both the
 @inlist and the @rel attributes the @rel
 may contain one or more resources, obtained according to the section on
 CURIE and IRI Processing each of
 which is used to add an entry to the list mapping as
 follows:

 	if the local list mapping does not contain a
 list associated with the IRI, instantiate a new list and add
 to local list mappings

 	add the current object resource to the list
 associated with the resource in the local list mapping

 Predicates for the current object
 resource can be set by using one or both of the @rel
 and the @rev attributes but, in case of the @rel
 attribute, only if the @inlist is not
 present:

 	 If present, @rel may contain one or more resources,
 obtained according to the section on CURIE

 and IRI Processing each of which is used to generate a
 triple as follows:

 	subject

 	new subject

 	predicate

 	full IRI

 	object

 	current object resource

 	 If present, @rev may contain one or more resources,
 obtained according to the section on CURIE

 and IRI Processing each of which is used to generate a
 triple as follows:

 	subject

 	current object resource

 	predicate

 	full IRI

 	object

 	new subject

 	 If however current object
 resource was set to null, but there are predicates present,
 then they must be stored as incomplete triples,
 pending the discovery of a subject that can be used as the object.
 Also, current object resource should be set to a newly
 created bnode (so that the incomplete triples have a
 subject to connect to if they are ultimately turned into triples);
 Predicates for incomplete triples
 can be set by using one or both of the @rel and @rev
 attributes:

 	 If present, @rel must contain one or more
 resources, obtained according to the section on CURIE

 and IRI Processing each of which is added to the local

 list of incomplete triples as follows:

 	 If the element contains the @inlist
 attribute, then

 	if the local list mapping does not
 contain a list associated with the IRI, instantiate a
 new list and add to local list mappings.

 	Add:

 	list

 	list from local list mapping for
 this IRI

 	direction

 	none

 	Otherwise add:

 	

 	predicate

 	full IRI

 	direction

 	forward

 	 If present, @rev must contain one or more
 resources, obtained according to the section on CURIE

 and IRI Processing, each of which is added to the local

 list of incomplete triples as follows:

 	predicate

 	full IRI

 	direction

 	reverse

 	 The next step of the iteration is
 to establish any current property value;
 Predicates for the current property
 value can be set by using @property. If
 present, one or more resources are obtained according to the section on
 CURIE and IRI Processing, and
 then the actual literal value is obtained as follows:

 	 as a typed literal if @datatype
 is present, does not have an empty value according to the
 section on CURIE and IRI
 Processing, and is not set to XMLLiteral
 in the vocabulary http://www.w3.org/1999/02/22-rdf-syntax-ns#.
 The actual literal is either the value of @content
 (if present) or a string created by concatenating
 the value of all descendant text nodes, of the current

 element in turn. The final string includes the
 datatype IRI, as described in [RDF-SYNTAX-GRAMMAR], which will
 have been obtained according to the section on CURIE

 and IRI Processing.

 	 otherwise, as a plain literal if @datatype
 is present but has an empty value according to the section on
 CURIE and IRI Processing.

 The actual literal is either the value of @content
 (if present) or a string created by concatenating
 the value of all descendant text nodes, of the current
 element in turn.

 	
 otherwise, as an XML
 literal if @datatype is present and is
 set to XMLLiteral in the vocabulary http://www.w3.org/1999/02/22-rdf-syntax-ns#.
 The value of the XML literal
 is a string created by serializing to text, all nodes that
 are descendants of the current element, i.e.,
 not including the element itself, and giving it a datatype
 of XMLLiteral in the vocabulary http://www.w3.org/1999/02/22-rdf-syntax-ns#.
 The format of the resulting serialized content is as defined
 in Exclusive XML Canonicalization Version 1.0 [XML-EXC-C14N].

 Note

 In order to maintain maximum portability of this literal,
 any children of the current node that are elements MUST have
 the current XML namespace declarations (if any) declared on
 the serialized element. Since the child element node could
 also declare new XML namespaces, the RDFa Processor MUST be
 careful to merge these together when generating the
 serialized element definition. For avoidance of doubt, any
 re-declarations on the child node MUST take precedence over
 declarations that were active on the current node.

 	
 otherwise, as a plain literal using
 the value of @content if @content is
 present.

 	
 otherwise, if the @rel, @rev,
 and @content attributes are not present,
 as a resource
 obtained from one of the following:

 	by using the resource from @resource, if present,
 obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, by using the
 IRI from @href,
 if present, obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, by using the IRI from @src,
 if present, obtained according to the section on CURIE

 and IRI Processing.

 	
 otherwise, if @typeof is present and @about
 is not, the value of typed resource.

 	
 otherwise as a plain literal.

 Additionally, if there is a value for current
 language then the value of the plain literal
 should include this language information, as described in
 [RDF-SYNTAX-GRAMMAR]. The actual literal is either the value of
 @content (if present) or a string
 created by concatenating the text content of each of the
 descendant elements of the current element in
 document order.

 The current property value is then used with each
 predicate as follows:

 	If the element also includes the @inlist
 attribute, the current property value is added
 to the local list mapping as follows:

 	if the local list mapping does not contain
 a list associated with the predicate IRI, instantiate a
 new list and add to local list mappings

 	add the current property value to the list
 associated with the predicate IRI in the local list
 mapping

 	Otherwise the current property value is used
 to generate a triple as follows:

 	subject

 	new subject

 	predicate

 	full IRI

 	object

 	current property value

 	 If the skip element flag
 is 'false', and new subject was set to a
 non-null value, then any incomplete triples within

 the current context should be completed:
 The list of incomplete triples
 from the current evaluation context (not
 the local list of incomplete triples) will contain
 zero or more predicate IRIs. This list is iterated over and each
 of the predicates is used with parent subject and new

 subject to generate a triple or add a new element to the
 local list mapping. Note that at each level there are
 two lists of incomplete triples; one for
 the current processing level (which is passed to each child
 element in the previous step), and one that was received as part
 of the evaluation context. It is the latter that is
 used in processing during this step.

 Note that each incomplete triple
 has a direction value that is used to determine what
 will become the subject, and what will become the object, of each
 generated triple:

 	If direction is 'none', the new subject
 is added to the list from the iterated incomplete
 triple.

 	 If direction is 'forward' then the following
 triple is generated:

 	subject

 	parent subject

 	predicate

 	the predicate from the iterated incomplete triple

 	object

 	new subject

 	 If direction is 'reverse'
 then this is the triple generated:

 	subject

 	new subject

 	predicate

 	the predicate from the iterated incomplete triple

 	object

 	parent subject

 	 Next, all elements that are children of the current

 element are processed using the rules described here, using
 a new evaluation context, initialized as follows:

 	 If the skip element flag is 'true' then the new
 evaluation context is a copy of the current context
 that was passed in to this level of processing, with the language
 and list of IRI mappings values replaced with the
 local values;

 	 Otherwise, the values are:

 	the base is set to the base
 value of the current evaluation context;

 	the parent subject is set to the value of new

 subject, if non-null, or the value of the
 parent subject of the current evaluation
 context;

 	the parent object is set to value of current

 object resource, if non-null, or the
 value of new subject, if non-null, or
 the value of the parent subject of the current
 evaluation context;

 	the list of IRI mappings is set to the local

 list of IRI mappings;

 	the list of incomplete triples is set to the
 local list of incomplete triples;

 	the list mapping is set to the local
 list mapping;

 	language is set to the value of current

 language.

 	the default vocabulary is set to the value
 of the local default vocabulary.

 	Finally, if there is one or more mapping in
 the local list mapping, list triples are generated as
 follows:

 For each IRI in the local list mapping,
 if the equivalent list does not exist in the
 evaluation context, indicating that the list was
 originally instantiated on the current element, use the list as
 follows:

 	
 If there are zero items in the list associated with the IRI,
 generate the following triple:

 	subject

 	current subject

 	predicate

 	full IRI of the local list mapping
 associated with this list

 	object

 	http://www.w3.org/1999/02/22-rdf-syntax-ns#nil

 	Otherwise,

 	Create a new ‘bnode’ array containing newly created bnodes,

 one for each item in the list

 	For each bnode-(IRI or literal) pair from the list
 the following triple is generated:

 	subject

 	bnode

 	predicate

 	http://www.w3.org/1999/02/22-rdf-syntax-ns#first

 	object

 	full IRI or literal

 	For each item in the ‘bnode’ array the following triple
 is generated:

 	subject

 	bnode

 	predicate

 	http://www.w3.org/1999/02/22-rdf-syntax-ns#rest

 	object

 	next item in the ‘bnode’ array or, if that does not
 exist, http://www.w3.org/1999/02/22-rdf-syntax-ns#nil

 	A single additional triple is generated:

 	subject

 	current subject

 	predicate

 	full IRI of the local list mapping
 associated with this list

 	object

 	first item of the ‘bnode’ array

 7.6 Processor Status

 The processing rules covered in the previous section are designed to
 extract as many triples as possible from a document. The RDFa
 Processor is designed to continue processing, even in the event of
 errors. For example, failing to resolve a prefix mapping or term
 would result in the RDFa Processor skipping the generation of a triple
 and continuing with document processing. There are cases where knowing
 each RDFa Processor warning or error would be beneficial to authors.
 The processor graph is designed as the mechanism
 to capture all informational, warning, and error messages as triples
 from the RDFa Processor. These status triples may be retrieved and
 used to aid RDFa authoring or automated error detection.

 If an RDFa Processor supports the generation of a processor graph,
 then it MUST generate a set of triples when the following processing
 issues occur:

 	An rdfa:Error MUST be generated when the document fails to be
 fully processed as a result of non-conformant Host Language markup.

 	A rdfa:Warning MUST be generated when a CURIE prefix fails to be
 resolved.

 	A rdfa:Warning MUST be generated when a Term fails to be resolved.

 Other implementation-specific rdfa:Info, rdfa:Warning,
 or rdfa:Error triples MAY be generated by the RDFa Processor.

 7.6.1 Accessing the Processor Graph

 Accessing the processor graph may be accomplished in
 a variety of ways and is dependent on the type of RDFa Processor and
 access method that the developer is utilizing.

 SAX-based processors or processors that utilize function or method
 callbacks to report the generation of triples are classified as event-based

 RDFa Processors. For Event-based RDFa Processors, the
 software MUST allow the developer to register a function or callback
 that is called when a triple is generated for the processor
 graph. The callback MAY be the same as the one that is used
 for the output graph as long as it can be determined
 if a generated triple belongs in the processor graph
 or the output graph.

 A whole-graph RDFa Processor is defined as any RDFa
 Processor that processes the entire document and only
 provides the
 developer access to the triples after processing has completed. RDFa
 Processors that typically fall into this category express their
 output via a single call using RDF/XML, N3, TURTLE, or N-Triples
 notation. For whole-graph RDFa Processors, the software MUST allow
 the developer to specify if they would like to retrieve the output

 graph, the processor graph, or both graphs as
 a single, combined graph from the RDFa Processor.
 If the graph preference is not specified, the output graph
 MUST be returned.

 A web service RDFa Processor is defined as any RDFa
 Processor that is capable of processing a document by performing an
 HTTP GET, POST or similar action on an RDFa Processor IRI. For this
 class of RDFa Processor, the software MUST allow the caller to
 specify if they would like to retrieve the output graph,
 the processor graph, or both graphs as a single,
 combined graph from the web service. The rdfagraph
 query parameter MUST be used to specify the value. The allowable
 values are output, processor or both
 values, in any order, separated by a comma character.
 If the graph preference is not specified, the output graph
 MUST be returned.

 7.6.2 Processor Graph Terms

 To ensure interoperability, a core hierarchy of classes is defined
 for the content of the processor graph. Separate errors or warnings
 are resources (typically blank nodes) of a specific type, with
 additional properties giving more details on the error condition or
 the warning. This specification defines only the top level classes
 and the ones referring to the error and warning conditions defined explicitly
 by this document. Other, implementation-specific subclasses may be
 defined by the RDFa Processor.

 The top level classes are rdfa:Error, rdfa:Warning,
 and rdfa:Info, defined as part of the RDFa

 Vocabulary. Furthermore, a single property is defined on those
 classes, namely rdfa:context, that provides an extra
 context for the error, e.g., http response, an XPath information, or
 simply the IRI to the RDFa resource. Usage of this property is
 optional, and more than one triple can be used with this predicate
 on the same subject. Finally, error and warning instances SHOULD use
 the dc:description and dc:date
 properties. dc:description should provide a short,
 human readable but implementation dependent description of the
 error. dc:date should give the time when the error was
 found and it is advised to be as precise as possible to allow the
 detection of, for example, possible network errors.

 The example below shows the triples that should be minimally
 present in the processor graph as a result of an error (the content
 of the literal for the dc:description predicate is
 implementation dependent):

 Example 45
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dc: <http://purl.org/dc/terms/> .
[] a rdfa:DocumentError ;
 dc:description "The document could not be parsed due to parsing errors." ;
 dc:date "2010-06-30T13:40:23"^^xsd:dateTime .

 A slightly more elaborate example makes use of the rdfa:context
 property to provide further information, using external vocabularies
 to represent HTTP headers or XPointer information (note that a
 processor may not have these information in all cases, i.e., these rdfa:context
 information are not required):

 Example 46
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix ptr: <http://www.w3.org/2009/pointers#> .
@prefix ht: <http://www.w3.org/2006/http#> .

[] a rdfa:DocumentError ;
 dc:description "The document could not be parsed due to parsing errors." ;
 dc:date "2010-06-30T13:40:23"^^xsd:dateTime ;
 rdfa:context <http://www.example.org/doc> ;
 rdfa:context [
 a ptr:Pointer ;
 # Detailed xpointer/xpath information provided here to locate the error.
] ;
 rdfa:context [
 a ht:Response ;
 ht:responseCode <http://www.w3.org/2006/http#404>
 # The HTTP response headers on the request for the source file.
].

 7.7 Vocabulary Expansion

 Processors MAY perform vocabulary expansion by
 utilizing limited RDFS and OWL entailment rules,
 as described in RDFa

 Vocabulary Expansion.

 8. RDFa Processing in detail
This section is non-normative.

 This section provides an in-depth examination of the processing steps
 described in the previous section. It also includes examples which may
 help clarify some of the steps involved.

 The key to processing is that a triple is generated whenever a
 predicate/object combination is detected. The actual triple generated
 will include a subject that may have been set previously, so this is
 tracked in the current evaluation context and is called
 the parent subject. Since the subject will default to the
 current document if it hasn't been set explicitly, then a
 predicate/object combination is always enough to generate one or more
 triples.

 The attributes for setting a predicate are @rel, @rev
 and @property, whilst the attributes for setting an object
 are @resource, @href, @content,
 and @src. @typeof is unique in that it sets both
 a predicate and an object at the same time (and also a subject when it
 appears in the absence of other attributes that would set a subject).
 Inline content might also set an object, if @content is not
 present, but @property is present.

 Note
 There are many examples in this section. The examples are
 all written using XHTML+RDFa. However, the explanations are relevant
 regardless of the Host Language.

 8.1 Changing the Evaluation Context

 8.1.1 Setting the current subject

 When triples are created they will always be in relation to a
 subject resource which is provided either by new subject
 (if there are rules on the current element that have set a subject)
 or parent subject, as passed in via the evaluation

 context. This section looks at the specific ways in which
 these values are set. Note that it doesn't matter how the subject is
 set, so in this section we use the idea of the current
 subject which may be either new subject
 or parent subject.

 8.1.1.1 The current document

 When parsing begins, the current subject will be
 the IRI of the document being parsed, or a value as set by a Host
 Language-provided mechanism (e.g., the base element
 in (X)HTML). This means that by default any metadata found in the
 document will concern the document itself:

 Example 47
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Jo's Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dc:creator" content="Jo" />
 </head>
 <body>
 ...
 </body>
</html>

 This would generate the following triples:

 Example 48
<> foaf:primaryTopic <#bbq> .
<> dc:creator "Jo" .

 It is possible for the data to appear elsewhere in the document:

 Example 49
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Jo's Blog</title>
 </head>
 <body>
 <h1>Jo's blog</h1>
 <p>
 Welcome to my blog.
 </p>
 </body>
</html>

 which would still generate the triple:

 Example 50
<> dc:creator "Jo" .

 In (X)HTML the value of base may change the initial
 value of current subject:

 Example 51
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <base href="http://www.example.org/jo/blog" />
 <title>Jo's Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dc:creator" content="Jo" />
 </head>
 <body>
 ...
 </body>
</html>

 An RDFa Processor should now generate the following triples,
 regardless of the IRI from which the document is served:

 Example 52
<http://www.example.org/jo/blog> foaf:primaryTopic <http://www.example.org//jo/blog#bbq> .
<http://www.example.org/jo/blog> dc:creator "Jo" .

 8.1.1.2 Using @about

 As processing progresses, any @about attributes will
 change the current subject. The value of @about
 is an IRI or a CURIE. If it is a relative IRI then it needs to be
 resolved against the current base value. To
 illustrate how this affects the statements, note in this markup
 how the properties inside the (X)HTML body element
 become part of a new calendar event object, rather than referring
 to the document as they do in the head of the document:

 Example 53
<html xmlns="http://www.w3.org/1999/xhtml"
 prefix="cal: http://www.w3.org/2002/12/cal/ical#">
 <head>
 <title>Jo's Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dc:creator" content="Jo" />
 </head>
 <body>
 <p about="#bbq" typeof="cal:Vevent">
 I'm holding

 one last summer barbecue
 ,
 on
 <span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">
 September 16th at 4pm
 .
 </p>
 </body>
</html>

 With this markup an RDFa Processor will generate the following
 triples:

 Example 54
<> foaf:primaryTopic <#bbq> .
<> dc:creator "Jo" .
<#bbq> rdf:type cal:Vevent .
<#bbq> cal:summary "one last summer barbecue" .
<#bbq> cal:dtstart "2015-09-16T16:00:00-05:00"^^xsd:dateTime .

 Other kinds of resources can be used to set the current
 subject, not just references to web-pages. Although not
 advised, email addresses might be used to represent a person:

 Example 55
John knows
<a about="mailto:john@example.org"
 rel="foaf:knows" href="mailto:sue@example.org">Sue.

Sue knows
<a about="mailto:sue@example.org"
 rel="foaf:knows" href="mailto:jim@example.org">Jim.

 This should generate the following triples:

 Example 56
<mailto:john@example.org> foaf:knows <mailto:sue@example.org> .
<mailto:sue@example.org> foaf:knows <mailto:jim@example.org> .

 Similarly, authors may make statements about images:

 Example 57
<div about="photo1.jpg">
 this photo was taken by
 Mark Birbeck
</div>

 which should generate the following triple:

 Example 58
<photo1.jpg> dc:creator "Mark Birbeck" .

 8.1.1.3 Typing resources with @typeof

 @typeof defines typing triples. @typeof
 works differently to other ways of setting a predicate since the
 predicate is always rdf:type, which means that the
 processor only requires the value of the type. The
 question is: which resource gets these typing information?

 If the element has an @about, which creates a new
 context for statements, the typing relationships are defined on
 that resource. For example, the following:

 Example 59
<div about="http://dbpedia.org/resource/Albert_Einstein" typeof="foaf:Person">
 Albert Einstein
 Albert
</div>

 also creates the triple:

 Example 60
<http://dbpedia.org/resource/Albert_Einstein> rdf:type foaf:Person .

 The @about attribute is the main source for typing;
 if it is present on an element, it determines the effect of @typeof
 with the highest priority. If @about is not
 present, but the element is used only to define possible subject
 resources via, e.g., @resource (i.e., there is no
 @rel, @rev, or @property
 present), then that resource is used for the typed resource, just
 like @about.

 If an @rel is present (and still no @about)
 then the explicit object of the triples defined by @rel
 is typed. For example, in the case of:

 Example 61
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp:birthPlace"
 resource="http://dbpedia.org/resource/German_Empire"
 typeof="http://schema.org/Country">
 </div>
</div>

 the generated triples also include:

 Example 62
<http://dbpedia.org/resource/German_Empire> rdf:type <http://schema.org/Country> .

 Finally, @typeof also has the additional feature of
 creating a new context for statements, in case no other
 attributes define any. This involves generating a new bnode
 (see below for more about bnodes). For example, an author may wish
 to create markup for a person using the FOAF vocabulary, but
 without having a clear identifier for the item:

 Example 63
<div typeof="foaf:Person">
 Albert Einstein
 Albert
</div>

 This markup would cause a bnode to be created
 which has a 'type' of foaf:Person, as well as name
 and given name properties:

 Example 64
_:a rdf:type foaf:Person .
_:a foaf:name "Albert Einstein" .
_:a foaf:givenName "Albert" .

 This usage of “isolated” @typeof may be viewed as a shorthand for:

 Example 65
<div resource="_:a" typeof="foaf:Person">
 Albert Einstein
 Albert
</div>

 Similarly,

 Example 66
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp:birthPlace" typeof="http://schema.org/Country">
 the German Empire
 </div>
</div>

 generates:

 Example 67
<http://dbpedia.org/resource/Albert_Einstein"> dbp:birthPlace _:b .
_:b dbp:conventionalLongName "the German Empire" .

 A bnode is simply a unique
 identifier that is only available to the processor, not to any
 external software. By generating values internally, the processor
 is able to keep track of properties for _:a as being
 distinct from _:b. But by not exposing these values
 to any external software, it is possible to have complete control
 over the identifier, as well as preventing further statements
 being made about the item.

 8.1.1.3.1 Chaining with @property and @typeof

 As emphasized in the section on chaining,
 one of the main differences between @property and @rel
 (or @rev) is that the former does not induce
 chaining. The only exception to this rule is when @typeof
 is also present on the element. In that case the effect of @property
 is identical to @rel. For example, the previous
 example could have been written as:

 Example 68
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div property="dbp:birthPlace" typeof="http://schema.org/Country">
 the German Empire
 </div>
</div>

 generating the same triples as before. Here again, a @typeof without
 an @about or a @resource can be regarded as a shorthand
 for an additional @resource attribute referring to the identifier of a fresh bnode.

 8.1.1.4 Determining the subject with neither @about nor @typeof

 As described in the previous two sections, @about
 will always take precedence and mark a new subject, but if no @about
 value is available then @typeof will do the same job,
 although using an implied identifier, i.e., a bnode.

 But if neither @about or @typeof are
 present, there are a number of ways that the subject could be
 arrived at. One of these is to 'inherit' the subject from the
 containing statement, with the value to be inherited set either
 explicitly, or implicitly.

 8.1.1.4.1 Inheriting subject from @resource

 The most usual way that an inherited subject might get set
 would be when the parent statement has an object that is a
 resource. Returning to the earlier example, in which the long
 name for the German_Empire was added, the following markup was
 used:

 Example 69
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
</div>

 In an earlier illustration the subject and object for the
 German Empire were connected by removing the @resource,
 relying on the @about to set the object:

 Example 70
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace">
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
 </div>
</div>

 but it is also possible for authors to achieve the same effect
 by removing the @about and leaving the @resource:

 Example 71
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire
 </div>
</div>

 In this situation, all statements that are 'contained' by the
 object resource representing the German Empire (the value in @resource)
 will have the same subject, making it easy for authors to add
 additional statements:

 Example 72
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire

 </div>
</div>

 Looking at the triples that an RDFa Processor would generate,
 we can see that we actually have two groups of statements; the
 first group is set to refer to the @about that
 contains them:

 Example 73
<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein> dbp:dateOfBirth "1879-03-14"^^xsd:date .
<http://dbpedia.org/resource/Albert_Einstein> dbp:birthPlace <http://dbpedia.org/resource/German_Empire> .

 while the second group refers to the @resource
 that contains them:

 Example 74
<http://dbpedia.org/resource/German_Empire>
 dbp:conventionalLongName "the German Empire" .
<http://dbpedia.org/resource/German_Empire>
 dbp-owl:capital <http://dbpedia.org/resource/Berlin> .

 Note also that the same principle described here applies to @src
 and @href.

 8.1.1.4.2 Inheriting an anonymous subject

 There will be occasions when the author wants to connect the
 subject and object as shown above, but is not concerned to name
 the resource that is common to the two statements (i.e., the
 object of the first statement, which is the subject of the
 second). For example, to indicate that Einstein was influenced
 by Spinoza the following markup could well be used:

 Example 75
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 <div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 </div>
</div>

 An RDFa Processor will generate the following triples:

 Example 76
<http://dbpedia.org/resource/Baruch_Spinoza>
 dbp-owl:influenced <http://dbpedia.org/resource/Albert_Einstein> .
<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein> dbp:dateOfBirth "1879-03-14"^^xsd:date .

 However, an author could just as easily say that Spinoza
 influenced something by the name of Albert Einstein, that
 was born on March 14th, 1879:

 Example 77
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 <div>
 Albert Einstein
 1879-03-14
 </div>
</div>

 In RDF terms, the item that 'represents' Einstein is anonymous,
 since it has no IRI to identify it. However, the item is given
 an automatically generated bnode, and it is onto
 this identifier that all child statements are attached:

 An RDFa Processor will generate the following triples:

 Example 78
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced _:a .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .

 Note that the div is superfluous, and an RDFa
 Processor will create the intermediate object even if the
 element is removed:

 Example 79
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 Albert Einstein
 1879-03-14
</div>

 An alternative pattern is to keep the div
 and move the @rel onto it:

 Example 80
<div about="http://dbpedia.org/resource/Baruch_Spinoza">
 <div rel="dbp-owl:influenced">
 Albert Einstein
 1879-03-14
 </div>
</div>

 From the point of view of the markup, this latter layout is to
 be preferred, since it draws attention to the 'hanging rel'. But
 from the point of view of an RDFa Processor, all of these
 permutations need to be supported.

 8.2 Completing incomplete triples

 When a new subject is calculated, it is also used to complete any
 incomplete triples that are pending. This situation arises when the
 author wants to 'chain' a number of statements together. For example,
 an author could have a statement that Albert Einstein was born in the
 German Empire:

 Example 81
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
</div>

 and then a further statement that the 'long name' for this country
 is the German Empire:

 Example 82
<span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire

 RDFa allows authors to insert this statement as a self-contained
 unit into other contexts:

 Example 83
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
</div>

 But it also allows authors to avoid unnecessary repetition and to
 'normalize' out duplicate identifiers, in this case the one for the
 German Empire:

 Example 84
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace">
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
 </div>
</div>

 When this happens the @rel for 'birth place' is
 regarded as a 'hanging rel' because it has not yet generated any
 triples, but these 'incomplete triples' are completed by the @about
 that appears on the next line. The first step is therefore to store
 the two parts of the triple that the RDFa Processor does
 have, but without an object:

 Example 85
<http://dbpedia.org/resource/Albert_Einstein> dbp:birthPlace ? .

 Then as processing continues, the RDFa Processor encounters the
 subject of the statement about the long name for the German Empire,
 and this is used in two ways. First it is used to complete the
 'incomplete triple':

 Example 86
<http://dbpedia.org/resource/Albert_Einstein>
 dbp:birthPlace <http://dbpedia.org/resource/German_Empire> .

 and second it is used to generate its own triple:

 Example 87
<http://dbpedia.org/resource/German_Empire>
 dbp:conventionalLongName "the German Empire" .

 Note that each occurrence of @about will complete any
 incomplete triples. For example, to mark up the fact that Albert
 Einstein had a residence both in the German Empire and Switzerland, an
 author need only specify one @rel value that is then used
 with multiple @about values:

 Example 88
<div about="http://dbpedia.org/resource/Albert_Einstein" rel="dbp-owl:residence">

</div>

 In this example there is one incomplete triple:

 Example 89
<http://dbpedia.org/resource/Albert_Einstein> dbp-owl:residence ? .

 When the processor meets each of the @about values,
 this triple is completed, giving:

 Example 90
<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/Switzerland> .

 These examples show how @about completes triples, but
 there are other situations that can have the same effect. For example,
 when @typeof creates a new bnode (as
 described above), that will be used to complete any 'incomplete
 triples'. To indicate that Spinoza influenced both
 Einstein and Schopenhauer, the following markup could be used:

 Example 91
<div about="http://dbpedia.org/resource/Baruch_Spinoza">
 <div rel="dbp-owl:influenced">
 <div typeof="foaf:Person">
 Albert Einstein
 1879-03-14
 </div>
 <div typeof="foaf:Person">
 Arthur Schopenhauer
 1788-02-22
 </div>
 </div>
</div>

 First the following incomplete triple is stored:

 Example 92
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced ? .

 Then when the RDFa Processor processes the two occurrences of @typeof,
 each generates a bnode, which is used to both complete
 the 'incomplete triple', and to set the subject for further
 statements:

 Example 93
<http://dbpedia.org/resource/Baruch_Spinoza"> dbp-owl:influenced _:a .
_:a rdf:type foaf:Person .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .
<http://dbpedia.org/resource/Baruch_Spinoza"> dbp-owl:influenced _:b .
_:b rdf:type foaf:Person .
_:b foaf:name "Arthur Schopenhauer" .
_:b dbp:dateOfBirth "1788-02-22"^^xsd:date .

 Triples are also 'completed' if any one of @property, @rel
 or @rev are present. However, unlike the situation when @about
 or @typeof are present, all predicates are attached to
 one bnode:

 Example 94
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 Albert Einstein
 1879-03-14
 <div rel="dbp-owl:residence">

 </div>
</div>

 This example has two 'hanging rels', and so two situations when
 'incomplete triples' will be created. Processing would proceed as
 follows; first an incomplete triple is stored:

 Example 95
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced ? .

 Next, the RDFa Processor processes the predicate values for foaf:name,
 dbp:dateOfBirth and dbp-owl:residence, but
 note that only the first needs to 'complete' the 'hanging rel'. So
 processing foaf:name generates two triples:

 Example 96
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced _:a .
_:a foaf:name "Albert Einstein" .

 but processing dbp:dateOfBirth generates only one:

 Example 97
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .

 Processing dbp-owl:residence also uses the same bnode,
 but note that it also generates its own 'incomplete triple':

 Example 98
_:a dbp-owl:residence ? .

 As before, the two occurrences of @about complete the
 'incomplete triple', once each:

 Example 99
_:a dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
_:a dbp-owl:residence <http://dbpedia.org/resource/Switzerland> .

 The entire set of triples that an RDFa Processor should
 generate is as follows:

 Example 100
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced _:a .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .
_:a dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
_:a dbp-owl:residence <http://dbpedia.org/resource/Switzerland> .

 8.3 Object resolution

 Although objects have been discussed in the previous sections, as
 part of the explanation of subject resolution, chaining, evaluation
 contexts, and so on, this section will look at objects in more detail.

 There are two types of object, IRI resources and literals.

 A literal object can be set by @content or the inline
 text of element if @property to express a predicate.
 Note that the use of @content prohibits the inclusion of
 rich markup in your literal. If the inline content of an element
 accurately represents the object, then documents should rely upon
 that rather than duplicating that data using the @content.

 An IRI resource object can be set using one of @rel
 or @rev to express a predicate, and then either
 using one of @href, @resource or @src
 to provide an object resource explicitly, or using the
 chaining techniques described above to obtain an object from a nested
 subject, or from a bnode. Alternatively, the @property
 can also be used to define an IRI resource; this requires the presence of a
 @resource, @href, or @src and the
 absence of @rel, @rev, @datatype,
 or @content.

 8.3.1 Object resolution for the @property attribute

 An object literal will be generated when @property
 is present and no resource attribute is present. @property provides the predicate, and the
 following sections describe how the actual literal to be generated
 is determined.

 8.3.1.1 Plain Literals

 @content can be used to indicate a plain
 literal, as follows:

 Example 101
<meta about="http://internet-apps.blogspot.com/"
 property="dc:creator" content="Mark Birbeck" />

 The plain literal can also be specified by using
 the content of the element:

 Example 102
<span about="http://internet-apps.blogspot.com/"
 property="dc:creator">Mark Birbeck

 Both of these examples give the following triple:

 Example 103
<http://internet-apps.blogspot.com/> dc:creator "Mark Birbeck" .

 The value of @content is given precedence over any
 element content, so the following would give exactly the same
 triple as shown above:

 Example 104
<span about="http://internet-apps.blogspot.com/"
 property="dc:creator" content="Mark Birbeck">John Doe

 8.3.1.1.1 Language Tags

 RDF allows plain literals to have a language tag,
 as illustrated by the following example from [RDF11-TESTCASES]:

 Example 105
<http://example.org/node>
 <http://example.org/property> "chat"@fr .

 In RDFa the Host Language may provide a mechanism for setting
 the language tag. In XHTML+RDFa [XHTML-RDFA], for example,
 the XML language attribute @xml:lang
 or the attribute @lang is used to add
 this information, whether the plain literal is designated by @content,
 or by the inline text of the element:

 Example 106
<meta about="http://example.org/node"
 property="ex:property" xml:lang="fr" content="chat" />

 Note that the language value can be inherited as defined in
 [XML10-4e], so the following syntax will give the same triple
 as above:

 Example 107
<html xmlns="http://www.w3.org/1999/xhtml"
 prefix="ex: http://www.example.com/ns/" xml:lang="fr">
 <head>
 <title xml:lang="en">Example</title>
 <meta about="http://example.org/node"
 property="ex:property" content="chat" />
 </head>
 ...
</html>

 8.3.1.2 Typed Literals

 Literals can be given a data type using @datatype.

 This can be represented in RDFa as follows:

 Example 108
<span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">
 September 16th at 4pm
.

 The triple that this markup generates includes the datatype after
 the literal:

 Example 109
<> cal:dtstart "2015-09-16T16:00:00-05:00"^^xsd:dateTime .

 8.3.1.3 XML Literals

 XML documents cannot contain XML markup in their attributes,
 which means it is not possible to represent XML within @content
 (the following would cause an XML parser to generate an error):

 Example 110
<head>
 <meta property="dc:title"
 content="E = mc²: The Most Urgent Problem of Our Time" />
</head>

 RDFa therefore supports the use of arbitrary markup to express XML
 literals by using @datatype:

 Example 111
<h2 property="dc:title" datatype="rdf:XMLLiteral">
 E = mc²: The Most Urgent Problem of Our Time
</h2>

 This would generate the following triple, with the XML preserved
 in the literal:

 Example 112
<> dc:title "E = mc²: The Most Urgent Problem of Our Time"^^rdf:XMLLiteral .

 Note
 This requires that an IRI mapping for the prefix rdf
 has been defined.

 In the examples given here the sup element is
 actually part of the meaning of the literal, but there will be
 situations where the extra markup means nothing, and can therefore
 be ignored. In this situation omitting the @datatype
 attribute or specifying an empty @datatype value can
 be used to create a plain literal:

 Example 113
<p>You searched for Einstein:</p>
<p about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 (b. March 14, 1879, d. April 18, 1955) was a German-born theoretical physicist.
</p>

 Rendering of this page has highlighted the term the
 user searched for. Setting @datatype to nothing
 ensures that the data is interpreted as a plain literal, giving
 the following triple:

 Example 114
<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .

 Note
The value of this XML
 Literal is the exclusive canonicalization
 [XML-EXC-C14N] of the RDFa element's value.

 8.3.2 IRI object resolution

 Most of the rules governing the processing of objects that are
 resources are to be found in the processing descriptions given
 above, since they are important for establishing the subject. This
 section aims to highlight general concepts, and anything that might
 have been missed.

 One or more IRI objects are needed when @rel or
 @rev is present. Each
 attribute will cause triples to be generated when used with @href,
 @resource or @src, or with the subject
 value of any nested statement if none of these attributes are
 present.

 If @rel or @rev is not present, and neither is
 @datatype or @content, a @property attribute
 will cause triples to be generated when used with @href,
 @resource or @src.
 (See also the section on @property and
 @typeof for an additional special case involving @property.)

 @rel and @rev are essentially the
 inverse of each other; whilst @rel establishes a
 relationship between the current subject as subject,
 and the current object resource as the object, @rev
 does the exact opposite, and uses the current object resource
 as the subject, and the current subject as the object.

 8.3.2.1 Using @resource to set the object

 RDFa provides the @resource attribute as a way to
 set the object of statements. This is particularly useful when
 referring to resources that are not themselves navigable links:

 Example 115
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>On Crime and Punishment</title>
 <base href="http://www.example.com/candp.xhtml" />
 </head>
 <body>
 <blockquote about="#q1" rel="dc:source" resource="urn:ISBN:0140449132" >
 <p id="q1">
 Rodion Romanovitch! My dear friend! If you go on in this way
 you will go mad, I am positive! Drink, pray, if only a few drops!
 </p>
 </blockquote>
 </body>
</html>

 The blockquote element generates the following
 triple:

 Example 116
<http://www.example.com/candp.xhtml#q1>
 <http://purl.org/dc/terms/source> <urn:ISBN:0140449132> .

 Note that, in the example above, @property could
 have been used instead of @rel, yielding the same
 triple.

 8.3.2.2 Using @href or @src to set the object

 If no @resource is present, then @href
 or @src are next in priority order for setting the
 object.

 When a predicate has been expressed using @rel, the
 @href or @src on the RDFa statement's
 element is used to identify the object with a IRI reference.
 Their types are an IRI:

 Example 117
<link about="mailto:john@example.org"
 rel="foaf:knows" href="mailto:sue@example.org" />

 It's also possible to use both @rel and @rev
 at the same time on an element. This is particularly useful when
 two things stand in two different relationships with each other,
 for example when a picture is taken by Mark, but that
 picture also depicts him:

 Example 118
<img about="http://www.blogger.com/profile/1109404"
 src="photo1.jpg" rev="dc:creator" rel="foaf:img"/>

 which then yields two triples:

 Example 119
<photo1.jpg>
 dc:creator <http://www.blogger.com/profile/1109404> .
<http://www.blogger.com/profile/1109404>
 foaf:img <photo1.jpg> .

 8.3.2.3 Incomplete triples

 When a triple predicate has been expressed using @rel
 or @rev, but no @href, @src,
 or @resource exists on the same element, there is a
 'hanging rel'. This causes the current subject and all possible
 predicates (with an indicator of whether they are 'forwards, i.e.,
 @rel values, or not, i.e., @rev values),
 to be stored as 'incomplete triples' pending discovery of a
 subject that could be used to 'complete' those triples.

 This process is described in more detail in Completing

 'Incomplete Triples'.

 8.4 List Generation

 An RDF graph is a collection of triples. This also means that if the
 graph contains two triples sharing the same subject and predicate:

 Example 120
<http://www.example.com> <http://www.example.com/predicate> "first object", "second object" ;

 There is no way for an application to rely on the relative order of
 the two triples when, for example, querying a database containing
 these triples. For most of the applications and data sets this is not
 a problem, but, in some cases, the order is important. A typical case
 is publications: when a book or an article has several co-authors, the
 order of the authors may be important.

 RDF has a set of predefined predicates that have an agreed-upon
 semantic of order. For example, the publication: "Semantic Annotation
 and Retrieval, by Ben Adida, Mark Birbeck, and Ivan Herman" could be
 described in RDF triples using these terms as follows:

 Example 121
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;
 dc:creator [
 rdf:first <http://ben.adida.net/#me ;
 rdf:rest [
 rdf:first <http://twitter.com/markbirbeck> ;
 rdf:rest [
 rdf:first <http://www.ivan-herman.net/foaf#me> ;
 rdf:rest rdf:nil .
] .
] .
] .
	...
]

 which conveys the notion of 'order' for the three authors.
 Admittedly, this is not very readable. However, Turtle has a
 syntactic shorthand for these structures:

 Example 122
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;
 dc:creator
 (<http://ben.adida.net/#me>
 <http://twitter.com/markbirbeck>
 <http://www.ivan-herman.net/foaf#me>
) .
 ...
]

 It would of course be possible to reproduce the same structure in
 RDFa, using the RDF predicates rdf:first, rdf:rest,
 as well as the special resource rdf:nil. However, to
 make this easier, RDFa provides the @inlist. What this
 attribute signals is that the object generated on that element should
 be put on a list; the list is used with the common predicate
 and subject. Here is how the previous structure could look in
 RDFa:

 Example 123
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/" typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval" by
 <a inlist="" property="dc:creator"
 href="http://ben.adida.net/#me">Ben Adida,
 <a inlist="" property="dc:creator"
 href="http://twitter.com/markbirbeck">Mark Birbeck, and
 <a inlist="" property="dc:creator"
 href="http://www.ivan-herman.net/foaf#me">Ivan Herman.
</p>

 Note that the order in the list is determined by the document order.
 (The value of the @inlist is not relevant, only its
 presence is.)

 Lists may also include IRIs and not only literals. For example, two
 of the three co-authors could decide to publicise their FOAF address
 in the authors’ list:

 Example 124
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/" typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval", by
 Ben Adida,
 Mark Birbeck, and
 Ivan Herman.
</p>

 yielding:

 Example 125
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;
 dc:creator (<http://ben.adida.net/#me> "Mark Birbeck" <http://www.ivan-herman.net/foaf#me>) .
 ...
]

 In the example above, @rel could have been used leading
 exactly to the same triples:

 Example 126
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/" typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval", by
 Ben Adida,
 Mark Birbeck, and
 Ivan Herman.
</p>

 Incomplete Triples can also be
 used in conjunction with lists when all list elements are resources
 and not literals. For example, the previous example, this time with all
 three authors referring to their FOAF profile, could have been written
 as:

 Example 127
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/" typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval", by

 Ben Adida,
 Mark Birbeck, and
 Ivan Herman.

 </p>

 Resulting in:

 Example 128
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;
 dc:creator (<http://ben.adida.net/#me>
 <http://internet-apps.blogspot.com/2008/03/my-profile.html#me>
 <http://www.ivan-herman.net/foaf#me>) .
 ...
]

 Note that it is also possible to express an empty list,
 without @inlist, using:

 Example 129

 9. RDFa Initial Contexts

 RDFa permits Host Languages to define an initial context.
 Such a context is a collection of terms, prefix mappings, and/or a default
 vocabulary declaration. An initial context is either intrinsically
 known to the parser, or it is loaded as external documents and
 processed. These documents MUST be defined in an approved RDFa Host
 Language (currently XML+RDFa, XHTML+RDFa [XHTML-RDFA], and HTML+RDFa [HTML-RDFA]).

 They MAY also be defined in other formats (e.g., RDF/XML
 [RDF-SYNTAX-GRAMMAR], or Turtle [TURTLE]). When an initial
 context document is processed, it is evaluated as follows:

 	Parse the content (according to the processing rules for that
 document type) and extract the triples into a collection associated
 with that IRI. Note: These triples MUST NOT be co-mingled with the
 triples being extracted from any other IRI.

 	For every subject with a pair of predicates that have the values rdfa:prefix
 and rdfa:uri, create a key-value mapping from the rdfa:prefix
 object literal (the key) to the rdfa:uri object literal
 (the value). Add this mapping to the list of IRI mappings
 of the initial evaluation context, after
 transforming the 'prefix' component to lower-case.

 	For every subject with a pair of predicates that have the values rdfa:term
 and rdfa:uri, create a key-value mapping from the rdfa:term
 object literal (the key) to the rdfa:uri object literal
 (the value). Add this mapping to the term mappings of
 the initial evaluation context.

 	For an extracted triple that has a predicate of rdfa:vocabulary,
 define the default vocabulary of the initial

 evaluation context to be the object literal of the rdfa:vocabulary
 predicate.

 When an RDFa Initial Context is defined using an RDF serialization, it
 MUST use the vocabulary terms above to declare the components of the
 context.

 Note
Caching of the relevant triples retrieved via this
 mechanism is RECOMMENDED. Embedding definitions for well known, stable
 RDFa Initial Contexts in the implementation is RECOMMENDED.

 Note
	The object literal for the rdfa:uri
 predicate MUST be an absolute IRI.

 	The object literal for the rdfa:term
 predicate MUST match the production for term.

 	The
 object literal for the rdfa:prefix predicate must match
 the production for prefix.

 	The object literal
 for the rdfa:vocabulary predicate MUST be an
 absolute IRI.

 	
 If one of the objects is not a literal, does not match its associated
 production, if there is more than one rdfa:vocabulary
 predicate, or if there are additional rdfa:uri or rdfa:term
 predicates sharing the same subject, an RDFa Processor MUST NOT create
 the associated mapping.

 10. RDFa Vocabulary Expansion

 Since RDFa is based on RDF, the semantics of RDF vocabularies can be
 used to gain more knowledge about data. Vocabularies, properties and
 classes are identified by IRIs, which enables them to be discoverable.
 RDF data published at the location of these IRIs can be retrieved, and
 descriptions of the properties and classes using specified semantics can
 be applied.

 RDFa Vocabulary Expansion is an optional processing step which may be
 added once the normal processing steps described in Processing

 Model are complete. Vocabulary expansion relies on a very small
 sub-set of OWL entailment [OWL2-OVERVIEW] to add triples to the output

 graph based on rules and property/class relationships described
 in referenced vocabularies. Vocabulary expansion MAY be performed as
 part of a larger RDF toolset including, for example, an OWL 2 RL
 reasoner. Alternatively, using vocabulary data added to the output
 graph in processing step 2 of Sequence,
 expansion MAY also be done using a separate and dedicated (e.g., rule
 based) reasoner after the output graph has been generated,
 or as the last processing step by an RDFa processor.

 It can be very useful to make generalized data available for
 subsequent usage of RDFa-embedded data by expanding inferred statements
 entailed by these semantics. This provides for existing vocabularies
 that extend well-known vocabularies to have those properties added to
 the output graph automatically. For example, the namespace document of
 the Creative Commons vocabulary, i.e., http://creativecommons.org/ns,
 defines cc:license to be a sub-property of dc:license.
 By using the @vocab attribute, one can describe a licensing
 information as follows:

 Example 130
This document is licensed under the
<a vocab="http://creativecommons.org/ns#"
 rel="license"
 href="http://creativecommons.org/licenses/by-nc-nd/3.0/">
 Creative Commons By-NC-ND License
.

 which results in the following output graph:

 Example 131
@prefix cc: <http://creativecommons.org/ns#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
<> cc:license <http://creativecommons.org/licenses/by-nc-nd/3.0/> ;
 rdfa:usesVocabulary <http://creativecommons.org/ns#> .

 After vocabulary expansion, the output graph contains:

 Example 132
@prefix cc: <http://creativecommons.org/ns#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix dc: <http://purl.org/dc/terms/> .
<> cc:license <http://creativecommons.org/licenses/by-nc-nd/3.0/>;
 dc:license <http://creativecommons.org/licenses/by-nc-nd/3.0/> ;
 rdfa:usesVocabulary <http://creativecommons.org/ns#> .

 Other vocabularies, specifically intended to provide relations to
 multiple vocabularies, could also be defined by publishers, allowing use
 of terms in a single namespace which result in properties and/or classes
 from other primary vocabularies being imported. This benefits publishers
 as data is now more widely searchable and encourages the practice of
 referencing well-known vocabularies.

 10.1 Details of the RDFa Vocabulary Expansion
This section is non-normative.

 Once the output graph is generated following the
 processing steps defined in Sequence,
 processors MAY perform the following processing steps on the output
 graph. It must do so only if the user of the processor explicitly asks
 for it, as prescribed in Vocabulary
 Expansion Control of RDFa Processors.

 A vocabulary graph is created as follows:
 Each object IRI in the output graph that has a subject the current
 document (base) IRI and a predicate of
 rdfa:usesVocabulary is dereferenced.

 If the dereferencing yields the serialization of an RDF
 graph, that serialization is parsed and the resulting graph is merged
 with the vocabulary graph. (An RDFa processor capable of vocabulary
 expansion MUST accept an RDF graph serialized in RDFa, and SHOULD
 accept other standard serialization formats of RDF such as RDF/XML
 [RDF-SYNTAX-GRAMMAR] and Turtle [TURTLE].)

 Note
 Note that if, in the second step, a particular
 vocabulary is serialized in RDFa, that particular graph is not
 expected to undergo any vocabulary expansion on its own.

 Vocabulary expansion is then performed as follows:

 	The processor operates on the merge of the default and vocabulary
 graphs using RDFa Vocabulary
 Entailment.

 	Add the new triples inferred from the output graph
 using this entailment to the (expanded) output graph.
 The processor SHOULD NOT add the triples appearing in the vocabulary
 graph only.

 The goal of the second step is to avoid adding
 the "axioms", e.g., the sub-property definitions to the output graph.
 Applications usually do not require any of this additional information.

 10.1.1 RDFa Vocabulary Entailment

 For the purpose of vocabulary processing, RDFa used a very
 restricted subset of the OWL vocabulary and is based on the RDF-Based
 Semantics of OWL [OWL2-RDF-BASED-SEMANTICS]. The RDFa
 Vocabulary Entailment uses the following terms:

 	rdf:type

 	rdfs:subClassOf

 	rdfs:subPropertyOf

 	owl:equivalentClass

 	owl:equivalentProperty

 Note
RDFa Vocabulary Entailment considers only the entailment on individuals
 (i.e., not on the relationships that can be deduced on the
 properties or the classes themselves.)

 Note
While the formal definition of the RDFa Entailment
 refers to the general OWL 2 Semantics, practical implementations may
 rely on a subset of the OWL 2 RL Profile’s entailment expressed in
 rules (section

 4.3 of [OWL2-PROFILES]). The
 relevant rules are, using the rule identifications in section

 4.3 of [OWL2-PROFILES]): prp-spo1, prp-eqp1,
 prp-eqp2, cax-sco, cax-eqc1,
 and cax-eqc2.

 The entailment described in this section is the minimum
 useful level for RDFa. Processors may, of course, choose to follow
 more powerful entailment regimes, e.g., include full RDFS [RDF11-MT]
 or OWL [OWL2-OVERVIEW] entailments. Using those entailments
 applications may perform datatype validation by checking rdfs:range
 of a property, or use the advanced facilities offered by, e.g., OWL’s
 property chains to interlink vocabularies further.

 10.2 Vocabulary Expansion Control of RDFa Processors

 Conforming RDFa processors are not required to provide vocabulary
 expansion.

 If an RDFa processor provides vocabulary expansion, it MUST NOT be
 performed by default. Instead, the processor MUST provide an option, vocab_expansion,
 which, when used, instructs the RDFa processor to perform a vocabulary
 expansion before returning the output graph.

 Note
 Although vocabulary expansion is described in terms of
 a vocabulary graph and OWL 2 entailment rules, processors
 are free to use any process which obtains equivalent results.

 10.2.1 Notes to RDFa Vocabulary Implementations and Publishing
This section is non-normative.

 For RDFa Processors caching the relevant graphs retrieved via this
 mechanism is RECOMMENDED. Caching is usually based on HTTP response
 headers like expiration time, cache control, etc.

 For publishers of vocabularies, the IRI for the vocabularies SHOULD
 be dereferenceable, and should return an RDF graph with the
 vocabulary description. This vocabulary description SHOULD be
 available encoded in RDFa, and MAY also be available in other RDF
 serialization syntaxes (using content negotiation to choose among
 the different formats). If possible, vocabulary descriptions SHOULD
 include subproperty and subclass statements linking the vocabulary
 terms to other, well-known vocabularies. Finally, HTTP responses
 SHOULD include fields usable for cache control, e.g., expiration
 date.

 A. CURIE Datatypes

 In order to facilitate the use of CURIEs in markup languages, this
 specification defines some additional datatypes in the XHTML datatype
 space (http://www.w3.org/1999/xhtml/datatypes/). Markup
 languages that want to import these definitions can find them in the
 "datatypes" file for their schema grammar:

 	DTD
 xhtml-datatypes.mod

 	XML
 Schema xhtml-datatypes.xsd

 Specifically, the following datatypes are defined:

 	CURIE

 	A single curie

 	CURIEs

 	A white space separated list of CURIEs

 	CURIEorIRI

 	A CURIE or an IRI

 	CURIEorIRIs

 	A white space separated list of CURIEorIRIs

 	SafeCURIE

 	A single safe_curie

 	SafeCURIEorCURIEorIRI

 	A single SafeCURIE or CURIEorIRI

 	SafeCURIEorCURIEorIRIs

 	A white space separated list of SafeCURIEorCURIEorIRIs.

 	TERM

 	A single term

 	TERMorCURIEorAbsIRI

 	A TERM or a CURIEorIRI

 	TERMorCURIEorAbsIRIs

 	A white space separated list of TERMorCURIEorAbsIRIs

 A.1 XML Schema Definition
This section is non-normative.

 The following informative XML Schema definition for these
 datatypes is included as an example:

 Example 133
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/1999/xhtml/datatypes/"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/"
 targetNamespace="http://www.w3.org/1999/xhtml/datatypes/"
 elementFormDefault="qualified"
>
 <xs:simpleType name="CURIE">
 <xs:restriction base="xs:string">
 <xs:pattern value="(([\i-[:]][\c-[:]]*)?:)?(/[^\s/][^\s]*|[^\s/][^\s]*|[^\s]?)" />
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="CURIEs">
 <xs:list itemType="xh11d:CURIE"/>
 </xs:simpleType>

 <xs:simpleType name="SafeCURIE">
 <xs:restriction base="xs:string">
 <xs:pattern value="\[(([\i-[:]][\c-[:]]*)?:)?(/[^\s/][^\s]*|[^\s/][^\s]*|[^\s]?)\]" />
 <xs:minLength value="3"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="SafeCURIEs">
 <xs:list itemType="xh11d:SafeCURIE"/>
 </xs:simpleType>

 <xs:simpleType name="TERM">
 <xs:restriction base="xs:Name">
 <xs:pattern value="[\i-[:]][/\c-[:]]*" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="CURIEorIRI">
 <xs:union memberTypes="xh11d:CURIE xsd:anyURI" />
 </xs:simpleType>

 <xs:simpleType name="CURIEorIRIs">
 <xs:list itemType="xh11d:CURIEorIRI"/>
 </xs:simpleType>

 <xs:simpleType name="SafeCURIEorCURIEorIRI">
 <xs:union memberTypes="xh11d:SafeCURIE xh11d:CURIE xsd:anyURI" />
 </xs:simpleType>

 <xs:simpleType name="SafeCURIEorCURIEorIRIs">
 <xs:list itemType="xh11d:SafeCURIEorCURIEorIRI"/>
 </xs:simpleType>

 <xs:simpleType name='AbsIRI'>
 <xs:restriction base='xs:string'>
 <xs:pattern value="[\i-[:]][\c-[:]]+:.+" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="TERMorCURIEorAbsIRI">
 <xs:union memberTypes="xh11d:TERM xh11d:CURIE xh11d:AbsIRI" />
 </xs:simpleType>

 <xs:simpleType name="TERMorCURIEorAbsIRIs">
 <xs:list itemType="xh11d:SafeCURIEorCURIEorAbsIRI"/>
 </xs:simpleType>
</xs:schema>

 A.2 XML DTD Definition
This section is non-normative.

 The following informative XML DTD definition for these
 datatypes is included as an example:

 Example 134
<!ENTITY % CURIE.datatype "CDATA" >
<!ENTITY % CURIEs.datatype "CDATA" >
<!ENTITY % CURIEorIRI.datatype "CDATA" >
<!ENTITY % CURIEorIRIs.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRI.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRIs.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsIRI.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsIRIs.datatype "CDATA" >

 B. The RDFa Vocabulary

 The RDFa Vocabulary has three roles: it contains the predicates to
 define the terms and prefixes in initial context
 documents, it contains the classes and predicates for the messages that
 a processor graph may contain and, finally, it contains
 the predicate necessary for vocabulary processing. The IRI of the
 vocabulary is http://www.w3.org/ns/rdfa#; the usual prefix
 used in this document is rdfa.

 This vocabulary specification is available in XHTML+RDFa

 1.1, Turtle, and in RDF/XML
 formats.

 B.1 Term and Prefix Assignments

 The RDFa Vocabulary includes the following triples (shown here in
 Turtle [TURTLE] format):

 Example 135
@prefix dc: <http://purl.org/dc/terms/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://www.w3.org/ns/rdfa#> a owl:Ontology .

rdfa:PrefixOrTermMapping a rdfs:Class, owl:Class ;
 dc:description "The top level class for prefix or term mappings." .

rdfa:PrefixMapping dc:description "The class for prefix mappings." .
 rdfs:subClassOf rdfa:PrefixOrTermMapping .

rdfa:TermMapping dc:description "The class for term mappings." .
 rdfs:subClassOf rdfa:PrefixOrTermMapping .

rdfa:prefix a rdf:Property, owl:DatatypeProperty ;
 rdfs:domain rdfa:PrefixMapping ;
 dc:description "Defines a prefix mapping for an IRI; the value is supposed to be a NMTOKEN." .

rdfa:term a rdf:Property, owl:DatatypeProperty ;
 rdfs:domain rdfa:TermMapping ;
 dc:description "Defines a term mapping for an IRI; the value is supposed to be a NMTOKEN." .

rdfa:uri a rdf:Property, owl:DatatypeProperty ;
 rdfs:domain rdfa:PrefixOrTermMapping ;
 dc:description """Defines the IRI for either a prefix or a term mapping;
 the value is supposed to be an absolute IRI.""" .

rdfa:vocabulary a rdf:Property, owl:DatatypeProperty ;
 dc:description """Defines an IRI to be used as a default vocabulary;
 the value is can be any string; for documentation purposes it is advised to use
 the string ‘true’ or ‘True’.""" .

 These predicates can be used to define the initial context
 for a given Host Language.

 These predicates are used to 'pair' IRI strings and their usage in
 the form of a prefix and/or a term as part of, for example, a blank
 node. An example can be as follows:

 Example 136
[] rdfa:uri "http://xmlns.com/foaf/0.1/name" ;
 rdfa:prefix "foaf" .

 which defines a prefix for the FOAF IRI.

 B.2 Processor Graph Reporting

 The Vocabulary includes the following term definitions (shown here in
 Turtle [TURTLE] format):

 Example 137
@prefix dc: <http://purl.org/dc/terms/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .

rdfa:PGClass a rdfs:Class, owl:Class;
 dc:description "The top level class of the hierarchy." .

rdfa:Error dcterms:description "The class for all error conditions.";
 rdfs:subClassOf rdfa:PGClass .

rdfa:Warning dcterms:description "The class for all warnings.";
 rdfs:subClassOf rdfa:PGClass .

rdfa:Info dcterms:description "The class for all informations.";
 rdfs:subClassOf rdfa:PGClass .

rdfa:DocumentError dc:description "An error condition to be used when the document
 fails to be fully processed as a result of non-conformant host language markup.";
 rdfs:subClassOf rdfa:Error .

rdfa:VocabReferenceError dc:description "A warning to be used
 when the value of a @vocab attribute cannot be dereferenced, hence the vocabulary expansion
 cannot be completed.";
 rdfs:subClassOf rdfa:Warning .

rdfa:UnresolvedTerm dc:description "A warning to be used when a Term fails to be resolved.";
 rdfs:subClassOf rdfa:Warning .

rdfa:UnresolvedCURIE dc:description "A warning to be used when a CURIE prefix
 fails to be resolved.";
 rdfs:subClassOf rdfa:Warning .

rdfa:context a owl:ObjectProperty, rdf:Property;
 dc:description "Provides extra context for the error, e.g., http response,
 an XPointer/XPath information, or simply the IRI that created the error.";
 rdfs:domain rdfa:PGClass .

 B.3 Term for vocabulary expansion

 The Vocabulary includes the following term definitions (shown here in
 Turtle [TURTLE] format):

 Example 138
@prefix dc: <http://purl.org/dc/terms/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .

rdfa:usesVocabulary a owl:ObjectProperty, rdf:Property;
 dc:description "Provides a relationship between the host document and a vocabulary
 defined using the @vocab facility of RDFa1.1." .

 C. Changes
This section is non-normative.

 C.1 Major differences since the Last Published Recommentation

 	References to the other RDFa 1.1 documents, as well as to RDF 1.1 documents, have been updated

 	A minor clarification has been added to section 4.1. to the processors can return processor and output graphs

 C.2 Major differences with RDFa Syntax 1.0

 This specification introduces a number of new features, and extends
 the behavior of some features from the previous version. The
 following summary may be helpful to RDFa Processor developers, but
 is not meant to be comprehensive.

 	Specific rules about XHTML have been moved into a companion
 specification: [XHTML-RDFA].

 	Prefix mappings can now be declared using @prefix
 in addition to @xmlns. The usage of @xmlns
 has been deprecated.

 	Prefix names are now required to be converted to lower-case when
 the mapping is defined. Prefixes are checked in a case-insensitive
 manner during CURIE expansion.

 	You can now use an Absolute IRI everywhere you could previously
 only use a CURIE (e.g., in the value of @datatype).

 	There is now a concept of a term. This concept has
 replaced the concept of a 'reserved word'. It is possible now to
 use a 'term' in most places where you could previously only use a
 CURIE.

 	You can define a default prefix mapping (via @vocab)
 that will be used on undefined terms.

 	When a triple would include an object literal, and there is no
 explicit datatype attribute, the object literal will now be a
 'plain literal'. In version 1.0 it would have been an
 'XMLLiteral'.

 	The @inlist attribute can be used to instruct the
 processor to generate RDF lists with the resources rather than
 simple triples.

 	The effect of @src is now identical to @href
 rather than @about like in version 1.0.

 While this specification strives to be as backward compatible as
 possible with [RDFA-SYNTAX], the changes above mean that there are
 some circumstances where it is possible for different RDF triples to
 be output for the same document when processed by an RDFa 1.0
 processor vs. an RDFa 1.1 processor. In order to minimize these
 differences, a document author can do the following:

 	Use the XHTML+RDFa 1.0 document type as defined in
 [RDFA-SYNTAX].

 	Place a @version attribute with the
 value XHTML+RDFa 1.0 on the html
 element.

 	If there are places in the document where an object literal MUST
 be an XMLLiteral, use datatype='rdf:XMLLiteral'.

 	If there are places in the document where an object literal MUST
 be a plain literal, use datatype=''.

 	If there are places in the document where @src is
 used, add an @about (unless already present) with the
 same IRI.

 When producing XHTML+RDFa 1.1 documents, it is possible to reduce
 the incompatibilities with RDFa 1.0 conforming processors by doing
 the following:

 	DO NOT use the @vocab feature.

 	DO NOT rely upon host language defaults for IRI mappings.

 	DO NOT use absolute IRIs in place of CURIEs.

 	Use @xmlns AND @prefix
 when declaring prefix mappings.

 	DO NOT use TERMs on @datatype, @property,
 or @typeof.

 	When using TERMs in @rel and @rev,
 only use ones defined in [RDFA-SYNTAX].

 	Place a version attribute with the
 value XHTML+RDFa 1.0 on the html
 element.

 	If there are places in the document where an object literal MUST
 be an XMLLiteral, use datatype='rdf:XMLLiteral'.

 	If there are places in the document where an object literal MUST
 be a plain literal, use datatype=''.

 	If there are places in the document where @src is
 used, add an @about (unless already present) with the
 same IRI.

 D. Acknowledgments
This section is non-normative.

 At the time of publication, the active members of the RDFa Working
 Group were:

 	Stéphane Corlosquet, MIND Center for Interdisciplinary Informatics

 	Ivan Herman, W3C

 	Gregg Kellogg (Invited Expert)

 	Niklas Lindström (Invited Expert)

 	Shane McCarron, Applied Testing and Technology, Inc. (Invited Expert)

 	Steven Pemberton, Centre for Mathematics and Computer Science (CWI)

 	Manu Sporny, Digital Bazaar (Chair, Invited Expert)

E. References
E.1 Normative references
	[HTML-RDFA]
	Manu Sporny et al. HTML+RDFa 1.1 - Second Edition. 17 March 2015. W3C Recommendation. URL: http://www.w3.org/TR/html-rdfa/

	[OWL2-OVERVIEW]
	W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview (Second Edition). 11 December 2012. W3C Recommendation. URL: http://www.w3.org/TR/owl2-overview/

	[OWL2-PROFILES]
	Boris Motik; Bernardo Cuenca Grau; Ian Horrocks; Zhe Wu; Achille Fokoue. OWL 2 Web Ontology Language Profiles (Second Edition). 11 December 2012. W3C Recommendation. URL: http://www.w3.org/TR/owl2-profiles/

	[OWL2-RDF-BASED-SEMANTICS]
	Michael Schneider. OWL 2 Web Ontology Language RDF-Based Semantics (Second Edition). 11 December 2012. W3C Recommendation. URL: http://www.w3.org/TR/owl2-rdf-based-semantics/

	[RDF-SYNTAX-GRAMMAR]
	Fabien Gandon; Guus Schreiber. RDF 1.1 XML Syntax. 25 February 2014. W3C Recommendation. URL: http://www.w3.org/TR/rdf-syntax-grammar/

	[RDF11-MT]
	Patrick Hayes; Peter Patel-Schneider. RDF 1.1 Semantics. 25 February 2014. W3C Recommendation. URL: http://www.w3.org/TR/rdf11-mt/

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

	[RFC3987]
	M. Duerst; M. Suignard. Internationalized Resource Identifiers (IRIs). January 2005. Proposed Standard. URL: https://tools.ietf.org/html/rfc3987

	[XHTML-RDFA]
	Shane McCarron. XHTML+RDFa 1.1 - Third Edition. 17 March 2015. W3C Recommendation. URL: http://www.w3.org/TR/xhtml-rdfa/

	[XML-NAMES]
	Tim Bray; Dave Hollander; Andrew Layman; Richard Tobin; Henry Thompson et al. Namespaces in XML 1.0 (Third Edition). 8 December 2009. W3C Recommendation. URL: http://www.w3.org/TR/xml-names

	[XML10-4e]
	C. M. Sperberg-McQueen et al. Extensible Markup Language (XML) 1.0 (Fourth Edition). 16 August 2006. W3C Recommendation. URL: http://www.w3.org/TR/2006/REC-xml-20060816/

	[XMLSCHEMA11-2]
	David Peterson; Sandy Gao; Ashok Malhotra; Michael Sperberg-McQueen; Henry Thompson; Paul V. Biron et al. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. 5 April 2012. W3C Recommendation. URL: http://www.w3.org/TR/xmlschema11-2/

E.2 Informative references
	[HTML401]
	Dave Raggett; Arnaud Le Hors; Ian Jacobs. HTML 4.01 Specification. 24 December 1999. W3C Recommendation. URL: http://www.w3.org/TR/html401

	[MICROFORMATS]
	Microformats. URL: http://microformats.org

	[QNAMES]
	N. Walsh. Using Qualified Names (QNames) as Identifiers in XML Content. 17 March, 2004. TAG Finding. URL: http://www.w3.org/2001/tag/doc/qnameids-2004-03-17

	[RDF11-PRIMER]
	Guus Schreiber; Yves Raimond. RDF 1.1 Primer. 24 June 2014. W3C Note. URL: http://www.w3.org/TR/rdf11-primer/

	[RDF11-TESTCASES]
	Gregg Kellogg; Markus Lanthaler. RDF 1.1 Test Cases. 25 February 2014. W3C Note. URL: http://www.w3.org/TR/rdf11-testcases/

	[RDFA-PRIMER]
	Ben Adida; Ivan Herman; Manu Sporny; Mark Birbeck. RDFa 1.1 Primer - Third Edition. 17 March 2015. W3C Note. URL: http://www.w3.org/TR/rdfa-primer/

	[RDFA-SYNTAX]
	Ben Adida; Mark Birbeck; Shane McCarron; Steven Pemberton et al. RDFa in XHTML: Syntax and Processing. 14 October 2008. W3C Recommendation. URL: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014

	[RELAXNG-SCHEMA]
	Information technology -- Document Schema Definition Language (DSDL) -- Part 2: Regular-grammar-based validation -- RELAX NG. ISO/IEC 19757-2:2008. URL: http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip

	[SAX]
	D. Megginson, et al. SAX: The Simple API for XML. May 1998. URL: http://www.megginson.com/downloads/SAX/

	[TURTLE]
	Eric Prud'hommeaux; Gavin Carothers. RDF 1.1 Turtle. 25 February 2014. W3C Recommendation. URL: http://www.w3.org/TR/turtle/

	[WIDGETS-URI]
	Marcos Caceres. Widget URI scheme. 13 March 2012. W3C Note. URL: http://www.w3.org/TR/widgets-uri/

	[XHTML11]
	Shane McCarron; Masayasu Ishikawa. XHTML™ 1.1 - Module-based XHTML - Second Edition. 23 November 2010. W3C Recommendation. URL: http://www.w3.org/TR/xhtml11/

	[XML-EXC-C14N]
	John Boyer; Donald Eastlake; Joseph Reagle. Exclusive XML Canonicalization Version 1.0. 18 July 2002. W3C Recommendation. URL: http://www.w3.org/TR/xml-exc-c14n

	[XML10]
	Tim Bray; Jean Paoli; Michael Sperberg-McQueen; Eve Maler; François Yergeau et al. Extensible Markup Language (XML) 1.0 (Fifth Edition). 26 November 2008. W3C Recommendation. URL: http://www.w3.org/TR/xml

	[XMLSCHEMA11-1]
	Sandy Gao; Michael Sperberg-McQueen; Henry Thompson; Noah Mendelsohn; David Beech; Murray Maloney. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures. 5 April 2012. W3C Recommendation. URL: http://www.w3.org/TR/xmlschema11-1/

 [image: W3C]

 RDFa Lite 1.1 - Second Edition

 W3C Recommendation 17 March 2015

 	This version:

 	http://www.w3.org/TR/2015/REC-rdfa-lite-20150317/

 	Latest published version:

 	http://www.w3.org/TR/rdfa-lite/

 	Implementation report:

 	http://www.w3.org/2010/02/rdfa/wiki/CR-ImplementationReport

 	Previous version:

 	http://www.w3.org/TR/2014/PER-rdfa-lite-20141216/

 	Previous Recommendation:

 	http://www.w3.org/TR/2012/REC-rdfa-lite-20120607/

 	Editor:

 	Manu Sporny, Digital Bazaar, Inc.

 Please check the errata for any errors or issues
 reported since publication.

 This document is also available in this non-normative format:

 diff to previous version

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2015

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang).

 W3C liability,
 trademark and

 document use

 rules apply.

 Abstract

RDFa Lite is a minimal subset of RDFa, the Resource Description Framework in
attributes, consisting of a few attributes that may
be used to express machine-readable data in Web documents like HTML, SVG, and
XML. While it is not a complete solution for advanced data markup tasks, it
does work for most day-to-day needs and can be learned by most Web authors
in a day.

 Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

 This is an Editorial Revision of the Recommendation published on the 7th of June, 2012. See the separate section for the changes.

 W3C is expected to address errata in a future Edited Recommendation of RDFa 1.1 Lite. The current Document Conformance section is not explicit about some conformance expectations that appear in non-normative sections, specifically to require RDFa Lite attributes to be conformant to RDFa Core 1.1 and to pre-define a number of prefixes per RDFa Core 1.1.

This document is the culmination of a series of discussions between the
World Wide Web Consortium, including the RDFa Working Group,
the Vocabularies Community Group, the HTML Working Group, and the sponsors
of the schema.org initiative, including
Google, Yahoo!, Microsoft, and Yandex. It has received review from
representatives in these organizations and enjoys consensus at this point in
time. There were no changes made during the Proposed Recommendation period.
The
implementation report
used by the director to transition to Recommendation has been
made available.

 This document was published by the RDFa Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdfa@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 Please see the Working Group's implementation
 report.

 This document has been reviewed by W3C Members, by software developers, and by other W3C
 groups and interested parties, and is endorsed by the Director as a W3C Recommendation.
 It is a stable document and may be used as reference material or cited from another
 document. W3C's role in making the Recommendation is to draw attention to the
 specification and to promote its widespread deployment. This enhances the functionality
 and interoperability of the Web.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

 This document is governed by the 14 October 2005 W3C Process Document.

Table of Contents
	1. Introduction
	2. The Attributes	2.1 vocab, typeof, and property
	2.2 resource
	2.3 prefix

	3. Conformance	3.1 Document Conformance

	4. Change History Since the Last Published Recommentation
	A. References	A.1 Normative references
	A.2 Informative references

 1. Introduction
This section is non-normative.

The full RDFa syntax [rdfa-core] provides a number of basic and advanced
features that enable authors to express fairly complex structured data,
such as relationships among people, places, and events in an HTML or
XML document. Some of these advanced features may make it difficult for
authors, who may not be experts in structured data, to use RDFa.
This lighter version of RDFa is a gentler introduction to the world of
structured data, intended for authors that want to express fairly simple
data in their web pages. The goal is to provide a minimal subset that is
easy to learn and will work for 80% of authors doing simple data markup.

 2. The Attributes
This section is non-normative.

RDFa Lite consists of five simple attributes; vocab,
typeof, property, resource, and
prefix. RDFa 1.1 Lite is completely upwards compatible with the
full set of RDFa 1.1 attributes. This means that if an author finds that
RDFa Lite isn't powerful enough, transitioning to the full version of RDFa is
just a matter of adding the more powerful RDFa attributes into the existing
RDFa Lite markup.

 2.1 vocab, typeof, and property

RDFa, like Microformats [microformats] and Microdata [microdata],
enables us to talk about things
on the Web such that a machine can understand what we are saying.
Typically when we talk about a thing, we use a particular
vocabulary to talk about it. So, if you wanted to talk about
People, the vocabulary that you would use would specify terms like
name and telephone number. When we want to mark up things on
the Web, we need to do something very similar, which is specify which
vocabulary that we are going to be using. Here is a simple example that
specifies a vocabulary that we intend to use to markup things in the paragraph:

 Example 1
<p vocab="http://schema.org/">
 My name is Manu Sporny and you can give me a ring via 1-800-555-0199.
</p>

In this example we have specified that we are going to be using the
vocabulary that can be found at
http://schema.org/. This is a vocabulary that has been
released by major search engine companies to talk about common things on the
Web that Search Engines care about – things like People, Places, Reviews,
Recipes, and Events. Once we have specified the vocabulary, we need to specify
the type of the thing that we're talking about. In this
particular case we are talking about a Person, which can be marked up like so:

 Example 2
<p vocab="http://schema.org/" typeof="Person">
 My name is Manu Sporny and you can give me a ring via 1-800-555-0199.
</p>

Now all we need to do is specify which properties of that
person we want to point out to the search engine. In the following example, we
mark up the person's name, phone number and web page. Both text and URLs can
be marked up with RDFa Lite. In the following example, pay particular attention
to the types of data that are being pointed out to the search engine,
which are highlighted in blue:

 Example 3
<p vocab="http://schema.org/" typeof="Person">
 My name is
 Manu Sporny
 and you can give me a ring via
 1-800-555-0199
 or visit
 my homepage.
</p>

Now, when somebody types in “phone number for Manu Sporny” into a
search engine, the search engine can more reliably answer the question
directly, or point the person searching to a more relevant Web page.

 2.2 resource

If you want Web authors to be able to talk about each thing on your
page, you need to create an identifier for each of these things. Just like we
create identifiers for parts of a page using the id attribute
in HTML, you can create identifiers for things described on a page using the
resource attribute:

 Example 4
<p vocab="http://schema.org/" resource="#manu" typeof="Person">
 My name is
 Manu Sporny
 and you can give me a ring via
 1-800-555-0199.

</p>

If we assume that the markup above can be found at
http://example.org/people, then the identifier for the thing is
the address, plus the value in the resource attribute. Therefore,
the identifier for the thing on the page would be:
http://example.org/people#manu. This identifier is also useful if
you want to talk about that same thing on another Web page. By identifying all
things on the Web using a unique Uniform Resource Locator (URL), we can start
building a Web of things. Companies building software for the Web can use this
Web of things to answer complex questions like: "What is Manu Sporny's phone
number and what does he look like?".

 2.3 prefix

In some cases, a vocabulary may not have all of the terms an author needs when
describing their thing. The last feature in RDFa 1.1 Lite that some
authors might need is the ability to specify more than one vocabulary. For
example, if we are describing a Person and we need to specify that they have a
favorite animal, we could do something like the following:

 Example 5
<p vocab="http://schema.org/" prefix="ov: http://open.vocab.org/terms/" resource="#manu" typeof="Person">
 My name is
 Manu Sporny
 and you can give me a ring via
 1-800-555-0199.

 My favorite animal is the Liger.
</p>

The example assigns a short-hand prefix to the Open Vocabulary
(ov) and uses that prefix to specify the
preferredAnimal vocabulary term. Since schema.org doesn't have
a clear way of expressing a favorite animal, the author instead depends on
this alternate vocabulary to get the job done.

RDFa 1.1 Lite also pre-defines a number of
useful and popular
prefixes, such as dc, foaf, and
schema. This ensures that even if authors forget to declare the
popular prefixes, that their structured data will continue to work. A full list
of pre-declared prefixes can be found in the
initial context
document for RDFa 1.1.

If you would like to learn more about what is possible with RDFa Lite,
including an introduction to the data model, please read the section on
RDFa Lite in the RDFa Primer [rdfa-primer].

3. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
 and notes in this specification are non-normative. Everything else in this specification is
 normative.

The key words MAY, MUST, MUST NOT, and SHOULD are
 to be interpreted as described in [RFC2119].

 3.1 Document Conformance

In order for a document to be labeled as a conforming RDFa Lite 1.1
document:

 	
It MUST only require the facilities described as mandatory
in its Host Language.

 	
It MUST NOT use any additional RDFa attributes other than
vocab, typeof, property,
resource, and prefix; it may also use
href and src, when the Host Language authorizes
the usage of those attributes.
However, even if authorized by the Host Language, the usage of
rel and rev
SHOULD be restricted to non-RDFa usage patterns, as defined by the
Host Language.

 	
All RDFa attributes SHOULD be used in a way that is conformant with
[rdfa-core].

 	
In XML-based languages, a document MAY still be labeled as a conforming RDFa
Lite 1.1 document as long as the usage of the xmlns attribute
is not used to declare CURIE prefixes.

If additional non-RDFa Lite attributes are used from the RDFa Core 1.1
specification, the document MUST be referred to as a conforming
RDFa 1.1 document. All conforming RDFa Lite 1.1 documents
MAY be referred to as conforming RDFa 1.1 documents.

 4. Change History Since the Last Published Recommentation
This section is non-normative.

 2014-12-16: Two grammatical errors have been changed in the Status Section

 2014-12-16: References to the other RDFa documents have been updated

 2014-12-16: The style of the references have been updated to the latest respec style

A. References
A.1 Normative references
	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

	[rdfa-core]
	Ben Adida; Mark Birbeck; Shane McCarron; Ivan Herman et al. RDFa Core 1.1 - Third Edition: Syntax and processing rules for embedding RDF through attributes. 17 March 2015. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-core/

A.2 Informative references
	[microdata]
	Ian Hickson. HTML Microdata. 29 October 2013. W3C Note. URL: http://www.w3.org/TR/microdata/

	[microformats]
	Microformats. URL: http://microformats.org

	[rdfa-primer]
	Ben Adida; Ivan Herman; Manu Sporny; Mark Birbeck. RDFa 1.1 Primer - Third Edition. 17 March 2015. W3C Note. URL: http://www.w3.org/TR/rdfa-primer/

 [image: W3C]

 HTML+RDFa 1.1 - Second Edition

 Support for RDFa in HTML4 and HTML5

 W3C Recommendation 17 March 2015

 	This version:

 	http://www.w3.org/TR/2015/REC-html-rdfa-20150317/

 	Latest published version:

 	http://www.w3.org/TR/html-rdfa/

 	Implementation report:

 	http://www.w3.org/2010/02/rdfa/wiki/HTML5-ImplementationReport

 	Previous version:

 	http://www.w3.org/TR/2014/PER-html-rdfa-20141216/

 	Previous Recommendation:

 	http://www.w3.org/TR/2013/REC-html-rdfa-20130822/

 	Editor:

 	Manu Sporny, Digital Bazaar, Inc.

 	Authors:

 	Shane McCarron, Applied Testing and Technology, Inc.

	Ben Adida, Creative Commons

	Mark Birbeck, Sidewinder Labs

	Gregg Kellogg, Kellogg Associates

	Ivan Herman, W3C

	Steven Pemberton, CWI

 Please check the errata for any errors or issues
 reported since publication.

 This document is also available in this non-normative format:

 diff to previous version

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2009-2015

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang).

 W3C liability,
 trademark and

 document use

 rules apply.

Abstract

 This specification defines rules and guidelines for adapting the RDFa Core
 1.1 and RDFa Lite 1.1 specifications for use in HTML5 and XHTML5. The rules
 defined in this specification not only apply to HTML5 documents in non-XML
 and XML mode, but also to HTML4 and XHTML documents interpreted through the
 HTML5 parsing rules.

Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

This is an Editorial Revision of the Recommendation published on the 22nd of August, 2013. See the separate section for the changes.

This specification is an extension to the HTML5 language. All normative
content in the HTML5 specification, unless specifically overridden by this
specification, is intended to be the basis for this specification.

The specification makes use of the rdf:HTML datatype. This feature is non-normative, because the equality of the literal values depend on DOM4 [dom4], a specification that has not yet reached W3C Recommendation status. See the relevant RDF 1.1 specification [rdf11-concepts] for further details.

A sample test harness is
available for software developers. This set of tests is not intended to be
exhaustive.
A community-maintained website contains more
information on further reading, developer tools, and software libraries
that can be used to extract and process RDFa data from web documents.

 This document was published by the RDFa Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdfa-wg@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 Please see the Working Group's implementation
 report.

 This document has been reviewed by W3C Members, by software developers, and by other W3C
 groups and interested parties, and is endorsed by the Director as a W3C Recommendation.
 It is a stable document and may be used as reference material or cited from another
 document. W3C's role in making the Recommendation is to draw attention to the
 specification and to promote its widespread deployment. This enhances the functionality
 and interoperability of the Web.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

 This document is governed by the 14 October 2005 W3C Process Document.

Table of Contents
	1. Introduction
	2. Conformance	2.1 Document Conformance
	2.2 RDFa Processor Conformance
	2.3 User Agent Conformance

	3. Extensions to RDFa Core 1.1	3.1 Additional RDFa Processing Rules
	3.2 Modifying the Input Document
	3.3 Specifying the Language for a Literal
	3.4 Invalid XMLLiteral Values
	3.5 Property Copying	3.5.1 Implementing Property Copying

	4. Extensions to the HTML5 Syntax
	5. Backwards Compatibility	5.1 @xmlns:-Prefixed Attributes
	5.2 Conformance Criteria for @xmlns:-Prefixed Attributes
	5.3 Preserving Namespaces via Coercion to Infoset
	5.4 Infoset-based Processors	5.4.1 Extracting URI Mappings from Infosets
	5.4.2 Processing RDFa Attributes

	5.5 DOM Level 1 and Level 2-based Processors	5.5.1 Extracting URI Mappings via DOM Level 2
	5.5.2 Processing RDFa Attributes

	A. About this Document	A.1 History
	A.2 Change History Since the Last Published Recommendation
	A.3 Acknowledgments

	B. References	B.1 Normative references
	B.2 Informative references

1. Introduction
This section is non-normative.

 Today's web is built predominantly for human readers. Even as
 machine-readable data begins to permeate the web, it is typically
 distributed in a separate file, with a separate format, and very limited
 correspondence between the human and machine versions. As a result, web
 browsers can provide only minimal assistance to humans in parsing and
 processing web pages: browsers only see presentation information. RDFa is
 intended to solve the problem of marking up machine-readable data in HTML
 documents. RDFa provides a set of HTML attributes to augment visual data with
 machine-readable hints. Using RDFa, authors may turn their existing
 human-visible text and links into machine-readable data without repeating
 content.

2. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
 and notes in this specification are non-normative. Everything else in this specification is
 normative.

The key words MAY, MUST, MUST NOT, RECOMMENDED, SHOULD, and SHOULD NOT are
 to be interpreted as described in [RFC2119].

2.1 Document Conformance

 There are two types of document conformance criteria for HTML
 documents containing RDFa semantics; HTML+RDFa and
 HTML+RDFa Lite.

 The following conformance criteria apply to any HTML document
 including RDFa markup:

 	All document conformance requirements stated as mandatory in the
 HTML5 specification MUST be met.

 	The appropriate
 Extensions to the HTML5 Syntax,
 as described in this document, MUST be considered valid and conforming.
 Note that there are fewer supported attributes if the RDFa Lite
 syntax [rdfa-lite] is desired over the more advanced set of RDFa
 attributes outlined in RDFa Core.

 	All HTML5 elements and attributes SHOULD be used in a way that conforms
 to [html5]. All RDFa attributes SHOULD be used in a way that
 is conforms to [rdfa-core] and this document.

An example of a conforming HTML+RDFa document, with the RDFa portions
highlighted in green:

Example 1: Example of an HTML+RDFa 1.1 document
<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Example Document</title>
 </head>
 <body vocab="http://schema.org/">
 <p typeof="Blog">
 Welcome to my blog.
 </p>
 </body>
</html>

The following data will be extracted by a conforming RDFa processor, shown in
Turtle format [turtle]:

Example 2: Turtle output of Example Document
[] a <http://schema.org/Blog>;
 <http://schema.org/url> <http://example.org/> .

Non-XML mode HTML+RDFa 1.1 documents SHOULD be labeled with the Internet
Media Type text/html as defined in
section 12.1
of the HTML5 specification [html5].

XML mode XHTML5+RDFa 1.1 documents SHOULD be labeled with the Internet Media
Type application/xhtml+xml as defined in
section 12.3
of the HTML5 specification [html5], MUST NOT use a DOCTYPE
declaration for XHTML+RDFa 1.0 or XHTML+RDFa 1.1, and SHOULD NOT use the
@version attribute.

 2.2 RDFa Processor Conformance

 The RDFa processor conformance criteria are listed below, all of
 which are mandatory:

 	An RDFa processor MUST implement all of the mandatory features
 specified in the RDFa Core 1.1 specification [rdfa-core].

 	An RDFa processor MUST support any mandatory features described in this
 specification.

2.3 User Agent Conformance

 A user agent is considered to be a type of RDFa processor when the
 user agent stores or processes RDFa attributes and their values. The
 reason there are separate RDFa Processor Conformance and a
 User Agent Conformance sections is because one can be a valid
 HTML5 RDFa processor but not a valid HTML5 user agent (for example, by only
 providing a very small subset of rendering functionality).

 The user agent conformance criteria are listed below, all of which are
 mandatory:

 	A user agent MUST conform to all requirements listed in
 Section 2.2: Conformance Requirements
 of the HTML5 specification.

 	A user agent MUST implement all of the features required by this
 specification.

 	A user agent MUST implement all of the features required in the RDFa
 Core 1.1 specification, excluding those features which are specifically
 overridden by this specification as detailed in the Extensions to RDFa Core 1.1.

 3. Extensions to RDFa Core 1.1

 The RDFa Core 1.1 [rdfa-core] specification is the base document on
 which this specification builds.
 RDFa Core 1.1 specifies the attributes and syntax, in Section 5: Attributes and
 Syntax, and processing model, in Section 7: Processing
 Model, for extracting RDF from a web document. This section
 specifies changes to the attributes and processing model defined in
 RDFa Core 1.1 in order to support extracting RDF from HTML documents.

 The requirements and rules, as specified in RDFa Core and further
 extended in this document, apply to all HTML5 documents. An RDFa processor
 operating on both HTML and XHTML documents, specifically on their
 resulting DOMs or infosets, MUST apply these processing rules
 for HTML4, HTML5 and XHTML5
 serializations, DOMs and/or infosets.

 3.1 Additional RDFa Processing Rules

 Documents conforming to the rules in this specification are processed
 according to [rdfa-core] with the following extensions:

 	The default vocabulary URI is undefined.

 	HTML+RDFa uses an additional initial context by default,
 http://www.w3.org/2011/rdfa-context/html-rdfa-1.1, which must
 be applied after the initial context for [rdfa-core]
 (http://www.w3.org/2011/rdfa-context/rdfa-1.1).
 	The
 base can be set
 using the base element. For XHTML5+RDFa 1.1 documents,
 base can also be set using the @xml:base
 attribute.

 	The
 current language
 can be set using either the @lang or @xml:lang
 attributes. When the @lang attribute and the
 @xml:lang attribute are specified on the same element, the
 @xml:lang attribute takes precedence. When both
 @lang and @xml:lang are specified on the same
 element, they MUST have the same value. Further details related to setting the
 current language
 can be found in section
 3.3 Specifying the Language for a Literal.

 	When determining which set of RDFa processing rules to use for documents
 served with the application/xhtml+xml media type, a conforming
 RDFa processor MUST look at the value in the DOCTYPE declaration of the
 document. If a DOCTYPE declaration exists, then the
 processing rules are:

 	XHTML1+RDFa 1.0 for a DOCTYPE of <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN" "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">, or

 	XHTML1+RDFa 1.1 for a DOCTYPE of <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN" "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd">, or

 	XHTML5+RDFa 1.1 for all other values of DOCTYPE.

 Documents served as application/xhtml+xml, that don't contain
 a DOCTYPE declaration, and don't specify a @version attribute MUST be interpreted
 as XHTML5+RDFa 1.1 documents.

 	In
 Section 7.5:
 Sequence, processing step 3, if the
 processor graph
 feature is supported and if an
 IRI mapping
 overwrites a previously existing mapping in the
 local list of IRI mappings
 with a different value, the processor MUST generate an appropriate
 rdfa:PrefixRedefinition
 warning and place the associated triples into the
 processor graph.

 	In
 Section 7.5:
 Sequence, immediately after processing step 4, if the
 @property attribute and the @rel and/or
 @rev attribute exists on the same element, the non-CURIE and
 non-URI @rel and @rev values are ignored. If, after
 this, the value of @rel and/or @rev becomes empty,
 then the processor MUST act as if the respective attribute is not present.

 	In Section 7.5,
 processing step 5, and
 processing step 6, if no IRI is provided by a resource attribute
 (e.g., @about, @href, @resource, or
 @src), then first check to see if the element is the
 head or body element. If it is, then set
 new subject
 to
 parent object.

 	In

 Section 7.5: Sequence, processing step 11, the

 HTML5 @datetime attribute
 MUST be utilized when generating
 the current property value, unless @content is also
 present on the same element. Otherwise, if @datetime is
 present, the current property value must be generated as
 follows. The literal value is the value contained in the
 @datetime attribute. If @datatype is
 present, it is to be used as defined in the RDFa Core [rdfa-core]
 processing rules. Otherwise, if the value of
 @datetime lexically matches a valid
 xsd:date, xsd:time, xsd:dateTime,
 xsd:duration, xsd:gYear, or
 xsd:gYearMonth a typed literal must be generated, with its
 datatype set to the matching xsd datatype. Otherwise, a plain literal
 MUST be generated, taking into account the
 current language.
 Implementers may want to use the following order of match testing:
 xsd:duration, xsd:dateTime,
 xsd:date, xsd:time,
 xsd:gYearMonth, and xsd:gYear.

 	In

 Section 7.5: Sequence, processing step 11, if the element is
 time, and the element does not have @datetime
 or @content attributes, the processor MUST act as if there
 is a @datetime attribute containing exactly the element's
 text value.

 	In
 Section 7.5:
 Sequence, step 11, immediately after sub-step 2, if the
 @datatype attribute is present and evaluates to
 http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML,
 the value of the HTML Literal is a string
 created by serializing all child nodes to text. This applies to all nodes
 that are descendants of the current
 element, not including the element itself. The HTML Literal is
 given a
 datatype of http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML
 as defined in

 Section 5.2: The rdf:HTML Datatype
 of [rdf11-concepts]. This feature is non-normative, because the equality of the literal values depend
 on DOM4 [dom4], a specification that has not yet reached W3C Recommendation status. See [rdf11-concepts] for further details.

 	Once the
 output graph
 is generated following the processing steps defined in
 Section 7.5: Sequence of
 the RDFa Core 1.1 specification [rdfa-core], and the steps in this
 section, perform the operations defined in
 Implementing Property Copying.

The @version attribute is not supported in HTML5 and is
non-conforming. However, if an HTML+RDFa document contains the
@version attribute on the html element, a conforming
RDFa processor MUST examine the value of this attribute. If the value matches
that of a defined version of RDFa, then the processing rules for that version
MUST be used. If the value does not match a defined version, or there is no
@version attribute, then the processing rules for the most recent
version of RDFa 1.1 MUST be used.

 3.2 Modifying the Input Document

 RDFa's tree-based processing rules, outlined in
 Section 7.5: Sequence of
 the RDFa Core 1.1 specification [rdfa-core], allow an input document to be
 automatically corrected, cleaned-up, re-arranged, or modified in any way that
 is approved by the host language prior to processing. Element nesting issues
 in HTML documents SHOULD be corrected before the input document is
 translated into the DOM, a valid tree-based model, on which the RDFa
 processing rules will operate.

 Any mechanism that generates a data structure equivalent to the HTML5 or
 XHTML5 DOM, such as the html5lib library, MAY be used as the mechanism to
 construct the tree-based model provided as input to the RDFa processing
 rules.

 3.3 Specifying the Language for a Literal

 According to RDFa Core 1.1 the
 current language
 MAY be specified by the host language. In order to conform
 to this specification, RDFa processors MUST use the mechanism described in
 The lang and xml:lang attributes section of the [html5]
 specification to determine the
 language
 of a node.

 If the final encapsulating MIME type for an HTML fragment is not decided
on while editing, it is RECOMMENDED that the author
 specify both @lang and @xml:lang where the value in
 both attributes is exactly the same.

 Note
The HTML5 specification takes the
 Content-Language HTTP header into account when determining the
 language of an element. Some RDFa processor implementations, like those
 written in JavaScript, may not have
 access to this header and will be non-conforming in the edge case where
 the language is only specified in the Content-Language HTTP
 header. In these instances, RDFa document authors are urged to
 set the language in the document via the @lang
 attribute on the html element in order to ensure
 that the document is interpreted correctly across all RDFa processors.

 3.4 Invalid XMLLiteral Values

 When generating literals of type XMLLiteral, the processor MUST ensure
 that the output XMLLiteral is a namespace well-formed XML fragment. A
 namespace well-formed XML fragment has the following properties:

 	The XML fragment, when placed inside of a single root element, MUST
 validate as well-formed XML. The normative language that describes a
 well-formed XML document is specified in Section 2.1 "Well-Formed
 XML Documents" of the XML specification.

 	The XML fragment, when placed inside of a single root element, MUST
 retain all active namespace information. The currently active attributes
 declared using @xmlns and @xmlns: that are stored in the
 RDFa processor's current
 evaluation context
 in the
 IRI mappings
 MUST be preserved in the generated XMLLiteral. The PREFIX value for
 @xmlns:PREFIX MUST be entirely transformed into lower-case characters
 when preserving the value in the XMLLiteral. All active namespaces declared
 via @xmlns, @xmlns:, and @prefix
 MUST be placed in each top-level element in the generated XMLLiteral,
 taking care to not overwrite pre-existing namespace values.

 An RDFa processor that transforms the XML fragment MUST use the

 Coercing an HTML DOM into an infoset algorithm, as specified in the HTML5
 specification, followed by the algorithm defined in the Serializing
 XHTML Fragments section of the HTML5 specification. If an error or
 exception occurs at any point during the transformation, the triple containing
 the XMLLiteral MUST NOT be generated.

 Transformation to a namespace well-formed XML fragment is required
 because an application that consumes XMLLiteral data expects that data to
 be a namespace well-formed XML fragment.

 The transformation requirement does not apply to plain text input data that are
 text-only, such as literals that contain a @datatype attribute
 with an empty value (""), or input data that contain only
 text nodes.

 An example transformation demonstrating the preservation of namespace
 values is provided below. The → symbol is used to denote that the line
 is a continuation of the previous line and is included purely for the
 purposes of readability:

Example 3: Namespace preservation markup
<p xmlns:ex="http://example.org/vocab#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 Two rectangles (the example markup for them are stored in a triple):
 <svg xmlns="http://www.w3.org/2000/svg"
 property="ex:markup" datatype="rdf:XMLLiteral">
 →<rect width="300" height="100" style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/>
 →<rect width="50" height="50" style="fill:rgb(255,0,0);stroke-width:2;stroke:rgb(0,0,0)"/></svg>
</p>

The markup above SHOULD produce the following triple, which preserves the
xmlns declaration in the markup by injecting the @xmlns attribute
in the rect elements:

Example 4: Namespace preservation triple
<>
 <http://example.org/vocab#markup>
 """<rect xmlns="http://www.w3.org/2000/svg" width="300"
→height="100" style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/>
→<rect xmlns="http://www.w3.org/2000/svg" width="50"
→height="50" style="fill:rgb(255,0,0);stroke-width:2;
→stroke:rgb(0,0,0)"/>"""^^<http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral> .

Since the ex and rdf
namespaces are not used in either rect element, they are not
preserved in the XMLLiteral.

Similarly, compound document elements that reside in different
namespaces must have their namespace declarations preserved:

Example 5: Namespace preservation for compound document elements
<p xmlns:ex="http://example.org/vocab#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fb="http://www.facebook.com/2008/fbml">
 This is how you markup a user in FBML:

→<fb:user uid="12345">The User</fb:user>
→
</p>

The markup above SHOULD produce the following triple, which preserves the
fb namespace in the corresponding triple:

Example 6: Namespace element preservation triple
<>
 <http://example.org/vocab#markup>
 """
→<fb:user uid="12345"></fb:user>
→"""^^<http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral> .

 3.5 Property Copying

 There are times when authors will find that they have many resources on a
 page that share a common set of properties. For example, several
 music events may have different performance times, but use
 the same location, band, and ticket prices. In this particular case, it is
 beneficial to have a short-hand notation to instruct the RDFa processor
 to include the location, band, and ticket price information without having
 to repeat all of the markup that expresses the data.

 HTML+RDFa defines a property copying mechanism which allows
 properties associated with a resource to be copied to another resource.
 This mechanism can be activated by using the rdfa:copy
 predicate.
 The feature is illustrated in the following two examples:

 Example 7: Events with duplicate properties
<div vocab="http://schema.org/">
 <p typeof="MusicEvent">
 <link property="image" href="Muse1.jpg"/>
 <link property="image" href="Muse2.jpg"/>
 <link property="image" href="Muse3.jpg"/>
 Muse at the United Center.
 <time property="startDate" datetime="2013-03-03">March 3rd 2013</time>,
 United Center, Chicago, Illinois
 ...
 </p>

 <p typeof="MusicEvent">
 <link property="image" href="Muse1.jpg"/>
 <link property="image" href="Muse2.jpg"/>
 <link property="image" href="Muse3.jpg"/>
 Muse at the Target Center.
 <time property="startDate" datetime="2013-03-07">March 7th 2013</time>,
 Target Center, Minneapolis, Minnesota
 ...
 </p>
</div>

 In this case, two music events are defined with image,
 name, startDate, and location properties. The
 image and name values are identical for the two
 events and are unnecessarily duplicated in the markup.
 Using RDFa's property copying feature, a pattern can be
 declared that expresses the common properties. This pattern can then be
 copied into other resources within the document:

 Example 8: Copying common properties
<div vocab="http://schema.org/">
 <div resource="#muse" typeof="rdfa:Pattern">
 <link property="image" href="Muse1.jpg"/>
 <link property="image" href="Muse2.jpg"/>
 <link property="image" href="Muse3.jpg"/>
 Muse
 </div>

 <p typeof="MusicEvent">
 <link property="rdfa:copy" href="#muse"/>
 Muse at the United Center.
 <time property="startDate" datetime="2013-03-03">March 3rd 2013</time>,
 United Center, Chicago, Illinois
 ...
 </p>

 <p typeof="MusicEvent">
 <link property="rdfa:copy" href="#muse"/>
 Muse at the Target Center.
 <time property="startDate" datetime="2013-03-07">March 7th 2013</time>,
 Target Center, Minneapolis, Minnesota
 ...
 </p>
</div>

 In this case, the common properties for all of the events are expressed in
 the first div. The common properties are copied into each
 event resource via the rdfa:copy predicate. The output for the
 previous two examples is the same:

 Example 9: Turtle output of property copying example
@prefix schema: <http://schema.org/> .
@prefix xsd: http://www.w3.org/2001/XMLSchema#> .

[] a schema:MusicEvent;
 schema:image <Muse1.jpg>, <Muse2.jpg>, <Muse3.jpg>;
 schema:name "Muse";
 schema:startDate "2013-03-03"^^xsd:date;
 schema:location <#united> .

[] a schema:MusicEvent;
 schema:image <Muse1.jpg>, <Muse2.jpg>, <Muse3.jpg>;
 schema:name "Muse";
 schema:startDate "2013-03-07"^^xsd:date;
 schema:location <#target> .

 The copy process is iterative, so that resources may copy
 other resources that copy other resources. For example:

 Example 10: Resources may copy other resources that copy other resources
<div vocab="http://schema.org/">
 <div typeof="Person">
 <link property="rdfa:copy" href="#lennon"/>
 <link property="rdfa:copy" href="#band"/>
 </div>
 <p resource="#lennon" typeof="rdfa:Pattern">
 Name: John Lennon
 <p>
 <div resource="#band" typeof="rdfa:Pattern">
 <div property="band" typeof="MusicGroup">
 <link property="rdfa:copy" href="#beatles"/>
 </div>
 </div>
 <div resource="#beatles" typeof="rdfa:Pattern">
 <p>Band: The Beatles</p>
 <p>Size: 4 players</p>
 </div>
</div>

 In the example above, the properties from #lennon and
 #band are copied into the first resource. Then the
 properties from #beatles are copied into
 #band. Subsequently, those properties are again copied into
 the first resource yielding the following output:

 Example 11: Iterative copying example output in Turtle
@prefix schema: <http://schema.org/> .

[a schema:Person;
 schema:name "John Lennon" ;
 schema:band [
 a schema:MusicGroup;
 schema:name "The Beatles";
 schema:size "4"
]
] .

 Similar to
 Vocabulary Expansion
 as defined in [rdfa-core], RDFa Property Copying operates on the
 output graph
 after document processing is complete.

 3.5.1 Implementing Property Copying

 Once the
 output graph
 is generated following the processing steps defined in
 Section 7.5: Sequence of
 the RDFa Core 1.1 specification [rdfa-core],
 and the Extensions to the HTML5 Syntax
 defined in this specification, processors MUST update the
 output graph
 using the following rules:

 	Run the following rule for each rdfa:copy statement
 in the
 output graph,
 and for each new rdfa:copy statement added as a result of
 property copying until no new triples are added to the
 output graph:

 	Rule name	If output graph contains	then add

 	pattern-copy	
 ?subject rdfa:copy ?target

 ?target rdf:type rdfa:Pattern

 ?target ?predicate ?object
 	
 ?subject ?predicate ?object

 	Finally, run this rule to remove utilized rdfa:copy
 statements and rdfa:Pattern resources from the
 output graph:

 	Rule name	If output graph contains	then remove

 	pattern-clean	
 ?subject rdfa:copy ?target

 ?target rdf:type rdfa:Pattern

 ?target ?predicate ?object
 	
 ?subject rdfa:copy ?target

 ?subject rdf:type rdfa:Pattern

 ?target ?predicate ?object

 Note
Implementers should be aware that a simplistic implementation of
 the pattern-copy rule may lead to an infinite loop when
 handling circular dependencies. A processor should cease
 the pattern-copy rule when no unique triples are generated.

 Note
Alternate rules may be used to update the output graph as
 long as the end result is the same.

 4. Extensions to the HTML5 Syntax

 There are a few attributes that are added as extensions to the HTML5
 syntax in order to fully support RDFa:

 	If HTML+RDFa Lite document conformance is desired, all RDFa attributes and
 valid values (including CURIEs), as listed in
 RDFa Lite 1.1, Section 2: The Attributes,
 MUST be allowed and validate as conforming when used in an HTML4, HTML5 or
 XHTML5 document. For the avoidance of doubt, the following RDFa attributes
 are allowed on all elements in the HTML5 content model: @vocab,
 @typeof, @property, @resource, and
 @prefix. All other attributes that RDFa may process, such as
 @href and @src, are only allowed when consistent
 with the content model for that element,
 as defined in the HTML5 specification.

 	If HTML+RDFa document conformance is desired, all RDFa attributes and
 valid values (including CURIEs), as listed in
 RDFa Core 1.1, Section 2.1: The RDFa Attributes,
 MUST be allowed and validate as conforming when used in an HTML4, HTML5 or
 XHTML5 document. For the avoidance of doubt, the following RDFa attributes
 are allowed on all elements in the HTML5 content model: @vocab,
 @typeof, @property, @resource,
 @prefix, @content, @about,
 @rel, @rev, @datatype, and
 @inlist. All other attributes that RDFa may process, such as
 @href and @src, are only allowed when consistent
 with the content model for that element,
 as defined in the HTML5 specification.

 	If the @property RDFa attribute is present on the
 link or meta elements, they MUST be viewed as
 conforming if used in the body of the document.
 More specifically,
 when link or meta elements contain the
 RDFa @property attribute and are used in the
 body of an HTML5 document, they MUST be considered
 flow content.

 	If the RDFa @property attribute is present on the link
 element, the @rel attribute is not required.

 	If the RDFa @resource attribute is present on the link
 element, the @href attribute is not required.

 	If the RDFa @property attribute is present on the meta
 element, neither the @name, @http-equiv, nor @charset attributes are required
 and the @content attribute MUST be specified.

 5. Backwards Compatibility

 RDFa Core 1.1 deprecates the usage of @xmlns: in RDFa 1.1
 documents. Web page authors SHOULD NOT use @xmlns: to express
 prefix mappings in RDFa 1.1 documents. Web page authors SHOULD use
 the @prefix attribute to specify prefix mappings.

 However, there are times when XHTML+RDFa 1.0 documents are served by web
 servers using the text/html MIME type. In these instances, the
 HTML5 specification asserts that the document is processed according to the
 non-XML mode HTML5 processing rules. In these particular cases, it is
 important that the prefixes declared via @xmlns: are preserved
 for the RDFa processors to ensure backwards-compatibility with RDFa 1.0
 documents. The following sections elaborate upon the backwards compatibility
 requirements for RDFa processor implementations.

 5.1 @xmlns:-Prefixed Attributes

 The RDFa Core 1.1 [rdfa-core] specification deprecates the
 use of the @xmlns: mechanism to declare CURIE prefix mappings in
 favor of the @prefix attribute. However, there are instances
 where its use is unavoidable. For example, publishing legacy documents as HTML5 or
 supporting older XHTML+RDFa 1.0 documents that rely on the @xmlns:
 attribute.

 CURIE prefix mappings specified using attributes prepended with
 @xmlns: MUST be processed using the algorithm defined in
 section 4.4.1:
 Extracting URI Mappings from Infosets
 for infoset-based processors, or section 4.5.1:
 Extracting URI Mappings from DOMs
 for DOM Level 2-based processors. For CURIE prefix mappings using the
 @prefix attribute,
 Section 7.5: Sequence, step 3
 MUST be used to process namespace values.

 Since CURIE prefix mappings have been specified using
 @xmlns:, and since HTML attribute names are case-insensitive,
 CURIE prefix names declared using the @xmlns:attribute-name
 pattern xmlns:<PREFIX>="<URI>" SHOULD be specified
 using only lower-case characters. For example, the text
 "@xmlns:" and the text in "<PREFIX>" SHOULD
 be lower-case only. This is to ensure that prefix mappings are interpreted
 in the same way between HTML (case-insensitive attribute names) and XHTML
 (case-sensitive attribute names) document types.

 5.2 Conformance Criteria for @xmlns:-Prefixed Attributes

 Since RDFa 1.0 documents may contain attributes starting with
 @xmlns: to specify CURIE prefixes, any attribute starting with
 a case-insensitive match on the text string "@xmlns:" MUST be
 preserved in the DOM or other tree-like model that is passed to the RDFa
 Processor.
 For documents conforming to this specification, attributes with
 names that have a case insensitive prefix matching "@xmlns:"
 MUST be considered conforming. Conformance checkers SHOULD
 accept attribute names that have a case insensitive prefix matching
 "@xmlns:" as conforming. Conformance checkers SHOULD generate
 warnings noting that the use of @xmlns: is deprecated.
 Conformance checkers MAY report the use of xmlns: as an error.

 All attributes starting with a case insensitive prefix matching
 "@xmlns:" MUST conform to the production rules outlined in
 Namespaces in XML [xml-names11],
 Section 3: Declaring Namespaces.
 Documents that contain @xmlns: attributes that do not conform to
 Namespaces in XML MUST NOT be accepted as conforming.

 5.3 Preserving Namespaces via Coercion to Infoset

 RDFa 1.0 documents may contain the @xmlns: pattern to
 declare prefix mappings, it is important that namespace information that
 is declared in non-XML mode HTML5 documents are mapped to an infoset
 correctly. In order to ensure this mapping is performed correctly, the
 "Coercing an HTML DOM into an infoset" rules defined in [html5]
 must be extended to include the following rule:

 If the XML API is namespace-aware, the tool must ensure that
 ([namespace
 name], [local name],
 [normalized
 value]) namespace tuples are created when converting the non-XML mode
 DOM into an infoset. Given a standard @xmlns: definition,
 xmlns:foo="http://example.org/bar#", the [namespace name]
 is http://www.w3.org/2000/xmlns/,
 the [local name] is foo, and the
 [normalized value] is http://example.org/bar#, thus the
 namespace tuple would be (http://www.w3.org/2000/xmlns/,
 foo, http://example.org/bar#).

 For example, given the following input text:

 Example 12
<div xmlns:com="https://w3id.org/commerce#">

 The div element above, when coerced from an HTML DOM into
 an infoset, should contain an attribute in the [namespace
 attributes] list with a [namespace name] set to
 "http://www.w3.org/2000/xmlns/", a [local name] set to
 com, and a [normalized value] of
 "https://w3id.org/commerce#".

 5.4 Infoset-based Processors

 While the intent of the RDFa processing instructions is to provide a
 set of rules that are as language and toolchain independent as possible, for
 the sake of clarity, detailed methods of extracting RDFa content from
 processors operating on an XML Information Set are provided below.

 5.4.1 Extracting URI Mappings from Infosets

 Extracting URI Mappings declared via @xmlns:
 while operating from within an infoset-based RDFa processor can be achieved
 using the following algorithm:

 While processing an element as described in [rdfa-core],
 Section 7.5: Sequence,
 Step #2:

 	For each attribute in the [namespace
 attributes] list that has a [prefix] value,
 create an [IRI
 mapping] by storing the [prefix] as the value to be mapped, and the
 [normalized
 value] as the value to map.

 	For each attribute in the [attributes] list
 that has no value for [prefix] and a
 [local
 name] that starts with @xmlns:, create an [IRI mapping] by
 storing the [local name] part with the @xmlns: characters
 removed as the value to be mapped, and the [normalized
 value] as the value to map.
 Note
This step is unnecessary if the infoset coercion
 rules preserve namespaces specified in non-XML mode.

 For example, assume that the following markup is processed by an
 infoset-based RDFa processor:

Example 13
<div xmlns:ps="https://w3id.org/payswarm#" ...

After the markup is processed, there should exist a [URI mapping] in
the [local list of URI mappings] that contains a mapping from
ps to https://w3id.org/payswarm#.

 5.4.2 Processing RDFa Attributes

 There are a number of non-prefixed attributes that are associated with
 RDFa Processing in HTML5. If an XML Information Set based RDFa processor is
 used to process these attributes, the following algorithm should be used to
 detect and extract the values of the attributes.

 While processing Infoset Attribute Information Items in Element Information
 Items as described in [rdfa-core],

 Section 7.5: Sequence, Step #4 through Step #9:

 	For each Attribute Information Item specific to RDFa in the infoset
 [attributes]
 list that has a [prefix] with
 no value, extract and use the [normalized
 value].

 5.5 DOM Level 1 and Level 2-based Processors

 Most DOM-aware RDFa processors are capable of accessing DOM Level 1
 [dom-level-1]
 methods to process attributes on elements. To discover all
 @xmlns:-specified CURIE prefix mappings, the

 Node.attributes

 NamedNodeMap can be iterated over. Each

 Attr.name that
 starts with the text string @xmlns: specifies a CURIE prefix
 mapping. The value to be mapped is the string after the @xmlns:
 substring in the Attr.name variable and the value to be mapped is
 the value of the Attr.value variable.

 The intent of the RDFa processing instructions are to provide a
 set of rules that are as language and toolchain independent as possible. If
 a developer chooses to not use the DOM1 environment mechanism outlined in
 the previous paragraph, they may use the following DOM2 [dom-level-2-core]
 environment mechanism.

 5.5.1 Extracting URI Mappings via DOM Level 2

 Extracting URI Mappings declared via @xmlns: while operating
 from within a DOM Level 2 based RDFa processor can be achieved using the
 following algorithm:

 While processing each DOM2 [Element]
 as described in [rdfa-core],

 Section 7.5: Sequence, Step #2:

 	For each [Attr]
 in the [Node.attributes]
 list that has a [namespace
 prefix] value of @xmlns, create an [IRI mapping] by
 storing the [local
 name] as the value to be mapped, and the [Node.nodeValue]
 as the value to map.

 	For each [Attr]
 in the [Node.attributes]
 list that has a [namespace
 prefix] value of null and a [local
 name] that starts with @xmlns:, create an [IRI mapping] by
 storing the [local name] part with the @xmlns: characters
 removed as the value to be mapped, and the [Node.nodeValue]
 as the value to map.
 Note
This step is unnecessary if the XML and non-XML
 mode DOMs are namespace consistent.

 For example, assume that the following markup is processed by a
 DOM2-based RDFa processor:

 Example 14
<div xmlns:com="https://w3id.org/commerce#" ...

After the markup is processed, there should exist a [URI mapping] in
the [local list of URI mappings] that contains a mapping from
com to https://w3id.org/commerce#.

 5.5.2 Processing RDFa Attributes

 There are a number of non-prefixed attributes that are associated with
 RDFa processing in HTML5. If an DOM2-based RDFa processor is used to
 process these attributes, the following algorithm should be used to detect
 and extract the values of the attributes.

 While processing an element as described in [rdfa-core],
 Section 5.5: Sequence,
 Step #3 through Step #9:

 	For each RDFa attribute in the [Node.attributes]
 list that has a [namespace
 prefix] that is null, extract and use [Node.nodeValue]
 as the value.

 Note
When extracting values from @href and
 @src, web authors and developers should
 note that certain values MAY be transformed if accessed via the DOM versus
 a non-DOM processor. The rules for modification of URL values can be
 found in the main HTML5 specification under

 Section 2.5: URLs.

A. About this Document

A.1 History
This section is non-normative.

In early 2004, Mark Birbeck published a document named "RDF in XHTML"
via the XHTML2 Working Group wherein he laid
the groundwork for what would eventually become RDFa (The Resource
Description Framework in Attributes).

In 2006, the work was co-sponsored by the Semantic Web Deployment Working
Group, which began to formalize a technology to express semantic data in
XHTML. This technology was successfully developed and reached consensus at
the W3C, later published as an official W3C Recommendation. While HTML
provides a mechanism to express the structure of a document (title,
paragraphs, links), RDFa provides a mechanism to express the meaning in a
document (people, places, events).

The document, titled "RDF in XHTML: Syntax and Processing" [xhtml-rdfa],
defined a set of attributes and rules for
processing those attributes that resulted in the output of machine-readable
semantic data. While the document applied to XHTML, the attributes and
rules were always intended to operate across any tree-based structure
containing attributes on tree nodes (such as HTML4, SVG and ODF).

While RDFa was initially specified for use in XHTML, adoption by a
number of large organizations on the web spurred RDFa's use in non-XHTML
languages. Its use in HTML4, before an official specification was developed
for those languages, caused concern regarding document conformance.

Over the years, the members of the
RDFa Community had discussed the possibility
of applying
the same attributes and processing rules outlined in the XHTML+RDFa
specification to all HTML family documents. By design, the possibility of a
unified semantic data expression mechanism between all HTML and XHTML
family documents was squarely in the realm of possibility.

An RDFa Working Group was created in 2010 to address the issues concerning
multiple language implementations of RDFa. The XHTML+RDFa document was split
into a base specification, called RDFa Core 1.1 [rdfa-core], and thin
specifications that layer above RDFa Core 1.1. The XHTML+RDFa 1.1 specification
[xhtml-rdfa] is an example of such a thin specification. This
document, also a thin specification, is targeted at HTML4, HTML5 and
XHTML5.

This document describes the extensions to the RDFa Core 1.1
specification that permits the use of RDFa in all HTML family documents. By
using the attributes and processing rules described in the RDFa Core 1.1
specification and heeding the minor changes in this document, authors can
generate markup that produces the same semantic data output in
HTML4, HTML5 and XHTML5.

A.2 Change History Since the Last Published Recommendation
This section is non-normative.

2014-12-16: With the publication of [html5] as a Recommendation, the usage of @datetime is now normative. The corresponding note in the processing steps have been removed.

2014-12-16: With the publication of [rdf11-concepts] as a Recommendation, the usage of rdf:HTML remains non-normative. The corresponding note about a possible normative status in the processing steps has been removed; a clarification note has been added to the usage of the datatype, referring to the dependecy on [dom4].

2014-12-16: The note in the Status Section on the non-normative nature of @datetime and rdf:HTML has been removed, but a paragraph on the non-normative nature of rdf:HTML and a clarification has been added.

2014-12-16: References to [html5] and [rdf11-concepts], as well as to the other RDFa documents, have been updated to the latest (PER) versions.

2014-12-16: The style of the references have been updated to the latest respec style

A.3 Acknowledgments
This section is non-normative.

At the time of publication, the members of the RDFa Working Group were:

Ivan Herman (staff contact), Shane McCarron, Gregg Kellogg,
Niklas Lindström, Steven Pemberton, Manu Sporny (chair), Ted Thibodeau, and
Stéphane Corlosquet.

A great deal of thanks to everyone that provided feedback on the
specification (most of whom are listed below):

Adam Powell, Alex Milowski, Andy Seaborne, Arto Bendiken, Austin William, BAI Xi, Benjamin Adrian, Benjamin Nowack, Bjoern Hoehrmann, Christian Langanke, Christoph Lange, Cindy Lewis, Corey Mwamba, Crisfer Inmobiliaria, Dan Brickley, Daniel Friesen, Dave Beckett, David Wood, D. Grant, Dominik Tomaszuk, Dominique Hazael-Massieux, Doug Schepers, Dr. Olaf , Edward O'Connor, Faye Harris, Felix Sasaki, Gavin Carothers, Grant Robertson, Guus Schreiber, Harry Halpin, Michael Hausenblas, Henri Bergius, Henri Sivonen, Henry Story, Holger Knublauch, Ian Hickson, Irene Celino, Alexander Kroener, Knud Möller, Philip Jägenstedt, Reto Bachmann-Gmür, Ivan Mikhailov, James Leigh, Jeff Sonstein, Jeni Tennison, Jens Haupert, Jochen Rau, John Breslin, John Cowan, John O'Donovan, Jonathan Rees, Julian Reschke, KANZAKI Masahide, Kingsley Idehen, Knud Hinnerk, Landong Zuo, Leif Halvard Silli, Liam R., Lin Clark, Maciej Stachowiak, Mark Nottingham, Markus Gylling, Martin Hepp, Martin McEvoy, Matthias Tylkowski, Darin McBeath, Melvin Carvalho, Michael Chan, Michael Hausenblas, Michael Steidl, Michael™ Smith, Mischa Tuffield, Misha Wolf, Nathan Rixham, Nathan Yergler, Nicholas Stimpson, Noah Mendelsohn, Paul Cotton, Paul Sparrow, Pete Cordell, Peter Frederick, Peter Mika, Peter Occil, Phil Archer, Reece Dunn, Richard Cyganiak, Robert Leif, Robert Weir, Ramanathan V. Guha, Sami Korhonen, Sam Ruby, Sandro Hawke, Sebastian Germesin, Sebastian Heath, Shelley Powers, Simon Grant, Simon Reinhardt, Stefan Schumacher, Tab Atkins Jr., Thomas Adamich, Thomas Baker, Thomas Roessler, Thomas Steiner, Tim Berners-Lee, Toby Inkster, Tom Adamich, Tantek Çelik, Ville Skyttä, Wayne Smith, and Will Clark

B. References
B.1 Normative references
	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

	[dom-level-1]
	Scott Isaacson; Steven B Byrne; Mike Champion; Ian Jacobs; Arnaud Le Hors; Gavin Nicol; Jonathan Robie; Robert S Sutor; Chris Wilson; Lauren Wood et al. Document Object Model (DOM) Level 1. 29 September 2000. W3C Working Draft. URL: http://www.w3.org/TR/DOM-Level-1/

	[dom-level-2-core]
	Arnaud Le Hors; Philippe Le Hégaret; Lauren Wood; Gavin Nicol; Jonathan Robie; Mike Champion; Steven B Byrne et al. Document Object Model (DOM) Level 2 Core Specification. 13 November 2000. W3C Recommendation. URL: http://www.w3.org/TR/DOM-Level-2-Core/

	[html5]
	Ian Hickson; Robin Berjon; Steve Faulkner; Travis Leithead; Erika Doyle Navara; Edward O'Connor; Silvia Pfeiffer. HTML5. 28 October 2014. W3C Recommendation. URL: http://www.w3.org/TR/html5/

	[rdfa-core]
	Ben Adida; Mark Birbeck; Shane McCarron; Ivan Herman et al. RDFa Core 1.1 - Third Edition: Syntax and processing rules for embedding RDF through attributes. 17 March 2015. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-core/

	[rdfa-lite]
	Manu Sporny. RDFa Lite 1.1 - Second Edition. 17 March 2015. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-lite/

	[xml-names11]
	Tim Bray; Dave Hollander; Andrew Layman; Richard Tobin et al. Namespaces in XML 1.1 (Second Edition). 16 August 2006. W3C Recommendation. URL: http://www.w3.org/TR/xml-names11/

B.2 Informative references
	[dom4]
	Anne van Kesteren; Aryeh Gregor; Ms2ger; Alex Russell; Robin Berjon. W3C DOM4. 10 July 2014. W3C Last Call Working Draft. URL: http://www.w3.org/TR/dom/

	[rdf11-concepts]
	Richard Cyganiak; David Wood; Markus Lanthaler. RDF 1.1 Concepts and Abstract Syntax. 25 February 2014. W3C Recommendation. URL: http://www.w3.org/TR/rdf11-concepts/

	[turtle]
	Eric Prud'hommeaux; Gavin Carothers. RDF 1.1 Turtle. 25 February 2014. W3C Recommendation. URL: http://www.w3.org/TR/turtle/

	[xhtml-rdfa]
	Shane McCarron. XHTML+RDFa 1.1 - Third Edition. 17 March 2015. W3C Recommendation. URL: http://www.w3.org/TR/xhtml-rdfa/

 [image: W3C]

 XHTML+RDFa 1.1 - Third Edition

 Support for RDFa via XHTML Modularization

 W3C Recommendation 17 March 2015

 	This version:

 	http://www.w3.org/TR/2015/REC-xhtml-rdfa-20150317/

 	Latest published version:

 	http://www.w3.org/TR/xhtml-rdfa/

 	Implementation report:

 	http://www.w3.org/2010/02/rdfa/wiki/CR-ImplementationReport

 	Previous version:

 	http://www.w3.org/TR/2014/PER-xhtml-rdfa-20141216/

 	Previous Recommendation:

 	http://www.w3.org/TR/2013/REC-xhtml-rdfa-20130822/

 	Editor:

 	Shane McCarron, Applied Testing and Technology, Inc., shane@aptest.com

 Please check the errata for any errors or issues
 reported since publication.

 This document is also available in these non-normative formats:

 XHTML+RDFa, Diff from Previous Recommendation, Postscript version, and PDF version

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2007-2015

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang).

 W3C liability,
 trademark and

 document use

 rules apply.

 Abstract

RDFa Core 1.1 [RDFA-CORE] defines attributes and syntax for embedding semantic
markup in Host Languages. This document defines one such Host Language. This language
is a superset of XHTML 1.1 [XHTML11-2e], integrating the attributes as defined in RDFa
Core 1.1. This document is intended for authors who want to create
XHTML Family documents that embed rich semantic markup.

Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

This is an Editorial Revision of the Recommendation published on the 22nd of August, 2013.
That document was a revision of Sections 8 and 9 and Appendix A of RDFa Syntax 1.0 [RDFA-SYNTAX],
superseding those sections. There are a number of substantive differences between this version and the 2008 version, including:

	Inheritance of basic processing rules from [RDFA-CORE].

	The inclusion of an implementation of the markup language using
XML Schema.

	The addition of @lang to be consistent with recent
changes in [XHTML11-2e].

	Removal of the collection of TERMs from this document - instead deferring the
definitions in an RDFa Initial Context document.

A sample test harness is available. This set of tests is
not intended to be exhaustive. Users may find the tests to
be useful examples of RDFa usage.

The
implementation report
used by the director to transition to Recommendation has been
made available. There have been no formal objections to the publication of this document.

 This document was published by the RDFa Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdfa@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 Please see the Working Group's implementation
 report.

 This document has been reviewed by W3C Members, by software developers, and by other W3C
 groups and interested parties, and is endorsed by the Director as a W3C Recommendation.
 It is a stable document and may be used as reference material or cited from another
 document. W3C's role in making the Recommendation is to draw attention to the
 specification and to promote its widespread deployment. This enhances the functionality
 and interoperability of the Web.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

 This document is governed by the 14 October 2005 W3C Process Document.

Table of Contents
	1. Introduction
	2. Conformance	2.1 Document Conformance
	2.2 User Agent Conformance

	3. Additional RDFa Processing Rules
	4. XHTML+RDFa 1.1 Definition
	5. Metainformation Attributes Module	5.1 Metainformation Attributes Collection
	5.2 XHTML RDFa Initial Context

	A. XHTML+RDFa XML Schema	A.1 XHTML Metainformation Attributes Module
	A.2 XHTML+RDFa Schema Content Model Module
	A.3 XHTML+RDFa Schema Modules
	A.4 XHTML+RDFa XML Schema Driver Module

	B. XHTML+RDFa Document Type Definition	B.1 XHTML Metainformation Attributes Module
	B.2 XHTML+RDFa Content Model Module
	B.3 XHTML+RDFa Driver Module
	B.4 SGML Open Catalog Entry for XHTML+RDFa

	C. Deployment Advice
	D. Change History
	E. Acknowledgments
	F. References	F.1 Normative references
	F.2 Informative references

1. Introduction

XHTML+RDFa 1.1 is an XHTML Family markup language. It extends the XHTML 1.1 markup
language with the attributes defined in RDFa Core 1.1. The document also defines an
XHTML Modularization-compatible [XHTML-MODULARIZATION11-2e] module for the RDFa Core
attributes in both XML DTD and XML Schema formats.

2. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
 and notes in this specification are non-normative. Everything else in this specification is
 normative.

The key words MAY, MUST, and SHOULD are
 to be interpreted as described in [RFC2119].

2.1 Document Conformance

A strictly conforming XHTML+RDFa document is a document that
requires only the facilities described as mandatory in this
specification. Such a document satisfies the following
criteria:

 	
The document MUST conform to the constraints expressed in the schemas in
Appendix A - XHTML+RDFa XML Schema and
Appendix B - XHTML+RDFa Document Type Definition.

	
The local part of the root element of the document MUST be
html.

	
The start tag of the root element of the document MUST explicitly
contain a default namespace declaration for the XHTML namespace
[XML-NAMES11].
The namespace URI for XHTML is defined to be
http://www.w3.org/1999/xhtml.

The start tag MAY also contain the
declaration of the
XML Schema Instance Namespace and an XML Schema Instance
schemaLocation attribute [XMLSCHEMA11-2]. Such
an attribute would associate the XHTML namespace
http://www.w3.org/1999/xhtml with the XML Schema at the
URI http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-2.xsd.

	There MAY Be a @version attribute on the html element with the value "XHTML+RDFa 1.1".

Example 1: Example of an XHTML+RDFa 1.1 document
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 version="XHTML+RDFa 1.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/1999/xhtml
 http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-2.xsd"
 lang="en"
 xml:lang="en">
 <head>
 <title>Virtual Library</title>
 </head>
 <body>
 <p>Moved to example.org.</p>
 </body>
</html>

Note that in this example, the XML declaration is included. An XML
declaration like the one above is
not required in all XML documents. XHTML document authors
SHOULD use XML declarations in all their documents.
XHTML document authors MUST use an XML declaration
when the character encoding of the document is other than the default UTF-8 or
UTF-16 and
no encoding is specified by a higher-level protocol.

XHTML+RDFa documents SHOULD be labeled with the Internet Media Type "application/xhtml+xml" as defined in [RFC3236]. For further information on using media types with XHTML Family markup languages, see the informative note [XHTML-MEDIA-TYPES].

2.2 User Agent Conformance

A conforming user agent MUST support all of the features required
in this specification. A conforming user agent must also
support the User Agent conformance requirements as defined in XHTML Modularization
[XHTML-MODULARIZATION11-2e] section on "XHTML Family User Agent
Conformance".

3. Additional RDFa Processing Rules

Documents conforming to the rules in this specification are processed
according to [RDFA-CORE] with the following extensions:

	The default vocabulary IRI is undefined.

	XHTML+RDFa uses an additional initial context by default, http://www.w3.org/2011/rdfa-context/xhtml-rdfa-1.1,
which must be applied after the initial context for [RDFA-CORE]
(http://www.w3.org/2011/rdfa-context/rdfa-1.1).

	The base can be set using the base element as defined in [XHTML-MODULARIZATION11-2e].

	The current language can be set using either the
@lang or @xml:lang attributes.

	In section 7.5, processing step 5,
if no IRI is provided by a resource attribute (e.g., @about, @href, @resource, or @src),
then first check to see if the element is the head or
 body element. If it is, then act as if the new subject is set to the parent object.

	In section 7.5, processing step 6,
if no IRI is provided by a resource attribute (e.g., @about, @href, @resource, or @src),
then first check to see if the element is the head or
 body element. If it is, then act as if the new subject is set to the parent object.

When an XHTML+RDFa document uses @version on the html element,
a conforming RDFa Processor MUST examine the value of this attribute.
If the value matches that of a defined version of XHTML+RDFa, then the
processing rules for that version MUST be used. If the value does not
match a defined version, or there is no @version
attribute, then the processing rules for the most recent version of
XHTML+RDFa must be used.

4. XHTML+RDFa 1.1 Definition

The XHTML+RDFa 1.1 document type is a fully functional document type
with rich semantics. It is a superset of [XHTML11-2e].

The XHTML+RDFa 1.1
document type is made up of the following XHTML modules. The elements,
attributes, and content models associated with these modules
are defined in "XHTML Modularization" [XHTML-MODULARIZATION11-2e].
The elements are listed here for information purposes, but the
definitions
in XHTML Modularization should be considered authoritative.

 	Structure Module

 	body, head, html, title.

 	Text Module

 	abbr, acronym, address, blockquote, br, cite, code, dfn, div, em,
 h1, h2, h3, h4, h5, h6, kbd, p, pre, q, samp, span, strong, var

 	Hypertext Module

 	a. @href is available on all elements.

 	List Module

 	dl, dt, dd, ol, ul, li

 	Object Module

 	object, param

 	Presentation Module

 	b, big, hr, i, small, sub, sup, tt

 	Edit Module

 	del, ins

 	Bidirectional Text Module

 	bdo

 	Forms Module

 	button, fieldset, form, input, label, legend, select, optgroup, option, textarea

 	Table Module

 	caption, col, colgroup, table, tbody, td, tfoot, th, thead, tr

 	Image Module

 	img

 	Client-side Image Map Module

 	area, map

 	Server-side Image Map Module

 	Attribute ismap on img

 	Intrinsic Events Module

 	Events attributes

 	Metainformation Module

 	meta

 	Scripting Module

 	noscript, script

 	Stylesheet Module

 	style element

 	Style Attribute Module Deprecated

 	@style

 	Target Module

 	@target

 	Link Module

 	link

 	Base Module

 	base

 	Metainformation Attributes Module

 	@about, @content, @datatype,
 @inlist,
 @typeof, @prefix, @property, @rel,
 @resource, @rev, @vocab are available
 on all elements.

 	Ruby Annotation Module from [RUBY]

 	ruby, rbc, rtc, rb, rt, rp

This specification also adds the lang attribute to the I18N
attribute collection as defined in [XHTML-MODULARIZATION11-2e].
The
lang attribute is defined in [HTML5].
When this attribute
and the xml:lang attribute are specified on the same element, the
xml:lang attribute takes precedence.
When both lang and xml:lang are
specified on the same element, they MUST have the same value.

There are no additional definitions
required by this document type. An implementation of this document type as an
XML Schema is defined in
Appendix A, and as an
XML DTD is defined in
Appendix B.

5. Metainformation Attributes Module

The Metainformation Attributes Module
defines the Metainformation attribute collection
in the format required by [XHTML-MODULARIZATION11-2e].
This collection allows elements to be annotated with metadata
throughout an XHTML Family document. When this module is included
in a markup language,
this collection is added to the Common attribute
collection as defined in [XHTML-MODULARIZATION11-2e].

5.1 Metainformation Attributes Collection

The following attributes are included in the attribute collection, and
take values in the associated datatype:

Metainformation Attribute Collection

		Attributes
		Notes

 	about (SafeCURIEorCURIEorIRI)
		

 	content (CDATA)
		

 	datatype (TERMorCURIEorAbsIRI)
 	If not specified, then the default value is string as defined in [XMLSCHEMA11-2].

 	inlist (CDATA)
 	

 	prefix (NCName ': ' IRI)+
 	

 	property (TERMorCURIEorAbsIRIs)
 	

 	rel (TERMorCURIEorAbsIRIs)
 	

 	resource (SafeCURIEorCURIEorIRI)
		

 	rev (TERMorCURIEorAbsIRIs)
 	

 	typeof (TERMorCURIEorAbsIRIs)
		

 	vocab (IRI)
 	An IRI that defines the prefix to use when a CURIE is specified with no prefix
 and no colon.

An implementation of this module in XML Schema can be
found in Appendix A and in
XML DTD in Appendix B.

5.2 XHTML RDFa Initial Context
This section is non-normative.

This specification defines an RDFa Initial Context. It
is available at http://www.w3.org/2011/rdfa-context/xhtml-rdfa-1.1.

A. XHTML+RDFa XML Schema

This appendix is normative.

This appendix includes an implementation of the
XHTML+RDFa 1.1 language using XML Schema.
It is implemented by combining the XHTML 1.1 Schema
with the XHTML Metainformation Attribute Module.
This is done by using
a content model module, and then a driver module.
There are direct links to the various files for download purposes.
Please note that the files targeted by the "latest version" links may
change slowly over time. See the
W3C XHTML2 Working Group home page for more
information.

A.1 XHTML Metainformation Attributes Module

You can download this version of this file from SCHEMA/xhtml-metaAttributes-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-metaAttributes-2.xsd.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/"
 elementFormDefault="qualified"
>
 <xs:import namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd" />
 <xs:annotation>
 <xs:documentation>
 This is the XML Schema Metainformation Attributes module for XHTML

 $Id: Overview.html,v 1.1 2015-03-09 13:54:40 ivan Exp $
 </xs:documentation>
 <xs:documentation source="xhtml-rdfa-copyright-1.xsd"/>
 </xs:annotation>

 <xs:annotation>
 <xs:documentation>
 XHTML Metainformation Attributes
 </xs:documentation>
 </xs:annotation>

 <xs:attribute name="about" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="content" type="xh11d:CDATA"/>
 <xs:attribute name="datatype" type="xh11d:TERMorCURIEoAbsIRI"/>
 <xs:attribute name="inlist" type="xh11d:CDATA"/>
 <xs:attribute name="typeof" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="prefix" type="xh11d:PREFIX"/>
 <xs:attribute name="property" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="rel" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="resource" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="rev" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="vocab" type="xs:anyURI"/>

 <xs:attributeGroup name="xhtml.metaAttributes.attrib">
 <xs:attribute name="about"/>
 <xs:attribute name="content"/>
 <xs:attribute name="datatype"/>
 <xs:attribute name="inlist"/>
 <xs:attribute name="typeof"/>
 <xs:attribute name="prefix"/>
 <xs:attribute name="property"/>
 <xs:attribute name="rel"/>
 <xs:attribute name="resource"/>
 <xs:attribute name="rev"/>
 <xs:attribute name="vocab"/>
 </xs:attributeGroup>

</xs:schema>

A.2 XHTML+RDFa Schema Content Model Module

You can download this version of this file from SCHEMA/xhtml-rdfa-model-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-model-2.xsd.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/"
 elementFormDefault="qualified" >
 <xs:import
 namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd"/>
 <xs:annotation>
 <xs:documentation>
 This is the XML Schema module of common content models for XHTML11

 $Id: Overview.html,v 1.1 2015-03-09 13:54:40 ivan Exp $
 </xs:documentation>
 <xs:documentation source="xhtml-copyright-1.xsd"/>
 </xs:annotation>
 <xs:annotation>
 <xs:documentation>
 XHTML Document Model
 This module describes the groupings of elements/attributes
 that make up common content models for XHTML elements.
 XHTML has following basic content models:
 xhtml.Inline.mix; character-level elements
 xhtml.Block.mix; block-like elements, e.g., paragraphs and lists
 xhtml.Flow.mix; any block or inline elements
 xhtml.HeadOpts.mix; Head Elements
 xhtml.InlinePre.mix; Special class for pre content model
 xhtml.InlineNoAnchor.mix; Content model for Anchor

 Any groups declared in this module may be used to create
 element content models, but the above are considered 'global'
 (insofar as that term applies here). XHTML has the
 following Attribute Groups
 xhtml.Core.extra.attrib
 xhtml.I18n.extra.attrib
 xhtml.Common.extra

 The above attribute Groups are considered Global
 </xs:documentation>
 </xs:annotation>
 <xs:include schemaLocation="xhtml-metaAttributes-2.xsd">
 <xs:annotation>
 <xs:documentation>
 XHTML Metainformation Modules

 Attributes defined here:
 XHTML RDFa attribtues
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/rdfa-syntax"/>
 </xs:annotation>
 </xs:include>
 <xs:attributeGroup
 name="xhtml.I18n.extra.attrib">
 <xs:annotation>
 <xs:documentation> Extended I18n attribute </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup
 ref="xhtml.dir.attrib">
 <xs:annotation>
 <xs:documentation>
 "dir" Attribute from Bi Directional Text (bdo) Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Common.extra">
 <xs:annotation>
 <xs:documentation> Extended Common Attributes </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup
 ref="xhtml.style.attrib">
 <xs:annotation>
 <xs:documentation>
 "style" attribute from Inline Style Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 	<xs:attributeGroup ref="xhtml.Events.attrib">
			<xs:annotation>
				<xs:documentation>
				Attributes from Events Module
				</xs:documentation>
			</xs:annotation>
		</xs:attributeGroup>
 	<xs:attributeGroup ref="xhtml.metaAttributes.attrib">
			<xs:annotation>
				<xs:documentation>
				Attributes from Metainformation Module
				</xs:documentation>
			</xs:annotation>
		</xs:attributeGroup>
	</xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Core.extra.attrib">
 <xs:annotation>
 <xs:documentation> Extend Core Attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Global.core.extra.attrib">
 <xs:annotation>
 <xs:documentation> Extended Global Core Attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Global.I18n.extra.attrib">
 <xs:annotation>
 <xs:documentation> Extended Global I18n attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Global.Common.extra">
 <xs:annotation>
 <xs:documentation> Extended Global Common Attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:group
 name="xhtml.Head.extra">
 <xs:sequence/>
 </xs:group>
 <xs:group
 name="xhtml.HeadOpts.mix">
 <xs:choice>
 <xs:element name="script"
 type="xhtml.script.type"/>
 <xs:element name="style"
 type="xhtml.style.type"/>
 <xs:element name="meta"
 type="xhtml.meta.type"/>
 <xs:element name="link"
 type="xhtml.link.type"/>
 <xs:element name="object"
 type="xhtml.object.type"/>
 <xs:group
 ref="xhtml.Head.extra"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.head.content">
 <xs:sequence>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:choice>
 <xs:sequence>
 <xs:element name="title"
 minOccurs="1"
 maxOccurs="1"
 type="xhtml.title.type"/>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:sequence
 minOccurs="0">
 <xs:element name="base"
 type="xhtml.base.type"/>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:sequence>
 <xs:sequence>
 <xs:element name="base"
 type="xhtml.base.type"
 minOccurs="1"
 maxOccurs="1"/>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="title"
 minOccurs="1"
 maxOccurs="1"
 type="xhtml.title.type"/>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:choice>
 </xs:sequence>
 </xs:group>
 <!--
 ins and del are used to denote editing changes
 -->
 <xs:group
 name="xhtml.Edit.class">
 <xs:choice>
 <xs:element name="ins"
 type="xhtml.edit.type"/>
 <xs:element name="del"
 type="xhtml.edit.type"/>
 </xs:choice>
 </xs:group>
 <!--
 script and noscript are used to contain scripts
 and alternative content
 -->
 <xs:group
 name="xhtml.Script.class">
 <xs:choice>
 <xs:element name="script"
 type="xhtml.script.type"/>
 <xs:element name="noscript"
 type="xhtml.noscript.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Misc.extra">
 <xs:sequence/>
 </xs:group>
 <!--
 These elements are neither block nor inline, and can
 essentially be used anywhere in the document body.
 -->
 <xs:group
 name="xhtml.Misc.class">
 <xs:choice>
 <xs:group
 ref="xhtml.Edit.class"/>
 <xs:group
 ref="xhtml.Script.class"/>
 <xs:group
 ref="xhtml.Misc.extra"/>
 </xs:choice>
 </xs:group>
 <!-- Inline Elements -->
 <xs:group
 name="xhtml.InlStruct.class">
 <xs:choice>
 <xs:element name="br"
 type="xhtml.br.type"/>
 <xs:element name="span"
 type="xhtml.span.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.InlPhras.class">
 <xs:choice>
 <xs:element name="em"
 type="xhtml.em.type"/>
 <xs:element name="strong"
 type="xhtml.strong.type"/>
 <xs:element name="dfn"
 type="xhtml.dfn.type"/>
 <xs:element name="code"
 type="xhtml.code.type"/>
 <xs:element name="samp"
 type="xhtml.samp.type"/>
 <xs:element name="kbd"
 type="xhtml.kbd.type"/>
 <xs:element name="var"
 type="xhtml.var.type"/>
 <xs:element name="cite"
 type="xhtml.cite.type"/>
 <xs:element name="abbr"
 type="xhtml.abbr.type"/>
 <xs:element name="acronym"
 type="xhtml.acronym.type"/>
 <xs:element name="q"
 type="xhtml.q.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.InlPres.class">
 <xs:choice>
 <xs:element name="tt"
 type="xhtml.InlPres.type"/>
 <xs:element name="i"
 type="xhtml.InlPres.type"/>
 <xs:element name="b"
 type="xhtml.InlPres.type"/>
 <xs:element name="big"
 type="xhtml.InlPres.type"/>
 <xs:element name="small"
 type="xhtml.InlPres.type"/>
 <xs:element name="sub"
 type="xhtml.InlPres.type"/>
 <xs:element name="sup"
 type="xhtml.InlPres.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.I18n.class">
 <xs:sequence>
 <xs:element name="bdo"
 type="xhtml.bdo.type"/>
 </xs:sequence>
 </xs:group>
 <xs:group
 name="xhtml.Anchor.class">
 <xs:sequence>
 <xs:element name="a"
 type="xhtml.a.type"/>
 </xs:sequence>
 </xs:group>
 <xs:group
 name="xhtml.InlSpecial.class">
 <xs:choice>
 <xs:element name="img"
 type="xhtml.img.type"/>
 <xs:element name="map"
 type="xhtml.map.type"/>
 <xs:element name="object"
 type="xhtml.object.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.InlForm.class">
 <xs:choice>
 <xs:element name="input"
 type="xhtml.input.type"/>
 <xs:element name="select"
 type="xhtml.select.type"/>
 <xs:element name="textarea"
 type="xhtml.textarea.type"/>
 <xs:element name="label"
 type="xhtml.label.type"/>
 <xs:element name="button"
 type="xhtml.button.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Inline.extra">
 <xs:sequence/>
 </xs:group>
 <xs:group
 name="xhtml.Ruby.class">
 <xs:sequence>
 <xs:element name="ruby"
 type="xhtml.ruby.type"/>
 </xs:sequence>
 </xs:group>
 <!--
 Inline.class includes all inline elements,
 used as a component in mixes
 -->
 <xs:group
 name="xhtml.Inline.class">
 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>
 <xs:group
 ref="xhtml.InlPhras.class"/>
 <xs:group
 ref="xhtml.InlPres.class"/>
 <xs:group
 ref="xhtml.I18n.class"/>
 <xs:group
 ref="xhtml.Anchor.class"/>
 <xs:group
 ref="xhtml.InlSpecial.class"/>
 <xs:group
 ref="xhtml.InlForm.class"/>
 <xs:group
 ref="xhtml.Ruby.class"/>
 <xs:group
 ref="xhtml.Inline.extra"/>
 </xs:choice>
 </xs:group>
 <!--
 InlNoRuby.class includes all inline elements
 except ruby
 -->
 <xs:group
 name="xhtml.InlNoRuby.class">
 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>
 <xs:group
 ref="xhtml.InlPhras.class"/>
 <xs:group
 ref="xhtml.InlPres.class"/>
 <xs:group
 ref="xhtml.I18n.class"/>
 <xs:group
 ref="xhtml.Anchor.class"/>
 <xs:group
 ref="xhtml.InlSpecial.class"/>
 <xs:group
 ref="xhtml.InlForm.class"/>
 <xs:group
 ref="xhtml.Inline.extra"/>
 </xs:choice>
 </xs:group>
 <!--
 InlinePre.mix
 Used as a component in pre model
 -->
 <xs:group
 name="xhtml.InlinePre.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>
 <xs:group
 ref="xhtml.InlPhras.class"/>
 <xs:element name="tt"
 type="xhtml.InlPres.type"/>
 <xs:element name="i"
 type="xhtml.InlPres.type"/>
 <xs:element name="b"
 type="xhtml.InlPres.type"/>
 <xs:group
 ref="xhtml.I18n.class"/>
 <xs:group
 ref="xhtml.Anchor.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 <xs:element name="map"
 type="xhtml.map.type"/>
 <xs:group
 ref="xhtml.Inline.extra"/>
 </xs:choice>
 </xs:group>
 <!--
 InlNoAnchor.class includes all non-anchor inlines,
 used as a component in mixes
 -->
 <xs:group
 name="xhtml.InlNoAnchor.class">
 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>
 <xs:group
 ref="xhtml.InlPhras.class"/>
 <xs:group
 ref="xhtml.InlPres.class"/>
 <xs:group
 ref="xhtml.I18n.class"/>
 <xs:group
 ref="xhtml.InlSpecial.class"/>
 <xs:group
 ref="xhtml.InlForm.class"/>
 <xs:group
 ref="xhtml.Ruby.class"/>
 <xs:group
 ref="xhtml.Inline.extra"/>
 </xs:choice>
 </xs:group>
 <!--
 InlNoAnchor.mix includes all non-anchor inlines
 -->
 <xs:group
 name="xhtml.InlNoAnchor.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.InlNoAnchor.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <!--
 Inline.mix includes all inline elements, including Misc.class
 -->
 <xs:group
 name="xhtml.Inline.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.Inline.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <!--
 InlNoRuby.mix includes all of inline.mix elements
 except ruby
 -->
 <xs:group
 name="xhtml.InlNoRuby.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.InlNoRuby.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <!--
 In the HTML 4 DTD, heading and list elements were included
 in the block group. The Heading.class and
 List.class groups must now be included explicitly
 on element declarations where desired.
 -->
 <xs:group
 name="xhtml.Heading.class">
 <xs:choice>
 <xs:element name="h1"
 type="xhtml.h1.type"/>
 <xs:element name="h2"
 type="xhtml.h2.type"/>
 <xs:element name="h3"
 type="xhtml.h3.type"/>
 <xs:element name="h4"
 type="xhtml.h4.type"/>
 <xs:element name="h5"
 type="xhtml.h5.type"/>
 <xs:element name="h6"
 type="xhtml.h6.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.List.class">
 <xs:choice>
 <xs:element name="ul"
 type="xhtml.ul.type"/>
 <xs:element name="ol"
 type="xhtml.ol.type"/>
 <xs:element name="dl"
 type="xhtml.dl.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Table.class">
 <xs:choice>
 <xs:element name="table"
 type="xhtml.table.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Form.class">
 <xs:choice>
 <xs:element name="form"
 type="xhtml.form.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Fieldset.class">
 <xs:choice>
 <xs:element name="fieldset"
 type="xhtml.fieldset.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.BlkStruct.class">
 <xs:choice>
 <xs:element name="p"
 type="xhtml.p.type"/>
 <xs:element name="div"
 type="xhtml.div.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.BlkPhras.class">
 <xs:choice>
 <xs:element name="pre"
 type="xhtml.pre.type"/>
 <xs:element name="blockquote"
 type="xhtml.blockquote.type"/>
 <xs:element name="address"
 type="xhtml.address.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.BlkPres.class">
 <xs:sequence>
 <xs:element name="hr"
 type="xhtml.hr.type"/>
 </xs:sequence>
 </xs:group>
 <xs:group
 name="xhtml.BlkSpecial.class">
 <xs:choice>
 <xs:group
 ref="xhtml.Table.class"/>
 <xs:group
 ref="xhtml.Form.class"/>
 <xs:group
 ref="xhtml.Fieldset.class"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Block.extra">
 <xs:sequence/>
 </xs:group>
 <!--
 Block.class includes all block elements,
 used as an component in mixes
 -->
 <xs:group
 name="xhtml.Block.class">
 <xs:choice>
 <xs:group
 ref="xhtml.BlkStruct.class"/>
 <xs:group
 ref="xhtml.BlkPhras.class"/>
 <xs:group
 ref="xhtml.BlkPres.class"/>
 <xs:group
 ref="xhtml.BlkSpecial.class"/>
 <xs:group
 ref="xhtml.Block.extra"/>
 </xs:choice>
 </xs:group>
 <!--
 Block.mix includes all block elements plus %Misc.class;
 -->
 <xs:group
 name="xhtml.Block.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.Heading.class"/>
 <xs:group
 ref="xhtml.List.class"/>
 <xs:group
 ref="xhtml.Block.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <!--
 All Content Elements
 Flow.mix includes all text content, block and inline
 Note that the "any" element included here allows us
 to add data from any other namespace, a necessity
 for compound document creation.
 Note however that it is not possible to add
 to any head level element without further
 modification. To add RDF metadata to the head
 of a document, modify the structure module.
 -->
 <xs:group
 name="xhtml.Flow.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.Heading.class"/>
 <xs:group
 ref="xhtml.List.class"/>
 <xs:group
 ref="xhtml.Block.class"/>
 <xs:group
 ref="xhtml.Inline.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <!--
 BlkNoForm.mix includes all non-form block elements,
 plus Misc.class
 -->
 <xs:group
 name="xhtml.BlkNoForm.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.Heading.class"/>
 <xs:group
 ref="xhtml.List.class"/>
 <xs:group
 ref="xhtml.BlkStruct.class"/>
 <xs:group
 ref="xhtml.BlkPhras.class"/>
 <xs:group
 ref="xhtml.BlkPres.class"/>
 <xs:group
 ref="xhtml.Table.class"/>
 <xs:group
 ref="xhtml.Block.extra"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <xs:element name="html"
 type="xhtml.html.type"/>
</xs:schema>

A.3 XHTML+RDFa Schema Modules

You can download this version of this file from SCHEMA/xhtml-rdfa-modules-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-modules-2.xsd.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/" >
 <xs:import namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd" />
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>
 <xs:annotation>
 <xs:documentation>
 This schema includes all modules for XHTML1.1 Document Type.
 $Id: Overview.html,v 1.1 2015-03-09 13:54:40 ivan Exp $
 </xs:documentation>
 <xs:documentation source="xhtml-copyright-1.xsd"/>
 </xs:annotation>
 <xs:annotation>
 <xs:documentation>
 This schema includes all modules (and redefinitions)
 for XHTML1.1 Document Type.
 XHTML1.1 Document Type includes the following Modules

 XHTML Core modules (Required for XHTML Family Conformance)
 + text
 + hypertext
 + lists
 + structure

 Other XHTML modules
 + Edit
 + Bdo
 + Presentational
 + Link
 + Meta
 + Base
 + Scripting
 + Style
 + Image
 + Applet
 + Object
 + Param (Applet/Object modules require Param Module)
 + Tables
 + Target
 + Forms
 + Client side image maps
 + Server side image maps

 </xs:documentation>
 </xs:annotation>
 <xs:include schemaLocation="xhtml-framework-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Schema Framework Component Modules:
 + notations
 + datatypes
 + common attributes
 + character entities
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_commonatts"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-text-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Text module

 The Text module includes declarations for all core
 text container elements and their attributes.

 + block phrasal
 + block structural
 + inline phrasal
 + inline structural

 Elements defined here:
 * address, blockquote, pre, h1, h2, h3, h4, h5, h6
 * div, p
 * abbr, acronym, cite, code, dfn, em, kbd, q, samp, strong, var
 * br, span
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/abstract_modules.html#s_textmodule"/>
 </xs:annotation>
 </xs:include>

 <xs:include schemaLocation="xhtml-list-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Lists module

 Elements defined here:
 * dt, dd, dl, ol, ul, li
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/abstract_modules.html#s_listmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-struct-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Structural module

 Elements defined here:
 * title, head, body, html
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/abstract_modules.html#s_structuremodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.version.attrib">
 <xs:annotation>
 <xs:documentation>
 Redefinition by the XHTML11 Markup (for value of version attr)
 </xs:documentation>
 </xs:annotation>
 <xs:attribute name="version" type="xh11d:CDATA" fixed="XHTML+RDFa 1.1"/>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.body.attlist">
 <xs:attributeGroup ref="xhtml.body.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Body Attlist
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.body.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by XHTML Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.head.attlist">
 <xs:attributeGroup ref="xhtml.I18n.attrib"/>
 <xs:attributeGroup ref="xhtml.id"/>
 <xs:attributeGroup ref="xhtml.class"/>
 <xs:attributeGroup ref="xhtml.title"/>
 <xs:attributeGroup ref="xhtml.Common.extra"/>
 </xs:attributeGroup>
		<xs:attributeGroup name="xhtml.title.attlist">
		 <xs:attributeGroup ref="xhtml.title.attlist"/>
		 <xs:attributeGroup ref="xhtml.class"/>
		 <xs:attributeGroup ref="xhtml.title"/>
		 <xs:attributeGroup ref="xhtml.Common.extra"/>
		</xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-edit-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Edit module

 Elements defined here:
 * ins, del
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_editmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-bdo-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Bidirectional element module

 Elements defined here:
 * bdo
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_bdomodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-pres-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Presentational module

 Elements defined here:
 * hr, b, big, i, small,sub, sup, tt
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_presentationmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-base-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Base module

 Elements defined here:
 * base
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_basemodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.base.attlist">
 <xs:annotation>
 <xs:documentation>
 Changes to XHTML base Attlist
 </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup ref="xhtml.base.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Base Attributes (declared in Base Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.base.target.attlist">
 <xs:annotation>
 <xs:documentation>
 XHTML Target Module - Attribute additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-script-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Scripting module

 Elements defined here:
 * script, noscript
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_scriptmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-style-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Style module

 Elements defined here:
 * style
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_stylemodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-inlstyle-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Style attribute module

 Attribute defined here:
 * style
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_styleattributemodule"/>
 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-image-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Image module

 Elements defined here:
 * img
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_imagemodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.img.attlist">
 <xs:attributeGroup ref="xhtml.img.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Image Attributes (in Image Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.img.csim.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.img.ssimap.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Server Side Image Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:redefine schemaLocation="xhtml-csismap-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Client-side mage maps module

 Elements defined here:
 * area, map
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_imapmodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.area.attlist">
 <xs:attributeGroup ref="xhtml.area.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Area Attributes (in CSI Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.area.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Events Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.area.target.attlist">
 <xs:annotation>
 <xs:documentation>
 Target Module - Area Attribute Additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-ssismap-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Server-side image maps module

 Attributes defined here:
 * ismap on img
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_servermapmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-object-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Object module

 Elements defined here:
 * object
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_objectmodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.object.attlist">
 <xs:attributeGroup ref="xhtml.object.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Object Attlist
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.object.csim.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-param-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Param module

 Elements defined here:
 * param
 </xs:documentation>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-table-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Tables module

 Elements defined here:
 * table, caption, thead, tfoot, tbody, colgroup, col, tr, th, td
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_tablemodule"/>
 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-form-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Forms module

 Elements defined here:
 * form, label, input, select, optgroup, option,
 * textarea, fieldset, legend, button
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_extformsmodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.form.attlist">
 <xs:annotation>
 <xs:documentation>
 Changes to XHTML Form Attlist
 </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup ref="xhtml.form.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Form Attributes (declared in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.form.events.attlist">
 <xs:annotation>
 <xs:documentation>
 XHTML Events Module - Attribute additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.form.target.attlist">
 <xs:annotation>
 <xs:documentation>
 XHTML Target Module - Attribute additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.input.attlist">
 <xs:annotation>
 <xs:documentation>
 Changes to XHTML Form Input Element
 </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup ref="xhtml.input.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Input Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.input.csim.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.input.ssimap.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Server Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.input.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.label.attlist">
 <xs:attributeGroup ref="xhtml.label.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Label Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.label.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.select.attlist">
 <xs:attributeGroup ref="xhtml.select.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Select Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.select.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.textarea.attlist">
 <xs:attributeGroup ref="xhtml.textarea.attlist">
 <xs:annotation>
 <xs:documentation>
 Original TextArea Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.textarea.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.button.attlist">
 <xs:attributeGroup ref="xhtml.button.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Button Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.button.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-ruby-basic-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Ruby module

 Elements defined here:
 * ruby, rbc, rtc, rb, rt, rp

 Note that either Ruby or Basic Ruby should be used but not both
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-ruby-20010531/#simple-ruby1"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-events-1.xsd">
 <xs:annotation>
 <xs:documentation>
 XHTML Events Modules

 Attributes defined here:
 XHTML Event Types
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_intrinsiceventsmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-metaAttributes-1.xsd">
 <xs:annotation>
 <xs:documentation>
 XHTML Metainformation Modules

 Attributes defined here:
 XHTML RDFa attribtues
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/rdfa-syntax"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-target-1.xsd">
 <xs:annotation>
 <xs:documentation>
 XHTML Target Attribute Module

 Attributes defined here:
 target
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_targetmodule"/>
 </xs:annotation>
 </xs:include>
</xs:schema>

A.4 XHTML+RDFa XML Schema Driver Module

You can download this version of this file from SCHEMA/xhtml-rdfa-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-2.xsd.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.w3.org/1999/xhtml"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/" xmlns="http://www.w3.org/1999/xhtml"
 elementFormDefault="qualified">
 <xs:annotation>
 <xs:documentation> This is the XML Schema driver for XHTML + RDFa Please use this namespace
 for XHTML elements: "http://www.w3.org/1999/xhtml" $Id: xhtml-rdfa-1.xsd,v 1.2
 2008/07/02 13:26:46 ahby Exp $ </xs:documentation>
 <xs:documentation source="xhtml-copyright-1.xsd"/>
 </xs:annotation>
 <xs:annotation>
 <xs:documentation> This is the Schema Driver file for XHTML + RDFa Document Type This schema
 + imports external schemas (xml.xsd) + refedines (and include)s schema modules for
 XHTML1.1 Document Type. + includes Schema for Named content model for the XHTML1.1
 Document Type XHTML1.1 Document Type includes the following Modules XHTML Core modules
 (Required for XHTML Family Conformance) + text + hypertext + lists + structure Other
 XHTML modules + Edit + Bdo + Presentational + Link + Meta + Base + Scripting + Style +
 Image + Applet + Object + Param (Applet/Object modules require Param Module) + Tables +
 Forms + Client side image maps + Server side image maps + Ruby </xs:documentation>
 </xs:annotation>
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd">
 <xs:annotation>
 <xs:documentation> This import brings in the XML namespace attributes The XML attributes
 are used by various modules. </xs:documentation>
 </xs:annotation>
 </xs:import>
 <xs:import namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd"/>
 <xs:include schemaLocation="xhtml-rdfa-model-2.xsd">
 <xs:annotation>
 <xs:documentation> Document Model module for the XHTML+RDFa Document Type. This schema
 file defines all named models used by XHTML Modularization Framework for XHTML+RDFa
 Document Type </xs:documentation>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-rdfa-modules-2.xsd">
 <xs:annotation>
 <xs:documentation> Schema that includes all modules (and redefinitions) for XHTML1.1
 Document Type. </xs:documentation>
 </xs:annotation>
 </xs:include>
 <!-- link, meta, and a need to be defined directly here -->
 <xs:attributeGroup name="xhtml.a.attlist">
 <xs:attributeGroup ref="xhtml.Common.attrib"/>
 <xs:attribute name="href" type="xh11d:URI"/>
 <xs:attribute name="charset" type="xh11d:Charset"/>
 <xs:attribute name="type" type="xh11d:ContentType"/>
 <xs:attribute name="hreflang" type="xh11d:LanguageCode"/>
 <xs:attribute name="accesskey" type="xh11d:Character"/>
 <xs:attribute name="tabindex" type="xh11d:Number"/>
 <xs:attributeGroup ref="xhtml.a.csim.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.a.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by XHTML Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.a.target.attlist">
 <xs:annotation>
 <xs:documentation>
 Target Module - A Attribute Additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:group name="xhtml.a.content">
 <xs:sequence>
 <xs:group ref="xhtml.InlNoAnchor.mix" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:group>
 <xs:complexType name="xhtml.a.type" mixed="true">
 <xs:group ref="xhtml.a.content"/>
 <xs:attributeGroup ref="xhtml.a.attlist"/>
 </xs:complexType>
 <xs:attributeGroup name="xhtml.link.attlist">
 <xs:attributeGroup ref="xhtml.Common.attrib"/>
 <xs:attribute name="charset" type="xh11d:Charset"/>
 <xs:attribute name="href" type="xh11d:URI"/>
 <xs:attribute name="hreflang" type="xh11d:LanguageCode"/>
 <xs:attribute name="type" type="xh11d:ContentType"/>
 <xs:attribute name="media" type="xh11d:MediaDesc"/>
 </xs:attributeGroup>
 <xs:group name="xhtml.link.content">
 <xs:sequence/>
 </xs:group>
 <xs:complexType name="xhtml.link.type">
 <xs:group ref="xhtml.link.content"/>
 <xs:attributeGroup ref="xhtml.link.attlist"/>
 </xs:complexType>
 <xs:attributeGroup name="xhtml.meta.attlist">
 <xs:attributeGroup ref="xhtml.I18n.attrib"/>
 <xs:attribute ref="xml:space"/>
 <xs:attribute name="http-equiv" type="xs:NMTOKEN"/>
 <xs:attribute name="name" type="xs:NMTOKEN"/>
 <xs:attribute name="content" type="xh11d:CDATA" use="required"/>
 <xs:attribute name="scheme" type="xh11d:CDATA"/>
 <xs:attribute name="about" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="datatype" type="xh11d:TERMorCURIEoAbsIRI"/>
 <xs:attribute name="typeof" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="prefix" type="xh11d:PREFIX"/>
 <xs:attribute name="property" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="rel" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="resource" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="rev" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="vocab" type="xs:anyURI"/>
 </xs:attributeGroup>
 <xs:group name="xhtml.meta.content">
 <xs:sequence/>
 </xs:group>
 <xs:complexType name="xhtml.meta.type">
 <xs:group ref="xhtml.meta.content"/>
 <xs:attributeGroup ref="xhtml.meta.attlist"/>
 </xs:complexType>
</xs:schema>

B. XHTML+RDFa Document Type Definition

This appendix includes an implementation of the
XHTML+RDFa 1.1 language as an XML DTD.
It is implemented by combining the XHTML 1.1 DTD
with the XHTML Metainformation Attribute Module.
This is done by using
a content model module, and then a driver module.
There are direct links to the various files for download purposes.
Please note that the files targeted by the "latest version" links may
change slowly over time. See the
W3C XHTML2 Working Group home page for more
information.

B.1 XHTML Metainformation Attributes Module

You can download this version of this file from DTD/xhtml-metaAttributes-2.mod. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-metaAttributes-2.mod.
<!-- .. -->
<!-- XHTML MetaAttributes Module ... -->
<!-- file: xhtml-metaAttributes-1.mod

 This is XHTML-RDFa, modules to annotate XHTML family documents.
 Copyright 2007-2008 W3C (MIT, ERCIM, Keio), All Rights Reserved.
 Revision: $Id: Overview.html,v 1.1 2015-03-09 13:54:40 ivan Exp $

 This DTD module is identified by the PUBLIC and SYSTEM identifiers:

 PUBLIC "-//W3C//ENTITIES XHTML MetaAttributes 1.0//EN"
 SYSTEM "http://www.w3.org/MarkUp/DTD/xhtml-metaAttributes-1.mod"

 Revisions:
 (none)
 ... -->

<!ENTITY % XHTML.global.attrs.prefixed "IGNORE" >

<!-- Placeholder Compact URI-related types -->
<!ENTITY % CURIE.datatype "CDATA" >
<!ENTITY % CURIEs.datatype "CDATA" >
<!ENTITY % CURIEorIRI.datatype "CDATA" >
<!ENTITY % CURIEorIRIs.datatype "CDATA" >
<!ENTITY % IRI.datatype "CDATA" >
<!ENTITY % IRIs.datatype "CDATA" >
<!ENTITY % PREFIX.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRI.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRIs.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsIRI.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsIRIs.datatype "CDATA" >

<!-- Common Attributes

 This module declares a collection of meta-information related
 attributes.

 %NS.decl.attrib; is declared in the XHTML Qname module.

	 This file also includes declarations of "global" versions of the
 attributes. The global versions of the attributes are for use on
 elements in other namespaces.
-->

<!ENTITY % about.attrib
 "about %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.about.attrib
 "%XHTML.prefix;:about %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"
>
]]>

<!ENTITY % typeof.attrib
 "typeof %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.typeof.attrib
 "%XHTML.prefix;:typeof %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
]]>

<!ENTITY % property.attrib
 "property %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.property.attrib
 "%XHTML.prefix;:property %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
]]>

<!ENTITY % resource.attrib
 "resource %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.resource.attrib
 "%XHTML.prefix;:resource %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"
>
]]>

<!ENTITY % content.attrib
 "content CDATA #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.content.attrib
 "%XHTML.prefix;:content CDATA #IMPLIED"
>
]]>

<!ENTITY % datatype.attrib
 "datatype %TERMorCURIEorAbsIRI.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.datatype.attrib
 "%XHTML.prefix;:datatype %TERMorCURIEorAbsIRI.datatype; #IMPLIED"
>
]]>

<!ENTITY % inlist.attrib
 "inlist CDATA #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.inlist.attrib
 "%XHTML.prefix;:inlist CDATA #IMPLIED"
>
]]>

<!ENTITY % rel.attrib
 "rel %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.rel.attrib
 "%XHTML.prefix;:rel %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
]]>

<!ENTITY % rev.attrib
 "rev %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.rev.attrib
 "%XHTML.prefix;:rev %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
]]>

<!ENTITY % prefix.attrib
 "prefix %PREFIX.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.prefix.attrib
 "%XHTML.prefix;:prefix %PREFIX.datatype; #IMPLIED"
>
]]>

<!ENTITY % vocab.attrib
 "vocab %IRI.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.vocab.attrib
 "%XHTML.prefix;:vocab %IRI.datatype; #IMPLIED"
>
]]>

<!ENTITY % Metainformation.extra.attrib "" >

<!ENTITY % Metainformation.attrib
 "%about.attrib;
 %content.attrib;
 %datatype.attrib;
	 %inlist.attrib;
 %typeof.attrib;
 %prefix.attrib;
 %property.attrib;
 %rel.attrib;
 %resource.attrib;
 %rev.attrib;
 %vocab.attrib;
 %Metainformation.extra.attrib;"
>

<!ENTITY % XHTML.global.metainformation.extra.attrib "" >

<![%XHTML.global.attrs.prefixed;[

<!ENTITY % XHTML.global.metainformation.attrib
 "%XHTML.global.about.attrib;
 %XHTML.global.content.attrib;
 %XHTML.global.datatype.attrib;
 %XHTML.global.inlist.attrib;
 %XHTML.global.typeof.attrib;
 %XHTML.global.prefix.attrib;
 %XHTML.global.property.attrib;
 %XHTML.global.rel.attrib;
 %XHTML.global.resource.attrib;
 %XHTML.global.rev.attrib;
 %XHTML.global.vocab.attrib;
 %XHTML.global.metainformation.extra.attrib;"
>
]]>

<!ENTITY % XHTML.global.metainformation.attrib "" >

<!-- end of xhtml-metaAttributes-1.mod -->

B.2 XHTML+RDFa Content Model Module

You can download this version of this file from DTD/xhtml-rdfa-model-2.mod. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-rdfa-model-2.mod.
<!-- ... -->
<!-- XHTML+RDFa Document Model Module -->
<!-- file: xhtml-rdfa-model-2.mod

 This is XHTML+RDFa.
 Copyright 1998-2010 W3C (MIT, ERCIM, Keio), All Rights Reserved.
 Revision: $Id: Overview.html,v 1.1 2015-03-09 13:54:40 ivan Exp $ SMI

 This DTD module is identified by the PUBLIC and SYSTEM identifiers:

 PUBLIC "-//W3C//ENTITIES XHTML+RDFa Document Model 1.1//EN"
 SYSTEM "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-model-2.mod"

 Revisions:
 (none)
 ... -->

<!-- XHTML+RDFa Document Model

 This module describes the groupings of elements that make up
 common content models for XHTML elements.

 XHTML has three basic content models:

 %Inline.mix; character-level elements
 %Block.mix; block-like elements, eg., paragraphs and lists
 %Flow.mix; any block or inline elements

 Any parameter entities declared in this module may be used
 to create element content models, but the above three are
 considered 'global' (insofar as that term applies here).

 The reserved word '#PCDATA' (indicating a text string) is now
 included explicitly with each element declaration that is
 declared as mixed content, as XML requires that this token
 occur first in a content model specification.
-->
<!-- Extending the Model

 While in some cases this module may need to be rewritten to
 accommodate changes to the document model, minor extensions
 may be accomplished by redeclaring any of the three *.extra;
 parameter entities to contain extension element types as follows:

 %Misc.extra; whose parent may be any block or
 inline element.

 %Inline.extra; whose parent may be any inline element.

 %Block.extra; whose parent may be any block element.

 If used, these parameter entities must be an OR-separated
 list beginning with an OR separator ("|"), eg., "| a | b | c"

 All block and inline *.class parameter entities not part
 of the *struct.class classes begin with "| " to allow for
 exclusion from mixes.
-->

<!-- Optional Elements in head -->

<!ENTITY % HeadOpts.mix
 "(%script.qname; | %style.qname; | %meta.qname;
 | %link.qname; | %object.qname;)*"
>

<!-- Miscellaneous Elements -->

<!-- ins and del are used to denote editing changes
-->
<!ENTITY % Edit.class "| %ins.qname; | %del.qname;" >

<!-- script and noscript are used to contain scripts
 and alternative content
-->
<!ENTITY % Script.class "| %script.qname; | %noscript.qname;" >

<!ENTITY % Misc.extra "" >

<!-- These elements are neither block nor inline, and can
 essentially be used anywhere in the document body.
-->
<!ENTITY % Misc.class
 "%Edit.class;
 %Script.class;
 %Misc.extra;"
>

<!-- Inline Elements -->

<!ENTITY % InlStruct.class "%br.qname; | %span.qname;" >

<!ENTITY % InlPhras.class
 "| %em.qname; | %strong.qname; | %dfn.qname; | %code.qname;
 | %samp.qname; | %kbd.qname; | %var.qname; | %cite.qname;
 | %abbr.qname; | %acronym.qname; | %q.qname;" >

<!ENTITY % InlPres.class
 "| %tt.qname; | %i.qname; | %b.qname; | %big.qname;
 | %small.qname; | %sub.qname; | %sup.qname;" >

<!ENTITY % I18n.class "| %bdo.qname;" >

<!ENTITY % Anchor.class "| %a.qname;" >

<!ENTITY % InlSpecial.class
 "| %img.qname; | %map.qname;
 | %object.qname;" >

<!ENTITY % InlForm.class
 "| %input.qname; | %select.qname; | %textarea.qname;
 | %label.qname; | %button.qname;" >

<!ENTITY % Inline.extra "" >

<!ENTITY % Ruby.class "| %ruby.qname;" >

<!-- %Inline.class; includes all inline elements,
 used as a component in mixes
-->
<!ENTITY % Inline.class
 "%InlStruct.class;
 %InlPhras.class;
 %InlPres.class;
 %I18n.class;
 %Anchor.class;
 %InlSpecial.class;
 %InlForm.class;
 %Ruby.class;
 %Inline.extra;"
>

<!-- %InlNoRuby.class; includes all inline elements
 except ruby, used as a component in mixes
-->
<!ENTITY % InlNoRuby.class
 "%InlStruct.class;
 %InlPhras.class;
 %InlPres.class;
 %I18n.class;
 %Anchor.class;
 %InlSpecial.class;
 %InlForm.class;
 %Inline.extra;"
>

<!-- %NoRuby.content; includes all inlines except ruby
-->
<!ENTITY % NoRuby.content
 "(#PCDATA
 | %InlNoRuby.class;
 %Misc.class;)*"
>

<!-- %InlNoAnchor.class; includes all non-anchor inlines,
 used as a component in mixes
-->
<!ENTITY % InlNoAnchor.class
 "%InlStruct.class;
 %InlPhras.class;
 %InlPres.class;
 %I18n.class;
 %InlSpecial.class;
 %InlForm.class;
 %Ruby.class;
 %Inline.extra;"
>

<!-- %InlNoAnchor.mix; includes all non-anchor inlines
-->
<!ENTITY % InlNoAnchor.mix
 "%InlNoAnchor.class;
 %Misc.class;"
>

<!-- %Inline.mix; includes all inline elements, including %Misc.class;
-->
<!ENTITY % Inline.mix
 "%Inline.class;
 %Misc.class;"
>

<!-- Block Elements -->

<!-- In the HTML 4.0 DTD, heading and list elements were included
 in the %block; parameter entity. The %Heading.class; and
 %List.class; parameter entities must now be included explicitly
 on element declarations where desired.
-->

<!ENTITY % Heading.class
 "%h1.qname; | %h2.qname; | %h3.qname;
 | %h4.qname; | %h5.qname; | %h6.qname;" >

<!ENTITY % List.class "%ul.qname; | %ol.qname; | %dl.qname;" >

<!ENTITY % Table.class "| %table.qname;" >

<!ENTITY % Form.class "| %form.qname;" >

<!ENTITY % Fieldset.class "| %fieldset.qname;" >

<!ENTITY % BlkStruct.class "%p.qname; | %div.qname;" >

<!ENTITY % BlkPhras.class
 "| %pre.qname; | %blockquote.qname; | %address.qname;" >

<!ENTITY % BlkPres.class "| %hr.qname; " >

<!ENTITY % BlkSpecial.class
 "%Table.class;
 %Form.class;
 %Fieldset.class;"
>

<!ENTITY % Block.extra "" >

<!-- %Block.class; includes all block elements,
 used as an component in mixes
-->
<!ENTITY % Block.class
 "%BlkStruct.class;
 %BlkPhras.class;
 %BlkPres.class;
 %BlkSpecial.class;
 %Block.extra;"
>

<!-- %Block.mix; includes all block elements plus %Misc.class;
-->
<!ENTITY % Block.mix
 "%Heading.class;
 | %List.class;
 | %Block.class;
 %Misc.class;"
>

<!-- All Content Elements -->

<!-- %Flow.mix; includes all text content, block and inline
-->
<!ENTITY % Flow.mix
 "%Heading.class;
 | %List.class;
 | %Block.class;
 | %Inline.class;
 %Misc.class;"
>
<!-- end of xhtml-rdfa-model-2.mod -->

B.3 XHTML+RDFa Driver Module

You can download this version of this file from DTD/xhtml-rdfa-2.dtd. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd.
<!-- ... -->
<!-- XHTML 1.1 + RDFa DTD ... -->
<!-- file: xhtml-rdfa-2.dtd
-->

<!-- XHTML 1.1 + RDFa DTD

 This is an example markup language combining XHTML 1.1 and the RDFa
 modules.

 XHTML+RDFa
 Copyright 1998-2010 World Wide Web Consortium
 (Massachusetts Institute of Technology, European Research Consortium
 for Informatics and Mathematics, Keio University).
 All Rights Reserved.

 Permission to use, copy, modify and distribute the XHTML DTD and its
 accompanying documentation for any purpose and without fee is hereby
 granted in perpetuity, provided that the above copyright notice and
 this paragraph appear in all copies. The copyright holders make no
 representation about the suitability of the DTD for any purpose.

 It is provided "as is" without expressed or implied warranty.

-->
<!-- This is the driver file for version 1 of the XHTML + RDFa DTD.

 Please use this public identifier to identify it:

 "-//W3C//DTD XHTML+RDFa 1.1//EN"
-->
<!ENTITY % XHTML.version "XHTML+RDFa 1.1" >

<!-- Use this URI to identify the default namespace:

 "http://www.w3.org/1999/xhtml"

 See the Qualified Names module for information
 on the use of namespace prefixes in the DTD.

	 Note that XHTML namespace elements are not prefixed by default,
	 but the XHTML namespace prefix is defined as "xhtml" so that
	 other markup languages can extend this one and use the XHTML
	 prefixed global attributes if required.

-->
<!ENTITY % NS.prefixed "IGNORE" >
<!ENTITY % XHTML.prefix "xhtml" >

<!-- Be sure to include prefixed global attributes - we don't need
 them, but languages that extend XHTML 1.1 might.
-->
<!ENTITY % XHTML.global.attrs.prefixed "INCLUDE" >

<!-- Reserved for use with the XLink namespace:
-->
<!ENTITY % XLINK.xmlns "" >
<!ENTITY % XLINK.xmlns.attrib "" >

<!-- For example, if you are using XHTML 1.1 directly, use the public
 identifier in the DOCTYPE declaration, with the namespace declaration
 on the document element to identify the default namespace:

 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en">
 ...
 </html>

 Revisions:
 (none)
-->

<!-- reserved for future use with document profiles -->
<!ENTITY % XHTML.profile "" >

<!-- ensure XHTML Notations are disabled -->
<!ENTITY % xhtml-notations.module "IGNORE" >

<!-- Bidirectional Text features
 This feature-test entity is used to declare elements
 and attributes used for bidirectional text support.
-->
<!ENTITY % XHTML.bidi "INCLUDE" >

<!-- ::: -->

<!-- Pre-Framework Redeclaration placeholder -->
<!-- this serves as a location to insert markup declarations
 into the DTD prior to the framework declarations.
-->
<!ENTITY % xhtml-prefw-redecl.module "IGNORE" >
<!ENTITY % xhtml-prefw-redecl.mod "" >
<![%xhtml-prefw-redecl.module;[
%xhtml-prefw-redecl.mod;
<!-- end of xhtml-prefw-redecl.module -->]]>

<!-- we need the datatypes now -->
<!ENTITY % xhtml-datatypes.module "INCLUDE" >
<![%xhtml-datatypes.module;[
<!ENTITY % xhtml-datatypes.mod
 PUBLIC "-//W3C//ENTITIES XHTML Datatypes 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-datatypes-1.mod" >
%xhtml-datatypes.mod;]]>

<!-- bring in the RDFa attributes cause we need them in Common -->
<!ENTITY % xhtml-metaAttributes.module "INCLUDE" >
<![%xhtml-metaAttributes.module;[
<!ENTITY % xhtml-metaAttributes.mod
 PUBLIC "-//W3C//ENTITIES XHTML MetaAttributes 1.1//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-metaAttributes-2.mod" >
%xhtml-metaAttributes.mod;]]>

<!ENTITY % xhtml-events.module "INCLUDE" >

<!ENTITY % Common.extra.attrib
 "href %URI.datatype; #IMPLIED
 %Metainformation.attrib;"
>
<!-- adding the lang attribute into the I18N collection -->

<!ENTITY % lang.attrib
 "xml:lang %LanguageCode.datatype; #IMPLIED
 lang %LanguageCode.datatype; #IMPLIED"
>

<!-- Inline Style Module .. -->
<!ENTITY % xhtml-inlstyle.module "INCLUDE" >
<![%xhtml-inlstyle.module;[
<!ENTITY % xhtml-inlstyle.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Inline Style 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-inlstyle-1.mod" >
%xhtml-inlstyle.mod;]]>

<!-- declare Document Model module instantiated in framework
-->
<!ENTITY % xhtml-model.mod
 PUBLIC "-//W3C//ENTITIES XHTML+RDFa Document Model 1.1//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-model-2.mod" >

<!-- Modular Framework Module (required) -->
<!ENTITY % xhtml-framework.module "INCLUDE" >
<![%xhtml-framework.module;[
<!ENTITY % xhtml-framework.mod
 PUBLIC "-//W3C//ENTITIES XHTML Modular Framework 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-framework-1.mod" >
%xhtml-framework.mod;]]>

<!-- Post-Framework Redeclaration placeholder -->
<!-- this serves as a location to insert markup declarations
 into the DTD following the framework declarations.
-->
<!ENTITY % xhtml-postfw-redecl.module "IGNORE" >
<!ENTITY % xhtml-postfw-redecl.mod "">
<![%xhtml-postfw-redecl.module;[
%xhtml-postfw-redecl.mod;
<!-- end of xhtml-postfw-redecl.module -->]]>

<!-- Text Module (Required) -->
<!ENTITY % xhtml-text.module "INCLUDE" >
<![%xhtml-text.module;[
<!ENTITY % xhtml-text.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Text 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-text-1.mod" >
%xhtml-text.mod;]]>

<!-- Hypertext Module (required) -->
<!ENTITY % a.attlist "IGNORE" >
<!ENTITY % xhtml-hypertext.module "INCLUDE" >
<![%xhtml-hypertext.module;[
<!ENTITY % xhtml-hypertext.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Hypertext 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-hypertext-1.mod" >
%xhtml-hypertext.mod;]]>
<!ATTLIST %a.qname;
 %Common.attrib;
 charset %Charset.datatype; #IMPLIED
 type %ContentType.datatype; #IMPLIED
 hreflang %LanguageCode.datatype; #IMPLIED
 accesskey %Character.datatype; #IMPLIED
 tabindex %Number.datatype; #IMPLIED
>

<!-- Lists Module (required) -->
<!ENTITY % xhtml-list.module "INCLUDE" >
<![%xhtml-list.module;[
<!ENTITY % xhtml-list.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Lists 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-list-1.mod" >
%xhtml-list.mod;]]>

<!-- ::: -->

<!-- Edit Module .. -->
<!ENTITY % xhtml-edit.module "INCLUDE" >
<![%xhtml-edit.module;[
<!ENTITY % xhtml-edit.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Editing Elements 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-edit-1.mod" >
%xhtml-edit.mod;]]>

<!-- BIDI Override Module -->
<!ENTITY % xhtml-bdo.module "%XHTML.bidi;" >
<![%xhtml-bdo.module;[
<!ENTITY % xhtml-bdo.mod
 PUBLIC "-//W3C//ELEMENTS XHTML BIDI Override Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-bdo-1.mod" >
%xhtml-bdo.mod;]]>

<!-- Ruby Module .. -->
<!ENTITY % Ruby.common.attlists "INCLUDE" >
<!ENTITY % Ruby.common.attrib "%Common.attrib;" >
<!ENTITY % xhtml-ruby.module "INCLUDE" >
<![%xhtml-ruby.module;[
<!ENTITY % xhtml-ruby.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Ruby 1.0//EN"
 "http://www.w3.org/TR/ruby/xhtml-ruby-1.mod" >
%xhtml-ruby.mod;]]>

<!-- Presentation Module .. -->
<!ENTITY % xhtml-pres.module "INCLUDE" >
<![%xhtml-pres.module;[
<!ENTITY % xhtml-pres.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Presentation 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-pres-1.mod" >
%xhtml-pres.mod;]]>

<!ENTITY % link.attlist "IGNORE" >
<!-- Link Element Module .. -->
<!ENTITY % xhtml-link.module "INCLUDE" >
<![%xhtml-link.module;[
<!ENTITY % xhtml-link.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Link Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-link-1.mod" >
%xhtml-link.mod;]]>

<!ATTLIST %link.qname;
 %Common.attrib;
 charset %Charset.datatype; #IMPLIED
 hreflang %LanguageCode.datatype; #IMPLIED
 type %ContentType.datatype; #IMPLIED
 media %MediaDesc.datatype; #IMPLIED
>

<!-- Document Metainformation Module -->
<!ENTITY % meta.attlist "IGNORE" >
<!ENTITY % xhtml-meta.module "INCLUDE" >
<![%xhtml-meta.module;[
<!ENTITY % xhtml-meta.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Metainformation 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-meta-1.mod" >
%xhtml-meta.mod;]]>
<!ATTLIST %meta.qname;
	 %Common.attrib;
 http-equiv NMTOKEN #IMPLIED
 name NMTOKEN #IMPLIED
 scheme CDATA #IMPLIED
>

<!-- Base Element Module .. -->
<!ENTITY % xhtml-base.module "INCLUDE" >
<![%xhtml-base.module;[
<!ENTITY % xhtml-base.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Base Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-base-1.mod" >
%xhtml-base.mod;]]>

<!-- Scripting Module ... -->
<!ENTITY % script.attlist "IGNORE" >
<!ENTITY % xhtml-script.module "INCLUDE" >
<![%xhtml-script.module;[
<!ENTITY % xhtml-script.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Scripting 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-script-1.mod" >
%xhtml-script.mod;]]>

<!ATTLIST %script.qname;
 %XHTML.xmlns.attrib;
	 %id.attrib;
 %Metainformation.attrib;
 href %URI.datatype; #IMPLIED
 xml:space (preserve) #FIXED 'preserve'
 charset %Charset.datatype; #IMPLIED
 type %ContentType.datatype; #REQUIRED
 src %URI.datatype; #IMPLIED
 defer (defer) #IMPLIED
>

<!-- Style Sheets Module ... -->
<!ENTITY % style.attlist "IGNORE" >
<!ENTITY % xhtml-style.module "INCLUDE" >
<![%xhtml-style.module;[
<!ENTITY % xhtml-style.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Style Sheets 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-style-1.mod" >
%xhtml-style.mod;]]>
<!ATTLIST %style.qname;
 %XHTML.xmlns.attrib;
 %id.attrib;
 %title.attrib;
 %I18n.attrib;
 %Metainformation.attrib;
 href %URI.datatype; #IMPLIED
 xml:space (preserve) #FIXED 'preserve'
 type %ContentType.datatype; #REQUIRED
 media %MediaDesc.datatype; #IMPLIED
>

<!-- Image Module ... -->
<!ENTITY % xhtml-image.module "INCLUDE" >
<![%xhtml-image.module;[
<!ENTITY % xhtml-image.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Images 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-image-1.mod" >
%xhtml-image.mod;]]>

<!-- Client-side Image Map Module -->
<!ENTITY % area.attlist "IGNORE" >

<!ENTITY % xhtml-csismap.module "INCLUDE" >
<![%xhtml-csismap.module;[
<!ENTITY % xhtml-csismap.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Client-side Image Maps 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-csismap-1.mod" >
%xhtml-csismap.mod;]]>

<!ATTLIST %area.qname;
 %Common.attrib;
 shape %Shape.datatype; 'rect'
 coords %Coords.datatype; #IMPLIED
 nohref (nohref) #IMPLIED
 alt %Text.datatype; #REQUIRED
 tabindex %Number.datatype; #IMPLIED
 accesskey %Character.datatype; #IMPLIED
>

<!-- Server-side Image Map Module -->
<!ENTITY % xhtml-ssismap.module "INCLUDE" >
<![%xhtml-ssismap.module;[
<!ENTITY % xhtml-ssismap.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Server-side Image Maps 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-ssismap-1.mod" >
%xhtml-ssismap.mod;]]>

<!-- Param Element Module -->
<!ENTITY % param.attlist "IGNORE" >
<!ENTITY % xhtml-param.module "INCLUDE" >
<![%xhtml-param.module;[
<!ENTITY % xhtml-param.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Param Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-param-1.mod" >
%xhtml-param.mod;]]>

<!ATTLIST %param.qname;
 %XHTML.xmlns.attrib;
 %id.attrib;
 %Metainformation.attrib;
 href %URI.datatype; #IMPLIED
 name CDATA #REQUIRED
 value CDATA #IMPLIED
 valuetype (data | ref | object) 'data'
 type %ContentType.datatype; #IMPLIED
>
<!-- Embedded Object Module -->
<!ENTITY % xhtml-object.module "INCLUDE" >
<![%xhtml-object.module;[
<!ENTITY % xhtml-object.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Embedded Object 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-object-1.mod" >
%xhtml-object.mod;]]>

<!-- Tables Module ... -->
<!ENTITY % xhtml-table.module "INCLUDE" >
<![%xhtml-table.module;[
<!ENTITY % xhtml-table.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Tables 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-table-1.mod" >
%xhtml-table.mod;]]>

<!-- Forms Module ... -->
<!ENTITY % xhtml-form.module "INCLUDE" >
<![%xhtml-form.module;[
<!ENTITY % xhtml-form.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Forms 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-form-1.mod" >
%xhtml-form.mod;]]>

<!-- Target Attribute Module -->
<!ENTITY % xhtml-target.module "INCLUDE" >
<![%xhtml-target.module;[
<!ENTITY % xhtml-target.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Target 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-target-1.mod" >
%xhtml-target.mod;]]>

<!-- Legacy Markup ... -->
<!ENTITY % xhtml-legacy.module "IGNORE" >
<![%xhtml-legacy.module;[
<!ENTITY % xhtml-legacy.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Legacy Markup 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-legacy-1.mod" >
%xhtml-legacy.mod;]]>

<!-- Document Structure Module (required) -->
<!ENTITY % html.attlist "IGNORE" >
<!ENTITY % head.attlist "IGNORE" >
<!ENTITY % title.attlist "IGNORE" >
<!ENTITY % xhtml-struct.module "INCLUDE" >
<![%xhtml-struct.module;[
<!ENTITY % xhtml-struct.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Document Structure 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-struct-1.mod" >
%xhtml-struct.mod;]]>
<!ENTITY % XHTML.version.attrib
 "version %FPI.datatype; #FIXED '%XHTML.version;'"
>
<!ATTLIST %html.qname;
	 %Common.attrib;
 %XSI.schemaLocation.attrib;
 %XHTML.version.attrib;
>
<!ATTLIST %head.qname;
	 %Common.attrib;
>
<!ATTLIST %title.qname;
 %Common.attrib;
>

<!-- end of XHTML-RDFa DTD .. -->
<!-- ... -->

B.4 SGML Open Catalog Entry for XHTML+RDFa

This section contains the SGML Open Catalog-format definition
[SGML-CATALOG] of the public identifiers
for XHTML+RDFa 1.1.

You can download this version of this file from DTD/xhtml-rdfa.cat. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-rdfa.cat.
-- .. --
-- File catalog .. --

-- XHTML+RDFa Catalog Data File

 Revision: $Revision: 1.1 $

 See "Entity Management", SGML Open Technical Resolution 9401 for detailed
 information on supplying and using catalog data. This document is available
 from OASIS at URL:

 <http://www.oasis-open.org/html/tr9401.html>
--

-- .. --
-- SGML declaration associated with XHTML --

OVERRIDE YES

SGMLDECL "xml1.dcl"

-- :: --

-- XHTML+RDFa modules .. --

PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN" "xhtml-rdfa-2.dtd"

PUBLIC "-//W3C//ENTITIES XHTML+RDFa Document Model 1.1//EN" "xhtml-rdfa-model-2.mod"

PUBLIC "-//W3C//ENTITIES XHTML MetaAttributes 1.1//EN" "xhtml-metaAttributes-2.mod"

-- End of catalog data ... --
-- .. --

C. Deployment Advice
This section is non-normative.

Documents written using the markup language defined in
this specification can be validated using the
DTD defined in Appendix B. If a document author wants
to facilitate such validation, they may include the following
declaration at the top of their document:

Example 2
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd">

The XML Namespace document associated with the
XHTML Family of markup languages uses the
mechanism for transforming XHTML+RDFa documents into
RDF as defined by [GRDDL].
Authors who want to be certain their documents are
transformable by all [GRDDL] processors may
also include a profile attribute on the
head element that includes a
reference to the RDFa Initial Context IRI
http://www.w3.org/2011/rdfa-context/xhtml-rdfa-1.1.

D. Change History
This section is non-normative.

2010-02-25: First version of the split-out XHTML specialization.

E. Acknowledgments
This section is non-normative.

At the time of publication, the members of the
RDFa Working Group were:

 	Stéphane Corlosquet, MIND Center for Interdisciplinary Informatics

 	Ivan Herman, W3C

 	Gregg Kellogg (Invited Expert)

 	Niklas Lindström (Invited Expert)

 	Shane McCarron, Applied Testing and Technology, Inc. (Invited Expert)

 	Steven Pemberton, Centre for Mathematics and Computer Science (CWI)

 	Manu Sporny, Digital Bazaar (Chair, Invited Expert)

F. References
F.1 Normative references
	[HTML5]
	Ian Hickson; Robin Berjon; Steve Faulkner; Travis Leithead; Erika Doyle Navara; Edward O'Connor; Silvia Pfeiffer. HTML5. 28 October 2014. W3C Recommendation. URL: http://www.w3.org/TR/html5/

	[RDFA-CORE]
	Shane McCarron et al. RDFa Core 1.1 - Third Edition: Syntax and processing rules for embedding RDF through attributes. 17 March 2015. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-core/

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119

	[RFC3236]
	M. Baker; P. Stark. The 'application/xhtml+xml' Media Type. January 2002. Informational. URL: https://tools.ietf.org/html/rfc3236

	[RUBY]
	Marcin Sawicki; Michel Suignard; Masayasu Ishikawa; Martin Dürst; Tex Texin et al. Ruby Annotation. 31 May 2001. W3C Recommendation. URL: http://www.w3.org/TR/ruby/

	[XHTML-MODULARIZATION11-2e]
	Shane McCarron et al. XHTML™ Modularization 1.1 - Second Edition. 29 July 2010. W3C Recommendation. URL: http://www.w3.org/TR/2010/REC-xhtml-modularization-20100729

	[XHTML11-2e]
	Shane McCarron; Masayasu Ishikawa. XHTML™ 1.1 - Module-based XHTML - Second Edition. 23 November 2010. W3C Recommendation. URL: http://www.w3.org/TR/2010/REC-xhtml11-20101123

	[XML-NAMES11]
	Tim Bray; Dave Hollander; Andrew Layman; Richard Tobin et al. Namespaces in XML 1.1 (Second Edition). 16 August 2006. W3C Recommendation. URL: http://www.w3.org/TR/xml-names11/

	[XMLSCHEMA11-2]
	David Peterson; Sandy Gao; Ashok Malhotra; Michael Sperberg-McQueen; Henry Thompson; Paul V. Biron et al. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. 5 April 2012. W3C Recommendation. URL: http://www.w3.org/TR/xmlschema11-2/

F.2 Informative references
	[GRDDL]
	Dan Connolly. Gleaning Resource Descriptions from Dialects of Languages (GRDDL). 11 September 2007. W3C Recommendation. URL: http://www.w3.org/TR/grddl/

	[RDFA-SYNTAX]
	Ben Adida; Mark Birbeck; Shane McCarron; Steven Pemberton et al. RDFa in XHTML: Syntax and Processing. 14 October 2008. W3C Recommendation. URL: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014

	[SGML-CATALOG]
	Paul Grosso. Entity Management: OASIS Technical Resolution 9401:1997 (Amendment 2 to TR 9401) 10 september 1007. Entity Management Subcommittee, SGML Open. URL: https://www.oasis-open.org/html/a401.htm

	[XHTML-MEDIA-TYPES]
	Shane McCarron. XHTML Media Types - Second Edition. 16 January 2009. W3C Note. URL: http://www.w3.org/TR/xhtml-media-types

StyleSheets/TR/logo-REC.png
UONEPUBWIWOIY DEA

rdfa-primer/diagrams/license.png
Alice’s Blog

@crealive

commons

e ribution 3.0 Unported (CC BY 3.
e loaman indor Atribution 3.0 Unported (CC BY 3.0

 Crealive Commons License:

<https/icreativecommons. org/nsiicense>

<http:fiexample.com/alicelposts/a2> <http:/icreativecommons.org/licenses/by/3.0/>

StyleSheets/TR/logo-PR.png
UORBPUALIIODRY pasodo.d DEAA

rdfa-primer/diagrams/patterns.png
<Nt example comialicelpostsiouble_wih_bob> <hitpiexampie.comalicalposisfjims-concert>

dctite aciite

decreator decrestor

caense
cstconse
s dccrated
' 1 was at Jim's concert the v
T Trousie it B 20118-10° Aea’ s oo om0z s’
[r— csatnbutonName
<http:creativecommons.org/icensesibyi3.0f> \ <http:icreativecommons.orgficensesiby3.Oi> \

*€2011 Ao Bipemsuick” *2011 Alce Bipomswick”

rdfa-primer/diagrams/blog-screenshot.png
2) (0] 0} Brssio e e o) as @ @

e (o G Dl w7 W sskaion TR M= Wvaces e

B + =
Al Blog

The trouble with Bob

el s ceanane o,

Pron: 4417 S 135

30's Barbecus

nav.xhtml

 Table of Contents

 		
 Cover

 		
 Table of Contents

 		
 RDFa 1.1 Primer

 		
 Introduction

 		
 Using RDFa

 		
 You Said Something about RDF?

 		
 RDFa Tools

 		
 Acknowledgments

 		
 References

 		
 RDFa 1.1 Core

 		
 Motivation

 		
 Syntax Overview

 		
 RDF Terminology

 		
 Conformance

 		
 Attributes and Syntax

 		
 CURIE Syntax Definition

 		
 Processing Model

 		
 RDFa Processing in detail

 		
 RDFa Initial Contexts

 		
 RDFa Vocabulary Expansion

 		
 CURIE Datatypes

 		
 The RDFa Vocabulary

 		
 Changes

 		
 Acknowledgments

 		
 References

 		
 RDFa 1.1 Lite

 		
 Introduction

 		
 The Attributes

 		
 Conformance

 		
 Change History Since the Last Published Recommentation

 		
 References

 		
 HTML+RDFa 1.1

 		
 Introduction

 		
 Conformance

 		
 Extensions to RDFa Core 1.1

 		
 Extensions to the HTML5 Syntax

 		
 Backwards Compatibility

 		
 About this Document

 		
 References

 		
 XHTML+RDFa 1.1

 		
 Introduction

 		
 Conformance

 		
 Additional RDFa Processing Rules

 		
 XHTML+RDFa 1.1 Definition

 		
 Metainformation Attributes Module

 		
 XHTML+RDFa XML Schema

 		
 XHTML+RDFa Document Type Definition

 		
 Deployment Advice

 		
 Change History

 		
 Acknowledgments

 		
 References

 		Begin reading

 		Table of Contents

StyleSheets/TR/logo-WG-Note.png
10N dnous) SUPlOAA DEAM

rdfa-primer/diagrams/blog-with-foaf-with-URI.png
<hitpexampie.comalicalposisirouble _with_bob>

deiite

v .

“The Troubie with Bob"
<htiplexample comialicelfme> TYPE () foatPerson

foatphone

p— \o

<tel+1.617-655.7332>
foatname.

<maito:aice@example.com>

“Alco Bipemsuick’

xhtml-rdfa/xhtml-rdfa-diff.xhtml

[image: W3C]

XHTML+RDFa
1.1
-
Third
Edition

Support
for
RDFa
via
XHTML
Modularization

W3C

Recommendation

17
March
2015

		
This
version:

		

http://www.w3.org/TR/2015/REC-xhtml-rdfa-20150317/

		
Latest
published
version:

		

http://www.w3.org/TR/xhtml-rdfa/

		
Implementation
report:

		
http://www.w3.org/2010/02/rdfa/wiki/CR-ImplementationReport

		
Previous
version:

		

http://www.w3.org/TR/2014/PER-xhtml-rdfa-20141216/

		
Previous

Recommendation:

		

http://www.w3.org/TR/2013/REC-xhtml-rdfa-20130822/

		
Editor:

		

Shane
McCarron
,

Applied
Testing
and
Technology,
Inc.
,

shane@aptest.com

Please
check
the

errata

for
any
errors
or
issues
reported
since
publication.

This
document
is
also
available
in
these
non-normative
formats:

XHTML+RDFa
,

Diff
from
Previous
Recommendation
,

Postscript
version
,
and

PDF
version

The
English
version
of
this
specification
is
the
only
normative
version.
Non-normative

translations

may
also
be
available.

Copyright

©
2007-2015

W3C

®

(

MIT

,

ERCIM

,

Keio
,

Beihang

).

W3C

liability
,

trademark

and

document
use

rules
apply.

Abstract

RDFa
Core
1.1
[

RDFA-CORE

]
defines
attributes
and
syntax
for
embedding
semantic
markup
in
Host
Languages.
This
document
defines
one
such
Host
Language.
This
language
is
a
superset
of
XHTML
1.1
[

XHTML11-2e

],
integrating
the
attributes
as
defined
in
RDFa
Core
1.1.
This
document
is
intended
for
authors
who
want
to
create
XHTML
Family
documents
that
embed
rich
semantic
markup.

Status
of
This
Document

This
section
describes
the
status
of
this
document
at
the
time
of
its
publication.
Other
documents
may
supersede
this
document.
A
list
of
current

W3C

publications
and
the
latest
revision
of
this
technical
report
can
be
found
in
the

W3C

technical
reports
index

at
http://www.w3.org/TR/.

This
is
an
Editorial
Revision

of
the

Recommendation
published
on

the
22nd

of
August,
2013
.
That
document
was

a
revision
of
Sections
8
and
9
and
Appendix
A
of
RDFa
Syntax
1.0
[

RDFA-SYNTAX

],
superseding

those
sections.

There
are
a
number
of
substantive
differences
between
this
version
and
the
2008
version,

including:

		
Inheritance
of
basic
processing
rules
from
[

RDFA-CORE

].

		
The
inclusion
of
an
implementation
of
the
markup
language
using
XML
Schema.

		
The
addition
of

@lang

to
be
consistent
with
recent
changes
in
[

XHTML11-2e

].

		
Removal
of
the
collection
of
TERMs
from
this
document
-
instead
deferring
the
definitions
in
an
RDFa
Initial
Context
document.

A

sample
test
harness

is
available.
This
set
of
tests
is
not
intended
to
be
exhaustive.
Users
may
find
the
tests
to
be
useful
examples
of
RDFa
usage.

The

implementation
report

used
by
the
director
to
transition
to
Recommendation
has
been
made
available.
There
have
been
no
formal
objections
to
the
publication
of
this
document.

This
document
was
published
by
the

RDFa
Working
Group

as
a
Recommendation.
If
you
wish
to
make
comments
regarding
this
document,
please
send
them
to

public-rdfa@w3.org

(

subscribe
,

archives

).
All
comments
are
welcome.

Please
see
the
Working
Group's

implementation
report
.

This
document
has
been
reviewed
by

W3C

Members,
by
software
developers,
and
by
other

W3C

groups
and
interested
parties,
and
is
endorsed

by
the
Director

as
a

W3C

Recommendation.
It

is
a
stable

document
and
may
be
used
as
reference
material

or
cited
from
another
document.

W3C

's
role
in
making
the
Recommendation

is
to
draw
attention
to
the
specification
and
to
promote
its
widespread
deployment.
This
enhances
the
functionality
and
interoperability
of
the
Web.

This
document
was
produced
by
a
group
operating
under
the

5
February
2004

W3C

Patent
Policy
.

W3C

maintains
a

public
list
of
any
patent
disclosures

made
in
connection
with
the
deliverables
of
the
group;
that
page
also
includes
instructions
for
disclosing
a
patent.
An
individual
who
has
actual
knowledge
of
a
patent
which
the
individual
believes
contains

Essential
Claim(s)

must
disclose
the
information
in
accordance
with

section
6
of
the

W3C

Patent
Policy
.

This
document
is
governed
by
the

14
October
2005

W3C

Process
Document
.

Table
of
Contents

		

1.

Introduction

		

2.

Conformance

		

2.1

Document
Conformance

		

2.2

User
Agent
Conformance

		

3.

Additional
RDFa
Processing
Rules

		

4.

XHTML+RDFa
1.1
Definition

		

5.

Metainformation
Attributes
Module

		

5.1

Metainformation
Attributes
Collection

		

5.2

XHTML
RDFa
Initial
Context

		

A.

XHTML+RDFa
XML
Schema

		

A.1

XHTML
Metainformation
Attributes
Module

		

A.2

XHTML+RDFa
Schema
Content
Model
Module

		

A.3

XHTML+RDFa
Schema
Modules

		

A.4

XHTML+RDFa
XML
Schema
Driver
Module

		

B.

XHTML+RDFa
Document
Type
Definition

		

B.1

XHTML
Metainformation
Attributes
Module

		

B.2

XHTML+RDFa
Content
Model
Module

		

B.3

XHTML+RDFa
Driver
Module

		

B.4

SGML
Open
Catalog
Entry
for
XHTML+RDFa

		

C.

Deployment
Advice

		

D.

Change
History

		

E.

Acknowledgments

		

F.

References

		

F.1

Normative
references

		

F.2

Informative
references

1.

Introduction

XHTML+RDFa
1.1
is
an
XHTML
Family
markup
language.
It
extends
the
XHTML
1.1
markup
language
with
the
attributes
defined
in
RDFa
Core
1.1.
The
document
also
defines
an
XHTML
Modularization-compatible
[

XHTML-MODULARIZATION11-2e

]
module
for
the
RDFa
Core
attributes
in
both
XML
DTD
and
XML
Schema
formats.

2.

Conformance

As
well
as
sections
marked
as
non-normative,
all
authoring
guidelines,
diagrams,
examples,
and
notes
in
this
specification
are
non-normative.
Everything
else
in
this
specification
is
normative.

The
key
words

MAY
,

MUST
,
and

SHOULD

are
to
be
interpreted
as
described
in
[

RFC2119

].

2.1

Document
Conformance

A
strictly
conforming
XHTML+RDFa
document
is
a
document
that
requires
only
the
facilities
described
as
mandatory
in
this
specification.
Such
a
document
satisfies
the
following
criteria:

		

The
document

MUST

conform
to
the
constraints
expressed
in
the
schemas
in

Appendix A
-
XHTML+RDFa
XML
Schema

and

Appendix B
-
XHTML+RDFa
Document
Type
Definition
.

		

The
local
part
of
the
root
element
of
the
document

MUST

be

html
.

		

The
start
tag
of
the
root
element
of
the
document

MUST

explicitly
contain
a
default
namespace
declaration
for
the
XHTML
namespace
[

XML-NAMES11

].
The
namespace
URI
for
XHTML
is
defined
to
be

http://www.w3.org/1999/xhtml
.

The
start
tag

MAY

also
contain
the
declaration
of
the
XML
Schema
Instance
Namespace
and
an
XML
Schema
Instance

schemaLocation

attribute
[

XMLSCHEMA11-2

].
Such
an
attribute
would
associate
the
XHTML
namespace

http://www.w3.org/1999/xhtml

with
the
XML
Schema
at
the
URI

http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-2.xsd
.

		
There

MAY

Be
a

@version

attribute
on
the

html

element
with
the
value
"XHTML+RDFa
1.1".

Example 1: Example of an XHTML+RDFa 1.1 document
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 version="XHTML+RDFa 1.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/1999/xhtml
 http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-2.xsd"
 lang="en"
 xml:lang="en">
 <head>
 <title>Virtual Library</title>
 </head>
 <body>
 <p>Moved to example.org.</p>
 </body>
</html>

Note
that
in
this
example,
the
XML
declaration
is
included.
An
XML
declaration
like
the
one
above
is
not
required
in
all
XML
documents.
XHTML
document
authors

SHOULD

use
XML
declarations
in
all
their
documents.
XHTML
document
authors

MUST

use
an
XML
declaration
when
the
character
encoding
of
the
document
is
other
than
the
default
UTF-8
or
UTF-16
and
no
encoding
is
specified
by
a
higher-level
protocol.

XHTML+RDFa
documents

SHOULD

be
labeled
with
the
Internet
Media
Type
"application/xhtml+xml"
as
defined
in
[

RFC3236

].
For
further
information
on
using
media
types
with
XHTML
Family
markup
languages,
see
the
informative
note
[

XHTML-MEDIA-TYPES

].

2.2

User
Agent
Conformance

A
conforming
user
agent

MUST

support
all
of
the
features
required
in
this
specification.
A
conforming
user
agent
must
also
support
the
User
Agent
conformance
requirements
as
defined
in
XHTML
Modularization
[

XHTML-MODULARIZATION11-2e

]
section
on
"XHTML
Family
User
Agent
Conformance".

3.

Additional
RDFa
Processing
Rules

Documents
conforming
to
the
rules
in
this
specification
are
processed
according
to
[

RDFA-CORE

]
with
the
following
extensions:

		
The
default
vocabulary
IRI
is
undefined.

		
XHTML+RDFa
uses
an
additional
initial
context
by
default,

http://www.w3.org/2011/rdfa-context/xhtml-rdfa-1.1
,
which
must
be
applied
after
the
initial
context
for
[

RDFA-CORE

]
(

http://www.w3.org/2011/rdfa-context/rdfa-1.1

).

		
The
base
can
be
set
using
the

base

element
as
defined
in
[

XHTML-MODULARIZATION11-2e

].

		
The
current
language
can
be
set
using
either
the

@lang

or

@xml:lang

attributes.

		
In
section
7.5,
processing
step
5,
if
no
IRI
is
provided
by
a
resource
attribute
(e.g.,

@about
,

@href
,

@resource
,
or

@src

),
then
first
check
to
see
if
the
element
is
the

head

or

body

element.
If
it
is,
then
act
as
if
the
new
subject
is
set
to
the
parent
object.

		
In
section
7.5,
processing
step
6,
if
no
IRI
is
provided
by
a
resource
attribute
(e.g.,

@about
,

@href
,

@resource
,
or

@src

),
then
first
check
to
see
if
the
element
is
the

head

or

body

element.
If
it
is,
then
act
as
if
the
new
subject
is
set
to
the
parent
object.

When
an
XHTML+RDFa
document
uses

@version

on
the

html

element,
a
conforming
RDFa
Processor

MUST

examine
the
value
of
this
attribute.
If
the
value
matches
that
of
a
defined
version
of
XHTML+RDFa,
then
the
processing
rules
for
that
version

MUST

be
used.
If
the
value
does
not
match
a
defined
version,
or
there
is
no

@version

attribute,
then
the
processing
rules
for
the
most
recent
version
of
XHTML+RDFa
must
be
used.

4.

XHTML+RDFa
1.1
Definition

The
XHTML+RDFa
1.1
document
type
is
a
fully
functional
document
type
with
rich
semantics.
It
is
a
superset
of
[

XHTML11-2e

].

The
XHTML+RDFa
1.1
document
type
is
made
up
of
the
following
XHTML
modules.
The
elements,
attributes,
and
content
models
associated
with
these
modules
are
defined
in
"XHTML
Modularization"
[

XHTML-MODULARIZATION11-2e

].
The
elements
are
listed
here
for
information
purposes,
but
the
definitions
in
XHTML
Modularization
should
be
considered
authoritative.

		
Structure
Module

		

body,
head,
html,
title
.

		
Text
Module

		

abbr,
acronym,
address,
blockquote,
br,
cite,
code,
dfn,
div,
em,
h1,
h2,
h3,
h4,
h5,
h6,
kbd,
p,
pre,
q,
samp,
span,
strong,
var

		
Hypertext
Module

		

a
.

@href

is
available
on
all
elements.

		
List
Module

		

dl,
dt,
dd,
ol,
ul,
li

		
Object
Module

		

object,
param

		
Presentation
Module

		

b,
big,
hr,
i,
small,
sub,
sup,
tt

		
Edit
Module

		

del,
ins

		
Bidirectional
Text
Module

		

bdo

		
Forms
Module

		

button,
fieldset,
form,
input,
label,
legend,
select,
optgroup,
option,
textarea

		
Table
Module

		

caption,
col,
colgroup,
table,
tbody,
td,
tfoot,
th,
thead,
tr

		
Image
Module

		

img

		
Client-side
Image
Map
Module

		

area,
map

		
Server-side
Image
Map
Module

		
Attribute

ismap

on

img

		
Intrinsic
Events
Module

		
Events
attributes

		
Metainformation
Module

		

meta

		
Scripting
Module

		

noscript,
script

		
Stylesheet
Module

		

style

element

		
Style
Attribute
Module

Deprecated

		

@style

		
Target
Module

		

@target

		
Link
Module

		

link

		
Base
Module

		

base

		

Metainformation
Attributes
Module

		

@about
,

@content
,

@datatype
,

@inlist
,

@typeof
,

@prefix
,

@property
,

@rel
,

@resource
,

@rev
,

@vocab

are
available
on
all
elements.

		
Ruby
Annotation
Module
from
[

RUBY

]

		

ruby,
rbc,
rtc,
rb,
rt,
rp

This
specification
also
adds
the

lang

attribute
to
the
I18N
attribute
collection
as
defined
in
[

XHTML-MODULARIZATION11-2e

].
The

lang

attribute
is
defined
in
[

HTML5

].
When
this
attribute
and
the

xml:lang

attribute
are
specified
on
the
same
element,
the

xml:lang

attribute
takes
precedence.
When
both

lang

and

xml:lang

are
specified
on
the
same
element,
they

MUST

have
the
same
value.

There
are
no
additional
definitions
required
by
this
document
type.
An
implementation
of
this
document
type
as
an
XML
Schema
is
defined
in

Appendix
A
,
and
as
an
XML
DTD
is
defined
in

Appendix
B
.

5.

Metainformation
Attributes
Module

The
Metainformation
Attributes
Module
defines
the

Metainformation

attribute
collection
in
the
format
required
by
[

XHTML-MODULARIZATION11-2e

].
This
collection
allows
elements
to
be
annotated
with
metadata
throughout
an
XHTML
Family
document.
When
this
module
is
included
in
a
markup
language,
this
collection
is
added
to
the

Common

attribute
collection
as
defined
in
[

XHTML-MODULARIZATION11-2e

].

5.1

Metainformation
Attributes
Collection

The
following
attributes
are
included
in
the
attribute
collection,
and
take
values
in
the
associated
datatype:

Metainformation
Attribute
Collection

		
Attributes

		
Notes

		

about

(

SafeCURIEorCURIEorIRI

)

		

		

content

(

CDATA

)

		

		

datatype

(

TERMorCURIEorAbsIRI

)

		
If
not
specified,
then
the
default
value
is

string

as
defined
in
[

XMLSCHEMA11-2

].

		

inlist

(

CDATA

)

		

		

prefix

(
NCName
':
'
IRI
)+

		

		

property

(

TERMorCURIEorAbsIRIs

)

		

		

rel

(

TERMorCURIEorAbsIRIs

)

		

		

resource

(

SafeCURIEorCURIEorIRI

)

		

		

rev

(

TERMorCURIEorAbsIRIs

)

		

		

typeof

(

TERMorCURIEorAbsIRIs

)

		

		

vocab

(

IRI

)

		
An
IRI
that
defines
the
prefix
to
use
when
a
CURIE
is
specified
with
no
prefix
and
no
colon.

An
implementation
of
this
module
in
XML
Schema
can
be
found
in

Appendix
A

and
in
XML
DTD
in

Appendix
B
.

5.2

XHTML
RDFa
Initial
Context

This
section
is
non-normative.

This
specification
defines
an
RDFa
Initial
Context.
It
is
available
at

http://www.w3.org/2011/rdfa-context/xhtml-rdfa-1.1
.

A.

XHTML+RDFa
XML
Schema

This
appendix
is

normative
.

This
appendix
includes
an
implementation
of
the
XHTML+RDFa
1.1
language
using
XML
Schema.
It
is
implemented
by
combining
the
XHTML
1.1
Schema
with
the
XHTML
Metainformation
Attribute
Module.
This
is
done
by
using
a
content
model
module,
and
then
a
driver
module.
There
are
direct
links
to
the
various
files
for
download
purposes.
Please
note
that
the
files
targeted
by
the
"latest
version"
links
may
change
slowly
over
time.
See
the

W3C

XHTML2

Working
Group

home
page
for
more
information.

A.1

XHTML
Metainformation
Attributes
Module

You can download this version of this file from SCHEMA/xhtml-metaAttributes-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-metaAttributes-2.xsd.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/"
 elementFormDefault="qualified"
>
 <xs:import namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd" />
 <xs:annotation>
 <xs:documentation>
 This is the XML Schema Metainformation Attributes module for XHTML
 $Id: xhtml-rdfa-diff.html,v 1.1 2015-03-09 13:54:40 ivan Exp $

 </xs:documentation>
 <xs:documentation source="xhtml-rdfa-copyright-1.xsd"/>
 </xs:annotation>
 <xs:annotation>
 <xs:documentation>
 XHTML Metainformation Attributes
 </xs:documentation>
 </xs:annotation>
 <xs:attribute name="about" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="content" type="xh11d:CDATA"/>
 <xs:attribute name="datatype" type="xh11d:TERMorCURIEoAbsIRI"/>
 <xs:attribute name="inlist" type="xh11d:CDATA"/>
 <xs:attribute name="typeof" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="prefix" type="xh11d:PREFIX"/>
 <xs:attribute name="property" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="rel" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="resource" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="rev" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="vocab" type="xs:anyURI"/>
 <xs:attributeGroup name="xhtml.metaAttributes.attrib">
 <xs:attribute name="about"/>
 <xs:attribute name="content"/>
 <xs:attribute name="datatype"/>
 <xs:attribute name="inlist"/>
 <xs:attribute name="typeof"/>
 <xs:attribute name="prefix"/>
 <xs:attribute name="property"/>
 <xs:attribute name="rel"/>
 <xs:attribute name="resource"/>
 <xs:attribute name="rev"/>
 <xs:attribute name="vocab"/>
 </xs:attributeGroup>
</xs:schema>

A.2

XHTML+RDFa
Schema
Content
Model
Module

You can download this version of this file from SCHEMA/xhtml-rdfa-model-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-model-2.xsd.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/"
 elementFormDefault="qualified" >
 <xs:import
 namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd"/>
 <xs:annotation>
 <xs:documentation>
 This is the XML Schema module of common content models for XHTML11

 $Id: xhtml-rdfa-diff.html,v 1.1 2015-03-09 13:54:40 ivan Exp $

 </xs:documentation>
 <xs:documentation source="xhtml-copyright-1.xsd"/>
 </xs:annotation>
 <xs:annotation>
 <xs:documentation>
 XHTML Document Model
 This module describes the groupings of elements/attributes
 that make up common content models for XHTML elements.
 XHTML has following basic content models:
 xhtml.Inline.mix; character-level elements
 xhtml.Block.mix; block-like elements, e.g., paragraphs and lists
 xhtml.Flow.mix; any block or inline elements
 xhtml.HeadOpts.mix; Head Elements
 xhtml.InlinePre.mix; Special class for pre content model
 xhtml.InlineNoAnchor.mix; Content model for Anchor

 Any groups declared in this module may be used to create
 element content models, but the above are considered 'global'
 (insofar as that term applies here). XHTML has the
 following Attribute Groups
 xhtml.Core.extra.attrib
 xhtml.I18n.extra.attrib
 xhtml.Common.extra

 The above attribute Groups are considered Global
 </xs:documentation>
 </xs:annotation>
 <xs:include schemaLocation="xhtml-metaAttributes-2.xsd">
 <xs:annotation>
 <xs:documentation>
 XHTML Metainformation Modules
 Attributes defined here:
 XHTML RDFa attribtues
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/rdfa-syntax"/>
 </xs:annotation>
 </xs:include>
 <xs:attributeGroup
 name="xhtml.I18n.extra.attrib">
 <xs:annotation>
 <xs:documentation> Extended I18n attribute </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup
 ref="xhtml.dir.attrib">
 <xs:annotation>
 <xs:documentation>
 "dir" Attribute from Bi Directional Text (bdo) Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Common.extra">
 <xs:annotation>
 <xs:documentation> Extended Common Attributes </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup
 ref="xhtml.style.attrib">
 <xs:annotation>
 <xs:documentation>
 "style" attribute from Inline Style Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 	<xs:attributeGroup ref="xhtml.Events.attrib">
			<xs:annotation>
				<xs:documentation>
				Attributes from Events Module
				</xs:documentation>
			</xs:annotation>
		</xs:attributeGroup>
 	<xs:attributeGroup ref="xhtml.metaAttributes.attrib">
			<xs:annotation>
				<xs:documentation>
				Attributes from Metainformation Module
				</xs:documentation>
			</xs:annotation>
		</xs:attributeGroup>
	</xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Core.extra.attrib">
 <xs:annotation>
 <xs:documentation> Extend Core Attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Global.core.extra.attrib">
 <xs:annotation>
 <xs:documentation> Extended Global Core Attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Global.I18n.extra.attrib">
 <xs:annotation>
 <xs:documentation> Extended Global I18n attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Global.Common.extra">
 <xs:annotation>
 <xs:documentation> Extended Global Common Attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:group
 name="xhtml.Head.extra">
 <xs:sequence/>
 </xs:group>
 <xs:group
 name="xhtml.HeadOpts.mix">
 <xs:choice>
 <xs:element name="script"
 type="xhtml.script.type"/>
 <xs:element name="style"
 type="xhtml.style.type"/>
 <xs:element name="meta"
 type="xhtml.meta.type"/>
 <xs:element name="link"
 type="xhtml.link.type"/>
 <xs:element name="object"
 type="xhtml.object.type"/>
 <xs:group
 ref="xhtml.Head.extra"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.head.content">
 <xs:sequence>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:choice>
 <xs:sequence>
 <xs:element name="title"
 minOccurs="1"
 maxOccurs="1"
 type="xhtml.title.type"/>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:sequence
 minOccurs="0">
 <xs:element name="base"
 type="xhtml.base.type"/>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:sequence>
 <xs:sequence>
 <xs:element name="base"
 type="xhtml.base.type"
 minOccurs="1"
 maxOccurs="1"/>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="title"
 minOccurs="1"
 maxOccurs="1"
 type="xhtml.title.type"/>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:choice>
 </xs:sequence>
 </xs:group>
 <!--
 ins and del are used to denote editing changes
 -->
 <xs:group
 name="xhtml.Edit.class">
 <xs:choice>
 <xs:element name="ins"
 type="xhtml.edit.type"/>
 <xs:element name="del"
 type="xhtml.edit.type"/>
 </xs:choice>
 </xs:group>
 <!--
 script and noscript are used to contain scripts
 and alternative content
 -->
 <xs:group
 name="xhtml.Script.class">
 <xs:choice>
 <xs:element name="script"
 type="xhtml.script.type"/>
 <xs:element name="noscript"
 type="xhtml.noscript.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Misc.extra">
 <xs:sequence/>
 </xs:group>
 <!--
 These elements are neither block nor inline, and can
 essentially be used anywhere in the document body.
 -->
 <xs:group
 name="xhtml.Misc.class">
 <xs:choice>
 <xs:group
 ref="xhtml.Edit.class"/>
 <xs:group
 ref="xhtml.Script.class"/>
 <xs:group
 ref="xhtml.Misc.extra"/>
 </xs:choice>
 </xs:group>
 <!-- Inline Elements -->
 <xs:group
 name="xhtml.InlStruct.class">
 <xs:choice>
 <xs:element name="br"
 type="xhtml.br.type"/>
 <xs:element name="span"
 type="xhtml.span.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.InlPhras.class">
 <xs:choice>
 <xs:element name="em"
 type="xhtml.em.type"/>
 <xs:element name="strong"
 type="xhtml.strong.type"/>
 <xs:element name="dfn"
 type="xhtml.dfn.type"/>
 <xs:element name="code"
 type="xhtml.code.type"/>
 <xs:element name="samp"
 type="xhtml.samp.type"/>
 <xs:element name="kbd"
 type="xhtml.kbd.type"/>
 <xs:element name="var"
 type="xhtml.var.type"/>
 <xs:element name="cite"
 type="xhtml.cite.type"/>
 <xs:element name="abbr"
 type="xhtml.abbr.type"/>
 <xs:element name="acronym"
 type="xhtml.acronym.type"/>
 <xs:element name="q"
 type="xhtml.q.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.InlPres.class">
 <xs:choice>
 <xs:element name="tt"
 type="xhtml.InlPres.type"/>
 <xs:element name="i"
 type="xhtml.InlPres.type"/>
 <xs:element name="b"
 type="xhtml.InlPres.type"/>
 <xs:element name="big"
 type="xhtml.InlPres.type"/>
 <xs:element name="small"
 type="xhtml.InlPres.type"/>
 <xs:element name="sub"
 type="xhtml.InlPres.type"/>
 <xs:element name="sup"
 type="xhtml.InlPres.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.I18n.class">
 <xs:sequence>
 <xs:element name="bdo"
 type="xhtml.bdo.type"/>
 </xs:sequence>
 </xs:group>
 <xs:group
 name="xhtml.Anchor.class">
 <xs:sequence>
 <xs:element name="a"
 type="xhtml.a.type"/>
 </xs:sequence>
 </xs:group>
 <xs:group
 name="xhtml.InlSpecial.class">
 <xs:choice>
 <xs:element name="img"
 type="xhtml.img.type"/>
 <xs:element name="map"
 type="xhtml.map.type"/>
 <xs:element name="object"
 type="xhtml.object.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.InlForm.class">
 <xs:choice>
 <xs:element name="input"
 type="xhtml.input.type"/>
 <xs:element name="select"
 type="xhtml.select.type"/>
 <xs:element name="textarea"
 type="xhtml.textarea.type"/>
 <xs:element name="label"
 type="xhtml.label.type"/>
 <xs:element name="button"
 type="xhtml.button.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Inline.extra">
 <xs:sequence/>
 </xs:group>
 <xs:group
 name="xhtml.Ruby.class">
 <xs:sequence>
 <xs:element name="ruby"
 type="xhtml.ruby.type"/>
 </xs:sequence>
 </xs:group>
 <!--
 Inline.class includes all inline elements,
 used as a component in mixes
 -->
 <xs:group
 name="xhtml.Inline.class">
 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>
 <xs:group
 ref="xhtml.InlPhras.class"/>
 <xs:group
 ref="xhtml.InlPres.class"/>
 <xs:group
 ref="xhtml.I18n.class"/>
 <xs:group
 ref="xhtml.Anchor.class"/>
 <xs:group
 ref="xhtml.InlSpecial.class"/>
 <xs:group
 ref="xhtml.InlForm.class"/>
 <xs:group
 ref="xhtml.Ruby.class"/>
 <xs:group
 ref="xhtml.Inline.extra"/>
 </xs:choice>
 </xs:group>
 <!--
 InlNoRuby.class includes all inline elements
 except ruby
 -->
 <xs:group
 name="xhtml.InlNoRuby.class">
 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>
 <xs:group
 ref="xhtml.InlPhras.class"/>
 <xs:group
 ref="xhtml.InlPres.class"/>
 <xs:group
 ref="xhtml.I18n.class"/>
 <xs:group
 ref="xhtml.Anchor.class"/>
 <xs:group
 ref="xhtml.InlSpecial.class"/>
 <xs:group
 ref="xhtml.InlForm.class"/>
 <xs:group
 ref="xhtml.Inline.extra"/>
 </xs:choice>
 </xs:group>
 <!--
 InlinePre.mix
 Used as a component in pre model
 -->
 <xs:group
 name="xhtml.InlinePre.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>
 <xs:group
 ref="xhtml.InlPhras.class"/>
 <xs:element name="tt"
 type="xhtml.InlPres.type"/>
 <xs:element name="i"
 type="xhtml.InlPres.type"/>
 <xs:element name="b"
 type="xhtml.InlPres.type"/>
 <xs:group
 ref="xhtml.I18n.class"/>
 <xs:group
 ref="xhtml.Anchor.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 <xs:element name="map"
 type="xhtml.map.type"/>
 <xs:group
 ref="xhtml.Inline.extra"/>
 </xs:choice>
 </xs:group>
 <!--
 InlNoAnchor.class includes all non-anchor inlines,
 used as a component in mixes
 -->
 <xs:group
 name="xhtml.InlNoAnchor.class">
 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>
 <xs:group
 ref="xhtml.InlPhras.class"/>
 <xs:group
 ref="xhtml.InlPres.class"/>
 <xs:group
 ref="xhtml.I18n.class"/>
 <xs:group
 ref="xhtml.InlSpecial.class"/>
 <xs:group
 ref="xhtml.InlForm.class"/>
 <xs:group
 ref="xhtml.Ruby.class"/>
 <xs:group
 ref="xhtml.Inline.extra"/>
 </xs:choice>
 </xs:group>
 <!--
 InlNoAnchor.mix includes all non-anchor inlines
 -->
 <xs:group
 name="xhtml.InlNoAnchor.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.InlNoAnchor.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <!--
 Inline.mix includes all inline elements, including Misc.class
 -->
 <xs:group
 name="xhtml.Inline.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.Inline.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <!--
 InlNoRuby.mix includes all of inline.mix elements
 except ruby
 -->
 <xs:group
 name="xhtml.InlNoRuby.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.InlNoRuby.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <!--
 In the HTML 4 DTD, heading and list elements were included
 in the block group. The Heading.class and
 List.class groups must now be included explicitly
 on element declarations where desired.
 -->
 <xs:group
 name="xhtml.Heading.class">
 <xs:choice>
 <xs:element name="h1"
 type="xhtml.h1.type"/>
 <xs:element name="h2"
 type="xhtml.h2.type"/>
 <xs:element name="h3"
 type="xhtml.h3.type"/>
 <xs:element name="h4"
 type="xhtml.h4.type"/>
 <xs:element name="h5"
 type="xhtml.h5.type"/>
 <xs:element name="h6"
 type="xhtml.h6.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.List.class">
 <xs:choice>
 <xs:element name="ul"
 type="xhtml.ul.type"/>
 <xs:element name="ol"
 type="xhtml.ol.type"/>
 <xs:element name="dl"
 type="xhtml.dl.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Table.class">
 <xs:choice>
 <xs:element name="table"
 type="xhtml.table.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Form.class">
 <xs:choice>
 <xs:element name="form"
 type="xhtml.form.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Fieldset.class">
 <xs:choice>
 <xs:element name="fieldset"
 type="xhtml.fieldset.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.BlkStruct.class">
 <xs:choice>
 <xs:element name="p"
 type="xhtml.p.type"/>
 <xs:element name="div"
 type="xhtml.div.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.BlkPhras.class">
 <xs:choice>
 <xs:element name="pre"
 type="xhtml.pre.type"/>
 <xs:element name="blockquote"
 type="xhtml.blockquote.type"/>
 <xs:element name="address"
 type="xhtml.address.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.BlkPres.class">
 <xs:sequence>
 <xs:element name="hr"
 type="xhtml.hr.type"/>
 </xs:sequence>
 </xs:group>
 <xs:group
 name="xhtml.BlkSpecial.class">
 <xs:choice>
 <xs:group
 ref="xhtml.Table.class"/>
 <xs:group
 ref="xhtml.Form.class"/>
 <xs:group
 ref="xhtml.Fieldset.class"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Block.extra">
 <xs:sequence/>
 </xs:group>
 <!--
 Block.class includes all block elements,
 used as an component in mixes
 -->
 <xs:group
 name="xhtml.Block.class">
 <xs:choice>
 <xs:group
 ref="xhtml.BlkStruct.class"/>
 <xs:group
 ref="xhtml.BlkPhras.class"/>
 <xs:group
 ref="xhtml.BlkPres.class"/>
 <xs:group
 ref="xhtml.BlkSpecial.class"/>
 <xs:group
 ref="xhtml.Block.extra"/>
 </xs:choice>
 </xs:group>
 <!--
 Block.mix includes all block elements plus %Misc.class;
 -->
 <xs:group
 name="xhtml.Block.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.Heading.class"/>
 <xs:group
 ref="xhtml.List.class"/>
 <xs:group
 ref="xhtml.Block.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <!--
 All Content Elements
 Flow.mix includes all text content, block and inline
 Note that the "any" element included here allows us
 to add data from any other namespace, a necessity
 for compound document creation.
 Note however that it is not possible to add
 to any head level element without further
 modification. To add RDF metadata to the head
 of a document, modify the structure module.
 -->
 <xs:group
 name="xhtml.Flow.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.Heading.class"/>
 <xs:group
 ref="xhtml.List.class"/>
 <xs:group
 ref="xhtml.Block.class"/>
 <xs:group
 ref="xhtml.Inline.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <!--
 BlkNoForm.mix includes all non-form block elements,
 plus Misc.class
 -->
 <xs:group
 name="xhtml.BlkNoForm.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.Heading.class"/>
 <xs:group
 ref="xhtml.List.class"/>
 <xs:group
 ref="xhtml.BlkStruct.class"/>
 <xs:group
 ref="xhtml.BlkPhras.class"/>
 <xs:group
 ref="xhtml.BlkPres.class"/>
 <xs:group
 ref="xhtml.Table.class"/>
 <xs:group
 ref="xhtml.Block.extra"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <xs:element name="html"
 type="xhtml.html.type"/>
</xs:schema>

A.3

XHTML+RDFa
Schema
Modules

You can download this version of this file from SCHEMA/xhtml-rdfa-modules-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-modules-2.xsd.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/" >
 <xs:import namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd" />
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>
 <xs:annotation>
 <xs:documentation>
 This schema includes all modules for XHTML1.1 Document Type.
 $Id: xhtml-rdfa-diff.html,v 1.1 2015-03-09 13:54:40 ivan Exp $

 </xs:documentation>
 <xs:documentation source="xhtml-copyright-1.xsd"/>
 </xs:annotation>
 <xs:annotation>
 <xs:documentation>
 This schema includes all modules (and redefinitions)
 for XHTML1.1 Document Type.
 XHTML1.1 Document Type includes the following Modules
 XHTML Core modules (Required for XHTML Family Conformance)
 + text
 + hypertext
 + lists
 + structure
 Other XHTML modules
 + Edit
 + Bdo
 + Presentational
 + Link
 + Meta
 + Base
 + Scripting
 + Style
 + Image
 + Applet
 + Object
 + Param (Applet/Object modules require Param Module)
 + Tables
 + Target
 + Forms
 + Client side image maps
 + Server side image maps
 </xs:documentation>
 </xs:annotation>
 <xs:include schemaLocation="xhtml-framework-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Schema Framework Component Modules:
 + notations
 + datatypes
 + common attributes
 + character entities
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_commonatts"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-text-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Text module
 The Text module includes declarations for all core
 text container elements and their attributes.
 + block phrasal
 + block structural
 + inline phrasal
 + inline structural
 Elements defined here:
 * address, blockquote, pre, h1, h2, h3, h4, h5, h6
 * div, p
 * abbr, acronym, cite, code, dfn, em, kbd, q, samp, strong, var
 * br, span
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/abstract_modules.html#s_textmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-list-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Lists module
 Elements defined here:
 * dt, dd, dl, ol, ul, li
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/abstract_modules.html#s_listmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-struct-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Structural module
 Elements defined here:
 * title, head, body, html
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/abstract_modules.html#s_structuremodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.version.attrib">
 <xs:annotation>
 <xs:documentation>
 Redefinition by the XHTML11 Markup (for value of version attr)
 </xs:documentation>
 </xs:annotation>
 <xs:attribute name="version" type="xh11d:CDATA" fixed="XHTML+RDFa 1.1"/>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.body.attlist">
 <xs:attributeGroup ref="xhtml.body.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Body Attlist
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.body.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by XHTML Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.head.attlist">
 <xs:attributeGroup ref="xhtml.I18n.attrib"/>
 <xs:attributeGroup ref="xhtml.id"/>
 <xs:attributeGroup ref="xhtml.class"/>
 <xs:attributeGroup ref="xhtml.title"/>
 <xs:attributeGroup ref="xhtml.Common.extra"/>
 </xs:attributeGroup>
		<xs:attributeGroup name="xhtml.title.attlist">
		 <xs:attributeGroup ref="xhtml.title.attlist"/>
		 <xs:attributeGroup ref="xhtml.class"/>
		 <xs:attributeGroup ref="xhtml.title"/>
		 <xs:attributeGroup ref="xhtml.Common.extra"/>
		</xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-edit-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Edit module
 Elements defined here:
 * ins, del
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_editmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-bdo-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Bidirectional element module
 Elements defined here:
 * bdo
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_bdomodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-pres-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Presentational module
 Elements defined here:
 * hr, b, big, i, small,sub, sup, tt
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_presentationmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-base-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Base module
 Elements defined here:
 * base
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_basemodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.base.attlist">
 <xs:annotation>
 <xs:documentation>
 Changes to XHTML base Attlist
 </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup ref="xhtml.base.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Base Attributes (declared in Base Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.base.target.attlist">
 <xs:annotation>
 <xs:documentation>
 XHTML Target Module - Attribute additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-script-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Scripting module
 Elements defined here:
 * script, noscript
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_scriptmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-style-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Style module
 Elements defined here:
 * style
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_stylemodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-inlstyle-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Style attribute module
 Attribute defined here:
 * style
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_styleattributemodule"/>
 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-image-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Image module
 Elements defined here:
 * img
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_imagemodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.img.attlist">
 <xs:attributeGroup ref="xhtml.img.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Image Attributes (in Image Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.img.csim.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.img.ssimap.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Server Side Image Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:redefine schemaLocation="xhtml-csismap-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Client-side mage maps module
 Elements defined here:
 * area, map
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_imapmodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.area.attlist">
 <xs:attributeGroup ref="xhtml.area.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Area Attributes (in CSI Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.area.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Events Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.area.target.attlist">
 <xs:annotation>
 <xs:documentation>
 Target Module - Area Attribute Additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-ssismap-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Server-side image maps module
 Attributes defined here:
 * ismap on img
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_servermapmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-object-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Object module
 Elements defined here:
 * object
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_objectmodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.object.attlist">
 <xs:attributeGroup ref="xhtml.object.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Object Attlist
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.object.csim.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-param-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Param module
 Elements defined here:
 * param
 </xs:documentation>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-table-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Tables module
 Elements defined here:
 * table, caption, thead, tfoot, tbody, colgroup, col, tr, th, td
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_tablemodule"/>
 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-form-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Forms module
 Elements defined here:
 * form, label, input, select, optgroup, option,
 * textarea, fieldset, legend, button
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_extformsmodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.form.attlist">
 <xs:annotation>
 <xs:documentation>
 Changes to XHTML Form Attlist
 </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup ref="xhtml.form.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Form Attributes (declared in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.form.events.attlist">
 <xs:annotation>
 <xs:documentation>
 XHTML Events Module - Attribute additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.form.target.attlist">
 <xs:annotation>
 <xs:documentation>
 XHTML Target Module - Attribute additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.input.attlist">
 <xs:annotation>
 <xs:documentation>
 Changes to XHTML Form Input Element
 </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup ref="xhtml.input.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Input Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.input.csim.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.input.ssimap.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Server Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.input.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.label.attlist">
 <xs:attributeGroup ref="xhtml.label.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Label Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.label.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.select.attlist">
 <xs:attributeGroup ref="xhtml.select.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Select Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.select.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.textarea.attlist">
 <xs:attributeGroup ref="xhtml.textarea.attlist">
 <xs:annotation>
 <xs:documentation>
 Original TextArea Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.textarea.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.button.attlist">
 <xs:attributeGroup ref="xhtml.button.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Button Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.button.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-ruby-basic-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Ruby module
 Elements defined here:
 * ruby, rbc, rtc, rb, rt, rp
 Note that either Ruby or Basic Ruby should be used but not both
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-ruby-20010531/#simple-ruby1"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-events-1.xsd">
 <xs:annotation>
 <xs:documentation>
 XHTML Events Modules
 Attributes defined here:
 XHTML Event Types
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_intrinsiceventsmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-metaAttributes-1.xsd">
 <xs:annotation>
 <xs:documentation>
 XHTML Metainformation Modules

 Attributes defined here:
 XHTML RDFa attribtues
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/rdfa-syntax"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-target-1.xsd">
 <xs:annotation>
 <xs:documentation>
 XHTML Target Attribute Module
 Attributes defined here:
 target
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_targetmodule"/>
 </xs:annotation>
 </xs:include>
</xs:schema>

A.4

XHTML+RDFa
XML
Schema
Driver
Module

You can download this version of this file from SCHEMA/xhtml-rdfa-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-2.xsd.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.w3.org/1999/xhtml"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/" xmlns="http://www.w3.org/1999/xhtml"
 elementFormDefault="qualified">
 <xs:annotation>
 <xs:documentation> This is the XML Schema driver for XHTML + RDFa Please use this namespace
 for XHTML elements: "http://www.w3.org/1999/xhtml" $Id: xhtml-rdfa-1.xsd,v 1.2
 2008/07/02 13:26:46 ahby Exp $ </xs:documentation>
 <xs:documentation source="xhtml-copyright-1.xsd"/>
 </xs:annotation>
 <xs:annotation>
 <xs:documentation> This is the Schema Driver file for XHTML + RDFa Document Type This schema
 + imports external schemas (xml.xsd) + refedines (and include)s schema modules for
 XHTML1.1 Document Type. + includes Schema for Named content model for the XHTML1.1
 Document Type XHTML1.1 Document Type includes the following Modules XHTML Core modules
 (Required for XHTML Family Conformance) + text + hypertext + lists + structure Other
 XHTML modules + Edit + Bdo + Presentational + Link + Meta + Base + Scripting + Style +
 Image + Applet + Object + Param (Applet/Object modules require Param Module) + Tables +
 Forms + Client side image maps + Server side image maps + Ruby </xs:documentation>
 </xs:annotation>
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd">
 <xs:annotation>
 <xs:documentation> This import brings in the XML namespace attributes The XML attributes
 are used by various modules. </xs:documentation>
 </xs:annotation>
 </xs:import>
 <xs:import namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd"/>
 <xs:include schemaLocation="xhtml-rdfa-model-2.xsd">
 <xs:annotation>
 <xs:documentation> Document Model module for the XHTML+RDFa Document Type. This schema
 file defines all named models used by XHTML Modularization Framework for XHTML+RDFa
 Document Type </xs:documentation>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-rdfa-modules-2.xsd">
 <xs:annotation>
 <xs:documentation> Schema that includes all modules (and redefinitions) for XHTML1.1
 Document Type. </xs:documentation>
 </xs:annotation>
 </xs:include>
 <!-- link, meta, and a need to be defined directly here -->
 <xs:attributeGroup name="xhtml.a.attlist">
 <xs:attributeGroup ref="xhtml.Common.attrib"/>
 <xs:attribute name="href" type="xh11d:URI"/>
 <xs:attribute name="charset" type="xh11d:Charset"/>
 <xs:attribute name="type" type="xh11d:ContentType"/>
 <xs:attribute name="hreflang" type="xh11d:LanguageCode"/>
 <xs:attribute name="accesskey" type="xh11d:Character"/>
 <xs:attribute name="tabindex" type="xh11d:Number"/>
 <xs:attributeGroup ref="xhtml.a.csim.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.a.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by XHTML Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.a.target.attlist">
 <xs:annotation>
 <xs:documentation>
 Target Module - A Attribute Additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:group name="xhtml.a.content">
 <xs:sequence>
 <xs:group ref="xhtml.InlNoAnchor.mix" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:group>
 <xs:complexType name="xhtml.a.type" mixed="true">
 <xs:group ref="xhtml.a.content"/>
 <xs:attributeGroup ref="xhtml.a.attlist"/>
 </xs:complexType>
 <xs:attributeGroup name="xhtml.link.attlist">
 <xs:attributeGroup ref="xhtml.Common.attrib"/>
 <xs:attribute name="charset" type="xh11d:Charset"/>
 <xs:attribute name="href" type="xh11d:URI"/>
 <xs:attribute name="hreflang" type="xh11d:LanguageCode"/>
 <xs:attribute name="type" type="xh11d:ContentType"/>
 <xs:attribute name="media" type="xh11d:MediaDesc"/>
 </xs:attributeGroup>
 <xs:group name="xhtml.link.content">
 <xs:sequence/>
 </xs:group>
 <xs:complexType name="xhtml.link.type">
 <xs:group ref="xhtml.link.content"/>
 <xs:attributeGroup ref="xhtml.link.attlist"/>
 </xs:complexType>
 <xs:attributeGroup name="xhtml.meta.attlist">
 <xs:attributeGroup ref="xhtml.I18n.attrib"/>
 <xs:attribute ref="xml:space"/>
 <xs:attribute name="http-equiv" type="xs:NMTOKEN"/>
 <xs:attribute name="name" type="xs:NMTOKEN"/>
 <xs:attribute name="content" type="xh11d:CDATA" use="required"/>
 <xs:attribute name="scheme" type="xh11d:CDATA"/>
 <xs:attribute name="about" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="datatype" type="xh11d:TERMorCURIEoAbsIRI"/>
 <xs:attribute name="typeof" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="prefix" type="xh11d:PREFIX"/>
 <xs:attribute name="property" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="rel" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="resource" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="rev" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="vocab" type="xs:anyURI"/>
 </xs:attributeGroup>
 <xs:group name="xhtml.meta.content">
 <xs:sequence/>
 </xs:group>
 <xs:complexType name="xhtml.meta.type">
 <xs:group ref="xhtml.meta.content"/>
 <xs:attributeGroup ref="xhtml.meta.attlist"/>
 </xs:complexType>
</xs:schema>

B.

XHTML+RDFa
Document
Type
Definition

This
appendix
includes
an
implementation
of
the
XHTML+RDFa
1.1
language
as
an
XML
DTD.
It
is
implemented
by
combining
the
XHTML
1.1
DTD
with
the
XHTML
Metainformation
Attribute
Module.
This
is
done
by
using
a
content
model
module,
and
then
a
driver
module.
There
are
direct
links
to
the
various
files
for
download
purposes.
Please
note
that
the
files
targeted
by
the
"latest
version"
links
may
change
slowly
over
time.
See
the

W3C

XHTML2

Working
Group

home
page
for
more
information.

B.1

XHTML
Metainformation
Attributes
Module

You can download this version of this file from DTD/xhtml-metaAttributes-2.mod. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-metaAttributes-2.mod.

<!-- .. -->
<!-- XHTML MetaAttributes Module ... -->
<!-- file: xhtml-metaAttributes-1.mod
 This is XHTML-RDFa, modules to annotate XHTML family documents.
 Copyright 2007-2008 W3C (MIT, ERCIM, Keio), All Rights Reserved.
 Revision: $Id: xhtml-rdfa-diff.html,v 1.1 2015-03-09 13:54:40 ivan Exp $

 This DTD module is identified by the PUBLIC and SYSTEM identifiers:
 PUBLIC "-//W3C//ENTITIES XHTML MetaAttributes 1.0//EN"
 SYSTEM "http://www.w3.org/MarkUp/DTD/xhtml-metaAttributes-1.mod"
 Revisions:
 (none)
 ... -->
<!ENTITY % XHTML.global.attrs.prefixed "IGNORE" >
<!-- Placeholder Compact URI-related types -->
<!ENTITY % CURIE.datatype "CDATA" >
<!ENTITY % CURIEs.datatype "CDATA" >
<!ENTITY % CURIEorIRI.datatype "CDATA" >
<!ENTITY % CURIEorIRIs.datatype "CDATA" >
<!ENTITY % IRI.datatype "CDATA" >
<!ENTITY % IRIs.datatype "CDATA" >
<!ENTITY % PREFIX.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRI.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRIs.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsIRI.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsIRIs.datatype "CDATA" >
<!-- Common Attributes
 This module declares a collection of meta-information related
 attributes.
 %NS.decl.attrib; is declared in the XHTML Qname module.
	 This file also includes declarations of "global" versions of the
 attributes. The global versions of the attributes are for use on
 elements in other namespaces.
-->
<!ENTITY % about.attrib
 "about %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"
>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.about.attrib
 "%XHTML.prefix;:about %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"
>
]]>
<!ENTITY % typeof.attrib
 "typeof %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.typeof.attrib
 "%XHTML.prefix;:typeof %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
]]>
<!ENTITY % property.attrib
 "property %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.property.attrib
 "%XHTML.prefix;:property %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
]]>
<!ENTITY % resource.attrib
 "resource %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"
>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.resource.attrib
 "%XHTML.prefix;:resource %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"
>
]]>
<!ENTITY % content.attrib
 "content CDATA #IMPLIED"
>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.content.attrib
 "%XHTML.prefix;:content CDATA #IMPLIED"
>
]]>
<!ENTITY % datatype.attrib
 "datatype %TERMorCURIEorAbsIRI.datatype; #IMPLIED"
>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.datatype.attrib
 "%XHTML.prefix;:datatype %TERMorCURIEorAbsIRI.datatype; #IMPLIED"
>
]]>
<!ENTITY % inlist.attrib
 "inlist CDATA #IMPLIED"
>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.inlist.attrib
 "%XHTML.prefix;:inlist CDATA #IMPLIED"
>
]]>
<!ENTITY % rel.attrib
 "rel %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.rel.attrib
 "%XHTML.prefix;:rel %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
]]>
<!ENTITY % rev.attrib
 "rev %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.rev.attrib
 "%XHTML.prefix;:rev %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
]]>
<!ENTITY % prefix.attrib
 "prefix %PREFIX.datatype; #IMPLIED"
>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.prefix.attrib
 "%XHTML.prefix;:prefix %PREFIX.datatype; #IMPLIED"
>
]]>
<!ENTITY % vocab.attrib
 "vocab %IRI.datatype; #IMPLIED"
>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.vocab.attrib
 "%XHTML.prefix;:vocab %IRI.datatype; #IMPLIED"
>
]]>
<!ENTITY % Metainformation.extra.attrib "" >
<!ENTITY % Metainformation.attrib
 "%about.attrib;
 %content.attrib;
 %datatype.attrib;
	 %inlist.attrib;
 %typeof.attrib;
 %prefix.attrib;
 %property.attrib;
 %rel.attrib;
 %resource.attrib;
 %rev.attrib;
 %vocab.attrib;
 %Metainformation.extra.attrib;"
>
<!ENTITY % XHTML.global.metainformation.extra.attrib "" >
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.metainformation.attrib
 "%XHTML.global.about.attrib;
 %XHTML.global.content.attrib;
 %XHTML.global.datatype.attrib;
 %XHTML.global.inlist.attrib;
 %XHTML.global.typeof.attrib;
 %XHTML.global.prefix.attrib;
 %XHTML.global.property.attrib;
 %XHTML.global.rel.attrib;
 %XHTML.global.resource.attrib;
 %XHTML.global.rev.attrib;
 %XHTML.global.vocab.attrib;
 %XHTML.global.metainformation.extra.attrib;"
>
]]>
<!ENTITY % XHTML.global.metainformation.attrib "" >
<!-- end of xhtml-metaAttributes-1.mod -->

B.2

XHTML+RDFa
Content
Model
Module

You can download this version of this file from DTD/xhtml-rdfa-model-2.mod. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-rdfa-model-2.mod.

<!-- ... -->
<!-- XHTML+RDFa Document Model Module -->
<!-- file: xhtml-rdfa-model-2.mod
 This is XHTML+RDFa.
 Copyright 1998-2010 W3C (MIT, ERCIM, Keio), All Rights Reserved.
 Revision: $Id: xhtml-rdfa-diff.html,v 1.1 2015-03-09 13:54:40 ivan Exp $ SMI

 This DTD module is identified by the PUBLIC and SYSTEM identifiers:
 PUBLIC "-//W3C//ENTITIES XHTML+RDFa Document Model 1.1//EN"
 SYSTEM "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-model-2.mod"
 Revisions:
 (none)
 ... -->
<!-- XHTML+RDFa Document Model
 This module describes the groupings of elements that make up
 common content models for XHTML elements.
 XHTML has three basic content models:
 %Inline.mix; character-level elements
 %Block.mix; block-like elements, eg., paragraphs and lists
 %Flow.mix; any block or inline elements
 Any parameter entities declared in this module may be used
 to create element content models, but the above three are
 considered 'global' (insofar as that term applies here).
 The reserved word '#PCDATA' (indicating a text string) is now
 included explicitly with each element declaration that is
 declared as mixed content, as XML requires that this token
 occur first in a content model specification.
-->
<!-- Extending the Model
 While in some cases this module may need to be rewritten to
 accommodate changes to the document model, minor extensions
 may be accomplished by redeclaring any of the three *.extra;
 parameter entities to contain extension element types as follows:
 %Misc.extra; whose parent may be any block or
 inline element.
 %Inline.extra; whose parent may be any inline element.
 %Block.extra; whose parent may be any block element.
 If used, these parameter entities must be an OR-separated
 list beginning with an OR separator ("|"), eg., "| a | b | c"
 All block and inline *.class parameter entities not part
 of the *struct.class classes begin with "| " to allow for
 exclusion from mixes.
-->
<!-- Optional Elements in head -->
<!ENTITY % HeadOpts.mix
 "(%script.qname; | %style.qname; | %meta.qname;
 | %link.qname; | %object.qname;)*"
>
<!-- Miscellaneous Elements -->
<!-- ins and del are used to denote editing changes
-->
<!ENTITY % Edit.class "| %ins.qname; | %del.qname;" >
<!-- script and noscript are used to contain scripts
 and alternative content
-->
<!ENTITY % Script.class "| %script.qname; | %noscript.qname;" >
<!ENTITY % Misc.extra "" >
<!-- These elements are neither block nor inline, and can
 essentially be used anywhere in the document body.
-->
<!ENTITY % Misc.class
 "%Edit.class;
 %Script.class;
 %Misc.extra;"
>
<!-- Inline Elements -->
<!ENTITY % InlStruct.class "%br.qname; | %span.qname;" >
<!ENTITY % InlPhras.class
 "| %em.qname; | %strong.qname; | %dfn.qname; | %code.qname;
 | %samp.qname; | %kbd.qname; | %var.qname; | %cite.qname;
 | %abbr.qname; | %acronym.qname; | %q.qname;" >
<!ENTITY % InlPres.class
 "| %tt.qname; | %i.qname; | %b.qname; | %big.qname;
 | %small.qname; | %sub.qname; | %sup.qname;" >
<!ENTITY % I18n.class "| %bdo.qname;" >
<!ENTITY % Anchor.class "| %a.qname;" >
<!ENTITY % InlSpecial.class
 "| %img.qname; | %map.qname;
 | %object.qname;" >
<!ENTITY % InlForm.class
 "| %input.qname; | %select.qname; | %textarea.qname;
 | %label.qname; | %button.qname;" >
<!ENTITY % Inline.extra "" >
<!ENTITY % Ruby.class "| %ruby.qname;" >
<!-- %Inline.class; includes all inline elements,
 used as a component in mixes
-->
<!ENTITY % Inline.class
 "%InlStruct.class;
 %InlPhras.class;
 %InlPres.class;
 %I18n.class;
 %Anchor.class;
 %InlSpecial.class;
 %InlForm.class;
 %Ruby.class;
 %Inline.extra;"
>
<!-- %InlNoRuby.class; includes all inline elements
 except ruby, used as a component in mixes
-->
<!ENTITY % InlNoRuby.class
 "%InlStruct.class;
 %InlPhras.class;
 %InlPres.class;
 %I18n.class;
 %Anchor.class;
 %InlSpecial.class;
 %InlForm.class;
 %Inline.extra;"
>
<!-- %NoRuby.content; includes all inlines except ruby
-->
<!ENTITY % NoRuby.content
 "(#PCDATA
 | %InlNoRuby.class;
 %Misc.class;)*"
>
<!-- %InlNoAnchor.class; includes all non-anchor inlines,
 used as a component in mixes
-->
<!ENTITY % InlNoAnchor.class
 "%InlStruct.class;
 %InlPhras.class;
 %InlPres.class;
 %I18n.class;
 %InlSpecial.class;
 %InlForm.class;
 %Ruby.class;
 %Inline.extra;"
>
<!-- %InlNoAnchor.mix; includes all non-anchor inlines
-->
<!ENTITY % InlNoAnchor.mix
 "%InlNoAnchor.class;
 %Misc.class;"
>
<!-- %Inline.mix; includes all inline elements, including %Misc.class;
-->
<!ENTITY % Inline.mix
 "%Inline.class;
 %Misc.class;"
>
<!-- Block Elements -->
<!-- In the HTML 4.0 DTD, heading and list elements were included
 in the %block; parameter entity. The %Heading.class; and
 %List.class; parameter entities must now be included explicitly
 on element declarations where desired.
-->
<!ENTITY % Heading.class
 "%h1.qname; | %h2.qname; | %h3.qname;
 | %h4.qname; | %h5.qname; | %h6.qname;" >
<!ENTITY % List.class "%ul.qname; | %ol.qname; | %dl.qname;" >
<!ENTITY % Table.class "| %table.qname;" >
<!ENTITY % Form.class "| %form.qname;" >
<!ENTITY % Fieldset.class "| %fieldset.qname;" >
<!ENTITY % BlkStruct.class "%p.qname; | %div.qname;" >
<!ENTITY % BlkPhras.class
 "| %pre.qname; | %blockquote.qname; | %address.qname;" >
<!ENTITY % BlkPres.class "| %hr.qname; " >
<!ENTITY % BlkSpecial.class
 "%Table.class;
 %Form.class;
 %Fieldset.class;"
>
<!ENTITY % Block.extra "" >
<!-- %Block.class; includes all block elements,
 used as an component in mixes
-->
<!ENTITY % Block.class
 "%BlkStruct.class;
 %BlkPhras.class;
 %BlkPres.class;
 %BlkSpecial.class;
 %Block.extra;"
>
<!-- %Block.mix; includes all block elements plus %Misc.class;
-->
<!ENTITY % Block.mix
 "%Heading.class;
 | %List.class;
 | %Block.class;
 %Misc.class;"
>
<!-- All Content Elements -->
<!-- %Flow.mix; includes all text content, block and inline
-->
<!ENTITY % Flow.mix
 "%Heading.class;
 | %List.class;
 | %Block.class;
 | %Inline.class;
 %Misc.class;"
>
<!-- end of xhtml-rdfa-model-2.mod -->

B.3

XHTML+RDFa
Driver
Module

You can download this version of this file from DTD/xhtml-rdfa-2.dtd. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd.

<!-- ... -->
<!-- XHTML 1.1 + RDFa DTD ... -->
<!-- file: xhtml-rdfa-2.dtd
-->
<!-- XHTML 1.1 + RDFa DTD
 This is an example markup language combining XHTML 1.1 and the RDFa
 modules.
 XHTML+RDFa
 Copyright 1998-2010 World Wide Web Consortium
 (Massachusetts Institute of Technology, European Research Consortium
 for Informatics and Mathematics, Keio University).
 All Rights Reserved.
 Permission to use, copy, modify and distribute the XHTML DTD and its
 accompanying documentation for any purpose and without fee is hereby
 granted in perpetuity, provided that the above copyright notice and
 this paragraph appear in all copies. The copyright holders make no
 representation about the suitability of the DTD for any purpose.
 It is provided "as is" without expressed or implied warranty.
-->
<!-- This is the driver file for version 1 of the XHTML + RDFa DTD.
 Please use this public identifier to identify it:
 "-//W3C//DTD XHTML+RDFa 1.1//EN"
-->
<!ENTITY % XHTML.version "XHTML+RDFa 1.1" >
<!-- Use this URI to identify the default namespace:
 "http://www.w3.org/1999/xhtml"
 See the Qualified Names module for information
 on the use of namespace prefixes in the DTD.
	 Note that XHTML namespace elements are not prefixed by default,
	 but the XHTML namespace prefix is defined as "xhtml" so that
	 other markup languages can extend this one and use the XHTML
	 prefixed global attributes if required.
-->
<!ENTITY % NS.prefixed "IGNORE" >
<!ENTITY % XHTML.prefix "xhtml" >
<!-- Be sure to include prefixed global attributes - we don't need
 them, but languages that extend XHTML 1.1 might.
-->
<!ENTITY % XHTML.global.attrs.prefixed "INCLUDE" >
<!-- Reserved for use with the XLink namespace:
-->
<!ENTITY % XLINK.xmlns "" >
<!ENTITY % XLINK.xmlns.attrib "" >
<!-- For example, if you are using XHTML 1.1 directly, use the public
 identifier in the DOCTYPE declaration, with the namespace declaration
 on the document element to identify the default namespace:
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en">
 ...
 </html>
 Revisions:
 (none)
-->
<!-- reserved for future use with document profiles -->
<!ENTITY % XHTML.profile "" >
<!-- ensure XHTML Notations are disabled -->
<!ENTITY % xhtml-notations.module "IGNORE" >
<!-- Bidirectional Text features
 This feature-test entity is used to declare elements
 and attributes used for bidirectional text support.
-->
<!ENTITY % XHTML.bidi "INCLUDE" >
<!-- ::: -->
<!-- Pre-Framework Redeclaration placeholder -->
<!-- this serves as a location to insert markup declarations
 into the DTD prior to the framework declarations.
-->
<!ENTITY % xhtml-prefw-redecl.module "IGNORE" >
<!ENTITY % xhtml-prefw-redecl.mod "" >
<![%xhtml-prefw-redecl.module;[
%xhtml-prefw-redecl.mod;
<!-- end of xhtml-prefw-redecl.module -->]]>
<!-- we need the datatypes now -->
<!ENTITY % xhtml-datatypes.module "INCLUDE" >
<![%xhtml-datatypes.module;[
<!ENTITY % xhtml-datatypes.mod
 PUBLIC "-//W3C//ENTITIES XHTML Datatypes 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-datatypes-1.mod" >
%xhtml-datatypes.mod;]]>
<!-- bring in the RDFa attributes cause we need them in Common -->
<!ENTITY % xhtml-metaAttributes.module "INCLUDE" >
<![%xhtml-metaAttributes.module;[
<!ENTITY % xhtml-metaAttributes.mod
 PUBLIC "-//W3C//ENTITIES XHTML MetaAttributes 1.1//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-metaAttributes-2.mod" >
%xhtml-metaAttributes.mod;]]>
<!ENTITY % xhtml-events.module "INCLUDE" >
<!ENTITY % Common.extra.attrib
 "href %URI.datatype; #IMPLIED
 %Metainformation.attrib;"
>
<!-- adding the lang attribute into the I18N collection -->
<!ENTITY % lang.attrib
 "xml:lang %LanguageCode.datatype; #IMPLIED
 lang %LanguageCode.datatype; #IMPLIED"
>
<!-- Inline Style Module .. -->
<!ENTITY % xhtml-inlstyle.module "INCLUDE" >
<![%xhtml-inlstyle.module;[
<!ENTITY % xhtml-inlstyle.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Inline Style 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-inlstyle-1.mod" >
%xhtml-inlstyle.mod;]]>
<!-- declare Document Model module instantiated in framework
-->
<!ENTITY % xhtml-model.mod
 PUBLIC "-//W3C//ENTITIES XHTML+RDFa Document Model 1.1//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-model-2.mod" >
<!-- Modular Framework Module (required) -->
<!ENTITY % xhtml-framework.module "INCLUDE" >
<![%xhtml-framework.module;[
<!ENTITY % xhtml-framework.mod
 PUBLIC "-//W3C//ENTITIES XHTML Modular Framework 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-framework-1.mod" >
%xhtml-framework.mod;]]>
<!-- Post-Framework Redeclaration placeholder -->
<!-- this serves as a location to insert markup declarations
 into the DTD following the framework declarations.
-->
<!ENTITY % xhtml-postfw-redecl.module "IGNORE" >
<!ENTITY % xhtml-postfw-redecl.mod "">
<![%xhtml-postfw-redecl.module;[
%xhtml-postfw-redecl.mod;
<!-- end of xhtml-postfw-redecl.module -->]]>
<!-- Text Module (Required) -->
<!ENTITY % xhtml-text.module "INCLUDE" >
<![%xhtml-text.module;[
<!ENTITY % xhtml-text.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Text 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-text-1.mod" >
%xhtml-text.mod;]]>
<!-- Hypertext Module (required) -->
<!ENTITY % a.attlist "IGNORE" >
<!ENTITY % xhtml-hypertext.module "INCLUDE" >
<![%xhtml-hypertext.module;[
<!ENTITY % xhtml-hypertext.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Hypertext 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-hypertext-1.mod" >
%xhtml-hypertext.mod;]]>
<!ATTLIST %a.qname;
 %Common.attrib;
 charset %Charset.datatype; #IMPLIED
 type %ContentType.datatype; #IMPLIED
 hreflang %LanguageCode.datatype; #IMPLIED
 accesskey %Character.datatype; #IMPLIED
 tabindex %Number.datatype; #IMPLIED
>
<!-- Lists Module (required) -->
<!ENTITY % xhtml-list.module "INCLUDE" >
<![%xhtml-list.module;[
<!ENTITY % xhtml-list.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Lists 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-list-1.mod" >
%xhtml-list.mod;]]>
<!-- ::: -->
<!-- Edit Module .. -->
<!ENTITY % xhtml-edit.module "INCLUDE" >
<![%xhtml-edit.module;[
<!ENTITY % xhtml-edit.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Editing Elements 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-edit-1.mod" >
%xhtml-edit.mod;]]>
<!-- BIDI Override Module -->
<!ENTITY % xhtml-bdo.module "%XHTML.bidi;" >
<![%xhtml-bdo.module;[
<!ENTITY % xhtml-bdo.mod
 PUBLIC "-//W3C//ELEMENTS XHTML BIDI Override Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-bdo-1.mod" >
%xhtml-bdo.mod;]]>
<!-- Ruby Module .. -->
<!ENTITY % Ruby.common.attlists "INCLUDE" >
<!ENTITY % Ruby.common.attrib "%Common.attrib;" >
<!ENTITY % xhtml-ruby.module "INCLUDE" >
<![%xhtml-ruby.module;[
<!ENTITY % xhtml-ruby.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Ruby 1.0//EN"
 "http://www.w3.org/TR/ruby/xhtml-ruby-1.mod" >
%xhtml-ruby.mod;]]>
<!-- Presentation Module .. -->
<!ENTITY % xhtml-pres.module "INCLUDE" >
<![%xhtml-pres.module;[
<!ENTITY % xhtml-pres.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Presentation 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-pres-1.mod" >
%xhtml-pres.mod;]]>
<!ENTITY % link.attlist "IGNORE" >
<!-- Link Element Module .. -->
<!ENTITY % xhtml-link.module "INCLUDE" >
<![%xhtml-link.module;[
<!ENTITY % xhtml-link.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Link Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-link-1.mod" >
%xhtml-link.mod;]]>
<!ATTLIST %link.qname;
 %Common.attrib;
 charset %Charset.datatype; #IMPLIED
 hreflang %LanguageCode.datatype; #IMPLIED
 type %ContentType.datatype; #IMPLIED
 media %MediaDesc.datatype; #IMPLIED
>
<!-- Document Metainformation Module -->
<!ENTITY % meta.attlist "IGNORE" >
<!ENTITY % xhtml-meta.module "INCLUDE" >
<![%xhtml-meta.module;[
<!ENTITY % xhtml-meta.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Metainformation 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-meta-1.mod" >
%xhtml-meta.mod;]]>
<!ATTLIST %meta.qname;
	 %Common.attrib;
 http-equiv NMTOKEN #IMPLIED
 name NMTOKEN #IMPLIED
 scheme CDATA #IMPLIED
>
<!-- Base Element Module .. -->
<!ENTITY % xhtml-base.module "INCLUDE" >
<![%xhtml-base.module;[
<!ENTITY % xhtml-base.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Base Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-base-1.mod" >
%xhtml-base.mod;]]>
<!-- Scripting Module ... -->
<!ENTITY % script.attlist "IGNORE" >
<!ENTITY % xhtml-script.module "INCLUDE" >
<![%xhtml-script.module;[
<!ENTITY % xhtml-script.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Scripting 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-script-1.mod" >
%xhtml-script.mod;]]>
<!ATTLIST %script.qname;
 %XHTML.xmlns.attrib;
	 %id.attrib;
 %Metainformation.attrib;
 href %URI.datatype; #IMPLIED
 xml:space (preserve) #FIXED 'preserve'
 charset %Charset.datatype; #IMPLIED
 type %ContentType.datatype; #REQUIRED
 src %URI.datatype; #IMPLIED
 defer (defer) #IMPLIED
>
<!-- Style Sheets Module ... -->
<!ENTITY % style.attlist "IGNORE" >
<!ENTITY % xhtml-style.module "INCLUDE" >
<![%xhtml-style.module;[
<!ENTITY % xhtml-style.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Style Sheets 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-style-1.mod" >
%xhtml-style.mod;]]>
<!ATTLIST %style.qname;
 %XHTML.xmlns.attrib;
 %id.attrib;
 %title.attrib;
 %I18n.attrib;
 %Metainformation.attrib;
 href %URI.datatype; #IMPLIED
 xml:space (preserve) #FIXED 'preserve'
 type %ContentType.datatype; #REQUIRED
 media %MediaDesc.datatype; #IMPLIED
>
<!-- Image Module ... -->
<!ENTITY % xhtml-image.module "INCLUDE" >
<![%xhtml-image.module;[
<!ENTITY % xhtml-image.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Images 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-image-1.mod" >
%xhtml-image.mod;]]>
<!-- Client-side Image Map Module -->
<!ENTITY % area.attlist "IGNORE" >
<!ENTITY % xhtml-csismap.module "INCLUDE" >
<![%xhtml-csismap.module;[
<!ENTITY % xhtml-csismap.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Client-side Image Maps 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-csismap-1.mod" >
%xhtml-csismap.mod;]]>
<!ATTLIST %area.qname;
 %Common.attrib;
 shape %Shape.datatype; 'rect'
 coords %Coords.datatype; #IMPLIED
 nohref (nohref) #IMPLIED
 alt %Text.datatype; #REQUIRED
 tabindex %Number.datatype; #IMPLIED
 accesskey %Character.datatype; #IMPLIED
>
<!-- Server-side Image Map Module -->
<!ENTITY % xhtml-ssismap.module "INCLUDE" >
<![%xhtml-ssismap.module;[
<!ENTITY % xhtml-ssismap.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Server-side Image Maps 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-ssismap-1.mod" >
%xhtml-ssismap.mod;]]>
<!-- Param Element Module -->
<!ENTITY % param.attlist "IGNORE" >
<!ENTITY % xhtml-param.module "INCLUDE" >
<![%xhtml-param.module;[
<!ENTITY % xhtml-param.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Param Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-param-1.mod" >
%xhtml-param.mod;]]>
<!ATTLIST %param.qname;
 %XHTML.xmlns.attrib;
 %id.attrib;
 %Metainformation.attrib;
 href %URI.datatype; #IMPLIED
 name CDATA #REQUIRED
 value CDATA #IMPLIED
 valuetype (data | ref | object) 'data'
 type %ContentType.datatype; #IMPLIED
>
<!-- Embedded Object Module -->
<!ENTITY % xhtml-object.module "INCLUDE" >
<![%xhtml-object.module;[
<!ENTITY % xhtml-object.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Embedded Object 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-object-1.mod" >
%xhtml-object.mod;]]>
<!-- Tables Module ... -->
<!ENTITY % xhtml-table.module "INCLUDE" >
<![%xhtml-table.module;[
<!ENTITY % xhtml-table.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Tables 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-table-1.mod" >
%xhtml-table.mod;]]>
<!-- Forms Module ... -->
<!ENTITY % xhtml-form.module "INCLUDE" >
<![%xhtml-form.module;[
<!ENTITY % xhtml-form.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Forms 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-form-1.mod" >
%xhtml-form.mod;]]>
<!-- Target Attribute Module -->
<!ENTITY % xhtml-target.module "INCLUDE" >
<![%xhtml-target.module;[
<!ENTITY % xhtml-target.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Target 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-target-1.mod" >
%xhtml-target.mod;]]>
<!-- Legacy Markup ... -->
<!ENTITY % xhtml-legacy.module "IGNORE" >
<![%xhtml-legacy.module;[
<!ENTITY % xhtml-legacy.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Legacy Markup 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-legacy-1.mod" >
%xhtml-legacy.mod;]]>
<!-- Document Structure Module (required) -->
<!ENTITY % html.attlist "IGNORE" >
<!ENTITY % head.attlist "IGNORE" >
<!ENTITY % title.attlist "IGNORE" >
<!ENTITY % xhtml-struct.module "INCLUDE" >
<![%xhtml-struct.module;[
<!ENTITY % xhtml-struct.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Document Structure 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-struct-1.mod" >
%xhtml-struct.mod;]]>
<!ENTITY % XHTML.version.attrib
 "version %FPI.datatype; #FIXED '%XHTML.version;'"
>
<!ATTLIST %html.qname;
	 %Common.attrib;
 %XSI.schemaLocation.attrib;
 %XHTML.version.attrib;
>
<!ATTLIST %head.qname;
	 %Common.attrib;
>
<!ATTLIST %title.qname;
 %Common.attrib;
>
<!-- end of XHTML-RDFa DTD .. -->
<!-- ... -->

B.4

SGML
Open
Catalog
Entry
for
XHTML+RDFa

This
section
contains
the
SGML
Open
Catalog-format
definition
[

SGML-CATALOG

]
of
the
public
identifiers
for
XHTML+RDFa
1.1.

You can download this version of this file from DTD/xhtml-rdfa.cat. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-rdfa.cat.

-- .. --
-- File catalog .. --
-- XHTML+RDFa Catalog Data File
 Revision: $Revision: 1.1 $

 See "Entity Management", SGML Open Technical Resolution 9401 for detailed
 information on supplying and using catalog data. This document is available
 from OASIS at URL:
 <http://www.oasis-open.org/html/tr9401.html>
--
-- .. --
-- SGML declaration associated with XHTML --
OVERRIDE YES
SGMLDECL "xml1.dcl"
-- :: --
-- XHTML+RDFa modules .. --
PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN" "xhtml-rdfa-2.dtd"
PUBLIC "-//W3C//ENTITIES XHTML+RDFa Document Model 1.1//EN" "xhtml-rdfa-model-2.mod"
PUBLIC "-//W3C//ENTITIES XHTML MetaAttributes 1.1//EN" "xhtml-metaAttributes-2.mod"
-- End of catalog data ... --
-- .. --

C.

Deployment
Advice

This
section
is
non-normative.

Documents
written
using
the
markup
language
defined
in
this
specification
can
be
validated
using
the
DTD
defined
in

Appendix
B
.
If
a
document
author
wants
to
facilitate
such
validation,
they
may
include
the
following
declaration
at
the
top
of
their
document:

Example 2
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN"
"http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd">

The
XML
Namespace
document
associated
with
the
XHTML
Family
of
markup
languages
uses
the
mechanism
for
transforming
XHTML+RDFa
documents
into
RDF
as
defined
by
[

GRDDL

].
Authors
who
want
to
be
certain
their
documents
are
transformable
by
all
[

GRDDL

]
processors
may
also
include
a

profile

attribute
on
the

head

element
that
includes
a
reference
to
the
RDFa
Initial
Context
IRI

http://www.w3.org/2011/rdfa-context/xhtml-rdfa-1.1
.

D.

Change
History

This
section
is
non-normative.

2010-02-25:
First
version
of
the
split-out
XHTML
specialization.

E.

Acknowledgments

This
section
is
non-normative.

At
the
time
of
publication,
the
members
of
the
RDFa
Working
Group
were:

		
Stéphane
Corlosquet,
MIND
Center
for
Interdisciplinary
Informatics

		
Ivan
Herman,

W3C

		
Gregg
Kellogg
(Invited
Expert)

		
Niklas
Lindström
(Invited
Expert)

		
Shane
McCarron,
Applied
Testing
and
Technology,
Inc.
(Invited
Expert)

		
Steven
Pemberton,
Centre
for
Mathematics
and
Computer
Science
(CWI)

		
Manu
Sporny,
Digital
Bazaar
(Chair,
Invited
Expert)

F.

References

F.1

Normative
references

		
[HTML5]

		
Ian
Hickson;
Robin
Berjon;
Steve
Faulkner;
Travis
Leithead;
Erika
Doyle
Navara;
Edward
O'Connor;
Silvia
Pfeiffer.

HTML5

.
28
October
2014.
W3C
Recommendation.
URL:

http://www.w3.org/TR/html5/

		
[RDFA-CORE]

		
Shane
McCarron
et
al.

RDFa
Core
1.1
-
Third
Edition:
Syntax
and
processing
rules
for
embedding
RDF
through
attributes
.
17
March
2015.

W3C
Recommendation.
URL:

http://www.w3.org/TR/rdfa-core/

		
[RFC2119]

		
S.
Bradner.

Key
words
for
use
in
RFCs
to
Indicate
Requirement
Levels

.
March
1997.
Best
Current
Practice.
URL:

https://tools.ietf.org/html/rfc2119

		
[RFC3236]

		
M.
Baker;
P.
Stark.

The
'application/xhtml+xml'
Media
Type

.
January
2002.
Informational.
URL:

https://tools.ietf.org/html/rfc3236

		
[RUBY]

		
Marcin
Sawicki;
Michel
Suignard;
Masayasu
Ishikawa;
Martin
Dürst;
Tex
Texin
et
al.

Ruby
Annotation

.
31
May
2001.
W3C
Recommendation.
URL:

http://www.w3.org/TR/ruby/

		
[XHTML-MODULARIZATION11-2e]

		
Shane
McCarron
et
al.

XHTML™
Modularization
1.1
-
Second
Edition

.
29
July
2010.
W3C
Recommendation.
URL:

http://www.w3.org/TR/2010/REC-xhtml-modularization-20100729

		
[XHTML11-2e]

		
Shane
McCarron;
Masayasu
Ishikawa.

XHTML™
1.1
-
Module-based
XHTML
-
Second
Edition

.
23
November
2010.
W3C
Recommendation.
URL:

http://www.w3.org/TR/2010/REC-xhtml11-20101123

		
[XML-NAMES11]

		
Tim
Bray;
Dave
Hollander;
Andrew
Layman;
Richard
Tobin
et
al.

Namespaces
in
XML
1.1
(Second
Edition)

.
16
August
2006.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xml-names11/

		
[XMLSCHEMA11-2]

		
David
Peterson;
Sandy
Gao;
Ashok
Malhotra;
Michael
Sperberg-McQueen;
Henry
Thompson;
Paul
V.
Biron
et
al.

W3C
XML
Schema
Definition
Language
(XSD)
1.1
Part
2:
Datatypes

.
5
April
2012.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xmlschema11-2/

F.2

Informative
references

		
[GRDDL]

		
Dan
Connolly.

Gleaning
Resource
Descriptions
from
Dialects
of
Languages
(GRDDL)

.
11
September
2007.
W3C
Recommendation.
URL:

http://www.w3.org/TR/grddl/

		
[RDFA-SYNTAX]

		
Ben
Adida;
Mark
Birbeck;
Shane
McCarron;
Steven
Pemberton
et
al.

RDFa
in
XHTML:
Syntax
and
Processing
.
14
October
2008.
W3C
Recommendation.
URL:

http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014

		
[SGML-CATALOG]

		
Paul
Grosso.

Entity
Management:
OASIS
Technical
Resolution
9401:1997
(Amendment
2
to
TR
9401)

10
september
1007.
Entity
Management
Subcommittee,
SGML
Open.
URL:

https://www.oasis-open.org/html/a401.htm

		
[XHTML-MEDIA-TYPES]

		
Shane
McCarron.

XHTML
Media
Types
-
Second
Edition

.
16
January
2009.
W3C
Note.
URL:

http://www.w3.org/TR/xhtml-media-types

rdfa-primer/diagrams/title-and-author.png
<http:lexample.com/alice/postsftrouble_with_bob>

<http:fipur orgldcermsile>

<http:ipurl orgldcfterms/created>

N\

“The Trouble with Bob" 2011-09-10"

StyleSheets/TR/logo-CR.png
UONEPUSWWIODY EPIPUED) DEAA

rdfa-primer/alice-example.xhtml

 Alice’s Blog

	
	
		[image: get metadata in RDF Turtle]
	
	

	 		
		
			Alice Birpemswick,

		 Email: alice@example.com,

		 Phone: +1 617.555.7332.

		 My buddies:

		
		
			 		Bob

			 		Eve

			 		Manu

		

	

	
		
			 The trouble with Bob

			 Date: 10th of September, 2011

			 Alice

			 The trouble with Bob is that he takes much better photos than I do:

			
			
				 [image: sunset]
				 Beautiful Sunset by Bob.

			
		
		

	
		
			 Jo’s Barbecue

			 Date: 14th of September, 2011

			 Eve

			 …

		
	

		
			 I will post my photos nevertheless…

			 Date: 15th of September, 2011

			 Alice

			 …

		
	
	

	

 	
 		The content on this site is licensed under a
		Creative Commons License
		©2011 Alice Birpemswick.

	

		

rdfa-primer/diagrams/blog-with-foaf.png
<hitpexampie.comalicalposisirouble _with_bob>

deiite

v .

“The Troubie with Bob"
_blanknode TYPE () foafPerson

foatphone

p— \o

<tel+1.617-655.7332>
foatname.

<maito:aice@example.com>

“Alco Bipemsuick’

rdfa-primer/diagrams/type.png
_tlanknodet

witpe ————»() foatPerson

rdfa-primer/diagrams/multiple-blog-entries.png
<hto:lexample.comlalice/posts/irouble_with_bob> <htp:lexample. comvalicelpostsjos_barbecue>

it rgictomsnie> Er—
<http:lpur org/dcfterms/creator> / <http:ipur org/dchermscreator>
<http:/fpurl ovg/dc/l&ms/cm!e&

<hipipur. org/udwnﬂs/malsd>

“The Trouiie with Bob™ “2011-08-10" “Alis” “Joa's s:m» “201wa r “Eve"

rdfa-primer/diagrams/presentation-vs-semantics.png
Headline
Subheadline
ltalics

ot ottt ot et ot ettt -

ot ottt ot et o ettt -
ot ot o e ot e ot 0ot
ot ot et ot e ot et sttt

Lokt Lz Loss
Lo

Title
Author
Publication Date

ariceconant aic contert ricta contnt
Srics canant arie conten rtcle contnt
Srice conent arioe conten rtela content
o conont aric conten il contont
riceconntaric contert it contont

oot Tag2 Tagd
Copuriat Lcense

rdfa-primer/diagrams/social-network.png
_blanknodet

TIPE 0 foatPorson

foatphons

T

foatknows

foafknows. foatmaitox <ol +1-617-555-7332>
 smeioases tname \b
o LR ——
rae
oz e
/ pae “Alice Birpemswick
= <
e o
7 trenmen ot i
e e e
oo
-
e
tren
trane

/" tatromepsss

“Many" \b

<ntpiiexamgle comimanu>

Icons/SW/Buttons/sw-rdfa-gray.png

StyleSheets/TR/logo-CG-Note.png

rdfa-lite/diff-20150317.xhtml

[image: W3C]

RDFa
Lite
1.1
-
Second
Edition

W3C

Recommendation
07
June
2012

17
March
2015

		
This
version:

		
http://www.w3.org/TR/2012/REC-rdfa-lite-20120607/

http://www.w3.org/TR/2015/REC-rdfa-lite-20150317/

		
Latest
published
version:

		

http://www.w3.org/TR/rdfa-lite/

		
Implementation
report:

		
http://www.w3.org/2010/02/rdfa/wiki/CR-ImplementationReport

		
Previous
version:

		
http://www.w3.org/TR/2012/PR-rdfa-lite-20120508/

http://www.w3.org/TR/2014/PER-rdfa-lite-20141216/

		
Previous
Recommendation:

		

http://www.w3.org/TR/2012/REC-rdfa-lite-20120607/

		
Editor:

		

Manu
Sporny
,

Digital
Bazaar,
Inc.

Please
refer
to

check

the

errata

for
this
document,
which
may
include
some
normative
corrections.

any
errors
or
issues
reported
since
publication.

This
document
is
also
available
in
these

this

non-normative
formats:
Diff
from
Proposed
Recommendation
,
PostScript
version
,
and
PDF

format:

diff
to
previous

version
.

The
English
version
of
this
specification
is
the
only
normative
version.
Non-normative

translations

may
also
be
available.

Copyright

©
2012

2015

W3C

®

(

MIT

,

ERCIM

,

Keio
,

Beihang

),
All
Rights
Reserved.

).

W3C

liability
,

trademark

and

document
use

rules
apply.

Abstract

RDFa
Lite
is
a
minimal
subset
of
RDFa,
the
Resource
Description
Framework
in
attributes,
consisting
of
a
few
attributes
that
may
be
used
to
express
machine-readable
data
in
Web
documents
like
HTML,
SVG,
and
XML.
While
it
is
not
a
complete
solution
for
advanced
data
markup
tasks,
it
does
work
for
most
day-to-day
needs
and
can
be
learned
by
most
Web
authors
in
a
day.

Status
of
This
Document

This
section
describes
the
status
of
this
document
at
the
time
of
its
publication.
Other
documents
may
supersede
this
document.
A
list
of
current

W3C

publications
and
the
latest
revision
of
this
technical
report
can
be
found
in
the

W3C

technical
reports
index

at
http://www.w3.org/TR/.

This
document
has
been
reviewed
by
W3C
Members,
by
software
developers,
and
by
other
W3C
groups
and
interested
parties,
and

is
endorsed
by

an
Editorial
Revision
of

the
Director
as
a

Recommendation
published
on
the
7th
of
June,
2012
.
See

the
separate
section

for
the
changes.

W3C
Recommendation.
It

is
a
stable
document
and
may
be
used
as
reference
material
or
cited
from
another
document.
W3C
's
role

expected
to
address

errata

in
making
the

a
future
Edited

Recommendation
of
RDFa
1.1
Lite.
The
current
Document
Conformance
section

is
not
explicit
about
some
conformance
expectations
that
appear
in
non-normative
sections,
specifically

to
draw
attention

require
RDFa
Lite
attributes

to
the
specification
and

be
conformant

to
promote
its
widespread
deployment.
This
enhances
the
functionality

RDFa
Core
1.1

and
interoperability

to
pre-define
a
number

of
the
Web.

prefixes
per
RDFa
Core
1.1.

This
document
is
the
culmination
of
a
series
of
discussions
between
the
World
Wide
Web
Consortium,
including
the
RDF
Web
Applications

RDFa

Working
Group,
the
Vocabularies
Community
Group,
the
HTML
Working
Group,
and
the
sponsors
of
the

schema.org

initiative,
including
Google,
Yahoo!,
Microsoft,
and
Yandex.
It
has
recieved

received

review
from
representatives
in
these
organizations
and
enjoys
consensus
at
this
point
in
time.
There
were
no
changes
made
during
the
Proposed
Recommendation
period.
The

implementation
report

used
by
the
director
to
transition
to
Recommendation
has
been
made
available.

This
document
was
published
by
the

W3C
RDF
Web
Applications

RDFa

Working
Group

as
a
Recommendation.
If
you
wish
to
make
comments
regarding
this
document,
please
send
them
to

public-rdfa@w3.org

(

subscribe
,

archives

).
All
feedback
is

comments
are

welcome.

Please
see
the
Working
Group's

implementation
report
.

This
document
has
been
reviewed
by

W3C

Members,
by
software
developers,
and
by
other

W3C

groups
and
interested
parties,
and
is
endorsed
by
the
Director
as
a

W3C

Recommendation.
It
is
a
stable
document
and
may
be
used
as
reference
material
or
cited
from
another
document.

W3C

's
role
in
making
the
Recommendation
is
to
draw
attention
to
the
specification
and
to
promote
its
widespread
deployment.
This
enhances
the
functionality
and
interoperability
of
the
Web.

This
document
was
produced
by
a
group
operating
under
the

5
February
2004

W3C

Patent
Policy
.

W3C

maintains
a

public
list
of
any
patent
disclosures

made
in
connection
with
the
deliverables
of
the
group;
that
page
also
includes
instructions
for
disclosing
a
patent.
An
individual
who
has
actual
knowledge
of
a
patent
which
the
individual
believes
contains

Essential
Claim(s)

must
disclose
the
information
in
accordance
with

section
6
of
the

W3C

Patent
Policy
.

This
document
is
governed
by
the

14
October
2005

W3C

Process
Document
.

Table
of
Contents

		

1.

Introduction

		

2.

The
Attributes

		

2.1

vocab,
typeof,
and
property

		

2.2

resource

		

2.3

prefix

		

3.

Conformance

		

3.1

Document
Conformance

		

4.

Change
History
Since
the
Last
Published
Recommentation

		

A.

References

		

A.1

Normative
references

		

A.2

Informative
references

1.

Introduction

This
section
is
non-normative.

The
full
RDFa
syntax
[

RDFA-CORE

rdfa-core

]
provides
a
number
of
basic
and
advanced
features
that
enable
authors
to
express
fairly
complex
structured
data,
such
as
relationships
among
people,
places,
and
events
in
an
HTML
or
XML
document.
Some
of
these
advanced
features
may
make
it
difficult
for
authors,
who
may
not
be
experts
in
structured
data,
to
use
RDFa.
This
lighter
version
of
RDFa
is
a
gentler
introduction
to
the
world
of
structured
data,
intended
for
authors
that
want
to
express
fairly
simple
data
in
their
web
pages.
The
goal
is
to
provide
a
minimal
subset
that
is
easy
to
learn
and
will
work
for
80%
of
authors
doing
simple
data
markup.

2.

The
Attributes

This
section
is
non-normative.

RDFa
Lite
consists
of
five
simple
attributes;

vocab
,

typeof
,

property
,

resource
,
and

prefix
.
RDFa
1.1
Lite
is
completely
upwards
compatible
with
the
full
set
of
RDFa
1.1
attributes.
This
means
that
if
an
author
finds
that
RDFa
Lite
isn't
powerful
enough,
transitioning
to
the
full
version
of
RDFa
is
just
a
matter
of
adding
the
more
powerful
RDFa
attributes
into
the
existing
RDFa
Lite
markup.

2.1

vocab,
typeof,
and
property

RDFa,
like
Microformats
[

MICROFORMATS

microformats

]
and
Microdata
[

MICRODATA

microdata

],
enables
us
to
talk
about

things

on
the
Web
such
that
a
machine
can
understand
what
we
are
saying.
Typically
when
we
talk
about
a
thing,
we
use
a
particular

vocabulary

to
talk
about
it.
So,
if
you
wanted
to
talk
about
People,
the
vocabulary
that
you
would
use
would
specify
terms
like

name

and

telephone
number
.
When
we
want
to
mark
up
things
on
the
Web,
we
need
to
do
something
very
similar,
which
is
specify
which
vocabulary
that
we
are
going
to
be
using.
Here
is
a
simple
example
that
specifies
a
vocabulary
that
we
intend
to
use
to
markup
things
in
the
paragraph:

 >
 My name is Manu Sporny and you can give me a ring via 1-800-555-0199.

 Example 1
<p vocab="http://schema.org/">
 My name is Manu Sporny and you can give me a ring via 1-800-555-0199.

</p>

In
this
example
we
have
specified
that
we
are
going
to
be
using
the

vocabulary

that
can
be
found
at

http://schema.org/
.
This
is
a
vocabulary
that
has
been
released
by
major
search
engine
companies
to
talk
about
common
things
on
the
Web
that
Search
Engines
care
about
–
things
like
People,
Places,
Reviews,
Recipes,
and
Events.
Once
we
have
specified
the
vocabulary,
we
need
to
specify
the

type
of

the
thing
that
we're
talking
about.
In
this
particular
case
we
are
talking
about
a
Person,
which
can
be
marked
up
like
so:

 >
 My name is Manu Sporny and you can give me a ring via 1-800-555-0199.

 Example 2
<p vocab="http://schema.org/" typeof="Person">
 My name is Manu Sporny and you can give me a ring via 1-800-555-0199.

</p>

Now
all
we
need
to
do
is
specify
which

properties

of
that
person
we
want
to
point
out
to
the
search
engine.
In
the
following
example,
we
mark
up
the
person's
name,
phone
number
and
web
page.
Both
text
and
URLs
can
be
marked
up
with
RDFa
Lite.
In
the
following
example,
pay
particular
attention
to
the
types
of
data
that
are
being
pointed
out
to
the
search
engine,
which
are
highlighted
in
blue:

 <p vocab="http://schema.org/" typeof="Person">
 My name is
 <span
 and you can give me a ring via
 <span
 or visit
 <a ">my homepage.

 Example 3
<p vocab="http://schema.org/" typeof="Person">
 My name is
 Manu Sporny
 and you can give me a ring via
 1-800-555-0199
 or visit
 my homepage.

</p>

Now,
when
somebody
types
in
“phone
number
for
Manu
Sporny”
into
a
search
engine,
the
search
engine
can
more
reliably
answer
the
question
directly,
or
point
the
person
searching
to
a
more
relevant
Web
page.

2.2

resource

If
you
want
Web
authors
to
be
able
to
talk

about

each
thing
on
your
page,
you
need
to
create
an
identifier
for
each
of
these
things.
Just
like
we
create
identifiers
for
parts
of
a
page
using
the

id

attribute
in
HTML,
you
can
create
identifiers
for
things
described
on
a
page
using
the

resource

attribute:

 typeof="Person">
 My name is
 Manu Sporny
 and you can give me a ring via
 1-800-555-0199.

 Example 4
<p vocab="http://schema.org/" resource="#manu" typeof="Person">
 My name is
 Manu Sporny
 and you can give me a ring via
 1-800-555-0199.

</p>

If
we
assume
that
the
markup
above
can
be
found
at

http://example.org/people
,
then
the
identifier
for
the
thing
is
the
address,
plus
the
value
in
the

resource

attribute.
Therefore,
the
identifier
for
the
thing
on
the
page
would
be:

http://example.org/people#manu
.
This
identifier
is
also
useful
if
you
want
to
talk
about
that
same
thing
on
another
Web
page.
By
identifying
all
things
on
the
Web
using
a
unique
Uniform
Resource
Locator
(URL),
we
can
start
building
a
Web
of
things.
Companies
building
software
for
the
Web
can
use
this
Web
of
things
to
answer
complex
questions
like:
"What

"What

is
Manu
Sporny's
phone
number
and
what
does
he
look
like?".

like?".

2.3

prefix

In
some
cases,
a
vocabulary
may
not
have
all
of
the
terms
an
author
needs
when
describing
their

thing
.
The
last
feature
in
RDFa
1.1
Lite
that
some
authors
might
need
is
the
ability
to
specify
more
than
one
vocabulary.
For
example,
if
we
are
describing
a
Person
and
we
need
to
specify
that
they
have
a
favorite
animal,
we
could
do
something
like
the
following:

 resource="#manu" typeof="Person">
 My name is
 Manu Sporny
 and you can give me a ring via
 1-800-555-0199.

 My favorite animal is the <span .

 Example 5
<p vocab="http://schema.org/" prefix="ov: http://open.vocab.org/terms/" resource="#manu" typeof="Person">
 My name is
 Manu Sporny
 and you can give me a ring via
 1-800-555-0199.

 My favorite animal is the Liger.

</p>

The
example
assigns
a
short-hand
prefix
to
the
Open
Vocabulary
(

ov

)
and
uses
that
prefix
to
specify
the

preferredAnimal

vocabulary
term.
Since
schema.org
doesn't
have
a
clear
way
of
expressing
a
favorite
animal,
the
author
instead
depends
on
this
alternate
vocabulary
to
get
the
job
done.

RDFa
1.1
Lite
also
pre-defines
a
number
of

useful
and
popular
prefixes
,
such
as

dc
,

foaf
,
and

schema
.
This
ensures
that
even
if
authors
forget
to
declare
the
popular
prefixes,
that
their
structured
data
will
continue
to
work.
A
full
list
of
pre-declared
prefixes
can
be
found
in
the

initial
context
document
for
RDFa
1.1
.

If
you
would
like
to
learn
more
about
what
is
possible
with
RDFa
Lite,
including
an
introduction
to
the
data
model,
please
read
the
section
on
RDFa
Lite
in
the
RDFa
Primer
[

RDFA-PRIMER

rdfa-primer

].

3.

Conformance

As
well
as
sections
marked
as
non-normative,
all
authoring
guidelines,
diagrams,
examples,
and
notes
in
this
specification
are
non-normative.
Everything
else
in
this
specification
is
normative.

The
key
words
must
,
must
not
,
required
,
should
,
should
not

MAY

,
recommended

MUST

,
may

MUST
NOT

,
and
optional

SHOULD

in
this
specification

are
to
be
interpreted
as
described
in
[

RFC2119

].

3.1

Document
Conformance

In
order
for
a
document
to
be
labeled
as
a
conforming

RDFa
Lite
1.1
document
:

		
It
must

MUST

only
require
the
facilities
described
as
mandatory
in
its
Host
Language.

		
It
must
not

MUST
NOT

use
any
additional
RDFa
attributes
other
than

vocab
,

typeof
,

property
,

resource
,
and

prefix

;
it
may
also
use

href

and

src
,
when
the
Host
Language
authorizes
the
usage
of
those
attributes.
However,
even
if
authorized
by
the
Host
Language,
the
usage
of

rel

and

rev

should

SHOULD

be
restricted
to
non-RDFa
usage
patterns,
as
defined
by
the
Host
Language.

		
All
RDFa
attributes
should

SHOULD

be
used
in
a
way
that
is
conformant
with
[

RDFA-CORE

rdfa-core

].

		
In
XML-based
languages,
a
document
may

MAY

still
be
labeled
as
a
conforming
RDFa
Lite
1.1
document
as
long
as
the
usage
of
the

xmlns

attribute
is
not
used
to
declare
CURIE
prefixes.

If
additional
non-RDFa
Lite
attributes
are
used
from
the
RDFa
Core
1.1
specification,
the
document
must

MUST

be
referred
to
as
a
conforming

RDFa
1.1
document
.
All
conforming
RDFa
Lite
1.1
documents
may

MAY

be
referred
to
as
conforming
RDFa
1.1
documents.

4.

Change
History
Since
the
Last
Published
Recommentation

This
section
is
non-normative.

2014-12-16:
Two
grammatical
errors
have
been
changed
in
the
Status
Section

2014-12-16:
References
to
the
other
RDFa
documents
have
been
updated

2014-12-16:
The
style
of
the
references
have
been
updated
to
the
latest

respec

style

A.

References

A.1

Normative
references
[RDFA-CORE]
Shane
McCarron;
et
al.

RDFa
Core
1.1:
Syntax
and
processing
rules
for
embedding
RDF
through
attributes.

7
June
2012.
W3C
Recommendation.
URL:
http://www.w3.org/TR/2012/REC-rdfa-core-20120607/

		
[RFC2119]

		
S.
Bradner.

Key
words
for
use
in
RFCs
to
Indicate
Requirement
Levels.

Levels

.
March
1997.
Internet
RFC
2119.

Best
Current
Practice.

URL:
http://www.ietf.org/rfc/rfc2119.txt

https://tools.ietf.org/html/rfc2119

		
[rdfa-core]

		
Ben
Adida;
Mark
Birbeck;
Shane
McCarron;
Ivan
Herman
et
al.

RDFa
Core
1.1
-
Third
Edition:
Syntax
and
processing
rules
for
embedding
RDF
through
attributes
.
17
March
2015.
W3C
Recommendation.
URL:

http://www.w3.org/TR/rdfa-core/

A.2

Informative
references

[MICRODATA]

		
[microdata]

		
Ian
Hickson.

HTML

Microdata

2011.

.
29
October
2013.

W3C
Working
Draft.

Note.

URL:

http://www.w3.org/TR/microdata/

[MICROFORMATS]

		
[microformats]

Tantek
Çelik;
et.
al.

		

Microformats

2011.
The
Microformats
Community.

.
URL:
http://microformats.org/about

http://microformats.org

[RDFA-PRIMER]

		
[rdfa-primer]

		
Ben
Adida,

Adida;

Ivan
Herman,

Herman;

Manu
Sporny.

Sporny;
Mark
Birbeck.

RDFa
Primer.
07
June
2012.

1.1
Primer
-
Third
Edition
.
17
March
2015.

W3C
Note.
URL:
http://www.w3.org/TR/2012/NOTE-rdfa-primer-20120607

http://www.w3.org/TR/rdfa-primer/

rdfa-primer/diagrams/blog-with-two-creators.png
<hitpfexample comalice/posts/irouble_with_bob>

TYPE —————»() schemaBlogPosing

docreator schemaarticieBody

dctite
schemarceator

“The Trouble with Bob “The troudle with Bob i that e
<hitpjexample.con/alcstme> takes much beter photos than

1do”

html-rdfa/diff-20150317.xhtml

[image: W3C]

HTML+RDFa
1.1
-
Second
Edition

Support
for
RDFa
in
HTML4
and
HTML5

W3C

Recommendation
22
August
2013

17
March
2015

		
This
version:

		
http://www.w3.org/TR/2013/REC-html-rdfa-20130822/

http://www.w3.org/TR/2015/REC-html-rdfa-20150317/

		
Latest
published
version:

		

http://www.w3.org/TR/html-rdfa/

		
Implementation
report:

		
http://www.w3.org/2010/02/rdfa/wiki/HTML5-ImplementationReport

		
Previous
version:

		
http://www.w3.org/TR/2013/PR-html-rdfa-20130625/

http://www.w3.org/TR/2014/PER-html-rdfa-20141216/

		
Test
suite:

Previous
Recommendation:

		
http://rdfa.info/test-suite/

http://www.w3.org/TR/2013/REC-html-rdfa-20130822/

		
Editor:

		

Manu
Sporny
,

Digital
Bazaar,
Inc.

		
Authors:

		

Shane
McCarron
,

Applied
Testing
and
Technology,
Inc.

		

Ben
Adida
,

Creative
Commons

		

Mark
Birbeck
,

Sidewinder
Labs

		

Gregg
Kellogg
,

Kellogg
Associates

		

Ivan
Herman
,

W3C

		

Steven
Pemberton
,

CWI

Please
refer
to

check

the

errata

for
this
document,
which
may
include
some
normative
corrections.

any
errors
or
issues
reported
since
publication.

This
document
is
also
available
in
this
non-normative
format:

diff
to
previous
version
.

The
English
version
of
this
specification
is
the
only
normative
version.
Non-normative

translations

may
also
be
available.

Copyright

©
2009-2013

2009-2015

W3C

®

(

MIT

,

ERCIM

,

Keio
,

Beihang

),
All
Rights
Reserved.

).

W3C

liability
,

trademark

and

document
use

rules
apply.

Abstract

This
specification
defines
rules
and
guidelines
for
adapting
the
RDFa
Core
1.1
and
RDFa
Lite
1.1
specifications
for
use
in
HTML5
and
XHTML5.
The
rules
defined
in
this
specification
not
only
apply
to
HTML5
documents
in
non-XML
and
XML
mode,
but
also
to
HTML4
and
XHTML
documents
interpreted
through
the
HTML5
parsing
rules.

Status
of
This
Document

This
section
describes
the
status
of
this
document
at
the
time
of
its
publication.
Other
documents
may
supersede
this
document.
A
list
of
current

W3C

publications
and
the
latest
revision
of
this
technical
report
can
be
found
in
the

W3C

technical
reports
index

at
http://www.w3.org/TR/.

This
document
has
been
reviewed
by
W3C
Members,
by
software
developers,
and
by
other
W3C
groups
and
interested
parties,
and

is
endorsed
by
the
Director
as
a
W3C
Recommendation.
It
is
a
stable
document
and
may
be
used
as
reference
material
or
cited
from
another
document.
W3C
's
role
in
making

an
Editorial
Revision
of

the

Recommendation
is
to
draw
attention
to
the
specification
and
to
promote
its
widespread
deployment.
This
enhances

published
on

the
functionality
and
interoperability

22nd

of
August,
2013
.
See

the
Web.

separate
section

for
the
changes.

This
specification
is
an
extension
to
the
HTML5
language.
All
normative
content
in
the
HTML5
specification,
unless
specifically
overridden
by
this
specification,
is
intended
to
be
the
basis
for
this
specification.

Note
There
are
two
features
in
this
specification,
@datetime
processing
and

The
specification

makes
use
of
the

rdf:HTML

literals,
that
are
currently
defined
as
non-normative
features.
The
intent

datatype
.
This
feature

is
that
these
features
will
eventually
become
normative
features
once

non-normative,
because

the
specification
that
describes

equality
of

the
@datetime
attribute
[

literal
values
depend
on
DOM4 [

HTML5

dom4

]
and
the

],
a

specification
that
defines
rdf:HTML
[
RDF-CONCEPTS
]
become

has
not
yet
reached

W3C

Recommendations.
Implementers
should
implement
these
features
now;
a
2nd
(or
later)
edition
of
this
specification
will
clarify
the
long-term
stability
of
those
features.
Based
on
the
discussion
between
the
RDFa
Working
Group,
the
HTML
Working
Group,
and

Recommendation
status.
See

the
RDF
Working
Group,
it
is
not
expected
that
implementation
changes
will
be
necessary
as
HTML5
and

relevant

RDF
1.1
advance
to
Recommendation.

specification [

rdf11-concepts

]
for
further
details.

A

sample
test
harness

is
available
for
software
developers.
This
set
of
tests
is
not
intended
to
be
exhaustive.
A

community-maintained
website

contains
more
information
on
further
reading,
developer
tools,
and
software
libraries
that
can
be
used
to
extract
and
process
RDFa
data
from
web
documents.
The
final
implementation
report
considered
by
the
Director
has
been
made
available
to
the
public.

This
document
was
published
by
the

RDFa
Working
Group

as
a
Recommendation.
If
you
wish
to
make
comments
regarding
this
document,
please
send
them
to

public-rdfa-wg@w3.org

(

subscribe
,

archives

).
All
comments
are
welcome.

Please
see
the
Working
Group's

implementation
report
.

This
document
has
been
reviewed
by

W3C

Members,
by
software
developers,
and
by
other

W3C

groups
and
interested
parties,
and
is
endorsed
by
the
Director
as
a

W3C

Recommendation.
It
is
a
stable
document
and
may
be
used
as
reference
material
or
cited
from
another
document.

W3C

's
role
in
making
the
Recommendation
is
to
draw
attention
to
the
specification
and
to
promote
its
widespread
deployment.
This
enhances
the
functionality
and
interoperability
of
the
Web.

This
document
was
produced
by
a
group
operating
under
the

5
February
2004

W3C

Patent
Policy
.

W3C

maintains
a

public
list
of
any
patent
disclosures

made
in
connection
with
the
deliverables
of
the
group;
that
page
also
includes
instructions
for
disclosing
a
patent.
An
individual
who
has
actual
knowledge
of
a
patent
which
the
individual
believes
contains

Essential
Claim(s)

must
disclose
the
information
in
accordance
with

section
6
of
the

W3C

Patent
Policy
.

This
document
is
governed
by
the

14
October
2005

W3C

Process
Document
.

Table
of
Contents

		

1.

Introduction

		

2.

Conformance

		

2.1

Document
Conformance

		

2.2

RDFa
Processor
Conformance

		

2.3

User
Agent
Conformance

		

3.

Extensions
to
RDFa
Core
1.1

		

3.1

Additional
RDFa
Processing
Rules

		

3.2

Modifying
the
Input
Document

		

3.3

Specifying
the
Language
for
a
Literal

		

3.4

Invalid
XMLLiteral
Values

		

3.5

Property
Copying

		

3.5.1

Implementing
Property
Copying

		

4.

Extensions
to
the
HTML5
Syntax

		

5.

Backwards
Compatibility

		

5.1

@xmlns:

-Prefixed
Attributes

		

5.2

Conformance
Criteria
for

@xmlns:

-Prefixed
Attributes

		

5.3

Preserving
Namespaces
via
Coercion
to
Infoset

		

5.4

Infoset-based
Processors

		

5.4.1

Extracting
URI
Mappings
from
Infosets

		

5.4.2

Processing
RDFa
Attributes

		

5.5

DOM
Level
1
and
Level
2-based
Processors

		

5.5.1

Extracting
URI
Mappings
via
DOM
Level
2

		

5.5.2

Processing
RDFa
Attributes

		

A.

About
this
Document

		

A.1

History

		

A.2

Change
History
Since
the
Last
Published
Recommendation

		

A.3

Acknowledgments

		

B.

References

		

B.1

Normative
references

		

B.2

Informative
references

1.

Introduction

This
section
is
non-normative.

Today's
web
is
built
predominantly
for
human
readers.
Even
as
machine-readable
data
begins
to
permeate
the
web,
it
is
typically
distributed
in
a
separate
file,
with
a
separate
format,
and
very
limited
correspondence
between
the
human
and
machine
versions.
As
a
result,
web
browsers
can
provide
only
minimal
assistance
to
humans
in
parsing
and
processing
web
pages:
browsers
only
see
presentation
information.
RDFa
is
intended
to
solve
the
problem
of
marking
up
machine-readable
data
in
HTML
documents.
RDFa
provides
a
set
of
HTML
attributes
to
augment
visual
data
with
machine-readable
hints.
Using
RDFa,
authors
may
turn
their
existing
human-visible
text
and
links
into
machine-readable
data
without
repeating
content.

2.

Conformance

As
well
as
sections
marked
as
non-normative,
all
authoring
guidelines,
diagrams,
examples,
and
notes
in
this
specification
are
non-normative.
Everything
else
in
this
specification
is
normative.

The
key
words

MAY
,

MUST
,

MUST
NOT
,
REQUIRED

RECOMMENDED

,

SHOULD
,
and

SHOULD
NOT
,
RECOMMENDED
,
MAY
,
and
OPTIONAL

in
this
specification

are
to
be
interpreted
as
described
in
[

RFC2119

].

2.1

Document
Conformance

There
are
two
types
of
document
conformance
criteria
for
HTML
documents
containing
RDFa
semantics;

HTML+RDFa

and

HTML+RDFa
Lite
.

The
following
conformance
criteria
apply
to
any
HTML
document
including
RDFa
markup:

		
All
document
conformance
requirements
stated
as
mandatory
in
the
HTML5
specification

MUST

be
met.

		
The
appropriate

Extensions
to
the
HTML5
Syntax
,
as
described
in
this
document,

MUST

be
considered
valid
and
conforming.
Note
that
there
are
fewer
supported
attributes
if
the
RDFa
Lite
syntax
[

RDFA-LITE

rdfa-lite

]
is
desired
over
the
more
advanced
set
of
RDFa
attributes
outlined
in
RDFa
Core.

		
All
HTML5
elements
and
attributes

SHOULD

be
used
in
a
way
that
conforms
to
[

HTML5

html5

].
All
RDFa
attributes

SHOULD

be
used
in
a
way
that
is
conforms
to
[

RDFA-CORE

rdfa-core

]
and
this
document.

An
example
of
a
conforming
HTML+RDFa
document,
with
the
RDFa
portions
highlighted
in
green:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Example Document</title>
 </head>
 <body >
 <p >
 Welcome to my <a >blog.
 </p>
 </body>

Example 1: Example of an HTML+RDFa 1.1 document
<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Example Document</title>
 </head>
 <body vocab="http://schema.org/">
 <p typeof="Blog">
 Welcome to my blog.
 </p>
 </body>

</html>

The
following
data
will
be
extracted
by
a
conforming
RDFa
processor,
shown
in
Turtle
format
[

TURTLE

turtle

]:
[] a <http://schema.org/Blog>;

Example 2: Turtle output of Example Document
[] a <http://schema.org/Blog>;
<http://schema.org/url>
<http://example.org/>
.

Non-XML
mode
HTML+RDFa
1.1
documents

SHOULD

be
labeled
with
the
Internet
Media
Type

text/html

as
defined
in

section
12.1

of
the
HTML5
specification
[

HTML5

html5

].

XML
mode
XHTML5+RDFa
1.1
documents

SHOULD

be
labeled
with
the
Internet
Media
Type

application/xhtml+xml

as
defined
in

section
12.3

of
the
HTML5
specification
[

HTML5

html5

],

MUST
NOT

use
a

DOCTYPE

declaration
for
XHTML+RDFa
1.0
or
XHTML+RDFa
1.1,
and

SHOULD
NOT

use
the

@version

attribute.

2.2

RDFa
Processor
Conformance

The
RDFa
processor
conformance
criteria
are
listed
below,
all
of
which
are
mandatory:

		
An
RDFa
processor

MUST

implement
all
of
the
mandatory
features
specified
in
the
RDFa
Core
1.1
specification
[

RDFA-CORE

rdfa-core

].

		
An
RDFa
processor

MUST

support
any
mandatory
features
described
in
this
specification.

2.3

User
Agent
Conformance

A
user
agent
is
considered
to
be
a
type
of
RDFa
processor
when
the
user
agent
stores
or
processes
RDFa
attributes
and
their
values.
The
reason
there
are
separate

RDFa
Processor
Conformance

and
a

User
Agent
Conformance

sections
is
because
one
can
be
a
valid
HTML5
RDFa
processor
but
not
a
valid
HTML5
user
agent
(for
example,
by
only
providing
a
very
small
subset
of
rendering
functionality).

The
user
agent
conformance
criteria
are
listed
below,
all
of
which
are
mandatory:

		
A
user
agent

MUST

conform
to
all
requirements
listed
in

Section
2.2:
Conformance
Requirements

of
the
HTML5
specification.

		
A
user
agent

MUST

implement
all
of
the
features
required
by
this
specification.

		
A
user
agent

MUST

implement
all
of
the
features
required
in
the
RDFa
Core
1.1
specification,
excluding
those
features
which
are
specifically
overridden
by
this
specification
as
detailed
in
the

Extensions
to
RDFa
Core
1.1
.

3.

Extensions
to
RDFa
Core
1.1

The
RDFa
Core
1.1
[

RDFA-CORE

rdfa-core

]
specification
is
the
base
document
on
which
this
specification
builds.
RDFa
Core
1.1
specifies
the
attributes
and
syntax,
in

Section
5:
Attributes
and
Syntax
,
and
processing
model,
in

Section
7:
Processing
Model
,
for
extracting
RDF
from
a
web
document.
This
section
specifies
changes
to
the
attributes
and
processing
model
defined
in
RDFa
Core
1.1
in
order
to
support
extracting
RDF
from
HTML
documents.

The
requirements
and
rules,
as
specified
in
RDFa
Core
and
further
extended
in
this
document,
apply
to
all
HTML5
documents.
An
RDFa
processor
operating
on
both
HTML
and
XHTML
documents,
specifically
on
their
resulting
DOMs
or
infosets,

MUST

apply
these
processing
rules
for
HTML4,
HTML5
and
XHTML5
serializations,
DOMs
and/or
infosets.

3.1

Additional
RDFa
Processing
Rules

Documents
conforming
to
the
rules
in
this
specification
are
processed
according
to
[

RDFA-CORE

rdfa-core

]
with
the
following
extensions:

		
The
default
vocabulary
URI
is
undefined.

		
HTML+RDFa
uses
an
additional
initial
context
by
default,

http://www.w3.org/2011/rdfa-context/html-rdfa-1.1
,
which
must
be
applied
after
the
initial
context
for
[

RDFA-CORE

rdfa-core

]
(

http://www.w3.org/2011/rdfa-context/rdfa-1.1

).

		
The

base

can
be
set
using
the

base

element.
For
XHTML5+RDFa
1.1
documents,

base

can
also
be
set
using
the

@xml:base

attribute.

		
The

current
language

can
be
set
using
either
the

@lang

or

@xml:lang

attributes.
When
the

@lang

attribute
and
the

@xml:lang

attribute
are
specified
on
the
same
element,
the

@xml:lang

attribute
takes
precedence.
When
both

@lang

and

@xml:lang

are
specified
on
the
same
element,
they

MUST

have
the
same
value.
Further
details
related
to
setting
the

current
language

can
be
found
in
section

3.3

Specifying
the
Language
for
a
Literal

.

		
When
determining
which
set
of
RDFa
processing
rules
to
use
for
documents
served
with
the

application/xhtml+xml

media
type,
a
conforming
RDFa
processor

MUST

look
at
the
value
in
the
DOCTYPE
declaration
of
the
document.
If
a
DOCTYPE
declaration
exists,
then
the
processing
rules
are:

		
XHTML1+RDFa
1.0
for
a
DOCTYPE
of

<!DOCTYPE
html
PUBLIC
"-//

W3C

//DTD
XHTML+RDFa
1.0//EN"
"http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">
,
or

		
XHTML1+RDFa
1.1
for
a
DOCTYPE
of

<!DOCTYPE
html
PUBLIC
"-//

W3C

//DTD
XHTML+RDFa
1.1//EN"
"http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd">
,
or

		
XHTML5+RDFa
1.1
for
all
other
values
of
DOCTYPE.

Documents
served
as

application/xhtml+xml
,
that
don't
contain
a
DOCTYPE
declaration,
and
don't
specify
a

@version

attribute

MUST

be
interpreted
as
XHTML5+RDFa
1.1
documents.

		
In

Section
7.5:
Sequence,
processing
step
3
,
if
the

processor
graph

feature
is
supported
and
if
an

IRI
mapping

overwrites
a
previously
existing
mapping
in
the

local
list
of
IRI
mappings

with
a
different
value,
the
processor

MUST

generate
an
appropriate

rdfa:PrefixRedefinition

warning
and
place
the
associated
triples
into
the

processor
graph
.

		
In

Section
7.5:
Sequence,
immediately
after
processing
step
4
,
if
the

@property

attribute
and
the

@rel

and/or

@rev

attribute
exists
on
the
same
element,
the
non-CURIE
and
non-URI

@rel

and

@rev

values
are
ignored.
If,
after
this,
the
value
of

@rel

and/or

@rev

becomes
empty,
then
the
processor

MUST

act
as
if
the
respective
attribute
is
not
present.

		
In

Section
7.5,
processing
step
5
,
and

processing
step
6
,
if
no
IRI
is
provided
by
a
resource
attribute
(e.g.,

@about
,

@href
,

@resource
,
or

@src

),
then
first
check
to
see
if
the
element
is
the

head

or

body

element.
If
it
is,
then
set

new
subject

to

parent
object
.

		
In

Section
7.5:
Sequence,
processing
step
11
,
the

HTML5

@datetime

attribute

MUST

be
utilized
when
generating
the
current
property
value,
unless

@content

is
also
present
on
the
same
element.
Otherwise,
if

@datetime

is
present,
the
current
property
value
must
be
generated
as
follows.
The
literal
value
is
the
value
contained
in
the

@datetime

attribute.
If

@datatype

is
present,
it
is
to
be
used
as
defined
in
the
RDFa
Core
[

RDFA-CORE

rdfa-core

]
processing
rules.
Otherwise,
if
the
value
of

@datetime

lexically
matches
a
valid

xsd:date
,

xsd:time
,

xsd:dateTime
,

xsd:duration
,

xsd:gYear
,
or

xsd:gYearMonth

a
typed
literal
must
be
generated,
with
its
datatype
set
to
the
matching
xsd
datatype.
Otherwise,
a
plain
literal

MUST

be
generated,
taking
into
account
the

current
language
.
Implementers
should
note
that

may
want
to
use

the
correct

following

order
of
match
testing
should
be:

testing:

xsd:duration
,

xsd:dateTime
,

xsd:date
,

xsd:time
,

xsd:gYearMonth
,
and

xsd:gYear
.
This
feature
is
currently
non-normative,
see
the
note
on
when
it
will
become
normative.

		
In

Section
7.5:
Sequence,
processing
step
11
,
if
the
element
is

time
,
and
the
element
does
not
have

@datetime

or

@content

attributes,
the
processor

MUST

act
as
if
there
is
a

@datetime

attribute
containing
exactly
the
elements

element's

text
value.
This
feature
is
currently
non-normative,
see
the
note
on
when
it
will
become
normative.

		
In

Section
7.5:
Sequence,
step
11,
immediately
after
sub-step
2
,
if
the

@datatype

attribute
is
present
and
evaluates
to

http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML
,
the
value
of
the
HTML
Literal
is
a
string
created
by
serializing
all
child
nodes
to
text.
This
applies
to
all
nodes
that
are
descendants
of
the

current
element
,
not
including
the
element
itself.
The
HTML
Literal
is
given
a
datatype
of

http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML

as
defined
in

Section
5.2:
The
rdf:HTML
Datatype

of
[

RDF-CONCEPTS

rdf11-concepts

].
This
feature
is
currently

non-normative,
see

because

the
note

equality
of
the
literal
values
depend

on
when
it
will
become
normative.

DOM4 [

dom4

],
a
specification
that
has
not
yet
reached

W3C

Recommendation
status.
See
[

rdf11-concepts

]
for
further
details.

		
Once
the

output
graph

is
generated
following
the
processing
steps
defined
in

Section
7.5:
Sequence

of
the
RDFa
Core
1.1
specification
[

RDFA-CORE

rdfa-core

],
and
the
steps
in
this
section,
perform
the
operations
defined
in

Implementing
Property
Copying
.

The

@version

attribute
is
not
supported
in
HTML5
and
is
non-conforming.
However,
if
an
HTML+RDFa
document
contains
the

@version

attribute
on
the

html

element,
a
conforming
RDFa
processor

MUST

examine
the
value
of
this
attribute.
If
the
value
matches
that
of
a
defined
version
of
RDFa,
then
the
processing
rules
for
that
version

MUST

be
used.
If
the
value
does
not
match
a
defined
version,
or
there
is
no

@version

attribute,
then
the
processing
rules
for
the
most
recent
version
of
RDFa
1.1

MUST

be
used.

3.2

Modifying
the
Input
Document

RDFa's
tree-based
processing
rules,
outlined
in

Section
7.5:
Sequence

of
the
RDFa
Core
1.1
specification
[

RDFA-CORE

rdfa-core

],
allow
an
input
document
to
be
automatically
corrected,
cleaned-up,
re-arranged,
or
modified
in
any
way
that
is
approved
by
the
host
language
prior
to
processing.
Element
nesting
issues
in
HTML
documents

SHOULD

be
corrected
before
the
input
document
is
translated
into
the
DOM,
a
valid
tree-based
model,
on
which
the
RDFa
processing
rules
will
operate.

Any
mechanism
that
generates
a
data
structure
equivalent
to
the
HTML5
or
XHTML5
DOM,
such
as
the
html5lib
library,

MAY

be
used
as
the
mechanism
to
construct
the
tree-based
model
provided
as
input
to
the
RDFa
processing
rules.

3.3

Specifying
the
Language
for
a
Literal

According
to
RDFa
Core
1.1
the

current
language

MAY

be
specified
by
the
host
language.
In
order
to
conform
to
this
specification,
RDFa
processors

MUST

use
the
mechanism
described
in

The
lang
and
xml:lang
attributes

section
of
the
[

HTML5

html5

]
specification
to
determine
the

language

of
a
node.

If
the
final
encapsulating
MIME
type
for
an
HTML
fragment
is
not
decided
on
while
editing,
it
is

RECOMMENDED

that
the
author
specify
both

@lang

and

@xml:lang

where
the
value
in
both
attributes
is
exactly
the
same.

Note

The
HTML5
specification
takes
the

Content-Language

HTTP
header
into
account
when
determining
the
language
of
an
element.
Some
RDFa
processor
implementations,
like
those
written
in
JavaScript,
may
not
have
access
to
this
header
and
will
be
non-conforming
in
the
edge
case
where
the
language
is
only
specified
in
the

Content-Language

HTTP
header.
In
these
instances,
RDFa
document
authors
are
urged
to
set
the
language
in
the
document
via
the

@lang

attribute
on
the

html

element
in
order
to
ensure
that
the
document
is
interpreted
correctly
across
all
RDFa
processors.

3.4

Invalid
XMLLiteral
Values

When
generating
literals
of
type
XMLLiteral,
the
processor

MUST

ensure
that
the
output
XMLLiteral
is
a
namespace
well-formed
XML
fragment.
A
namespace
well-formed
XML
fragment
has
the
following
properties:

		
The
XML
fragment,
when
placed
inside
of
a
single
root
element,

MUST

validate
as
well-formed
XML.
The
normative
language
that
describes
a
well-formed
XML
document
is
specified
in

Section
2.1
"Well-Formed
XML
Documents"

of
the
XML
specification.

		
The
XML
fragment,
when
placed
inside
of
a
single
root
element,

MUST

retain
all
active
namespace
information.
The
currently
active
attributes
declared
using

@xmlns

and

@xmlns:

that
are
stored
in
the
RDFa
processor's
current

evaluation
context

in
the

IRI
mappings

MUST

be
preserved
in
the
generated
XMLLiteral.
The

PREFIX

value
for

@xmlns:PREFIX

MUST

be
entirely
transformed
into
lower-case
characters
when
preserving
the
value
in
the
XMLLiteral.
All
active
namespaces
declared
via

@xmlns
,

@xmlns:
,
and

@prefix

MUST

be
placed
in
each
top-level
element
in
the
generated
XMLLiteral,
taking
care
to
not
overwrite
pre-existing
namespace
values.

An
RDFa
processor
that
transforms
the
XML
fragment

MUST

use
the

Coercing
an
HTML
DOM
into
an
infoset

algorithm,
as
specified
in
the
HTML5
specification,
followed
by
the
algorithm
defined
in
the

Serializing
XHTML
Fragments

section
of
the
HTML5
specification.
If
an
error
or
exception
occurs
at
any
point
during
the
transformation,
the
triple
containing
the
XMLLiteral

MUST
NOT

be
generated.

Transformation
to
a
namespace
well-formed
XML
fragment
is
required
because
an
application
that
consumes
XMLLiteral
data
expects
that
data
to
be
a
namespace
well-formed
XML
fragment.

The
transformation
requirement
does
not
apply
to
plain
text
input
data
that
are
text-only,
such
as
literals
that
contain
a

@datatype

attribute
with
an
empty
value
(

""

),
or
input
data
that
contain
only
text
nodes.

An
example
transformation
demonstrating
the
preservation
of
namespace
values
is
provided
below.
The
→
symbol
is
used
to
denote
that
the
line
is
a
continuation
of
the
previous
line
and
is
included
purely
for
the
purposes
of
readability:

<p xmlns:ex="http://example.org/vocab#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 Two rectangles (the example markup for them are stored in a triple):
 <svg "
 property="ex:markup" datatype="rdf:XMLLiteral">
 →<rect width="300" height="100" style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/>
 →<rect width="50" height="50" style="fill:rgb(255,0,0);stroke-width:2;stroke:rgb(0,0,0)"/></svg>

Example 3: Namespace preservation markup
<p xmlns:ex="http://example.org/vocab#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 Two rectangles (the example markup for them are stored in a triple):
 <svg xmlns="http://www.w3.org/2000/svg"
 property="ex:markup" datatype="rdf:XMLLiteral">
 →<rect width="300" height="100" style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/>
 →<rect width="50" height="50" style="fill:rgb(255,0,0);stroke-width:2;stroke:rgb(0,0,0)"/></svg>

</p>

The
markup
above

SHOULD

produce
the
following
triple,
which
preserves
the
xmlns
declaration
in
the
markup
by
injecting
the

@xmlns

attribute
in
the

rect

elements:

<>
 <http://example.org/vocab#markup>
 """<rect width="300"
→height="100" style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/>
→<rect width="50"
→height="50" style="fill:rgb(255,0,0);stroke-width:2;

Example 4: Namespace preservation triple
<>
 <http://example.org/vocab#markup>
 """<rect xmlns="http://www.w3.org/2000/svg" width="300"
→height="100" style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/>
→<rect xmlns="http://www.w3.org/2000/svg" width="50"
→height="50" style="fill:rgb(255,0,0);stroke-width:2;

→stroke:rgb(0,0,0)"/>"""^^<http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral>
.

Since
the

ex

and

rdf

namespaces
are
not
used
in
either

rect

element,
they
are
not
preserved
in
the
XMLLiteral.

Similarly,
compound
document
elements
that
reside
in
different
namespaces
must
have
their
namespace
declarations
preserved:

<p xmlns:ex="http://example.org/vocab#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 >
 This is how you markup a user in FBML:

→<fb:user uid="12345">The User</fb:user>
→

Example 5: Namespace preservation for compound document elements
<p xmlns:ex="http://example.org/vocab#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fb="http://www.facebook.com/2008/fbml">

 This is how you markup a user in FBML:

→<fb:user uid="12345">The User</fb:user>
→

</p>

The
markup
above

SHOULD

produce
the
following
triple,
which
preserves
the

fb

namespace
in
the
corresponding
triple:

<>
 <http://example.org/vocab#markup>
 """
→<fb:user uid="12345"></fb:user>

Example 6: Namespace element preservation triple
<>
 <http://example.org/vocab#markup>
 """
→<fb:user uid="12345"></fb:user>

→"""^^<http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral>
.

3.5

Property
Copying

There
are
times
when
authors
will
find
that
they
have
many
resources
on
a
page
that
share
a
common
set
of
properties.
For
example,
several
music
events
may
have
different
performance
times,
but
use
the
same
location,
band,
and
ticket
prices.
In
this
particular
case,
it
is
beneficial
to
have
a
short-hand
notation
to
instruct
the
RDFa
processor
to
include
the
location,
band,
and
ticket
price
information
without
having
to
repeat
all
of
the
markup
that
expresses
the
data.

HTML+RDFa
defines
a

property
copying

mechanism
which
allows
properties
associated
with
a
resource
to
be
copied
to
another
resource.
This
mechanism
can
be
activated
by
using
the

rdfa:copy

predicate.
The
feature
is
illustrated
in
the
following
two
examples:

 <div vocab="http://schema.org/">
 <p typeof="MusicEvent">
 <link property="image" href="Muse1.jpg"/>
 <link property="image" href="Muse2.jpg"/>
 <link property="image" href="Muse3.jpg"/>
 Muse at the United Center.
 <time property="startDate" datetime="2013-03-03">March 3rd 2013</time>,
 United Center, Chicago, Illinois
 ...
 </p>
 <p typeof="MusicEvent">
 <link property="image" href="Muse1.jpg"/>
 <link property="image" href="Muse2.jpg"/>
 <link property="image" href="Muse3.jpg"/>
 Muse at the Target Center.
 <time property="startDate" datetime="2013-03-07">March 7th 2013</time>,
 Target Center, Minneapolis, Minnesota
 ...
 </p>

 Example 7: Events with duplicate properties
<div vocab="http://schema.org/">
 <p typeof="MusicEvent">
 <link property="image" href="Muse1.jpg"/>

 <link property="image" href="Muse2.jpg"/>
 <link property="image" href="Muse3.jpg"/>
 Muse at the United Center.
 <time property="startDate" datetime="2013-03-03">March 3rd 2013</time>,
 United Center, Chicago, Illinois
 ...
 </p>

 <p typeof="MusicEvent">
 <link property="image" href="Muse1.jpg"/>

 <link property="image" href="Muse2.jpg"/>
 <link property="image" href="Muse3.jpg"/>
 Muse at the Target Center.
 <time property="startDate" datetime="2013-03-07">March 7th 2013</time>,
 Target Center, Minneapolis, Minnesota
 ...
 </p>

</div>

In
this
case,
two
music
events
are
defined
with

image
,

name
,

startDate
,
and

location

properties.
The

image

and

name

values
are
identical
for
the
two
events
and
are
unnecessarily
duplicated
in
the
markup.
Using
RDFa's

property
copying

feature,
a

pattern

can
be
declared
that
expresses
the
common
properties.
This
pattern
can
then
be
copied
into
other
resources
within
the
document:

 <div vocab="http://schema.org/">
 <div resource="#muse" typeof="rdfa:Pattern">
 <link property="image" href="Muse1.jpg"/>
 <link property="image" href="Muse2.jpg"/>
 <link property="image" href="Muse3.jpg"/>
 Muse
 </div>
 <p typeof="MusicEvent">

 Muse at the United Center.
 <time property="startDate" datetime="2013-03-03">March 3rd 2013</time>,
 United Center, Chicago, Illinois
 ...
 </p>
 <p typeof="MusicEvent">

 Muse at the Target Center.
 <time property="startDate" datetime="2013-03-07">March 7th 2013</time>,
 Target Center, Minneapolis, Minnesota
 ...
 </p>

 Example 8: Copying common properties
<div vocab="http://schema.org/">
 <div resource="#muse" typeof="rdfa:Pattern">
 <link property="image" href="Muse1.jpg"/>
 <link property="image" href="Muse2.jpg"/>
 <link property="image" href="Muse3.jpg"/>
 Muse
 </div>

 <p typeof="MusicEvent">
 <link property="rdfa:copy" href="#muse"/>

 Muse at the United Center.
 <time property="startDate" datetime="2013-03-03">March 3rd 2013</time>,
 United Center, Chicago, Illinois
 ...
 </p>

 <p typeof="MusicEvent">
 <link property="rdfa:copy" href="#muse"/>

 Muse at the Target Center.
 <time property="startDate" datetime="2013-03-07">March 7th 2013</time>,
 Target Center, Minneapolis, Minnesota
 ...
 </p>

</div>

In
this
case,
the
common
properties
for
all
of
the
events
are
expressed
in
the
first

div
.
The
common
properties
are
copied
into
each
event
resource
via
the

rdfa:copy

predicate.
The
output
for
the
previous
two
examples
is
the
same:

 @prefix schema: <http://schema.org/> .
@prefix xsd: http://www.w3.org/2001/XMLSchema#> .
[] a schema:MusicEvent;
 schema:image <Muse1.jpg>, <Muse2.jpg>, <Muse3.jpg>;
 schema:name "Muse";
 schema:startDate "2013-03-03"^^xsd:date;
 schema:location <#united> .
[] a schema:MusicEvent;
 schema:image <Muse1.jpg>, <Muse2.jpg>, <Muse3.jpg>;
 schema:name "Muse";
 schema:startDate "2013-03-07"^^xsd:date;

 Example 9: Turtle output of property copying example
@prefix schema: <http://schema.org/> .
@prefix xsd: http://www.w3.org/2001/XMLSchema#> .

[] a schema:MusicEvent;
 schema:image <Muse1.jpg>, <Muse2.jpg>, <Muse3.jpg>;
 schema:name "Muse";
 schema:startDate "2013-03-03"^^xsd:date;
 schema:location <#united> .

[] a schema:MusicEvent;
 schema:image <Muse1.jpg>, <Muse2.jpg>, <Muse3.jpg>;
 schema:name "Muse";
 schema:startDate "2013-03-07"^^xsd:date;

schema:location
<#target>
.

The
copy
process
is
iterative,
so
that
resources
may
copy
other
resources
that
copy
other
resources.
For
example:

 <div vocab="http://schema.org/">
 <div typeof="Person">
 <link property="rdfa:copy" href="#lennon"/>
 <link property="rdfa:copy" href="#band"/>
 </div>
 <p >
 Name: John Lennon
 <p>
 <div >
 <div property="band" typeof="MusicGroup">

 </div>
 </div>
 <div >
 <p>Band: The Beatles</p>
 <p>Size: 4 players</p>
 </div>

 Example 10: Resources may copy other resources that copy other resources
<div vocab="http://schema.org/">
 <div typeof="Person">
 <link property="rdfa:copy" href="#lennon"/>

 <link property="rdfa:copy" href="#band"/>
 </div>
 <p resource="#lennon" typeof="rdfa:Pattern">
 Name: John Lennon
 <p>
 <div resource="#band" typeof="rdfa:Pattern">
 <div property="band" typeof="MusicGroup">
 <link property="rdfa:copy" href="#beatles"/>

 </div>
 </div>
 <div resource="#beatles" typeof="rdfa:Pattern">
 <p>Band: The Beatles</p>
 <p>Size: 4 players</p>
 </div>

</div>

In
the
example
above,
the
properties
from

#lennon

and

#band

are
copied
into
the
first
resource.
Then
the
properties
from

#beatles

are
copied
into

#band
.
Subsequently,
those
properties
are
again
copied
into
the
first
resource
yielding
the
following
output:

 @prefix schema: <http://schema.org/> .
[a schema:Person;
 schema:name "John Lennon" ;
 schema:band [
 a schema:MusicGroup;
 schema:name "The Beatles";
 schema:size "4"
]

 Example 11: Iterative copying example output in Turtle
@prefix schema: <http://schema.org/> .

[a schema:Person;
 schema:name "John Lennon" ;
 schema:band [
 a schema:MusicGroup;
 schema:name "The Beatles";
 schema:size "4"
]

]
.

Similar
to

Vocabulary
Expansion

as
defined
in
[

RDFA-CORE

rdfa-core

],
RDFa
Property
Copying
operates
on
the

output
graph

after
document
processing
is
complete.

3.5.1

Implementing
Property
Copying

Once
the

output
graph

is
generated
following
the
processing
steps
defined
in

Section
7.5:
Sequence

of
the
RDFa
Core
1.1
specification
[

RDFA-CORE

rdfa-core

],
and
the

Extensions
to
the
HTML5
Syntax

defined
in
this
specification,
processors

MUST

update
the

output
graph

using
the
following
rules:

		
Run
the
following
rule
for
each

rdfa:copy

statement
in
the

output
graph
,
and
for
each
new

rdfa:copy

statement
added
as
a
result
of
property
copying
until
no
new
triples
are
added
to
the

output
graph
:

		
Rule
name

		
If
output
graph
contains

		
then
add

		
pattern-copy

		
?subject
rdfa:copy
?target

?target
rdf:type
rdfa:Pattern

?target
?predicate
?object

		
?subject
?predicate
?object

		
Finally,
run
this
rule
to
remove
utilized

rdfa:copy

statements
and

rdfa:Pattern

resources
from
the

output
graph
:

		
Rule
name

		
If
output
graph
contains

		
then
remove

		
pattern-clean

		
?subject
rdfa:copy
?target

?target
rdf:type
rdfa:Pattern

?target
?predicate
?object

		
?subject
rdfa:copy
?target

?subject
rdf:type
rdfa:Pattern

?target
?predicate
?object

Note

Implementers
should
be
aware
that
a
simplistic
implementation
of
the

pattern-copy

rule
may
lead
to
an
infinite
loop
when
handling
circular
dependencies.
A
processor
should
cease
the

pattern-copy

rule
when
no
unique
triples
are
generated.

Note

Alternate
rules
may
be
used
to
update
the
output
graph
as
long
as
the
end
result
is
the
same.

4.

Extensions
to
the
HTML5
Syntax

There
are
a
few
attributes
that
are
added
as
extensions
to
the
HTML5
syntax
in
order
to
fully
support
RDFa:

		
If
HTML+RDFa
Lite
document
conformance
is
desired,
all
RDFa
attributes
and
valid
values
(including
CURIEs),
as
listed
in

RDFa
Lite
1.1,
Section
2:
The
Attributes
,

MUST

be
allowed
and
validate
as
conforming
when
used
in
an
HTML4,
HTML5
or
XHTML5
document.
For
the
avoidance
of
doubt,
the
following
RDFa
attributes
are
allowed
on
all
elements
in
the
HTML5
content
model:

@vocab
,

@typeof
,

@property
,

@resource
,
and

@prefix
.
All
other
attributes
that
RDFa
may
process,
such
as

@href

and

@src
,
are
only
allowed
when
consistent
with
the
content
model
for
that
element,
as
defined
in
the
HTML5
specification.

		
If
HTML+RDFa
document
conformance
is
desired,
all
RDFa
attributes
and
valid
values
(including
CURIEs),
as
listed
in

RDFa
Core
1.1,
Section
2.1:
The
RDFa
Attributes
,

MUST

be
allowed
and
validate
as
conforming
when
used
in
an
HTML4,
HTML5
or
XHTML5
document.
For
the
avoidance
of
doubt,
the
following
RDFa
attributes
are
allowed
on
all
elements
in
the
HTML5
content
model:

@vocab
,

@typeof
,

@property
,

@resource
,

@prefix
,

@content
,

@about
,

@rel
,

@rev
,

@datatype
,
and

@inlist
.
All
other
attributes
that
RDFa
may
process,
such
as

@href

and

@src
,
are
only
allowed
when
consistent
with
the
content
model
for
that
element,
as
defined
in
the
HTML5
specification.

		
If
the

@property

RDFa
attribute
is
present
on
the

link

or

meta

elements,
they

MUST

be
viewed
as
conforming
if
used
in
the

body

of
the
document.
More
specifically,
when

link

or

meta

elements
contain
the
RDFa

@property

attribute
and
are
used
in
the

body

of
an
HTML5
document,
they

MUST

be
considered

flow
content
.

		
If
the
RDFa

@property

attribute
is
present
on
the

link

element,
the

@rel

attribute
is
not
required.

		
If
the
RDFa

@resource

attribute
is
present
on
the

link

element,
the

@href

attribute
is
not
required.

		
If
the
RDFa

@property

attribute
is
present
on
the

meta

element,
neither
the

@name
,

@http-equiv
,
nor

@charset

attributes
are
required
and
the

@content

attribute

MUST

be
specified.

5.

Backwards
Compatibility

RDFa
Core
1.1
deprecates
the
usage
of

@xmlns:

in
RDFa
1.1
documents.
Web
page
authors

SHOULD
NOT

use

@xmlns:

to
express
prefix
mappings
in
RDFa
1.1
documents.
Web
page
authors

SHOULD

use
the

@prefix

attribute
to
specify
prefix
mappings.

However,
there
are
times
when
XHTML+RDFa
1.0
documents
are
served
by
web
servers
using
the

text/html

MIME
type.
In
these
instances,
the
HTML5
specification
asserts
that
the
document
is
processed
according
to
the
non-XML
mode
HTML5
processing
rules.
In
these
particular
cases,
it
is
important
that
the
prefixes
declared
via

@xmlns:

are
preserved
for
the
RDFa
processors
to
ensure
backwards-compatibility
with
RDFa
1.0
documents.
The
following
sections
elaborate
upon
the
backwards
compatibility
requirements
for
RDFa
processor
implementations.

5.1

@xmlns:

-Prefixed
Attributes

The
RDFa
Core
1.1
[

RDFA-CORE

rdfa-core

]
specification
deprecates
the
use
of
the

@xmlns:

mechanism
to
declare
CURIE
prefix
mappings
in
favor
of
the

@prefix

attribute.
However,
there
are
instances
where
its
use
is
unavoidable.
For
example,
publishing
legacy
documents
as
HTML5
or
supporting
older
XHTML+RDFa
1.0
documents
that
rely
on
the

@xmlns:

attribute.

CURIE
prefix
mappings
specified
using
attributes
prepended
with

@xmlns:

MUST

be
processed
using
the
algorithm
defined
in
section
4.4.1:

Extracting
URI
Mappings
from
Infosets

for
infoset-based
processors,
or
section
4.5.1:

Extracting
URI
Mappings
from
DOMs

for
DOM
Level
2-based
processors.
For
CURIE
prefix
mappings
using
the

@prefix

attribute,

Section
7.5:
Sequence,
step
3

MUST

be
used
to
process
namespace
values.

Since
CURIE
prefix
mappings
have
been
specified
using

@xmlns:
,
and
since
HTML
attribute
names
are
case-insensitive,
CURIE
prefix
names
declared
using
the

@xmlns:

attribute-name
pattern

xmlns:<PREFIX>="<URI>"

SHOULD

be
specified
using
only
lower-case
characters.
For
example,
the
text
"

@xmlns:

"
and
the
text
in

"<PREFIX>"

SHOULD

be
lower-case
only.
This
is
to
ensure
that
prefix
mappings
are
interpreted
in
the
same
way
between
HTML
(case-insensitive
attribute
names)
and
XHTML
(case-sensitive
attribute
names)
document
types.

5.2

Conformance
Criteria
for

@xmlns:

-Prefixed
Attributes

Since
RDFa
1.0
documents
may
contain
attributes
starting
with

@xmlns:

to
specify
CURIE
prefixes,
any
attribute
starting
with
a
case-insensitive
match
on
the
text
string
"

@xmlns:

"

MUST

be
preserved
in
the
DOM
or
other
tree-like
model
that
is
passed
to
the
RDFa
Processor.
For
documents
conforming
to
this
specification,
attributes
with
names
that
have
a
case
insensitive
prefix
matching
"

@xmlns:

"

MUST

be
considered
conforming.
Conformance
checkers

SHOULD

accept
attribute
names
that
have
a
case
insensitive
prefix
matching
"

@xmlns:

"
as
conforming.
Conformance
checkers

SHOULD

generate
warnings
noting
that
the
use
of

@xmlns:

is
deprecated.
Conformance
checkers

MAY

report
the
use
of
xmlns:
as
an
error.

All
attributes
starting
with
a
case
insensitive
prefix
matching
"

@xmlns:

"

MUST

conform
to
the
production
rules
outlined
in
Namespaces
in
XML
[

XML-NAMES11

xml-names11

],

Section
3:
Declaring
Namespaces
.
Documents
that
contain

@xmlns:

attributes
that
do
not
conform
to
Namespaces
in
XML

MUST
NOT

be
accepted
as
conforming.

5.3

Preserving
Namespaces
via
Coercion
to
Infoset

RDFa
1.0
documents
may
contain
the

@xmlns:

pattern
to
declare
prefix
mappings,
it
is
important
that
namespace
information
that
is
declared
in
non-XML
mode
HTML5
documents
are
mapped
to
an
infoset
correctly.
In
order
to
ensure
this
mapping
is
performed
correctly,
the
"Coercing
an
HTML
DOM
into
an
infoset"
rules
defined
in
[

HTML5

html5

]
must
be
extended
to
include
the
following
rule:

If
the
XML
API
is
namespace-aware,
the
tool
must
ensure
that
([

namespace
name

],
[

local
name

],
[

normalized
value

])
namespace
tuples
are
created
when
converting
the
non-XML
mode
DOM
into
an
infoset.
Given
a
standard

@xmlns:

definition,

xmlns:foo="http://example.org/bar#"
,
the
[namespace
name]
is

http://www.w3.org/2000/xmlns/
,
the
[local
name]
is

foo
,
and
the
[normalized
value]
is

http://example.org/bar#
,
thus
the
namespace
tuple
would
be
(

http://www.w3.org/2000/xmlns/
,

foo
,

http://example.org/bar#

).

For
example,
given
the
following
input
text:

Example
12

<div
xmlns:com="https://w3id.org/commerce#">

The

div

element
above,
when
coerced
from
an
HTML
DOM
into
an
infoset,
should
contain
an
attribute
in
the
[

namespace
attributes

]
list
with
a
[namespace
name]
set
to
"

http://www.w3.org/2000/xmlns/

",
a
[local
name]
set
to

com
,
and
a
[normalized
value]
of
"

https://w3id.org/commerce#

".

5.4

Infoset-based
Processors

While
the
intent
of
the
RDFa
processing
instructions
is
to
provide
a
set
of
rules
that
are
as
language
and
toolchain
independent
as
possible,
for
the
sake
of
clarity,
detailed
methods
of
extracting
RDFa
content
from
processors
operating
on
an
XML
Information
Set
are
provided
below.

5.4.1

Extracting
URI
Mappings
from
Infosets

Extracting
URI
Mappings
declared
via

@xmlns:

while
operating
from
within
an
infoset-based
RDFa
processor
can
be
achieved
using
the
following
algorithm:

While
processing
an
element
as
described
in
[

RDFA-CORE

rdfa-core

],

Section
7.5:
Sequence
,
Step
#2:

		
For
each
attribute
in
the
[

namespace
attributes

]
list
that
has
a
[

prefix

]
value,
create
an
[

IRI
mapping

]
by
storing
the
[prefix]
as
the
value
to
be
mapped,
and
the
[

normalized
value

]
as
the
value
to
map.

		
For
each
attribute
in
the
[

attributes

]
list
that
has
no
value
for
[

prefix

]
and
a
[

local
name

]
that
starts
with

@xmlns:
,
create
an
[

IRI
mapping

]
by
storing
the
[local
name]
part
with
the

@xmlns:

characters
removed
as
the
value
to
be
mapped,
and
the
[

normalized
value

]
as
the
value
to
map.

Note

This
step
is
unnecessary
if
the
infoset
coercion
rules
preserve
namespaces
specified
in
non-XML
mode.

For
example,
assume
that
the
following
markup
is
processed
by
an
infoset-based
RDFa
processor:

Example
13

<div
xmlns:ps="https://w3id.org/payswarm#"
...

After
the
markup
is
processed,
there
should
exist
a
[URI
mapping]
in
the
[local
list
of
URI
mappings]
that
contains
a
mapping
from

ps

to

https://w3id.org/payswarm#
.

5.4.2

Processing
RDFa
Attributes

There
are
a
number
of
non-prefixed
attributes
that
are
associated
with
RDFa
Processing
in
HTML5.
If
an
XML
Information
Set
based
RDFa
processor
is
used
to
process
these
attributes,
the
following
algorithm
should
be
used
to
detect
and
extract
the
values
of
the
attributes.

While
processing
Infoset
Attribute
Information
Items
in
Element
Information
Items
as
described
in
[

RDFA-CORE

rdfa-core

],

Section
7.5:
Sequence,
Step
#4
through
Step
#9
:

		
For
each
Attribute
Information
Item
specific
to
RDFa
in
the
infoset
[

attributes

]
list
that
has
a
[

prefix

]
with
no
value,
extract
and
use
the
[

normalized
value

].

5.5

DOM
Level
1
and
Level
2-based
Processors

Most
DOM-aware
RDFa
processors
are
capable
of
accessing
DOM
Level
1
[

DOM-LEVEL-1

dom-level-1

]
methods
to
process
attributes
on
elements.
To
discover
all

@xmlns:

-specified
CURIE
prefix
mappings,
the

Node.attributes

NamedNodeMap

can
be
iterated
over.
Each

Attr.name

that
starts
with
the
text
string

@xmlns:

specifies
a
CURIE
prefix
mapping.
The
value
to
be
mapped
is
the
string
after
the

@xmlns:

substring
in
the
Attr.name
variable
and
the
value
to
be
mapped
is
the
value
of
the
Attr.value
variable.

The
intent
of
the
RDFa
processing
instructions
are
to
provide
a
set
of
rules
that
are
as
language
and
toolchain
independent
as
possible.
If
a
developer
chooses
to
not
use
the
DOM1
environment
mechanism
outlined
in
the
previous
paragraph,
they
may
use
the
following
DOM2
[

DOM-LEVEL-2-CORE

dom-level-2-core

]
environment
mechanism.

5.5.1

Extracting
URI
Mappings
via
DOM
Level
2

Extracting
URI
Mappings
declared
via

@xmlns:

while
operating
from
within
a
DOM
Level
2
based
RDFa
processor
can
be
achieved
using
the
following
algorithm:

While
processing
each
DOM2
[

Element

]
as
described
in
[

RDFA-CORE

rdfa-core

],

Section
7.5:
Sequence,
Step
#2
:

		
For
each
[

Attr

]
in
the
[

Node.attributes

]
list
that
has
a
[

namespace
prefix

]
value
of

@xmlns
,
create
an
[

IRI
mapping

]
by
storing
the
[

local
name

]
as
the
value
to
be
mapped,
and
the
[

Node.nodeValue

]
as
the
value
to
map.

		
For
each
[

Attr

]
in
the
[

Node.attributes

]
list
that
has
a
[

namespace
prefix

]
value
of
null
and
a
[

local
name

]
that
starts
with

@xmlns:
,
create
an
[

IRI
mapping

]
by
storing
the
[local
name]
part
with
the

@xmlns:

characters
removed
as
the
value
to
be
mapped,
and
the
[

Node.nodeValue

]
as
the
value
to
map.

Note

This
step
is
unnecessary
if
the
XML
and
non-XML
mode
DOMs
are
namespace
consistent.

For
example,
assume
that
the
following
markup
is
processed
by
a
DOM2-based
RDFa
processor:

Example
14

<div
xmlns:com="https://w3id.org/commerce#"
...

After
the
markup
is
processed,
there
should
exist
a
[URI
mapping]
in
the
[local
list
of
URI
mappings]
that
contains
a
mapping
from

com

to

https://w3id.org/commerce#
.

5.5.2

Processing
RDFa
Attributes

There
are
a
number
of
non-prefixed
attributes
that
are
associated
with
RDFa
processing
in
HTML5.
If
an
DOM2-based
RDFa
processor
is
used
to
process
these
attributes,
the
following
algorithm
should
be
used
to
detect
and
extract
the
values
of
the
attributes.

While
processing
an
element
as
described
in
[

RDFA-CORE

rdfa-core

],

Section
5.5:
Sequence,
Step
#3
through
Step
#9
:

		
For
each
RDFa
attribute
in
the
[

Node.attributes

]
list
that
has
a
[

namespace
prefix

]
that
is
null,
extract
and
use
[

Node.nodeValue

]
as
the
value.

Note

When
extracting
values
from

@href

and

@src
,
web
authors
and
developers
should
note
that
certain
values

MAY

be
transformed
if
accessed
via
the
DOM
versus
a
non-DOM
processor.
The
rules
for
modification
of
URL
values
can
be
found
in
the
main
HTML5
specification
under

Section
2.5:
URLs
.

A.

About
this
Document

A.1

History

This
section
is
non-normative.

In
early
2004,
Mark
Birbeck
published
a
document
named
"RDF
in
XHTML"
via
the
XHTML2
Working
Group
wherein
he
laid
the
groundwork
for
what
would
eventually
become
RDFa
(The
Resource
Description
Framework
in
Attributes).

In
2006,
the
work
was
co-sponsored
by
the
Semantic
Web
Deployment
Working
Group,
which
began
to
formalize
a
technology
to
express
semantic
data
in
XHTML.
This
technology
was
successfully
developed
and
reached
consensus
at
the

W3C
,
later
published
as
an
official

W3C

Recommendation.
While
HTML
provides
a
mechanism
to
express
the
structure
of
a
document
(title,
paragraphs,
links),
RDFa
provides
a
mechanism
to
express
the
meaning
in
a
document
(people,
places,
events).

The
document,
titled
"RDF
in
XHTML:
Syntax
and
Processing"
[XHTML-RDFA],

[xhtml-rdfa],

defined
a
set
of
attributes
and
rules
for
processing
those
attributes
that
resulted
in
the
output
of
machine-readable
semantic
data.
While
the
document
applied
to
XHTML,
the
attributes
and
rules
were
always
intended
to
operate
across
any
tree-based
structure
containing
attributes
on
tree
nodes
(such
as
HTML4,
SVG
and
ODF).

While
RDFa
was
initially
specified
for
use
in
XHTML,
adoption
by
a
number
of
large
organizations
on
the
web
spurred
RDFa's
use
in
non-XHTML
languages.
Its
use
in
HTML4,
before
an
official
specification
was
developed
for
those
languages,
caused
concern
regarding
document
conformance.

Over
the
years,
the
members
of
the

RDFa
Community

had
discussed
the
possibility
of
applying
the
same
attributes
and
processing
rules
outlined
in
the
XHTML+RDFa
specification
to
all
HTML
family
documents.
By
design,
the
possibility
of
a
unified
semantic
data
expression
mechanism
between
all
HTML
and
XHTML
family
documents
was
squarely
in
the
realm
of
possibility.

An
RDFa
Working
Group
was
created
in
2010
to
address
the
issues
concerning
multiple
language
implementations
of
RDFa.
The
XHTML+RDFa
document
was
split
into
a
base
specification,
called
RDFa
Core
1.1
[

RDFA-CORE

rdfa-core

],
and

thin

specifications
that
layer
above
RDFa
Core
1.1.
The
XHTML+RDFa
1.1
specification
[

XHTML-RDFA

xhtml-rdfa

]
is
an
example
of
such
a

thin

specification.
This
document,
also
a

thin

specification,
is
targeted
at
HTML4,
HTML5
and
XHTML5.

This
document
describes
the
extensions
to
the
RDFa
Core
1.1
specification
that
permits
the
use
of
RDFa
in
all
HTML
family
documents.
By
using
the
attributes
and
processing
rules
described
in
the
RDFa
Core
1.1
specification
and
heeding
the
minor
changes
in
this
document,
authors
can
generate
markup
that
produces
the
same
semantic
data
output
in
HTML4,
HTML5
and
XHTML5.

A.2

Change
History
Since
the
Last
Published
Recommendation

This
section
is
non-normative.

2009-10-15:
First
version
of

2014-12-16:
With

the
RDFa
for
HTML4,
HTML5
and
XHTML5.
2010-03-04:
Updated
HTML5
coercion
to
infoset
rules,
preservation
of
namespaces
in
infoset
and
DOM2-based
processors,
clarifying
how
to
extract
RDFa
attributes
via
infoset,
how
to
extract
RDFa
attributes
via
DOM2.
2010-05-02:
Inheritance
of
basic
processing
rules
from
RDFa
1.1
[
RDFA-CORE
],
instead

publication

of
XHTML+RDFa
1.0

[

RDFA-SYNTAX

html5

],
inclusion
of

]
as
a
Recommendation,

the
HTML
Default
Vocabulary
Terms,
inclusion

usage

of
a
HTML
4.01
+
RDFa
1.1
DTD
for
validation
purposes.

@datetime

is
now
normative.
The
corresponding
note
in
the
processing
steps
have
been
removed.

2010-06-24:
Inheritance

2014-12-16:
With
the
publication

of
basic
processing
rules
from
RDFa
1.1

[

RDFA-CORE

rdf11-concepts

],
instead

]
as
a
Recommendation,
the
usage

of
XHTML+RDFa
1.0

rdf:HTML

remains
non-normative.
The
corresponding
note
about
a
possible
normative
status
in
the
processing
steps
has
been
removed;
a
clarification
note
has
been
added
to
the
usage
of
the
datatype,
referring
to
the
dependecy
on

[

RDFA-SYNTAX

dom4

],
inclusion
of
the
HTML
Default
Vocabulary
Terms,
added
HTML
4.01
+
RDFa
1.1
DTD
for
validation
purposes,
added
normative
definition
of
@version
attribute.

].

2010-10-19:
Removal
of
@version
attribute,
migrated
HTML
Vocabulary
Terms
to
RDFa
Profile
document,
added
statement
to
send
comments
to

2014-12-16:
The
note
in

the
HTML
WG
bug
tracker.
2011-01-11:
Removed
decentralized
extensibility
issue
markers,
added
DOM
Level
1
prefix
mapping
extraction
algorithm.
2011-04-05:
Moved
all
xmlns:
rules
into
a
section
titled
Backwards
Compatibility
and
brought
spec
in-line
with
latest
RDFa
Core
1.1
spec.
2011-05-12:
Generated
Last
Call
document,
no
substantive
changes.
2011-12-30:
Addition
of
normative
dependency
for
RDFa
Lite
1.1.
Addition

Status
Section
on
the
non-normative
nature

of
rules
to
allow

meta

@datetime

and

link

rdf:HTML

elements
in
flow
and
phrasing
content
as
long
as
they
contain
at
least
one
RDFa-specific
attribute.
Added
support
for

has
been
removed,
but
a
paragraph
on
the
non-normative
nature
of

@datetime

rdf:HTML

and
value
processing.

a
clarification
has
been
added.

2012-03-10:
Clarification
of
where
each
RDFa
attribute
is
allowed

2014-12-16:
References

to
be
used.
Feature
at
risk
warning
for
HTML4+RDFa
DTD-based
validation.
2012-09-10:
Publishing
control
of
the
HTML+RDFa
document
is
handed
over
from
the
HTML
WG

[

html5

]
and
[

rdf11-concepts

],
as
well
as

to
the
newly
re-chartered

other

RDFa
WG.
DTD-based
validation
is
removed
from

documents,
have
been
updated
to

the
specification.

latest
(PER)
versions.

2012-12-13:
Addition

2014-12-16:
The
style

of
new
HTML-specific
processing
rules
for
dealing
with
XHTML5
vs.
HTML5
documents,
xml:base,
HTML
Literals,
property
and
rel/rev
on

the
same
element,
and
more
types
for
the
datetime
attribute.
2012-12-27:
Added
Property
Copying
section
and
special
processing
for
head
and
body.
2013-01-19:
Removed
@value
processing,
added
@content
overriding
@datetime
if
present,
cleanup
and
prep
for
Last
Call
publication
in
RDFa
WG.
2013-06-06:
Applied
all
Last
Call
comments
and
editorial
fixes
in
preparation
for
Proposed
Recommendation
phase.
2013-08-07:
Fixed
invalid
dates,
bad
grammar,

references
have
been

updated
status
of
document
for
Recommendation
publication.

to
the
latest

respec

style

A.3

Acknowledgments

This
section
is
non-normative.

At
the
time
of
publication,
the
members
of
the
RDFa
Working
Group
were:

Ivan
Herman
(staff
contact),
Shane
McCarron,
Gregg
Kellogg,
Niklas
Lindström,
Steven
Pemberton,
Manu
Sporny
(chair),
Ted
Thibodeau,
and
Stéphane
Corlosquet.

A
great
deal
of
thanks
to
everyone
that
provided
feedback
on
the
specification
(most
of
whom
are
listed
below):

Adam
Powell,
Alex
Milowski,
Andy
Seaborne,
Arto
Bendiken,
Austin
William,
BAI
Xi,
Benjamin
Adrian,
Benjamin
Nowack,
Bjoern
Hoehrmann,
Christian
Langanke,
Christoph
Lange,
Cindy
Lewis,
Corey
Mwamba,
Crisfer
Inmobiliaria,
Dan
Brickley,
Daniel
Friesen,
Dave
Beckett,
David
Wood,
D.
Grant,
Dominik
Tomaszuk,
Dominique
Hazael-Massieux,
Doug
Schepers,
Dr.
Olaf
,
Edward
O'Connor,
Faye
Harris,
Felix
Sasaki,
Gavin
Carothers,
Grant
Robertson,
Guus
Schreiber,
Harry
Halpin,
Michael
Hausenblas,
Henri
Bergius,
Henri
Sivonen,
Henry
Story,
Holger
Knublauch,
Ian
Hickson,
Irene
Celino,
Alexander
Kroener,
Knud
Möller,
Philip
Jägenstedt,
Reto
Bachmann-Gmür,
Ivan
Mikhailov,
James
Leigh,
Jeff
Sonstein,
Jeni
Tennison,
Jens
Haupert,
Jochen
Rau,
John
Breslin,
John
Cowan,
John
O'Donovan,
Jonathan
Rees,
Julian
Reschke,
KANZAKI
Masahide,
Kingsley
Idehen,
Knud
Hinnerk,
Landong
Zuo,
Leif
Halvard
Silli,
Liam
R.,
Lin
Clark,
Maciej
Stachowiak,
Mark
Nottingham,
Markus
Gylling,
Martin
Hepp,
Martin
McEvoy,
Matthias
Tylkowski,
Darin
McBeath,
Melvin
Carvalho,
Michael
Chan,
Michael
Hausenblas,
Michael
Steidl,
Michael™
Smith,
Mischa
Tuffield,
Misha
Wolf,
Nathan
Rixham,
Nathan
Yergler,
Nicholas
Stimpson,
Noah
Mendelsohn,
Paul
Cotton,
Paul
Sparrow,
Pete
Cordell,
Peter
Frederick,
Peter
Mika,
Peter
Occil,
Phil
Archer,
Reece
Dunn,
Richard
Cyganiak,
Robert
Leif,
Robert
Weir,
Ramanathan
V.
Guha,
Sami
Korhonen,
Sam
Ruby,
Sandro
Hawke,
Sebastian
Germesin,
Sebastian
Heath,
Shelley
Powers,
Simon
Grant,
Simon
Reinhardt,
Stefan
Schumacher,
Tab
Atkins
Jr.,
Thomas
Adamich,
Thomas
Baker,
Thomas
Roessler,
Thomas
Steiner,
Tim
Berners-Lee,
Toby
Inkster,
Tom
Adamich,
Tantek
Çelik,
Ville
Skyttä,
Wayne
Smith,
and
Will
Clark

B.

References

B.1

Normative
references

[DOM-LEVEL-1]

		
[RFC2119]

		
S.
Bradner.

Key
words
for
use
in
RFCs
to
Indicate
Requirement
Levels
.
March
1997.
Best
Current
Practice.
URL:

https://tools.ietf.org/html/rfc2119

		
[dom-level-1]

		
Scott
Isaacson;
Steven
B
Byrne;
Mike
Champion;
Ian
Jacobs;
Arnaud
Le
Hors;
Gavin
Nicol;
Jonathan
Robie;
Robert
S
Sutor;
Chris
Wilson;
Lauren
Wood
et
al.

Document
Object
Model
(DOM)
Level
1

.
1
October
1998.

29
September
2000.

W3C
Recommendation.

Working
Draft.

URL:

http://www.w3.org/TR/DOM-Level-1/

[DOM-LEVEL-2-CORE]

		
[dom-level-2-core]

		
Arnaud
Le
Hors;
Philippe
Le
Hégaret;
Lauren
Wood;
Gavin
Nicol;
Jonathan
Robie;
Mike
Champion;
Steven
B
Byrne
et
al.

Document
Object
Model
(DOM)
Level
2
Core
Specification

.
13
November
2000.
W3C
Recommendation.
URL:

http://www.w3.org/TR/DOM-Level-2-Core/

[HTML5]

		
[html5]

		
Ian
Hickson;

Robin
Berjon
et
al.

Berjon;
Steve
Faulkner;
Travis
Leithead;
Erika
Doyle
Navara;
Edward
O'Connor;
Silvia
Pfeiffer.

HTML5

.
6
August
2013.

28
October
2014.

W3C
Candidate

Recommendation.
URL:

http://www.w3.org/TR/html5/

[RDFA-CORE]

		
[rdfa-core]

		
Ben
Adida;
Mark
Birbeck;
Shane
McCarron;
Ivan
Herman
et
al.

RDFa
Core
1.1
-
Second
Edition

Third
Edition:
Syntax
and
processing
rules
for
embedding
RDF
through
attributes

.
22
August
2013.

17
March
2015.

W3C
Recommendation.
URL:

http://www.w3.org/TR/rdfa-core/

[RDFA-LITE]

		
[rdfa-lite]

		
Manu
Sporny.

RDFa
Lite
1.1
-
Second
Edition

.
7
June
2012.

17
March
2015.

W3C
Recommendation.
URL:

http://www.w3.org/TR/rdfa-lite/

[RFC2119]
S.
Bradner.
Key
words
for
use
in
RFCs
to
Indicate
Requirement
Levels.
March
1997.
Internet
RFC
2119.
URL:
http://www.ietf.org/rfc/rfc2119.txt
[XML-NAMES11]

		
[xml-names11]

		
Tim
Bray;
Dave
Hollander;
Andrew
Layman;
Richard
Tobin
et
al.

Namespaces
in
XML
1.1
(Second
Edition)

.
16
August
2006.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xml-names11/

B.2

Informative
references

[RDF-CONCEPTS]

		
[dom4]

Richard
Cyganiak,
David
Wood,
Editors.
RDF
1.1
Concepts
and
Abstract
Syntax

		
Anne
van
Kesteren;
Aryeh
Gregor;
Ms2ger;
Alex
Russell;
Robin
Berjon.

W3C
DOM4

World
Wide
Web
Consortium
(work
in
progress).
23

.
10

July
2013.

2014.
W3C

Last
Call
Working
Draft.
URL:

http://www.w3.org/TR/dom/

[RDFA-SYNTAX]

		
[rdf11-concepts]

Ben
Adida;
Mark
Birbeck;
Shane
McCarron;
Steven
Pemberton
et
al.

		
Richard
Cyganiak;
David
Wood;
Markus
Lanthaler.

RDFa
in
XHTML:
Syntax

RDF
1.1
Concepts

and
Processing

Abstract
Syntax

.
14
October
2008.

25
February
2014.

W3C
Recommendation.
URL:
http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/

http://www.w3.org/TR/rdf11-concepts/

[TURTLE]

		
[turtle]

		
Eric
Prud'hommeaux,

Prud'hommeaux;

Gavin
Carothers.

Turtle:
Terse

RDF
Triple
Language.

1.1
Turtle

19

.
25

February
2013.

2014.

W3C
Candidate

Recommendation.
URL:

http://www.w3.org/TR/turtle/

[XHTML-RDFA]

		
[xhtml-rdfa]

		
Shane
McCarron.

XHTML+RDFa
1.1
-
Second

Third

Edition
.
22
August
2013.

17
March
2015.

W3C
Proposed
Edited

Recommendation.
URL:

http://www.w3.org/TR/xhtml-rdfa/

Icons/w3c_main.png

rdfa-core/rdfa-core-diff.xhtml

[image: W3C]

RDFa
Core
1.1
-
Third
Edition

Syntax
and
processing
rules
for
embedding
RDF
through
attributes

W3C

Recommendation

17
March
2015

		
This
version:

		

http://www.w3.org/TR/2015/REC-rdfa-core-20150317/

		
Latest
published
version:

		

http://www.w3.org/TR/rdfa-core/

		
Implementation
report:

		
http://www.w3.org/2010/02/rdfa/wiki/CR-ImplementationReport

		
Previous
version:

		

http://www.w3.org/TR/2014/PER-rdfa-core-20141216/

		
Previous

Recommendation:

		

http://www.w3.org/TR/2013/REC-rdfa-core-20130822/

		
Editors:

		

Ben
Adida
,
Creative
Commons,

ben@adida.net

		

Mark
Birbeck
,
webBackplane,

mark.birbeck@webBackplane.com

		

Shane
McCarron
,
Applied
Testing
and
Technology,
Inc.,

shane@aptest.com

		

Ivan
Herman
,

W3C
,

ivan@w3.org

Please
check
the

errata

for
any
errors
or
issues
reported
since
publication.

This
document
is
also
available
in
these
non-normative
formats:

Diff
from
Previous
Recommendation
,

PostScript
version
,
and

PDF
version

The
English
version
of
this
specification
is
the
only
normative
version.
Non-normative

translations

may
also
be
available.

Copyright

©
2007-2015

W3C

®

(

MIT

,

ERCIM

,

Keio
,

Beihang

).

W3C

liability
,

trademark

and

document
use

rules
apply.

Abstract

The
current
Web
is
primarily
made
up
of
an
enormous
number
of
documents
that
have
been
created
using
HTML.
These
documents
contain
significant
amounts
of
structured
data,
which
is
largely
unavailable
to
tools
and
applications.
When
publishers
can
express
this
data
more
completely,
and
when
tools
can
read
it,
a
new
world
of
user
functionality
becomes
available,
letting
users
transfer
structured
data
between
applications
and
web
sites,
and
allowing
browsing
applications
to
improve
the
user
experience:
an
event
on
a
web
page
can
be
directly
imported
into
a
user's
desktop
calendar;
a
license
on
a
document
can
be
detected
so
that
users
can
be
informed
of
their
rights
automatically;
a
photo's
creator,
camera
setting
information,
resolution,
location
and
topic
can
be
published
as
easily
as
the
original
photo
itself,
enabling
structured
search
and
sharing.

RDFa
Core
is
a
specification
for
attributes
to
express
structured
data
in
any
markup
language.
The
embedded
data
already
available
in
the
markup
language
(e.g.,
HTML)
can
often
be
reused
by
the
RDFa
markup,
so
that
publishers
don't
need
to
repeat
significant
data
in
the
document
content.
The
underlying
abstract
representation
is
RDF
[

RDF11-PRIMER

],
which
lets
publishers
build
their
own
vocabulary,
extend
others,
and
evolve
their
vocabulary
with
maximal
interoperability
over
time.
The
expressed
structure
is
closely
tied
to
the
data,
so
that
rendered
data
can
be
copied
and
pasted
along
with
its
relevant
structure.

The
rules
for
interpreting
the
data
are
generic,
so
that
there
is
no
need
for
different
rules
for
different
formats;
this
allows
authors
and
publishers
of
data
to
define
their
own
formats
without
having
to
update
software,
register
formats
via
a
central
authority,
or
worry
that
two
formats
may
interfere
with
each
other.

RDFa
shares
some
of
the
same
goals
with
microformats
[

MICROFORMATS

].
Whereas
microformats
specify
both
a
syntax
for
embedding
structured
data
into
HTML
documents
and
a
vocabulary
of
specific
terms
for
each
microformat,
RDFa
specifies
only
a
syntax
and
relies
on
independent
specification
of
terms
(often
called
vocabularies
or
taxonomies)
by
others.
RDFa
allows
terms
from
multiple
independently-developed
vocabularies
to
be
freely
intermixed
and
is
designed
such
that
the
language
can
be
parsed
without
knowledge
of
the
specific
vocabulary
being
used.

This
document
is
a
detailed
syntax
specification
for
RDFa,
aimed
at:

		
those
looking
to
create
an
RDFa
Processor,
and
who
therefore
need
a
detailed
description
of
the
parsing
rules;

		
those
looking
to
integrate
RDFa
into
a
new
markup
language;

		
those
looking
to
recommend
the
use
of
RDFa
within
their
organization,
and
who
would
like
to
create
some
guidelines
for
their
users;

		
anyone
familiar
with
RDF,
and
who
wants
to
understand
more
about
what
is
happening
'under
the
hood',
when
an
RDFa
Processor
runs.

For
those
looking
for
an
introduction
to
the
use
of
RDFa
and
some
real-world
examples,
please
consult
the
[

RDFA-PRIMER

].

How
to
Read
this
Document

First,
if
you
are
not
familiar
with
either
RDFa

or

RDF,
and
simply
want
to
add
RDFa
to
your
documents,
then
you
may
find
the
RDFa
Primer
[

RDFA-PRIMER

]
to
be
a
better
introduction.

If
you
are
already
familiar
with
RDFa,
and
you
want
to
examine
the
processing
rules
—
perhaps
to
create
an
RDFa
Processor
—
then
you'll
find
the

Processing
Model

section
of
most
interest.
It
contains
an
overview
of
each
of
the
processing
steps,
followed
by
more
detailed
sections,
one
for
each
rule.

If
you
are
not
familiar
with
RDFa,
but
you

are

familiar
with
RDF,
then
you
might
find
reading
the

Syntax
Overview

useful,
before
looking
at
the

Processing
Model

since
it
gives
a
range
of
examples
of
markup
that
use
RDFa.
Seeing
some
examples
first
should
make
reading
the
processing
rules
easier.

If
you
are
not
familiar
with
RDF,
then
you
might
want
to
take
a
look
at
the
section
on

RDF
Terminology

before
trying
to
do
too
much
with
RDFa.
Although
RDFa
is
designed
to
be
easy
to
author
—
and
authors
don't
need
to
understand
RDF
to
use
it
—
anyone
writing
applications
that

consume

RDFa
will
need
to
understand
RDF.
There
is
a
lot
of
material
about
RDF
on
the
web,
and
a
growing
range
of
tools
that
support
RDFa.
This
document
only
contains
enough
background
on
RDF
to
make
the
goals
of
RDFa
more
clear.

Note

RDFa
is
a
way
of
expressing

RDF

-style
relationships
using
simple
attributes
in
existing
markup
languages
such
as
HTML.
RDF
is
fully
internationalized,
and
permits
the
use
of
Internationalized
Resource
Identifiers,
or
IRIs.
You
will
see
the
term
'IRI'
used
throughout
this
specification.
Even
if
you
are
not
familiar
with
the
term
IRI,
you
probably
have
seen
the
term
'URI'
or
'URL'.
IRIs
are
an
extension
of
URIs
that
permits
the
use
of
characters
outside
those
of
plain
ASCII.
RDF
allows
the
use
of
these
characters,
and
so
does
RDFa.
This
specification
has
been
careful
to
use
the
correct
term,
IRI,
to
make
it
clear
that
this
is
the
case.

Note

Even
though
this
specification
exclusively
references
IRIs,
it
is
possible
that
a
Host
Language
will
restrict
the
syntax
for
its
attributes
to
a
subset
of
IRIs
(e.g.,

@href

in
HTML5).
Regardless
of
validation
constraints
in
Host
Languages,
an
RDFa
Processor
is
capable
of
processing
IRIs.

Status
of
This
Document

This
section
describes
the
status
of
this
document
at
the
time
of
its
publication.
Other
documents
may
supersede
this
document.
A
list
of
current

W3C

publications
and
the
latest
revision
of
this
technical
report
can
be
found
in
the

W3C

technical
reports
index

at
http://www.w3.org/TR/.

This
is
an
Editorial
Revision
of
the

Recommendation
published
on
the
22nd
of
August,
2013
.
That
document
was

a
revision
of
RDFa
Syntax
1.0
[

RDFA-SYNTAX

].
There
are
a
number
of
substantive
differences
between
this
version
and
Version
1.0,

including:

		
The
removal
of
the
specific
rules
for
XHTML
-
these
are
now
defined
in
XHTML+RDFa
[

XHTML-RDFA

].

		
An
expansion
of
the
datatypes
of
some
RDFa
attributes
so
that
they
can
contain
Terms,
CURIES,
or
Absolute
IRIs.

		
Host
languages
are
permitted
to
define
collections
of
default
terms,
default
prefix
mappings,
and
a
default
vocabulary.

		
The
ability
to
define
a
default
vocabulary
to
use
for
Terms
that
are
undefined.

		
Terms
are
required
to
be
compared
in
a
case-insensitive
manner.

		
A
richer
behavior
of
the
@property
attribute,
that
can
replace,
in
many
cases
the
@rel
attribute.

		
A
slightly
different
handling
of
@typeof,
making
it
better
adapted
to
practical
usage.

There
is
a
more
thorough
list
of
changes
in

Changes
.

A

sample
test
harness

is
available.
This
set
of
tests
is
not
intended
to
be
exhaustive.
Users
may
find
the
tests
to
be
useful
examples
of
RDFa
usage.

This
document
was
published
by
the

RDFa
Working
Group

as
a
Recommendation.
If
you
wish
to
make
comments
regarding
this
document,
please
send
them
to

public-rdfa@w3.org

(

subscribe
,

archives

).
All
comments
are
welcome.

Please
see
the
Working
Group's

implementation
report
.

This
document
has
been
reviewed
by

W3C

Members,
by
software
developers,
and
by
other

W3C

groups
and
interested
parties,
and
is
endorsed

by
the
Director

as
a

W3C

Recommendation.
It

is
a
stable

document
and
may
be
used
as
reference
material

or
cited
from
another
document.

W3C

's
role
in
making
the
Recommendation

is
to
draw
attention
to
the
specification
and
to
promote
its
widespread
deployment.
This
enhances
the
functionality
and
interoperability
of
the
Web.

This
document
was
produced
by
a
group
operating
under
the

5
February
2004

W3C

Patent
Policy
.

W3C

maintains
a

public
list
of
any
patent
disclosures

made
in
connection
with
the
deliverables
of
the
group;
that
page
also
includes
instructions
for
disclosing
a
patent.
An
individual
who
has
actual
knowledge
of
a
patent
which
the
individual
believes
contains

Essential
Claim(s)

must
disclose
the
information
in
accordance
with

section
6
of
the

W3C

Patent
Policy
.

This
document
is
governed
by
the

14
October
2005

W3C

Process
Document
.

Table
of
Contents

		

1.

Motivation

		

2.

Syntax
Overview

		

2.1

The
RDFa
Attributes

		

2.2

Examples

		

3.

RDF
Terminology

		

3.1

Statements

		

3.2

Triples

		

3.3

IRI
References

		

3.4

Plain
Literals

		

3.5

Typed
Literals

		

3.6

Turtle

		

3.7

Graphs

		

3.8

Compact
URI
Expressions

		

3.9

Markup
Fragments
and
RDFa

		

3.10

A
Description
of
RDFa
in
RDF
Terms

		

4.

Conformance

		

4.1

RDFa
Processor
Conformance

		

4.2

RDFa
Host
Language
Conformance

		

4.3

XML+RDFa
Document
Conformance

		

5.

Attributes
and
Syntax

		

5.1

Roles
of
attributes

		

5.2

White
space
within
attribute
values

		

6.

CURIE
Syntax
Definition

		

6.1

Why
CURIEs
and
not
QNames?

		

7.

Processing
Model

		

7.1

Overview

		

7.2

Evaluation
Context

		

7.3

Chaining

		

7.4

CURIE
and
IRI
Processing

		

7.4.1

Scoping
of
Prefix
Mappings

		

7.4.2

General
Use
of
CURIEs
in
Attributes

		

7.4.3

General
Use
of
Terms
in
Attributes

		

7.4.4

Use
of
CURIEs
in
Specific
Attributes

		

7.4.5

Referencing
Blank
Nodes

		

7.5

Sequence

		

7.6

Processor
Status

		

7.6.1

Accessing
the
Processor
Graph

		

7.6.2

Processor
Graph
Terms

		

7.7

Vocabulary
Expansion

		

8.

RDFa
Processing
in
detail

		

8.1

Changing
the
Evaluation
Context

		

8.1.1

Setting
the
current
subject

		

8.1.1.1

The
current
document

		

8.1.1.2

Using

@about

		

8.1.1.3

Typing
resources
with

@typeof

		

8.1.1.3.1

Chaining
with

@property

and

@typeof

		

8.1.1.4

Determining
the
subject
with
neither

@about

nor

@typeof

		

8.1.1.4.1

Inheriting
subject
from

@resource

		

8.1.1.4.2

Inheriting
an
anonymous
subject

		

8.2

Completing
incomplete
triples

		

8.3

Object
resolution

		

8.3.1

Object
resolution
for
the

@property

attribute

		

8.3.1.1

Plain
Literals

		

8.3.1.1.1

Language
Tags

		

8.3.1.2

Typed
Literals

		

8.3.1.3

XML
Literals

		

8.3.2

IRI
object
resolution

		

8.3.2.1

Using

@resource

to
set
the
object

		

8.3.2.2

Using

@href

or

@src

to
set
the
object

		

8.3.2.3

Incomplete
triples

		

8.4

List
Generation

		

9.

RDFa
Initial
Contexts

		

10.

RDFa
Vocabulary
Expansion

		

10.1

Details
of
the
RDFa
Vocabulary
Expansion

		

10.1.1

RDFa
Vocabulary
Entailment

		

10.2

Vocabulary
Expansion
Control
of
RDFa
Processors

		

10.2.1

Notes
to
RDFa
Vocabulary
Implementations
and
Publishing

		

A.

CURIE
Datatypes

		

A.1

XML
Schema
Definition

		

A.2

XML
DTD
Definition

		

B.

The
RDFa
Vocabulary

		

B.1

Term
and
Prefix
Assignments

		

B.2

Processor
Graph
Reporting

		

B.3

Term
for
vocabulary
expansion

		

C.

Changes

		

C.1

Major
differences
since
the
Last
Published
Recommentation

		
C.2

Major
differences

with
RDFa
Syntax
1.0

		

D.

Acknowledgments

		

E.

References

		

E.1

Normative
references

		

E.2

Informative
references

1.

Motivation

This
section
is
non-normative.

RDF/XML
[

RDF-SYNTAX-GRAMMAR

]
provides
sufficient
flexibility
to
represent
all
of
the
abstract
concepts
in
RDF.
However,
it
presents
a
number
of
challenges;
first
it
is
difficult
or
impossible
to
validate
documents
that
contain
RDF/XML
using
XML
Schemas
or
DTDs,
which
therefore
makes
it
difficult
to
import
RDF/XML
into
other
markup
languages.
Whilst
newer
schema
languages
such
as
RELAX
NG
[

RELAXNG-SCHEMA

]
do
provide
a
way
to
validate
documents
that
contain
arbitrary
RDF/XML,
it
will
be
a
while
before
they
gain
wide
support.

Second,
even
if
one
could
add
RDF/XML
directly
into
an
XML
dialect
like
XHTML,
there
would
be
significant
data
duplication
between
the
rendered
data
and
the
RDF/XML
structured
data.
It
would
be
far
better
to
add
RDF
to
a
document
without
repeating
the
document's
existing
data.
For
example,
an
XHTML
document
that
explicitly
renders
its
author's
name
in
the
text
—
perhaps
as
a
byline
on
a
news
site
—
should
not
need
to
repeat
this
name
for
the
RDF
expression
of
the
same
concept:
it
should
be
possible
to
supplement
the
existing
markup
in
such
a
way
that
it
can
also
be
interpreted
as
RDF.

Another
reason
for
aligning
the
rendered
data
with
the
structured
data
is
that
it
is
highly
beneficial
to
express
the
web
data's
structure
'in
context';
as
users
often
want
to
transfer
structured
data
from
one
application
to
another,
sometimes
to
or
from
a
non-web-based
application,
the
user
experience
can
be
enhanced.
For
example,
information
about
specific
rendered
data
could
be
presented
to
the
user
via
'right-clicks'
on
an
item
of
interest.
Moreover,
organizations
that
generate
a
lot
of
content
(e.g.,
news
outlets)
find
it
easier
to
embed
the
semantic
data
inline
than
to
maintain
it
separately.

In
the
past,
many
attributes
were
'hard-wired'
directly
into
the
markup
language
to
represent
specific
concepts.
For
example,
in
XHTML
1.1
[

XHTML11

]
and
HTML
[

HTML401

]
there
is

@cite

;
the
attribute
allows
an
author
to
add
information
to
a
document
which
is
used
to
indicate
the
origin
of
a
quote.

However,
these
'hard-wired'
attributes
make
it
difficult
to
define
a
generic
process
for
extracting
metadata
from
any
document
since
an
RDFa
Processor
would
need
to
know
about
each
of
the
special
attributes.
One
motivation
for
RDFa
has
been
to
devise
a
means
by
which
documents
can
be
augmented
with
metadata
in
a
general,
rather
than
hard-wired,
manner.
This
has
been
achieved
by
creating
a
fixed
set
of
attributes
and
parsing
rules,
but
allowing
those
attributes
to
contain
properties
from
any
of
a
number
of
the
growing
range
of
available
RDF
vocabularies.
In
most
cases
the

values

of
those
properties
are
the
information
that
is
already
in
an
author's
document.

RDFa
alleviates
the
pressure
on
markup
language
designers
to
anticipate
all
the
structural
requirements
users
of
their
language
might
have,
by
outlining
a
new
syntax
for
RDF
that
relies
only
on
attributes.
By
adhering
to
the
concepts
and
rules
in
this
specification,
language
designers
can
import
RDFa
into
their
environment
with
a
minimum
of
hassle
and
be
confident
that
semantic
data
will
be
extractable
from
their
documents
by
conforming
processors.

2.

Syntax
Overview

This
section
is
non-normative.

The
following
examples
are
intended
to
help
readers
who
are
not
familiar
with
RDFa
to
quickly
get
a
sense
of
how
it
works.
For
a
more
thorough
introduction,
please
read
the
RDFa
Primer
[

RDFA-PRIMER

].

In
RDF,
it
is
common
for
people
to
shorten
vocabulary
terms
via
abbreviated
IRIs
that
use
a
'prefix'
and
a
'reference'.
This
mechanism
is
explained
in
detail
in
the
section
titled
Compact
URI
Expressions.
The
examples
throughout
this
document
assume
that
the
following
vocabulary

prefixes

have
been
defined:

		
bibo:

		
http://purl.org/ontology/bibo/

		
cc:

		
http://creativecommons.org/ns#

		
dbp:

		
http://dbpedia.org/property/

		
dbp-owl:

		
http://dbpedia.org/ontology/

		
dbr:

		
http://dbpedia.org/resource/

		
dc:

		
http://purl.org/dc/terms/

		
ex:

		
http://example.org/

		
foaf:

		
http://xmlns.com/foaf/0.1/

		
owl:

		
http://www.w3.org/2002/07/owl#

		
rdf:

		
http://www.w3.org/1999/02/22-rdf-syntax-ns#

		
rdfa:

		
http://www.w3.org/ns/rdfa#

		
rdfs:

		
http://www.w3.org/2000/01/rdf-schema#

		
xhv:

		
http://www.w3.org/1999/xhtml/vocab#

		
xsd:

		
http://www.w3.org/2001/XMLSchema#

Note

In
some
of
the
examples
below
we
have
used
IRIs
with
fragment
identifiers
that
are
local
to
the
document
containing
the
RDFa
fragment
identifiers
shown
(e.g.,
'

about="#me"

').
This
idiom,
which
is
also
used
in
RDF/XML
[

RDF-SYNTAX-GRAMMAR

]
and
other
RDF
serializations,
gives
a
simple
way
to
'mint'
new
IRIs
for
entities
described
by
RDFa
and
therefore
contributes
considerably
to
the
expressive
power
of
RDFa.
The
precise
meaning
of
IRIs
which
include
fragment
identifiers
when
they
appear
in
RDF
graphs
is
given
in
Section
7
of
[

RDF-SYNTAX-GRAMMAR

].
To
ensure
that
such
fragment
identifiers
can
be
interpreted
correctly,
media
type
registrations
for
markup
languages
that
incorporate
RDFa
should
directly
or
indirectly
reference
this
specification.

2.1

The
RDFa
Attributes

RDFa
makes
use
of
a
number
of
commonly
found
attributes,
as
well
as
providing
a
few
new
ones.
Attributes
that
already
exist
in
widely
deployed
languages
(e.g.,
HTML)
have
the
same
meaning
they
always
did,
although
their
syntax
has
been
slightly
modified
in
some
cases.
For
example,
in
(X)HTML
there
is
no
clear
way
to
add
new

@rel

values;
RDFa
sets
out
to
explicitly
solve
this
problem,
and
does
so
by
allowing
IRIs
as
values.
It
also
introduces
the
concepts
of

terms

and
'

compact
URI
expressions

'
—
referred
to
as
CURIEs
in
this
document
—
which
allow
a
full
IRI
value
to
be
expressed
succinctly.
For
a
complete
list
of
RDFa
attribute
names
and
syntax,
see

Attributes
and
Syntax
.

2.2

Examples

In
(X)HTML,
authors
can
include
metadata
and
relationships
concerning
the
current
document
by
using
the

meta

and

link

elements
(in
these
examples,
XHTML+RDFa
[

XHTML-RDFA

]
is
used).
For
example,
the
author
of
the
page
along
with
the
pages
preceding
and
following
the
current
page
can
be
expressed
using
the
link
and
meta
elements:

 Example 1
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Page 7</title>
 <meta name="author" content="Mark Birbeck" />
 <link rel="prev" href="page6.html" />
 <link rel="next" href="page8.html" />
 </head>
 <body>...</body>
</html>

RDFa
makes
use
of
this
concept,
enhancing
it
with
the
ability
to
make
use
of
other
vocabularies
by
using
full
IRIs:

 Example 2
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>My home-page</title>
 <meta property="http://purl.org/dc/terms/creator" content="Mark Birbeck" />
 <link rel="http://xmlns.com/foaf/0.1/topic" href="http://www.example.com/#us" />
 </head>
 <body>...</body>
</html>

Because
using
full
IRIs
like
those
above
can
be
cumbersome,
RDFa
also
permits
the
use
of

compact
URI
expressions

so
an
author
can
use
a
shorthand
to
reference
terms
in
multiple
vocabularies:

 Example 3
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="foaf: http://xmlns.com/foaf/0.1/
 dc: http://purl.org/dc/terms/"
 >
 <head>
 <title>My home-page</title>
 <meta property="dc:creator" content="Mark Birbeck" />
 <link rel="foaf:topic" href="http://www.example.com/#us" />
 </head>
 <body>...</body>
</html>

RDFa
supports
the
use
of

@rel

and

@rev

on
any
element.
This
is
even
more
useful
with
the
addition
of
support
for
different
vocabularies:

 Example 4
This document is licensed under the
<a prefix="cc: http://creativecommons.org/ns#"
 rel="cc:license"
 href="http://creativecommons.org/licenses/by-nc-nd/3.0/"
>Creative
Commons
By-NC-ND
License.

Not
only
can
IRIs
in
the
document
be
re-used
to
provide
metadata,
but
so
can
inline
text
when
used
with

@property
:

 Example 5
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="dc: http://purl.org/dc/terms/"
 >
 <head><title>My Home Page</title></head>
 <body>
 <h1 property="dc:title">My home-page</h1>
 <p>Last modified: 16 September 2015</p>
 </body>
</html>

If
some
displayed
text
is
different
from
the
actual
'value'
it
represents,
a
more
precise
value
can
be
added
using

@content
.
A
value
can
also
optionally
be
typed
using

@datatype
:

 Example 6
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="xsd: http://www.w3.org/2001/XMLSchema#
 dc: http://purl.org/dc/terms/"
 >
 <head><title>My Home Page</title></head>
 <body>
 <h1 property="dc:title">My home-page</h1>
 <p>Last modified: <span property="dc:modified"
 content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">16 September 2015.</p>
 </body>
</html>

RDFa
allows
the
document
to
contain
metadata
information
about
other
documents
and
resources:

 Example 7
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="bibo: http://purl.org/ontology/bibo/
 dc: http://purl.org/dc/terms/"
 >
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White's book
 '<span about="urn:ISBN:0091808189"
 property="dc:title">Canteen Cuisine'
 is well worth getting since although it's quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span
 about="urn:ISBN:1596913614"
 property="dc:description"
 >White's autobiography.
 </body>
</html>

In
many
cases
a
block
of
markup
will
contain
a
number
of
properties
that
relate
to
the
same
item.
It's
possible
with
RDFa
to
indicate
the
type
of
that
item
using

@typeof
:

 Example 8
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="bibo: http://purl.org/ontology/bibo/
 dc: http://purl.org/dc/terms/"
 >
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White's book
 '<span about="urn:ISBN:0091808189" typeof="bibo:Book"
 property="dc:title">Canteen Cuisine'
 is well worth getting since although it's quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span
 about="urn:ISBN:1596913614"
 typeof="bibo:Book"
 property="dc:description"
 >White's autobiography.
 </body>
</html>

When
dealing
with
small
amounts
of
markup,
it
is
sometimes
easier
to
use
full
IRIs,
rather
than
CURIEs.
The
previous
example
can
also
be
written
as
follows:

 Example 9
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White's book
 '<span
 about="urn:ISBN:0091808189"
 typeof="http://purl.org/ontology/bibo/Book"
 property="http://purl.org/dc/terms/title"
 >Canteen Cuisine'
 is well worth getting since although it's quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span
 about="urn:ISBN:1596913614"
 typeof="http://purl.org/ontology/bibo/Book"
 property="http://purl.org/dc/terms/description"
 >White's autobiography.
 </body>
</html>

A
simple
way
of
defining
a
portion
of
a
document
using
terms
from
a
specific
vocabulary
is
to
use

@vocab

to
define
a
default
vocabulary
IRI.
For
example,
to
use
FOAF
terms:

 Example 10
<div vocab="http://xmlns.com/foaf/0.1/" about="#me">
 My name is John Doe and my blog is called
 Understanding Semantics.
</div>

The
example
above
will
produce
the
following
triples,
expressed
here
in

Turtle

syntax:

 Example 11
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<#me> foaf:name "John Doe" ;

foaf:homepage

<http://example.org/blog/>
.

In
simple
cases
the

@property

property
can
also
be
used
in
place
of

@rel
.
Indeed,
in
case
when
the
element
does
not
contain

@rel
,

@datatype
,
or

@content
,
but
there
is,
for
example,
a

@href
,
the
effect
of

@property

is
analogous
to
the
role
of

@rel
.
For
example,
the
previous
example
could
have
been
written:

 Example 12
<div vocab="http://xmlns.com/foaf/0.1/" about="#me">
 My name is John Doe and my blog is called
 Understanding Semantics.
</div>

3.

RDF
Terminology

This
section
is
non-normative.

The
previous
section
gave
examples
of
typical
markup
in
order
to
illustrate
the
structure
of
RDFa
markup.
RDFa
is
short
for
"RDF
in
Attributes".
In
order
to
author
RDFa
you
do
not
need
to
understand
RDF,
although
it
would
certainly
help.
However,
if
you
are
building
a
system
that
consumes
the
RDF
output
of
a
language
that
supports
RDFa
you
will
almost
certainly
need
to
understand
RDF.
This
section
introduces
the
basic
concepts
and
terminology
of
RDF.
For
a
more
thorough
explanation
of
RDF,
please
refer
to
the
RDF
Concepts
document
[

RDF-SYNTAX-GRAMMAR

]
and
the
RDF
Syntax
Document
[

RDF-SYNTAX-GRAMMAR

].

3.1

Statements

The
structured
data
that
RDFa
provides
access
to
is
a
collection
of

statements
.
A
statement
is
a
basic
unit
of
information
that
has
been
constructed
in
a
specific
format
to
make
it
easier
to
process.
In
turn,
by
breaking
large
sets
of
information
down
into
a
collection
of
statements,
even
very
complex
metadata
can
be
processed
using
simple
rules.

To
illustrate,
suppose
we
have
the
following
set
of
facts:

 Example 13
Albert was born on March 14, 1879, in the German Empire. There is a picture of him at
the
web
address,
http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

This
would
be
quite
difficult
for
a
machine
to
interpret,
and
it
is
certainly
not
in
a
format
that
could
be
passed
from
one
data
application
to
another.
However,
if
we
convert
the
information
to
a
set
of
statements
it
begins
to
be
more
manageable.
The
same
information
could
therefore
be
represented
by
the
following
shorter
'statements':

 Example 14
Albert was born on March 14, 1879.
Albert was born in the German Empire.
Albert has a picture at
http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

3.2

Triples

To
make
this
information
machine-processable,
RDF
defines
a
structure
for
these
statements.
A
statement
is
formally
called
a

triple

,
meaning
that
it
is
made
up
of
three
components.
The
first
is
the

subject

of
the
triple,
and
is
what
we
are
making
our
statement

about
.
In
all
of
these
examples
the
subject
is
'Albert'.

The
second
part
of
a
triple
is
the

property

of
the
subject
that
we
want
to
define.
In
the
examples
here,
the
properties
would
be
'was
born
on',
'was
born
in',
and
'has
a
picture
at'.
These
properties
are
typically
called

predicates

in
RDF.

The
final
part
of
a
triple
is
called
the

object
.
In
the
examples
here
the
three
objects
have
the
values
'March
14,
1879',
'the
German
Empire',
and
'http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg'.

Note

RDFa
supports
internationalized
characters
in
the
subject,
'predicate',
and
the
object.

3.3

IRI
References

Breaking
complex
information
into
manageable
units
helps
us
be
specific
about
our
data,
but
there
is
still
some
ambiguity.
For
example,
which
'Albert'
are
we
talking
about?
If
another
system
has
more
facts
about
'Albert',
how
could
we
know
whether
they
are
about
the
same
person,
and
so
add
them
to
the
list
of
things
we
know
about
that
person?
If
we
wanted
to
find
people
born
in
the
German
Empire,
how
could
we
know
that
the
predicate
'was
born
in'
has
the
same
purpose
as
the
predicate
'birthplace'
that
might
exist
in
some
other
system?
RDF
solves
this
problem
by
replacing
our
vague
terms
with

IRI
references
.

IRIs
are
most
commonly
used
to
identify
web
pages,
but
RDF
makes
use
of
them
as
a
way
to
provide
unique
identifiers
for
concepts.
For
example,
we
could
identify
the
subject
of
all
of
our
statements
(the
first
part
of
each
triple)
by
using
the
DBPedia
[

http://dbpedia.org

]
IRI
for
Albert
Einstein,
instead
of
the
ambiguous
string
'Albert':

 Example 15
<http://dbpedia.org/resource/Albert_Einstein>
 has the name
 Albert Einstein.
<http://dbpedia.org/resource/Albert_Einstein>
 was born on
 March 14, 1879.
<http://dbpedia.org/resource/Albert_Einstein>
 was born in
 the German Empire.
<http://dbpedia.org/resource/Albert_Einstein>
 has a picture at
http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

IRI
references
are
also
used
to
uniquely
identify
the
objects
in
metadata
statements
(the
third
part
of
each
triple).
The
picture
of
Einstein
is
already
an
IRI,
but
we
could
also
use
an
IRI
to
uniquely
identify
the
country
'German
Empire'.
At
the
same
time
we'll
indicate
that
the
name
and
date
of
birth
really
are
literals
(and
not
IRIs),
by
putting
quotes
around
them:

 Example 16
<http://dbpedia.org/resource/Albert_Einstein>
 has the name
 "Albert Einstein".
<http://dbpedia.org/resource/Albert_Einstein>
 was born on
 "March 14, 1879".
<http://dbpedia.org/resource/Albert_Einstein>
 was born in
 <http://dbpedia.org/resource/German_Empire>.
<http://dbpedia.org/resource/Albert_Einstein>
 has a picture at

<

http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg

>
.

IRI
references
are
also
used
to
ensure
that
predicates
are
unambiguous;
now
we
can
be
sure
that
'birthplace',
'place
of
birth',
'Lieu
de
naissance'
and
so
on,
all
mean
the
same
thing:

 Example 17
<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/name>
 "Albert Einstein".
<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/dateOfBirth>
 "March 14, 1879".
<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/birthPlace>
 <http://dbpedia.org/resource/German_Empire>.
<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/depiction>
<http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg>.

3.4

Plain
Literals

Although
IRI
resources
are
always
used
for
subjects
and
predicates,
the
object
part
of
a
triple
can
be
either
an
IRI
or
a

literal

.
In
the
example
triples,
Einstein's
name
is
represented
by
a

plain
literal

,
specifically
a
basic
string
with
no
type
or
language
information:

 Example 18
<http://dbpedia.org/resource/Albert_Einstein>
<http://xmlns.com/foaf/0.1/name>

"Albert
Einstein"
.

A
plain
literal
can
also
be
given
a
language
tag,
to
capture
plain
text
in
a
natural
language.
For
example,
Einstein's
birthplace
has
different
names
in
English
and
German:

 Example 19
<http://dbpedia.org/resource/German_Empire>
 rdfs:label "German Empire"@en;
rdfs:label
"Deutsches
Kaiserreich"@de
.

3.5

Typed
Literals

Some
literals,
such
as
dates
and
numbers,
have
very
specific
meanings,
so
RDF
provides
a
mechanism
for
indicating
the
type
of
a
literal.
A

typed
literal

is
indicated
by
attaching
an
IRI
to
the
end
of
a

plain
literal
,
and
this
IRI
indicates
the
literal's
datatype.
This
IRI
is
usually
based
on
datatypes
defined
in
the
XML
Schema
Datatypes
specification
[

XMLSCHEMA11-2

].
The
following
syntax
would
be
used
to
unambiguously
express
Einstein's
date
of
birth
as
a
literal
of
type

http://www.w3.org/2001/XMLSchema#date
:

 Example 20
<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/dateOfBirth>
"1879-03-14"

^^<http://www.w3.org/2001/XMLSchema#date>
.

3.6

Turtle

RDF
itself
does
not
have
one
set
way
to
express
triples,
since
the
key
ideas
of
RDF
are
the
triple
and
the
use
of
IRIs,
and

not

any
particular
syntax.
However,
there
are
a
number
of
mechanisms
for
expressing
triples,
such
as
RDF/XML
[

RDF-SYNTAX-GRAMMAR

],
Turtle
[

TURTLE

],
and
of
course
RDFa.
Many
discussions
of
RDF
make
use
of
the

Turtle

syntax
to
explain
their
ideas,
since
it
is
quite
compact.
The
examples
we
have
just
seen
are
already
using
this
syntax,
and
we'll
continue
to
use
it
throughout
this
document
when
we
need
to
talk
about
the
RDF
that
could
be
generated
from
some
RDFa.
Turtle
allows
long
IRIs
to
be
abbreviated
by
using
an
IRI
mapping,
which
can
be
used
to
express
a
compact
IRI
expression
as
follows:

 Example 21
@prefix dbp: <http://dbpedia.org/property/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://dbpedia.org/resource/Albert_Einstein>
 foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein>

dbp:birthPlace

<http://dbpedia.org/resource/German_Empire>
.

Here
'dbp:'
has
been
mapped
to
the
IRI
for
DBPedia
and
'foaf:'
has
been
mapped
to
the
IRI
for
the
'Friend
of
a
Friend'
vocabulary.

Any
IRI
in
Turtle
could
be
abbreviated
in
this
way.
This
means
that
we
could
also
have
used
the
same
technique
to
abbreviate
the
identifier
for
Einstein,
as
well
as
the
datatype
indicator:

 Example 22
@prefix dbp: <http://dbpedia.org/property/> .
@prefix dbr: <http://dbpedia.org/resource/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
dbr:Albert_Einstein
 foaf:name "Albert Einstein";
 dbp:birthPlace dbr:German_Empire;
 dbp:dateOfBirth "1879-03-14"^^xsd:date;
 foaf:depiction <http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg> .
dbr:German_Empire
 rdfs:label "German Empire"@en;

rdfs:label

"Deutsches
Kaiserreich"@de
.

When
writing
examples,
you
will
often
see
the
following
IRI
in
the
Turtle
representation:

Example
23

<>

This
indicates
the
'current
document',
i.e.,
the
document
being
processed.
In
the
end
there
will
always
be
a
full
IRI
based
on
the
document's
location,
but
this
abbreviation
serves
to
make
examples
more
compact.
Note
in
particular
that
the
whole
technique
of
abbreviation
is
merely
a
way
to
make
examples
more
compact,
and
the
actual
triples
generated
would
always
use
the
full
IRIs.

3.7

Graphs

A
collection
of
triples
is
called
a

graph
.
All
of
the
triples
that
are
defined
by
this
specification
are
contained
in
the

output
graph

by
an
RDFa
Processor.
For
more
information
on
graphs
and
other
RDF
concepts,
see
[

RDF-SYNTAX-GRAMMAR

].

3.8

Compact
URI
Expressions

In
order
to
allow
for
the
compact
expression
of
RDF
statements,
RDFa
allows
the
contraction
of
most

IRI
reference

s
into
a
form
called
a
'compact
URI
expression',
or

CURIE
.
A
detailed
discussion
of
this
mechanism
is
in
the
section

CURIE
and
IRI
Processing
.

Note
that
CURIEs
are
only
used
in
the
markup
and
Turtle
examples,
and
will
never
appear
in
the
generated

triple

s,
which
are
defined
by
RDF
to
use

IRI
reference

s.

3.9

Markup
Fragments
and
RDFa

A
growing
use
of
embedded
metadata
is
to
take
fragments
of
markup
and
move
them
from
one
document
to
another.
This
may
happen
through
the
use
of
tools,
such
as
drag-and-drop
in
a
browser,
or
through
snippets
of
code
provided
to
authors
for
inclusion
in
their
documents.
A
good
example
of
the
latter
is
the

licensing
fragment
provided
by
Creative
Commons
.

However,
those
involved
in
creating
fragments
(either
by
building
tools,
or
authoring
snippets),
should
be
aware
that
this
specification
does
not
say
how
fragments
are
processed.
Specifically,
the
processing
of
a
fragment
'outside'
of
a
complete
document
is
undefined
because
RDFa
processing
is
largely
about
context.
Future
versions
of
this
or
related
specifications
may
do
more
to
define
this
behavior.

Developers
of
tools
that
process
fragments,
or
authors
of
fragments
for
manual
inclusion,
should
also
bear
in
mind
what
will
happen
to
their
fragment
once
it
is
included
in
a
complete
document.
They
should
carefully
consider
the
amount
of
'context'
information
that
will
be
needed
in
order
to
ensure
a
correct
interpretation
of
their
fragment.

3.10

A
Description
of
RDFa
in
RDF
Terms

The
following
is
a
brief
description
of
RDFa
in
terms
of
the
RDF
terminology
introduced
here.
It
may
be
useful
to
readers
with
an
RDF
background:

An

RDF
graph

comprises

node

s
linked
by
relationships.
The
aim
of
RDFa
is
to
allow
a
single

RDF
graph

to
be
carried
in
various
types
of
document
markup.
The
basic
unit
of
an

RDF
graph

is
a

triple
,
in
which
a
subject

node

is
linked
to
an
object

node

via
a

predicate
.
The

subject

node

is
always
either
a

IRI
reference

or
a

blank
node
(or
bnode)
,
the

predicate

is

always

a

IRI
reference
,
and
the
object
of
a
statement
can
be
a

IRI
reference
,
a

literal
,
or
a

bnode
.

In
RDFa,
a
subject

IRI
reference

is
generally
indicated
using

@about

and
predicates
are
represented
using
one
of

@property
,

@rel
,
or

@rev
.
Objects
which
are

IRI
reference

s
are
represented
using

@resource
,

@src
,
or

@href
,
whilst
objects
that
are

literal

s
are
represented
either
with

@content

or
the
content
of
the
element
in
question
(with
an
optional
datatype
expressed
using

@datatype
,
and
an
optional
language
expressed
using
a
Host
Language-defined
mechanism
such
as

@xml:lang

).

4.

Conformance

As
well
as
sections
marked
as
non-normative,
all
authoring
guidelines,
diagrams,
examples,
and
notes
in
this
specification
are
non-normative.
Everything
else
in
this
specification
is
normative.

The
key
words

MAY
,

MUST
,

MUST
NOT
,

RECOMMENDED
,

SHOULD
,
and

SHOULD
NOT

are
to
be
interpreted
as
described
in
[

RFC2119

].

4.1

RDFa
Processor
Conformance

This
specification
uses
the
term

output
graph

to
mean
all
of
the
triples
asserted
by
a
document
according
to
the

Processing
Model

section.
A
conforming
RDFa
Processor

MUST

make
available
to
a
consuming
application
a
single

RDF
graph

containing
all
possible
triples
generated
by
using
the
rules
in
the

Processing
Model

section.
The
term

processor
graph

is
used
to
denote
the
collection
of
all
informational,
warning,
and
error
triples
that

MAY

be
generated
by
the
RDFa
Processor
to

report
its
status
.
The

output
graph

and
the

processor
graph

are
separate
graphs
and

MUST
NOT

be
stored
in
the
same
graph
by
the
RDFa
Processor.
However,
processors
may
permit
the
two
graphs
to
be
retrieved
together;
see

Section
7.6.1

for
details.

A
conforming
RDFa
Processor

MAY

make
available
additional
triples
that
have
been
generated
using
rules
not
described
here,
but
these
triples

MUST
NOT

be
made
available
in
the

output
graph
.
(Whether
these
additional
triples
are
made
available
in
one
or
more
additional

RDF
graph

s
is
implementation-specific,
and
therefore
not
defined
here.)

A
conforming
RDFa
Processor

MUST

preserve
white
space
in
both

plain
literal

s
and

XML
literals
.
However,
it
may
be
the
case
that
the
architecture
in
which
a
processor
operates
has
made
changes
to
the
white
space
in
a
document
before
that
document
ever
reaches
the
RDFa
Processor
(e.g.,
[

XMLSCHEMA11-1

]
processors
are
permitted
to
'normalize'
white
space
in
attribute
values
-
see
section
3.1.4).
To
ensure
maximum
consistency
between
processing
environments,
authors

SHOULD

remove
any
unnecessary
white
space
in
their
plain
and
XML
Literal
content.

A
conforming
RDFa
Processor

MUST

examine
the
media
type
of
a
document
it
is
processing
to
determine
the
document's
Host
Language.
If
the
RDFa
Processor
is
unable
to
determine
the
media
type,
or
does
not
support
the
media
type,
the
RDFa
Processor

MUST

process
the
document
as
if
it
were
media
type

application/xml
.
See

XML+RDFa
Document
Conformance
.
A
Host
Language

MAY

specify
additional
announcement
mechanisms.

Note

A
conforming
RDFa
Processor

MAY

use
additional
mechanisms
(e.g.,
the
DOCTYPE,
a
file
extension,
the
root
element,
an
overriding
user-defined
parameter)
to
attempt
to
determine
the
Host
Language
if
the
media
type
is
unavailable.
These
mechanisms
are
unspecified.

4.2

RDFa
Host
Language
Conformance

Host
Languages
that
incorporate
RDFa
must
adhere
to
the
following:

		
All
of
the
facilities
required
in
this
specification

MUST

be
included
in
the
Host
Language.

		
The
required
attributes
defined
in
this
specification

MUST

be
included
in
the
content
model
of
the
Host
Language.

Note

For
the
avoidance
of
doubt,
there
is
no
requirement
that
attributes
such
as

@href

and

@src

are
used
in
a
conforming
Host
Language.
Nor
is
there
any
requirement
that
all
required
attributes
are
incorporated
into
the
content
model
of
all
elements.
The
working
group
recommends
that
Host
Language
designers
ensure
that
the
required
attributes
are
incorporated
into
the
content
model
of
elements
that
are
commonly
used
throughout
the
content
model
of
the
Host
Language.

		
If
the
Host
Language
uses
XML
Namespaces
[

XML-NAMES

],
the
attributes
in
this
specification

SHOULD

be
defined
in
'no
namespace'
(e.g.,
when
the
attributes
are
used
on
elements
in
the
Host
Language's
namespace,
they
can
be
used
with
no
qualifying
prefix:

<myml:myElement
property="license">

).
When
a
Host
Language
does
not
use
the
attributes
in
'no
namespace',
they

MUST

be
referenced
via
the
XHTML
Namespace
(

http://www.w3.org/1999/xhtml

).

		
If
the
Host
Language
has
its
own
definition
for
any
attribute
defined
in
this
specification,
that
definition

MUST

be
such
that
the
processing
required
by
this
specification
remains
possible
when
the
attribute
is
used
in
a
way
consistent
with
the
requirements
herein.

		
The
Host
Language

MAY

specify
an

initial
context

(e.g.,
IRI
mappings
and/or
a
definition
of
terms
or
a
default
vocabulary
IRI).
Such
an

initial
context

SHOULD

be
defined
using
the
conventions
defined
in

RDFa
Initial
Contexts
.

4.3

XML+RDFa
Document
Conformance

This
specification
does
not
define
a
stand-alone
document
type.
The
attributes
herein
are
intended
to
be
integrated
into
other
host
languages
(e.g.,
HTML+RDFa
or
XHTML+RDFa).
However,
this
specification

does

define
processing
rules
for
generic
XML
documents
-
that
is,
those
documents
delivered
as
media
types

text/xml

or

application/xml
.
Such
documents
must
meet
all
of
the
following
criteria:

		
The
document

MUST

be
well-formed
as
defined
in
[

XML10-4e

].

		
The
document

SHOULD

use
the
attributes
defined
in
this
specification
in
'no
namespace'
(e.g.,
when
the
attributes
are
used
on
elements
they
are
used
with
no
qualifying
prefix:

<myml:myElement
property="license">

).

Note

It
is
possible
that
an
XML
grammar
will
have
native
attributes
that
conflict
with
attributes
in
this
specification.
This
could
result
in
an
RDFa
processor
generating
unexpected
triples.

When
an
RDFa
Processor
processes
an
XML+RDFa
document,
it
does
so
via
the
following

initial
context
:

		
There
are
default
terms
(e.g.,

describedby
,

license
,
and

role

),
defined
in

http://www.w3.org/2011/rdfa-context/rdfa-1.1

.

		
There
are
default
prefix
mappings
(e.g.,

dc

),
defined
in

http://www.w3.org/2011/rdfa-context/rdfa-1.1

.

		
There
is
no
default
vocabulary
IRI.

		
The

base

can
be
set
using
the

@xml:base

attribute
as
defined
in
[

XML10-4e

].

		
The

current
language

can
be
set
using

@xml:lang

attribute.

5.

Attributes
and
Syntax

This
specification
defines
a
number
of
attributes
and
the
way
in
which
the
values
of
those
attributes
are
to
be
interpreted
when
generating
RDF
triples.
This
section
defines
the
attributes
and
the
syntax
of
their
values.

		

about

		
a

SafeCURIEorCURIEorIRI
,
used
for
stating
what
the
data
is
about
(a
'subject'
in
RDF
terminology);

		

content

		
a

CDATA

string,
for
supplying
machine-readable
content
for
a
literal
(a
'literal
object',
in
RDF
terminology);

		

datatype

		
a

TERMorCURIEorAbsIRI

representing
a
datatype,
to
express
the
datatype
of
a
literal;

		

href

(optional)

		
a
traditionally
navigable

IRI

for
expressing
the
partner
resource
of
a
relationship
(a
'resource
object',
in
RDF
terminology);

		

inlist

		
An
attribute
used
to
indicate
that
the
object
associated
with
a

rel

or

property

attribute
on
the
same
element
is
to
be
added
to
the
list
for
that
predicate.
The
value
of
this
attribute

MUST

be
ignored.
Presence
of
this
attribute
causes
a
list
to
be
created
if
it
does
not
already
exist.

		

prefix

		
a
white
space
separated
list
of
prefix-name
IRI
pairs
of
the
form

NCName

':'
'
'+
xsd:anyURI

		

property

		
a
white
space
separated
list
of

TERMorCURIEorAbsIRIs
,
used
for
expressing
relationships
between
a
subject
and
either
a
resource
object
if
given
or
some
literal
text
(also
a
'predicate');

		

rel

		
a
white
space
separated
list
of

TERMorCURIEorAbsIRIs
,
used
for
expressing
relationships
between
two
resources
('predicates'
in
RDF
terminology);

		

resource

		
a

SafeCURIEorCURIEorIRI

for
expressing
the
partner
resource
of
a
relationship
that
is
not
intended
to
be
navigable
(e.g.,
a
'clickable'
link)
(also
an
'object');

		

rev

		
a
white
space
separated
list
of

TERMorCURIEorAbsIRIs
,
used
for
expressing
reverse
relationships
between
two
resources
(also
'predicates');

		

src

(optional)

		
an

IRI

for
expressing
the
partner
resource
of
a
relationship
when
the
resource
is
embedded
(also
a
'resource
object');

		

typeof

		
a
white
space
separated
list
of

TERMorCURIEorAbsIRIs

that
indicate
the
RDF
type(s)
to
associate
with
a
subject;

		

vocab

		
an

IRI

that
defines
the
mapping
to
use
when
a

TERM

is
referenced
in
an
attribute
value.
See

General
Use
of
Terms
in
Attributes

and
the

section
on
Vocabulary
Expansion
.

Note

In
all
cases
it
is
possible
for
these
attributes
to
be
used
with
no
value
(e.g.,

@datatype

="")
or
with
a
value
that
evaluates
to
no
value
after
evaluation
using
the
rules
for

CURIE
and
IRI
Processing

(e.g.,

@datatype

="[noprefix:foobar]").

5.1

Roles
of
attributes

The
RDFa
attributes
play
different
roles
in
a
semantically
rich
document.
Briefly,
those
roles
are:

		
Syntax
attributes:

@prefix
,

@vocab
.

		
Subject
attributes:

@about
.

		
Predicate
attributes:

@property
,

@rel
,

@rev
.

		
Resource
attributes:

@resource
,

@href
,

@src
.

		
Literal
attributes:

@datatype
,

@content
,

@xml:lang

or

@lang
.

		
Macro
attributes:

@typeof
,

@inlist
.

5.2

White
space
within
attribute
values

Many
attributes
accept
a
white
space
separated
list
of
tokens.
This
specification
defines
white
space
as:

 whitespace ::= (#x20 | #x9 | #xD | #xA)+

When
attributes
accept
a
white
space
separated
list
of
tokens,
an
RDFa
Processor

MUST

ignore
any
leading
or
trailing
white
space.

Note

This
definition
is
consistent
with
the
definition
found
in
[

XML10

].

6.

CURIE
Syntax
Definition

Note

The
working
group
is
currently
examining
the
productions
for
CURIE
below
in
light
of
recent
comments
received
from
the
RDF
Working
Group
and
members
of
the
RDFa
Working
Group.
It
is
possible
that
there
will
be
minor
changes
to
the
production
rules
below
in
the
near
future,
and
that
these
changes
will
be
backward

incompatible
.
However,
any
such
incompatibility
will
be
limited
to
edge
cases.

The
key
component
of
RDF
is
the
IRI,
but
these
are
usually
long
and
unwieldy.
RDFa
therefore
supports
a
mechanism
by
which
IRIs
can
be
abbreviated,
called
'compact
URI
expressions'
or
simply,

CURIEs
.

When
expanded,
the
resulting
IRI

MUST

be
a
syntactically
valid
IRI
[

RFC3987

].
For
a
more
detailed
explanation
see

CURIE
and
IRI
Processing
.
The

lexical
space

of
a
CURIE
is
as
defined
in

curie

below.
The

value
space

is
the
set
of
IRIs.

A
CURIE
is
comprised
of
two
components,
a

prefix

and
a

reference

.
The
prefix
is
separated
from
the
reference
by
a
colon
(
:

).
In
general
use
it
is
possible
to
omit
the
prefix,
and
so
create
a
CURIE
that
makes
use
of
the
'default
prefix'
mapping;
in
RDFa
the
'default
prefix'
mapping
is

http://www.w3.org/1999/xhtml/vocab#
.
It's
also
possible
to
omit
both
the
prefix

and

the
colon,
and
so
create
a
CURIE
that
contains
just
a
reference
which
makes
use
of
the
'no
prefix'
mapping.
This
specification
does
not
define
a
'no
prefix'
mapping.
RDFa
Host
Languages

MUST
NOT

define
a
'no
prefix'
mapping.

Note

The
RDFa
'default
prefix'
should
not
be
confused
with
the
'default
namespace'
as
defined
in
[

XML-NAMES

].
An
RDFa
Processor

MUST
NOT

treat
an
XML-NAMES
'default
namespace'
declaration
as
if
it
were
setting
the
'default
prefix'.

The
general
syntax
of
a
CURIE
can
be
summarized
as
follows:

 prefix ::= NCName
reference ::= (ipath-absolute / ipath-rootless / ipath-empty)
 ["?" iquery] ["#" ifragment] (as defined in [[!RFC3987]])
curie ::= [[prefix] ':'] reference
safe_curie ::= '[' [[prefix] ':'] reference ']'

Note

The
production

safe_curie

is
not
required,
even
in
situations
where
an
attribute
value
is
permitted
to
be
a
CURIE
or
an
IRI:
An
IRI
that
uses
a
scheme
that
is
not
an
in-scope
mapping

cannot

be
confused
with
a
CURIE.
The
concept
of
a
safe_curie
is
retained
for
backward
compatibility.

Note

It
is
possible
to
define
a
CURIE
prefix
mapping
in
such
a
way
that
it
would
overshadow
a
defined
IRI
scheme.
For
example,
a
document
could
map
the
prefix
'mailto'
to
'http://www.example.com/addresses/'.
Then
a

@resource

that
contained
'mailto:user@example.com'
might
create
a
triple
with
the
object
'http://www.example.com/addresses/user@example.com'.
Moreover,
it
is
possible
though
unlikely,
that
schemes
will
be
introduced
in
the
future
that
will
conflict
with
prefix
mappings
defined
in
a
document
(e.g.,
the
newly
proposed
'widget'
scheme
[

WIDGETS-URI

]).
In
neither
case
would
this
RDFa
overshadowing
of
the
underlying
scheme
alter
the
way
other
consumers
of
the
IRI
treat
that
IRI.
It
could,
however,
mean
that
the
document
author's
intended
use
of
the
CURIE
is
mis-interpreted
by
another
consumer
as
an
IRI.
The
working
group
considers
this
risk
to
be
minimal.

In
normal
evaluation
of
CURIEs
the
following
context
information
would
need
to
be
provided:

		
a
set
of
mappings
from
prefixes
to
IRIs;

		
a
mapping
to
use
with
the
default
prefix
(for
example,
:p

);

		
a
mapping
to
use
when
there
is
no
prefix
(for
example,

p

);

		
a
mapping
to
use
with
the
'_'
prefix,
which
is
used
to
generate
unique
identifiers
(for
example,

_:p

).

In
RDFa
these
values
are
defined
as
follows:

		
the

set
of
mappings
from
prefixes
to
IRIs

is
provided
by
the
current
in-scope
prefix
declarations
of
the

current
element

during
parsing;

		
the

mapping
to
use
with
the
default
prefix

is
the
current
default
prefix
mapping;

		
the

mapping
to
use
when
there
is
no
prefix

is
not
defined;

		
the

mapping
to
use
with
the
'_'
prefix
,
is
not
explicitly
stated,
but
since
it
is
used
to
generate

bnode

s,
its
implementation
needs
to
be
compatible
with
the
RDF
definition
and
rules
in

Referencing
Blank
Nodes
.
A
document

SHOULD
NOT

define
a
mapping
for
the
'_'
prefix.
A
Conforming
RDFa
Processor

MUST

ignore
any
definition
of
a
mapping
for
the
'_'
prefix.

A
CURIE
is
a
representation
of
a
full
IRI.
The
rules
for
determining
that
IRI
are:

		
If
a
CURIE
consists
of
an
empty

prefix

and
a

reference
,
the
IRI
is
obtained
by
taking
the
current
default
prefix
mapping
and
concatenating
it
with
the

reference
.
If
there
is
no
current
default
prefix
mapping,
then
this
is
not
a
valid
CURIE
and

MUST

be
ignored.

		
Otherwise,
if
a
CURIE
consists
of
a
non-empty

prefix

and
a

reference
,
and
if
there
is
an
in-scope
mapping
for

prefix

(when
compared
case-insensitively),
then
the
IRI
is
created
by
using
that
mapping,
and
concatenating
it
with
the

reference
.

		
Finally,
if
there
is
no
in-scope
mapping
for

prefix
,
then
the
value
is
not
a
CURIE.

Note

See

General
Use
of
Terms
in
Attributes

for
the
way
items
with
no
colon
can
be
interpreted
in
some
datatypes
by
RDFa
Processors.

6.1

Why
CURIEs
and
not
QNames?

This
section
is
non-normative.

In
many
cases,
language
designers
have
attempted
to
use
QNames
for
an
extension
mechanism
[

XMLSCHEMA11-2

].
QNames
do
permit
independent
management
of
the
name
collection,
and

can

map
the
names
to
a
resource.
Unfortunately,
QNames
are
unsuitable
in
most
cases
because
1)
the
use
of
QName
as
identifiers
in
attribute
values
and
element
content
is
problematic
as
discussed
in
[

QNAMES

]
and
2)
the
syntax
of
QNames
is
overly
restrictive
and
does
not
allow
all
possible
IRIs
to
be
expressed.

A
specific
example
of
the
problem
this
causes
comes
from
attempting
to
define
the
name
collection
for
books.
In
a
QName,
the
part
after
the
colon
must
be
a
valid
element
name,
making
an
example
such
as
the
following

invalid
:

isbn:0321154991

This
is
not
a
valid
QName
simply
because
"0321154991"
is
not
a
valid
element
name.
Yet,
in
the
example
given,
we
don't
really
want
to
define
a
valid
element
name
anyway.
The
whole
reason
for
using
a
QName
was
to
reference
an
item
in
a
private
scope
-
that
of
ISBNs.
Moreover,
in
this
example,
we
want
the
names
within
that
scope
to
map
to
an
IRI
that
will
reveal
the
meaning
of
that
ISBN.
As
you
can
see,
the
definition
of
QNames
and
this
(relatively
common)
use
case
are
in
conflict
with
one
another.

This
specification
addresses
the
problem
by
defining
CURIEs.
Syntactically,
CURIEs
are
a
superset
of
QNames.

Note
that
this
specification
is
targeted
at
language
designers,
not
document
authors.
Any
language
designer
considering
the
use
of
QNames
as
a
way
to
represent
IRIs
or
unique
tokens
should
consider
instead
using
CURIEs:

		
CURIEs
are
designed
from
the
ground
up
to
be
used
in
attribute
values.
QNames
are
designed
for
unambiguously
naming
elements
and
attributes.

		
CURIEs
expand
to
IRIs,
and
any
IRI
can
be
represented
by
such
an
expansion.
QNames
are
treated
as
value
pairs,
but
even
if
those
pairs
are
combined
into
a
string,
only
a
subset
of
IRIs
can
be
represented.

		
CURIEs
can
be
used
in
non-XML
grammars,
and
can
even
be
used
in
XML
languages
that
do
not
support
XML
Namespaces.
QNames
are
limited
to
XML
Namespace-aware
XML
Applications.

7.

Processing
Model

This
section
looks
at
a
generic
set
of
processing
rules
for
creating
a
set
of
triples
that
represent
the
structured
data
present
in
an
RDFa
document.
Processing
need
not
follow
the
DOM
traversal
technique
outlined
here,
although
the
effect
of
following
some
other
manner
of
processing
must
be
the
same
as
if
the
processing
outlined
here
were
followed.
The
processing
model
is
explained
using
the
idea
of
DOM
traversal
which
makes
it
easier
to
describe
(particularly
in
relation
to
the

evaluation
context

).

Note
that
in
this
section,
explanations
about
the
processing
model
or
guidance
to
implementors
are
enclosed
in
sections
like
this.

7.1

Overview

Evaluating
a
document
for
RDFa
triples
is
carried
out
by
starting
at
the
document
object,
and
then
visiting
each
of
its
child
elements
in
turn,
in
document
order,
applying
processing
rules.
Processing
is
recursive
in
that
for
each
child
element
the
processor
also
visits
each
of

its

child
elements,
and
applies
the
same
processing
rules.

Note

In
some
environments
there
will
be
little
difference
between
starting
at
the
root
element
of
the
document,
and
starting
at
the
document
object
itself.
It
is
defined
this
way
because
in
some
environments
important
information
is
present
at
the
document
object
level
which
is
not
present
on
the
root
element.

As
processing
continues,
rules
are
applied
which
may
generate
triples,
and
may
also
change
the

evaluation
context

information
that
will
then
be
used
when
processing
descendant
elements.

Note

This
specification
does
not
say
anything
about
what
should
happen
to
the
triples
generated,
or
whether
more
triples
might
be
generated
during
processing
than
are
outlined
here.
However,
to
be
conforming,
an
RDFa
Processor

MUST

act
as
if
at
a
minimum
the
rules
in
this
section
are
applied,
and
a
single

RDF
graph

produced.
As
described
in
the

RDFa
Processor
Conformance

section,
any
additional
triples
generated

MUST
NOT

appear
in
the

output
graph
.
They

MAY

be
included
in
the

processor
graph
.

7.2

Evaluation
Context

During
processing,
each
rule
is
applied
using
information
provided
by
an

evaluation
context
.
An

initial
context

is
created
when
processing
begins.
That
context
has
the
following
members:

		
The

base
.
This
will
usually
be
the
IRI
of
the
document
being
processed,
but
it
could
be
some
other
IRI,
set
by
some
other
mechanism,
such
as
the
(X)HTML

base

element.
The
important
thing
is
that
it
establishes
an
IRI
against
which
relative
paths
can
be
resolved.

		
The

parent
subject
.
The
initial
value
will
be
the
same
as
the
initial
value
of

base
,
but
it
will
usually
change
during
the
course
of
processing.

		
The

parent
object
.
In
some
situations
the
object
of
a
statement
becomes
the
subject
of
any
nested
statements,
and
this
member
is
used
to
convey
this
value.
Note
that
this
value
may
be
a

bnode
,
since
in
some
situations
a
number
of
nested
statements
are
grouped
together
on
one

bnode
.
This
means
that
the

bnode

must
be
set
in
the
containing
statement
and
passed
down.

		
A
list
of
current,
in-scope

IRI
mappings
.

		
A
list
of

incomplete
triple

s.
A
triple
can
be
incomplete
when
no
object
resource
is
provided
alongside
a
predicate
that
requires
a
resource
(i.e.,

@rel

or

@rev

).
The
triples
can
be
completed
when
a
resource
becomes
available,
which
will
be
when
the
next
subject
is
specified
(part
of
the
process
called

chaining

).

		
A

list
mapping

that
associates
IRIs
with
lists.

		
The

language
.
Note
that
there
is
no
default
language.

		
The

term
mappings
,
a
list
of
terms
and
their
associated
IRIs.
This
specification
does
not
define
an
initial
list.
Host
Languages

MAY

define
an
initial
list.

		
The

default
vocabulary
,
a
value
to
use
as
the
prefix
IRI
when
a

term

unknown
to
the
RDFa
Processor
is
used.
This
specification
does
not
define
an
initial
setting
for
the
default
vocabulary.
Host
Languages

MAY

define
an
initial
setting.

During
the
course
of
processing,
new

evaluation
context

s
are
created
which
are
passed
to
each
child
element.
The
initial
rules
described
below
will
determine
the
values
of
the
items
in
the
context.
Then
the
core
rules
will
cause
new
triples
to
be
created
by
combining
information
provided
by
an
element
with
information
from
the

evaluation
context
.

During
the
course
of
processing
a
number
of
locally
scoped
values
are
needed,
as
follows:

		
An
initially
empty
list
of

IRI
mapping

s,
called
the

local
list
of
IRI
mappings
.

		
An
initially
empty

list
of
incomplete
triples
,
called
the

local
list
of
incomplete
triples
.

		
An
initially
empty

language

value.

		
A

skip
element

flag,
which
indicates
whether
the

current
element

can
safely
be
ignored
since
it
has
no
relevant
RDFa
attributes.
Note
that
descendant
elements
will
still
be
processed.

		
A

new
subject

value,
which
once
calculated
will
set
the

parent
subject

in
an

evaluation
context
,
as
well
as
being
used
to
complete
any

incomplete
triple

s,
as
described
in
the
next
section.

		
A
value
for
the

current
property
value
,
the
literal
to
use
when
creating
triples
that
have
a
literal
object,
or
IRI-s
in
the
absence
of

@rel

or

@rev
.

		
A
value
for
the

current
object
resource
,
the
resource
to
use
when
creating
triples
that
have
a
resource
object.

		
A
value
for
the

typed
resource
,
the
source
for
creating

rdf:type

relationships
to
types
specified
in

@typeof
.

		
The

local
term
mappings
,
a
list
of
terms
and
their
associated
IRIs.

		
The

local
list
mapping
,
mapping
IRIs
to
lists

		
A

local
default
vocabulary
,
an
IRI
to
use
as
a
prefix
mapping
when
a

term

is
used.

7.3

Chaining

Statement

chaining

is
an
RDFa
feature
that
allows
the
author
to
link
RDF
statements
together
while
avoiding
unnecessary
repetitive
markup.
For
example,
if
an
author
were
to
add
statements
as
children
of
an
object
that
was
a
resource,
these
statements
should
be
interpreted
as
being
about
that
resource:

 Example 24
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire
 </div>
</div>

In
this
example
we
can
see
that
an
object
resource
('German_Empire'),
has
become
the
subject
for
nested
statements.
This
markup
also
illustrates
the
basic
chaining
pattern
of
'A
has
a
B
has
a
C'
(i.e.,
Einstein
has
a
birth
place
of
the
German
Empire,
which
has
a
long
name
of
'the
German
Empire').

It's
also
possible
for
the
subject
of
nested
statements
to
provide
the
object
for

containing

statements
—
essentially
the
reverse
of
the
example
we
have
just
seen.
To
illustrate,
we'll
take
an
example
of
the
type
of
chaining
just
described,
and
show
how
it
could
be
marked
up
more
efficiently.
To
start,
we
mark
up
the
fact
that
Albert
Einstein
had,
at
some
point
in
his
life,
a
residence
both
in
the
German
Empire
and
in
Switzerland:

 Example 25
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp-owl:residence" resource="http://dbpedia.org/resource/German_Empire"></div>
 <div rel="dbp-owl:residence" resource="http://dbpedia.org/resource/Switzerland"></div>
</div>

Now,
we
show
the
same
information,
but
this
time
we
create
an

incomplete
triple

from
the
residence
part,
and
then
use
any
number
of
further
subjects
to
'complete'
that
triple,
as
follows:

 Example 26
<div about="http://dbpedia.org/resource/Albert_Einstein" rel="dbp-owl:residence">

</div>

In
this
example,
the

incomplete
triple

actually
gets
completed
twice,
once
for
the
German
Empire
and
once
for
Switzerland,
giving
exactly
the
same
information
as
we
had
in
the
earlier
example:

 Example 27
<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
<http://dbpedia.org/resource/Albert_Einstein>
dbp-owl:residence
<http://dbpedia.org/resource/Switzerland>
.

Chaining
can
sometimes
involve
elements
containing
relatively
minimal
markup,
for
example
showing
only
one
resource,
or
only
one
predicate.
Here
the

img

element
is
used
to
carry
a
picture
of
Einstein:

 Example 28
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="foaf:depiction">

 </div>
</div>

When
such
minimal
markup
is
used,
any
of
the
resource-related
attributes
could
act
as
a
subject
or
an
object
in
the
chaining:

 Example 29
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp-owl:residence">

 </div>
</div>

Note
that,
as
noted
above,
in
many
situations
the

@property

and

@rel

are
interchangeable.
This
is

not

true
for
chaining.
Taking
the
first
example,
if
that
example
was
used
as
follows:

 Example 30
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div property="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire
 </div>
</div>

The
subject
for
'the
German
Empire'
would
remain
Albert
Einstein
(and
that
would,
of
course,
be
an
error).
This
is
the
main
difference
between

@property

and

@rel
:
the
latter
induces
chaining,
whereas
the
former,
usually,
does
not.

7.4

CURIE
and
IRI
Processing

Since
RDFa
is
ultimately
a
means
for
transporting
RDF,
a
key
concept
is
the

resource

and
its
manifestation
as
an
IRI.
RDF
deals
with
complete
IRIs
(not
relative
paths);
when
converting
RDFa
to
triples,
any
relative
IRIs

MUST

be
resolved
relative
to
the
base
IRI,
using
the
algorithm
defined
in
section
6.5
of
RFC
3987
[

RFC3987

],

Reference
Resolution
.
The
values
of

RDFa
attributes

that
refer
to
IRIs
use
three
different
datatypes:

IRI
,

SafeCURIEorCURIEorIRI
,
or

TERMorCURIEorAbsIRI
.
All
these
attributes
are
mapped,
after
processing,
to
IRIs.
The
handling
of
these
attributes
is
as
follows:

		
IRI

		
The
content
is
an
IRI,
and
is
used
as
such.

		
SafeCURIEorCURIEorIRI

		

		
When
the
value
is
surrounded
by
square
brackets,
then
the
content
within
the
brackets
is
evaluated
as
a
CURIE
according
to
the

CURIE
Syntax
Definition
.
If
it
is
not
a
valid
CURIE,
the
value

MUST

be
ignored.

		
Otherwise,
the
value
is
evaluated
as
a
CURIE.
If
it
is
a
valid
CURIE,
the
resulting
IRI
is
used;
otherwise,
the
value
is
processed
as
an
IRI.

Note

A
consequence
of
this
is
that
when
the
value
of
an
attribute
of
this
datatype
is
the
empty
string
(e.g.,

@about

=""),
that
value
resolves
to
an
IRI.
An
IRI
of
""
is
a
relative
IRI
that
is
interpreted
as
being
the
same
as
the

base
.
In
other
words,
a
value
of
""
will
usually
resolve
to
the
IRI
of
the
current
document.

Note

A
related
consequence
of
this
is
that
when
the
value
of
an
attribute
of
this
datatype
is
an
empty
SafeCURIE
(e.g.,

@about

="[]"),
that
value
does
not
result
in
an
IRI
and
therefore
the
value
is
ignored.

		
TERMorCURIEorAbsIRI

		

		
If
the
value
is
a

term

then
it
is
evaluated
as
a
term
according
to

General
Use
of
Terms
in
Attributes
.
Note
that
this
step
may
mean
that
the
value
is
to
be
ignored.

		
If
the
value
is
a
valid
CURIE,
then
the
resulting
IRI
is
used.

		
If
the
value
is
an
absolute
IRI,
that
value
is
used.

		
Otherwise,
the
value
is
ignored.

Note
that
it
is
possible
for
all
values
in
an
attribute
to
be
ignored.
When
that
happens,
the
attribute

MUST

be
treated
as
if
it
were
empty.

For
example,
the
full
IRI
for
Albert
Einstein
on
DBPedia
is:

Example
31

http://dbpedia.org/resource/Albert_Einstein

This
can
be
shortened
by
authors
to
make
the
information
easier
to
manage,
using
a
CURIE.
The
first
step
is
for
the
author
to
create
a
prefix
mapping
that
links
a
prefix
to
some
leading
segment
of
the
IRI.
In
RDFa
these
mappings
are
expressed
using

@prefix
:

 Example 32
<div prefix="db: http://dbpedia.org/">
 ...
</div>

Once
the
prefix
has
been
established,
an
author
can
then
use
it
to
shorten
an
IRI
as
follows:

 Example 33
<div prefix="db: http://dbpedia.org/">
 <div about="db:resource/Albert_Einstein">
 ...
 </div>
</div>

The
author
is
free
to
split
the
IRI
at
any
point.
However,
since
a
common
use
of
CURIEs
is
to
make
available
libraries
of
terms
and
values,
the
prefix
will
usually
be
mapped
to
some
common
segment
that
provides
the
most
re-use,
often
provided
by
those
who
manage
the
library
of
terms.
For
example,
since
DBPedia
contains
an
enormous
list
of
resources,
it
is
more
efficient
to
create
a
prefix
mapping
that
uses
the
base
location
of
the
resources:

 Example 34
<div prefix="dbr: http://dbpedia.org/resource/">
 <div about="dbr:Albert_Einstein">
 ...
 </div>
 <div about="dbr:Baruch_Spinoza">
 ...
 </div>
</div>

Note
that
it
is
generally
considered
a
bad
idea
to
use
relative
paths
in
prefix
declarations.
Since
it
is
possible
that
an
author
may
ignore
this
guidance,
it
is
further
possible
that
the
IRI
obtained
from
a
CURIE
is
relative.
However,
since
all
IRIs
must
be
resolved
relative
to

base

before
being
used
to
create
triples,
the
use
of
relative
paths
should
not
have
any
effect
on
processing.

7.4.1

Scoping
of
Prefix
Mappings

CURIE
prefix
mappings
are
defined
on
the
current
element
and
its
descendants.
The
inner-most
mapping
for
a
given
prefix
takes
precedence.
For
example,
the
IRIs
expressed
by
the
following
two
CURIEs
are
different,
despite
the
common
prefix,
because
the
prefix
mappings
are
locally
scoped:

 Example 35
<div prefix="dbr: http://dbpedia.org/resource/">
 <div about="dbr:Albert_Einstein">
 ...
 </div>
</div>
<div prefix="dbr: http://someotherdb.org/resource/">
 <div about="dbr:Albert_Einstein">
 ...
 </div>
</div>

Note

In
general
it
is
a
bad
practice
to
redefine
prefix
mappings
within
a
document.
In
particular,
while
it
is
permitted,
mapping
a
prefix
to
different
values
at
different
places
within
a
document
could
lead
to
confusion.
The
working
group
recommends
that
document
authors
use
the
same
prefix
to
map
to
the
same
vocabulary
throughout
a
document.
Many
vocabularies
have
recommended
prefix
names.
The
working
group
recommends
that
these
names
are
used
whenever
possible.

7.4.2

General
Use
of
CURIEs
in
Attributes

There
are
a
number
of
ways
that
attributes
make
use
of
CURIEs,
and
they
need
to
be
dealt
with
differently.
These
are:

		
An
attribute
may
allow
one
or
more
values
that
are
a
mixture
of
TERMs,
CURIEs,
and
absolute
IRIs.

		
An
attribute
may
allow
one
or
more
values
that
are
a
mixture
of
CURIEs
and
IRIs.
In
this
case
any
value
that
is
not
a
CURIE,
as
outlined
in
section

CURIE
Syntax
Definition
,
will
be
processed
as
an
IRI.

		
If
the
value

is

surrounded
by
square
brackets,
then
the
content
within
the
brackets
is
always
evaluated
according
to
the
rules
in

CURIE
Syntax
Definition

-
and
if
that
content
is
not
a
CURIE,
then
the
content

MUST

be
ignored.

Note

An
empty
attribute
value
(e.g.,

typeof=''

)
is

still

a
CURIE,
and
is
processed
as
such.
The
rules
for
this
processing
are
defined
in

Sequence
.
Specifically,
however,
an
empty
attribute
value
is

never

treated
as
a
relative
IRI
by
this
specification.

An
example
of
an
attribute
that
can
contain
a
CURIEorIRI
is

@about
.
To
express
an
IRI
directly,
an
author
might
do
this:

 Example 36
<div about="http://dbpedia.org/resource/Albert_Einstein">
 ...
</div>

whilst
to
express
the
IRI
above
as
a
CURIE
an
author
would
do
this:

 Example 37
<div about="dbr:Albert_Einstein">
 ...
</div>

The
author
could
also
use
a
safe
CURIE,
as
follows:

 Example 38
<div about="[dbr:Albert_Einstein]">
 ...
</div>

Since
non-CURIE
values

MUST

be
ignored,
the
following
value
in

@about

would

not

set
a
new
subject,
since

@about

does
not
permit
the
use
of

TERM

s,
and
the
CURIE
has
no
prefix
separator.

 Example 39
<div about="[Albert_Einstein]">
 ...
</div>

However,
this
markup

would

set
a
subject,
since
it
is
not
a
CURIE,
but
a
valid
relative
IRI:

 Example 40
<div about="Albert_Einstein">
 ...
</div>

Note
that
several
RDFa
attributes
are
able
to
also
take

TERMS

as
their
value.
This
is
discussed
in
the
next
section.

7.4.3

General
Use
of
Terms
in
Attributes

Some
RDFa
attributes
have
a
datatype
that
permits
a

term

to
be
referenced.
RDFa
defines
the
syntax
of
a
term
as:

 term ::= NCNameStartChar termChar*
termChar ::= (NameChar - ':') | '/'

Note

For
the
avoidance
of
doubt,
this
production
means
a
'term'
in
RDFa
is
an
XML

NCName

that
also
permits
slash
as
a
non-leading
character.

When
an
RDFa
attribute
permits
the
use
of
a
term,
and
the
value
being
evaluated
matches
the
production
for
term
above,
it
is
transformed
to
an
IRI
using
the
following
logic:

		
If
there
is
a

local
default
vocabulary

the
IRI
is
obtained
by
concatenating
that
value
and
the

term
.

		
Otherwise,
check
if
the

term

matches
an
item
in
the
list
of

local
term
mappings
.
First
compare
against
the
list

case-sensitively
,
and
if
there
is
no
match
then
compare

case-insensitively
.
If
there
is
a
match,
use
the
associated
IRI.

		
Otherwise,
the

term

has
no
associated
IRI
and

MUST

be
ignored.

Note

A

local
default
vocabulary

can
be
defined
by
the
Host
Language
as
part
of
the

initial
context
,
and
can
be
overridden
on
the
current
element
and
its
children
using

@vocab
.

7.4.4

Use
of
CURIEs
in
Specific
Attributes

The
general
rules
discussed
in
the
previous
sections
apply
to
the
RDFa
attributes
in
the
following
ways:

		

@about

and

@resource

support
the
datatype

SafeCURIEorCURIEorIRI

-
allowing
a
SafeCURIE,
a
CURIE,
or
an
IRI.

		

@href

and

@src

are
as
defined
in
the
Host
Language
(e.g.,
XHTML),
and
support
only
an
IRI.

		

@vocab

supports
an
IRI.

		

@datatype

supports
the
datatype

TERMorCURIEorAbsIRI

-
allowing
a
single
Term,
CURIE,
or
Absolute
IRI.

		

@property
,

@typeof
,

@rel
,
and

@rev

support
the
datatype

TERMorCURIEorAbsIRIs

-
allowing
one
or
more
Terms,
CURIEs,
or
Absolute
IRIs.

Any
value
that
matches
a
defined
term

MUST

be
expanded
into
a
reference
to
the
corresponding
IRI.
For
example
in
the
following
examples:

 Example 41
<link rel="license" href="http://example.org/license.html" />
<link
rel="

xhv:license

"
href="http://example.org/license.html"
/>

would
each
generate
the
following
triple:

Example
42

<>
<http://www.w3.org/1999/xhtml/vocab#license>
<http://example.org/license.html>
.

7.4.5

Referencing
Blank
Nodes

In
RDFa,
it
is
possible
to
establish
relationships
using
various
types
of
resource
references,
including

bnode

s.
If
a
subject
or
object
is
defined
using
a
CURIE,
and
that
CURIE
explicitly
names
a

bnode
,
then
a
Conforming
Processor

MUST

create
the

bnode

when
it
is
encountered
during
parsing.
The
RDFa
Processor

MUST

also
ensure
that
no

bnode

created
automatically
(e.g.,
as
a
result
of

chaining

)
has
a
name
that
collides
with
a

bnode

that
is
defined
by
explicit
reference
in
a
CURIE.

Consider
the
following
example:

 Example 43
<link about="_:john" rel="foaf:mbox"
 href="mailto:john@example.org" />
<link about="_:sue" rel="foaf:mbox"
 href="mailto:sue@example.org" />
<link about="_:john" rel="foaf:knows"
resource="_:sue"
/>

In
the
above
fragment,
two

bnodes

are
explicitly
created
as
the
subject
of
triples.
Those

bnodes

are
then
referenced
to
demonstrate
the
relationship
between
the
parties.
After
processing,
the
following
triples
will
be
generated:

 Example 44
_:john foaf:mbox <mailto:john@example.org> .
_:sue foaf:mbox <mailto:sue@example.org> .
_:john
foaf:knows
_:sue
.

Note

RDFa
Processors
use,
internally,
implementation-dependent
identifiers
for
bnodes.
When
triples
are

retrieved
,
new
bnode
indentifiers
are
used,
which
usually
bear
no
relation
to
the
original
identifiers.
However,
implementations
do
ensure
that
these
generated
bnode
identifiers
are
consistent:
each
bnode
will
have
its
own
identifier,
all
references
to
a
particular
bnode
will
use
the
same
identifier,
and
different
bnodes
will
have
different
identifiers.

As
a
special
case,

_:

is
also
a
valid
reference
for

one

specific

bnode
.

7.5

Sequence

Processing
would
normally
begin
after
the
document
to
be
parsed
has
been
completely
loaded.
However,
there
is
no
requirement
for
this
to
be
the
case,
and
it
is
certainly
possible
to
use
a
stream-based
approach,
such
as
SAX
[

SAX

]
to
extract
the
RDFa
information.
However,
if
some
approach
other
than
the
DOM
traversal
technique
defined
here
is
used,
it
is
important
to
ensure
that
Host
Language-specific
processing
rules
are
applied
(e.g.,
XHTML+RDFa
[

XHTML-RDFA

]
indicates
the

base

element
can
be
used,
and

base

will
affect
the
interpretation
of
IRIs
in

meta

or

link

elements
even
if
those
elements
are
before
the

base

element
in
the
stream).

Note

In
this
section
the
term
'resource'
is
used
to
mean
'

IRI

or

bnode

'.
It
is
possible
that
this
term
will
be
replaced
with
some
other,
more
formal
term
after
consulting
with
other
groups.
Changing
this
term
will
in
no
way
change
this
processing
sequence.

At
the
beginning
of
processing,
an
initial

evaluation
context

is
created,
as
follows:

		
the

base

is
set
to
the
IRI
of
the
document
(or
another
value
specified
in
a
language
specific
manner
such
as
the
HTML

base

element);

		
the

parent
subject

is
set
to
the

base

value;

		
the

parent
object

is
set
to
null;

		
the

list
of
incomplete
triples

is
empty;

		
the

list
mapping

is
empty;

		
the

language

is
set
to
null.

		

the

list
of
IRI
mappings

is
empty
(or
a
list
defined
in
the

initial
context

of
the
Host
Language).

		

the

term
mappings

is
set
to
null
(or
a
list
defined
in
the

initial
context

of
the
Host
Language).

		

the

default
vocabulary

is
set
to
null
(or
an
IRI
defined
in
the

initial
context

of
the
Host
Language).

Processing
begins
by
applying
the
processing
rules
below
to
the
document
object,
in
the
context
of
this
initial

evaluation
context
.
All
elements
in
the
tree
are
also
processed
according
to
the
rules
described
below,
depth-first,
although
the

evaluation
context

used
for
each
set
of
rules
will
be
based
on
previous
rules
that
may
have
been
applied.

Note

This
specification
defines
processing
rules
for
optional
attributes
that
may
not
be
present
in
all
Host
Languages
(e.g.,

@href

).
If
these
attributes
are
not
supported
in
the
Host
Language,
then
the
corresponding
processing
rules
are
not
relevant
for
that
language.

The
processing
rules
are:

		
First,
the
local
values
are
initialized,
as
follows:

		
the

skip
element

flag
is
set
to
'false';

		

new
subject

is
set
to
null;

		

current
object
resource

is
set
to
null;

		

typed
resource

is
set
to
null;

		
the

local
list
of
IRI
mappings

is
set
to
the
list
of
IRI
mappings
from
the

evaluation
context

;

		
the

local
list
of
incomplete
triples

is
set
to
null;

		
the

list
mapping

is
set
to
(a
reference
of)
the
list
mapping
from
the

evaluation
context

;

		
the

current
language

value
is
set
to
the

language

value
from
the

evaluation
context
.

		
the

local
term
mappings

is
set
to
the

term
mappings

from
the

evaluation
context
.

		
the

local
default
vocabulary

is
set
to
the

default
vocabulary

from
the

evaluation
context
.

Note
that
some
of
the
local
variables
are
temporary
containers
for
values
that
will
be
passed
to
descendant
elements
via
an

evaluation
context
.
In
some
cases
the
containers
will
have
the
same
name,
so
to
make
it
clear
which
is
being
acted
upon
in
the
following
steps,
the
local
version
of
an
item
will
generally
be
referred
to
as
such.

Note
that
the

local
term
mappings

is
always
reset
to
a
global
value,
provided
by
the

initial
context
.
Future
versions
of
this
specification
may
introduce
a
mechanism
whereby
the

local
term
mappings

can
be
set
dynamically,
in
which
case
the

local
term
mappings

would
inherit
from
the
parent's
values.

		
Next
the

current
element

is
examined
for
any
change
to
the

default
vocabulary

via

@vocab
.
If

@vocab

is
present
and
contains
a
value,
the

local
default
vocabulary

is
updated
according
to
the
section
on

CURIE
and
IRI
Processing
.
If
the
value
is
empty,
then
the

local
default
vocabulary

MUST

be
reset
to
the
Host
Language
defined
default
(if
any).

The
value
of

@vocab

is
used
to
generate
a
triple
as
follows:

		
subject

		

base

		
predicate

		

http://www.w3.org/ns/rdfa#usesVocabulary

		
object

		
value
from

@vocab

A
Host
Language
is
not
required
to
define
a
default
vocabulary.
In
such
a
case,
setting

@vocab

to
the
empty
value
has
the
effect
of
setting
the

local
default
vocabulary

to
null.

		
Next,
the

current
element

is
examined
for

IRI
mapping

s
and
these
are
added
to
the

local
list
of
IRI
mappings
.
Note
that
an

IRI
mapping

will
simply
overwrite
any
current
mapping
in
the
list
that
has
the
same
name;

Mappings
are
defined
via

@prefix
.

Values
in
this
attribute
are
evaluated
from
beginning
to
end
(e.g.,
left
to
right
in
typical
documents).

For
backward
compatibility,
RDFa
Processors

SHOULD

also
permit
the
definition
of
mappings
via

@xmlns
.
In
this
case,
the
value
to
be
mapped
is
set
by
the
XML
namespace
prefix,
and
the
value
to
map
is
the
value
of
the
attribute
—
an
IRI.
(Note
that
prefix
mapping
via

@xmlns

is
deprecated,
and
may
be
removed
in
a
future
version
of
this
specification.)

When

xmlns

is
supported,
such
mappings

MUST

be
processed
before
processing
any
mappings
from

@prefix

on
the
same
element.

Regardless
of
how
the
mapping
is
declared,
the
value
to
be
mapped

MUST

be
converted
to
lower
case
,
and
the
IRI
is
not
processed
in
any
way;
in
particular
if
it
is
a
relative
path
it

MUST
NOT

be
resolved
against
the
current

base
.
Authors

SHOULD
NOT

use
relative
paths
as
the
IRI.

		

The

current
element

is
also
parsed
for
any
language
information,
and
if
present,

current
language

is
set
accordingly;

Host
Languages
that
incorporate
RDFa

MAY

provide
a
mechanism
for
specifying
the
natural
language
of
an
element
and
its
contents
(e.g.,
XML
provides
the
general-purpose
XML
attribute

@xml:lang

).

		
If
the

current
element

contains
no

@rel

or

@rev

attribute,
then
the
next
step
is
to
establish
a
value
for

new
subject
.
This
step
has
two
possible
alternatives.

		

If
the

current
element

contains
the

@property

attribute,
but
does

not

contain
either
the

@content

or

@datatype

attributes,
then

new
subject

is
set
to
the
resource
obtained
from
the
first
match
from
the
following
rule:

		
by
using
the
resource
from

@about
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
if
the
element
is
the
root
element
of
the
document,
then
act
as
if
there
is
an
empty

@about

present,
and
process
it
according
to
the
rule
for

@about
,
above;

		

otherwise
,
if

parent
object

is
present,

new
subject

is
set
to
the
value
of

parent
object
.

If

@typeof

is
present
then

typed
resource

is
set
to
the
resource
obtained
from
the
first
match
from
the
following
rules:

		
by
using
the
resource
from

@about
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
if
the
element
is
the
root
element
of
the
document,
then
act
as
if
there
is
an
empty

@about

present
and
process
it
according
to
the
previous
rule;

		

otherwise
,

		
by
using
the
resource
from

@resource
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the

IRI

from

@href
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the
IRI
from

@src
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
the
value
of

typed
resource

is
set
to
a
newly
created

bnode
.

		
The
value
of
the

current
object
resource

is
then
set
to
the
value
of

typed
resource
.

		

otherwise
:

		
If
the
element
contains
an

@about
,

@href
,

@src
,
or

@resource

attribute,

new
subject

is
set
to
the
resource
obtained
as
follows:

		
by
using
the
resource
from

@about
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the
resource
from

@resource
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the

IRI

from

@href
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the
IRI
from

@src
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing
.

		

otherwise
,
if
no
resource
is
provided
by
a
resource
attribute,
then
the
first
match
from
the
following
rules
will
apply:

		
if
the
element
is
the
root
element
of
the
document,
then
act
as
if
there
is
an
empty

@about

present,
and
process
it
according
to
the
rule
for

@about
,
above;

		

otherwise
,
if

@typeof

is
present,
then

new
subject

is
set
to
be
a
newly
created

bnode

;

		

otherwise
,
if

parent
object

is
present,

new
subject

is
set
to
the
value
of

parent
object
.
Additionally,
if

@property

is

not

present
then
the

skip
element

flag
is
set
to
'true'.

		

Finally,
if

@typeof

is
present,
set
the

typed
resource

to
the
value
of

new
subject
.

		
If
the

current
element

does

contain
a

@rel

or

@rev

attribute,
then
the
next
step
is
to
establish

both

a
value
for

new
subject

and
a
value
for

current
object
resource
:

new
subject

is
set
to
the
resource
obtained
from
the
first
match
from
the
following
rules:

		
by
using
the
resource
from

@about
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

if
the

@typeof

attribute
is
present,
set

typed
resource

to

new
subject
.

If
no
resource
is
provided
then
the
first
match
from
the
following
rules
will
apply:

		
if
the
element
is
the
root
element
of
the
document
then
act
as
if
there
is
an
empty

@about

present,
and
process
it
according
to
the
rule
for

@about
,
above;

		

otherwise
,
if

parent
object

is
present,

new
subject

is
set
to
that.

Then
the

current
object
resource

is
set
to
the
resource
obtained
from
the
first
match
from
the
following
rules:

		
by
using
the
resource
from

@resource
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the

IRI

from

@href
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the

IRI

from

@src
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
if

@typeof

is
present
and

@about

is
not,
use
a
newly
created

bnode
.

If

@typeof

is
present
and

@about

is
not,
set

typed
resource

to

current
object
resource
.

Note
that
final
value
of
the

current
object
resource

will
either
be
null
(from
initialization)
or
a
full
IRI
or

bnode
.

		

If
in
any
of
the
previous
steps
a

typed
resource

was
set
to
a
non-null
value,
it
is
now
used
to
provide
a
subject
for
type
values;

One
or
more
'types'
for
the

typed
resource

can
be
set
by
using

@typeof
.
If
present,
the
attribute
may
contain
one
or
more
IRIs,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing
,
each
of
which
is
used
to
generate
a
triple
as
follows:

		
subject

		

typed
resource

		
predicate

		
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

		
object

		
current
full
IRI
of
'type'
from

typed
resource

		
If
in
any
of
the
previous
steps
a

new
subject

was
set
to
a
non-null
value

different

from
the

parent
object

;

The

list
mapping

taken
from
the

evaluation
context

is
set
to
a
new,
empty
mapping.

		
If
in
any
of
the
previous
steps
a

current
object
resource

was
set
to
a
non-null
value,
it
is
now
used
to
generate
triples
and
add
entries
to
the

local
list
mapping
:

If
the
element
contains

both

the

@inlist

and
the

@rel

attributes
the

@rel

may
contain
one
or
more
resources,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

each
of
which
is
used
to
add
an
entry
to
the

list
mapping

as
follows:

		
if
the

local
list
mapping

does
not
contain
a
list
associated
with
the
IRI,
instantiate
a
new
list
and
add
to
local
list
mappings

		
add
the

current
object
resource

to
the
list
associated
with
the
resource
in
the

local
list
mapping

Predicates
for
the

current
object
resource

can
be
set
by
using
one
or
both
of
the

@rel

and
the

@rev

attributes
but,
in
case
of
the

@rel

attribute,
only
if
the

@inlist

is

not

present:

		
If
present,

@rel

may
contain
one
or
more
resources,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

each
of
which
is
used
to
generate
a
triple
as
follows:

		
subject

		

new
subject

		
predicate

		
full
IRI

		
object

		

current
object
resource

		
If
present,

@rev

may
contain
one
or
more
resources,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

each
of
which
is
used
to
generate
a
triple
as
follows:

		
subject

		

current
object
resource

		
predicate

		
full
IRI

		
object

		

new
subject

		
If
however

current
object
resource

was
set
to
null,
but
there
are
predicates
present,
then
they
must
be
stored
as

incomplete
triple

s,
pending
the
discovery
of
a
subject
that
can
be
used
as
the
object.
Also,

current
object
resource

should
be
set
to
a
newly
created

bnode

(so
that
the
incomplete
triples
have
a
subject
to
connect
to
if
they
are
ultimately
turned
into
triples);

Predicates
for

incomplete
triple

s
can
be
set
by
using
one
or
both
of
the

@rel

and

@rev

attributes:

		
If
present,

@rel

must
contain
one
or
more
resources,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

each
of
which
is
added
to
the

local
list
of
incomplete
triples

as
follows:

		
If
the
element
contains
the

@inlist

attribute,
then

		
if
the

local
list
mapping

does
not
contain
a
list
associated
with
the
IRI,
instantiate
a
new
list
and
add
to
local
list
mappings.

		
Add:

		
list

		
list
from

local
list
mapping

for
this
IRI

		
direction

		
none

		
Otherwise
add:

		

		
predicate

		
full
IRI

		
direction

		
forward

		
If
present,

@rev

must
contain
one
or
more
resources,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing
,
each
of
which
is
added
to
the

local
list
of
incomplete
triples

as
follows:

		
predicate

		
full
IRI

		
direction

		
reverse

		
The
next
step
of
the
iteration
is
to
establish
any

current
property
value

;

Predicates
for
the

current
property
value

can
be
set
by
using

@property
.
If
present,
one
or
more
resources
are
obtained
according
to
the
section
on

CURIE
and
IRI
Processing
,
and
then
the
actual
literal
value
is
obtained
as
follows:

		
as
a

typed
literal

if

@datatype

is
present,
does
not
have
an
empty
value
according
to
the
section
on

CURIE
and
IRI
Processing
,
and
is
not
set
to

XMLLiteral

in
the
vocabulary

http://www.w3.org/1999/02/22-rdf-syntax-ns#
.

The
actual
literal
is
either
the
value
of

@content

(if
present)

or

a
string
created
by
concatenating
the
value
of
all
descendant
text
nodes,
of
the

current
element

in
turn.
The
final
string
includes
the
datatype
IRI,
as
described
in
[

RDF-SYNTAX-GRAMMAR

],
which
will
have
been
obtained
according
to
the
section
on

CURIE
and
IRI
Processing
.

		

otherwise
,
as
a

plain
literal

if

@datatype

is
present
but
has
an
empty
value
according
to
the
section
on

CURIE
and
IRI
Processing
.

The
actual
literal
is
either
the
value
of

@content

(if
present)

or

a
string
created
by
concatenating
the
value
of
all
descendant
text
nodes,
of
the

current
element

in
turn.

		

otherwise
,
as
an

XML
literal

if

@datatype

is
present
and
is
set
to

XMLLiteral

in
the
vocabulary

http://www.w3.org/1999/02/22-rdf-syntax-ns#
.

The
value
of
the

XML
literal

is
a
string
created
by
serializing
to
text,
all
nodes
that
are
descendants
of
the

current
element
,
i.e.,
not
including
the
element
itself,
and
giving
it
a
datatype
of

XMLLiteral

in
the
vocabulary

http://www.w3.org/1999/02/22-rdf-syntax-ns#
.
The
format
of
the
resulting
serialized
content
is
as
defined
in
Exclusive
XML
Canonicalization
Version
1.0
[

XML-EXC-C14N

].

Note

In
order
to
maintain
maximum
portability
of
this
literal,
any
children
of
the
current
node
that
are
elements

MUST

have
the
current
XML
namespace
declarations
(if
any)
declared
on
the
serialized
element.
Since
the
child
element
node
could
also
declare
new
XML
namespaces,
the
RDFa
Processor

MUST

be
careful
to
merge
these
together
when
generating
the
serialized
element
definition.
For
avoidance
of
doubt,
any
re-declarations
on
the
child
node

MUST

take
precedence
over
declarations
that
were
active
on
the
current
node.

		

otherwise
,
as
a

plain
literal

using
the
value
of

@content

if

@content

is
present.

		

otherwise
,
if
the

@rel
,

@rev
,
and

@content

attributes
are

not

present,
as
a
resource
obtained
from
one
of
the
following:

		
by
using
the
resource
from

@resource
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the

IRI

from

@href
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the

IRI

from

@src
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing
.

		

otherwise
,
if

@typeof

is
present
and

@about

is
not,
the
value
of

typed
resource
.

		

otherwise

as
a

plain
literal
.

Additionally,
if
there
is
a
value
for

current
language

then
the
value
of
the

plain
literal

should
include
this
language
information,
as
described
in
[

RDF-SYNTAX-GRAMMAR

].
The
actual
literal
is
either
the
value
of

@content

(if
present)

or

a
string
created
by
concatenating
the
text
content
of
each
of
the
descendant
elements
of
the

current
element

in
document
order.

The

current
property
value

is
then
used
with
each
predicate
as
follows:

		
If
the
element
also
includes
the

@inlist

attribute,
the

current
property
value

is
added
to
the

local
list
mapping

as
follows:

		
if
the

local
list
mapping

does
not
contain
a
list
associated
with
the
predicate
IRI,
instantiate
a
new
list
and
add
to
local
list
mappings

		
add
the

current
property
value

to
the
list
associated
with
the
predicate
IRI
in
the

local
list
mapping

		
Otherwise
the

current
property
value

is
used
to
generate
a
triple
as
follows:

		
subject

		

new
subject

		
predicate

		
full
IRI

		
object

		

current
property
value

		
If
the

skip
element

flag
is
'false',

and

new
subject

was
set
to
a
non-null
value,
then
any

incomplete
triple

s

within
the
current
context

should
be
completed:

The

list
of
incomplete
triples

from
the
current

evaluation
context

(

not

the

local
list
of
incomplete
triples

)
will
contain
zero
or
more
predicate
IRIs.
This
list
is
iterated
over
and
each
of
the
predicates
is
used
with

parent
subject

and

new
subject

to
generate
a
triple
or
add
a
new
element
to
the

local
list
mapping
.
Note
that
at
each
level
there
are

two

lists
of

incomplete
triple

s;
one
for
the
current
processing
level
(which
is
passed
to
each
child
element
in
the
previous
step),
and
one
that
was
received
as
part
of
the

evaluation
context
.
It
is
the
latter
that
is
used
in
processing
during
this
step.

Note
that
each

incomplete
triple

has
a

direction

value
that
is
used
to
determine
what
will
become
the
subject,
and
what
will
become
the
object,
of
each
generated
triple:

		
If

direction

is
'none',
the

new
subject

is
added
to
the
list
from
the
iterated

incomplete
triple
.

		
If

direction

is
'forward'
then
the
following
triple
is
generated:

		
subject

		

parent
subject

		
predicate

		
the
predicate
from
the
iterated

incomplete
triple

		
object

		

new
subject

		
If

direction

is
'reverse'
then
this
is
the
triple
generated:

		
subject

		

new
subject

		
predicate

		
the
predicate
from
the
iterated

incomplete
triple

		
object

		

parent
subject

		
Next,
all
elements
that
are
children
of
the

current
element

are
processed
using
the
rules
described
here,
using
a
new

evaluation
context
,
initialized
as
follows:

		
If
the

skip
element

flag
is
'true'
then
the
new

evaluation
context

is
a
copy
of
the
current
context
that
was
passed
in
to
this
level
of
processing,
with
the

language

and

list
of
IRI
mappings

values
replaced
with
the
local
values;

		
Otherwise,
the
values
are:

		
the

base

is
set
to
the

base

value
of
the
current

evaluation
context

;

		
the

parent
subject

is
set
to
the
value
of

new
subject
,
if
non-null,

or

the
value
of
the

parent
subject

of
the
current

evaluation
context

;

		
the

parent
object

is
set
to
value
of

current
object
resource
,
if
non-null,

or

the
value
of

new
subject
,
if
non-null,

or

the
value
of
the

parent
subject

of
the
current

evaluation
context

;

		
the

list
of
IRI
mappings

is
set
to
the

local
list
of
IRI
mappings

;

		
the

list
of
incomplete
triples

is
set
to
the

local
list
of
incomplete
triples

;

		
the

list
mapping

is
set
to
the

local
list
mapping

;

		

language

is
set
to
the
value
of

current
language
.

		
the

default
vocabulary

is
set
to
the
value
of
the

local
default
vocabulary
.

		
Finally,
if
there
is
one
or
more
mapping
in
the

local
list
mapping
,
list
triples
are
generated
as
follows:

For
each
IRI
in
the

local
list
mapping
,
if
the
equivalent
list
does
not
exist
in
the

evaluation
context
,
indicating
that
the
list
was
originally
instantiated
on
the
current
element,
use
the
list
as
follows:

		
If
there
are
zero
items
in
the
list
associated
with
the
IRI,
generate
the
following
triple:

		
subject

		

current
subject

		
predicate

		
full
IRI
of
the

local
list
mapping

associated
with
this
list

		
object

		

http://www.w3.org/1999/02/22-rdf-syntax-ns#nil

		
Otherwise,

		
Create
a
new
‘bnode’
array
containing
newly
created

bnode

s,
one
for
each
item
in
the
list

		
For
each

bnode

-(

IRI

or
literal)
pair
from
the
list
the
following
triple
is
generated:

		
subject

		

bnode

		
predicate

		

http://www.w3.org/1999/02/22-rdf-syntax-ns#first

		
object

		
full
IRI
or
literal

		
For
each
item
in
the
‘bnode’
array
the
following
triple
is
generated:

		
subject

		

bnode

		
predicate

		

http://www.w3.org/1999/02/22-rdf-syntax-ns#rest

		
object

		
next
item
in
the
‘bnode’
array
or,
if
that
does
not
exist,

http://www.w3.org/1999/02/22-rdf-syntax-ns#nil

		
A
single
additional
triple
is
generated:

		
subject

		

current
subject

		
predicate

		
full
IRI
of
the

local
list
mapping

associated
with
this
list

		
object

		
first
item
of
the
‘bnode’
array

7.6

Processor
Status

The
processing
rules
covered
in
the
previous
section
are
designed
to
extract
as
many
triples
as
possible
from
a
document.
The
RDFa
Processor
is
designed
to
continue
processing,
even
in
the
event
of
errors.
For
example,
failing
to
resolve
a
prefix
mapping
or

term

would
result
in
the
RDFa
Processor
skipping
the
generation
of
a
triple
and
continuing
with
document
processing.
There
are
cases
where
knowing
each
RDFa
Processor
warning
or
error
would
be
beneficial
to
authors.
The

processor
graph

is
designed
as
the
mechanism
to
capture
all
informational,
warning,
and
error
messages
as
triples
from
the
RDFa
Processor.
These
status
triples
may
be
retrieved
and
used
to
aid
RDFa
authoring
or
automated
error
detection.

If
an
RDFa
Processor
supports
the
generation
of
a

processor
graph
,
then
it

MUST

generate
a
set
of
triples
when
the
following
processing
issues
occur:

		
An

rdfa:Error

MUST

be
generated
when
the
document
fails
to
be
fully
processed
as
a
result
of
non-conformant
Host
Language
markup.

		
A

rdfa:Warning

MUST

be
generated
when
a
CURIE
prefix
fails
to
be
resolved.

		
A

rdfa:Warning

MUST

be
generated
when
a
Term
fails
to
be
resolved.

Other
implementation-specific

rdfa:Info
,

rdfa:Warning
,
or

rdfa:Error

triples

MAY

be
generated
by
the
RDFa
Processor.

7.6.1

Accessing
the
Processor
Graph

Accessing
the

processor
graph

may
be
accomplished
in
a
variety
of
ways
and
is
dependent
on
the
type
of
RDFa
Processor
and
access
method
that
the
developer
is
utilizing.

SAX-based
processors
or
processors
that
utilize
function
or
method
callbacks
to
report
the
generation
of
triples
are
classified
as

event-based
RDFa
Processor

s.
For
Event-based
RDFa
Processors,
the
software

MUST

allow
the
developer
to
register
a
function
or
callback
that
is
called
when
a
triple
is
generated
for
the

processor
graph
.
The
callback

MAY

be
the
same
as
the
one
that
is
used
for
the

output
graph

as
long
as
it
can
be
determined
if
a
generated
triple
belongs
in
the

processor
graph

or
the

output
graph
.

A

whole-graph
RDFa
Processor

is
defined
as
any
RDFa
Processor
that
processes
the
entire
document
and
only
provides
the
developer
access
to
the
triples
after
processing
has
completed.
RDFa
Processors
that
typically
fall
into
this
category
express
their
output
via
a
single
call
using
RDF/XML,
N3,
TURTLE,
or
N-Triples
notation.
For
whole-graph
RDFa
Processors,
the
software

MUST

allow
the
developer
to
specify
if
they
would
like
to
retrieve
the

output
graph
,
the

processor
graph
,
or
both
graphs
as
a
single,
combined
graph
from
the
RDFa
Processor.

If
the
graph
preference
is
not
specified,
the

output
graph

MUST

be
returned.

A

web
service
RDFa
Processor

is
defined
as
any
RDFa
Processor
that
is
capable
of
processing
a
document
by
performing
an
HTTP
GET,
POST
or
similar
action
on
an
RDFa
Processor
IRI.
For
this
class
of
RDFa
Processor,
the
software

MUST

allow
the
caller
to
specify
if
they
would
like
to
retrieve
the

output
graph
,
the

processor
graph
,
or
both
graphs
as
a
single,
combined
graph
from
the
web
service.
The

rdfagraph

query
parameter

MUST

be
used
to
specify
the
value.
The
allowable
values
are

output
,

processor

or
both
values,
in
any
order,
separated
by
a
comma
character.

If
the
graph
preference
is
not
specified,
the

output
graph

MUST

be
returned.

7.6.2

Processor
Graph
Terms

To
ensure
interoperability,
a
core
hierarchy
of
classes
is
defined
for
the
content
of
the
processor
graph.
Separate
errors
or
warnings
are
resources
(typically
blank
nodes)
of
a
specific
type,
with
additional
properties
giving
more
details
on
the
error
condition
or
the
warning.
This
specification
defines
only
the
top
level
classes
and
the
ones
referring
to
the
error
and
warning
conditions
defined

explicitly

by
this
document.
Other,
implementation-specific
subclasses
may
be
defined
by
the
RDFa
Processor.

The
top
level
classes
are

rdfa:Error
,

rdfa:Warning
,
and

rdfa:Info
,
defined
as
part
of
the

RDFa
Vocabulary
.
Furthermore,
a
single
property
is
defined
on
those
classes,
namely

rdfa:context
,
that
provides
an
extra
context
for
the
error,
e.g.,
http
response,
an
XPath
information,
or
simply
the
IRI
to
the
RDFa
resource.
Usage
of
this
property
is
optional,
and
more
than
one
triple
can
be
used
with
this
predicate
on
the
same
subject.
Finally,
error
and
warning
instances

SHOULD

use
the

dc:description

and

dc:date

properties.

dc:description

should
provide
a
short,
human
readable
but
implementation
dependent
description
of
the
error.

dc:date

should
give
the
time
when
the
error
was
found
and
it
is
advised
to
be
as
precise
as
possible
to
allow
the
detection
of,
for
example,
possible
network
errors.

The
example
below
shows
the
triples
that
should
be
minimally
present
in
the
processor
graph
as
a
result
of
an
error
(the
content
of
the
literal
for
the

dc:description

predicate
is
implementation
dependent):

 Example 45
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dc: <http://purl.org/dc/terms/> .
[] a rdfa:DocumentError ;
 dc:description "The document could not be parsed due to parsing errors." ;
dc:date
"2010-06-30T13:40:23"^^xsd:dateTime
.

A
slightly
more
elaborate
example
makes
use
of
the

rdfa:context

property
to
provide
further
information,
using
external
vocabularies
to
represent
HTTP
headers
or
XPointer
information
(note
that
a
processor
may
not
have
these
information
in
all
cases,
i.e.,
these

rdfa:context

information
are
not
required):

 Example 46
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix ptr: <http://www.w3.org/2009/pointers#> .
@prefix ht: <http://www.w3.org/2006/http#> .

[] a rdfa:DocumentError ;
 dc:description "The document could not be parsed due to parsing errors." ;
 dc:date "2010-06-30T13:40:23"^^xsd:dateTime ;
 rdfa:context <http://www.example.org/doc> ;
 rdfa:context [
 a ptr:Pointer ;
 # Detailed xpointer/xpath information provided here to locate the error.
] ;
 rdfa:context [
 a ht:Response ;
 ht:responseCode <http://www.w3.org/2006/http#404>
 # The HTTP response headers on the request for the source file.
].

7.7

Vocabulary
Expansion

Processors

MAY

perform
vocabulary
expansion
by
utilizing
limited
RDFS
and
OWL
entailment
rules,
as
described
in

RDFa
Vocabulary
Expansion
.

8.

RDFa
Processing
in
detail

This
section
is
non-normative.

This
section
provides
an
in-depth
examination
of
the
processing
steps
described
in
the
previous
section.
It
also
includes
examples
which
may
help
clarify
some
of
the
steps
involved.

The
key
to
processing
is
that
a
triple
is
generated
whenever
a
predicate/object
combination
is
detected.
The
actual
triple
generated
will
include
a
subject
that
may
have
been
set
previously,
so
this
is
tracked
in
the
current

evaluation
context

and
is
called
the

parent
subject
.
Since
the
subject
will
default
to
the
current
document
if
it
hasn't
been
set
explicitly,
then
a
predicate/object
combination
is
always
enough
to
generate
one
or
more
triples.

The
attributes
for
setting
a
predicate
are

@rel
,

@rev

and

@property
,
whilst
the
attributes
for
setting
an
object
are

@resource
,

@href
,

@content
,
and

@src
.

@typeof

is
unique
in
that
it
sets

both

a
predicate
and
an
object
at
the
same
time
(and
also
a
subject
when
it
appears
in
the
absence
of
other
attributes
that
would
set
a
subject).
Inline
content
might
also
set
an
object,
if

@content

is
not
present,
but

@property

is
present.

Note

There
are
many
examples
in
this
section.
The
examples
are
all
written
using
XHTML+RDFa.
However,
the
explanations
are
relevant
regardless
of
the
Host
Language.

8.1

Changing
the
Evaluation
Context

8.1.1

Setting
the
current
subject

When
triples
are
created
they
will
always
be
in
relation
to
a
subject
resource
which
is
provided
either
by

new
subject

(if
there
are
rules
on
the
current
element
that
have
set
a
subject)
or

parent
subject
,
as
passed
in
via
the

evaluation
context
.
This
section
looks
at
the
specific
ways
in
which
these
values
are
set.
Note
that
it
doesn't
matter
how
the
subject
is
set,
so
in
this
section
we
use
the
idea
of
the

current
subject

which
may
be

either

new
subject

or

parent
subject
.

8.1.1.1

The
current
document

When
parsing
begins,
the

current
subject

will
be
the
IRI
of
the
document
being
parsed,
or
a
value
as
set
by
a
Host
Language-provided
mechanism
(e.g.,
the

base

element
in
(X)HTML).
This
means
that
by
default
any
metadata
found
in
the
document
will
concern
the
document
itself:

 Example 47
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Jo's Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dc:creator" content="Jo" />
 </head>
 <body>
 ...
 </body>
</html>

This
would
generate
the
following
triples:

 Example 48
<> foaf:primaryTopic <#bbq> .
<>
dc:creator
"Jo"
.

It
is
possible
for
the
data
to
appear
elsewhere
in
the
document:

 Example 49
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Jo's Blog</title>
 </head>
 <body>
 <h1>Jo's blog</h1>
 <p>
 Welcome to my blog.
 </p>
 </body>
</html>

which
would
still
generate
the
triple:

Example
50

<>
dc:creator
"Jo"
.

In
(X)HTML
the
value
of

base

may
change
the
initial
value
of

current
subject
:

 Example 51
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <base href="http://www.example.org/jo/blog" />
 <title>Jo's Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dc:creator" content="Jo" />
 </head>
 <body>
 ...
 </body>
</html>

An
RDFa
Processor
should
now
generate
the
following
triples,
regardless
of
the
IRI
from
which
the
document
is
served:

 Example 52
<http://www.example.org/jo/blog> foaf:primaryTopic <http://www.example.org//jo/blog#bbq> .
<http://www.example.org/jo/blog>
dc:creator
"Jo"
.

8.1.1.2

Using

@about

As
processing
progresses,
any

@about

attributes
will
change
the

current
subject
.
The
value
of

@about

is
an
IRI
or
a
CURIE.
If
it
is
a
relative
IRI
then
it
needs
to
be
resolved
against
the
current

base

value.
To
illustrate
how
this
affects
the
statements,
note
in
this
markup
how
the
properties
inside
the
(X)HTML

body

element
become
part
of
a
new
calendar
event
object,
rather
than
referring
to
the
document
as
they
do
in
the
head
of
the
document:

 Example 53
<html xmlns="http://www.w3.org/1999/xhtml"
 prefix="cal: http://www.w3.org/2002/12/cal/ical#">
 <head>
 <title>Jo's Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dc:creator" content="Jo" />
 </head>
 <body>
 <p about="#bbq" typeof="cal:Vevent">
 I'm holding

 one last summer barbecue
 ,
 on
 <span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">
 September 16th at 4pm
 .
 </p>
 </body>
</html>

With
this
markup
an
RDFa
Processor
will
generate
the
following
triples:

 Example 54
<> foaf:primaryTopic <#bbq> .
<> dc:creator "Jo" .
<#bbq> rdf:type cal:Vevent .
<#bbq> cal:summary "one last summer barbecue" .

<#bbq>
cal:dtstart
"2015-09-16T16:00:00-05:00"^^xsd:dateTime
.

Other
kinds
of
resources
can
be
used
to
set
the

current
subject
,
not
just
references
to
web-pages.
Although
not
advised,
email
addresses
might
be
used
to
represent
a
person:

 Example 55
John knows
<a about="mailto:john@example.org"
 rel="foaf:knows" href="mailto:sue@example.org">Sue.
Sue knows
<a about="mailto:sue@example.org"
rel="foaf:knows"
href="mailto:jim@example.org">Jim.

This
should
generate
the
following
triples:

 Example 56
<mailto:john@example.org> foaf:knows <mailto:sue@example.org> .
<mailto:sue@example.org>
foaf:knows
<mailto:jim@example.org>
.

Similarly,
authors
may
make
statements
about
images:

 Example 57
<div about="photo1.jpg">
 this photo was taken by
 Mark Birbeck
</div>

which
should
generate
the
following
triple:

Example
58

<photo1.jpg>
dc:creator
"Mark
Birbeck"
.

8.1.1.3

Typing
resources
with

@typeof

@typeof

defines
typing
triples.

@typeof

works
differently
to
other
ways
of
setting
a
predicate
since
the
predicate
is
always

rdf:type
,
which
means
that
the
processor
only
requires
the
value
of
the
type.
The
question
is:
which
resource
gets
these
typing
information?

If
the
element
has
an

@about
,
which
creates
a
new
context
for
statements,
the
typing
relationships
are
defined
on
that
resource.
For
example,
the
following:

 Example 59
<div about="http://dbpedia.org/resource/Albert_Einstein" typeof="foaf:Person">
 Albert Einstein
 Albert
</div>

also
creates
the
triple:

Example
60

<http://dbpedia.org/resource/Albert_Einstein>
rdf:type
foaf:Person
.

The

@about

attribute
is
the
main
source
for
typing;
if
it
is
present
on
an
element,
it
determines
the
effect
of

@typeof

with
the
highest
priority.
If

@about

is

not

present,
but
the
element
is
used
only
to
define
possible
subject
resources
via,
e.g.,

@resource

(i.e.,
there
is

no

@rel
,

@rev
,
or

@property

present),
then
that
resource
is
used
for
the
typed
resource,
just
like

@about
.

If
an

@rel

is
present
(and
still
no

@about

)
then
the
explicit
object
of
the
triples
defined
by

@rel

is
typed.
For
example,
in
the
case
of:

 Example 61
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp:birthPlace"
 resource="http://dbpedia.org/resource/German_Empire"
 typeof="http://schema.org/Country">
 </div>
</div>

the
generated
triples
also
include:

Example
62

<http://dbpedia.org/resource/German_Empire>
rdf:type
<http://schema.org/Country>
.

Finally,

@typeof

also
has
the
additional
feature
of
creating
a
new
context
for
statements,

in
case
no
other
attributes
define
any
.
This
involves
generating
a
new

bnode

(see
below
for
more
about
bnodes).
For
example,
an
author
may
wish
to
create
markup
for
a
person
using
the
FOAF
vocabulary,
but
without
having
a
clear
identifier
for
the
item:

 Example 63
<div typeof="foaf:Person">
 Albert Einstein
 Albert
</div>

This
markup
would
cause
a

bnode

to
be
created
which
has
a
'type'
of

foaf:Person
,
as
well
as
name
and
given
name
properties:

 Example 64
_:a rdf:type foaf:Person .
_:a foaf:name "Albert Einstein" .
_:a
foaf:givenName
"Albert"
.

This
usage
of
“isolated”

@typeof

may
be
viewed
as
a
shorthand
for:

 Example 65
<div resource="_:a" typeof="foaf:Person">
 Albert Einstein
 Albert
</div>

Similarly,

 Example 66
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp:birthPlace" typeof="http://schema.org/Country">
 the German Empire
 </div>
</div>

generates:

 Example 67
<http://dbpedia.org/resource/Albert_Einstein"> dbp:birthPlace _:b .
_:b
dbp:conventionalLongName
"the
German
Empire"
.

A

bnode

is
simply
a
unique
identifier
that
is
only
available
to
the
processor,
not
to
any
external
software.
By
generating
values
internally,
the
processor
is
able
to
keep
track
of
properties
for

_:a

as
being
distinct
from

_:b
.
But
by
not
exposing
these
values
to
any
external
software,
it
is
possible
to
have
complete
control
over
the
identifier,
as
well
as
preventing
further
statements
being
made
about
the
item.

8.1.1.3.1

Chaining
with

@property

and

@typeof

As
emphasized
in
the

section
on
chaining
,
one
of
the
main
differences
between

@property

and

@rel

(or

@rev

)
is
that
the
former
does
not
induce
chaining.
The

only

exception
to
this
rule
is
when

@typeof

is
also
present
on
the
element.
In
that
case
the
effect
of

@property

is
identical
to

@rel
.
For
example,
the
previous
example
could
have
been
written
as:

 Example 68
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div property="dbp:birthPlace" typeof="http://schema.org/Country">
 the German Empire
 </div>
</div>

generating
the
same
triples
as
before.
Here
again,
a

@typeof

without
an

@about

or
a

@resource

can
be
regarded
as
a
shorthand
for
an
additional

@resource

attribute
referring
to
the
identifier
of
a
fresh

bnode
.

8.1.1.4

Determining
the
subject
with
neither

@about

nor

@typeof

As
described
in
the
previous
two
sections,

@about

will
always
take
precedence
and
mark
a
new
subject,
but
if
no

@about

value
is
available
then

@typeof

will
do
the
same
job,
although
using
an
implied
identifier,
i.e.,
a

bnode
.

But
if
neither

@about

or

@typeof

are
present,
there
are
a
number
of
ways
that
the
subject
could
be
arrived
at.
One
of
these
is
to
'inherit'
the
subject
from
the
containing
statement,
with
the
value
to
be
inherited
set
either
explicitly,
or
implicitly.

8.1.1.4.1

Inheriting
subject
from

@resource

The
most
usual
way
that
an
inherited
subject
might
get
set
would
be
when
the
parent
statement
has
an
object
that
is
a
resource.
Returning
to
the
earlier
example,
in
which
the
long
name
for
the
German_Empire
was
added,
the
following
markup
was
used:

 Example 69
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
</div>

In
an
earlier
illustration
the
subject
and
object
for
the
German
Empire
were
connected
by
removing
the

@resource
,
relying
on
the

@about

to
set
the
object:

 Example 70
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace">
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
 </div>
</div>

but
it
is
also
possible
for
authors
to
achieve
the
same
effect
by
removing
the

@about

and
leaving
the

@resource
:

 Example 71
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire
 </div>
</div>

In
this
situation,
all
statements
that
are
'contained'
by
the
object
resource
representing
the
German
Empire
(the
value
in

@resource

)
will
have
the
same
subject,
making
it
easy
for
authors
to
add
additional
statements:

 Example 72
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire

 </div>
</div>

Looking
at
the
triples
that
an
RDFa
Processor
would
generate,
we
can
see
that
we
actually
have
two
groups
of
statements;
the
first
group
is
set
to
refer
to
the

@about

that
contains
them:

 Example 73
<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein> dbp:dateOfBirth "1879-03-14"^^xsd:date .
<http://dbpedia.org/resource/Albert_Einstein>
dbp:birthPlace
<http://dbpedia.org/resource/German_Empire>
.

while
the
second
group
refers
to
the

@resource

that
contains
them:

 Example 74
<http://dbpedia.org/resource/German_Empire>
 dbp:conventionalLongName "the German Empire" .
<http://dbpedia.org/resource/German_Empire>
dbp-owl:capital
<http://dbpedia.org/resource/Berlin>
.

Note
also
that
the
same
principle
described
here
applies
to

@src

and

@href
.

8.1.1.4.2

Inheriting
an
anonymous
subject

There
will
be
occasions
when
the
author
wants
to
connect
the
subject
and
object
as
shown
above,
but
is
not
concerned
to
name
the
resource
that
is
common
to
the
two
statements
(i.e.,
the
object
of
the
first
statement,
which
is
the
subject
of
the
second).
For
example,
to
indicate
that
Einstein
was
influenced
by
Spinoza
the
following
markup
could
well
be
used:

 Example 75
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 <div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 </div>
</div>

An
RDFa
Processor
will
generate
the
following
triples:

 Example 76
<http://dbpedia.org/resource/Baruch_Spinoza>
 dbp-owl:influenced <http://dbpedia.org/resource/Albert_Einstein> .
<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein>
dbp:dateOfBirth
"1879-03-14"^^xsd:date
.

However,
an
author
could
just
as
easily
say
that
Spinoza
influenced

something
by
the
name
of
Albert
Einstein,
that
was
born
on
March
14th,
1879
:

 Example 77
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 <div>
 Albert Einstein
 1879-03-14
 </div>
</div>

In
RDF
terms,
the
item
that
'represents'
Einstein
is

anonymous
,
since
it
has
no
IRI
to
identify
it.
However,
the
item
is
given
an
automatically
generated

bnode
,
and
it
is
onto
this
identifier
that
all
child
statements
are
attached:

An
RDFa
Processor
will
generate
the
following
triples:

 Example 78
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced _:a .
_:a foaf:name "Albert Einstein" .
_:a
dbp:dateOfBirth
"1879-03-14"^^xsd:date
.

Note
that
the

div

is
superfluous,
and
an
RDFa
Processor
will
create
the
intermediate
object
even
if
the
element
is
removed:

 Example 79
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 Albert Einstein
 1879-03-14
</div>

An
alternative
pattern
is
to

keep

the

div

and
move
the

@rel

onto
it:

 Example 80
<div about="http://dbpedia.org/resource/Baruch_Spinoza">
 <div rel="dbp-owl:influenced">
 Albert Einstein
 1879-03-14
 </div>
</div>

From
the
point
of
view
of
the
markup,
this
latter
layout
is
to
be
preferred,
since
it
draws
attention
to
the
'hanging
rel'.
But
from
the
point
of
view
of
an
RDFa
Processor,
all
of
these
permutations
need
to
be
supported.

8.2

Completing
incomplete
triples

When
a
new
subject
is
calculated,
it
is
also
used
to
complete
any
incomplete
triples
that
are
pending.
This
situation
arises
when
the
author
wants
to
'chain'
a
number
of
statements
together.
For
example,
an
author
could
have
a
statement
that
Albert
Einstein
was
born
in
the
German
Empire:

 Example 81
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
</div>

and
then
a
further
statement
that
the
'long
name'
for
this
country
is

the
German
Empire
:

 Example 82
<span about="http://dbpedia.org/resource/German_Empire"
property="dbp:conventionalLongName">the
German
Empire

RDFa
allows
authors
to
insert
this
statement
as
a
self-contained
unit
into
other
contexts:

 Example 83
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
</div>

But
it
also
allows
authors
to
avoid
unnecessary
repetition
and
to
'normalize'
out
duplicate
identifiers,
in
this
case
the
one
for
the
German
Empire:

 Example 84
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace">
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
 </div>
</div>

When
this
happens
the

@rel

for
'birth
place'
is
regarded
as
a
'hanging
rel'
because
it
has
not
yet
generated
any
triples,
but
these
'incomplete
triples'
are
completed
by
the

@about

that
appears
on
the
next
line.
The
first
step
is
therefore
to
store
the
two
parts
of
the
triple
that
the
RDFa
Processor

does

have,
but
without
an
object:

Example
85

<http://dbpedia.org/resource/Albert_Einstein>
dbp:birthPlace

?

.

Then
as
processing
continues,
the
RDFa
Processor
encounters
the
subject
of
the
statement
about
the
long
name
for
the
German
Empire,
and
this
is
used
in
two
ways.
First
it
is
used
to
complete
the
'incomplete
triple':

 Example 86
<http://dbpedia.org/resource/Albert_Einstein>
dbp:birthPlace

<http://dbpedia.org/resource/German_Empire>

.

and
second
it
is
used
to
generate
its
own
triple:

 Example 87
<http://dbpedia.org/resource/German_Empire>
dbp:conventionalLongName
"the
German
Empire"
.

Note
that
each
occurrence
of

@about

will
complete
any
incomplete
triples.
For
example,
to
mark
up
the
fact
that
Albert
Einstein
had
a
residence
both
in
the
German
Empire
and
Switzerland,
an
author
need
only
specify
one

@rel

value
that
is
then
used
with
multiple

@about

values:

 Example 88
<div about="http://dbpedia.org/resource/Albert_Einstein" rel="dbp-owl:residence">

</div>

In
this
example
there
is
one
incomplete
triple:

Example
89

<http://dbpedia.org/resource/Albert_Einstein>
dbp-owl:residence

?

.

When
the
processor
meets
each
of
the

@about

values,
this
triple
is
completed,
giving:

 Example 90
<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
<http://dbpedia.org/resource/Albert_Einstein>
dbp-owl:residence

<http://dbpedia.org/resource/Switzerland>

.

These
examples
show
how

@about

completes
triples,
but
there
are
other
situations
that
can
have
the
same
effect.
For
example,
when

@typeof

creates
a
new

bnode

(as
described
above),
that
will
be
used
to
complete
any
'incomplete
triples'.
To
indicate
that
Spinoza
influenced
both
Einstein
and
Schopenhauer,
the
following
markup
could
be
used:

 Example 91
<div about="http://dbpedia.org/resource/Baruch_Spinoza">
 <div rel="dbp-owl:influenced">
 <div typeof="foaf:Person">
 Albert Einstein
 1879-03-14
 </div>
 <div typeof="foaf:Person">
 Arthur Schopenhauer
 1788-02-22
 </div>
 </div>
</div>

First
the
following
incomplete
triple
is
stored:

Example
92

<http://dbpedia.org/resource/Baruch_Spinoza>
dbp-owl:influenced

?

.

Then
when
the
RDFa
Processor
processes
the
two
occurrences
of

@typeof
,
each
generates
a

bnode
,
which
is
used
to
both
complete
the
'incomplete
triple',
and
to
set
the
subject
for
further
statements:

 Example 93
<http://dbpedia.org/resource/Baruch_Spinoza"> dbp-owl:influenced _:a .
_:a rdf:type foaf:Person .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .
<http://dbpedia.org/resource/Baruch_Spinoza"> dbp-owl:influenced _:b .
_:b rdf:type foaf:Person .
_:b foaf:name "Arthur Schopenhauer" .

_:b

dbp:dateOfBirth
"1788-02-22"^^xsd:date
.

Triples
are
also
'completed'
if
any
one
of

@property
,

@rel

or

@rev

are
present.
However,
unlike
the
situation
when

@about

or

@typeof

are
present,
all
predicates
are
attached
to
one

bnode
:

 Example 94
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 Albert Einstein
 1879-03-14
 <div rel="dbp-owl:residence">

 </div>
</div>

This
example
has
two
'hanging
rels',
and
so
two
situations
when
'incomplete
triples'
will
be
created.
Processing
would
proceed
as
follows;
first
an
incomplete
triple
is
stored:

Example
95

<http://dbpedia.org/resource/Baruch_Spinoza>
dbp-owl:influenced

?

.

Next,
the
RDFa
Processor
processes
the
predicate
values
for

foaf:name
,

dbp:dateOfBirth

and

dbp-owl:residence
,
but
note
that
only
the
first
needs
to
'complete'
the
'hanging
rel'.
So
processing

foaf:name

generates
two
triples:

 Example 96
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced _:a .

_:a

foaf:name
"Albert
Einstein"
.

but
processing

dbp:dateOfBirth

generates
only
one:

Example
97

_:a

dbp:dateOfBirth
"1879-03-14"^^xsd:date
.

Processing

dbp-owl:residence

also
uses
the
same

bnode
,
but
note
that
it
also
generates
its
own
'incomplete
triple':

Example
98

_:a
dbp-owl:residence

?

.

As
before,
the
two
occurrences
of

@about

complete
the
'incomplete
triple',
once
each:

 Example 99
_:a dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
_:a
dbp-owl:residence

<http://dbpedia.org/resource/Switzerland>

.

The
entire
set
of
triples
that
an
RDFa
Processor
should
generate
is
as
follows:

 Example 100
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced _:a .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .
_:a dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .

_:a

dbp-owl:residence
<http://dbpedia.org/resource/Switzerland>
.

8.3

Object
resolution

Although
objects
have
been
discussed
in
the
previous
sections,
as
part
of
the
explanation
of
subject
resolution,
chaining,
evaluation
contexts,
and
so
on,
this
section
will
look
at
objects
in
more
detail.

There
are
two
types
of
object,

IRI
resource

s
and

literal

s.

A

literal

object
can
be
set
by

@content

or
the
inline
text
of
element
if

@property

to
express
a

predicate
.

Note
that
the
use
of

@content

prohibits
the
inclusion
of
rich
markup
in
your
literal.
If
the
inline
content
of
an
element
accurately
represents
the
object,
then
documents
should
rely
upon
that
rather
than
duplicating
that
data
using
the

@content
.

An

IRI
resource

object
can
be
set
using
one
of

@rel

or

@rev

to
express
a

predicate
,
and
then

either

using
one
of

@href
,

@resource

or

@src

to
provide
an
object
resource
explicitly,

or

using
the
chaining
techniques
described
above
to
obtain
an
object
from
a
nested
subject,
or
from
a

bnode
.

Alternatively
,
the

@property

can
also
be
used
to
define
an
IRI
resource;
this
requires
the
presence
of
a

@resource
,

@href
,
or

@src

and

the
absence
of

@rel
,

@rev
,

@datatype
,
or

@content
.

8.3.1

Object
resolution
for
the

@property

attribute

An

object
literal

will
be
generated
when

@property

is
present
and
no
resource
attribute
is
present.

@property

provides
the
predicate,
and
the
following
sections
describe
how
the
actual
literal
to
be
generated
is
determined.

8.3.1.1

Plain
Literals

@content

can
be
used
to
indicate
a

plain
literal
,
as
follows:

 Example 101
<meta about="http://internet-apps.blogspot.com/"
property="dc:creator"

content="Mark
Birbeck"

/>

The

plain
literal

can
also
be
specified
by
using
the
content
of
the
element:

 Example 102
<span about="http://internet-apps.blogspot.com/"
property="dc:creator">

Mark
Birbeck

Both
of
these
examples
give
the
following
triple:

Example
103

<http://internet-apps.blogspot.com/>
dc:creator
"Mark
Birbeck"
.

The
value
of

@content

is
given
precedence
over
any
element
content,
so
the
following
would
give
exactly
the
same
triple
as
shown
above:

 Example 104
<span about="http://internet-apps.blogspot.com/"
property="dc:creator"

content="Mark
Birbeck"

>John
Doe

8.3.1.1.1

Language
Tags

RDF
allows

plain
literal

s
to
have
a
language
tag,
as
illustrated
by
the
following
example
from
[

RDF11-TESTCASES

]:

 Example 105
<http://example.org/node>
<http://example.org/property>
"chat"

@fr

.

In
RDFa
the
Host
Language
may
provide
a
mechanism
for
setting
the
language
tag.
In
XHTML+RDFa
[

XHTML-RDFA

],
for
example,
the
XML
language
attribute

@xml:lang

or
the
attribute

@lang

is
used
to
add
this
information,
whether
the
plain
literal
is
designated
by

@content
,
or
by
the
inline
text
of
the
element:

 Example 106
<meta about="http://example.org/node"
property="ex:property"

xml:lang="fr"

content="chat"
/>

Note
that
the
language
value
can
be
inherited
as
defined
in
[

XML10-4e

],
so
the
following
syntax
will
give
the
same
triple
as
above:

 Example 107
<html xmlns="http://www.w3.org/1999/xhtml"
 prefix="ex: http://www.example.com/ns/" xml:lang="fr">
 <head>
 <title xml:lang="en">Example</title>
 <meta about="http://example.org/node"
 property="ex:property" content="chat" />
 </head>
 ...
</html>

8.3.1.2

Typed
Literals

Literals
can
be
given
a
data
type
using

@datatype
.

This
can
be
represented
in
RDFa
as
follows:

 Example 108
<span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">
 September 16th at 4pm
.

The
triple
that
this
markup
generates
includes
the
datatype
after
the
literal:

Example
109

<>
cal:dtstart
"2015-09-16T16:00:00-05:00"^^

xsd:dateTime

.

8.3.1.3

XML
Literals

XML
documents
cannot
contain
XML
markup
in
their
attributes,
which
means
it
is
not
possible
to
represent
XML
within

@content

(the
following
would
cause
an
XML
parser
to
generate
an
error):

 Example 110
<head>
 <meta property="dc:title"
 content="E = mc²: The Most Urgent Problem of Our Time" />
</head>

RDFa
therefore
supports
the
use
of
arbitrary
markup
to
express
XML
literals
by
using

@datatype
:

 Example 111
<h2 property="dc:title" datatype="rdf:XMLLiteral">
 E = mc²: The Most Urgent Problem of Our Time
</h2>

This
would
generate
the
following
triple,
with
the
XML
preserved
in
the
literal:

Example
112

<>
dc:title
"E
=
mc²:
The
Most
Urgent
Problem
of
Our
Time"^^rdf:XMLLiteral
.

Note

This
requires
that
an
IRI
mapping
for
the
prefix

rdf

has
been
defined.

In
the
examples
given
here
the

sup

element
is
actually
part
of
the
meaning
of
the
literal,
but
there
will
be
situations
where
the
extra
markup
means
nothing,
and
can
therefore
be
ignored.
In
this
situation
omitting
the

@datatype

attribute
or
specifying
an
empty

@datatype

value
can
be
used
to
create
a
plain
literal:

 Example 113
<p>You searched for Einstein:</p>
<p about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 (b. March 14, 1879, d. April 18, 1955) was a German-born theoretical physicist.
</p>

Rendering
of
this
page
has
highlighted
the
term
the
user
searched
for.
Setting

@datatype

to
nothing
ensures
that
the
data
is
interpreted
as
a
plain
literal,
giving
the
following
triple:

Example
114

<http://dbpedia.org/resource/Albert_Einstein>
foaf:name

"Albert
Einstein"

.

Note

The
value
of
this

XML
Literal

is
the
exclusive
canonicalization
[

XML-EXC-C14N

]
of
the
RDFa
element's
value.

8.3.2

IRI
object
resolution

Most
of
the
rules
governing
the
processing
of
objects
that
are
resources
are
to
be
found
in
the
processing
descriptions
given
above,
since
they
are
important
for
establishing
the
subject.
This
section
aims
to
highlight
general
concepts,
and
anything
that
might
have
been
missed.

One
or
more

IRI
object

s
are
needed
when

@rel

or

@rev

is
present.
Each
attribute
will
cause
triples
to
be
generated
when
used
with

@href
,

@resource

or

@src
,
or
with
the
subject
value
of
any
nested
statement
if
none
of
these
attributes
are
present.

If

@rel

or

@rev

is
not
present,
and
neither
is

@datatype

or

@content
,
a

@property

attribute
will
cause
triples
to
be
generated
when
used
with

@href
,

@resource

or

@src
.
(See
also
the

section
on

@property

and

@typeof

for
an
additional
special
case
involving

@property
.)

@rel

and

@rev

are
essentially
the
inverse
of
each
other;
whilst

@rel

establishes
a
relationship
between
the

current
subject

as
subject,
and
the

current
object
resource

as
the
object,

@rev

does
the
exact
opposite,
and
uses
the

current
object
resource

as
the
subject,
and
the

current
subject

as
the
object.

8.3.2.1

Using

@resource

to
set
the
object

RDFa
provides
the

@resource

attribute
as
a
way
to
set
the
object
of
statements.
This
is
particularly
useful
when
referring
to
resources
that
are
not
themselves
navigable
links:

 Example 115
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>On Crime and Punishment</title>
 <base href="http://www.example.com/candp.xhtml" />
 </head>
 <body>
 <blockquote about="#q1" rel="dc:source" resource="urn:ISBN:0140449132" >
 <p id="q1">
 Rodion Romanovitch! My dear friend! If you go on in this way
 you will go mad, I am positive! Drink, pray, if only a few drops!
 </p>
 </blockquote>
 </body>
</html>

The

blockquote

element
generates
the
following
triple:

 Example 116
<http://www.example.com/candp.xhtml#q1>
<http://purl.org/dc/terms/source>
<urn:ISBN:0140449132>
.

Note
that,
in
the
example
above,

@property

could
have
been
used
instead
of

@rel
,
yielding
the
same
triple.

8.3.2.2

Using

@href

or

@src

to
set
the
object

If
no

@resource

is
present,
then

@href

or

@src

are
next
in
priority
order
for
setting
the
object.

When
a
predicate
has
been
expressed
using

@rel
,
the

@href

or

@src

on
the
RDFa
statement's
element
is
used
to
identify
the
object
with
a

IRI
reference
.
Their
types
are
an
IRI:

 Example 117
<link about="mailto:john@example.org"

rel="foaf:knows"
href="mailto:sue@example.org"

/>

It's
also
possible
to
use
both

@rel

and

@rev

at
the
same
time
on
an
element.
This
is
particularly
useful
when
two
things
stand
in
two
different
relationships
with
each
other,
for
example
when
a
picture
is
taken

by

Mark,
but
that
picture
also

depicts

him:

 Example 118
<img about="http://www.blogger.com/profile/1109404"
src="photo1.jpg"

rev="dc:creator"
rel="foaf:img"

/>

which
then
yields
two
triples:

 Example 119
<photo1.jpg>
 dc:creator <http://www.blogger.com/profile/1109404> .
<http://www.blogger.com/profile/1109404>
foaf:img
<photo1.jpg>
.

8.3.2.3

Incomplete
triples

When
a
triple
predicate
has
been
expressed
using

@rel

or

@rev
,
but
no

@href
,

@src
,
or

@resource

exists
on
the
same
element,
there
is
a
'hanging
rel'.
This
causes
the
current
subject
and
all
possible
predicates
(with
an
indicator
of
whether
they
are
'forwards,
i.e.,

@rel

values,
or
not,
i.e.,

@rev

values),
to
be
stored
as
'incomplete
triples'
pending
discovery
of
a
subject
that
could
be
used
to
'complete'
those
triples.

This
process
is
described
in
more
detail
in

Completing
'Incomplete
Triples'
.

8.4

List
Generation

An
RDF
graph
is
a
collection
of
triples.
This
also
means
that
if
the
graph
contains
two
triples
sharing
the
same
subject
and
predicate:

Example
120

<http://www.example.com>
<http://www.example.com/predicate>
"first
object",
"second
object"
;

There
is
no
way
for
an
application
to
rely
on
the
relative
order
of
the
two
triples
when,
for
example,
querying
a
database
containing
these
triples.
For
most
of
the
applications
and
data
sets
this
is
not
a
problem,
but,
in
some
cases,
the
order
is
important.
A
typical
case
is
publications:
when
a
book
or
an
article
has
several
co-authors,
the
order
of
the
authors
may
be
important.

RDF
has
a
set
of
predefined
predicates
that
have
an
agreed-upon
semantic
of
order.
For
example,
the
publication:
"Semantic
Annotation
and
Retrieval,
by
Ben
Adida,
Mark
Birbeck,
and
Ivan
Herman"
could
be
described
in
RDF
triples
using
these
terms
as
follows:

 Example 121
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;
 dc:creator [
 rdf:first <http://ben.adida.net/#me ;
 rdf:rest [
 rdf:first <http://twitter.com/markbirbeck> ;
 rdf:rest [
 rdf:first <http://www.ivan-herman.net/foaf#me> ;
 rdf:rest rdf:nil .
] .
] .
] .
	...
]

which
conveys
the
notion
of
'order'
for
the
three
authors.
Admittedly,
this
is
not
very
readable.
However,
Turtle
has
a
syntactic
shorthand
for
these
structures:

 Example 122
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;
 dc:creator
 (<http://ben.adida.net/#me>
 <http://twitter.com/markbirbeck>
 <http://www.ivan-herman.net/foaf#me>
) .
 ...
]

It
would
of
course
be
possible
to
reproduce
the
same
structure
in
RDFa,
using
the
RDF
predicates

rdf:first
,

rdf:rest
,
as
well
as
the
special
resource

rdf:nil
.
However,
to
make
this
easier,
RDFa
provides
the

@inlist
.
What
this
attribute
signals
is
that
the
object
generated
on
that
element
should
be
put
on
a
list;
the
list
is
used
with
the
common
predicate
and
subject.
Here
is
how
the
previous
structure
could
look
in
RDFa:

 Example 123
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/" typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval" by
 <a inlist="" property="dc:creator"
 href="http://ben.adida.net/#me">Ben Adida,
 <a inlist="" property="dc:creator"
 href="http://twitter.com/markbirbeck">Mark Birbeck, and
 <a inlist="" property="dc:creator"
 href="http://www.ivan-herman.net/foaf#me">Ivan Herman.
</p>

Note
that
the
order
in
the
list
is
determined
by
the
document
order.
(The
value
of
the

@inlist

is
not
relevant,
only
its
presence
is.)

Lists
may
also
include
IRIs
and
not
only
literals.
For
example,
two
of
the
three
co-authors
could
decide
to
publicise
their
FOAF
address
in
the
authors’
list:

 Example 124
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/" typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval", by
 Ben Adida,
 Mark Birbeck, and
 Ivan Herman.
</p>

yielding:

 Example 125
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;
 dc:creator (<http://ben.adida.net/#me> "Mark Birbeck" <http://www.ivan-herman.net/foaf#me>) .
 ...
]

In
the
example
above,

@rel

could
have
been
used
leading
exactly
to
the
same
triples:

 Example 126
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/" typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval", by
 Ben Adida,
 Mark Birbeck, and
 Ivan Herman.
</p>

Incomplete
Triples

can
also
be
used
in
conjunction
with
lists
when
all
list
elements
are
resources
and
not
literals.
For
example,
the
previous
example,
this
time
with
all
three
authors
referring
to
their
FOAF
profile,
could
have
been
written
as:

 Example 127
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/" typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval", by

 Ben Adida,
 Mark Birbeck, and
 Ivan Herman.

</p>

Resulting
in:

 Example 128
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;
 dc:creator (<http://ben.adida.net/#me>
 <http://internet-apps.blogspot.com/2008/03/my-profile.html#me>
 <http://www.ivan-herman.net/foaf#me>) .
 ...
]

Note
that
it
is
also
possible
to
express
an
empty
list,
without

@inlist
,
using:

Example
129

<span
rel="prop"
resource="rdf:nil"/>

9.

RDFa
Initial
Contexts

RDFa
permits
Host
Languages
to
define
an

initial
context
.
Such
a
context
is
a
collection
of
terms,
prefix
mappings,
and/or
a
default
vocabulary
declaration.
An
initial
context
is
either
intrinsically
known
to
the
parser,
or
it
is
loaded
as
external
documents
and
processed.
These
documents

MUST

be
defined
in
an
approved
RDFa
Host
Language
(currently
XML+RDFa,
XHTML+RDFa
[

XHTML-RDFA

],
and
HTML+RDFa
[

HTML-RDFA

]).

They

MAY

also
be
defined
in
other
formats
(e.g.,
RDF/XML
[

RDF-SYNTAX-GRAMMAR

],
or
Turtle
[

TURTLE

]).

When
an
initial
context
document
is
processed,
it
is
evaluated
as
follows:

		
Parse
the
content
(according
to
the
processing
rules
for
that
document
type)
and
extract
the
triples
into
a
collection
associated
with
that
IRI.
Note:
These
triples

MUST
NOT

be
co-mingled
with
the
triples
being
extracted
from
any
other
IRI.

		
For
every
subject
with
a
pair
of
predicates
that
have
the
values

rdfa:prefix

and

rdfa:uri
,
create
a
key-value
mapping
from
the

rdfa:prefix

object
literal
(the
key)
to
the

rdfa:uri

object
literal
(the
value).
Add
this
mapping
to
the

list
of
IRI
mappings

of
the

initial
evaluation
context
,
after
transforming
the
'prefix'
component
to
lower-case.

		
For
every
subject
with
a
pair
of
predicates
that
have
the
values

rdfa:term

and

rdfa:uri
,
create
a
key-value
mapping
from
the

rdfa:term

object
literal
(the
key)
to
the

rdfa:uri

object
literal
(the
value).
Add
this
mapping
to
the

term
mappings

of
the

initial
evaluation
context
.

		
For
an
extracted
triple
that
has
a
predicate
of

rdfa:vocabulary
,
define
the

default
vocabulary

of
the

initial
evaluation
context

to
be
the
object
literal
of
the

rdfa:vocabulary

predicate.

When
an
RDFa
Initial
Context
is
defined
using
an
RDF
serialization,
it

MUST

use
the
vocabulary
terms
above
to
declare
the
components
of
the
context.

Note

Caching
of
the
relevant
triples
retrieved
via
this
mechanism
is

RECOMMENDED
.
Embedding
definitions
for
well
known,
stable
RDFa
Initial
Contexts
in
the
implementation
is

RECOMMENDED
.

Note

		
The
object
literal
for
the

rdfa:uri

predicate

MUST

be
an
absolute
IRI.

		
The
object
literal
for
the

rdfa:term

predicate

MUST

match
the
production
for

term
.

		
The
object
literal
for
the

rdfa:prefix

predicate
must
match
the
production
for

prefix
.

		
The
object
literal
for
the

rdfa:vocabulary

predicate

MUST

be
an
absolute
IRI.

		
If
one
of
the
objects
is
not
a
literal,
does
not
match
its
associated
production,
if
there
is
more
than
one

rdfa:vocabulary

predicate,
or
if
there
are
additional

rdfa:uri

or

rdfa:term

predicates
sharing
the
same
subject,
an
RDFa
Processor

MUST
NOT

create
the
associated
mapping.

10.

RDFa
Vocabulary
Expansion

Since
RDFa
is
based
on
RDF,
the
semantics
of
RDF
vocabularies
can
be
used
to
gain
more
knowledge
about
data.
Vocabularies,
properties
and
classes
are
identified
by
IRIs,
which
enables
them
to
be
discoverable.
RDF
data
published
at
the
location
of
these
IRIs
can
be
retrieved,
and
descriptions
of
the
properties
and
classes
using
specified
semantics
can
be
applied.

RDFa
Vocabulary
Expansion

is
an
optional
processing
step
which
may
be
added
once
the
normal
processing
steps
described
in

Processing
Model

are
complete.
Vocabulary
expansion
relies
on
a
very
small
sub-set
of
OWL
entailment
[

OWL2-OVERVIEW

]
to
add
triples
to
the

output
graph

based
on
rules
and
property/class
relationships
described
in
referenced
vocabularies.
Vocabulary
expansion

MAY

be
performed
as
part
of
a
larger
RDF
toolset
including,
for
example,
an
OWL
2
RL
reasoner.
Alternatively,
using
vocabulary
data
added
to
the

output
graph

in
processing
step
2
of

Sequence
,
expansion

MAY

also
be
done
using
a
separate
and
dedicated
(e.g.,
rule
based)
reasoner
after
the

output
graph

has
been
generated,
or
as
the
last
processing
step
by
an
RDFa
processor.

It
can
be
very
useful
to
make
generalized
data
available
for
subsequent
usage
of
RDFa-embedded
data
by
expanding
inferred
statements
entailed
by
these
semantics.
This
provides
for
existing
vocabularies
that
extend
well-known
vocabularies
to
have
those
properties
added
to
the
output
graph
automatically.
For
example,
the
namespace
document
of
the
Creative
Commons
vocabulary,
i.e.,

http://creativecommons.org/ns
,
defines

cc:license

to
be
a
sub-property
of

dc:license
.
By
using
the

@vocab

attribute,
one
can
describe
a
licensing
information
as
follows:

 Example 130
This document is licensed under the
<a vocab="http://creativecommons.org/ns#"
 rel="license"
 href="http://creativecommons.org/licenses/by-nc-nd/3.0/">
 Creative Commons By-NC-ND License
.

which
results
in
the
following

output
graph
:

 Example 131
@prefix cc: <http://creativecommons.org/ns#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
<> cc:license <http://creativecommons.org/licenses/by-nc-nd/3.0/> ;
rdfa:usesVocabulary
<http://creativecommons.org/ns#>
.

After
vocabulary
expansion,
the

output
graph

contains:

 Example 132
@prefix cc: <http://creativecommons.org/ns#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix dc: <http://purl.org/dc/terms/> .
<> cc:license <http://creativecommons.org/licenses/by-nc-nd/3.0/>;
 dc:license <http://creativecommons.org/licenses/by-nc-nd/3.0/> ;
rdfa:usesVocabulary
<http://creativecommons.org/ns#>
.

Other
vocabularies,
specifically
intended
to
provide
relations
to
multiple
vocabularies,
could
also
be
defined
by
publishers,
allowing
use
of
terms
in
a
single
namespace
which
result
in
properties
and/or
classes
from
other
primary
vocabularies
being
imported.
This
benefits
publishers
as
data
is
now
more
widely
searchable
and
encourages
the
practice
of
referencing
well-known
vocabularies.

10.1

Details
of
the
RDFa
Vocabulary
Expansion

This
section
is
non-normative.

Once
the

output
graph

is
generated
following
the
processing
steps
defined
in

Sequence
,
processors

MAY

perform
the
following
processing
steps
on
the
output
graph.
It
must
do
so
only
if
the
user
of
the
processor
explicitly
asks
for
it,
as
prescribed
in

Vocabulary
Expansion
Control
of
RDFa
Processors
.

A

vocabulary
graph

is
created
as
follows:
Each
object
IRI
in
the

output
graph

that
has
a
subject
the
current
document
(

base

)
IRI
and
a
predicate
of

rdfa:usesVocabulary

is
dereferenced.
If
the
dereferencing
yields
the
serialization
of
an
RDF
graph,
that
serialization
is
parsed
and
the
resulting
graph
is
merged
with
the
vocabulary
graph.
(An
RDFa
processor
capable
of
vocabulary
expansion

MUST

accept
an
RDF
graph
serialized
in
RDFa,
and

SHOULD

accept
other
standard
serialization
formats
of
RDF
such
as
RDF/XML
[

RDF-SYNTAX-GRAMMAR

]
and
Turtle
[

TURTLE

].)

Note

Note
that
if,
in
the
second
step,
a
particular
vocabulary
is
serialized
in
RDFa,
that
particular
graph
is
not
expected
to
undergo
any
vocabulary
expansion
on
its
own.

Vocabulary
expansion
is
then
performed
as
follows:

		
The
processor
operates
on
the
merge
of
the
default
and
vocabulary
graphs
using

RDFa
Vocabulary
Entailment
.

		
Add
the
new
triples
inferred
from
the

output
graph

using
this
entailment
to
the
(expanded)

output
graph
.
The
processor

SHOULD
NOT

add
the
triples
appearing
in
the

vocabulary
graph

only.

The
goal
of
the
second
step
is
to
avoid
adding
the
"axioms",
e.g.,
the
sub-property
definitions
to
the
output
graph.
Applications
usually
do
not
require
any
of
this
additional
information.

10.1.1

RDFa
Vocabulary
Entailment

For
the
purpose
of
vocabulary
processing,
RDFa
used
a
very
restricted
subset
of
the
OWL
vocabulary
and
is
based
on
the
RDF-Based
Semantics
of
OWL
[

OWL2-RDF-BASED-SEMANTICS

].
The
RDFa
Vocabulary
Entailment
uses
the
following
terms:

		

rdf:type

		

rdfs:subClassOf

		

rdfs:subPropertyOf

		

owl:equivalentClass

		

owl:equivalentProperty

Note

RDFa
Vocabulary
Entailment
considers
only
the
entailment
on
individuals
(i.e.,
not
on
the
relationships
that
can
be
deduced
on
the
properties
or
the
classes
themselves.)

Note

While
the
formal
definition
of
the
RDFa
Entailment
refers
to
the
general
OWL
2
Semantics,
practical
implementations
may
rely
on
a
subset
of
the
OWL
2
RL
Profile’s
entailment
expressed
in
rules
(

section
4.3

of
[

OWL2-PROFILES

]).
The
relevant
rules
are,
using
the
rule
identifications
in

section
4.3

of
[

OWL2-PROFILES

]):

prp-spo1
,

prp-eqp1
,

prp-eqp2
,

cax-sco
,

cax-eqc1
,
and

cax-eqc2
.

The
entailment
described
in
this
section
is
the

minimum

useful
level
for
RDFa.
Processors
may,
of
course,
choose
to
follow
more
powerful
entailment
regimes,
e.g.,
include
full
RDFS
[

RDF11-MT

]
or
OWL
[

OWL2-OVERVIEW

]
entailments.
Using
those
entailments
applications
may
perform
datatype
validation
by
checking

rdfs:range

of
a
property,
or
use
the
advanced
facilities
offered
by,
e.g.,
OWL’s
property
chains
to
interlink
vocabularies
further.

10.2

Vocabulary
Expansion
Control
of
RDFa
Processors

Conforming
RDFa
processors
are
not
required
to
provide
vocabulary
expansion.

If
an
RDFa
processor
provides
vocabulary
expansion,
it

MUST
NOT

be
performed
by
default.
Instead,
the
processor

MUST

provide
an
option,

vocab_expansion
,
which,
when
used,
instructs
the
RDFa
processor
to
perform
a
vocabulary
expansion
before
returning
the
output
graph.

Note

Although
vocabulary
expansion
is
described
in
terms
of
a

vocabulary
graph

and
OWL
2
entailment
rules,
processors
are
free
to
use
any
process
which
obtains
equivalent
results.

10.2.1

Notes
to
RDFa
Vocabulary
Implementations
and
Publishing

This
section
is
non-normative.

For
RDFa
Processors
caching
the
relevant
graphs
retrieved
via
this
mechanism
is

RECOMMENDED
.
Caching
is
usually
based
on
HTTP
response
headers
like
expiration
time,
cache
control,
etc.

For
publishers
of
vocabularies,
the
IRI
for
the
vocabularies

SHOULD

be
dereferenceable,
and
should
return
an
RDF
graph
with
the
vocabulary
description.
This
vocabulary
description

SHOULD

be
available
encoded
in
RDFa,
and

MAY

also
be
available
in
other
RDF
serialization
syntaxes
(using
content
negotiation
to
choose
among
the
different
formats).
If
possible,
vocabulary
descriptions

SHOULD

include
subproperty
and
subclass
statements
linking
the
vocabulary
terms
to
other,
well-known
vocabularies.
Finally,
HTTP
responses

SHOULD

include
fields
usable
for
cache
control,
e.g.,
expiration
date.

A.

CURIE
Datatypes

In
order
to
facilitate
the
use
of
CURIEs
in
markup
languages,
this
specification
defines
some
additional
datatypes
in
the
XHTML
datatype
space
(

http://www.w3.org/1999/xhtml/datatypes/

).
Markup
languages
that
want
to
import
these
definitions
can
find
them
in
the
"datatypes"
file
for
their
schema
grammar:

		

DTD
xhtml-datatypes.mod

		

XML
Schema
xhtml-datatypes.xsd

Specifically,
the
following
datatypes
are
defined:

		

CURIE

		
A
single

curie

		

CURIEs

		
A
white
space
separated
list
of

CURIE

s

		

CURIEorIRI

		
A

CURIE

or
an

IRI

		

CURIEorIRIs

		
A
white
space
separated
list
of

CURIEorIRI

s

		

SafeCURIE

		
A
single

safe_curie

		

SafeCURIEorCURIEorIRI

		
A
single

SafeCURIE

or

CURIEorIRI

		

SafeCURIEorCURIEorIRIs

		
A
white
space
separated
list
of

SafeCURIEorCURIEorIRI

s.

		

TERM

		
A
single

term

		

TERMorCURIEorAbsIRI

		
A

TERM

or
a

CURIEorIRI

		

TERMorCURIEorAbsIRIs

		
A
white
space
separated
list
of

TERMorCURIEorAbsIRI

s

A.1

XML
Schema
Definition

This
section
is
non-normative.

The
following

informative

XML
Schema
definition
for
these
datatypes
is
included
as
an
example:

 Example 133
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/1999/xhtml/datatypes/"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/"
 targetNamespace="http://www.w3.org/1999/xhtml/datatypes/"
 elementFormDefault="qualified"
>
 <xs:simpleType name="CURIE">
 <xs:restriction base="xs:string">
 <xs:pattern value="(([\i-[:]][\c-[:]]*)?:)?(/[^\s/][^\s]*|[^\s/][^\s]*|[^\s]?)" />
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="CURIEs">
 <xs:list itemType="xh11d:CURIE"/>
 </xs:simpleType>
 <xs:simpleType name="SafeCURIE">
 <xs:restriction base="xs:string">
 <xs:pattern value="\[(([\i-[:]][\c-[:]]*)?:)?(/[^\s/][^\s]*|[^\s/][^\s]*|[^\s]?)\]" />
 <xs:minLength value="3"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="SafeCURIEs">
 <xs:list itemType="xh11d:SafeCURIE"/>
 </xs:simpleType>
 <xs:simpleType name="TERM">
 <xs:restriction base="xs:Name">
 <xs:pattern value="[\i-[:]][/\c-[:]]*" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="CURIEorIRI">
 <xs:union memberTypes="xh11d:CURIE xsd:anyURI" />
 </xs:simpleType>
 <xs:simpleType name="CURIEorIRIs">
 <xs:list itemType="xh11d:CURIEorIRI"/>
 </xs:simpleType>
 <xs:simpleType name="SafeCURIEorCURIEorIRI">
 <xs:union memberTypes="xh11d:SafeCURIE xh11d:CURIE xsd:anyURI" />
 </xs:simpleType>
 <xs:simpleType name="SafeCURIEorCURIEorIRIs">
 <xs:list itemType="xh11d:SafeCURIEorCURIEorIRI"/>
 </xs:simpleType>
 <xs:simpleType name='AbsIRI'>
 <xs:restriction base='xs:string'>
 <xs:pattern value="[\i-[:]][\c-[:]]+:.+" />
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="TERMorCURIEorAbsIRI">
 <xs:union memberTypes="xh11d:TERM xh11d:CURIE xh11d:AbsIRI" />
 </xs:simpleType>
 <xs:simpleType name="TERMorCURIEorAbsIRIs">
 <xs:list itemType="xh11d:SafeCURIEorCURIEorAbsIRI"/>
 </xs:simpleType>
</xs:schema>

A.2

XML
DTD
Definition

This
section
is
non-normative.

The
following

informative

XML
DTD
definition
for
these
datatypes
is
included
as
an
example:

 Example 134
<!ENTITY % CURIE.datatype "CDATA" >
<!ENTITY % CURIEs.datatype "CDATA" >
<!ENTITY % CURIEorIRI.datatype "CDATA" >
<!ENTITY % CURIEorIRIs.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRI.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRIs.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsIRI.datatype "CDATA" >
<!ENTITY
%
TERMorCURIEorAbsIRIs.datatype
"CDATA"
>

B.

The
RDFa
Vocabulary

The
RDFa
Vocabulary
has
three
roles:
it
contains
the
predicates
to
define
the
terms
and
prefixes
in

initial
context

documents,
it
contains
the
classes
and
predicates
for
the
messages
that
a

processor
graph

may
contain
and,
finally,
it
contains
the
predicate
necessary
for
vocabulary
processing.
The
IRI
of
the
vocabulary
is

http://www.w3.org/ns/rdfa#

;
the
usual
prefix
used
in
this
document
is

rdfa
.

This
vocabulary
specification
is
available
in

XHTML+RDFa
1.1
,

Turtle
,
and
in

RDF/XML

formats.

B.1

Term
and
Prefix
Assignments

The
RDFa
Vocabulary
includes
the
following
triples
(shown
here
in
Turtle
[

TURTLE

]
format):

 Example 135
@prefix dc: <http://purl.org/dc/terms/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://www.w3.org/ns/rdfa#> a owl:Ontology .
rdfa:PrefixOrTermMapping a rdfs:Class, owl:Class ;
 dc:description "The top level class for prefix or term mappings." .

rdfa:PrefixMapping dc:description "The class for prefix mappings." .
 rdfs:subClassOf rdfa:PrefixOrTermMapping .

rdfa:TermMapping dc:description "The class for term mappings." .
 rdfs:subClassOf rdfa:PrefixOrTermMapping .
rdfa:prefix a rdf:Property, owl:DatatypeProperty ;
 rdfs:domain rdfa:PrefixMapping ;
 dc:description "Defines a prefix mapping for an IRI; the value is supposed to be a NMTOKEN." .
rdfa:term a rdf:Property, owl:DatatypeProperty ;
 rdfs:domain rdfa:TermMapping ;
 dc:description "Defines a term mapping for an IRI; the value is supposed to be a NMTOKEN." .
rdfa:uri a rdf:Property, owl:DatatypeProperty ;
 rdfs:domain rdfa:PrefixOrTermMapping ;
 dc:description """Defines the IRI for either a prefix or a term mapping;
 the value is supposed to be an absolute IRI.""" .
rdfa:vocabulary a rdf:Property, owl:DatatypeProperty ;
 dc:description """Defines an IRI to be used as a default vocabulary;
 the value is can be any string; for documentation purposes it is advised to use
the
string
‘true’
or
‘True’."""
.

These
predicates
can
be
used
to
define
the

initial
context

for
a
given
Host
Language.

These
predicates
are
used
to
'pair'
IRI
strings
and
their
usage
in
the
form
of
a
prefix
and/or
a
term
as
part
of,
for
example,
a
blank
node.
An
example
can
be
as
follows:

 Example 136
[] rdfa:uri "http://xmlns.com/foaf/0.1/name" ;
rdfa:prefix
"foaf"
.

which
defines
a
prefix
for
the
FOAF
IRI.

B.2

Processor
Graph
Reporting

The
Vocabulary
includes
the
following
term
definitions
(shown
here
in
Turtle
[

TURTLE

]
format):

 Example 137
@prefix dc: <http://purl.org/dc/terms/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
rdfa:PGClass a rdfs:Class, owl:Class;
 dc:description "The top level class of the hierarchy." .
rdfa:Error dcterms:description "The class for all error conditions.";
 rdfs:subClassOf rdfa:PGClass .
rdfa:Warning dcterms:description "The class for all warnings.";
 rdfs:subClassOf rdfa:PGClass .
rdfa:Info dcterms:description "The class for all informations.";
 rdfs:subClassOf rdfa:PGClass .
rdfa:DocumentError dc:description "An error condition to be used when the document
 fails to be fully processed as a result of non-conformant host language markup.";
 rdfs:subClassOf rdfa:Error .
rdfa:VocabReferenceError dc:description "A warning to be used
 when the value of a @vocab attribute cannot be dereferenced, hence the vocabulary expansion
 cannot be completed.";
 rdfs:subClassOf rdfa:Warning .
rdfa:UnresolvedTerm dc:description "A warning to be used when a Term fails to be resolved.";
 rdfs:subClassOf rdfa:Warning .
rdfa:UnresolvedCURIE dc:description "A warning to be used when a CURIE prefix
 fails to be resolved.";
 rdfs:subClassOf rdfa:Warning .

rdfa:context a owl:ObjectProperty, rdf:Property;
 dc:description "Provides extra context for the error, e.g., http response,
 an XPointer/XPath information, or simply the IRI that created the error.";
rdfs:domain
rdfa:PGClass
.

B.3

Term
for
vocabulary
expansion

The
Vocabulary
includes
the
following
term
definitions
(shown
here
in
Turtle
[

TURTLE

]
format):

 Example 138
@prefix dc: <http://purl.org/dc/terms/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
rdfa:usesVocabulary a owl:ObjectProperty, rdf:Property;
 dc:description "Provides a relationship between the host document and a vocabulary
defined
using
the
@vocab
facility
of
RDFa1.1."
.

C.

Changes

This
section
is
non-normative.

C.1

Major
differences
since
the
Last
Published
Recommentation

		
References
to
the
other
RDFa
1.1
documents,
as
well
as
to
RDF
1.1
documents,
have
been
updated

		
A
minor
clarification
has
been
added
to
section
4.1.
to
the
processors
can
return
processor
and
output
graphs

C.2

Major
differences

with
RDFa
Syntax
1.0

This
specification
introduces
a
number
of
new
features,
and
extends
the
behavior
of
some
features
from
the
previous
version.
The
following
summary
may
be
helpful
to
RDFa
Processor
developers,
but
is

not

meant
to
be
comprehensive.

		
Specific
rules
about
XHTML
have
been
moved
into
a
companion
specification:
[

XHTML-RDFA

].

		
Prefix
mappings
can
now
be
declared
using

@prefix

in
addition
to

@xmlns
.
The
usage
of

@xmlns

has
been
deprecated.

		
Prefix
names
are
now
required
to
be
converted
to
lower-case
when
the
mapping
is
defined.
Prefixes
are
checked
in
a
case-insensitive
manner
during
CURIE
expansion.

		
You
can
now
use
an
Absolute
IRI
everywhere
you
could
previously
only
use
a
CURIE
(e.g.,
in
the
value
of

@datatype

).

		
There
is
now
a
concept
of
a

term
.
This
concept
has
replaced
the
concept
of
a
'reserved
word'.
It
is
possible
now
to
use
a
'term'
in
most
places
where
you
could
previously
only
use
a
CURIE.

		
You
can
define
a
default
prefix
mapping
(via

@vocab

)
that
will
be
used
on
undefined
terms.

		
When
a
triple
would
include
an
object
literal,
and
there
is
no
explicit
datatype
attribute,
the
object
literal
will
now
be
a
'plain
literal'.
In
version
1.0
it
would
have
been
an
'XMLLiteral'.

		
The

@inlist

attribute
can
be
used
to
instruct
the
processor
to
generate
RDF
lists
with
the
resources
rather
than
simple
triples.

		
The
effect
of

@src

is
now
identical
to

@href

rather
than

@about

like
in
version
1.0.

While
this
specification
strives
to
be
as
backward
compatible
as
possible
with
[

RDFA-SYNTAX

],
the
changes
above
mean
that
there
are
some
circumstances
where
it
is
possible
for
different
RDF
triples
to
be
output
for
the
same
document
when
processed
by
an
RDFa
1.0
processor
vs.
an
RDFa
1.1
processor.
In
order
to
minimize
these
differences,
a
document
author
can
do
the
following:

		
Use
the
XHTML+RDFa
1.0
document
type
as
defined
in
[

RDFA-SYNTAX

].

		
Place
a

@version

attribute
with
the
value

XHTML+RDFa
1.0

on
the

html

element.

		
If
there
are
places
in
the
document
where
an
object
literal

MUST

be
an
XMLLiteral,
use

datatype='rdf:XMLLiteral'
.

		
If
there
are
places
in
the
document
where
an
object
literal

MUST

be
a
plain
literal,
use

datatype=''
.

		
If
there
are
places
in
the
document
where

@src

is
used,
add
an

@about

(unless
already
present)
with
the
same
IRI.

When
producing
XHTML+RDFa
1.1
documents,
it
is
possible
to
reduce
the
incompatibilities
with
RDFa
1.0
conforming
processors
by
doing
the
following:

		
DO
NOT
use
the

@vocab

feature.

		
DO
NOT
rely
upon
host
language
defaults
for
IRI
mappings.

		
DO
NOT
use
absolute
IRIs
in
place
of
CURIEs.

		
Use

@xmlns

AND

@prefix

when
declaring
prefix
mappings.

		
DO
NOT
use
TERMs
on

@datatype
,

@property
,
or

@typeof
.

		
When
using
TERMs
in

@rel

and

@rev
,
only
use
ones
defined
in
[

RDFA-SYNTAX

].

		
Place
a

version

attribute
with
the
value

XHTML+RDFa
1.0

on
the

html

element.

		
If
there
are
places
in
the
document
where
an
object
literal

MUST

be
an
XMLLiteral,
use

datatype='rdf:XMLLiteral'
.

		
If
there
are
places
in
the
document
where
an
object
literal

MUST

be
a
plain
literal,
use

datatype=''
.

		
If
there
are
places
in
the
document
where

@src

is
used,
add
an

@about

(unless
already
present)
with
the
same
IRI.

D.

Acknowledgments

This
section
is
non-normative.

At
the
time
of
publication,
the
active
members
of
the
RDFa
Working
Group
were:

		
Stéphane
Corlosquet,
MIND
Center
for
Interdisciplinary
Informatics

		
Ivan
Herman,

W3C

		
Gregg
Kellogg
(Invited
Expert)

		
Niklas
Lindström
(Invited
Expert)

		
Shane
McCarron,
Applied
Testing
and
Technology,
Inc.
(Invited
Expert)

		
Steven
Pemberton,
Centre
for
Mathematics
and
Computer
Science
(CWI)

		
Manu
Sporny,
Digital
Bazaar
(Chair,
Invited
Expert)

E.

References

E.1

Normative
references

		
[HTML-RDFA]

		
Manu
Sporny
et
al.

HTML+RDFa
1.1
-
Second
Edition

.
17
March
2015.

W3C
Recommendation.
URL:

http://www.w3.org/TR/html-rdfa/

		
[OWL2-OVERVIEW]

		
W3C
OWL
Working
Group.

OWL
2
Web
Ontology
Language
Document
Overview
(Second
Edition)

.
11
December
2012.
W3C
Recommendation.
URL:

http://www.w3.org/TR/owl2-overview/

		
[OWL2-PROFILES]

		
Boris
Motik;
Bernardo
Cuenca
Grau;
Ian
Horrocks;
Zhe
Wu;
Achille
Fokoue.

OWL
2
Web
Ontology
Language
Profiles
(Second
Edition)

.
11
December
2012.
W3C
Recommendation.
URL:

http://www.w3.org/TR/owl2-profiles/

		
[OWL2-RDF-BASED-SEMANTICS]

		
Michael
Schneider.

OWL
2
Web
Ontology
Language
RDF-Based
Semantics
(Second
Edition)

.
11
December
2012.
W3C
Recommendation.
URL:

http://www.w3.org/TR/owl2-rdf-based-semantics/

		
[RDF-SYNTAX-GRAMMAR]

		
Fabien
Gandon;
Guus
Schreiber.

RDF
1.1
XML
Syntax

.
25
February
2014.
W3C
Recommendation.
URL:

http://www.w3.org/TR/rdf-syntax-grammar/

		
[RDF11-MT]

		
Patrick
Hayes;
Peter
Patel-Schneider.

RDF
1.1
Semantics

.
25
February
2014.
W3C
Recommendation.
URL:

http://www.w3.org/TR/rdf11-mt/

		
[RFC2119]

		
S.
Bradner.

Key
words
for
use
in
RFCs
to
Indicate
Requirement
Levels

.
March
1997.
Best
Current
Practice.
URL:

https://tools.ietf.org/html/rfc2119

		
[RFC3987]

		
M.
Duerst;
M.
Suignard.

Internationalized
Resource
Identifiers
(IRIs)

.
January
2005.
Proposed
Standard.
URL:

https://tools.ietf.org/html/rfc3987

		
[XHTML-RDFA]

		
Shane
McCarron.

XHTML+RDFa
1.1
-
Third
Edition
.
17
March
2015.

W3C
Recommendation.
URL:

http://www.w3.org/TR/xhtml-rdfa/

		
[XML-NAMES]

		
Tim
Bray;
Dave
Hollander;
Andrew
Layman;
Richard
Tobin;
Henry
Thompson
et
al.

Namespaces
in
XML
1.0
(Third
Edition)

.
8
December
2009.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xml-names

		
[XML10-4e]

		
C.
M.
Sperberg-McQueen
et
al.

Extensible
Markup
Language
(XML)
1.0
(Fourth
Edition)

.
16
August
2006.

W3C
Recommendation.
URL:

http://www.w3.org/TR/2006/REC-xml-20060816/

		
[XMLSCHEMA11-2]

		
David
Peterson;
Sandy
Gao;
Ashok
Malhotra;
Michael
Sperberg-McQueen;
Henry
Thompson;
Paul
V.
Biron
et
al.

W3C
XML
Schema
Definition
Language
(XSD)
1.1
Part
2:
Datatypes

.
5
April
2012.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xmlschema11-2/

E.2

Informative
references

		
[HTML401]

		
Dave
Raggett;
Arnaud
Le
Hors;
Ian
Jacobs.

HTML
4.01
Specification

.
24
December
1999.
W3C
Recommendation.
URL:

http://www.w3.org/TR/html401

		
[MICROFORMATS]

		

Microformats

.
URL:

http://microformats.org

		
[QNAMES]

		
N.
Walsh.

Using
Qualified
Names
(QNames)
as
Identifiers
in
XML
Content

.
17
March,
2004.
TAG
Finding.
URL:

http://www.w3.org/2001/tag/doc/qnameids-2004-03-17

		
[RDF11-PRIMER]

		
Guus
Schreiber;
Yves
Raimond.

RDF
1.1
Primer

.
24
June
2014.
W3C
Note.
URL:

http://www.w3.org/TR/rdf11-primer/

		
[RDF11-TESTCASES]

		
Gregg
Kellogg;
Markus
Lanthaler.

RDF
1.1
Test
Cases

.
25
February
2014.
W3C
Note.
URL:

http://www.w3.org/TR/rdf11-testcases/

		
[RDFA-PRIMER]

		
Ben
Adida;
Ivan
Herman;
Manu
Sporny;
Mark
Birbeck.

RDFa
1.1
Primer
-
Third
Edition

.
17
March
2015.

W3C
Note.
URL:

http://www.w3.org/TR/rdfa-primer/

		
[RDFA-SYNTAX]

		
Ben
Adida;
Mark
Birbeck;
Shane
McCarron;
Steven
Pemberton
et
al.

RDFa
in
XHTML:
Syntax
and
Processing
.
14
October
2008.
W3C
Recommendation.
URL:

http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014

		
[RELAXNG-SCHEMA]

		

Information
technology
--
Document
Schema
Definition
Language
(DSDL)
--
Part
2:
Regular-grammar-based
validation
--
RELAX
NG

.
ISO/IEC
19757-2:2008.
URL:

http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip

		
[SAX]

		
D.
Megginson,
et
al.

SAX:
The
Simple
API
for
XML

.
May
1998.
URL:

http://www.megginson.com/downloads/SAX/

		
[TURTLE]

		
Eric
Prud'hommeaux;
Gavin
Carothers.

RDF
1.1
Turtle

.
25
February
2014.
W3C
Recommendation.
URL:

http://www.w3.org/TR/turtle/

		
[WIDGETS-URI]

		
Marcos
Caceres.

Widget
URI
scheme

.
13
March
2012.
W3C
Note.
URL:

http://www.w3.org/TR/widgets-uri/

		
[XHTML11]

		
Shane
McCarron;
Masayasu
Ishikawa.

XHTML™
1.1
-
Module-based
XHTML
-
Second
Edition

.
23
November
2010.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xhtml11/

		
[XML-EXC-C14N]

		
John
Boyer;
Donald
Eastlake;
Joseph
Reagle.

Exclusive
XML
Canonicalization
Version
1.0

.
18
July
2002.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xml-exc-c14n

		
[XML10]

		
Tim
Bray;
Jean
Paoli;
Michael
Sperberg-McQueen;
Eve
Maler;
François
Yergeau
et
al.

Extensible
Markup
Language
(XML)
1.0
(Fifth
Edition)

.
26
November
2008.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xml

		
[XMLSCHEMA11-1]

		
Sandy
Gao;
Michael
Sperberg-McQueen;
Henry
Thompson;
Noah
Mendelsohn;
David
Beech;
Murray
Maloney.

W3C
XML
Schema
Definition
Language
(XSD)
1.1
Part
1:
Structures

.
5
April
2012.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xmlschema11-1/

Icons/w3c_home.png

rdfa-primer/diff.xhtml

[image: W3C]

RDFa
1.1
Primer
-
Second

Third

Edition

Rich
Structured
Data
Markup
for
Web
Documents

W3C

Working
Group
Note
22
August
2013

17
March
2015

		
This
version:

		
http://www.w3.org/TR/2013/NOTE-rdfa-primer-20130822/

http://www.w3.org/TR/2015/NOTE-rdfa-primer-20150317/

		
Latest
published
version:

		

http://www.w3.org/TR/rdfa-primer/

		
Latest
editor's
draft:

		
http://www.w3.org/2010/02/rdfa/sources/rdfa-primer/Overview-src.html

		
Previous
version:

		
http://www.w3.org/TR/2012/NOTE-rdfa-primer-20120607/

http://www.w3.org/TR/2013/NOTE-rdfa-primer-20130822/

		
Editors:

		

Ivan
Herman
,

W3C

,

ivan@w3.org

		

Ben
Adida
,

Creative
Commons
,

ben@adida.net

		

Manu
Sporny
,

Digital
Bazaar
,

msporny@digitalbazaar.com

		

Mark
Birbeck
,
webBackPlane.com,

mark.birbeck@webBackplane.com

Please
refer
to

check

the

errata

for
any
errors
or
issues
reported
since
publication.

This
document
is
also
available
in

this
document,
which
may
include
some
normative
corrections.

non-normative
format:

diff
to
previous
version

Copyright

©
2010-2013

2010-2015

W3C

®

(

MIT

,

ERCIM

,

Keio
,

Beihang

),
All
Rights
Reserved.

).

W3C

liability
,

trademark

and

document
use

rules
apply.

Abstract

The
last
couple
of
years
have
witnessed
a
fascinating
evolution:
while
the
Web
was
initially
built
predominantly
for
human
consumption,
web
content
is
increasingly
consumed
by
machines
which
expect
some
amount
of
structured
data.
Sites
have
started
to
identify
a
page's
title,
content
type,
and
preview
image
to
provide
appropriate
information
in
a
user's
newsfeed
when
she
clicks
the
"Like"
button.
Search
engines
have
started
to
provide
richer
search
results
by
extracting
fine-grained
structured
details
from
the
Web
pages
they
crawl.
In
turn,
web
publishers
are
producing
increasing
amounts
of
structured
data
within
their
Web
content
to
improve
their
standing
with
search
engines.

A
key
enabling
technology
behind
these
developments
is
the
ability
to
add
structured
data
to
HTML
pages
directly.
RDFa
(Resource
Description
Framework
in
Attributes)
is
a
technique
that
allows
just
that:
it
provides
a
set
of
markup
attributes
to
augment
the
visual
information
on
the
Web
with
machine-readable
hints.
In
this
Primer,
we
show
how
to
express
data
using
RDFa
in
HTML,
and
in
particular
how
to
mark
up
existing
human-readable
Web
page
content
to
express
machine-readable
data.

This
document
provides
only
a
Primer
to
RDFa 1.1.
The
complete
specification
of
RDFa,
with
further
examples,
can
be
found
in
the
RDFa 1.1
Core [

rdfa-core

],
RDFa
Lite [

rdfa-lite

],
XHTML+RDFa 1.1 [

xhtml-rdfa

],
and
the
HTML5+RDFa 1.1 [

rdfa-in-html

html-rdfa

]
specifications.

Status
of
This
Document

This
section
describes
the
status
of
this
document
at
the
time
of
its
publication.
Other
documents
may
supersede
this
document.
A
list
of
current

W3C

publications
and
the
latest
revision
of
this
technical
report
can
be
found
in
the

W3C

technical
reports
index

at
http://www.w3.org/TR/.

This
document
was
published
by
the

RDFa
Working
Group

as
a
Working
Group
Note.
If
you
wish
to
make
comments
regarding
this
document,
please
send
them
to

public-rdfa@w3.org

(

subscribe
,

archives

).
All
comments
are
welcome.

Publication
as
a
Working
Group
Note
does
not
imply
endorsement
by
the

W3C

Membership.
This
is
a
draft
document
and
may
be
updated,
replaced
or
obsoleted
by
other
documents
at
any
time.
It
is
inappropriate
to
cite
this
document
as
other
than
work
in
progress.

This
document
was
produced
by
a
group
operating
under
the

5
February
2004

W3C

Patent
Policy
.

W3C

maintains
a

public
list
of
any
patent
disclosures

made
in
connection
with
the
deliverables
of
the
group;
that
page
also
includes
instructions
for
disclosing
a
patent.
An
individual
who
has
actual
knowledge
of
a
patent
which
the
individual
believes
contains

Essential
Claim(s)

must
disclose
the
information
in
accordance
with

section
6
of
the

W3C

Patent
Policy
.

This
document
is
governed
by
the

14
October
2005

W3C

Process
Document
.

Table
of
Contents

		

1.

Introduction

		

1.1

HTML
vs.
XHTML

		

1.2

Validation

		

2.

Using
RDFa

		

2.1

The
Basics
of
RDFa:
RDFa
Lite

		

2.1.1

The
First
Steps:
Adding
Machine-Readable
Hints
to
Web
Pages

		

2.1.1.1

Hints
on
Social
Networking
Sites

		

2.1.1.2

Links
with
Flavor

		

2.1.1.3

Setting
a
Default
Vocabulary

		

2.1.1.4

Multiple
Items
per
Page

		

2.1.2

Exploring
Further:
Social
networks

		

2.1.2.1

Contact
Information

		

2.1.2.2

Describing
Social
Networks

		

2.1.3

Repeated
Patterns

		

2.1.4

Internal
References

		

2.1.5

Using
Multiple
Vocabularies

		

2.1.5.1

Repeating
properties

		

2.1.5.2

Default
Prefixes
(Initial
Context)

		

2.2

Going
Deeper:
RDFa
Core

		

2.2.1

Using
the

content

attribute

		

2.2.2

Datatypes

		

2.2.3

Alternative
for
setting
the
context:

about

		

2.2.4

Alternative
for
setting
the
property:

rel

		

3.

You
Said
Something
about
RDF?

		

3.1

Custom
Vocabularies

		

4.

RDFa
Tools

		

5.

Acknowledgments

		

A.

References

		

A.1

Informative
references

1.

Introduction

The
web
is
a
rich,
distributed
repository
of
interconnected
information.
Until
recently,
it
was
organized
primarily
for
human
consumption.
On
a
typical
web
page,
an
HTML
author
might
specify
a
headline,
then
a
smaller
sub-headline,
a
block
of
italicized
text,
a
few
paragraphs
of
average-size
text,
and,
finally,
a
few
single-word
links.
Web
browsers
will
follow
these
presentation
instructions
faithfully.
However,
only
the
human
mind
understands
what
the
headline
expresses-a
blog
post
title.
The
sub-headline
indicates
the
author,
the
italicized
text
is
the
article's
publication
date,
and
the
single-word
links
are
subject
categories.
Computers
do
not
understand
the
nuances
between
the
information;
the
gap
between
what
programs
and
humans
understand
is
large.

[image: presentation vs. semantics]

Figure
1
:

:
On
the
left,
what
browsers
see.
On
the
right,
what
humans
see.
Can
we
bridge
the
gap
so
that
browsers
see
more
of
what
we
see?

Fig.

1

presentation
vs.
semantics

What
if
the
browser,
or
any
machine
consumer
such
as
a
Web
crawler,
received
information
on
the
meaning
of
a
web
page's
visual
elements?
A
dinner
party
announced
on
a
blog
could
be
copied
to
the
user's
calendar,
an
author's
complete
contact
information
to
the
user's
address
book.
Users
could
automatically
recall
previously
browsed
articles
according
to
categorization
labels
(i.e.,
tags).
A
photo
copied
and
pasted
from
a
web
site
to
a
school
report
would
carry
with
it
a
link
back
to
the
photographer,
giving
him
proper
credit.
A
link
shared
by
a
user
to
his
social
network
contacts
would
automatically
carry
additional
data
pulled
from
the
original
web
page:
a
thumbnail,
an
author,
and
a
specific
title.
When
web
data
meant
for
humans
is
augmented
with
hints
meant
for
computer
programs,
these
programs
become
significantly
more
helpful,
because
they
begin
to
understand
the
data's
structure.

RDFa
allows
HTML
authors
to
do
just
that.
Using
a
few
simple
HTML
attributes,
authors
can
mark
up
human-readable
data
with
machine-readable
indicators
for
browsers
and
other
programs
to
interpret.
A
web
page
can
include
markup
for
items
as
simple
as
the
title
of
an
article,
or
as
complex
as
a
user's
complete
social
network.

1.1

HTML
vs.
XHTML

Historically,
RDFa 1.0 [

rdfa-syntax

]
was
specified
only
for
XHTML.
RDFa 1.1 [

rdfa-core

]
is
the
newer
version
and
the
one
used
in
this
document.
RDFa 1.1
is
specified
for
both
XHTML [

xhtml-rdfa

]
and
HTML5 [

rdfa-in-html

html-rdfa

].
In
fact,
RDFa 1.1
also
works
for
any
XML-based
languages
like
SVG [

SVG11

svg11

].
This
document
uses
HTML
in
all
of
the
examples;
for
simplicity,
we
use
the
term
"HTML"
throughout
this
document
to
refer
to
all
of
the
HTML-family
languages.

1.2

Validation

RDFa
is
based
on
attributes.
While
some
of
the
HTML
attributes
(e.g.,

href
,

src

)
have
been
re-used,
other
RDFa
attributes
are
new.
This
is
important
because
some
of
the
(X)HTML
validators
may
not
properly
validate
the
HTML
code
until
they
are
updated
to
recognize
the
new
RDFa
attributes.
This
is
rarely
a
problem
in
practice
since
browsers
simply
ignore
attributes
that
they
do
not
recognize.
None
of
the
RDFa-specific
attributes
have
any
effect
on
the
visual
display
of
the
HTML
content.
Authors
do
not
have
to
worry
about
pages
marked
up
with
RDFa
looking
any
different
to
a
human
being
from
pages
not
marked
up
with
RDFa.

2.

Using
RDFa

2.1

The
Basics
of
RDFa:
RDFa
Lite

We
begin
the
introduction
to
RDFa
by
using
a
subset
of
all
the
possibilities
called
RDFa
Lite 1.1 [

rdfa-lite

].
The
goal,
when
defining
that
subset,
was
to
define
a
set
of
possibilities
that
can
be
applied
to
most
simple
to
moderate
structured
data
markup
tasks,
without
burdening
the
authors
with
additional
complexities.
Many
Web
authors
will
not
need
to
use
more
than
this
minimal
subset.

2.1.1

The
First
Steps:
Adding
Machine-Readable
Hints
to
Web
Pages

Consider
Alice,
a
blogger
who
publishes
a
mix
of
professional
and
personal
articles
at

http://example.com/alice
.
We
will
construct
markup
examples
to
illustrate
how
Alice
can
use
RDFa.
A
more
complete
markup
of
these
examples
is
available

on
a
dedicated
page
.

2.1.1.1

Hints
on
Social
Networking
Sites

Alice
publishes
a
blog
and
would
like
to
provide
extra
structural
information
on
her
pages
like
the
publication
date
or
the
title.
She
would
like
to
use
the
terms
defined
in
the
Dublin
Core
vocabulary [

DC11

dc11

],
a
set
of
terms
that
are
widely
used
by,
for
example,
the
publishing
industry
or
libraries.
Her
blog
already
contain
that
information:

 <html>
<head>
 ...
</head>
<body>
 ...
 <h2>The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...

 Example 1
<html>
<head>
 ...
</head>
<body>
 ...
 <h2>The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...

</body>

This
information
is,
however,
aimed
at
humans
only;
computers
need
some
sophisticated
methods
to
extract
it.
But,
using
RDFa,
she
can
annotate
her
page
to
make
the

structured
data

clear:

 <html>
<head>
 ...
</head>
<body>
 ...
 <h2 >The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...

 Example 2
<html>
<head>
 ...
</head>
<body>
 ...
 <h2 property="http://purl.org/dc/terms/title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...

</body>

(Notice
the
markup
colored
in
red:
these
are
the
RDFa
"hints".)

One
useful
way
to
visualize
the
structured
data
is:

[image: relationship value is text]

Figure
2
:

:
A
visualization
of
the
structured
data
for
a
blog
post
with
a
title
of
"The
Trouble
with
Bob"
and
a
creation
date.

Fig.

2

relationship
value
is
text

It
is
worth
emphasizing
that
RDFa
uses
URLs
to
identify
just
about
everything.
This
is
why,
instead
of
just
using
properties
like

title

or

created
,
we
use

http://purl.org/dc/terms/title

and

http://purl.org/dc/terms/created
.
The
reason
behind
this
design
decision
is
rooted
in
data
portability,
consistency,
and
information
sharing.
Using
URLs
removes
the
possibility
for
ambiguities
in
terminology.
Without
ensuring
that
there
is
no
ambiguity,
the
term
"title"
might
mean
"the
title
of
a
work",
"a
job
title",
or
"the
deed
for
real-estate
property".
When
each
vocabulary
term
is
a
URL,
a
detailed
explanation
for
the
vocabulary
term
is
just
one
click
away.
It
allows
anything,
humans
or
machines,
to
follow
the
link
to
find
out
what
a
particular
vocabulary
term
means.
By
using
a
URL
to
identify
a
particular
type
of
title,

creation
time,

for
example

http://purl.org/dc/terms/title

http://purl.org/dc/terms/created

,
both
humans
and
machines
can
understand
that
the
URL
unambiguously
refers
to
the
"Date
of
creation
of

creating

the
resource",
such
as
a
web
page.

By
using
URLs
as
identifiers,
RDFa
provides
a
solid
way
of
disambiguating
vocabulary
terms.
It
becomes
trivial
to
determine
whether
or
not
vocabulary
terms
used
in
different
documents
mean
the
same
thing.
If
the
URLs
are
the
same,
the
vocabulary
terms
mean
the
same
thing.
It
also
becomes
very
easy
to
create
new
vocabulary
terms
and
vocabulary
documents.
If
one
can
publish
a
document
to
the
Web,
one
automatically
has
the
power
to
create
a
new
vocabulary
document
containing
new
vocabulary
terms.

2.1.1.2

Links
with
Flavor

The
previous
example
demonstrated
how
Alice
can
markup
text
to
make
it
machine
readable.
She
would
also
like
to
mark
up
the
links
in
a
machine-readable
way,
to
express
the
type
of
link
being
described.
RDFa
lets
the
publisher
add
a
"flavor",
i.e.,
a
label,
to
an
existing
clickable
link
that
processors
can
understand.
This
makes
the
same
markup
help
both
humans
and
machines.

In
her
blog's
footer,
Alice
already
declares
her
content
to
be
freely
reusable,
as
long
as
she
receives
due
credit
when
her
articles
are
cited.
The
HTML
includes
a
link
to
a
Creative
Commons [

CC-ABOUT

cc-about

]
license:

 <p>All content on this site is licensed under

 Example 3
<p>All content on this site is licensed under

a
Creative
Commons
License.
©2011
Alice
Birpemswick.</p>

A
human
clearly
understands
this
sentence,
in
particular
the

meaning

of
the
link
with
respect
to
the
current
document:
it
indicates
the
document's
license,
the
conditions
under
which
the
page's
contents
are
distributed.
Unfortunately,
when
Bob
visits
Alice's
blog,
his
browser
sees
only
a
plain
link
that
could
just
as
well
point
to
one
of
Alice's
friends
or
to
her
CV.
For
Bob's
browser
to
understand
that
this
link
actually
points
to
the
document's
licensing
terms,
Alice
needs
to
add
some

flavor
,
some
indication
of
what

kind

of
link
this
is.

She
can
add
this
flavor
using
again
the

property

attribute.
Indeed,
when
the
element
contains
the

href

(or

src

)
attribute,

property

is
automatically
associated
with
the
value
of
this
attribute
rather
than
the
textual
content
of
the

a

element.
The
value
of
the
attribute
is
the

http://creativecommons.org/ns#license
,
defined
by
the

Creative
Commons
:

 <p>All content on this site is licensed under

 Example 4
<p>All content on this site is licensed under

a
Creative
Commons
License.
©2011
Alice
Birpemswick.</p>

With
this
small
update,
Bob's
browser
will
now
understand
that
this
link
has
a
flavor:
it
indicates
the
blog's
license:

[image: two Web pages connected by a link labeled 'license' and two notes with a 'license' relationship]

Figure
3
:

:
A
link
with
flavor:
the
link
indicates
the
web
page's
license.
We
can
represent
web
pages
as
nodes,
the
link
as
an
arrow
connecting
those
nodes,
and
the
link's
flavor
as
the
label
on
that
arrow.

Fig.

3

two
Web
pages
connected
by
a
link
labeled
'license'
and
two
notes
with
a
'license'
relationship

Alice
is
quite
pleased
that
she
was
able
to
add
only
structured-data
hints
via
RDFa,
never
having
to
repeat
the
content
of
her
text
or
the
URL
of
her
clickable
links.

2.1.1.3

Setting
a
Default
Vocabulary

In
a
number
of
simple
use
cases,
such
as
our
example
with
Alice's
blog,
HTML
authors
will
predominantly
use
a
single
vocabulary.
However,
while
generating
full
URLs
via
a
CMS
system
is
not
a
particular
problem,
typing
these
by
hand
may
be
error
prone
and
tedious
for
humans.
To
alleviate
this
problem
RDFa
introduces
the

vocab

attribute
to
let
the
author
declare
a
single
vocabulary
for
a
chunk
of
HTML.
Thus,
instead
of:

 <html>
<head>
 ...
</head>
<body>
 ...
 <h2 >The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...

 Example 5
<html>
<head>
 ...
</head>
<body>
 ...
 <h2 property="http://purl.org/dc/terms/title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...

</body>

Alice
can
write:

 <html>
<head>
 ...
</head>
<body >
 ...
 <h2 >The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...

 Example 6
<html>
<head>
 ...
</head>
<body vocab="http://purl.org/dc/terms/">
 ...
 <h2 property="title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...

</body>

Note
how
the
property
values
are
single
"terms"
now;
these
are
simply
concatenated
to
the
URL
defined
via
the

vocab

attribute.
The
attribute
can
be
placed
on

any

HTML
element
(i.e.,
not
only
on
the

body

element
like
in
the
example)
and
its
effect
is
valid
for
all
the
elements
below
that
point.

Default
vocabularies
and
full
URIs
can
be
mixed
at
any
time.
I.e.,
Alice
could
have
written:

 <html>
<head>
 ...
</head>
<body >
 ...
 <h2 >The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...

 Example 7
<html>
<head>
 ...
</head>
<body vocab="http://purl.org/dc/terms/">
 ...
 <h2 property="title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...

</body>

Perhaps
a
more
interesting
example
is
the
combination
of
the
header
with
the
licensing
segment
of
her
web
page:

 <html>
<head>
 ...
</head>
<body >
 ...
 <h2 >The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
 <p>All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
</body>

 Example 8
<html>
<head>
 ...
</head>
<body vocab="http://purl.org/dc/terms/">
 ...
 <h2 property="title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
 <p>All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
</body>

</html>

The
full
URL
for
the
license
term
is
necessary
to
avoid
mixing
vocabularies.
As
an
alternative,
Alice
could
have
also
chosen
to
use
the

vocab

attribute
again:

 <html>
<head>
 ...
</head>
<body >
 ...
 <h2 >The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
 <p >All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
</body>

 Example 9
<html>
<head>
 ...
</head>
<body vocab="http://purl.org/dc/terms/">
 ...
 <h2 property="title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
 <p vocab="http://creativecommons.org/ns#">All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
</body>

</html>

because
the

vocab

in
the
license
paragraph
overrides
the
definition
inherited
from
the
body
of
the
document.

Note

The

vocab

attribute
references
structured
data
vocabularies,
identified
using
URLs.
RDFa
does
not
limit
the
form
of
these
URLs
or
the
document
formats
accessible
by
de-referencing
them;
however
users

SHOULD

aim
to
use
widely
shared,
conventional
values
for
identifying
such
vocabularies,
following
conventions
of
case,
spelling
etc.
established
by
their
publishers.

2.1.1.4

Multiple
Items
per
Page

Alice's
blog
page
may
contain,
of
course,
multiple
entries.
Sometimes,
Alice's
sister
Eve
guest
blogs,
too.
The
front
page
of
the
blog
lists
the
10
most
recent
entries,
each
with
its
own
title,
author,
and
introductory
paragraph.
How,
then,
should
Alice
mark
up
the
title
of
each
of
these
entries
individually
even
though
they
all
appear
within
the
same
web
page?
RDFa
provides

resource
,
an
attribute
for
specifying
the
"context",
i.e.,
the
exact
URL
to
which
the
contained
RDFa
markup
applies:

 >
 ...
 <div >
 <h2 >The trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 <h3 >Alice</h3>
 ...
 </div>
 ...
 <div >
 <h2 >Jo's Barbecue</h2>
 <p>Date: 2011-09-14</p>
 <h3 >Eve</h3>
 ...
 </div>
 ...

 Example 10
<body vocab="http://purl.org/dc/terms/">
 ...
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 <h3 property="creator">Alice</h3>
 ...
 </div>
 ...
 <div resource="/alice/posts/jos_barbecue">
 <h2 property="title">Jo's Barbecue</h2>
 <p>Date: 2011-09-14</p>
 <h3 property="creator">Eve</h3>
 ...
 </div>
 ...

</body>

(Note
that
we
used
relative
URLs
in
the
example;
the
value
of

resource

could
have
been

any

URLs,
i.e.,
relative
or
absolute.)
We
can
represent
this,
once
again,
as
a
diagram
connecting
URLs
to
properties:

[image: two separate nodes, each with two properties]

Figure
4
:

:
Multiple
Items
per
Page:
each
blog
entry
is
represented
by
its
own
node,
with
properties
attached
to
each.

Fig.

4

two
separate
nodes,
each
with
two
properties

Alice
can
use
the
same
technique
to
give
her
friend
Bob
proper
credit
when
she
posts
one
of
his
photos:

 >
 <h2 >The trouble with Bob</h2>
 ...
 The trouble with Bob is that he takes much better photos than I do:
 ...
 <div >

 Beautiful Sunset
 by Bob.
 </div>

 Example 11
<div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 ...
 The trouble with Bob is that he takes much better photos than I do:
 ...
 <div resource="http://example.com/bob/photos/sunset.jpg">

 Beautiful Sunset
 by Bob.
 </div>

</div>

Notice
how
the
innermost

resource

value,

http://example.com/bob/photos/sunset.jpg
,
"overrides"
the
outer
value

/alice/posts/trouble_with_bob

for
all
markup
inside
the
containing

div
.
Once
again,
here
is
a
diagram
that
represents
the
underlying
data
of
this
new
portion
of
markup:

[image: two separate nodes, each with two properties]

Figure
5
:

:
Describing
a
Photo

Fig.

5

two
separate
nodes,
each
with
two
properties

2.1.2

Exploring
Further:
Social
networks

2.1.2.1

Contact
Information

Alice
would
also
like
to
make
information
about
herself,
such
as
her
email
address,
phone
number,
and
other
details,
easily
available
to
her
friends'
contact
management
software.
This
time,
instead
of
describing
the
properties
of
a
web
page,
she's
going
to
describe
the
properties
of
a
person:
herself.

Alice
already
has
contact
information
displayed
on
her
blog.

 <div>
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>

 Example 12
<div>
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>

</div>

The
Dublin
Core
vocabulary
does
not
provide
property
names
for
describing
contact
information,
but
the
Friend-of-a-Friend [

FOAF

foaf

]
vocabulary
does.
Alice
therefore
decides
to
use
the
FOAF
vocabulary.
As
a
first
step,
she
declares
a
FOAF
"Person".
For
this
purpose,
Alice
uses

typeof
,
an
RDFa
attribute
that
is
specifically
meant
to
declare
a
new
data
item
with
a
certain
type:

 >

 Example 13
<div typeof="http://xmlns.com/foaf/0.1/Person">
...

Alice
realizes
that
she
only
intends
to
use
the
FOAF
vocabulary
at
this
point,
so
she
uses
the

vocab

attribute
to
simplify
her
markup
further
(and
overriding
the
effects
of
any

vocab

attributes
that
may
have
been
used
in,
for
example,
the

body

element
at
the
top).

 >

 Example 14
<div vocab="http://xmlns.com/foaf/0.1/" typeof="Person">
...

Then,
Alice
indicates
which
content
on
the
page
represents
her
full
name,
email
address,
and
phone
number:

 ><p>
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>

 Example 15
<div vocab="http://xmlns.com/foaf/0.1/" typeof="Person"><p>
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>

</div>

Note
how
Alice
did
not
specify
a

resource

like
she
did
when
adding
blog
entry
metadata.
But,
if
she
is
not
declaring
what
she
is
talking
about,
how
does
the
RDFa
Processor
know
what
she's
identifying?
In
RDFa,
in
the
absence
of
a

resource

attribute,
the

typeof

attribute
on
the
enclosing

div

implicitly
sets
the
subject
of
the
properties
marked
up
within
that

div
.
That
is,
the
name,
email
address,
and
phone
number
are
associated
with
a
new
node
of
type

Person
.
This
node
has
no
URL
to
identify
it,
so
it
is
called
a

blank
node

as
shown
on
the
figure:

[image: single 'blank' node with 4 properties]

Figure
6
:

:
A
Blank
Node:
blank
nodes
are
not
identified
by
URL.
Instead,
many
of
them
have
an
RDFa

typeof

attribute
that
identifies
the
type
of
data
they
represent.

(We've
used
a
short-hands

short-hand

to
label
the
arrows,
in
order
to
save
space
and
clarify
the
diagram.
The
actual
labels
are
always
the
full
URLs.)

Fig.

6

single
'blank'
node
with
4
properties

2.1.2.2

Describing
Social
Networks

Alice
continues
to
mark
up
her
page
by
adding
information
about
her
friends,
including
at
least
their
names
and
homepages.
She
starts
with
plain
HTML:

 <div>

 Bob

 Eve

 Manu

 Example 16
<div>

 Bob

 Eve

 Manu

</div>

First,
Alice
indicates
that
the
friends
she
is
describing
are
people,
as
opposed
to
animals
or
imaginary
friends,
by
using
again
the

Person

type
in

typeof

attributes.

 >

 Bob

 Eve

 Manu

 Example 17
<div vocab="http://xmlns.com/foaf/0.1/">

 <li typeof="Person">
 Bob

 <li typeof="Person">
 Eve

 <li typeof="Person">
 Manu

</div>

Beyond
declaring
the
type
of
data
we
are
dealing
with,
each

typeof

creates
a
new
blank
node
with
its
own
distinct
properties.
Thus,
Alice
can
indicate
each
friend's
homepage:

 <div vocab="http://xmlns.com/foaf/0.1/">

 <li typeof="Person">
 Bob

 <li typeof="Person">
 Eve

 <li typeof="Person">
 Manu

 Example 18
<div vocab="http://xmlns.com/foaf/0.1/">

 <li typeof="Person">
 Bob

 <li typeof="Person">
 Eve

 <li typeof="Person">
 Manu

</div>

Alice
would
also
like
to
improve
the
markup
by
expressing
each
person's
name
using
RDFa,
too.
That
can
be
done
by
adding
a
separate

span

element
and
the
relevant

property
:

 <div vocab="http://xmlns.com/foaf/0.1/">

 <li typeof="Person">
 Bob

 <li typeof="Person">
 Eve

 <li typeof="Person">
 Manu

 Example 19
<div vocab="http://xmlns.com/foaf/0.1/">

 <li typeof="Person">
 Bob

 <li typeof="Person">
 Eve

 <li typeof="Person">
 Manu

</div>

Alice
is
happy
that,
with
so
little
additional
markup,
she's
able
to
fully
express
both
a
pleasant
human-readable
page
and
a
machine-readable
dataset.

Alice
is
a
member
of
5
different
social
networking
sites.
She
is
tired
of
repeatedly
entering
information
about
her
friends
in
each
new
social
networking
site,
so
she
decides
to
list
her
friends
in
one
place-on
her
website,
combining
it
with
her
own
FOAF
data.
With
RDFa,
she
can
indicate
her
friendships
on
her
own
web
page
and
let
social
networking
sites
read
it
automatically.
So
far,
Alice
has
listed
three
individuals
but
has
not
specified
her
relationship
with
them;
they
might
be
her
friends,
or
they
might
be
her
favorite
17th
century
poets.
To
indicate
that
she
knows
them,
she
uses
the
FOAF
property

foaf:knows
:

 >
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>

 <li typeof="Person">
 Bob

 <li typeof="Person">
 Eve

 <li typeof="Person">
 Manu

 Example 20
<div vocab="http://xmlns.com/foaf/0.1/" typeof="Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>

 <li property="knows" typeof="Person">
 Bob

 <li property="knows" typeof="Person">
 Eve

 <li property="knows" typeof="Person">
 Manu

</div>

With
this,
Alice
could
describe
here
social
network:

[image: 8 node network with 12 relationships]

Figure
7
:

:
Alice's
social
network.
Note
that,
with
RDFa,
Alice
could
express
a
fairly
complex
set
of
information
that
others
can
use.

Fig.

7

8
node
network
with
12
relationships

2.1.3

Repeated
Patterns

We
have
seen,
in
a

previous
section
,
how
Alice
can
use
RDFa
to
include
Creative
Commons
statements
on
her
blog.
However,
the
solution
in
that
section
assigned
these
statements

to
the
whole
page
,
and
not
to
individual
blog
items.
This
may
be
an
issue
if
the
page
includes

multiple
items
.
Indeed,
Alice
may
be
forced
to
repeat
the
relevant
statements
like
this:

 <body vocab="http://purl.org/dc/terms/">
 ...
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 <h3 property="creator">Alice</h3>
 ...
 <p vocab="http://creativecommons.org/ns#">All content on this blog item is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
 </div>
 ...
 <div resource="/alice/posts/jims_concert">
 <h2 property="title">I was at Jim's concert the other day</h2>
 <p>Date: 2011-10-22</p>
 <h3 property="creator">Alice</h3>
 ...
 <p vocab="http://creativecommons.org/ns#">All content on this blog item is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
 </div>
 ...

 Example 21
<body vocab="http://purl.org/dc/terms/">
 ...
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 <h3 property="creator">Alice</h3>
 ...
 <p vocab="http://creativecommons.org/ns#">All content on this blog item is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
 </div>
 ...
 <div resource="/alice/posts/jims_concert">
 <h2 property="title">I was at Jim's concert the other day</h2>
 <p>Date: 2011-10-22</p>
 <h3 property="creator">Alice</h3>
 ...
 <p vocab="http://creativecommons.org/ns#">All content on this blog item is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
 </div>
 ...

</body>

which
may
be
tedious
and
error
prone.

HTML+RDFa
introduces
the
notion
of
"Property
copying"
to
alleviate
this
situation.
Using
this
feature
Alice
can
"collect"
a
number
of
statements
as
a
pattern,
and
refer
to
that
pattern
from
other
parts
of
the
page.
This
is
done
using
the
magic
property

rdfa:copy

and
the
magic
type

rdfa:Pattern

as
follows:

 <body vocab="http://purl.org/dc/terms/">
 ...
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 <h3 property="creator">Alice</h3>
 ...

 </div>
 ...
 <div resource="/alice/posts/jims_concert">
 <h2 property="title">I was at Jim's concert the other day</h2>
 <p>Date: 2011-10-22</p>
 <h3 property="creator">Alice</h3>
 ...

 </div>
 ...
 <div resource="#ccpattern" typeof="rdfa:Pattern">
 <p vocab="http://creativecommons.org/ns#">All content on this blog item is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
 </div>

 Example 22
<body vocab="http://purl.org/dc/terms/">
 ...
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 <h3 property="creator">Alice</h3>
 ...
 <link property="rdfa:copy" href="#ccpattern"/>

 </div>
 ...
 <div resource="/alice/posts/jims_concert">
 <h2 property="title">I was at Jim's concert the other day</h2>
 <p>Date: 2011-10-22</p>
 <h3 property="creator">Alice</h3>
 ...
 <link property="rdfa:copy" href="#ccpattern"/>

 </div>
 ...

 <div resource="#ccpattern" typeof="rdfa:Pattern">

 <p vocab="http://creativecommons.org/ns#">All content on this blog item is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
 </div>

</body>

(Alice
may
choose
to
use
CSS
to
make
the
CC
statements
invisible
on
the
screen
if
she
wants.)
The
effect
of
this
structure
is
to,
conceptually,
"copy"
all
the
RDFa
statements
appearing
in
the
pattern
to
replace
the

link

element,
yielding
the
following
structure:

[image: 8 node network with 12 relationships]

Figure
8
:

:
Creative
Commons
statements
added
to
each
blog
item
separately.

Fig.

8

8
node
network
with
12
relationships

2.1.4

Internal
References

Alice
may
want
to
add
her
personal
data
to
her
individual
blog
items,
too.
She
decides
to
combine
her
FOAF
data
with
the
blog
items,
i.e.:

 <div vocab="http://purl.org/dc/terms/">

 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 ...
 <h3 vocab="http://xmlns.com/foaf/0.1/" typeof="Person">
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </h3>
 ...
 </div>
 ...

 Example 23
<div vocab="http://purl.org/dc/terms/">

 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 ...
 <h3 vocab="http://xmlns.com/foaf/0.1/" property="http://purl.org/dc/terms/creator" typeof="Person">
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </h3>
 ...
 </div>
 ...

</div>

The
structured
data
she
generates
looks
like
this:

[image: The simple blog structure extended with Alice's foaf data as blank node]

Figure
9
:

:
Alice's
blog
item
with
data
about
herself.

Fig.

9

The
simple
blog
structure
extended
with
Alice's
foaf
data
as
blank
node

Unfortunately,
this
solution
is
not
optimal
in
two
respects.
First
of
all,
notice
that
Alice
had
to
use
the
full
URI
for
the

creator

property:
this
is
because
the

vocab

attribute
is
used
to
set
the
FOAF
terms,
i.e.,
the
simple

creator

value
would
have
been
misinterpreted.
We
will
come
back
to
the
issue
of
using
several
vocabularies
in

another
section

below.

The
other
issue
is
that
Alice
would
like
to
design
her
Web
page
so
that
her
personal
data
would
not
appear
on
the
page
in
each
individual
blog
item
but,
rather,
in
one
place
like
a
footnote
or
a
sidebar.
I.e.,
what
she
would
like
to
see
is
something
like:

[image: Mock-up of Alice's blog page design, with blogs on the left and personal data on the right]

Figure
10
:

:
Structure
of
Alice's
Site:
individual
blog
items
on
the
left,
personal
data,
linked
from
the
blog
using
RDFa
terms,
in
a
sidebar.

Fig.

10

Mock-up
of
Alice's
blog
page
design,
with
blogs
on
the
left
and
personal
data
on
the
right

If
the
FOAF
data
was

were

included
into

in

each
blog
item,
Alice
would
have
to
create
a
complex
set
of
CSS
rules
to
achieve
the
visual
effect
she
wants.

To
solve
this,
Alice
decides
to
make
use
of
the
structure
she
already
used
for
her
FOAF
data
but,
this
time,
assigning
it
a
separate
URI
using
the

resource

attribute:

 typeof="Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...

 Example 24
<div vocab="http://xmlns.com/foaf/0.1/" resource="#me" typeof="Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...

</div>

It
is
actually
considered
as
a
good
practice
to
use
real
URIs
whenever
possible,
i.e.,
Alice's
new
alternative
should
be
preferred
in
general.
Indeed,
if
a
real
URI
is
used,
then
it
becomes
possible
to
unambiguously
refer
to
that
particular
piece
of
information,
whereas
that
becomes
more
complicated
with
blank
nodes.

Note

The

resource="#me"

markup
(which,
by
the
way,
also
presupposes
that
the
target
is
in
the
same
HTML
scope)

is
a
FOAF
convention:
the
URL
that
represents
the

person

Alice
is

http://example.com/alice#me
.
It
should
not
be
confused
with
Alice's
homepage,

http://example.com/alice
.
Of
course,
Alice
could
have
used
a
different
URI
if,
for
example,
her
blog
and
her
personal
homepage
were
kept
separate;
e.g.,
she
could
have
used

resource="http://alice.example.com/alice/home#myself"

instead
of

resource="#me"
.

Using
the
explicit
URI
for
her
FOAF
data
Alice
can
add
a
direct
reference
to
the
blog
item
using
again
the

resource

attribute:

 <div vocab="http://purl.org/dc/terms/">
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <h3 >Alice</h3>
 ...
 </div>
</div>
 ...
<div class="sidebar" vocab="http://xmlns.com/foaf/0.1/" resource="#me" typeof="Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...

 Example 25
<div vocab="http://purl.org/dc/terms/">
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...
 </div>
</div>
 ...
<div class="sidebar" vocab="http://xmlns.com/foaf/0.1/" resource="#me" typeof="Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...

</div>

The

resource

attribute
appears,
in
this
case,
together
with

property

on
the
same
element
:
in
this
situation

resource

indicates
the
"target"
of
the
relation.
Usage
of
this
attribute
allows
Alice
to
"distribute"
the
various
parts
of
her
structured
data
on
her
page.
What
she
gets
is
a
slightly
modified
version
of
the
previous
structure,
where
the
only
difference
is
the
usage
of
an
explicit
URI
instead
of
a
blank
node:

[image: The simple blog structure extended with Alice's foaf data with an explicit URI]

Figure
11
:

:
Alice's
blog
item
with
data
about
herself,
using
an
explicit
URI
for
her
FOAF
data.

Fig.

11

The
simple
blog
structure
extended
with
Alice's
foaf
data
with
an
explicit
URI

Using
this
approach,
it
becomes
very
easy
to
also
add
references
to
the

same

data
from
different
blogs:

blog
posts:

 <div vocab="http://purl.org/dc/terms/">
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <h3 >Alice</h3>
 ...
 </div>
</div>
 ...
<div vocab="http://purl.org/dc/terms/">
 <div resource="/alice/posts/my_photos">
 <h2 property="title">I will post my photos nevertheless…</h2>
 <h3 >Alice</h3>
 ...
 </div>
</div>
 ...
<div class="sidebar" vocab="http://xmlns.com/foaf/0.1/" resource="#me" typeof="Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...

 Example 26
<div vocab="http://purl.org/dc/terms/">
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...
 </div>
</div>
 ...
<div vocab="http://purl.org/dc/terms/">
 <div resource="/alice/posts/my_photos">
 <h2 property="title">I will post my photos nevertheless…</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...
 </div>
</div>
 ...
<div class="sidebar" vocab="http://xmlns.com/foaf/0.1/" resource="#me" typeof="Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...

</div>

Leading
to
the
following
structure:

[image: The simple blog structure with two blogs extended with Alice's foaf data with an explicit URI]

Figure
12
:

:
Several
of
Alice's
blog
items
with
data
about
herself,
using
an
explicit
URI
for
her
FOAF
data.

Fig.

12

The
simple
blog
structure
with
two
blogs
extended
with
Alice's
foaf
data
with
an
explicit
URI

Note

Combined
with

property
,
the

resource

attribute
plays
exactly
the
same
role
as

href
,
already
used
for
"links
with
flavor",
except
that
it
does
not
provide
a
clickable
link
to
the
browser
like

href

does.
Also,
the

resource

attribute
can
be
used
on

any

HTML
element,
as
opposed
to

href

whose
usage
is
restricted,
in
HTML,
to
the

a

and

link

elements.

Note

There
is
a
similarity
between
this
issue
and
its
solution
and
the
issue
and
the
approach
taken
in
the

section
on
property
copying
.
There
is,
however,
a
subtle
but
important
difference
between
the
two.
The
solution
using
the

resource

attribute
introduces
a
new
node
in
the
graph,
as
shown
on

Figure
12
,
whereas
copying
the
properties
does
not.
Which
of
the
two
approaches
should
be
adopted
is
often
based
on
the
vocabulary
that
is
used.

2.1.5

Using
Multiple
Vocabularies

The
previous
examples
show
that,
for
more
complex
cases,
multiple
vocabularies
have
to
be
used
to
express
the
various
aspects
of
structured
data.
We
have
seen
Alice
using
the
Dublin
Core,
as
well
as
the
FOAF
and
the
Creative
Commons
vocabularies,
but
there
may
be
more.
For
example.
Alice
may
want
to
add
vocabulary
elements
defined
by
search
engines
on
their
schema.org
site [

schema

].

Alice
can
use
either
full
URLs
for
all
the
terms,
or
can
use
the

vocab

attribute
to
abbreviate
the
terms
for
the
predominant
vocabulary.
But,
in
some
cases,
the
vocabularies
cannot
be
separated
easily,
which
means
that
the
usage
of

vocab

may
become
awkward.
Here
is,
for
example,
the
kind
of
HTML
she
might
end
up
with:

 <html>
 <head>
 ...
 </head>
 <body >
 <div resource="/alice/posts/trouble_with_bob" >
 <h2 >The trouble with Bob</h2>
 ...
 <h3 resource="#me">Alice</h3>
 <div >
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 ...
 </body>

 Example 27
<html>
 <head>
 ...
 </head>
 <body vocab="http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="BlogPosting">
 <h2 property="http://purl.org/dc/terms/title">The trouble with Bob</h2>
 ...
 <h3 property="http://purl.org/dc/terms/creator" resource="#me">Alice</h3>
 <div property="articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 ...
 </body>

</html>

Note
that
the
schema.org
and
the
Dublin
Core
terms
are
intertwined
for
a
specific
blog,
and
it
becomes
an
arbitrary
choice
whether
to
use
the

vocab

attribute
for

http://purl.org/dc/terms/

or
for

http://schema.org/
.
We
have
seen
the
same
problem
in
a

previous
section

when
FOAF
and
Dublin
Core
terms
were
mixed.

To
alleviate
this
problem,
RDFa
offers
the
possibility
of
using

prefixed

terms:
a
special

prefix

attribute
can
assign
prefixes
to
represent
URLs
and,
using
those
prefixes,
the
vocabulary
elements
themselves
can
be
abbreviated.
The

prefix:reference

syntax
is
used:
the
URL
associated
with

prefix

is
simply
concatenated
to

reference

to
create
a
full
URL.
(Note
that
we
have
already
used
this
convention
to
simplify
our
figures.)
Here
is
how
the
HTML
of
the
previous
example
looks
like
when
prefixes
are
used:

 <html>
 <head>
 ...
 </head>
 <body >
 <div resource="/alice/posts/trouble_with_bob" >
 <h2 >The trouble with Bob</h2>
 ...
 <h3 resource="#me">Alice</h3>
 <div >
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>

 Example 28
<html>
 <head>
 ...
 </head>
 <body prefix="dc: http://purl.org/dc/terms/ schema: http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="schema:BlogPosting">
 <h2 property="dc:title">The trouble with Bob</h2>
 ...
 <h3 property="dc:creator" resource="#me">Alice</h3>
 <div property="schema:articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>

</html>

The
usage
of
prefixes
can
greatly
reduce
possible
errors
by
concentrating
the
vocabulary
choices
to
one
place
in
the
file.
Just
like

vocab
,
the

prefix

attribute
can
appear
anywhere
in
the
HTML
file,
only
affecting
the
elements
below.

prefix

and

vocab

can
also
be
mixed,
for
example:

 <html>
 <head>
 ...
 </head>
 <body >
 <div resource="/alice/posts/trouble_with_bob" >
 <h2 >The trouble with Bob</h2>
 ...
 <h3 resource="#me">Alice</h3>
 <div >
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>

 Example 29
<html>
 <head>
 ...
 </head>
 <body vocab="http://purl.org/dc/terms/" prefix="schema: http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="schema:BlogPosting">
 <h2 property="title">The trouble with Bob</h2>
 ...
 <h3 property="creator" resource="#me">Alice</h3>
 <div property="schema:articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>

</html>

Note

An
important
issue
may
arise
if
the

html

element
contains
a
large
number
of
prefix
declarations.
The
character
encoding
(i.e.,
UTF-8,
UTF-16,
ASCII,
etc.)
used
for
an
HTML5
file
is
declared
using
a

meta

element
in
the
header.
In
HTML5
this
meta
declaration
must
fall
within
the
first
512
bytes
of
the
page,
or
the
HTML5
processor
(browser,
parser,
etc.)
will
try
to
detect
the
encoding
using
some
heuristics.
A
very
"long"

html

tag
may
therefore
lead
to
problems.
One
way
of
avoiding
the
issue
is
to
place
most
of
the
prefix
declarations
on
the

body

element.

2.1.5.1

Repeating
properties

The
previous
example,
whereby
the
Dublin
Core
and
the
schema.org
vocabularies
are
used
within
the
same
blog
post,
raises
another
issue.
It
so
happens
that
not
only
Dublin
Core,
but
also
schema.org
has
a
property
called

creator
.
Because
RDFa
uses
URIs
to
denote
properties
that,
by
itself,
is
not
a
problem.
However,
if
Alice
wants
to
use

both

these
properties
in
the
same
blog
post
(e.g.,
because
she
wants
search
engines
to
manage
her
blog
post
but,
at
the
same
times,
she
wants
Dublin
Core
aware
applications,
like
catalogs,
to
handle
her
blog
post,
too)
this
is
what
she
may
have
to
do:

 <html>
 <head>
 ...
 </head>
 <body prefix="dc: http://purl.org/dc/terms/ schema: http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="schema:BlogPosting">
 <h2 property="dc:title">The trouble with Bob</h2>
 ...
 <h3 >Alice</h3>
 <div property="schema:articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>

 Example 30
<html>
 <head>
 ...
 </head>
 <body prefix="dc: http://purl.org/dc/terms/ schema: http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="schema:BlogPosting">
 <h2 property="dc:title">The trouble with Bob</h2>
 ...
 <h3 property="dc:creator" resource="#me">Alice</h3>
 <div property="schema:articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>

</html>

Which
is
a
bit
awkward.
Fortunately,
RDFa
allows
the
value
of
a

property

attribute
to
be
a
list
of
values,
i.e.,
she
can
also
write:

 <html>
 <head>
 ...
 </head>
 <body prefix="dc: http://purl.org/dc/terms/ schema: http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="schema:BlogPosting">
 <h2 property="dc:title">The trouble with Bob</h2>
 ...
 <h3 >Alice</h3>
 <div property="schema:articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>

 Example 31
<html>
 <head>
 ...
 </head>
 <body prefix="dc: http://purl.org/dc/terms/ schema: http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="schema:BlogPosting">
 <h2 property="dc:title">The trouble with Bob</h2>
 ...
 <h3 property="dc:creator schema:creator" resource="#me">Alice</h3>
 <div property="schema:articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>

</html>

yielding
the
structure:

[image: The simple blog structure with two different creator properties]

Figure
13
:

:
Alice's
blog
item
using
two
different
vocabularies,
including
two
properties
with
the
same
context
and
target.

Fig.

13

The
simple
blog
structure
with
two
different
creator
properties

Similarly
to

property
,

typeof

also
accepts
a
list
of
values.
For
example,
schema.org
also
has
a
notion
of
a
Person,
similar
to
FOAF;
Alice
may
choose
to
use
both:

 <div class="sidebar" prefix="http://xmlns.com/foaf/0.1/ schema: http://schema.org/"
 resource="#me" >
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...

 Example 32
<div class="sidebar" prefix="foaf: http://xmlns.com/foaf/0.1/ schema: http://schema.org/"
 resource="#me" typeof="foaf:Person schema:Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...

</div>

2.1.5.2

Default
Prefixes
(Initial
Context)

A
number
of
vocabularies
are
very
widely
used
by
the
Web
community
with
well-known
prefixes—the
Dublin
Core
vocabulary
is
a
good
example.
These
common
vocabularies
tend
to
be
defined
over
and
over
again,
and
sometimes
Web
page
authors
forget
to
declare
them
altogether.

To
alleviate
this
issue,
RDFa
introduces
the
concept
of
an

initial
context

that
defines
a
set
of
default
prefixes.
These
prefixes,
whose
list
is
maintained
and
regularly
updated
by
the

W3C
,
provide
a
number
of
pre-defined
prefixes
that
are
known
to
the
RDFa
processor.
Prefix
declarations
in
a
document
always
override
declarations
made
through
the
defaults,
but
if
a
web
page
author
forgets
to
declare
a
common
vocabulary
such
as
Dublin
Core
or
FOAF,
the
RDFa
Processor
will
fall
back
to
those.
The
list
of
default
prefixes
are

available
on
the
Web

for
everyone
to
read.

For
example,
the
following
example
does

not

declare
the

dc:

prefix
using
a

prefix

attribute:

 <html>
 <head>
 ...
 </head>
 <body>
 <div>
 <h2 >The trouble with Bob</h2>
 ...
 <h3 resource="#me">Alice</h3>
 ...
 </div>
 </body>

 Example 33
<html>
 <head>
 ...
 </head>
 <body>
 <div>
 <h2 property="dc:title">The trouble with Bob</h2>
 ...
 <h3 property="dc:creator" resource="#me">Alice</h3>
 ...
 </div>
 </body>

</html>

However,
an
RDFa
processor
still
recognizes
the

dc:title

and

dc:creator

short-hands
and
expands
the
values
to
the
corresponding
URLs.
The
RDFa
processor
is
able
to
do
this
because
the

dc

prefix
is
part
of
the
default
prefixes
in
the
initial
context.

Note

Default
prefixes
are
used
as
a
mechanism
to
correct
RDFa
documents
where
authors
accidentally
forgot
to
declare
common
prefixes.
While
authors
may
rely
on
these
to
be
available
for
RDFa
documents,
the
prefixes
may
change
over
the
course
of
5-10
years,
although
the
policy
of

W3C

is
that
once
a
prefix
is
defined
as
part
of
a
default
profile,
that
particular
prefix
will

not

be
changed
or
removed.
Nevertheless,
the
best
way
to
ensure
that
the
prefixes
that
document
authors
use
always
map
to
the
intent
of
the
author
is
to
use
the

prefix

attribute
to
declare
these
prefixes.

Since
default
prefixes
are
meant
to
be
a
last-resort
mechanism
to
help
novice
document
authors,
the
markup
above
is
not
recommended.
The
rest
of
this
document
will
utilize
authoring
best
practices
by
declaring
all
prefixes
in
order
to
make
the
document
author's
intentions
explicit.

2.2

Going
Deeper:
RDFa
Core

As
we
have
seen
in
the
previous
sections,
RDFa
Lite
is
fairly
powerful.
Alice
could
indeed
express
complex
sets
of
structured
information.
However,
there
are
cases
when
the
set
of
attributes
presented
so
far
does
not
cover
all
the
needs,
or
make
the
resulting
HTML
structure
a
bit
awkward
and
possibly
error-prone.
In
those
cases
additional
RDFa
possibilities,
provided
through
additional
RDFa
attributes,
may
come
to
the
rescue;
some
of
these
will
be
presented
in
this
section.

Note

RDFa
Lite
does
not
define
a
separate
class
of
RDFa
processors.
In
other
words
conforming
RDFa
processors
are
supposed
to
handle
all
RDFa
features,
not
only
those
listed
used
by
RDFa
Lite.

2.2.1

Using
the

content

attribute

When
creating
her
blog,
Alice
decided
to
use
this
simple
structure
to
add
Dublin
Core
information
to
her
blog
post
(see
also

Figure
2

):

 <html>
 <head>
 ...
 </head>
 <body>
 ...
 <h2 >The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
 </body>

 Example 34
<html>
 <head>
 ...
 </head>
 <body>
 ...
 <h2 property="http://purl.org/dc/terms/title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
 </body>

</html>

However,
to
do
that,
Alice
had
to
accept
a
small
compromise.
Indeed,
although
the
string
"2011-09-10"
unambiguously
identifies
a
date
for
a
machine,
it
does
not
looks
very
natural
for
a
human
reader.
Surely
a
native
English
reader
would
prefer
something
like
"10th
of
September,
2011".
On
the
other
hand,
although
it
is
of
course
possible
for
a
machine
to
parse
and
interpret
that
string
as
a
date,
too,
it
is
clearly
more
complicated
to
do
so.
The
problem
is
that,
as
a
default,
RDFa
uses
the
textual
content
of
the
element
for
the
property
value.
While
this
works
well
in
most
of
the
cases,
sometimes,
like
in
this
example,
this
has
awkward
consequences.

To
alleviate
this
problem
RDFa
makes
it
possible
to
re-use
the

content

attribute
of
HTML.
The
blog
entry
could
be
written
as
follows:

 <html>
 <head>
 ...
 </head>
 <body>
 ...
 <h2 property="http://purl.org/dc/terms/title">The Trouble with Bob</h2>
 <p>Date: 10th of September, 2011</p>
 ...
 </body>

 Example 35
<html>
 <head>
 ...
 </head>
 <body>
 ...
 <h2 property="http://purl.org/dc/terms/title">The Trouble with Bob</h2>
 <p>Date: 10th of September, 2011</p>
 ...
 </body>

</html>

The
resulting
structure
is
exactly
the
same
as
before
(i.e.,

Figure
2

).
The
difference
is
the
presence
of
the

content

attribute:
it
instructs
the
RDFa
processor
to
overrule
the
default
behavior
of
using
the
textual
content,
and
to
use
the
value
of
the

content

attribute
instead.
Using
this
attribute
Alice
could
provide
a
more
readable
date,
while
maintaining
an
unambiguous
content
for
machines
using
the
structured
data.

The

content

attribute
has
another
important
usage.
The
"traditional"
approach
to
add
simple
metadata
to
a
Web
page
has
been
to
use
the
document
header
through
the

link

and
the

meta

elements.
While
there
is
no
problem
using

link

in
RDFa
Lite
(which
uses
the

href

attribute,
i.e.,
can
be
used
to
define
"flavored"
links),
the
fact
that,
in
a
conforming
HTML
file,
the

meta

element
may
have
no
text
content
means
that
the

only

way
of
using
the
header
for
such
statements
is
to
use
the

content

attribute.
For
example,
using
the

meta

element
is
the
approach
suggested
by
Facebook
for
the
Open
Graph
Protocol [

OGP

ogp

]
vocabulary;
i.e.,
if
Alice
wants
to
make
use
of
the
"Like"
button
in
her
posts,
this
is
what
she
would
add
to
her
header:

 <html>
 <head >
 ...
 <meta />
 <meta />
 <meta />
 ...
 </head>
 <body>
 ...
 </body>

 Example 36
<html>
 <head prefix="og: http://ogp.me/ns#" >
 ...
 <meta property="og:title" content="The Trouble with Bob" />
 <meta property="og:type" content="text" />
 <meta property="og:image" content="http://example.com/alice/bob-ugly.jpg" />
 ...
 </head>
 <body>
 ...
 </body>

</html>

Note

In
this
example
the
prefix
for
the
Open
Graph
Protocol
vocabulary
is
defined
via
the

prefix

attribute.
Alas,
many
authors
forget
to
do
so.
Fortunately,
the

og

prefix
is
part
of
the
initial
context
for
RDFa,
i.e.,
the
resulting
information
will
be
valid
even
without
the
prefix
declaration…

2.2.2

Datatypes

Alice
has
already
put
license
information
on
her
page:

 <p>All content on this site is licensed under

 Example 37
<p>All content on this site is licensed under

a
Creative
Commons
License.
©2011
Alice
Birpemswick.</p>

but
she
would
like
to
complete
this
by
recording
the
date
of
her
copyright
statement
as
a
structured
data,
too.
She
can
use
the

date

term
of
Dublin
Core:

 <p>All content on this site is licensed under

 Example 38
<p>All content on this site is licensed under

a
Creative
Commons
License.
©<span

property="dc:date"

>2011
Alice
Birpemswick.</p>

However,
the
value
used
for
the
date
may
be
ambiguous
for
machines.
Of
course,
if
a
program
"knows"
that
that

http://purl.org/dc/terms/date

refers
to
a
date,
then
of
course
it
can
find
out
that
the
string
"2011"
stands
for
a
year.
But
there
may
be
processors
that,
for
example,
provide
a
visual
presentation
of
all
the
structured
data
on
a
specific
page,
and
would
like
to
use
a
different
"widget"
to
represent
a
year
and
again
another
one
to
represent,
say,
an
integer
number.
How
would
such
a
processor
know
which
one
to
choose?

Alice
may
decide
to
be
helpful
by
adding
an
additional
information
to
that
item
in
the
form
of
a

datatype
.
This
additional
information
can
be
conveyed
to
the
RDFa
processor
using
the

datatype

RDFa
attribute
as
follows:

 <p>All content on this site is licensed under

 Example 39
<p>All content on this site is licensed under

a
Creative
Commons
License.
©<span

property="dc:date"
datatype="xsd:gYear"

>2011
Alice
Birpemswick.</p>

where

xsd:gYear

stands
for

http://www.w3.org/2001/XMLSchema#gYear
,
and
is
one
of
the
standard
datatypes
defined
by

W3C

's
Datatype
specification

 [

xmlschema11-2

]
which
contains
such
types
as
booleans,
integers,
dates,
or
doubles.
(

xsd

is
one
of
the

default
prefixes

for
RDFa.)

2.2.3

Alternative
for
setting
the
context:

about

Alice
has
used
the
following
patterns
to
define
structured
data
for
the
individual
blogs:

 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...

 Example 40
<div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...

</div>

The
role
of
the

resource

attribute
in
the

div

element
is
to
set
the
"context",
i.e.,
the
subject
for
all
the
subsequent
statements.
Also,
when
combined
with
the

property

attribute,

resource

can
be
used
to
set
the
"target",
i.e.,
the
object
for
the
statement
(much
as

href

).

This
pattern
is
perfectly
fine,
but
it
may
become
too
verbose
in
some
cases.
Indeed,
let
us
suppose
that
Alice
would
like
to
set
up
a
separate
index
page
for
all
her
blogs,

blog
posts,

and
the
only
information
she
would
like
to
put
there,
as
structured
data,
is
references
to
the
titles.
Following
the
same
pattern,
she
would
have
to
do
something
like:

 The trouble with Bob
 Jo's Barbecue
 ...

 Example 41

 <li resource="/alice/posts/trouble_with_bob">The trouble with Bob
 <li resource="/alice/posts/jos_barbecue">Jo's Barbecue
 ...

This
of
course
works,
but
it
is
a
bit
convoluted.
Merging
the
information
into
one
element,
i.e.:

 <ul resource="/alice/posts/trouble_with_bob">
 <li resource="/alice/posts/trouble_with_bob" property="title">The trouble with Bob
 ...

 Example 42
<ul resource="/alice/posts/trouble_with_bob">
 <li resource="/alice/posts/trouble_with_bob" property="title">The trouble with Bob
 ...

would
not
be
correct;
the
combination
of

property

and

resource

would
generate
a
different
statement
than
originally
intended.

RDFa
introduces
a
separate
attribute,
called

about
,
that
can
be
used
as
an
alternative
to

resource

in
setting
the
the
context.
Using
that
attribute,
Alice
could
write:

 <li property="title">The trouble with Bob
 <li property="title">Jo's Barbecue
 ...

 Example 43

 <li about="/alice/posts/trouble_with_bob" property="title">The trouble with Bob
 <li about="/alice/posts/jos_barbecue" property="title">Jo's Barbecue
 ...

The
fundamental
difference
between

about

and

resource

is
that
the
former
is

only

used
to
set
the
context,
whether
combined
with
the

property

attribute
on
the
same
element
or
not.
This
also
means
that,
for
such
usage,

about

and

resource

are
interchangeable;
i.e.,
in
her
original
blog
item,
Alice
could
have
chosen
to
write:

 >
 <h2 property="title">The trouble with Bob</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...

 Example 44
<div about="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...

</div>

2.2.4

Alternative
for
setting
the
property:

rel

Another
pattern
that
Alice
used
in
her
code
is
as
follows:

 <div vocab="http://xmlns.com/foaf/0.1/" resource="#me">

 <li resource="http://example.com/bob/#me" typeof="Person">
 Bob

 <li resource="http://example.com/eve/#me" typeof="Person">
 Eve

 <li resource="http://example.com/manu/#me" typeof="Person">
 Manu

 Example 45
<div vocab="http://xmlns.com/foaf/0.1/" resource="#me">

 <li property="knows" resource="http://example.com/bob/#me" typeof="Person">
 Bob

 <li property="knows" resource="http://example.com/eve/#me" typeof="Person">
 Eve

 <li property="knows" resource="http://example.com/manu/#me" typeof="Person">
 Manu

</div>

Each
"branch"
in
the
list
sets
a
separate
object
(blank
nodes
in
this
example)
and
the
same
property
(

foaf:knows

)
is
used
to
bind
them
to
the
same
context.
The

property="knows"

had
to
be
repeated
in
each
list
element
to
define
the
corresponding
property.
If
this
structure
is
generated
by
some
CMS
systems,
this
is
of
course
not
a
problem.
However,
if
such
structure
is
authored
manually,
it
is
clearly
error
prone:
the
property
name
can
be
misspelled
or
forgotten.

Instead,
Alice
could
use
another
RDFa
attribute,
namely

rel
.
Using
this
attribute
the
corresponding
HTML
would
look
as:

 <div vocab="http://xmlns.com/foaf/0.1/" resource="#me">

 <li resource="http://example.com/bob/#me" typeof="Person">
 Bob

 <li resource="http://example.com/eve/#me" typeof="Person">
 Eve

 <li resource="http://example.com/manu/#me" typeof="Person">
 Manu

 Example 46
<div vocab="http://xmlns.com/foaf/0.1/" resource="#me">
 <ul rel="knows">
 <li resource="http://example.com/bob/#me" typeof="Person">
 Bob

 <li resource="http://example.com/eve/#me" typeof="Person">
 Eve

 <li resource="http://example.com/manu/#me" typeof="Person">
 Manu

</div>

In
contrast
to

property
,

rel

never

considers
the
textual
content
of
an
element
(or
the
value
of
the

content

attribute).
Instead,
if
no
clear
target
has
been
specified
for
a
link
via,
e.g.,
a

resource

or
an

href

attribute,
the
processor
is
supposed
to
go
“down”
and
find
one
or
more
targets
in
the
hierarchy
and
use
those.
This
is
what
happens
in
this
case:
the

knows

attribute
on
the

ul

element
does
not
include
any
obvious
target;
however,
the
processor
finds
those
in
the
individual

li

elements
and
will
use
those.
This
pattern
is
typical
for
the
usage
of

rel
.

Note

In
many
situations,

property

and

rel

are
interchangeable
when
the
intended
structured
data
involves
(flavored)
links.
There
are,
however,
subtle
differences
involving,
for
example,
“chaining”
that
must
be
used
with
care.
The
interested
reader
should
consult
the

relevant
section
of
the
RDFa 1.1
specification

for
further
details.
In
general,
it
is
advised
to
use

property
,
when
possible.

3.

You
Said
Something
about
RDF?

RDFa
benefits
from
the
power
of
RDF [

rdf-primer

rdf11-primer

],
the

W3C

's
standard
for
interoperable
machine-readable
data.
Although
readers
of
this
document
are
not
expected
to
understand
RDF,
some
may
be
interested
in
how
these
two
specifications
interrelate.

RDF,
the
Resource
Description
Framework,
is
the
abstract
data
representation
we
have
drawn
out
as
graphs
in
the
examples
above.
Each
arrow
in
the
graph
is
represented
as
a
subject-property-object
triple:
the
subject
is
the
node
at
the
start
of
the
arrow,
the
property
is
the
arrow
itself,
and
the
object
is
the
node
or
literal
at
the
end
of
the
arrow.
A
set
of
such
RDF
triples
is
often
called
an
"RDF
graph",
and
is
typically
stored
in
what
is
often
called
a
"Triple
Store"
or
a
"Graph
Store".

Consider
the
first
example
graph:

[image: relationship value is text]

Fig.

14

relationship
value
is
text

The
two
RDF
triples
for
this
graph
are
written,
using
the
Turtle
syntax [

turtle

]
for
RDF,
is
as
follows:

 <http://www.example.com/alice/posts/trouble_with_bob>
 <http://purl.org/dc/terms/title> "The Trouble with Bob" ;

 Example 47
<http://www.example.com/alice/posts/trouble_with_bob>
 <http://purl.org/dc/terms/title> "The Trouble with Bob" ;

<http://purl.org/dc/terms/created>
"2011-09-10"
.

The

TYPE

arrows
we
drew
are
no
different
from
other
arrows.
The

TYPE

is
just
another
property
that
happens
to
be
a
core
RDF
property,
namely

rdf:type
.
The

rdf

vocabulary
is
located
at

http://www.w3.org/1999/02/22-rdf-syntax-ns#
.
The
contact
information
example
from
above
should
thus
be
diagrammed
as:

[image: blank node with rdf:type foaf:Person]

Fig.

15

blank
node
with
rdf:type
foaf:Person

The
point
of
RDF
is
to
provide
a
universal
language
for
expressing
data
and
relationships.
A
unit
of
data
can
have
any
number
of
properties
that
are
expressed
as
URLs.
These
URLs
can
be
reused
by
any
publisher,
much
like
any
web
publisher
can
link
to
any
web
page,
even
ones
they
did
not
create
themselves.
Using
data
in
the
form
of
RDF
triples,
collected
from
various
locations,
and
also
using
the
RDF
query
language
SPARQL [

sparql11-query

],
one
can
search
for
"friends
of
Alice's
who
created
items
whose
title
contains
the
word
'Bob',"
whether
those
items
are
blog
posts,
videos,
calendar
events,
or
other
data
types.

RDF
is
an
abstract
data
model
meant
to
maximize
the
reuse
of
vocabularies.
RDFa
is
a
way
to
express
RDF
data
within
HTML,
in
a
way
that
is
machine-readable,
and
by
reusing
the
existing
human-readable
data
in
the
document.

3.1

Custom
Vocabularies

As
Alice
marks
up
her
page
with
RDFa,
she
may
discover
the
need
to
express
data,
such
as
her
favorite
photos,
that
is
not
covered
by
existing
vocabularies.
If
she
needs
to,
Alice
can
create
a
custom
vocabulary
suited
for
her
needs.
Once
a
vocabulary
is
created,
it
can
be
used
in
RDFa
markup
like
any
other
vocabulary.

The
instructions
on
how
to
create
a
vocabulary,
also
known
as
an
RDF
Schema,
are
available
in
the
RDF
Primer [

rdf-primer

rdf11-primer

].
At
a
high
level,
the
creation
of
a
vocabulary
for
RDFa
involves:

		
Selecting
a
URL
where
the
vocabulary
will
reside,
for
example:

http://example.com/photos/vocab#
.

		
Publishing
the
vocabulary
document
at
the
specified
vocabulary
URL.
The
vocabulary
document
defines
the
classes
and
properties
that
make
up
the
vocabulary.
For
example,
Alice
may
want
to
define
the
classes

Photo

and

Camera
,
as
well
as
the
property

takenWith

that
relates
a
photo
to
the
camera
with
which
it
was
taken.

		
Using
the
vocabulary
in
an
HTML
document
either
with
the

vocab

attribute
or
with
the
prefix
declaration
mechanism.
For
example:

prefix="photo:
http://example.com/photos/vocab#"

and

typeof="photo:Camera"
.

It
is
worth
noting
that
anyone
who
can
publish
a
document
on
the
Web
can
publish
a
vocabulary
and
thus
define
new
data
fields
they
may
wish
to
express.
RDF
and
RDFa
allow
fully
distributed
extensibility
of
vocabularies.

4.

RDFa
Tools

There
is
a
wide
variety
of
tools
that
can
be
used
to
generate
or
process
RDFa
data.
Good
sources
for
these
are
the

RDFa
page
of
the

W3C

Semantic
Web
Wiki
,
although
care
should
be
taken
that
some
tools
may
be
related
to
a
previous
version
of
RDFa.
Another
source
may
be
the

RDFa
community
site’s
implementation
page
.
Both
these
sources
are
constantly
evolving.
By
the
way,
the
latter
is
part
of
a
more
general

community
page

that
contains
further
examples
for
using
RDFa,
general
information,
as
well
as
information
on
how
to
get
involved.
In
particular,
RDFa
fragments
can
be
tested
using
the

real-time
RDFa 1.1
editor

that
can
also
display
a
visual
representation
of
the
underlying
structural
data.

5.

Acknowledgments

At
the
time
of
publication,
the
active
members
of
the
RDF
Web
Application
Working
Group
were:

		
Stéphane
Corlosquet,
Massachusetts
General
Hospital

		
Ivan
Herman,

W3C

		
Gregg
Kellogg
(Invited
Expert)

		
Niklas
Lindström
(Invited
Expert)

		
Shane
McCarron,
Applied
Testing
and
Technology,
Inc.
(Invited
Expert)

		
Steven
Pemberton,
Centre
Mathematics
and
Computer
Science

		
Manu
Sporny,
Digital
Bazaar
(Chair,
Invited
Expert)

		
Ted
Thibodeau,
OpenLink
Software

Thanks
also
to
Grant
Robertson
and
Guus
Schreiber
who,
though
not
part
of
the
Working
Group,
have
provided
useful
comments
on
earlier
drafts
of
this
note.

A.

References

A.1

Informative
references

[CC-ABOUT]

		
[cc-about]

		

Creative
Commons:
About
Licenses

URL:
http://creativecommons.org/about/licenses/

[DC11]

		
[dc11]

		
Dublin
Core
metadata
initiative.

Dublin
Core
metadata
element
set,
version
1.1

.
July
1999.
Dublin
Core
recommendation.
URL:

http://dublincore.org/documents/dcmi-terms/

[FOAF]

		
[foaf]

		
Dan
Brickley,

Brickley;

Libby
Miller.

FOAF
Vocabulary
Specification
0.98.

0.99
(Paddington
Edition)

9
August
2010.

.
14
January
2014.

URL:
http://xmlns.com/foaf/spec/

http://xmlns.com/foaf/spec

[OGP]

		
[html-rdfa]

		
Manu
Sporny.

The
Open
Graph
Protocol

HTML+RDFa
1.1
-
Second
Edition

.
December
2010.

17
March
2015.
W3C
Recommendation.

URL:
http://ogp.me

http://www.w3.org/TR/html-rdfa/

[SVG11]

		
[ogp]

Erik
Dahlström;
Patrick
Dengler;
Anthony
Grasso;
Chris
Lilley;
Cameron
McCormack;
Doug
Schepers;
Jonathan
Watt;
Jon
Ferraiolo;
Jun
Fujisawa;
Dean
Jackson
et
al.

		

Scalable
Vector
Graphics
(SVG)
1.1
(Second
Edition)

The
Open
Graph
Protocol

.
16
August
2011.
W3C
Recommendation.

December
2010.

URL:
http://www.w3.org/TR/SVG11/

http://ogp.me

[rdf-primer]

		
[rdf11-primer]

Frank
Manola;
Eric
Miller.

		
Guus
Schreiber;
Yves
Raimond.

RDF
1.1

Primer

.
10
February
2004.

24
June
2014.

W3C
Recommendation.

Note.

URL:
http://www.w3.org/TR/rdf-primer/

http://www.w3.org/TR/rdf11-primer/

		
[rdfa-core]

		
Ben
Adida;
Mark
Birbeck;
Shane
McCarron;
Ivan
Herman.

RDFa
Core
1.1
-
Second

Third

Edition

.
22
August
2013.
W3C
Recommendation.
URL:
http://www.w3.org/TR/rdfa-core/

[rdfa-in-html]
Manu
Sporny.
HTML+RDFa
1.1
.
22
August
2013.

17
March
2015.

W3C
Recommendation.
URL:
http://www.w3.org/TR/html-rdfa/

http://www.w3.org/TR/rdfa-core/

		
[rdfa-lite]

		
Manu
Sporny.

RDFa
Lite
1.1
-
Second
Edition

.
7
June
2012.

17
March
2015.

W3C
Recommendation.
URL:

http://www.w3.org/TR/rdfa-lite/

		
[rdfa-syntax]

		
Ben
Adida;
Mark
Birbeck;
Shane
McCarron;
Steven
Pemberton
et
al.

RDFa
in
XHTML:
Syntax
and
Processing

.
14
October
2008.
W3C
Recommendation.
URL:

http://www.w3.org/TR/rdfa-syntax

		
[schema]

		

Schemas—schema.org

		
[sparql11-query]

		
Steven
Harris;
Andy
Seaborne.

SPARQL
1.1
Query
Language

.
21
March
2013.
W3C
Recommendation.
URL:

http://www.w3.org/TR/sparql11-query/

		
[svg11]

		
Erik
Dahlström;
Patrick
Dengler;
Anthony
Grasso;
Chris
Lilley;
Cameron
McCormack;
Doug
Schepers;
Jonathan
Watt;
Jon
Ferraiolo;
Jun
Fujisawa;
Dean
Jackson
et
al.

Scalable
Vector
Graphics
(SVG)
1.1
(Second
Edition)
.
16
August
2011.
W3C
Recommendation.
URL:

http://www.w3.org/TR/SVG11/

		
[turtle]

		
Eric
Prud'hommeaux;
Gavin
Carothers.

RDF
1.1

Turtle

.
19

25

February
2013.

2014.

W3C
Candidate

Recommendation.
URL:

http://www.w3.org/TR/turtle/

		
[xhtml-rdfa]

		
Shane
McCarron.

XHTML+RDFa
1.1
-
Second

Third

Edition

.
22
August
2013.

17
March
2015.

W3C
Recommendation.
URL:

http://www.w3.org/TR/xhtml-rdfa/

		
[xmlschema11-2]

		
David
Peterson;
Sandy
Gao;
Ashok
Malhotra;
Michael
Sperberg-McQueen;
Henry
Thompson;
Paul
V.
Biron
et
al.

W3C
XML
Schema
Definition
Language
(XSD)
1.1
Part
2:
Datatypes

.
5
April
2012.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xmlschema11-2/

rdfa-primer/diagrams/contact-info.png
_iblanknodet

TYPE —————»() foatPerson

foafphone

- \O

<tel:+1:617-555-7332>
foatname

<mailto:alice@example.com>

Vics Birpemsvick™

StyleSheets/TR/logo-IG-Note.png
310N dnous) 3sa423U] DEAA

rdfa-primer/diagrams/two-blogs-with-foaf-with-URI.png
<hitpexampie.comalicalposisirouble _with_bob> <htpexample.comaicelpostsimy_photos>

detite

st
docreator \
doaegr

“The Troubie with Bob" 1 il post my photos nevertheless

<htiplexample comialicelfme> TYPE () foatPerson

foatphone

p— \o

<tel+1.617-655.7332>
foatname.

<maito:aice@example.com>

“Alco Bipemsuick’

rdfa-primer/diagrams/image-about.png
<http:/lexample.combobiphotosisunset jpg>

<httpiipurlorgldchtermsicreator>

<httpiipurl org/deltermstitie>

'

“Beautiul Sunset” “Bob”

StyleSheets/TR/logo-NOTE.png
0N DEM

