

 RDF 1.1 Serialization Syntaxes

 W3C Recommendation

 Ben Adida, David Beckett, Tim Berners-Lee, Mark Birbeck, Chris Bizer, Gavin Carothers, Richard Cyganiak, Ian Davis, Fabien Gandon, Ivan Herman, Arnaud J Le Hors, Gregg Kellogg, Markus Lanthaler, Niklas Lindström, Dave Longley, Shane McCarron, Steven Pemberton, Eric Prud'hommeaux, Guus Schreiber, Andy Seaborne, Manu Sporny, and Thomas Steiner (eds.)

 World Wide Web Consortium (W3C)

 25 February, 2014

 [image: W3C main logo]

 Note: this ePub edition does not represent the authoritative texts of the specifications; please consult the originals on the W3C Web Site for those

 Copyright © of the original documents: 2014 W3C® (MIT, ERCIM, W3C® (MIT, ERCIM, Keio, Beihang).

 All right reserved. W3C liability, trademark, and document use rules apply.

 Original, authoritative documents:

 	
 RDF 1.1 N-Triples: http://www.w3.org/TR/2014/REC-n-triples-20140225/

 	
 RDF 1.1 N-Quads: http://www.w3.org/TR/2014/REC-n-quads-20140225/

 	
 RDF 1.1 Turtle: http://www.w3.org/TR/2014/REC-turtle-20140225/

 	
 RDF 1.1 TriG: http://www.w3.org/TR/2014/REC-trig-20140225/

 	
 JSON-LD 1.0: http://www.w3.org/TR/2014/REC-json-ld-20140116/

 	
 JSON-LD 1.0 Processing Algorithms and API: http://www.w3.org/TR/2014/REC-json-ld-api-20140116/

 	
 RDFa 1.1 Primer: http://www.w3.org/TR/2013/NOTE-rdfa-primer-20130822/

 	
 RDFa 1.1 Core: http://www.w3.org/TR/2013/REC-rdfa-core-20130822/

 	
 RDFa Lite 1.1: http://www.w3.org/TR/2012/REC-rdfa-lite-20120607/

 	
 HTML+RDFa 1.1: http://www.w3.org/TR/2013/REC-html-rdfa-20130822/

 	
 XHTML+RDFa 1.1: http://www.w3.org/TR/2013/REC-xhtml-rdfa-20130822/

 	
 RDF 1.1 JSON Alternate Serialization (RDF/JSON) (Note): http://www.w3.org/TR/2013/NOTE-rdf-json-20131107/

 	
 RDF 1.1 XML Syntax: http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/

 Table of Contents

 	
 Cover

 	
 Table of Contents

 	
 Simple Line Syntaxes

 	
 RDF 1.1 N-Triples

 	
 Introduction

 	
 N-Triples Language

 	
 Changes from RDF Test Cases format

 	
 A Canonical form of N-Triples

 	
 Conformance

 	
 Media Type and Content Encoding

 	
 Grammar

 	
 Parsing

 	
 Acknowledgements

 	
 Change log

 	
 N-Triples Internet Media Type, File Extension and Macintosh File Type

 	
 References

 	
 RDF 1.1 N-Quads

 	
 Introduction

 	
 N-Quads Language

 	
 Conformance

 	
 Grammar

 	
 Parsing

 	
 Acknowledgements

 	
 Change Log

 	
 N-Quads Internet Media Type, File Extension and Macintosh File Type

 	
 References

 	
 Terse Syntaxes

 	
 RDF 1.1 Turtle

 	
 Introduction

 	
 Turtle Language

 	
 Examples

 	
 Turtle compared to SPARQL

 	
 Conformance

 	
 Turtle Grammar

 	
 Parsing

 	
 Embedding Turtle in HTML documents

 	
 Internet Media Type, File Extension and Macintosh File Type

 	
 Acknowledgements

 	
 Change Log

 	
 References

 	
 RDF 1.1 TriG

 	
 Introduction

 	
 TriG Language

 	
 Conformance

 	
 TriG Grammar

 	
 Parsing

 	
 Acknowledgements

 	
 Differences from Previous TriG

 	
 Media Type Registration

 	
 Changes since the last publication of this document

 	
 References

 	
 JSON for Linking Data (JSON-LD)

 	
 JSON-LD 1.0

 	
 Introduction

 	
 Design Goals and Rationale

 	
 Terminology

 	
 Conformance

 	
 Basic Concepts

 	
 Advanced Concepts

 	
 Data Model

 	
 JSON-LD Grammar

 	
 Relationship to RDF

 	
 Relationship to Other Linked Data Formats

 	
 IANA Considerations

 	
 Acknowledgements

 	
 References

 	
 JSON-LD 1.0 Processing Algorithms and API

 	
 Introduction

 	
 Features

 	
 Conformance

 	
 General Terminology

 	
 Algorithm Terms

 	
 Context Processing Algorithms

 	
 Expansion Algorithms

 	
 Compaction Algorithms

 	
 Flattening Algorithms

 	
 RDF Serialization/Deserialization Algorithms

 	
 The Application Programming Interface

 	
 Acknowledgements

 	
 References

 	
 RDF in Attributes (RDFa)

 	
 RDFa 1.1 Primer

 	
 Introduction

 	
 Using RDFa

 	
 You Said Something about RDF?

 	
 RDFa Tools

 	
 Acknowledgments

 	
 References

 	
 RDFa 1.1 Core

 	
 Motivation

 	
 Syntax Overview

 	
 RDF Terminology

 	
 Conformance

 	
 Attributes and Syntax

 	
 CURIE Syntax Definition

 	
 Processing Model

 	
 RDFa Processing in detail

 	
 RDFa Initial Contexts

 	
 RDFa Vocabulary Expansion

 	
 CURIE Datatypes

 	
 The RDFa Vocabulary

 	
 Changes

 	
 Acknowledgments

 	
 References

 	
 RDFa Lite 1.1

 	
 Introduction

 	
 The Attributes

 	
 Conformance

 	
 References

 	
 HTML+RDFa 1.1

 	
 Introduction

 	
 Conformance

 	
 Extensions to RDFa Core 1.1

 	
 Extensions to the HTML5 Syntax

 	
 Backwards Compatibility

 	
 About this Document

 	
 References

 	
 XHTML+RDFa 1.1

 	
 Introduction

 	
 Conformance

 	
 Additional RDFa Processing Rules

 	
 XHTML+RDFa 1.1 Definition

 	
 Metainformation Attributes Module

 	
 XHTML+RDFa XML Schema

 	
 XHTML+RDFa Document Type Definition

 	
 Deployment Advice

 	
 Change History

 	
 Acknowledgments

 	
 References

 	
 RDF 1.1 JSON Alternate Serialization (RDF/JSON) (Note)

 	
 Introduction

 	
 Conformance

 	
 Overview of RDF/JSON

 	
 Serialization of RDF as JSON

 	
 Examples

 	
 Acknowledgments

 	
 Internet Media Type, File Extension and Macintosh File Type

 	
 References

 	
 RDF 1.1 XML Syntax

 	
 Introduction

 	
 An XML Syntax for RDF

 	
 Terminology

 	
 RDF MIME Type, File Extension and Macintosh File Type

 	
 Global Issues

 	
 Syntax Data Model

 	
 RDF/XML Grammar

 	
 Serializing an RDF Graph to RDF/XML

 	
 Using RDF/XML with SVG

 	
 Acknowledgments

 	
 Changes since 2004 Recommendation

 	
 Syntax Schemas

 	
 References

 	Begin reading

 	Table of Contents

 [image: W3C]

 RDF 1.1 N-Triples

 A line-based syntax for an RDF graph

 W3C Recommendation 25 February 2014

 	This version:

 	http://www.w3.org/TR/2014/REC-n-triples-20140225/

 	Latest published version:

 	http://www.w3.org/TR/n-triples/

 	Test suite:

 	http://www.w3.org/TR/2014/NOTE-rdf11-testcases-20140225/

 	Implementation report:

 	http://www.w3.org/2013/N-TriplesReports/index.html

 	Previous version:

 	http://www.w3.org/TR/2014/PR-n-triples-20140109/

 	Editors:

 	Gavin Carothers, Lex Machina, Inc

	Andy Seaborne, The Apache Software Foundation

 	Author:

 	David Beckett

 Please check the errata for any errors or issues
 reported since publication.

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2001-2014

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang),

 All Rights Reserved.

 W3C liability,
 trademark and

 document use

 rules apply.

 Abstract

 N-Triples is a line-based, plain text format for encoding an RDF graph.

Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

This document is part of the RDF 1.1 document suite.
N-Triples was originally defined as a syntax for
the RDF Test Cases [RDF-TESTCASES] document. Due to its popularity
as an exchange format the RDF
Working Group decided to publish an updated
version.

 This document was published by the RDF Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdf-comments@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 Please see the Working Group's implementation
 report.

 This document has been reviewed by W3C Members, by software developers, and by other W3C
 groups and interested parties, and is endorsed by the Director as a W3C Recommendation.
 It is a stable document and may be used as reference material or cited from another
 document. W3C's role in making the Recommendation is to draw attention to the
 specification and to promote its widespread deployment. This enhances the functionality
 and interoperability of the Web.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction
	2. N-Triples Language	2.1 Simple Triples
	2.2 IRIs
	2.3 RDF Literals
	2.4 RDF Blank Nodes

	3. Changes from RDF Test Cases format
	4. A Canonical form of N-Triples
	5. Conformance
	6. Media Type and Content Encoding	6.1 Other Media Types

	7. Grammar
	8. Parsing	8.1 RDF Term Constructors
	8.2 RDF Triple Construction

	9. Acknowledgements
	A. Change log	A.1 Changes between Proposed Recommendation and Recommendation
	A.2 Changes between Candidate Recommendation and Proposed Recommendation
	A.3 Changes between Last Call Working Draft and Candidate recommendation
	A.4 Changes between Last Call Working Draft and publication as Note

	B. N-Triples Internet Media Type, File Extension and Macintosh File Type
	C. References	C.1 Normative references
	C.2 Informative references

1. Introduction

 This document defines N-Triples, a concrete syntax for
 RDF [RDF11-CONCEPTS].
 N-Triples is an easy to parse line-based subset of
 Turtle [TURTLE].

 The syntax is a revised version of N-Triples as originally defined in the RDF Test Cases [RDF-TESTCASES] document. Its original intent was for writing test cases, but it has proven to be popular as an exchange format for RDF data.

 An N-Triples document contains no parsing directives.

 N-Triples triples are a sequence of RDF terms representing the subject, predicate and object of an RDF Triple. These may be separated by white space (spaces U+0020 or tabs U+0009). This sequence is terminated by a '.' and a new line (optional at the end of a document).

 Example 1

 N-Triples triples are also Turtle simple triples, but Turtle includes other representations of RDF terms and abbreviations of RDF Triples. When parsed by a Turtle parser, data in the N-Triples format will produce exactly the same triples as a parser for the N-triples language.

 The RDF graph represented by an N-Triples document contains
 exactly each triple matching the N-Triples
 triple
 production.

2. N-Triples Language

 2.1 Simple Triples

 The simplest triple statement is a sequence of (subject, predicate, object) terms, separated by whitespace and terminated by '.' after each triple.

 Example 2

 2.2 IRIs

 IRIs may be written only as absolute IRIs.
 IRIs are enclosed in '<' and '>' and may contain numeric escape sequences (described below). For example <http://example.org/#green-goblin>.

 2.3 RDF Literals

 Literals
 are used to identify values such as strings, numbers,
 dates.

 Literals (Grammar production Literal) have a lexical form followed by a language tag, a datatype IRI, or neither.
 The representation of the lexical form consists of an
 initial delimiter " (U+0022), a sequence of permitted
 characters or numeric escape sequence or string escape sequence, and a final delimiter. Literals may not contain the characters ", LF, CR except in their escaped forms. In addition '\' (U+005C) may not appear in any quoted literal except as part of an escape sequence.
 The corresponding RDF lexical form is the characters between the delimiters, after processing any escape sequences.
 If present, the language tag is preceded by a '@' (U+0040).
 If there is no language tag, there may be a datatype IRI, preceded by '^^' (U+005E U+005E). If there is no datatype IRI and no language tag it is a simple literal and the datatype is http://www.w3.org/2001/XMLSchema#string.

 Example 3

 2.4 RDF Blank Nodes

 RDF blank nodes in N-Triples are expressed as _: followed by a blank node label which is a series of name characters.
 The characters in the label are built upon PN_CHARS_BASE, liberalized as follows:

 	The characters _ and [0-9] may appear anywhere in a blank node label.

 	The character . may appear anywhere except the first or last character.

 	The characters -, U+00B7, U+0300 to U+036F and U+203F to U+2040 are permitted anywhere except the first character.

 A fresh RDF blank node is allocated for each unique blank node label in a document.
 Repeated use of the same blank node label identifies the same RDF blank node.

 Example 4

3. Changes from RDF Test Cases format
This section is non-normative.

 	Encoding is UTF-8 rather than US-ASCII

	Uses IRIs rather than RDF URI References

	Defines a unique media type application/n-triples

	Subset of Turtle rather than Notation 3

	Comments may occur after a triple production

	Allows \b and \f for backspace and form feed

	More than one way to represent a single character

	Blank node labels may start with a digit

4. A Canonical form of N-Triples

 This section defined a canonical form of N-Triples which has
 less variability in layout. The grammar for the language is the
 same. Implementers are encouraged to produce this form.

 Canonical N-Triples has the following additional constraints on layout:

 	The whitespace following subject,
 predicate,
 and object MUST be a single space,
 (U+0020). All other locations that allow
 whitespace MUST be empty.

 	There MUST be no comments.

 	HEX MUST use only uppercase letters ([A-F]).

 	Characters MUST NOT be represented by UCHAR.

 	Within STRING_LITERAL_QUOTE,
 only the characters
 U+0022, U+005C, U+000A, U+000D
 are encoded using ECHAR.
 ECHAR MUST NOT be used for characters that are
 allowed directly in
 STRING_LITERAL_QUOTE.

5. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
 and notes in this specification are non-normative. Everything else in this specification is
 normative.

 The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY,
 and OPTIONAL in this specification are to be interpreted as described in [RFC2119].

 This specification defines conformance criteria for:

 	N-Triples documents

	Canonical N-Triples documents

	N-Triples parsers

 A conforming N-Triples document is a Unicode string that conforms to the grammar and additional constraints defined in section 7. Grammar, starting with the ntriplesDoc production. An N-Triples document serializes an RDF graph.

 A conforming Canonical N-Triples document is an
 N-Triples document that follows the
 additional constraints of Canonical N-Triples.

 A conforming N-Triples parser is a system capable of reading N-Triples documents on behalf of an application. It makes the serialized RDF graph, as defined in section 8. Parsing, available to the application, usually through some form of API.

 The IRI that identifies the N-Triples language is:
http://www.w3.org/ns/formats/N-Triples

6. Media Type and Content Encoding

 The media type of N-Triples is application/n-triples.
 The content encoding of N-Triples is always UTF-8.
 See N-Triples Media Type for the media type
 registration form.

 6.1 Other Media Types

 N-Triples has been historically provided with other media types. N-Triples may also be provided as text/plain. When used in this way N-Triples MUST use the escaped form of any character outside US-ASCII. As N-Triples is a subset of Turtle an N-Triples document MAY also be provided as text/turtle. In both of these cases the document is not an N-Triples document as an N-Triples document is only provided as application/n-triples.

7. Grammar

 An N-Triples document is a Unicode [UNICODE] character string encoded in UTF-8.
 Unicode code points only in the range U+0 to U+10FFFF inclusive are allowed.

 White space (tab U+0009 or space U+0020) is used to separate two terminals which would otherwise be (mis-)recognized as one terminal. White space is significant in the production STRING_LITERAL_QUOTE.

 Comments in N-Triples take the form of '#',
 outside an IRIREF or STRING_LITERAL_QUOTE, and continue
 up-to, and excluding, the end of line (EOL),
 or end of file if there is no end of line after the comment
 marker. Comments are treated as white space.

 The EBNF used
 here is defined in XML 1.0
 [EBNF-NOTATION].

 Escape sequence rules are the same as Turtle
 [TURTLE]. However, as only the STRING_LITERAL_QUOTE production is allowed new lines in literals MUST be escaped.

 	[1]
 	ntriplesDoc
 	::=
 	triple? (EOL triple)* EOL?

 	[2]
 	triple
 	::=
 	subject predicate object '.'

 	[3]
 	subject
 	::=
 	IRIREF | BLANK_NODE_LABEL

 	[4]
 	predicate
 	::=
 	IRIREF

 	[5]
 	object
 	::=
 	IRIREF | BLANK_NODE_LABEL | literal

 	[6]
 	literal
 	::=
 	STRING_LITERAL_QUOTE ('^^' IRIREF | LANGTAG)?

	Productions for terminals

 	[144s]
 	LANGTAG
 	::=
 	'@' [a-zA-Z]+ ('-' [a-zA-Z0-9]+)*

 	[7]
 	EOL
 	::=
 	[#xD#xA]+

 	[8]
 	IRIREF
 	::=
 	'<' ([^#x00-#x20<>"{}|^`\] | UCHAR)* '>'

 	[9]
 	STRING_LITERAL_QUOTE
 	::=
 	'"' ([^#x22#x5C#xA#xD] | ECHAR | UCHAR)* '"'

 	[141s]
 	BLANK_NODE_LABEL
 	::=
 	'_:' (PN_CHARS_U | [0-9]) ((PN_CHARS | '.')* PN_CHARS)?

 	[10]
 	UCHAR
 	::=
 	'\u' HEX HEX HEX HEX | '\U' HEX HEX HEX HEX HEX HEX HEX HEX

 	[153s]
 	ECHAR
 	::=
 	'\' [tbnrf"'\]

 	[157s]
 	PN_CHARS_BASE
 	::=
 	[A-Z] | [a-z] | [#x00C0-#x00D6] | [#x00D8-#x00F6] | [#x00F8-#x02FF] | [#x0370-#x037D] | [#x037F-#x1FFF] | [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF]

 	[158s]
 	PN_CHARS_U
 	::=
 	PN_CHARS_BASE | '_' | ':'

 	[160s]
 	PN_CHARS
 	::=
 	PN_CHARS_U | '-' | [0-9] | #x00B7 | [#x0300-#x036F] | [#x203F-#x2040]

 	[162s]
 	HEX
 	::=
 	[0-9] | [A-F] | [a-f]

8. Parsing

 Parsing N-Triples requires a state of one item:

 	Map[string -> blank node] bnodeLabels — A mapping from string to blank node.

 8.1 RDF Term Constructors

 This table maps productions and lexical tokens to RDF terms or components of RDF terms listed in section 8. Parsing:

 	production	type	procedure

 	IRIREF 	 IRI 	The characters between "<" and ">" are taken, with escape sequences unescaped, to form the unicode string of the IRI.

 	STRING_LITERAL_QUOTE 	 lexical form	The characters between the outermost '"'s are taken, with escape sequences unescaped, to form the unicode string of a lexical form.

 	LANGTAG 	language tag	The characters following the @ form the unicode string of the language tag.

 	literal 	 literal 	The literal has a lexical form of the first rule argument, STRING_LITERAL_QUOTE, and either a language tag of LANGTAG or a datatype IRI of iri, depending on which rule matched the input. If the LANGTAG rule matched, the datatype is rdf:langString and the language tag is LANGTAG. If neither a language tag nor a datatype IRI is provided, the literal has a datatype of xsd:string.

 	BLANK_NODE_LABEL 	 blank node 	The string after '_:', is a key in bnodeLabels. If there is no corresponding blank node in the map, one is allocated.

 8.2 RDF Triple Construction

 An N-Triples document defines an RDF graphs composed of a set of RDF triples. The triple production produces a triple defined by the terms constructed for subject, predicate and object.

9. Acknowledgements
This section is non-normative.

 The editor of the RDF 1.1 edition acknowledges valuable contributions from Gregg Kellogg, Eric Prud'hommeaux, Dave Beckett, David Robillard, Gregory Williams, Pat Hayes, Richard Cyganiak, Henry S. Thompson,
Peter Ansell, Evan Patton and David Booth.

 This specification is a product of extended deliberations by the
 members of the RDF Working Group.
 It draws upon the earlier specification in RDF Test Cases, edited by Dave Beckett.

A. Change log

	
	A.1 Changes between Proposed Recommendation and Recommendation

	
	 	Bug in grammar rule [6] concerning language-typed literals fixed.

	

	

 A.2 Changes between Candidate Recommendation and Proposed Recommendation

 	A normative reference to RDF Concepts was added.

 	The text for "Canonical N-Triples" has been made into a separate section.

	
 A.3 Changes between Last Call Working Draft and Candidate recommendation

 No substantive changes.

	
	
 A.4 Changes between Last Call Working Draft and publication as Note

 	Section defines canonical
	 N-Triples document.

	White space rules defined outside of grammar, as in Turtle.

	Comment processing defined.

	Parsing is defined.

	Removed "Summary of differences in N-Triples and Turtle".

	Recommendation track, not a working group Note.

	

B. N-Triples Internet Media Type, File Extension and Macintosh File Type

 	Contact:

 	Eric Prud'hommeaux

 	See also:

 	How to Register a Media Type for a W3C Specification

 	Internet Media Type registration, consistency of use
TAG Finding 3 June 2002 (Revised 4 September 2002)

 The Internet Media Type / MIME Type for N-Triples is "application/n-triples".

 It is recommended that N-Triples files have the extension ".nt" (all lowercase) on all platforms.

 It is recommended that N-Triples files stored on Macintosh HFS file systems be given a file type of "TEXT".

 This information that follows will be submitted to the IESG for review, approval, and registration with IANA.

 	Type name:

 	application

 	Subtype name:

 	n-triples

 	Required parameters:

 	None

 	Optional parameters:

 	None

 	Encoding considerations:

 	The syntax of N-Triples is expressed over code points in Unicode [UNICODE]. The encoding is always UTF-8 [UTF-8].

 	Unicode code points may also be expressed using an \uXXXX (U+0 to U+FFFF) or \UXXXXXXXX syntax (for U+10000 onwards) where X is a hexadecimal digit [0-9A-F]

 	Security considerations:

 	N-Triples is a general-purpose assertion language; applications may evaluate given data to infer more assertions or to dereference IRIs, invoking the security considerations of the scheme for that IRI. Note in particular, the privacy issues in [RFC3023] section 10 for HTTP IRIs. Data obtained from an inaccurate or malicious data source may lead to inaccurate or misleading conclusions, as well as the dereferencing of unintended IRIs. Care must be taken to align the trust in consulted resources with the sensitivity of the intended use of the data; inferences of potential medical treatments would likely require different trust than inferences for trip planning.

 	N-Triples is used to express arbitrary application data; security considerations will vary by domain of use. Security tools and protocols applicable to text (e.g. PGP encryption, MD5 sum validation, password-protected compression) may also be used on N-Triples documents. Security/privacy protocols must be imposed which reflect the sensitivity of the embedded information.

 	N-Triples can express data which is presented to the user, for example, RDF Schema labels. Application rendering strings retrieved from untrusted N-Triples documents must ensure that malignant strings may not be used to mislead the reader. The security considerations in the media type registration for XML ([RFC3023] section 10) provide additional guidance around the expression of arbitrary data and markup.

 	N-Triples uses IRIs as term identifiers. Applications interpreting data expressed in N-Triples should address the security issues of
 Internationalized Resource Identifiers (IRIs) [RFC3987] Section 8, as well as
 Uniform Resource Identifier (URI): Generic Syntax [RFC3986] Section 7.

 	Multiple IRIs may have the same appearance. Characters in different scripts may
 look similar (a Cyrillic "о" may appear similar to a Latin "o"). A character followed
 by combining characters may have the same visual representation as another character
 (LATIN SMALL LETTER E followed by COMBINING ACUTE ACCENT has the same visual representation
 as LATIN SMALL LETTER E WITH ACUTE).

 Any person or application that is writing or interpreting data in Turtle must take care to use the IRI that matches the intended semantics, and avoid IRIs that make look similar.
 Further information about matching of similar characters can be found
 in Unicode Security Considerations [UNICODE-SECURITY] and
 Internationalized Resource Identifiers (IRIs) [RFC3987] Section 8.

 	Interoperability considerations:

 	There are no known interoperability issues.

 	Published specification:

 	This specification.

 	Applications which use this media type:

 	No widely deployed applications are known to use this media type. It may be used by some web services and clients consuming their data.

 	Additional information:

 	Magic number(s):

 	None.

 	File extension(s):

 	".nt"

 	Macintosh file type code(s):

 	"TEXT"

 	Person & email address to contact for further information:

 	Eric Prud'hommeaux <eric@w3.org>

 	Intended usage:

 	COMMON

 	Restrictions on usage:

 	None

 	Author/Change controller:

 	The N-Triples specification is the product of the RDF WG. The W3C reserves change control over this specifications.

C. References
C.1 Normative references
	[EBNF-NOTATION]
	Tim Bray; Jean Paoli; C. M. Sperberg-McQueen; Eve Maler; François Yergeau. EBNF Notation 26 November 2008. W3C Recommendation. URL: http://www.w3.org/TR/REC-xml/#sec-notation

	[RDF-TESTCASES]
	jan grant; Dave Beckett. RDF Test Cases. 10 February 2004. W3C Recommendation. URL: http://www.w3.org/TR/rdf-testcases

	[RDF11-CONCEPTS]
	Richard Cyganiak, David Wood, Markus Lanthaler. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-concepts/

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC3023]
	M. Murata; S. St.Laurent; D. Kohn. XML Media Types (RFC 3023). January 2001. RFC. URL: http://www.ietf.org/rfc/rfc3023.txt

	[RFC3986]
	T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax (RFC 3986). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3986.txt

	[RFC3987]
	M. Dürst; M. Suignard. Internationalized Resource Identifiers (IRIs). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3987.txt

	[TURTLE]
	Eric Prud'hommeaux, Gavin Carothers. RDF 1.1 Turtle: Terse RDF Triple Language. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-turtle-20140225/. The latest edition is available at http://www.w3.org/TR/turtle/

	[UNICODE]
	The Unicode Standard. URL: http://www.unicode.org/versions/latest/

	[UTF-8]
	F. Yergeau. UTF-8, a transformation format of ISO 10646. IETF RFC 3629. November 2003. URL: http://www.ietf.org/rfc/rfc3629.txt

C.2 Informative references
	[UNICODE-SECURITY]
	Mark Davis; Michel Suignard. Unicode Security Considerations. URL: http://www.unicode.org/reports/tr36/

 [image: W3C]

 RDF 1.1 N-Quads

 A line-based syntax for RDF datasets

 W3C Recommendation 25 February 2014

 	This version:

 	http://www.w3.org/TR/2014/REC-n-quads-20140225/

 	Latest published version:

 	http://www.w3.org/TR/n-quads/

 	Test suite:

 	http://www.w3.org/TR/2014/NOTE-rdf11-testcases-20140225/

 	Implementation report:

 	http://www.w3.org/2013/N-QuadsReports/index.html

 	Previous version:

 	http://www.w3.org/TR/2014/PR-n-quads-20140109/

 	Editor:

 	Gavin Carothers, Lex Machina, Inc

 Please check the errata for any errors or issues
 reported since publication.

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2012-2014

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang),

 All Rights Reserved.

 W3C liability,
 trademark and

 document use

 rules apply.

 Abstract

 N-Quads is a line-based, plain text format for encoding an RDF dataset.

Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

This document is part of the RDF 1.1 document suit.
The N-Quads format is a line-based RDF syntax with a similar flavor as N-Triples
[N-TRIPLES]. The main distinction is that N-Quads allows encoding
multiple graphs.

 This document was published by the RDF Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdf-comments@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 Please see the Working Group's implementation
 report.

 This document has been reviewed by W3C Members, by software developers, and by other W3C
 groups and interested parties, and is endorsed by the Director as a W3C Recommendation.
 It is a stable document and may be used as reference material or cited from another
 document. W3C's role in making the Recommendation is to draw attention to the
 specification and to promote its widespread deployment. This enhances the functionality
 and interoperability of the Web.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction
	2. N-Quads Language	2.1 Simple Statements
	2.2 IRIs
	2.3 RDF Literals
	2.4 RDF Blank Nodes

	3. Conformance	3.1 Media Type and Content Encoding	3.1.1 Other Media Types

	4. Grammar
	5. Parsing	5.1 RDF Term Constructors
	5.2 RDF Dataset Construction

	6. Acknowledgements
	A. Change Log	A.1 Changes between Proposed Recommendation and Recommendation
	A.2 Changes between Candidate Recommendation and Proposed Recommendation
	A.3 Changes between Last Call Working Draft and Candidate Recommendation
	A.4 Changes between publication as Note and Last Call Working Draft

	B. N-Quads Internet Media Type, File Extension and Macintosh File Type
	C. References	C.1 Normative references
	C.2 Informative references

1. Introduction

 This document defines N-Quads, an easy to parse, line-based,
 concrete syntax for
 RDF Datasets
 [RDF11-CONCEPTS].

 N-quads statements are a sequence of RDF terms representing the subject, predicate, object and graph label of an RDF Triple and the graph it is part of in a dataset. These may be separated by white space (spaces #x20 or tabs #x9). This sequence is terminated by a '.' and a new line (optional at the end of a document).

 Example 1

2. N-Quads Language

 2.1 Simple Statements

 The simplest statement is a sequence of (subject, predicate, object) terms forming an RDF triple and an optional blank node label or IRI labeling what graph in a dataset the triple belongs to, all are separated by whitespace and terminated by '.' after each statement.

 Example 2

 The graph label IRI can be omitted, in which case the triples are considered part of the default graph of the RDF dataset.

 2.2 IRIs

 IRIs may be written only as absolute IRIs.
 IRIs are enclosed in '<' and '>' and may contain numeric escape sequences (described below). For example <http://example.org/#green-goblin>.

 2.3 RDF Literals

 Literals are used to identify values such as strings, numbers, dates.

 Literals (Grammar production Literal) have a lexical form followed by a language tag, a datatype IRI, or neither.
 The representation of the lexical form consists of an initial delimiter " (U+0022), a sequence of permitted characters or numeric escape sequence or string escape sequence, and a final delimiter. Literals may not contain the characters ", LF, or CR. In addition '\' (U+005C) may not appear in any quoted literal except as part of an escape sequence.
 The corresponding RDF lexical form is the characters between the delimiters, after processing any escape sequences.
 If present, the language tag is preceded by a '@' (U+0040).
 If there is no language tag, there may be a datatype IRI, preceded by '^^' (U+005E U+005E). If there is no datatype IRI and no language tag, the datatype is xsd:string.

 2.4 RDF Blank Nodes

 RDF blank nodes in N-Quads are expressed as _: followed by a blank node label which is a series of name characters.
 The characters in the label are built upon PN_CHARS_BASE, liberalized as follows:

 	The characters _ and digits may appear anywhere in a blank node label.

 	The character . may appear anywhere except the first or last character.

 	The characters -, U+00B7, U+0300 to U+036F and U+203F to U+2040 are permitted anywhere except the first character.

 A fresh RDF blank node is allocated for each unique blank node label in a document.
 Repeated use of the same blank node label identifies the same RDF blank node.

 Example 3

3. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
 and notes in this specification are non-normative. Everything else in this specification is
 normative.

 The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY,
 and OPTIONAL in this specification are to be interpreted as described in [RFC2119].

 This specification defines conformance criteria for:

 	N-Quads documents

	N-Quads parsers

 A conforming N-Quads document is a Unicode string that conforms to the grammar and additional constraints defined in section 4. Grammar, starting with the nquadsDoc production. An N-Quad document serializes an RDF dataset.

 Note
N-Quads documents do not provide a way of serializing empty graphs that may be part of an RDF dataset.

 A conforming N-Quads parser is a system capable of reading N-Quads documents on behalf of an application. It makes the serialized RDF graph, as defined in section 5. Parsing, available to the application, usually through some form of API.

 The IRI that identifies the N-Quads language is: http://www.w3.org/ns/formats/N-Quads

 3.1 Media Type and Content Encoding

 The media type of N-Quads is application/n-quads.
 The content encoding of N-Quads is always UTF-8.
 See N-Quads Media Type for the media type
 registration form.

 3.1.1 Other Media Types

 The original specification,
 N-Quads: Extending N-Triples with Context,
 proposed the use of media type text/x-nquads with an encoding
 using 7-bit US-ASCII.

4. Grammar

 An N-Quads document is a Unicode[UNICODE] character string encoded in UTF-8.
 Unicode code points only in the range U+0 to U+10FFFF inclusive are allowed.

 White space (tab U+0009 or space U+0020) is used to separate two terminals which would otherwise be (mis-)recognized as one terminal. White space is significant in the production STRING_LITERAL_QUOTE.

 Comments in N-Quads take the form of '#', outside an IRIREF or STRING_LITERAL_QUOTE, and continue to the end of line (EOL) or end of file if there is no end of line after the comment marker. Comments are treated as white space.

 The EBNF used here is defined in XML 1.0
 [EBNF-NOTATION].

 Escape sequence rules are the same as Turtle
 [TURTLE]. However, as only the STRING_LITERAL_QUOTE production is allowed new lines in literals MUST be escaped.

 	[1]
 	nquadsDoc
 	::=
 	statement? (EOL statement)* EOL?

 	[2]
 	statement
 	::=
 	subject predicate object graphLabel? '.'

 	[3]
 	subject
 	::=
 	IRIREF | BLANK_NODE_LABEL

 	[4]
 	predicate
 	::=
 	IRIREF

 	[5]
 	object
 	::=
 	IRIREF | BLANK_NODE_LABEL | literal

 	[6]
 	graphLabel
 	::=
 	IRIREF | BLANK_NODE_LABEL

 	[7]
 	literal
 	::=
 	STRING_LITERAL_QUOTE ('^^' IRIREF | LANGTAG)?

	Productions for terminals

 	[144s]
 	LANGTAG
 	::=
 	'@' [a-zA-Z]+ ('-' [a-zA-Z0-9]+)*

 	[8]
 	EOL
 	::=
 	[#xD#xA]+

 	[10]
 	IRIREF
 	::=
 	'<' ([^#x00-#x20<>"{}|^`\] | UCHAR)* '>'

 	[11]
 	STRING_LITERAL_QUOTE
 	::=
 	'"' ([^#x22#x5C#xA#xD] | ECHAR | UCHAR)* '"'

 	[141s]
 	BLANK_NODE_LABEL
 	::=
 	'_:' (PN_CHARS_U | [0-9]) ((PN_CHARS | '.')* PN_CHARS)?

 	[12]
 	UCHAR
 	::=
 	'\u' HEX HEX HEX HEX | '\U' HEX HEX HEX HEX HEX HEX HEX HEX

 	[153s]
 	ECHAR
 	::=
 	'\' [tbnrf"'\]

 	[157s]
 	PN_CHARS_BASE
 	::=
 	[A-Z] | [a-z] | [#x00C0-#x00D6] | [#x00D8-#x00F6] | [#x00F8-#x02FF] | [#x0370-#x037D] | [#x037F-#x1FFF] | [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF]

 	[158s]
 	PN_CHARS_U
 	::=
 	PN_CHARS_BASE | '_' | ':'

 	[160s]
 	PN_CHARS
 	::=
 	PN_CHARS_U | '-' | [0-9] | #x00B7 | [#x0300-#x036F] | [#x203F-#x2040]

 	[162s]
 	HEX
 	::=
 	[0-9] | [A-F] | [a-f]

5. Parsing

 Parsing N-Quads requires a state of one item:

 	Map[string -> blank node] bnodeLabels — A mapping from string to blank node.

 5.1 RDF Term Constructors

 This table maps productions and lexical tokens to RDF terms or components of RDF terms listed in section 5. Parsing:

 	production	type	procedure

 	IRIREF 	 IRI 	The characters between "<" and ">" are taken, with the escape sequences unescaped, to form the unicode string of the IRI.

 	STRING_LITERAL_QUOTE 	 lexical form	The characters between the outermost '"'s are taken, with escape sequences unescaped, to form the unicode string of a lexical form.

 	LANGTAG 	language tag	The characters following the @ form the unicode string of the language tag.

 	literal 	 literal 	The literal has a lexical form of the first rule argument, STRING_LITERAL_QUOTE, and either a language tag of LANGTAG or a datatype IRI of iri, depending on which rule matched the input. If the LANGTAG rule matched, the datatype is rdf:langString and the language tag is LANGTAG. If neither a language tag nor a datatype IRI is provided, the literal has a datatype of xsd:string.

 	BLANK_NODE_LABEL 	 blank node 	The string matching the second argument, PN_LOCAL, is a key in bnodeLabels. If there is no corresponding blank node in the map, one is allocated.

 5.2 RDF Dataset Construction

 An N-Quads document defines an RDF dataset composed of RDF graphs composed of a set of RDF triples. The statement production produces a triple defined by the terms constructed for subject, predicate and object. This RDF triple is added to the graph labeled by the production graphLabel, if no graphLabel is present the triple is added to the RDF datasets default graph.

6. Acknowledgements
This section is non-normative.

 The editor of the RDF 1.1 edition acknowledges valuable
 contributions from Gregg Kellogg, Andy Seaborne, Eric
 Prud'hommeaux, Dave Beckett, David Robillard, Gregory Williams,
 Antoine Zimmermann, Sandro Hawke, Richard Cyganiak, Pat Hayes,
 Henry S. Thompson, Bob Ferris, Henry Story, Andreas Harth, Lee
 Feigenbaum, Peter Ansell, Evan Patton and David Booth.

 This specification is a product of extensive deliberations by the
 members of the RDF Working Group chaired by Guus Schreiber and David Wood. It draws upon the eariler specification in N-Quads: Extending N-Triples with Context, edited by Richard Cyganiak, Andreas Harth, and Aidan Hogan.

A. Change Log

	
	A.1 Changes between Proposed Recommendation and Recommendation

	
	 	Bug in grammar rule [7] concerning language-typed literals fixed.

	 	Link to original N-Quads proposal included.

	

	

 A.2 Changes between Candidate Recommendation and Proposed Recommendation

 	A normative reference to RDF Concepts was added.

 	Informative note about text/x-nquads historical media type added.

 A.3 Changes between Last Call Working Draft and Candidate Recommendation

 No substitutive changes.

 A.4 Changes between publication as Note and Last Call Working Draft

 	White space rules defined outside of grammar, as in Turtle.

 	Comment processing defined.

 	Parsing is defined.

 	Recommendation track, not a working group Note.

B. N-Quads Internet Media Type, File Extension and Macintosh File Type

 	Contact:

 	Eric Prud'hommeaux

 	See also:

 	How to Register a Media Type for a W3C Specification

 	Internet Media Type registration, consistency of use
TAG Finding 3 June 2002 (Revised 4 September 2002)

 The Internet Media Type / MIME Type for N-Quads is "application/n-quads".

 It is recommended that N-Quads files have the extension ".nq" (all lowercase) on all platforms.

 It is recommended that N-Quads files stored on Macintosh HFS file systems be given a file type of "TEXT".

 This information that follows will be submitted to the IESG for review, approval, and registration with IANA.

 	Type name:

 	application

 	Subtype name:

 	n-quads

 	Required parameters:

 	None

 	Optional parameters:

 	None

 	Encoding considerations:

 	The syntax of N-Quads is expressed over code points in Unicode [UNICODE]. The encoding is always UTF-8 [UTF-8].

 	Unicode code points may also be expressed using an \uXXXX (U+0 to U+FFFF) or \UXXXXXXXX syntax (for U+10000 onwards) where X is a hexadecimal digit [0-9A-F]

 	Security considerations:

 	N-Quads is a general-purpose assertion language; applications may evaluate given data to infer more assertions or to dereference IRIs, invoking the security considerations of the scheme for that IRI. Note in particular, the privacy issues in [RFC3023] section 10 for HTTP IRIs. Data obtained from an inaccurate or malicious data source may lead to inaccurate or misleading conclusions, as well as the dereferencing of unintended IRIs. Care must be taken to align the trust in consulted resources with the sensitivity of the intended use of the data; inferences of potential medical treatments would likely require different trust than inferences for trip planning.

 	N-Quads is used to express arbitrary application data; security considerations will vary by domain of use. Security tools and protocols applicable to text (e.g. PGP encryption, MD5 sum validation, password-protected compression) may also be used on N-Quads documents. Security/privacy protocols must be imposed which reflect the sensitivity of the embedded information.

 	N-Quads can express data which is presented to the user, for example, RDF Schema labels. Application rendering strings retrieved from untrusted N-Quads documents must ensure that malignant strings may not be used to mislead the reader. The security considerations in the media type registration for XML ([RFC3023] section 10) provide additional guidance around the expression of arbitrary data and markup.

 	N-Quads uses IRIs as term identifiers. Applications interpreting data expressed in N-Quads should address the security issues of
 Internationalized Resource Identifiers (IRIs) [RFC3987] Section 8, as well as
 Uniform Resource Identifier (URI): Generic Syntax [RFC3986] Section 7.

 	Multiple IRIs may have the same appearance. Characters in different scripts may
 look similar (a Cyrillic "о" may appear similar to a Latin "o"). A character followed
 by combining characters may have the same visual representation as another character
 (LATIN SMALL LETTER E followed by COMBINING ACUTE ACCENT has the same visual representation
 as LATIN SMALL LETTER E WITH ACUTE).

 Any person or application that is writing or interpreting data in Turtle must take care to use the IRI that matches the intended semantics, and avoid IRIs that make look similar.
 Further information about matching of similar characters can be found
 in Unicode Security
 Considerations [UNICODE-SECURITY] and
 Internationalized Resource
 Identifiers (IRIs) [RFC3987] Section 8.

 	Interoperability considerations:

 	There are no known interoperability issues.

 	Published specification:

 	This specification.

 	Applications which use this media type:

 	No widely deployed applications are known to use this media type. It may be used by some web services and clients consuming their data.

 	Additional information:

 	Magic number(s):

 	None.

 	File extension(s):

 	".nq"

 	Macintosh file type code(s):

 	"TEXT"

 	Person & email address to contact for further information:

 	Eric Prud'hommeaux <eric@w3.org>

 	Intended usage:

 	COMMON

 	Restrictions on usage:

 	None

 	Author/Change controller:

 	The N-Quads specification is the product of the RDF WG. The W3C reserves change control over this specifications.

C. References
C.1 Normative references
	[EBNF-NOTATION]
	Tim Bray; Jean Paoli; C. M. Sperberg-McQueen; Eve Maler; François Yergeau. EBNF Notation 26 November 2008. W3C Recommendation. URL: http://www.w3.org/TR/REC-xml/#sec-notation

	[RDF11-CONCEPTS]
	Richard Cyganiak, David Wood, Markus Lanthaler. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-concepts/

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC3023]
	M. Murata; S. St.Laurent; D. Kohn. XML Media Types (RFC 3023). January 2001. RFC. URL: http://www.ietf.org/rfc/rfc3023.txt

	[RFC3986]
	T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax (RFC 3986). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3986.txt

	[RFC3987]
	M. Dürst; M. Suignard. Internationalized Resource Identifiers (IRIs). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3987.txt

	[UNICODE]
	The Unicode Standard. URL: http://www.unicode.org/versions/latest/

	[UTF-8]
	F. Yergeau. UTF-8, a transformation format of ISO 10646. IETF RFC 3629. November 2003. URL: http://www.ietf.org/rfc/rfc3629.txt

C.2 Informative references
	[N-TRIPLES]
	Gavin Carothers, Andy Seabourne. RDF 1.1 N-Triples. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-n-triples-20140225/. The latest edition is available at http://www.w3.org/TR/n-triples/

	[TURTLE]
	Eric Prud'hommeaux, Gavin Carothers. RDF 1.1 Turtle: Terse RDF Triple Language. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-turtle-20140225/. The latest edition is available at http://www.w3.org/TR/turtle/

	[UNICODE-SECURITY]
	Mark Davis; Michel Suignard. Unicode Security Considerations. URL: http://www.unicode.org/reports/tr36/

 [image: W3C]

 RDF 1.1 Turtle

 Terse RDF Triple Language

 W3C Recommendation 25 February 2014

 	This version:

 	http://www.w3.org/TR/2014/REC-turtle-20140225/

 	Latest published version:

 	http://www.w3.org/TR/turtle/

 	Test suite:

 	http://www.w3.org/TR/2014/NOTE-rdf11-testcases-20140225/

 	Implementation report:

 	http://www.w3.org/2013/TurtleReports/index.html

 	Previous version:

 	http://www.w3.org/TR/2014/PR-turtle-20140225/

 	Editors:

 	Eric Prud'hommeaux, W3C

	Gavin Carothers, Lex Machina, Inc

 	Authors:

 	David Beckett

	Tim Berners-Lee, W3C

	Eric Prud'hommeaux, W3C

	Gavin Carothers, Lex Machina, Inc

 Please check the errata for any errors or issues
 reported since publication.

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2008-2014

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang),

 All Rights Reserved.

 W3C liability,
 trademark and

 document use

 rules apply.

	Abstract

			The Resource Description Framework
			(RDF) is a
			general-purpose language for representing information in the Web.

			This document defines a textual syntax for RDF called Turtle
			that allows an RDF graph to be completely written in a compact and
			natural text form, with abbreviations for common usage patterns and
			datatypes. Turtle provides levels of compatibility with the
			N-Triples [N-TRIPLES]
			format as well as the triple pattern syntax of the
			SPARQL
			W3C Recommendation.
			

	Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

 This document is a part of the RDF 1.1 document suite. The
 document defines Turtle, the Terse RDF Triple Language, a concrete
 syntax for RDF [RDF11-CONCEPTS].

 This document was published by the RDF Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdf-comments@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 Please see the Working Group's implementation
 report.

 This document has been reviewed by W3C Members, by software developers, and by other W3C
 groups and interested parties, and is endorsed by the Director as a W3C Recommendation.
 It is a stable document and may be used as reference material or cited from another
 document. W3C's role in making the Recommendation is to draw attention to the
 specification and to promote its widespread deployment. This enhances the functionality
 and interoperability of the Web.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction
	2. Turtle Language	2.1 Simple Triples
	2.2 Predicate Lists
	2.3 Object Lists
	2.4 IRIs
	2.5 RDF Literals	2.5.1 Quoted Literals
	2.5.2 Numbers
	2.5.3 Booleans

	2.6 RDF Blank Nodes
	2.7 Nesting Unlabeled Blank Nodes in Turtle
	2.8 Collections

	3. Examples
	4. Turtle compared to SPARQL
	5. Conformance	5.1 Media Type and Content Encoding

	6. Turtle Grammar	6.1 White Space
	6.2 Comments
	6.3 IRI References
	6.4 Escape Sequences
	6.5 Grammar

	7. Parsing	7.1 Parser State
	7.2 RDF Term Constructors
	7.3 RDF Triples Constructors
	7.4 Parsing Example

	A. Embedding Turtle in HTML documents	A.1 XHTML
	A.2 Parsing Turtle in HTML

	B. Internet Media Type, File Extension and Macintosh File Type
	C. Acknowledgements
	D. Change Log	D.1 Changes since January
 2014 Proposed Recommendation
	D.2 Changes from February
 2013 Candidate Recommendation to January
 2014 Proposed Recommendation
	D.3 Changes from August 2011 First Public Working Draft to Candidate Recommendation
	D.4 Changes from January 2008 Team Submission to First Public Working Draft

	E. References	E.1 Normative references
	E.2 Informative references

	
	
			

1. Introduction
This section is non-normative.

			
			 This document defines Turtle, the Terse RDF
			 Triple Language, a concrete syntax for
 RDF [RDF11-CONCEPTS].
			

			
			 A Turtle document is a textual representations of an RDF graph. The following Turtle document describes the relationship between Green Goblin and Spiderman.
			

			Example 1
@base <http://example.org/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rel: <http://www.perceive.net/schemas/relationship/> .

<#green-goblin>
 rel:enemyOf <#spiderman> ;
 a foaf:Person ; # in the context of the Marvel universe
 foaf:name "Green Goblin" .

<#spiderman>
 rel:enemyOf <#green-goblin> ;
 a foaf:Person ;
 foaf:name "Spiderman", "Человек-паук"@ru .

			
			 This example introduces many of features of the Turtle language:
@base and Relative IRIs,
@prefix and prefixed names,
predicate lists separated by ';',
object lists separated by ',',
the token a,
and literals.
			

 		
			 The Turtle grammar for triples
			 is a subset of the SPARQL
			 1.1 Query Language [SPARQL11-QUERY] grammar for TriplesBlock.
			 The two grammars share production and terminal names where possible.
			

			
			 The construction of an RDF graph from a Turtle document is defined in Turtle Grammar and Parsing.
			

	
	
		

2. Turtle Language
This section is non-normative.

		A Turtle document allows writing down an RDF graph in a compact textual form. An RDF graph is made up of triples consisting of a subject, predicate and object.

		Comments may be given after a '#' that is not part of another lexical token and continue to the end of the line.

		
			2.1 Simple Triples

			The simplest triple statement is a sequence of (subject, predicate, object) terms, separated by whitespace and terminated by '.' after each triple.

			Example 2
<http://example.org/#spiderman> <http://www.perceive.net/schemas/relationship/enemyOf> <http://example.org/#green-goblin> .
			

		
		
			2.2 Predicate Lists

			Often the same subject will be referenced by a number of predicates. The predicateObjectList production matches a series of predicates and objects, separated by ';', following a subject.
			 This expresses a series of RDF Triples with that subject and each predicate and object allocated to one triple.
			 Thus, the ';' symbol is used to repeat the subject of triples that vary only in predicate and object RDF terms.

			 These two examples are equivalent ways of writing the triples about Spiderman.

 			Example 3
<http://example.org/#spiderman> <http://www.perceive.net/schemas/relationship/enemyOf> <http://example.org/#green-goblin> ;
				<http://xmlns.com/foaf/0.1/name> "Spiderman" .
			

 			Example 4
<http://example.org/#spiderman> <http://www.perceive.net/schemas/relationship/enemyOf> <http://example.org/#green-goblin> .
<http://example.org/#spiderman> <http://xmlns.com/foaf/0.1/name> "Spiderman" .
			

		
		
			2.3 Object Lists

			
			 As with predicates often objects are repeated with the same subject and predicate. The objectList production matches a series of objects separated by ',' following a predicate.
			 This expresses a series of RDF Triples with the corresponding subject and predicate and each object allocated to one triple.
			 Thus, the ',' symbol is used to repeat the subject and predicate of triples that only differ in the object RDF term.

			 These two examples are equivalent ways of writing Spiderman's name in two languages.

 			
Example 5
<http://example.org/#spiderman> <http://xmlns.com/foaf/0.1/name> "Spiderman", "Человек-паук"@ru .
			

 			Example 6
<http://example.org/#spiderman> <http://xmlns.com/foaf/0.1/name> "Spiderman" .
<http://example.org/#spiderman> <http://xmlns.com/foaf/0.1/name> "Человек-паук"@ru .
			

				

			
			 There are three types of RDF Term defined in RDF Concepts:
			 IRIs (Internationalized Resource Identifiers),
			 literals and
			 blank nodes. Turtle provides a number
			 of ways of writing each.
			

			
				2.4 IRIs

				
			 		IRIs may be written as relative or absolute IRIs or prefixed names.
				 	Relative and absolute IRIs are enclosed in '<' and '>' and may contain numeric escape sequences (described below). For example <http://example.org/#green-goblin>.
				

				Relative IRIs like <#green-goblin> are resolved relative to the current base IRI. A new base IRI can be defined using the '@base' or 'BASE' directive. Specifics of this operation are defined in section 6.3 IRI References

				
				 The token 'a' in the predicate position of a Turtle triple represents the IRI http://www.w3.org/1999/02/22-rdf-syntax-ns#type .
				

				
				 A prefixed name is a prefix label and a local part, separated by a colon ":".
				 A prefixed name is turned into an IRI by concatenating the IRI associated with the prefix and the local part. The '@prefix' or 'PREFIX' directive associates a prefix label with an IRI.
				 Subsequent '@prefix' or 'PREFIX' directives may re-map the same prefix label.

 Note

 The Turtle language originally permitted only the syntax including the '@' character for writing prefix and base directives.
 The case-insensitive 'PREFIX' and 'BASE' forms were added to align Turtle's syntax with that of SPARQL.
 It is advisable to serialize RDF using the '@prefix' and '@base' forms until RDF 1.1 Turtle parsers are widely deployed.

				
				 	To write http://www.perceive.net/schemas/relationship/enemyOf using a prefixed name:

				 	
				 			Define a prefix label for the vocabulary IRI http://www.perceive.net/schemas/relationship/ as somePrefix
			 			
	Then write somePrefix:enemyOf which is equivalent to writing <http://www.perceive.net/schemas/relationship/enemyOf>

			 		

 This can be written using either the original Turtle syntax for prefix declarations:

				 Example 7
@prefix somePrefix: <http://www.perceive.net/schemas/relationship/> .

<http://example.org/#green-goblin> somePrefix:enemyOf <http://example.org/#spiderman> .
				

 or SPARQL's syntax for prefix declarations:

				 Example 8
PREFIX somePrefix: <http://www.perceive.net/schemas/relationship/>

<http://example.org/#green-goblin> somePrefix:enemyOf <http://example.org/#spiderman> .
				

				Note

				
				 Prefixed names are a superset of XML QNames.
				 They differ in that the local part of prefixed names may include:
				

				
				 	leading digits, e.g. leg:3032571 or isbn13:9780136019701

				 	non leading colons, e.g. og:video:height

				 	reserved character escape sequences, e.g. wgs:lat\-long

				

				

				The following Turtle document contains examples of all the different ways of writing IRIs in Turtle.

							Example 9
A triple with all absolute IRIs
<http://one.example/subject1> <http://one.example/predicate1> <http://one.example/object1> .

@base <http://one.example/> .
<subject2> <predicate2> <object2> . # relative IRIs, e.g. http://one.example/subject2

BASE <http://one.example/>
<subject2> <predicate2> <object2> . # relative IRIs, e.g. http://one.example/subject2

@prefix p: <http://two.example/> .
p:subject3 p:predicate3 p:object3 . # prefixed name, e.g. http://two.example/subject3

PREFIX p: <http://two.example/>
p:subject3 p:predicate3 p:object3 . # prefixed name, e.g. http://two.example/subject3

@prefix p: <path/> . # prefix p: now stands for http://one.example/path/
p:subject4 p:predicate4 p:object4 . # prefixed name, e.g. http://one.example/path/subject4

@prefix : <http://another.example/> . # empty prefix
:subject5 :predicate5 :object5 . # prefixed name, e.g. http://another.example/subject5

:subject6 a :subject7 . # same as :subject6 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> :subject7 .

<http://伝言.example/?user=أكرم&channel=R%26D> a :subject8 . # a multi-script subject IRI .

 Note

 The '@prefix' and '@base' directives require a trailing '.' after the IRI, the equalivent 'PREFIX' and 'BASE' must not have a trailing '.' after the IRI part of the directive.

	

			
				2.5 RDF Literals

				Literals are used to identify values such as strings, numbers, dates.

				Example 10
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example.org/#green-goblin> foaf:name "Green Goblin" .

<http://example.org/#spiderman> foaf:name "Spiderman" .

				
				 2.5.1 Quoted Literals

				
				 Quoted Literals (Grammar production RDFLiteral) have a lexical form followed by a language tag, a datatype IRI, or neither.
				 The representation of the lexical form consists of an initial delimiter, e.g. " (U+0022), a sequence of permitted characters or numeric escape sequence or string escape sequence, and a final delimiter.
				 The corresponding RDF lexical form is the characters between the delimiters, after processing any escape sequences.
				 If present, the language tag is preceded by a '@' (U+0040).
				 If there is no language tag, there may be a datatype IRI, preceeded by '^^' (U+005E U+005E). The datatype IRI in Turtle may be written using either an absolute IRI, a relative IRI, or prefixed name. If there is no datatype IRI and no language tag, the datatype is xsd:string.
				

				'\' (U+005C) may not appear in any quoted literal except as part of an escape sequence. Other restrictions depend on the delimiter:

				
						Literals delimited by ' (U+0027), may not contain the characters ', LF (U+000A), or CR (U+000D).
					
	Literals delimited by ", may not contain the characters ", LF, or CR.
					
	Literals delimited by ''' may not contain the sequence of characters '''.
					
	Literals delimited by """ may not contain the sequence of characters """.
				

				Example 11
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix show: <http://example.org/vocab/show/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

show:218 rdfs:label "That Seventies Show"^^xsd:string . # literal with XML Schema string datatype
show:218 rdfs:label "That Seventies Show"^^<http://www.w3.org/2001/XMLSchema#string> . # same as above
show:218 rdfs:label "That Seventies Show" . # same again
show:218 show:localName "That Seventies Show"@en . # literal with a language tag
show:218 show:localName 'Cette Série des Années Soixante-dix'@fr . # literal delimited by single quote
show:218 show:localName "Cette Série des Années Septante"@fr-be . # literal with a region subtag
show:218 show:blurb '''This is a multi-line # literal with embedded new lines and quotes
literal with many quotes (""""")
and up to two sequential apostrophes ('').''' .

				
				
				2.5.2 Numbers

				Numbers can be written like other literals with lexical form and datatype (e.g. "-5.0"^^xsd:decimal). Turtle has a shorthand syntax for writing integer values, arbitrary precision decimal values, and double precision floating point values.

				
					
						
								Data Type
								Abbreviated
								Lexical
								Description
						

					
					
						
								xsd:integer
								-5
								"-5"^^xsd:integer
								Integer values may be written as an optional sign and a series of digits. Integers match the regular expression "[+-]?[0-9]+".
						

						
								xsd:decimal
								-5.0
								"-5.0"^^xsd:decimal
								Arbitrary-precision decimals may be written as an optional sign, zero or more digits, a decimal point and one or more digits. Decimals match the regular expression "[+-]?[0-9]*\.[0-9]+".
						

						
								xsd:double
								4.2E9
								"4.2E9"^^xsd:double
								Double-precision floating point values may be written as an optionally signed mantissa with an optional decimal point, the letter "e" or "E", and an optionally signed integer exponent. The exponent matches the regular expression "[+-]?[0-9]+" and the mantissa one of these regular expressions: "[+-]?[0-9]+\.[0-9]+", "[+-]?\.[0-9]+" or "[+-]?[0-9]".
						

					
				

				Example 12
@prefix : <http://example.org/elements> .
<http://en.wikipedia.org/wiki/Helium>
 :atomicNumber 2 ; # xsd:integer
 :atomicMass 4.002602 ; # xsd:decimal
 :specificGravity 1.663E-4 . # xsd:double
				

			
			
				2.5.3 Booleans

				Boolean values may be written as either 'true' or 'false' (case-sensitive) and represent RDF literals with the datatype xsd:boolean.

				Example 13
@prefix : <http://example.org/stats> .
<http://somecountry.example/census2007>
 :isLandlocked false . # xsd:boolean

			
			

			
				2.6 RDF Blank Nodes

				
				 RDF blank nodes in Turtle are expressed as _: followed by a blank node label which is a series of name characters.
				 The characters in the label are built upon PN_CHARS_BASE, liberalized as follows:
				

				
				 	The characters _ and digits may appear anywhere in a blank node label.

				 	The character . may appear anywhere except the first or last character.

				 	The characters -, U+00B7, U+0300 to U+036F and U+203F to U+2040 are permitted anywhere except the first character.

				

				
				 A fresh RDF blank node is allocated for each unique blank node label in a document.
				 Repeated use of the same blank node label identifies the same RDF blank node.
				

				Example 14
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:alice foaf:knows _:bob .
_:bob foaf:knows _:alice .

	
				
				 2.7 Nesting Unlabeled Blank Nodes in Turtle

				
				 In Turtle, fresh RDF blank nodes are also allocated when matching the production blankNodePropertyList and the terminal ANON.
				 Both of these may appear in the subject or object position of a triple (see the Turtle Grammar).
				 That subject or object is a fresh RDF blank node.
				 This blank node also serves as the subject of the triples produced by matching the predicateObjectList production embedded in a blankNodePropertyList.
				 The generation of these triples is described in Predicate Lists.
				 Blank nodes are also allocated for collections described below.
				

				 Example 15
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

Someone knows someone else, who has the name "Bob".
[] foaf:knows [foaf:name "Bob"] .

				
				 The Turtle grammar allows blankNodePropertyLists to be nested.
				 In this case, each inner [establishes a new subject blank node which reverts to the outer node at the], and serves as the current subject for predicate object lists.
				

				
			 The use of predicateObjectList within a blankNodePropertyList is a common idiom for representing a series of properties of a node.
			

		
		 Abbreviated:

				Example 16
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

[foaf:name "Alice"] foaf:knows [
 foaf:name "Bob" ;
 foaf:knows [
 foaf:name "Eve"] ;
 foaf:mbox <bob@example.com>] .
				

			

				
				 Corresponding simple triples:

				Example 17

_:a <http://xmlns.com/foaf/0.1/name> "Alice" .
_:a <http://xmlns.com/foaf/0.1/knows> _:b .
_:b <http://xmlns.com/foaf/0.1/name> "Bob" .
_:b <http://xmlns.com/foaf/0.1/knows> _:c .
_:c <http://xmlns.com/foaf/0.1/name> "Eve" .
_:b <http://xmlns.com/foaf/0.1/mbox> <bob@example.com> .
				

			

				

				
				
				2.8 Collections

				
				 RDF provides a Collection [RDF11-MT] structure for lists of RDF nodes.
				 The Turtle syntax for Collections is a possibly empty list of RDF terms enclosed by ().
				 This collection represents an rdf:first/rdf:rest list structure with the sequence of objects of the rdf:first statements being the order of the terms enclosed by ().
				

				
				 The (…) syntax MUST appear in the subject or object position of a triple (see the Turtle Grammar).
				 The blank node at the head of the list is the subject or object of the containing triple.
				

				Example 18

@prefix : <http://example.org/foo> .
the object of this triple is the RDF collection blank node
:subject :predicate (:a :b :c) .

an empty collection value - rdf:nil
:subject :predicate2 () .
				

			
	
	

3. Examples
This section is non-normative.

 This example is a Turtle translation of
 example 7
 in the
 RDF/XML Syntax specification
 (example1.ttl):

 Example 19
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ex: <http://example.org/stuff/1.0/> .

<http://www.w3.org/TR/rdf-syntax-grammar>
 dc:title "RDF/XML Syntax Specification (Revised)" ;
 ex:editor [
 ex:fullname "Dave Beckett";
 ex:homePage <http://purl.org/net/dajobe/>
] .

 An example of an RDF collection of two literals.

 Example 20

PREFIX : <http://example.org/stuff/1.0/>
:a :b ("apple" "banana") .

 which is short for (example2.ttl):

 Example 21
@prefix : <http://example.org/stuff/1.0/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
:a :b
 [rdf:first "apple";
 rdf:rest [rdf:first "banana";
 rdf:rest rdf:nil]
] .

 An example of two identical triples containing literal objects
 containing newlines, written in plain and long literal forms.
 The line breaks in this example are LINE FEED characters (U+000A).
 (example3.ttl):

 Example 22
@prefix : <http://example.org/stuff/1.0/> .

:a :b "The first line\nThe second line\n more" .

:a :b """The first line
The second line
 more""" .

 As indicated by the grammar, a collection can be either a subject or an object. This subject or object will be the novel blank node for the first object, if the collection has one or more objects, or rdf:nil if the collection is empty.

 For example,

 Example 23
@prefix : <http://example.org/stuff/1.0/> .
(1 2.0 3E1) :p "w" .

 is syntactic sugar for (noting that the blank nodes b0, b1 and b2 do not occur anywhere else in the RDF graph):

Example 24
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
 _:b0 rdf:first 1 ;
 rdf:rest _:b1 .
 _:b1 rdf:first 2.0 ;
 rdf:rest _:b2 .
 _:b2 rdf:first 3E1 ;
 rdf:rest rdf:nil .
 _:b0 :p "w" .

 RDF collections can be nested and can involve other syntactic forms:

 Example 25
PREFIX : <http://example.org/stuff/1.0/>
(1 [:p :q] (2)) :p2 :q2 .

 is syntactic sugar for:
Example 26
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
 _:b0 rdf:first 1 ;
 rdf:rest _:b1 .
 _:b1 rdf:first _:b2 .
 _:b2 :p :q .
 _:b1 rdf:rest _:b3 .
 _:b3 rdf:first _:b4 .
 _:b4 rdf:first 2 ;
 rdf:rest rdf:nil .
 _:b3 rdf:rest rdf:nil .

4. Turtle compared to SPARQL
This section is non-normative.

 The SPARQL 1.1
 Query LanguageF (SPARQL) [SPARQL11-QUERY] uses a Turtle style syntax for its TriplesBlock production.
 This production differs from the Turtle language in that:

 	SPARQL permits RDF Literals as the subject of RDF triples.

 	SPARQL permits variables (?name or $name) in any part of the triple of the form.

 	Turtle allows prefix and base declarations anywhere outside of a triple. In SPARQL, they are only allowed in the Prologue (at the start of the SPARQL query).

 	SPARQL uses case insensitive keywords, except for 'a'. Turtle's @prefix and @base declarations are case sensitive, the SPARQL dervied PREFIX and BASE are case insensitive.

 	'true' and 'false' are case insensitive in SPARQL and case sensitive in Turtle. TrUe is not a valid boolean value in Turtle.

 For further information see the
 Syntax for IRIs
 and SPARQL Grammar
 sections of the SPARQL query document [SPARQL11-QUERY].

5. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
 and notes in this specification are non-normative. Everything else in this specification is
 normative.

 The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY,
 and OPTIONAL in this specification are to be interpreted as described in [RFC2119].

 	This specification defines conformance criteria for:

 			
 					Turtle documents
 					
	Turtle parsers
					

			A conforming Turtle document is a Unicode string that conforms to the grammar and additional constraints defined in section 6. Turtle Grammar, starting with the turtleDoc production. A Turtle document serializes an RDF Graph.

			A conforming Turtle parser is a system capable of reading Turtle documents on behalf of an application. It makes the serialized RDF dataset, as defined in section 7. Parsing, available to the application, usually through some form of API.

			The IRI that identifies the Turtle language is: http://www.w3.org/ns/formats/Turtle

			Note
This specification does not define how Turtle parsers handle non-conforming input documents.

	
	 5.1 Media Type and Content Encoding

	
	 The media type of Turtle is text/turtle.
	 The content encoding of Turtle content is always UTF-8. Charset
	 parameters on the mime type are required until such time as the
	 text/ media type tree permits UTF-8 to be sent without a
	 charset parameter. See section B. Internet Media Type, File Extension and Macintosh File Type for the media type
	 registration form.
	

	

6. Turtle Grammar

 A Turtle document is a
 Unicode[UNICODE]
 character string encoded in UTF-8.
 Unicode characters only in the range U+0000 to U+10FFFF inclusive are
 allowed.

 6.1 White Space

			White space (production WS) is used to separate two terminals which would otherwise be (mis-)recognized as one terminal. Rule names below in capitals indicate where white space is significant; these form a possible choice of terminals for constructing a Turtle parser.

			White space is significant in the production String.

 6.2 Comments

 Comments in Turtle take the form of '#', outside an
 IRIREF or String,
 and continue to the end of line (marked by characters U+000D or U+000A)
 or end of file if there is no end of line after the comment
 marker. Comments are treated as white space.

 	6.3 IRI References

 					
					 Relative IRIs are resolved with base IRIs as per Uniform Resource Identifier (URI): Generic Syntax [RFC3986] using only the basic algorithm in section 5.2.
					 Neither Syntax-Based Normalization nor Scheme-Based Normalization (described in sections 6.2.2 and 6.2.3 of RFC3986) are performed.
					 Characters additionally allowed in IRI references are treated in the same way that unreserved characters are treated in URI references, per section 6.5 of Internationalized Resource Identifiers (IRIs) [RFC3987].
					

					
					 The @base or BASE directive defines the Base IRI used to resolve relative IRIs per RFC3986 section 5.1.1, "Base URI Embedded in Content".
					 Section 5.1.2, "Base URI from the Encapsulating Entity" defines how the In-Scope Base IRI may come from an encapsulating document, such as a SOAP envelope with an xml:base directive or a mime multipart document with a Content-Location header.
					 The "Retrieval URI" identified in 5.1.3, Base "URI from the Retrieval URI", is the URL from which a particular Turtle document was retrieved.
					 If none of the above specifies the Base URI, the default Base URI (section 5.1.4, "Default Base URI") is used.
					 Each @base or BASE directive sets a new In-Scope Base URI, relative to the previous one.
					

			

 6.4 Escape Sequences

	
	 There are three forms of escapes used in turtle documents:
	

	
	 	
		
		 numeric escape sequences represent Unicode code points:
		

		
		
		
		 	Escape sequence

		 	Unicode code point

		

		
		

		
		 	'\u' hex hex hex hex
		 	A Unicode character in the range U+0000 to U+FFFF inclusive
		 corresponding to the value encoded by the four hexadecimal digits interpreted from most significant to least significant digit.
		

		
		
		 	'\U' hex hex hex hex hex hex hex hex

		 	A Unicode character in the range U+0000 to U+10FFFF inclusive
		 corresponding to the value encoded by the eight hexadecimal digits interpreted from most significant to least significant digit.
		

		
		

		where HEX is a hexadecimal character

		
		 HEX
		 ::= [0-9] | [A-F] | [a-f]

		

	

	 	
		
		 string escape sequences represent the characters traditionally escaped in string literals:
		

		
		
		
		 	Escape sequence

		 	Unicode code point

		

		
		

		
		 	'\t'
		 	U+0009
		

		
		
		 	'\b'
		 	U+0008
		

		
		

		 	'\n'
		 	U+000A
		

		
		
		 	'\r'
		 	U+000D
		

		
		
		 	'\f'
		 	U+000C
		

		
		
		 	'\"'
		 	U+0022
		

		
		
		 	'\''
		 	U+0027
		

		
		
		 	'\\'

		 	U+005C
		

		
		

	

	 	
		
		 reserved character escape sequences consist of a '\' followed by one of ~.-!$&'()*+,;=/?#@%_ and represent the character to the right of the '\'.
		

	

	

	
		 Context where each kind of escape sequence can be used
	
		
		 	
		 	numeric
escapes
		 	string
escapes
		 	reserved character
escapes
		

	
	
		
		 	IRIs, used as RDF terms or as in @prefix, PREFIX, @base, or BASE declarations
		 	yes
		 	no
		 	no
		

		
		 	local names
		 	no
		 	no
		 	yes
		

		
		 	Strings
		 	yes
		 	yes
		 	no
		

	
	

	 Note
%-encoded sequences are in the character range for IRIs and are explicitly allowed in local names. These appear as a '%' followed by two hex characters and represent that same sequence of three characters. These sequences are not decoded during processing. A term written as <http://a.example/%66oo-bar> in Turtle designates the IRI http://a.example/%66oo-bar and not IRI http://a.example/foo-bar. A term written as ex:%66oo-bar with a prefix @prefix ex: <http://a.example/> also designates the IRI http://a.example/%66oo-bar.

 6.5 Grammar

 The EBNF used here is defined in XML 1.0
 [EBNF-NOTATION]. Production labels consisting of a
 number and a final 's', e.g. [60s], reference the production
 with that number in the SPARQL
 1.1 Query Language grammar [SPARQL11-QUERY].

	
	 Notes:

	
	 	
		Keywords in single quotes ('@base', '@prefix', 'a', 'true', 'false') are case-sensitive.
		Keywords in double quotes ("BASE", "PREFIX") are case-insensitive.
	

	 	
		Escape sequences UCHAR and ECHAR are case sensitive.
	

	 	
		When tokenizing the input and choosing grammar rules, the longest match is chosen.
	

	 	
		The Turtle grammar is LL(1) and LALR(1) when the rules with uppercased names are used as terminals.
	

	 	
		The entry point into the grammar is turtleDoc.
	

	 	
		In signed numbers, no white space is allowed between the sign and the number.
	

	 	
		The
		
 [162s]
 ANON
 ::=
 '[' WS* ']'
		
		token allows any amount of white space and comments between []s.
		The single space version is used in the grammar for clarity.		
	

	 	
		The strings '@prefix' and '@base' match the pattern for LANGTAG, though neither "prefix" nor "base" are registered language subtags.
		This specification does not define whether a quoted literal followed by either of these tokens (e.g. "A"@base) is in the Turtle language.
	

	

	

 	[1]
 	turtleDoc
 	::=
 	statement*

 	[2]
 	statement
 	::=
 	directive | triples '.'

 	[3]
 	directive
 	::=
 	prefixID | base | sparqlPrefix | sparqlBase

 	[4]
 	prefixID
 	::=
 	'@prefix' PNAME_NS IRIREF '.'

 	[5]
 	base
 	::=
 	'@base' IRIREF '.'

 	[5s]
 	sparqlBase
 	::=
 	"BASE" IRIREF

 	[6s]
 	sparqlPrefix
 	::=
 	"PREFIX" PNAME_NS IRIREF

 	[6]
 	triples
 	::=
 	subject predicateObjectList | blankNodePropertyList predicateObjectList?

 	[7]
 	predicateObjectList
 	::=
 	verb objectList (';' (verb objectList)?)*

 	[8]
 	objectList
 	::=
 	object (',' object)*

 	[9]
 	verb
 	::=
 	predicate | 'a'

 	[10]
 	subject
 	::=
 	iri | BlankNode | collection

 	[11]
 	predicate
 	::=
 	iri

 	[12]
 	object
 	::=
 	iri | BlankNode | collection | blankNodePropertyList | literal

 	[13]
 	literal
 	::=
 	RDFLiteral | NumericLiteral | BooleanLiteral

 	[14]
 	blankNodePropertyList
 	::=
 	'[' predicateObjectList ']'

 	[15]
 	collection
 	::=
 	'(' object* ')'

 	[16]
 	NumericLiteral
 	::=
 	INTEGER | DECIMAL | DOUBLE

 	[128s]
 	RDFLiteral
 	::=
 	String (LANGTAG | '^^' iri)?

 	[133s]
 	BooleanLiteral
 	::=
 	'true' | 'false'

 	[17]
 	String
 	::=
 	STRING_LITERAL_QUOTE | STRING_LITERAL_SINGLE_QUOTE | STRING_LITERAL_LONG_SINGLE_QUOTE | STRING_LITERAL_LONG_QUOTE

 	[135s]
 	iri
 	::=
 	IRIREF | PrefixedName

 	[136s]
 	PrefixedName
 	::=
 	PNAME_LN | PNAME_NS

 	[137s]
 	BlankNode
 	::=
 	BLANK_NODE_LABEL | ANON

	Productions for terminals

 	[18]
 	IRIREF
 	::=
 	'<' ([^#x00-#x20<>"{}|^`\] | UCHAR)* '>' /* #x00=NULL #01-#x1F=control codes #x20=space */

 	[139s]
 	PNAME_NS
 	::=
 	PN_PREFIX? ':'

 	[140s]
 	PNAME_LN
 	::=
 	PNAME_NS PN_LOCAL

 	[141s]
 	BLANK_NODE_LABEL
 	::=
 	'_:' (PN_CHARS_U | [0-9]) ((PN_CHARS | '.')* PN_CHARS)?

 	[144s]
 	LANGTAG
 	::=
 	'@' [a-zA-Z]+ ('-' [a-zA-Z0-9]+)*

 	[19]
 	INTEGER
 	::=
 	[+-]? [0-9]+

 	[20]
 	DECIMAL
 	::=
 	[+-]? [0-9]* '.' [0-9]+

 	[21]
 	DOUBLE
 	::=
 	[+-]? ([0-9]+ '.' [0-9]* EXPONENT | '.' [0-9]+ EXPONENT | [0-9]+ EXPONENT)

 	[154s]
 	EXPONENT
 	::=
 	[eE] [+-]? [0-9]+

 	[22]
 	STRING_LITERAL_QUOTE
 	::=
 	'"' ([^#x22#x5C#xA#xD] | ECHAR | UCHAR)* '"' /* #x22=" #x5C=\ #xA=new line #xD=carriage return */

 	[23]
 	STRING_LITERAL_SINGLE_QUOTE
 	::=
 	"'" ([^#x27#x5C#xA#xD] | ECHAR | UCHAR)* "'" /* #x27=' #x5C=\ #xA=new line #xD=carriage return */

 	[24]
 	STRING_LITERAL_LONG_SINGLE_QUOTE
 	::=
 	"'''" (("'" | "''")? ([^'\] | ECHAR | UCHAR))* "'''"

 	[25]
 	STRING_LITERAL_LONG_QUOTE
 	::=
 	'"""' (('"' | '""')? ([^"\] | ECHAR | UCHAR))* '"""'

 	[26]
 	UCHAR
 	::=
 	'\u' HEX HEX HEX HEX | '\U' HEX HEX HEX HEX HEX HEX HEX HEX

 	[159s]
 	ECHAR
 	::=
 	'\' [tbnrf"'\]

 	[161s]
 	WS
 	::=
 	#x20 | #x9 | #xD | #xA /* #x20=space #x9=character tabulation #xD=carriage return #xA=new line */

 	[162s]
 	ANON
 	::=
 	'[' WS* ']'

 	[163s]
 	PN_CHARS_BASE
 	::=
 	[A-Z] | [a-z] | [#x00C0-#x00D6] | [#x00D8-#x00F6] | [#x00F8-#x02FF] | [#x0370-#x037D] | [#x037F-#x1FFF] | [#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF]

 	[164s]
 	PN_CHARS_U
 	::=
 	PN_CHARS_BASE | '_'

 	[166s]
 	PN_CHARS
 	::=
 	PN_CHARS_U | '-' | [0-9] | #x00B7 | [#x0300-#x036F] | [#x203F-#x2040]

 	[167s]
 	PN_PREFIX
 	::=
 	PN_CHARS_BASE ((PN_CHARS | '.')* PN_CHARS)?

 	[168s]
 	PN_LOCAL
 	::=
 	(PN_CHARS_U | ':' | [0-9] | PLX) ((PN_CHARS | '.' | ':' | PLX)* (PN_CHARS | ':' | PLX))?

 	[169s]
 	PLX
 	::=
 	PERCENT | PN_LOCAL_ESC

 	[170s]
 	PERCENT
 	::=
 	'%' HEX HEX

 	[171s]
 	HEX
 	::=
 	[0-9] | [A-F] | [a-f]

 	[172s]
 	PN_LOCAL_ESC
 	::=
 	'\' ('_' | '~' | '.' | '-' | '!' | '$' | '&' | "'" | '(' | ')' | '*' | '+' | ',' | ';' | '=' | '/' | '?' | '#' | '@' | '%')

7. Parsing

 The RDF 1.1 Concepts and Abstract Syntax specification [RDF11-CONCEPTS] defines three types of RDF Term:

 IRIs,
 literals and
 blank nodes.
 Literals are composed of a lexical form and an optional language tag [BCP47] or datatype IRI.
 An extra type, prefix, is used during parsing to map string identifiers to namespace IRIs.

 This section maps a string conforming to the grammar in section 6.5 Grammar to a set of triples by mapping strings matching productions and lexical tokens to RDF terms or their components (e.g. language tags, lexical forms of literals). Grammar productions change the parser state and emit triples.

	
 7.1 Parser State

 Parsing Turtle requires a state of five items:

 	IRI baseURI
 — When the base
 production is reached, the second rule argument,
 IRIREF, is the base URI used for relative
 IRI resolution.
		

		

 	Map[prefix -> IRI] namespaces — The second and third
		rule arguments (PNAME_NS and
		IRIREF) in the prefixID
		production assign a namespace name
		(IRIREF) for the prefix
		(PNAME_NS). Outside of a
		prefixID production, any
		PNAME_NS is substituted with the
		namespace.
		

		Note that the prefix may be an empty string, per the
		PNAME_NS production: (PN_PREFIX)? ":".
		

		

 	Map[string -> blank
 node] bnodeLabels — A
 mapping from string to blank node.

		
 	RDF_Term curSubject — The curSubject is bound to the
 subject
 production.

 	RDF_Term curPredicate — The curPredicate is bound to
 the verb
 production. If token matched was "a",
 curPredicate is
 bound to the IRI
 http://www.w3.org/1999/02/22-rdf-syntax-ns#type.

		

	

 7.2 RDF Term Constructors

 This table maps productions and lexical tokens to RDF terms or components of RDF terms listed in section 7. Parsing:

 	 production 	 type 	procedure

 	IRIREF 	 IRI 	The characters between "<" and ">" are taken, with the numeric escape sequences unescaped, to form the unicode string of the IRI. Relative IRI resolution is performed per Section 6.3.

 	PNAME_NS 	 prefix 	When used in a prefixID or sparqlPrefix production, the prefix is the potentially empty unicode string matching the first argument of the rule is a key into the namespaces map.

 	 IRI 	When used in a PrefixedName production, the iri is the value in the namespaces map corresponding to the first argument of the rule.

 	PNAME_LN 	 IRI 	A potentially empty prefix is identified by the first sequence, PNAME_NS. The namespaces map MUST have a corresponding namespace. The unicode string of the IRI is formed by unescaping the reserved characters in the second argument, PN_LOCAL, and concatenating this onto the namespace.

 	STRING_LITERAL_SINGLE_QUOTE 	 lexical form	The characters between the outermost "'"s are taken, with numeric and string escape sequences unescaped, to form the unicode string of a lexical form.

 	STRING_LITERAL_QUOTE 	 lexical form	The characters between the outermost '"'s are taken, with numeric and string escape sequences unescaped, to form the unicode string of a lexical form.

 	STRING_LITERAL_LONG_SINGLE_QUOTE 	 lexical form	The characters between the outermost "'''"s are taken, with numeric and string escape sequences unescaped, to form the unicode string of a lexical form.

 	STRING_LITERAL_LONG_QUOTE 	 lexical form	The characters between the outermost '"""'s are taken, with numeric and string escape sequences unescaped, to form the unicode string of a lexical form.

 	LANGTAG 	language tag	The characters following the @ form the unicode string of the language tag.

 	RDFLiteral 	 literal 	The literal has a lexical form of the first rule argument, String. If the '^^' iri rule matched, the datatype is iri and the literal has no language tag. If the LANGTAG rule matched, the datatype is rdf:langString and the language tag is LANGTAG. If neither matched, the datatype is xsd:string and the literal has no language tag.

 	INTEGER 	 literal 	The literal has a lexical form of the input string, and a datatype of xsd:integer.

 	DECIMAL 	 literal 	The literal has a lexical form of the input string, and a datatype of xsd:decimal.

 	DOUBLE 	 literal 	The literal has a lexical form of the input string, and a datatype of xsd:double.

 	BooleanLiteral 	 literal 	The literal has a lexical form of the true or false, depending on which matched the input, and a datatype of xsd:boolean.

 	BLANK_NODE_LABEL 	 blank node 	The string matching the second argument, PN_LOCAL, is a key in bnodeLabels. If there is no corresponding blank node in the map, one is allocated.

 	ANON 	 blank node 	A blank node is generated.

 	blankNodePropertyList	 blank node 	A blank node is generated. Note the rules for blankNodePropertyList in the next section.

 	collection 	 blank node 	For non-empty lists, a blank node is generated. Note the rules for collection in the next section.

 	 IRI 	For empty lists, the resulting IRI is rdf:nil. Note the rules for collection in the next section.

 7.3 RDF Triples Constructors

		A Turtle document defines an RDF graph composed of set of RDF triples.
		The subject production sets the curSubject.
		The verb production sets the curPredicate.
		Each object N in the document produces an RDF triple: curSubject curPredicate N .

	 Property Lists:

 Beginning the blankNodePropertyList production records the curSubject and curPredicate, and sets curSubject to a novel blank node B.
 Finishing the blankNodePropertyList production restores curSubject and curPredicate.
 The node produced by matching blankNodePropertyList is the blank node B.

	 Collections:

 Beginning the collection production records the curSubject and curPredicate.
	 Each object in the collection production has a curSubject set to a novel blank node B and a curPredicate set to rdf:first.
 For each object objectn after the first produces a triple:objectn-1 rdf:rest objectn .
 Finishing the collection production creates an additional triple curSubject rdf:rest rdf:nil . and restores curSubject and curPredicate
 The node produced by matching collection is the first blank node B for non-empty lists and rdf:nil for empty lists.

 7.4 Parsing Example
This section is non-normative.

 The following informative example shows the semantic actions performed when parsing this Turtle document with an LALR(1) parser:

 Example 27

@prefix ericFoaf: <http://www.w3.org/People/Eric/ericP-foaf.rdf#> .
@prefix : <http://xmlns.com/foaf/0.1/> .
ericFoaf:ericP :givenName "Eric" ;
 :knows <http://norman.walsh.name/knows/who/dan-brickley> ,
 [:mbox <mailto:timbl@w3.org>] ,
 <http://getopenid.com/amyvdh> .

 	Map the prefix ericFoaf to the IRI http://www.w3.org/People/Eric/ericP-foaf.rdf#.

 	Map the empty prefix to the IRI http://xmlns.com/foaf/0.1/.

 	Assign curSubject the IRI http://www.w3.org/People/Eric/ericP-foaf.rdf#ericP.

 	Assign curPredicate the IRI http://xmlns.com/foaf/0.1/givenName.

 	Emit an RDF triple: <...rdf#ericP> <.../givenName> "Eric" .

 	Assign curPredicate the IRI http://xmlns.com/foaf/0.1/knows.

 	Emit an RDF triple: <...rdf#ericP> <.../knows> <...who/dan-brickley> .

 	Emit an RDF triple: <...rdf#ericP> <.../knows> _:1 .

 	Save curSubject and reassign to the blank node _:1.

 	Save curPredicate.

 	Assign curPredicate the IRI http://xmlns.com/foaf/0.1/mbox.

 	Emit an RDF triple: _:1 <.../mbox> <mailto:timbl@w3.org> .

 	Restore curSubject and curPredicate to their saved values (<...rdf#ericP>, <.../knows>).

 	Emit an RDF triple: <...rdf#ericP> <.../knows> <http://getopenid.com/amyvdh> .

A. Embedding Turtle in HTML documents
This section is non-normative.

 HTML [HTML5] script tags
	

 can be used to embed data blocks in documents. Turtle can be easily embedded in HTML this way.

 Example 28
<script type="text/turtle">
@prefix dc: <http://purl.org/dc/terms/> .
@prefix frbr: <http://purl.org/vocab/frbr/core#> .

<http://books.example.com/works/45U8QJGZSQKDH8N> a frbr:Work ;
 dc:creator "Wil Wheaton"@en ;
 dc:title "Just a Geek"@en ;
 frbr:realization <http://books.example.com/products/9780596007683.BOOK>,
 <http://books.example.com/products/9780596802189.EBOOK> .

<http://books.example.com/products/9780596007683.BOOK> a frbr:Expression ;
 dc:type <http://books.example.com/product-types/BOOK> .

<http://books.example.com/products/9780596802189.EBOOK> a frbr:Expression ;
 dc:type <http://books.example.com/product-types/EBOOK> .
</script>

 Turtle content should be placed in a script tag with the
 type attribute set to text/turtle. < and > symbols
 do not need to be escaped inside of script tags. The character encoding of the embedded Turtle
 will match the HTML documents encoding.

 A.1 XHTML
This section is non-normative.

 Like JavaScript, Turtle authored for HTML (text/html) can break when used in XHTML
 (application/xhtml+xml). The solution is the same one used for JavaScript.

 Example 29
<script type="text/turtle">
<![CDATA[
@prefix frbr: <http://purl.org/vocab/frbr/core#> .

<http://books.example.com/works/45U8QJGZSQKDH8N> a frbr:Work .
]]>
</script>

 When embedded in XHTML Turtle data blocks must be enclosed in CDATA sections. Those CDATA markers must be in Turtle comments. If the character sequence "]]>" occurs in the document it must be escaped using strings escapes (\u005d\u0054\u003e). This will also make Turtle safe in polyglot documents served as both text/html
 and application/xhtml+xml. Failing to use CDATA sections or escape "]]>" may result in a non well-formed XML document.

 A.2 Parsing Turtle in HTML
This section is non-normative.

 There are no syntactic or grammar differences between parsing Turtle that has been embedded
 and normal Turtle documents. A Turtle document parsed from an HTML DOM will be a stream of character data rather than a stream of UTF-8 encoded bytes. No decoding is necessary if the HTML document has already been parsed into DOM. Each script data block is considered to be it's own Turtle document. @prefix and @base declarations in a Turtle data bloc are scoped to that data block and do not effect other data blocks.
The HTML lang attribute or XHTML xml:lang attribute have no effect on the parsing of the data blocks.
The base URI of the encapsulating HTML document provides a "Base URI Embedded in Content" per RFC3986 section 5.1.1.

B. Internet Media Type, File Extension and Macintosh File Type

 	Contact:

 	Eric Prud'hommeaux

 	See also:

 	How to Register a Media Type for a W3C Specification

 	Internet Media Type registration, consistency of use
TAG Finding 3 June 2002 (Revised 4 September 2002)

 The Internet Media Type / MIME Type for Turtle is "text/turtle".

 It is recommended that Turtle files have the extension ".ttl" (all lowercase) on all platforms.

 It is recommended that Turtle files stored on Macintosh HFS file systems be given a file type of "TEXT".

 This information that follows has been submitted to the IESG for review, approval, and registration with IANA.

 	Type name:

 	text

 	Subtype name:

 	turtle

 	Required parameters:

 	None

 	Optional parameters:

 	charset — this parameter is required when transferring non-ASCII data. If present, the value of charset is always UTF-8.

 	Encoding considerations:

 	The syntax of Turtle is expressed over code points in Unicode [UNICODE]. The encoding is always UTF-8 [UTF-8].

 	Unicode code points may also be expressed using an \uXXXX (U+0000 to U+FFFF) or \UXXXXXXXX syntax (for U+10000 onwards) where X is a hexadecimal digit [0-9A-Fa-f]

 	Security considerations:

 	Turtle is a general-purpose assertion language; applications may evaluate given data to infer more assertions or to dereference IRIs, invoking the security considerations of the scheme for that IRI. Note in particular, the privacy issues in [RFC3023] section 10 for HTTP IRIs. Data obtained from an inaccurate or malicious data source may lead to inaccurate or misleading conclusions, as well as the dereferencing of unintended IRIs. Care must be taken to align the trust in consulted resources with the sensitivity of the intended use of the data; inferences of potential medical treatments would likely require different trust than inferences for trip planning.

 	Turtle is used to express arbitrary application data; security considerations will vary by domain of use. Security tools and protocols applicable to text (e.g. PGP encryption, MD5 sum validation, password-protected compression) may also be used on Turtle documents. Security/privacy protocols must be imposed which reflect the sensitivity of the embedded information.

 	Turtle can express data which is presented to the user, for example, RDF Schema labels. Application rendering strings retrieved from untrusted Turtle documents must ensure that malignant strings may not be used to mislead the reader. The security considerations in the media type registration for XML ([RFC3023] section 10) provide additional guidance around the expression of arbitrary data and markup.

 	Turtle uses IRIs as term identifiers. Applications interpreting data expressed in Turtle should address the security issues of
 Internationalized Resource Identifiers (IRIs) [RFC3987] Section 8, as well as
 Uniform Resource Identifier (URI): Generic Syntax [RFC3986] Section 7.

 	Multiple IRIs may have the same appearance. Characters in different scripts may
 look similar (a Cyrillic "о" may appear similar to a Latin "o"). A character followed
 by combining characters may have the same visual representation as another character
 (LATIN SMALL LETTER E followed by COMBINING ACUTE ACCENT has the same visual representation
 as LATIN SMALL LETTER E WITH ACUTE).

 Any person or application that is writing or interpreting data in Turtle must take care to use the IRI that matches the intended semantics, and avoid IRIs that make look similar.
 Further information about matching of similar characters can be found
 in Unicode Security
 Considerations [UNICODE-SECURITY] and
 Internationalized Resource
 Identifiers (IRIs) [RFC3987] Section 8.

 	Interoperability considerations:

 	There are no known interoperability issues.

 	Published specification:

 	This specification.

 	Applications which use this media type:

 	No widely deployed applications are known to use this media type. It may be used by some web services and clients consuming their data.

 	Additional information:

 	Magic number(s):

 	Turtle documents may have the strings '@prefix' or '@base' (case sensitive) or the strings 'PREFIX' or 'BASE' (case insensitive) near the beginning of the document.

 	File extension(s):

 	".ttl"

 	Base URI:

 	The Turtle '@base <IRIref>' or 'BASE <IRIref>' term can change the current base URI for relative IRIrefs in the query language that are used sequentially later in the document.

 	Macintosh file type code(s):

 	"TEXT"

 	Person & email address to contact for further information:

 	Eric Prud'hommeaux <eric@w3.org>

 	Intended usage:

 	COMMON

 	Restrictions on usage:

 	None

 	Author/Change controller:

 	The Turtle specification is the product of the RDF WG. The W3C reserves change control over this specifications.

C. Acknowledgements

 This work was described in the paper
 New Syntaxes for RDF
 which discusses other RDF syntaxes and the background
 to the Turtle (Submitted to WWW2004, referred to as N-Triples
 Plus there).

 This work was started during the
 Semantic Web Advanced Development Europe (SWAD-Europe)
 project funded by the EU IST-7 programme IST-2001-34732 (2002-2004)
 and further development supported by the
 Institute for Learning and Research Technology at the University of Bristol, UK (2002-Sep 2005).

 Valuable contributions to this version were made by Gregg
 Kellogg, Andy Seaborn, Sandro Hawke and the members of the RDF Working Group.

 The document was improved through the review process by the wider community.

D. Change Log

 D.1 Changes since January
 2014 Proposed Recommendation

	
	 	Missing prefix added in example 11 in response to comment
 from Lars Svensson.

 	Error
 in grammar productions [21] and [23] fixed.

	 	Error
 in grammar productions [24] and [25] fixed.

 D.2 Changes from February
 2013 Candidate Recommendation to January
 2014 Proposed Recommendation

 		The addition of sparqlPrefix and sparqlBase which allow for using SPARQL style BASE and PREFIX directives in a Turtle document was marked "at risk" in the Candidate Recommendation publication. This feature is no longer at risk.

 	The title of this document was changed from
 "Turtle" to "RDF 1.1 Turtle".

 	Removed the obsolete links to tests in Sec. 7.1.

 D.3 Changes from August 2011 First Public Working Draft to Candidate Recommendation

 			Renaming for STRING_* productions to STRING_LITERAL_QUOTE sytle names rather than numbers
 		
	Local part of prefix names can now include ":"
 			
	Turtle in HTML
 			
	Renaming of grammar tokens and rules around IRIs
 			
	Reserved character escape sequences
 			
	String escape sequences limited to strings
 			
	Numeric escape sequences limited to IRIs and Strings
 			
	Support top-level blank-predicate-object lists
 			
	Whitespace required between @prefix and prefix label
 	

 D.4 Changes from January 2008 Team Submission to First Public Working Draft

 	Adopted three additional string syntaxes from SPARQL: STRING_LITERAL2, STRING_LITERAL_LONG1, STRING_LITERAL_LONG2

 	Adopted SPARQL's syntax for prefixed names (see editor's draft):

 	'.'s in names in all positions of a local name apart from the first or last, e.g. ex:first.name.

 	digits in the first character of the PN_LOCAL lexical token, e.g. ex:7tm.

 	adopted SPARQL's IRI resolution and prefix substitution text.

 	explicitly allowed re-use of the same prefix.

 	Added parsing rules.

 See also the pre-W3C Submission changelog.

E. References
E.1 Normative references
	[BCP47]
	A. Phillips; M. Davis. Tags for Identifying Languages. September 2009. IETF Best Current Practice. URL: http://tools.ietf.org/html/bcp47

	[EBNF-NOTATION]
	Tim Bray; Jean Paoli; C. M. Sperberg-McQueen; Eve Maler; François Yergeau. EBNF Notation 26 November 2008. W3C Recommendation. URL: http://www.w3.org/TR/REC-xml/#sec-notation

	[RDF11-CONCEPTS]
	Richard Cyganiak, David Wood, Markus Lanthaler. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-concepts/

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC3023]
	M. Murata; S. St.Laurent; D. Kohn. XML Media Types (RFC 3023). January 2001. RFC. URL: http://www.ietf.org/rfc/rfc3023.txt

	[RFC3986]
	T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax (RFC 3986). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3986.txt

	[RFC3987]
	M. Dürst; M. Suignard. Internationalized Resource Identifiers (IRIs). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3987.txt

	[UNICODE]
	The Unicode Standard. URL: http://www.unicode.org/versions/latest/

	[UTF-8]
	F. Yergeau. UTF-8, a transformation format of ISO 10646. IETF RFC 3629. November 2003. URL: http://www.ietf.org/rfc/rfc3629.txt

E.2 Informative references
	[HTML5]
	Robin Berjon; Steve Faulkner; Travis Leithead; Erika Doyle Navara; Edward O'Connor; Silvia Pfeiffer. HTML5. 4 February 2014. W3C Candidate Recommendation. URL: http://www.w3.org/TR/html5/

	[N-TRIPLES]
	Gavin Carothers, Andy Seabourne. RDF 1.1 N-Triples. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-n-triples-20140225/. The latest edition is available at http://www.w3.org/TR/n-triples/

	[RDF11-MT]
	Patrick J. Hayes, Peter F. Patel-Schneider. RDF 1.1 Semantics. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-mt/

	[SPARQL11-QUERY]
	Steven Harris; Andy Seaborne. SPARQL 1.1 Query Language. 21 March 2013. W3C Recommendation. URL: http://www.w3.org/TR/sparql11-query/

	[UNICODE-SECURITY]
	Mark Davis; Michel Suignard. Unicode Security Considerations. URL: http://www.unicode.org/reports/tr36/

 [image: W3C]

 RDF 1.1 TriG

 RDF Dataset Language

 W3C Recommendation 25 February 2014

 	This version:

 	http://www.w3.org/TR/2014/REC-trig-20140225/

 	Latest published version:

 	http://www.w3.org/TR/trig/

 	Test suite:

 	http://www.w3.org/TR/2014/NOTE-rdf11-testcases-20140225/

 	Implementation report:

 	http://www.w3.org/2013/TriGReports/index.html

 	Previous version:

 	http://www.w3.org/TR/2014/PR-trig-20140109/

 	Editors:

 	Gavin Carothers, Lex Machina

	Andy Seaborne, Apache Software Foundation

 	Authors:

 	Chris Bizer, Freie Universität Berlin

	Richard Cyganiak, Freie Universität Berlin

 Please check the errata for any errors or issues
 reported since publication.

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2010-2014

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang),

 All Rights Reserved.

 W3C liability,
 trademark and

 document use

 rules apply.

		Abstract

			This document defines a textual syntax for RDF called TriG
			that allows an RDF dataset to be completely written in a compact and
			natural text form, with abbreviations for common usage patterns and
			datatypes. TriG is an extension of the
			Turtle [TURTLE] format.
			

		Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

This document is part of the RDF 1.1 document suite.
TriG is intended the meet the charter requirement of the
RDF Working Group to
define an RDF syntax for multiple graphs. TriG is an extension of the
Turtle
syntax for RDF [TURTLE]. The current document is based on
the original proposal by Chris Bizer and Richard Cyganiak.

 This document was published by the RDF Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdf-comments@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 Please see the Working Group's implementation
 report.

 This document has been reviewed by W3C Members, by software developers, and by other W3C
 groups and interested parties, and is endorsed by the Director as a W3C Recommendation.
 It is a stable document and may be used as reference material or cited from another
 document. W3C's role in making the Recommendation is to draw attention to the
 specification and to promote its widespread deployment. This enhances the functionality
 and interoperability of the Web.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction
	2. TriG Language	2.1 Triple Statements
	2.2 Graph Statements
	2.3 Other Terms	2.3.1 Special Considerations for Blank Nodes

	3. Conformance	3.1 Media Type and Content Encoding

	4. TriG Grammar	4.1 White Space
	4.2 Comments
	4.3 IRI References
	4.4 Escape Sequences
	4.5 Grammar

	5. Parsing	5.1 Parser State
	5.2 RDF Term Constructors
	5.3 RDF Triples Construction	5.3.1 Output Graph
	5.3.2 Triple Output	5.3.2.1 Triple Production
	5.3.2.2 Property Lists
	5.3.2.3 Collections

	6. Acknowledgements
	A. Differences from Previous TriG
	B. Media Type Registration
	C. Changes since the last publication of this document
	D. References	D.1 Normative references
	D.2 Informative references

	

		
			

1. Introduction

			This document defines TriG, a concrete syntax for RDF as defined in the
			RDF Concepts and Abstract Syntax document
			[RDF11-CONCEPTS]. TriG is an extension of
			Turtle [TURTLE], extended
			to support representing a complete RDF Dataset.
		

		
			

2. TriG Language
This section is non-normative.

			A TriG document allows writing down an RDF Dataset in a compact
			textual form. It consists of a sequence of directives, triple statements, graph statements which contain triple-generating statements and optional blank lines.
			Comments may be given after a # that is not part of another
			lexical token and continue to the end of the line.

			

			
Graph statements are a pair of an IRI or blank node label and a group of triple statements
			surrounded by {}. The IRI or blank node label of the graph statement may be used in another graph statement which implies taking the union of the tripes generated
			by each graph statement. An IRI or blank node label used as a graph label may also reoccur as part of any triple statement.
			Optionally a graph statement may not not be labeled with an IRI. Such a
			graph statement corresponds to the Default Graph of an RDF Dataset.

			
			 The construction of an RDF Dataset from a TriG document is defined in section 4. TriG Grammar and section 5. Parsing.
			

			
				2.1 Triple Statements

				As TriG is an extention of the Turtle language it allows for any constructs from the Turtle language. Simple Triples, Predicate Lists, and Object Lists can all be used either inside a graph statement, or on their own as in a Turtle document. When outside a graph statement, the triples are considered to be part of the default graph of the RDF Dataset.

			

			
				2.2 Graph Statements

				A graph statement pairs an IRI or blank node with a RDF graph. The triple statements that make up the graph are enclosed in {}.

				In a TriG document a graph IRI or blank node may be used as label for more than one graph statements. The graph label of a graph statement may be omitted. In this case the graph is considered the default graph of the RDF Dataset.

				A RDF Dataset might contain only a single graph.

				Example 1
This document encodes one graph.
@prefix ex: <http://www.example.org/vocabulary#> .
@prefix : <http://www.example.org/exampleDocument#> .

:G1 { :Monica a ex:Person ;
 ex:name "Monica Murphy" ;
 ex:homepage <http://www.monicamurphy.org> ;
 ex:email <mailto:monica@monicamurphy.org> ;
 ex:hasSkill ex:Management ,
 ex:Programming . }

				A RDF Dataset may contain a default graph, and named graphs.

				Example 2
This document contains a default graph and two named graphs.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

default graph
 {
 <http://example.org/bob> dc:publisher "Bob" .
 <http://example.org/alice> dc:publisher "Alice" .
 }

<http://example.org/bob>
 {
 _:a foaf:name "Bob" .
 _:a foaf:mbox <mailto:bob@oldcorp.example.org> .
 _:a foaf:knows _:b .
 }

<http://example.org/alice>
 {
 _:b foaf:name "Alice" .
 _:b foaf:mbox <mailto:alice@work.example.org> .
 }				

 TriG provides various alternative ways to write graphs
and triples, giving the data writer choices for clarity:

 Example 3
This document contains a same data as the
previous example.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

default graph - no {} used.
<http://example.org/bob> dc:publisher "Bob" .
<http://example.org/alice> dc:publisher "Alice" .

GRAPH keyword to highlight a named graph
Abbreviation of triples using ;
GRAPH <http://example.org/bob>
{
 [] foaf:name "Bob" ;
 foaf:mbox <mailto:bob@oldcorp.example.org> ;
 foaf:knows _:b .
}

GRAPH <http://example.org/alice>
{
 _:b foaf:name "Alice" ;
 foaf:mbox <mailto:alice@work.example.org>
}

			

			
				2.3 Other Terms

				All other terms and directives come from Turtle.

				
					2.3.1 Special Considerations for Blank Nodes

					BlankNodes sharing the same label in differently labeled graph statements are considered to be the same BlankNode.

				
			
		

3. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
 and notes in this specification are non-normative. Everything else in this specification is
 normative.

 The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY,
 and OPTIONAL in this specification are to be interpreted as described in [RFC2119].

 	This specification defines conformance criteria for:

 			
 					TriG documents
 					
	TriG parsers
					

			A conforming TriG document is a Unicode string that conforms to the grammar and additional constraints defined in section 4. TriG Grammar, starting with the trigDoc production. A TriG document serializes an RDF dataset.

			A conforming TriG parser is a system capable of reading TriG documents on behalf of an application. It makes the serialized RDF dataset, as defined in section 5. Parsing, available to the application, usually through some form of API.

			The IRI that identifies the TriG language is: http://www.w3.org/ns/formats/TriG

			Note
This specification does not define how TriG parsers handle non-conforming input documents.

	
	 3.1 Media Type and Content Encoding

	 The media type of TriG is application/trig.
	 The content encoding of TriG content is always UTF-8.
	

	

		
		

4. TriG Grammar

 A TriG document is a Unicode [UNICODE] character string
 encoded in UTF-8.
 Unicode characters only in the range U+0000 to U+10FFFF inclusive are
 allowed.

 4.1 White Space

			White space (production WS) is used to separate two terminals which would otherwise be (mis-)recognized as one terminal. Rule names below in capitals indicate where white space is significant; these form a possible choice of terminals for constructing a TriG parser.

			White space is significant in the production String.

 4.2 Comments

 Comments in TriG take the form of '#', outside an

 IRI or a string,
 and continue to the end of line (marked by characters U+000D or U+000A)
 or end of file if there is no end of line after the comment
 marker. Comments are treated as white space.

 	4.3 IRI References

 					
					 Relative IRIs are resolved with base IRIs as per Uniform Resource Identifier (URI): Generic Syntax [RFC3986] using only the basic algorithm in section 5.2.
					 Neither Syntax-Based Normalization nor Scheme-Based Normalization (described in sections 6.2.2 and 6.2.3 of RFC3986) are performed.
					 Characters additionally allowed in IRI references are treated in the same way that unreserved characters are treated in URI references, per section 6.5 of Internationalized Resource Identifiers (IRIs) [RFC3987].
					

					
					 The @base directive defines the Base IRI used to resolve relative IRIs per RFC3986 section 5.1.1, "Base URI Embedded in Content".
					 Section 5.1.2, "Base URI from the Encapsulating Entity" defines how the In-Scope Base IRI may come from an encapsulating document, such as a SOAP envelope with an xml:base directive or a mime multipart document with a Content-Location header.
					 The "Retrieval URI" identified in 5.1.3, Base "URI from the Retrieval URI", is the URL from which a particular TriG document was retrieved.
					 If none of the above specifies the Base URI, the default Base URI (section 5.1.4, "Default Base URI") is used.
					 Each @base directive sets a new In-Scope Base URI, relative to the previous one.
					

			

 4.4 Escape Sequences

	
	 There are three forms of escapes used in TriG documents:
	

	
	 	
		
		 numeric escape sequences represent Unicode code points:
		

		
		
		
		 	Escape sequence

		 	Unicode code point

		

		
		

		
		 	'\u' hex hex hex hex
		 	A Unicode character in the range U+0000 to U+FFFF inclusive
		 corresponding to the value encoded by the four hexadecimal digits interpreted from most significant to least significant digit.
		

		
		 	'\U' hex hex hex hex hex hex hex hex

		 	A Unicode character in the range U+0000 to U+10FFFF inclusive
		 corresponding to the value encoded by the eight hexadecimal digits interpreted from most significant to least significant digit.
		

		
		

		where HEX is a hexadecimal character

		
		 HEX
		 ::= [0-9] | [A-F] | [a-f]

		

	

	 	
		
		 string escape sequences represent the characters traditionally escaped in string literals:
		

		
		
		
		 	Escape sequence

		 	Unicode code point

		

		
		

		
		 	'\t'
		 	U+0009
		

		
		 	'\b'
		 	U+0008
		

		

		 	'\n'
		 	U+000A
		

		
		 	'\r'
		 	U+000D
		

		
		 	'\f'
		 	U+000C
		

		
		 	'\"'

		 	U+0022
		

		
		 	'\''

		 	U+0027
		

		
		 	'\\'

		 	U+005C
		

		
		

	

	 	
		
		 reserved character escape sequences consist of a '\' followed by one of ~.-!$&'()*+,;=/?#@%_ and represent the character to the right of the '\'.
		

	

	

	
		 Context where each kind of escape sequence can be used
	
		
		 	
		 	numeric
escapes
		 	string
escapes
		 	reserved character
escapes
		

	
	
		
		 	IRIs, used as RDF terms or as in @prefix or @base declarations
		 	yes
		 	no
		 	no
		

		
		 	local names
		 	no
		 	no
		 	yes
		

		
		 	Strings
		 	yes
		 	yes
		 	no
		

	
	

	 Note
%-encoded sequences are in the character range for IRIs and are explicitly allowed in local names. These appear as a '%' followed by two hex characters and represent that same sequence of three characters. These sequences are not decoded during processing. A term written as <http://a.example/%66oo-bar> in TriG designates the IRI http://a.example/%66oo-bar and not IRI http://a.example/foo-bar. A term written as ex:%66oo-bar with a prefix @prefix ex: <http://a.example/> also designates the IRI http://a.example/%66oo-bar.

		
			4.5 Grammar

 The EBNF used here is defined in XML 1.0
 [EBNF-NOTATION]. Production labels consisting of a number and a final 'g' are unique to TriG. All Production labels consisting of only a number reference the production with that number in the
Turtle grammar
[TURTLE]. Production labels consisting of a number and a final 's',
 e.g. [60s], reference the production
 with that number in the document SPARQL 1.1 Query Language grammar [SPARQL11-QUERY].

	
	 Notes:

	
 	A blank node label represents the same blank node
 throughout the TriG document.

	 	
		 Keywords in single quotes (
 '@base',
 '@prefix',
 'a',
 'true',
 'false') are
 case-sensitive.
		 Keywords in double quotes (
 "BASE",
 "PREFIX"
 "GRAPH"
) are case-insensitive.
	

	 	
		 Escape sequences markers \u, \U
 and those in ECHAR
 are case sensitive.
	

	 	
		 When tokenizing the input and choosing grammar rules, the longest match is chosen.
	

	 	
		 The TriG grammar is LL(1) and LALR(1) when the rules with uppercased names are used as terminals.
	

	 	
		 The entry point into the grammar is trigDoc.
	

	 	
		 In signed numbers, no white space is allowed between the sign and the number.
	

	 	
		 The
		
 [162s]
 ANON
 ::=
 '[' WS* ']'
		
		 token allows any amount of white space and comments between []s.
		 The single space version is used in the grammar for clarity.
	

	 	
		 The strings '@prefix' and '@base' match the pattern for LANGTAG, though neither "prefix" nor "base" are registered language
subtags.
		 This specification does not define whether a quoted literal followed by either of these tokens (e.g. "Z"@base) is in the TriG language.
	

	

	

 	[1g]
 	trigDoc
 	::=
 	(directive | block)*

 	[2g]
 	block
 	::=
 	triplesOrGraph | wrappedGraph | triples2 | "GRAPH" labelOrSubject wrappedGraph

 	[3g]
 	triplesOrGraph
 	::=
 	labelOrSubject (wrappedGraph | predicateObjectList '.')

 	[4g]
 	triples2
 	::=

 	blankNodePropertyList
 predicateObjectList?
 '.'
 |
 collection
 predicateObjectList
 '.'

 	[5g]
 	wrappedGraph
 	::=
 	'{' triplesBlock? '}'

 	[6g]
 	triplesBlock
 	::=
 	triples ('.' triplesBlock?)?

 	[7g]
 	labelOrSubject
 	::=
 	iri | BlankNode

 	[3]
 	directive
 	::=
 	prefixID | base | sparqlPrefix | sparqlBase

 	[4]
 	prefixID
 	::=
 	'@prefix' PNAME_NS IRIREF '.'

 	[5]
 	base
 	::=
 	'@base' IRIREF '.'

 	[5s]
 	sparqlPrefix
 	::=
 	"PREFIX" PNAME_NS IRIREF

 	[6s]
 	sparqlBase
 	::=
 	"BASE" IRIREF

 	[6]
 	triples
 	::=
 	subject predicateObjectList | blankNodePropertyList predicateObjectList?

 	[7]
 	predicateObjectList
 	::=
 	verb objectList (';' (verb objectList)?)*

 	[8]
 	objectList
 	::=
 	object (',' object)*

 	[9]
 	verb
 	::=
 	predicate | 'a'

 	[10]
 	subject
 	::=
 	iri | blank

 	[11]
 	predicate
 	::=
 	iri

 	[12]
 	object
 	::=
 	iri | blank | blankNodePropertyList | literal

 	[13]
 	literal
 	::=
 	RDFLiteral | NumericLiteral | BooleanLiteral

 	[14]
 	blank
 	::=
 	BlankNode | collection

 	[15]
 	blankNodePropertyList
 	::=
 	'[' predicateObjectList ']'

 	[16]
 	collection
 	::=
 	'(' object* ')'

 	[17]
 	NumericLiteral
 	::=
 	INTEGER | DECIMAL | DOUBLE

 	[128s]
 	RDFLiteral
 	::=
 	String (LANGTAG | '^^' iri)?

 	[133s]
 	BooleanLiteral
 	::=
 	'true' | 'false'

 	[18]
 	String
 	::=
 	STRING_LITERAL_QUOTE | STRING_LITERAL_SINGLE_QUOTE | STRING_LITERAL_LONG_SINGLE_QUOTE | STRING_LITERAL_LONG_QUOTE

 	[135s]
 	iri
 	::=
 	IRIREF | PrefixedName

 	[136s]
 	PrefixedName
 	::=
 	PNAME_LN | PNAME_NS

 	[137s]
 	BlankNode
 	::=
 	BLANK_NODE_LABEL | ANON

	Productions for terminals

 	[19]
 	IRIREF
 	::=
 	'<' ([^#x00-#x20<>"{}|^`\] | UCHAR)* '>'

 	[139s]
 	PNAME_NS
 	::=
 	PN_PREFIX? ':'

 	[140s]
 	PNAME_LN
 	::=
 	PNAME_NS PN_LOCAL

 	[141s]
 	BLANK_NODE_LABEL
 	::=
 	'_:' (PN_CHARS_U | [0-9]) ((PN_CHARS | '.')* PN_CHARS)?

 	[144s]
 	LANGTAG
 	::=
 	'@' [a-zA-Z]+ ('-' [a-zA-Z0-9]+)*

 	[20]
 	INTEGER
 	::=
 	[+-]? [0-9]+

 	[21]
 	DECIMAL
 	::=
 	[+-]? ([0-9]* '.' [0-9]+)

 	[22]
 	DOUBLE
 	::=
 	[+-]? ([0-9]+ '.' [0-9]* EXPONENT | '.' [0-9]+ EXPONENT | [0-9]+ EXPONENT)

 	[154s]
 	EXPONENT
 	::=
 	[eE] [+-]? [0-9]+

 	[23]
 	STRING_LITERAL_QUOTE
 	::=
 	'"' ([^#x22#x5C#xA#xD] | ECHAR | UCHAR)* '"'

 	[24]
 	STRING_LITERAL_SINGLE_QUOTE
 	::=
 	"'" ([^#x27#x5C#xA#xD] | ECHAR | UCHAR)* "'"

 	[25]
 	STRING_LITERAL_LONG_SINGLE_QUOTE
 	::=
 	"'''" (("'" | "''")? ([^'\] | ECHAR | UCHAR))* "'''"

 	[26]
 	STRING_LITERAL_LONG_QUOTE
 	::=
 	'"""' (('"' | '""')? ([^"\] | ECHAR | UCHAR))* '"""'

 	[27]
 	UCHAR
 	::=
 	'\u' HEX HEX HEX HEX | '\U' HEX HEX HEX HEX HEX HEX HEX HEX

 	[159s]
 	ECHAR
 	::=
 	'\' [tbnrf"'\]

 	[160s]
 	NIL
 	::=
 	'(' WS* ')'

 	[161s]
 	WS
 	::=
 	#x20 | #x9 | #xD | #xA

 	[162s]
 	ANON
 	::=
 	'[' WS* ']'

 	[163s]
 	PN_CHARS_BASE
 	::=
 	[A-Z] | [a-z] | [#00C0-#00D6] | [#00D8-#00F6] | [#00F8-#02FF] | [#0370-#037D] | [#037F-#1FFF] | [#200C-#200D] | [#2070-#218F] | [#2C00-#2FEF] | [#3001-#D7FF] | [#F900-#FDCF] | [#FDF0-#FFFD] | [#10000-#EFFFF]

 	[164s]
 	PN_CHARS_U
 	::=
 	PN_CHARS_BASE | '_'

 	[166s]
 	PN_CHARS
 	::=
 	PN_CHARS_U | '-' | [0-9] | #00B7 | [#0300-#036F] | [#203F-#2040]

 	[167s]
 	PN_PREFIX
 	::=
 	PN_CHARS_BASE ((PN_CHARS | '.')* PN_CHARS)?

 	[168s]
 	PN_LOCAL
 	::=
 	(PN_CHARS_U | ':' | [0-9] | PLX) ((PN_CHARS | '.' | ':' | PLX)* (PN_CHARS | ':' | PLX))?

 	[169s]
 	PLX
 	::=
 	PERCENT | PN_LOCAL_ESC

 	[170s]
 	PERCENT
 	::=
 	'%' HEX HEX

 	[171s]
 	HEX
 	::=
 	[0-9] | [A-F] | [a-f]

 	[172s]
 	PN_LOCAL_ESC
 	::=
 	'\' ('_' | '~' | '.' | '-' | '!' | '$' | '&' | "'" | '(' | ')' | '*' | '+' | ',' | ';' | '=' | '/' | '?' | '#' | '@' | '%')

			
		

5. Parsing

 The RDF Concepts and Abstract Syntax [RDF11-CONCEPTS]
		specification defines three types of RDF
		Term:

 IRIs,
 literals and
 blank nodes.
 Literals are composed of a lexical form and an optional language tag [BCP47] or datatype IRI.
 An extra type, prefix, is used during parsing to map string identifiers to namespace IRIs.

 This section maps a string conforming to the grammar in section 4.5 Grammar to a set of triples by mapping strings matching productions and lexical tokens to RDF terms or their components (e.g. language tags, lexical forms of literals). Grammar productions change the parser state and emit triples.

 5.1 Parser State

 Parsing TriG requires a state of six items:

 	IRI baseURI — When the base production is reached, the second rule argument, IRIREF, is the base URI used for relative IRI resolution.

 	Map[prefix -> IRI] namespaces — The second and third rule arguments (PNAME_NS and IRIREF) in the prefixID production assign a namespace name (IRIREF) for the prefix (PNAME_NS). Outside of a prefixID production, any PNAME_NS is substituted with the namespace. Note that the prefix may be an empty string, per the PNAME_NS, production: (PN_PREFIX)? ":".

 	Map[string -> blank node] bnodeLabels — A mapping from string to blank node.

 	RDF_Term curSubject — The curSubject is bound to the subject production.

 	RDF_Term curPredicate — The curPredicate is bound to the verb production. If token matched was "a", curPredicate is bound to the IRI http://www.w3.org/1999/02/22-rdf-syntax-ns#type.

 	RDF_Term curGraph —
 The curGraph is bound to
 the label of the graph that is the destination of triples
 produced in parsing. When undefined, triples are destined
 for the default graph.

 5.2 RDF Term Constructors

 This table maps productions and lexical tokens to RDF terms or components of RDF terms listed in section 5. Parsing:

 	 production 	 type 	procedure

 	IRIREF 	 IRI 	The characters between "<" and ">" are taken, with the numeric escape sequences unescaped, to form the unicode string of the IRI. Relative IRI resolution is performed per section 4.3 IRI References.

 	PNAME_NS 	 prefix 	When used in a prefixID or sparqlPrefix production, the prefix is the potentially empty unicode string matching the first argument of the rule is a key into the namespaces map.

 	 IRI 	When used in a PrefixedName production, the iri is the value in the namespaces map corresponding to the first argument of the rule.

 	PNAME_LN 	 IRI 	A potentially empty prefix is identified by the first sequence, PNAME_NS. The namespaces map MUST have a corresponding namespace. The unicode string of the IRI is formed by unescaping the reserved characters in the second argument, PN_LOCAL, and concatenating this onto the namespace.

 	STRING_LITERAL_SINGLE_QUOTE 	 lexical form	The characters between the outermost "'"s are taken, with numeric and string escape sequences unescaped, to form the unicode string of a lexical form.

 	STRING_LITERAL_QUOTE 	 lexical form	The characters between the outermost '"'s are taken, with numeric and string escape sequences unescaped, to form the unicode string of a lexical form.

 	STRING_LITERAL_LONG_SINGLE_QUOTE 	 lexical form	The characters between the outermost "'''"s are taken, with numeric and string escape sequences unescaped, to form the unicode string of a lexical form.

 	STRING_LITERAL_LONG_QUOTE 	 lexical form	The characters between the outermost '"""'s are taken, with numeric and string escape sequences unescaped, to form the unicode string of a lexical form.

 	LANGTAG 	language tag	The characters following the @ form the unicode string of the language tag.

 	RDFLiteral 	 literal 	The literal has a lexical form of the first rule argument, String, and either a language tag of LANGTAG or a datatype IRI of iri, depending on which rule matched the input. If the LANGTAG rule matched, the datatype is rdf:langString and the language tag is LANGTAG. If neither a language tag nor a datatype IRI is provided, the literal has a datatype of xsd:string.

 	INTEGER 	 literal 	The literal has a lexical form of the input string, and a datatype of xsd:integer.

 	DECIMAL 	 literal 	The literal has a lexical form of the input string, and a datatype of xsd:decimal.

 	DOUBLE 	 literal 	The literal has a lexical form of the input string, and a datatype of xsd:double.

 	BooleanLiteral 	 literal 	The literal has a lexical form of the true or false, depending on which matched the input, and a datatype of xsd:boolean.

 	BLANK_NODE_LABEL 	 blank node 	The string matching the second argument, PN_LOCAL, is a key in bnodeLabels. If there is no corresponding blank node in the map, one is allocated.

 	ANON 	 blank node 	A blank node is generated.

 	blankNodePropertyList	 blank node 	A blank node is generated. Note the rules for blankNodePropertyList in the next section.

 	collection 	 blank node 	For non-empty lists, a blank node is generated. Note the rules for collection in the next section.

 	 IRI 	For empty lists, the resulting IRI is rdf:nil. Note the rules for collection in the next section.

 5.3 RDF Triples Construction

		 A TriG document defines an RDF Dataset composed of one default graph and zero or
 more named graphs. Each graph is composed of a set of
 RDF triples.

 5.3.1 Output Graph

 The state curGraph is
 initially unset. It records the label of the graph for
 triples produced during parsing. If undefined, the default
 graph is used.

 The rule
 labelOrSubject
 sets both curGraph
 and curSubject
 (only one of these will be used).

 The following grammar production clauses set
 curGraph to be undefined, indicating the default
 graph:

 	
 The grammar production clause wrappedGraph in rule block.

 	
 The grammar production in rule
 triples2.

 The grammar production
 labelOrSubject predicateObjectList '.'
 unsets
 curGraph
 before handling predicateObjectLists
 in rule triplesOrGraph.

 5.3.2 Triple Output

 Each RDF triple produced is added to curGraph,
 or the default graph if curGraph
 is not set at that
 point in the parsing process.

		 The subject
 production sets the curSubject.
		 The verb
 production sets the curPredicate.

 Triples are produced at the following points in the
 parsing process and each RDF triple produced is
 added to the graph identified
 by curGraph.

 5.3.2.1 Triple Production

		 Each object
 N in the document produces an RDF triple:
 curSubject
 curPredicate N.

	 5.3.2.2 Property Lists

 Beginning the blankNodePropertyList production records the curSubject and curPredicate, and sets curSubject to a novel blank node B.
 Finishing the blankNodePropertyList production restores curSubject and curPredicate.
 The node produced by matching blankNodePropertyList is the blank node B.

	 5.3.2.3 Collections

 Beginning the collection production records the curSubject and curPredicate.
	 Each object in the collection production has a curSubject set to a novel blank node B and a curPredicate set to rdf:first.
 For each object objectn after the first produces a triple:objectn-1 rdf:rest objectn .
 Finishing the collection production creates an additional triple curSubject rdf:rest rdf:nil . and restores curSubject and curPredicate
 The node produced by matching collection is the first blank node B for non-empty lists and rdf:nil for empty lists.

6. Acknowledgements
This section is non-normative.

 The editors gratefully acknowledge the work of Chris Bizer and
 Richard Cyganiak in creating the original TriG specification.
 Valuable contributions to this version were made by Gregg Kellogg, Eric
 Prud'hommeaux and Sandro Hawke.

 The document was improved through the review process by the wider community.

A. Differences from Previous TriG
This section is non-normative.

 This section describes the main differences between TriG, as
 defined in this document, and earlier forms.
 	

 	Syntax is aligned to the
 Turtle [TURTLE] recommendation
 for RDF terms.

 	Graph labels can be blank nodes.

 	The default graph, or sections of the default graph, do not
 need to be enclosed in { ... }.

 	 	No support for optional = graph naming operator
 or optional "." after each graph.

 	 	Graph labels do not have to be unique within a TriG
 document. Reusing a graph label causes all the triples
 for that graph to be included in the resulting graph.
 Sections with the same label are combined by set union.

 	Keywords BASE,
 PREFIX as in [TURTLE].

 	The optional GRAPH keyword is allowed to aid
 SPARQL alignment.
 		

B. Media Type Registration

 	Contact:

 	Eric Prud'hommeaux

 	See also:

 	How to Register a Media Type for a W3C Specification

 	Internet Media Type registration, consistency of use
TAG Finding 3 June 2002 (Revised 4 September 2002)

 The Internet Media Type / MIME Type for TriG is "application/trig".

 It is recommended that TriG files have the extension ".trig" (all lowercase) on all platforms.

 It is recommended that TriG files stored on Macintosh HFS file systems be given a file type of "TEXT".

 This information that follows will be submitted to the IESG for review, approval, and registration with IANA.

 	Type name:

 	application

 	Subtype name:

 	trig

 	Required parameters:

 	None

 	Optional parameters:

 	None

 	Encoding considerations:

 	The syntax of TriG is expressed over code points in Unicode [UNICODE]. The encoding is always UTF-8 [UTF-8].

 	Unicode code points may also be expressed using an \uXXXX (U+0000 to U+FFFF) or \UXXXXXXXX syntax (for U+10000 onwards) where X is a hexadecimal digit [0-9A-Fa-f]

 	Security considerations:

 	TriG is a general-purpose assertion language; applications may evaluate given data to infer more assertions or to dereference IRIs, invoking the security considerations of the scheme for that IRI. Note in particular, the privacy issues in [RFC3023] section 10 for HTTP IRIs. Data obtained from an inaccurate or malicious data source may lead to inaccurate or misleading conclusions, as well as the dereferencing of unintended IRIs. Care must be taken to align the trust in consulted resources with the sensitivity of the intended use of the data; inferences of potential medical treatments would likely require different trust than inferences for trip planning.

 	TriG is used to express arbitrary application data; security considerations will vary by domain of use. Security tools and protocols applicable to text (e.g. PGP encryption, MD5 sum validation, password-protected compression) may also be used on TriG documents. Security/privacy protocols must be imposed which reflect the sensitivity of the embedded information.

 	TriG can express data which is presented to the user, for example, RDF Schema labels. Application rendering strings retrieved from untrusted TriG documents must ensure that malignant strings may not be used to mislead the reader. The security considerations in the media type registration for XML ([RFC3023] section 10) provide additional guidance around the expression of arbitrary data and markup.

 	TriG uses IRIs as term identifiers. Applications interpreting data expressed in TriG should address the security issues of
 Internationalized Resource Identifiers (IRIs) [RFC3987] Section 8, as well as
 Uniform Resource Identifier (URI): Generic Syntax [RFC3986] Section 7.

 	Multiple IRIs may have the same appearance. Characters in different scripts may
 look similar (a Cyrillic "о" may appear similar to a Latin "o"). A character followed
 by combining characters may have the same visual representation as another character
 (LATIN SMALL LETTER E followed by COMBINING ACUTE ACCENT has the same visual representation
 as LATIN SMALL LETTER E WITH ACUTE).

 Any person or application that is writing or interpreting data in TriG must take care to use the IRI that matches the intended semantics, and avoid IRIs that make look similar.
 Further information about matching of similar characters can be found
 in Unicode Security Considerations [UNICODE-SECURITY] and
 Internationalized Resource Identifiers (IRIs) [RFC3987], Section 8.

 	Interoperability considerations:

 	There are no known interoperability issues.

 	Published specification:

 	This specification.

 	Applications which use this media type:

 	No widely deployed applications are known to use this media
 type. It may be used by some web services and clients consuming their data.

 	Additional information:

 	Magic number(s):

 	TriG documents may have the strings 'prefix' or 'base' (case
 independent) near the beginning of the document.

 	File extension(s):

 	".trig"

 	Base URI:

 	The TriG base directive can change the current base URI
 for relative IRIrefs in the language that are used sequentially
 later in the document.

 	Macintosh file type code(s):

 	"TEXT"

 	Person & email address to contact for further information:

 	Eric Prud'hommeaux <eric@w3.org>

 	Intended usage:

 	COMMON

 	Restrictions on usage:

 	None

 	Author/Change controller:

 	The TriG specification is the product of the RDF WG. The W3C reserves change control over this specifications.

C. Changes since the last publication of this document

 Error
 in grammar productions [24] and [25] fixed.

D. References
D.1 Normative references
	[BCP47]
	A. Phillips; M. Davis. Tags for Identifying Languages. September 2009. IETF Best Current Practice. URL: http://tools.ietf.org/html/bcp47

	[EBNF-NOTATION]
	Tim Bray; Jean Paoli; C. M. Sperberg-McQueen; Eve Maler; François Yergeau. EBNF Notation 26 November 2008. W3C Recommendation. URL: http://www.w3.org/TR/REC-xml/#sec-notation

	[RDF11-CONCEPTS]
	Richard Cyganiak, David Wood, Markus Lanthaler. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-concepts/

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC3023]
	M. Murata; S. St.Laurent; D. Kohn. XML Media Types (RFC 3023). January 2001. RFC. URL: http://www.ietf.org/rfc/rfc3023.txt

	[RFC3986]
	T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax (RFC 3986). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3986.txt

	[RFC3987]
	M. Dürst; M. Suignard. Internationalized Resource Identifiers (IRIs). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3987.txt

	[TURTLE]
	Eric Prud'hommeaux, Gavin Carothers. RDF 1.1 Turtle: Terse RDF Triple Language. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-turtle-20140225/. The latest edition is available at http://www.w3.org/TR/turtle/

	[UNICODE]
	The Unicode Standard. URL: http://www.unicode.org/versions/latest/

	[UTF-8]
	F. Yergeau. UTF-8, a transformation format of ISO 10646. IETF RFC 3629. November 2003. URL: http://www.ietf.org/rfc/rfc3629.txt

D.2 Informative references
	[SPARQL11-QUERY]
	Steven Harris; Andy Seaborne. SPARQL 1.1 Query Language. 21 March 2013. W3C Recommendation. URL: http://www.w3.org/TR/sparql11-query/

	[UNICODE-SECURITY]
	Mark Davis; Michel Suignard. Unicode Security Considerations. URL: http://www.unicode.org/reports/tr36/

 [image: W3C]

 JSON-LD 1.0

 A JSON-based Serialization for Linked Data

 W3C Recommendation 16 January 2014

 	This version:

 	http://www.w3.org/TR/2014/REC-json-ld-20140116/

 	Latest published version:

 	http://www.w3.org/TR/json-ld/

 	Previous version:

 	http://www.w3.org/TR/2013/PR-json-ld-20131105/

 	Editors:

 	Manu Sporny, Digital Bazaar

	Gregg Kellogg, Kellogg Associates

	Markus Lanthaler, Graz University of Technology

 	Authors:

 	Manu Sporny, Digital Bazaar

	Dave Longley, Digital Bazaar

	Gregg Kellogg, Kellogg Associates

	Markus Lanthaler, Graz University of Technology

	Niklas Lindström

 Please refer to the errata for this document, which may include some normative corrections.

 This document is also available in this non-normative format:

 diff to previous version

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2010-2014

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang), All Rights Reserved.
 W3C liability,
 trademark and
 document use rules apply.

Abstract

 JSON is a useful data serialization and messaging format.
 This specification defines JSON-LD, a JSON-based format to serialize
 Linked Data. The syntax is designed to easily integrate into deployed
 systems that already use JSON, and provides a smooth upgrade path from
 JSON to JSON-LD.
 It is primarily intended to be a way to use Linked Data in Web-based
 programming environments, to build interoperable Web services, and to
 store Linked Data in JSON-based storage engines.

Status of This Document

 This section describes the status of this document at the time of its publication. Other
 documents may supersede this document. A list of current W3C publications and the latest revision
 of this technical report can be found in the W3C technical reports
 index at http://www.w3.org/TR/.

 This document has been reviewed by W3C Members, by software developers,
 and by other W3C groups and interested parties, and is endorsed by the
 Director as a W3C Recommendation. It is a stable document and may be
 used as reference material or cited from another document. W3C's role in
 making the Recommendation is to draw attention to the specification and
 to promote its widespread deployment. This enhances the functionality
 and interoperability of the Web.

 This specification has been developed by the JSON for Linking Data Community Group
 before it has been transferred to the RDF Working Group for review,
 improvement, and publication along the Recommendation track.
 The document contains small editorial changes arising from comments received
 during the Proposed Recommendation review; see the
 diff-marked version for details.

 There are several independent interoperable implementations of this specification. An
 implementation report
 as of October 2013 is available.

 This document was published by the RDF Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdf-comments@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 This document was produced by a group operating under the

 5 February 2004 W3C Patent Policy.

 W3C maintains a public list of any patent disclosures

 made in connection with the deliverables of the group; that page also includes instructions for
 disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains
 Essential Claim(s) must disclose the
 information in accordance with section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction	1.1 How to Read this Document

	2. Design Goals and Rationale
	3. Terminology	3.1 General Terminology
	3.2 Data Model Overview
	3.3 Syntax Tokens and Keywords

	4. Conformance
	5. Basic Concepts	5.1 The Context
	5.2 IRIs
	5.3 Node Identifiers
	5.4 Specifying the Type

	6. Advanced Concepts	6.1 Base IRI
	6.2 Default Vocabulary
	6.3 Compact IRIs
	6.4 Typed Values
	6.5 Type Coercion
	6.6 Embedding
	6.7 Advanced Context Usage
	6.8 Interpreting JSON as JSON-LD
	6.9 String Internationalization
	6.10 IRI Expansion within a Context
	6.11 Sets and Lists
	6.12 Reverse Properties
	6.13 Named Graphs
	6.14 Identifying Blank Nodes
	6.15 Aliasing Keywords
	6.16 Data Indexing
	6.17 Expanded Document Form
	6.18 Compacted Document Form
	6.19 Flattened Document Form
	6.20 Embedding JSON-LD in HTML Documents

	7. Data Model
	8. JSON-LD Grammar	8.1 Terms
	8.2 Node Objects
	8.3 Value Objects
	8.4 Lists and Sets
	8.5 Language Maps
	8.6 Index Maps
	8.7 Context Definitions

	9. Relationship to RDF	9.1 Serializing/Deserializing RDF

	A. Relationship to Other Linked Data Formats	A.1 Turtle
	A.2 RDFa
	A.3 Microformats
	A.4 Microdata

	B. IANA Considerations
	C. Acknowledgements
	D. References	D.1 Normative references
	D.2 Informative references

 1. Introduction
This section is non-normative.

 Linked Data [LINKED-DATA] is a way to create a network of
 standards-based machine interpretable data across different documents and
 Web sites. It allows an application to start at one piece of Linked Data,
 and follow embedded links to other pieces of Linked Data that are hosted on
 different sites across the Web.

 JSON-LD is a lightweight syntax to serialize Linked Data in
 JSON [RFC4627]. Its design allows existing JSON to be interpreted as
 Linked Data with minimal changes. JSON-LD is primarily intended to be a
 way to use Linked Data in Web-based programming environments, to build
 interoperable Web services, and to store Linked Data in JSON-based storage engines. Since
 JSON-LD is 100% compatible with JSON, the large number of JSON parsers and libraries
 available today can be reused. In addition to all the features JSON provides,
 JSON-LD introduces:

 	a universal identifier mechanism for JSON objects
 via the use of IRIs,

 	a way to disambiguate keys shared among different JSON documents by mapping
 them to IRIs via a context,

 	a mechanism in which a value in a JSON object may refer
 to a JSON object on a different site on the Web,

 	the ability to annotate strings with their language,

 	a way to associate datatypes with values such as dates and times,

 	and a facility to express one or more directed graphs, such as a social
 network, in a single document.

 JSON-LD is designed to be usable directly as JSON, with no knowledge of RDF
 [RDF11-CONCEPTS]. It is also designed to be usable as RDF, if desired, for
 use with other Linked Data technologies like SPARQL. Developers who
 require any of the facilities listed above or need to serialize an RDF Graph
 or RDF Dataset in a JSON-based syntax will find JSON-LD of interest. People
 intending to use JSON-LD with RDF tools will find it can be used as another
 RDF syntax, like Turtle [TURTLE]. Complete details of how JSON-LD relates
 to RDF are in section 9. Relationship to RDF.

 The syntax is designed to not disturb already
 deployed systems running on JSON, but provide a smooth upgrade path from
 JSON to JSON-LD. Since the shape of such data varies wildly, JSON-LD
 features mechanisms to reshape documents into a deterministic structure
 which simplifies their processing.

 1.1 How to Read this Document
This section is non-normative.

 This document is a detailed specification for a serialization of Linked
 Data in JSON. The document is primarily intended for the following audiences:

 	Software developers who want to encode Linked Data in a variety of
 programming languages that can use JSON

 	Software developers who want to convert existing JSON to JSON-LD

 	Software developers who want to understand the design decisions and
 language syntax for JSON-LD

 	Software developers who want to implement processors and APIs for
 JSON-LD

 	Software developers who want to generate or consume Linked Data,
 an RDF graph, or an RDF Dataset in a JSON syntax

 A companion document, the JSON-LD Processing Algorithms and API specification
 [JSON-LD-API], specifies how to work with JSON-LD at a higher level by
 providing a standard library interface for common JSON-LD operations.

 To understand the basics in this specification you must first be familiar with
 JSON, which is detailed in [RFC4627].

 This document almost exclusively uses the term IRI
 (Internationalized Resource Indicator)
 when discussing hyperlinks. Many Web developers are more familiar with the
 URL (Uniform Resource Locator)
 terminology. The document also uses, albeit rarely, the URI
 (Uniform Resource Indicator)
 terminology. While these terms are often used interchangeably among
 technical communities, they do have important distinctions from one
 another and the specification goes to great lengths to try and use the
 proper terminology at all times.

 2. Design Goals and Rationale
This section is non-normative.

 JSON-LD satisfies the following design goals:

 	Simplicity

 	No extra processors or software libraries are necessary to use JSON-LD
 in its most basic form. The language provides developers with a very easy
 learning curve. Developers only need to know JSON and two
 keywords (@context
 and @id) to use the basic functionality in JSON-LD.

 	Compatibility

 	A JSON-LD document is always a valid JSON document. This ensures that
 all of the standard JSON libraries work seamlessly with JSON-LD documents.

 	Expressiveness

 	The syntax serializes directed graphs. This ensures that almost
 every real world data model can be expressed.

 	Terseness

 	The JSON-LD syntax is very terse and human readable, requiring as
 little effort as possible from the developer.

 	Zero Edits, most of the time

 	JSON-LD ensures a smooth and simple transition from existing
 JSON-based systems. In many cases,
 zero edits to the JSON document and the addition of one line to the HTTP response
 should suffice (see section 6.8 Interpreting JSON as JSON-LD).
 This allows organizations that have
 already deployed large JSON-based infrastructure to use JSON-LD's features
 in a way that is not disruptive to their day-to-day operations and is
 transparent to their current customers. However, there are times where
 mapping JSON to a graph representation is a complex undertaking.
 In these instances, rather than extending JSON-LD to support
 esoteric use cases, we chose not to support the use case. While Zero
 Edits is a design goal, it is not always possible without adding
 great complexity to the language. JSON-LD focuses on simplicity when
 possible.

 	Usable as RDF

 	JSON-LD is usable by developers as
 idiomatic JSON, with no need to understand RDF [RDF11-CONCEPTS].
 JSON-LD is also usable as RDF, so people intending to use JSON-LD
 with RDF tools will find it can be used like any other RDF syntax.
 Complete details of how JSON-LD relates to RDF are in section
 9. Relationship to RDF.

 3. Terminology

 3.1 General Terminology

 This document uses the following terms as defined in JSON [RFC4627]. Refer
 to the JSON Grammar section in [RFC4627] for formal definitions.

 	JSON object
	
 An object structure is represented as a pair of curly brackets surrounding
 zero or more key-value pairs. A key is a string.
 A single colon comes after each key, separating the key from the value.
 A single comma separates a value from a following key. In contrast to JSON,
 in JSON-LD the keys in an object must be unique.

 	array

 	An array structure is represented as square brackets surrounding zero
 or more values. Values are separated by commas.
 In JSON, an array is an ordered sequence of zero or more values.
 While JSON-LD uses the same array representation as JSON,
 the collection is unordered by default. While order is
 preserved in regular JSON arrays, it is not in regular JSON-LD arrays
 unless specifically defined (see section 6.11 Sets and Lists).

 	string
	
 A string is a sequence of zero or more Unicode characters,
 wrapped in double quotes, using backslash escapes (if necessary).

 	number

 	A number is similar to that used in most programming languages, except
 that the octal and hexadecimal formats are not used and leading zeros
 are not allowed.

 	true and false
	
 Values that are used to express one of two possible boolean states.

 	null

 	The null value, which is typically used to clear or forget
 data. For example, a key-value pair in the
 @context where the value is null explicitly
 decouples a term's association with an IRI.
 A key-value pair in the body of a JSON-LD document whose
 value is null has the same meaning as if the key-value pair
 was not defined. If @value, @list, or
 @set is set to null in expanded form, then
 the entire JSON object is ignored.

 3.2 Data Model Overview
This section is non-normative.

 Generally speaking, the data model used for JSON-LD is a labeled,
 directed graph. The graph contains
 nodes, which are connected by
 edges. A node is typically data
 such as a string, number,
 typed values (like dates and times)
 or an IRI.
 There is also a special class of node called a
 blank node, which is typically used to express data that does
 not have a global identifier like an IRI.
 Blank nodes are identified using a
 blank node identifier. This simple data model is incredibly
 flexible and powerful, capable of modeling almost any kind of
 data. For a deeper explanation of the data model, see
 section 7. Data Model.

 Developers who are familiar with Linked Data technologies will
 recognize the data model as the RDF Data Model. To dive deeper into how
 JSON-LD and RDF are related, see
 section 9. Relationship to RDF.

 3.3 Syntax Tokens and Keywords

 JSON-LD specifies a number of syntax tokens and keywords
 that are a core part of the language:

 	@context

 	Used to define the short-hand names that are used throughout a JSON-LD
 document. These short-hand names are called terms and help
 developers to express specific identifiers in a compact manner. The
 @context keyword is described in detail in
 section 5.1 The Context.

 	@id

 	Used to uniquely identify things that are being described in the document
 with IRIs or
 blank node identifiers. This keyword
 is described in section 5.3 Node Identifiers.

 	@value

 	Used to specify the data that is associated with a particular
 property in the graph. This keyword is described in
 section 6.9 String Internationalization and
 section 6.4 Typed Values.

 	@language

 	Used to specify the language for a particular string value or the default
 language of a JSON-LD document. This keyword is described in
 section 6.9 String Internationalization.

 	@type

 	Used to set the data type of a node or
 typed value. This keyword is described in
 section 6.4 Typed Values.

 	@container

 	Used to set the default container type for a term.
 This keyword is described in section 6.11 Sets and Lists.

 	@list

 	Used to express an ordered set of data.
 This keyword is described in section 6.11 Sets and Lists.

 	@set

 	Used to express an unordered set of data and to ensure that values are always
 represented as arrays. This keyword is described in
 section 6.11 Sets and Lists.

 	@reverse

 	Used to express reverse properties. This keyword is described in
 section 6.12 Reverse Properties.

 	@index

 	Used to specify that a container is used to index information and
 that processing should continue deeper into a JSON data structure.
 This keyword is described in section 6.16 Data Indexing.

 	@base

 	Used to set the base IRI against which relative IRIs
 are resolved. This keyword is described in section 6.1 Base IRI.

 	@vocab

 	Used to expand properties and values in @type with a common prefix
 IRI. This keyword is described in section 6.2 Default Vocabulary.

 	@graph
	Used to express a graph.
 This keyword is described in section 6.13 Named Graphs.

 	:

 	The separator for JSON keys and values that use
 compact IRIs.

 All keys, keywords, and values in JSON-LD are case-sensitive.

 4. Conformance

 This specification describes the conformance criteria for JSON-LD documents.
 This criteria is relevant to authors and authoring tool implementers. As well
 as sections marked as non-normative, all authoring guidelines, diagrams, examples,
 and notes in this specification are non-normative. Everything else in this
 specification is normative.

 A JSON-LD document complies with this specification if it follows
 the normative statements in appendix 8. JSON-LD Grammar. JSON documents
 can be interpreted as JSON-LD by following the normative statements in
 section 6.8 Interpreting JSON as JSON-LD. For convenience, normative
 statements for documents are often phrased as statements on the properties of the document.

 The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
 RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL in this specification have the
 meaning defined in [RFC2119].

 5. Basic Concepts
This section is non-normative.

 JSON [RFC4627] is a lightweight, language-independent data interchange format.
 It is easy to parse and easy to generate. However, it is difficult to integrate JSON
 from different sources as the data may contain keys that conflict with other
 data sources. Furthermore, JSON has no
 built-in support for hyperlinks, which are a fundamental building block on
 the Web. Let's start by looking at an example that we will be using for the
 rest of this section:

 Example 1: Sample JSON document
{
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "image": "http://manu.sporny.org/images/manu.png"
}

 It's obvious to humans that the data is about a person whose
 name is "Manu Sporny"
 and that the homepage property contains the URL of that person's homepage.
 A machine doesn't have such an intuitive understanding and sometimes,
 even for humans, it is difficult to resolve ambiguities in such representations. This problem
 can be solved by using unambiguous identifiers to denote the different concepts instead of
 tokens such as "name", "homepage", etc.

 Linked Data, and the Web in general, uses IRIs
 (Internationalized Resource Identifiers as described in [RFC3987]) for unambiguous
 identification. The idea is to use IRIs
 to assign unambiguous identifiers to data that may be of use to other developers.
 It is useful for terms,
 like name and homepage, to expand to IRIs
 so that developers don't accidentally step on each other's terms. Furthermore, developers and
 machines are able to use this IRI (by using a web browser, for instance) to go to
 the term and get a definition of what the term means. This process is known as IRI
 dereferencing.

 Leveraging the popular schema.org vocabulary,
 the example above could be unambiguously expressed as follows:

 Example 2: Sample JSON-LD document using full IRIs instead of terms
{
 "http://schema.org/name": "Manu Sporny",
 "http://schema.org/url": { "@id": "http://manu.sporny.org/" }, ← The '@id' keyword means 'This value is an identifier that is an IRI'
 "http://schema.org/image": { "@id": "http://manu.sporny.org/images/manu.png" }
}

 In the example above, every property is unambiguously identified by an IRI and all values
 representing IRIs are explicitly marked as such by the
 @id keyword. While this is a valid JSON-LD
 document that is very specific about its data, the document is also overly verbose and difficult
 to work with for human developers. To address this issue, JSON-LD introduces the notion
 of a context as described in the next section.

 5.1 The Context
This section is non-normative.

 When two people communicate with one another, the conversation takes
 place in a shared environment, typically called
 "the context of the conversation". This shared context allows the
 individuals to use shortcut terms, like the first name of a mutual friend,
 to communicate more quickly but without losing accuracy. A context in
 JSON-LD works in the same way. It allows two applications to use shortcut
 terms to communicate with one another more efficiently, but without
 losing accuracy.

 Simply speaking, a context is used to map terms to
 IRIs. Terms are case sensitive
 and any valid string that is not a reserved JSON-LD keyword
 can be used as a term.

 For the sample document in the previous section, a context would
 look something like this:

 Example 3: Context for the sample document in the previous section
{
 "@context":
 {
 "name": "http://schema.org/name", ← This means that 'name' is shorthand for 'http://schema.org/name'
 "image": {
 "@id": "http://schema.org/image", ← This means that 'image' is shorthand for 'http://schema.org/image'
 "@type": "@id" ← This means that a string value associated with 'image' should be interpreted as an identifier that is an IRI
 },
 "homepage": {
 "@id": "http://schema.org/url", ← This means that 'homepage' is shorthand for 'http://schema.org/url'
 "@type": "@id" ← This means that a string value associated with 'homepage' should be interpreted as an identifier that is an IRI
 }
 }
}

 As the context above shows, the value of a term definition can
 either be a simple string, mapping the term to an IRI,
 or a JSON object.

 When a JSON object is associated with a term, it is called
 an expanded term definition. The example above specifies that
 the values of image and homepage, if they are
 strings, are to be interpreted as
 IRIs. Expanded term definitions
 also allow terms to be used for index maps
 and to specify whether array values are to be
 interpreted as sets or lists.
 Expanded term definitions may
 be defined using absolute or
 compact IRIs as keys, which is
 mainly used to associate type or language information with an
 absolute or compact IRI.

 Contexts can either be directly embedded
 into the document or be referenced. Assuming the context document in the previous
 example can be retrieved at http://json-ld.org/contexts/person.jsonld,
 it can be referenced by adding a single line and allows a JSON-LD document to
 be expressed much more concisely as shown in the example below:

 Example 4: Referencing a JSON-LD context
{
 "@context": "http://json-ld.org/contexts/person.jsonld",
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "image": "http://manu.sporny.org/images/manu.png"
}

 The referenced context not only specifies how the terms map to
 IRIs in the Schema.org vocabulary but also
 specifies that string values associated with
 the homepage and image property
 can be interpreted as an IRI ("@type": "@id",
 see section 5.2 IRIs for more details). This information allows developers
 to re-use each other's data without having to agree to how their data will interoperate
 on a site-by-site basis. External JSON-LD context documents may contain extra
 information located outside of the @context key, such as
 documentation about the terms declared in the
 document. Information contained outside of the @context value
 is ignored when the document is used as an external JSON-LD context document.

 JSON documents can be interpreted as JSON-LD without having to be modified by
 referencing a context via an HTTP Link Header
 as described in section 6.8 Interpreting JSON as JSON-LD. It is also
 possible to apply a custom context using the JSON-LD API [JSON-LD-API].

 In JSON-LD documents,
 contexts may also be specified inline.
 This has the advantage that documents can be processed even in the
 absence of a connection to the Web. Ultimately, this is a modeling decision
 and different use cases may require different handling.

 Example 5: In-line context definition
{
 "@context":
 {
 "name": "http://schema.org/name",
 "image": {
 "@id": "http://schema.org/image",
 "@type": "@id"
 },
 "homepage": {
 "@id": "http://schema.org/url",
 "@type": "@id"
 }
 },
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "image": "http://manu.sporny.org/images/manu.png"
}

 This section only covers the most basic features of the JSON-LD
 Context. More advanced features related to the JSON-LD Context are covered
 in section 6. Advanced Concepts.

 5.2 IRIs
This section is non-normative.

 IRIs (Internationalized Resource Identifiers
 [RFC3987]) are fundamental to Linked Data as that is how most
 nodes and properties
 are identified. In JSON-LD, IRIs may be represented as an
 absolute IRI or a relative IRI. An
 absolute IRI is defined in [RFC3987] as containing a
 scheme along with path and optional query and
 fragment segments. A relative IRI is an IRI
 that is relative to some other absolute IRI.
 In JSON-LD all relative IRIs are resolved
 relative to the base IRI.

 A string is interpreted as an IRI when it is the
 value of an @id member:

 Example 6: Values of @id are interpreted as IRI
{
...
 "homepage": { "@id": "http://example.com/" }
...
}

 Values that are interpreted as IRIs, can also be
 expressed as relative IRIs. For example,
 assuming that the following document is located at
 http://example.com/about/, the relative IRI
 ../ would expand to http://example.com/ (for more
 information on where relative IRIs can be
 used, please refer to section 8. JSON-LD Grammar).

 Example 7: IRIs can be relative
{
...
 "homepage": { "@id": "../" }
...
}

 Absolute IRIs can be expressed directly
 in the key position like so:

 Example 8: IRI as a key
{
...
 "http://schema.org/name": "Manu Sporny",
...
}

 In the example above, the key http://schema.org/name
 is interpreted as an absolute IRI.

 Term-to-IRI expansion occurs if the key matches a term defined
 within the active context:

 Example 9: Term expansion from context definition
{
 "@context":
 {
 "name": "http://schema.org/name"
 },
 "name": "Manu Sporny",
 "status": "trollin'"
}

 JSON keys that do not expand to an IRI, such as status
 in the example above, are not Linked Data and thus ignored when processed.

 If type coercion rules are specified in the @context for
 a particular term or property IRI, an IRI is generated:

 Example 10: Type coercion
{
 "@context":
 {
 ...
 "homepage":
 {
 "@id": "http://schema.org/url",
 "@type": "@id"
 }
 ...
 }
...
 "homepage": "http://manu.sporny.org/",
...
}

 In the example above, since the value http://manu.sporny.org/
 is expressed as a JSON string, the type coercion
 rules will transform the value into an IRI when processing the data.
 See section 6.5 Type Coercion for more
 details about this feature.

 In summary, IRIs can be expressed in a variety of
 different ways in JSON-LD:

 	JSON object keys that have a term mapping in
 the active context expand to an IRI
 (only applies outside of the context definition).

 	An IRI is generated for the string value specified using
 @id or @type.

 	An IRI is generated for the string value of any key for which there
 are coercion rules that contain an @type key that is
 set to a value of @id or @vocab.

 This section only covers the most basic features associated with IRIs
 in JSON-LD. More advanced features related to IRIs are covered in
 section 6. Advanced Concepts.

 5.3 Node Identifiers
This section is non-normative.

 To be able to externally reference nodes
 in a graph, it is important that
 nodes have an identifier. IRIs
 are a fundamental concept of Linked Data, for
 nodes to be truly linked, dereferencing the
 identifier should result in a representation of that node.
 This may allow an application to retrieve further information about a
 node.

 In JSON-LD, a node is identified using the @id
 keyword:

 Example 11: Identifying a node
{
 "@context":
 {
 ...
 "name": "http://schema.org/name"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 ...
}

 The example above contains a node object identified by the IRI
 http://me.markus-lanthaler.com/.

 This section only covers the most basic features associated with
 node identifiers in JSON-LD. More advanced features related to
 node identifiers are covered in section 6. Advanced Concepts.

5.4 Specifying the Type
This section is non-normative.

The type of a particular node can be specified using the @type
 keyword. In Linked Data, types are uniquely
 identified with an IRI.

Example 12: Specifying the type for a node
{
...
 "@id": "http://example.org/places#BrewEats",
 "@type": "http://schema.org/Restaurant",
...
}

A node can be assigned more than one type by using an array:

Example 13: Specifying multiple types for a node
{
...
 "@id": "http://example.org/places#BrewEats",
 "@type": ["http://schema.org/Restaurant", "http://schema.org/Brewery"],
...
}

The value of an @type key may also be a term defined in the active context:

Example 14: Using a term to specify the type
{
 "@context": {
 ...
 "Restaurant": "http://schema.org/Restaurant",
 "Brewery": "http://schema.org/Brewery"
 }
 "@id": "http://example.org/places#BrewEats",
 "@type": ["Restaurant", "Brewery"],
 ...
}

Note
This section only covers the most basic features associated with
 types in JSON-LD. It is worth noting that the @type
 keyword is not only used to specify the type of a
 node but also to express typed values
 (as described in section 6.4 Typed Values) and to
 type coerce values (as described in
 section 6.5 Type Coercion). Specifically, @type
 cannot be used in a context to define a node's
 type. For a detailed description of the differences, please refer to
 section 6.4 Typed Values.

6. Advanced Concepts

JSON-LD has a number of features that provide functionality above and beyond
 the core functionality described above. The following section describes this
 advanced functionality in more detail.

 6.1 Base IRI
This section is non-normative.

 JSON-LD allows IRIs to be specified in a relative form which is
 resolved against the document base according
 section 5.1 Establishing a Base URI
 of [RFC3986]. The base IRI may be explicitly set with a context
 using the @base keyword.

 For example, if a JSON-LD document was retrieved from http://example.com/document.jsonld,
 relative IRIs would resolve against that IRI:

 Example 15: Use a relative IRI as node identifier
{
 "@context": {
 "label": "http://www.w3.org/2000/01/rdf-schema#label"
 },
 "@id": "",
 "label": "Just a simple document"
}

 This document uses an empty @id, which resolves to the document base.
 However, if the document is moved to a different location, the IRI would change.
 To prevent this without having to use an absolute IRI, a context
 may define an @base mapping, to overwrite the base IRI for the document.

 Example 16: Setting the document base in a document
{
 "@context": {
 "@base": "http://example.com/document.jsonld"
 },
 "@id": "",
 "label": "Just a simple document"
}

 Setting @base to null will prevent
 relative IRIs to be expanded to
 absolute IRIs.

 Please note that the @base will be ignored if used in
 external contexts.

 6.2 Default Vocabulary
This section is non-normative.

 At times, all properties and types may come from the same vocabulary. JSON-LD's
 @vocab keyword allows an author to set a common prefix to be used
 for all properties and types that do not match a term and are neither
 a compact IRI nor an absolute IRI (i.e., they do
 not contain a colon).

 Example 17: Using a common vocabulary prefix
{
 "@context": {
 "@vocab": "http://schema.org/"
 }
 "@id": "http://example.org/places#BrewEats",
 "@type": "Restaurant",
 "name": "Brew Eats"
 ...
}

 If @vocab is used but certain keys in an
 object should not be expanded using
 the vocabulary IRI, a term can be explicitly set
 to null in the context. For instance, in the
 example below the databaseId member would not expand to an
 IRI.

 Example 18: Using the null keyword to ignore data
{
 "@context":
 {
 "@vocab": "http://schema.org/",
 "databaseId": null
 },
 "@id": "http://example.org/places#BrewEats",
 "@type": "Restaurant",
 "name": "Brew Eats",
 "databaseId": "23987520"
}

 6.3 Compact IRIs
This section is non-normative.

 A compact IRI is a way of expressing an IRI
 using a prefix and suffix separated by a colon (:).
 The prefix is a term taken from the
 active context and is a short string identifying a
 particular IRI in a JSON-LD document. For example, the
 prefix foaf may be used as a short hand for the
 Friend-of-a-Friend vocabulary, which is identified using the IRI
 http://xmlns.com/foaf/0.1/. A developer may append
 any of the FOAF vocabulary terms to the end of the prefix to specify a short-hand
 version of the absolute IRI for the vocabulary term. For example,
 foaf:name would be expanded to the IRI
 http://xmlns.com/foaf/0.1/name.

 Example 19: Prefix expansion
{
 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/"
...
 },
 "@type": "foaf:Person"
 "foaf:name": "Dave Longley",
...
}

 In the example above, foaf:name expands to the IRI
 http://xmlns.com/foaf/0.1/name and foaf:Person expands
 to http://xmlns.com/foaf/0.1/Person.

 Prefixes are expanded when the form of the value
 is a compact IRI represented as a prefix:suffix
 combination, the prefix matches a term defined within the
 active context, and the suffix does not begin with two
 slashes (//). The compact IRI is expanded by
 concatenating the IRI mapped to the prefix to the (possibly empty)
 suffix. If the prefix is not defined in the active context,
 or the suffix begins with two slashes (such as in http://example.com),
 the value is interpreted as absolute IRI instead. If the prefix is an
 underscore (_), the value is interpreted as blank node identifier
 instead.

 It's also possible to use compact IRIs within the context as shown in the
 following example:

 Example 20: Using vocabularies
{
 "@context":
 {
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "foaf": "http://xmlns.com/foaf/0.1/",
 "foaf:homepage": { "@type": "@id" },
 "picture": { "@id": "foaf:depiction", "@type": "@id" }
 },
 "@id": "http://me.markus-lanthaler.com/",
 "@type": "foaf:Person",
 "foaf:name": "Markus Lanthaler",
 "foaf:homepage": "http://www.markus-lanthaler.com/",
 "picture": "http://twitter.com/account/profile_image/markuslanthaler"
}

6.4 Typed Values
This section is non-normative.

 A value with an associated type, also known as a
 typed value, is indicated by associating a value with
 an IRI which indicates the value's type. Typed values may be
 expressed in JSON-LD in three ways:

 	By utilizing the @type keyword when defining
 a term within an @context section.

 	By utilizing a value object.

 	By using a native JSON type such as number, true, or false.

The first example uses the @type keyword to associate a
type with a particular term in the @context:

Example 21: Expanded term definition with type coercion
{
 "@context":
 {
 "modified":
 {
 "@id": "http://purl.org/dc/terms/modified",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"
 }
 },
...
 "@id": "http://example.com/docs/1",
 "modified": "2010-05-29T14:17:39+02:00",
...
}

The modified key's value above is automatically type coerced to a
 dateTime value because of the information specified in the
 @context. A JSON-LD processor will interpret the example above
 as follows:

 	Subject
 	Property
 	Value
 	Value Type

 	http://example.com/docs/1
 	http://purl.org/dc/terms/modified
 	2010-05-29T14:17:39+02:00
 	http://www.w3.org/2001/XMLSchema#dateTime

The second example uses the expanded form of setting the type information
in the body of a JSON-LD document:

Example 22: Expanded value with type
{
 "@context":
 {
 "modified":
 {
 "@id": "http://purl.org/dc/terms/modified"
 }
 },
...
 "modified":
 {
 "@value": "2010-05-29T14:17:39+02:00",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"
 }
...
}

Both examples above would generate the value
 2010-05-29T14:17:39+02:00 with the type
 http://www.w3.org/2001/XMLSchema#dateTime. Note that it is
 also possible to use a term or a compact IRI to
 express the value of a type.

Note
The @type keyword is also used to associate a type
 with a node. The concept of a node type and
 a value type are different.

A node type specifies the type of thing
 that is being described, like a person, place, event, or web page. A
 value type specifies the data type of a particular value, such
 as an integer, a floating point number, or a date.

Example 23: Example demonstrating the context-sensitivity for @type
{
...
 "@id": "http://example.org/posts#TripToWestVirginia",
 "@type": "http://schema.org/BlogPosting", ← This is a node type
 "modified":
 {
 "@value": "2010-05-29T14:17:39+02:00",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime" ← This is a value type
 }
...
}

The first use of @type associates a node type
 (http://schema.org/BlogPosting) with the node,
 which is expressed using the @id keyword.
 The second use of @type associates a value type
 (http://www.w3.org/2001/XMLSchema#dateTime) with the
 value expressed using the @value keyword. As a
 general rule, when @value and @type are used in
 the same JSON object, the @type
 keyword is expressing a value type.
 Otherwise, the @type keyword is expressing a
 node type. The example above expresses the following data:

 	Subject
 	Property
 	Value
 	Value Type

 	http://example.org/posts#TripToWestVirginia
 	http://www.w3.org/1999/02/22-rdf-syntax-ns#type
 	http://schema.org/BlogPosting
 	-

 	http://example.org/posts#TripToWestVirginia
 	http://purl.org/dc/terms/modified
 	2010-05-29T14:17:39+02:00
 	http://www.w3.org/2001/XMLSchema#dateTime

6.5 Type Coercion
This section is non-normative.

JSON-LD supports the coercion of values to particular data types.
Type coercion allows someone deploying JSON-LD to coerce the incoming or
outgoing values to the proper data type based on a mapping of data type IRIs to
terms. Using type coercion, value representation is preserved without requiring
the data type to be specified with each piece of data.

Type coercion is specified within an expanded term definition
 using the @type key. The value of this key expands to an IRI.
 Alternatively, the keywords @id or @vocab may be used
 as value to indicate that within the body of a JSON-LD document, a string value of a
 term coerced to @id or @vocab is to be interpreted as an
 IRI. The difference between @id and @vocab is how values are expanded
 to absolute IRIs. @vocab first tries to expand the value
 by interpreting it as term. If no matching term is found in the
 active context, it tries to expand it as compact IRI or absolute IRI
 if there's a colon in the value; otherwise, it will expand the value using the
 active context's vocabulary mapping, if present, or by interpreting it
 as relative IRI. Values coerced to @id in contrast are expanded as
 compact IRI or absolute IRI if a colon is present; otherwise, they are interpreted
 as relative IRI.

Terms or compact IRIs used as the value of a
 @type key may be defined within the same context. This means that one may specify a
 term like xsd and then use xsd:integer within the same
 context definition.

The example below demonstrates how a JSON-LD author can coerce values to
typed values and IRIs.

Example 24: Expanded term definition with types
{
 "@context":
 {
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "http://xmlns.com/foaf/0.1/name",
 "age":
 {
 "@id": "http://xmlns.com/foaf/0.1/age",
 "@type": "xsd:integer"
 },
 "homepage":
 {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "@id": "http://example.com/people#john",
 "name": "John Smith",
 "age": "41",
 "homepage":
 [
 "http://personal.example.org/",
 "http://work.example.com/jsmith/"
]
}

The example shown above would generate the following data.

 	Subject
 	Property
 	Value
 	Value Type

 	http://example.com/people#john
 	http://xmlns.com/foaf/0.1/name
 	John Smith
 	

 	http://example.com/people#john
 	http://xmlns.com/foaf/0.1/age
 	41
 	http://www.w3.org/2001/XMLSchema#integer

 	http://example.com/people#john
 	http://xmlns.com/foaf/0.1/homepage
 	http://personal.example.org/
 	IRI

 	http://work.example.com/jsmith/
 	IRI

Terms may also be defined using absolute IRIs
 or compact IRIs. This allows coercion rules
 to be applied to keys which are not represented as a simple term.
 For example:

Example 25: Term definitions using compact and absolute IRIs
{
 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/",
 "foaf:age":
 {
 "@id": "http://xmlns.com/foaf/0.1/age",
 "@type": "xsd:integer"
 },
 "http://xmlns.com/foaf/0.1/homepage":
 {
 "@type": "@id"
 }
 },
 "foaf:name": "John Smith",
 "foaf:age": "41",
 "http://xmlns.com/foaf/0.1/homepage":
 [
 "http://personal.example.org/",
 "http://work.example.com/jsmith/"
]
}

In this case the @id definition in the term definition is optional.
 If it does exist, the compact IRI or IRI representing
 the term will always be expanded to IRI defined by the @id
 key—regardless of whether a prefix is defined or not.

Type coercion is always performed using the unexpanded value of the key. In the
 example above, that means that type coercion is done looking for foaf:age
 in the active context and not for the corresponding, expanded
 IRI http://xmlns.com/foaf/0.1/age.

Note
Keys in the context are treated as terms for the purpose of
 expansion and value coercion. At times, this may result in multiple representations for the same expanded IRI.
 For example, one could specify that dog and cat both expanded to http://example.com/vocab#animal.
 Doing this could be useful for establishing different type coercion or language specification rules. It also allows a compact IRI (or even an
 absolute IRI) to be defined as something else entirely. For example, one could specify that
 the term http://example.org/zoo should expand to
 http://example.org/river, but this usage is discouraged because it would lead to a
 great deal of confusion among developers attempting to understand the JSON-LD document.

 6.6 Embedding
This section is non-normative.

 Embedding is a JSON-LD feature that allows an author to
 use node objects as
 property values. This is a commonly used mechanism for
 creating a parent-child relationship between two nodes.

 The example shows two nodes related by a property from the first node:

 Example 26: Embedding a node object as property value of another node object
{
...
 "name": "Manu Sporny",
 "knows":
 {
 "@type": "Person",
 "name": "Gregg Kellogg",
 }
...
}

 A node object, like the one used above, may be used in
 any value position in the body of a JSON-LD document.

 6.7 Advanced Context Usage
This section is non-normative.

 Section 5.1 The Context introduced the basics of what makes
 JSON-LD work. This section expands on the basic principles of the
 context and demonstrates how more advanced use cases can
 be achieved using JSON-LD.

 In general, contexts may be used at any time a
 JSON object is defined. The only time that one cannot
 express a context is inside a context definition itself. For example, a
 JSON-LD document may use more than one context at different
 points in a document:

 Example 27: Using multiple contexts
[
 {
 "@context": "http://example.org/contexts/person.jsonld",
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "depiction": "http://twitter.com/account/profile_image/manusporny"
 },
 {
 "@context": "http://example.org/contexts/place.jsonld",
 "name": "The Empire State Building",
 "description": "The Empire State Building is a 102-story landmark in New York City.",
 "geo": {
 "latitude": "40.75",
 "longitude": "73.98"
 }
 }
]

 Duplicate context terms are overridden using a
 most-recently-defined-wins mechanism.

 Example 28: Scoped contexts within node objects
{
 "@context":
 {
 "name": "http://example.com/person#name,
 "details": "http://example.com/person#details"
 }",
 "name": "Markus Lanthaler",
 ...
 "details":
 {
 "@context":
 {
 "name": "http://example.com/organization#name"
 },
 "name": "Graz University of Technology"
 }
}

 In the example above, the name term is overridden
 in the more deeply nested details structure. Note that this is
 rarely a good authoring practice and is typically used when working with
 legacy applications that depend on a specific structure of the
 JSON object. If a term is redefined within a
 context, all previous rules associated with the previous definition are
 removed. If a term is redefined to null,
 the term is effectively removed from the list of
 terms defined in the active context.

 Multiple contexts may be combined using an array, which is processed
 in order. The set of contexts defined within a specific JSON object are
 referred to as local contexts. The
 active context refers to the accumulation of
 local contexts that are in scope at a
 specific point within the document. Setting a local context
 to null effectively resets the active context
 to an empty context. The following example specifies an external context
 and then layers an embedded context on top of the external context:

 Example 29: Combining external and local contexts
{
 "@context": [
 "http://json-ld.org/contexts/person.jsonld",
 {
 "pic": "http://xmlns.com/foaf/0.1/depiction"
 }
],
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "pic": "http://twitter.com/account/profile_image/manusporny"
}

 Note
When possible, the context definition should be put
 at the top of a JSON-LD document. This makes the document easier to read and
 might make streaming parsers more efficient. Documents that do not have the
 context at the top are still conformant JSON-LD.

 Note
To avoid forward-compatibility issues, terms
 starting with an @ character are to be avoided as they
 might be used as keywords in future versions
 of JSON-LD. Terms starting with an @ character that are not
 JSON-LD 1.0 keywords are treated as any other term, i.e.,
 they are ignored unless mapped to an IRI. Furthermore, the use of
 empty terms ("") is not allowed as
 not all programming languages are able to handle empty JSON keys.

 6.8 Interpreting JSON as JSON-LD

 Ordinary JSON documents can be interpreted as JSON-LD by referencing a JSON-LD
 context document in an HTTP Link Header. Doing so allows JSON to
 be unambiguously machine-readable without requiring developers to drastically
 change their documents and provides an upgrade path for existing infrastructure
 without breaking existing clients that rely on the application/json
 media type or a media type with a +json suffix as defined in
 [RFC6839].

 In order to use an external context with an ordinary JSON document, an author
 MUST specify an IRI to a valid JSON-LD document in
 an HTTP Link Header [RFC5988] using the http://www.w3.org/ns/json-ld#context
 link relation. The referenced document MUST have a top-level JSON object.
 The @context subtree within that object is added to the top-level
 JSON object of the referencing document. If an array
 is at the top-level of the referencing document and its items are
 JSON objects, the @context
 subtree is added to all array items. All extra information located outside
 of the @context subtree in the referenced document MUST be
 discarded. Effectively this means that the active context is
 initialized with the referenced external context. A response MUST NOT
 contain more than one HTTP Link Header [RFC5988] using the
 http://www.w3.org/ns/json-ld#context link relation.

 The following example demonstrates the use of an external context with an
 ordinary JSON document:

 Example 30: Referencing a JSON-LD context from a JSON document via an HTTP Link Header
GET /ordinary-json-document.json HTTP/1.1
Host: example.com
Accept: application/ld+json,application/json,*/*;q=0.1

====================================

HTTP/1.1 200 OK
...
Content-Type: application/json
Link: <http://json-ld.org/contexts/person.jsonld>; rel="http://www.w3.org/ns/json-ld#context"; type="application/ld+json"

{
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/",
 "image": "http://twitter.com/account/profile_image/markuslanthaler"
}

 Please note that JSON-LD documents
 served with the application/ld+json
 media type MUST have all context information, including references to external
 contexts, within the body of the document. Contexts linked via a
 http://www.w3.org/ns/json-ld#context HTTP Link Header MUST be
 ignored for such documents.

 6.9 String Internationalization
This section is non-normative.

 At times, it is important to annotate a string
 with its language. In JSON-LD this is possible in a variety of ways.
 First, it is possible to define a default language for a JSON-LD document
 by setting the @language key in the context:

 Example 31: Setting the default language of a JSON-LD document
{
 "@context":
 {
 ...
 "@language": "ja"
 },
 "name": "花澄",
 "occupation": "科学者"
}

 The example above would associate the ja language
 code with the two strings 花澄 and 科学者.
 Languages codes are defined in [BCP47]. The default language applies to all
 string values that are not type coerced.

 To clear the default language for a subtree, @language can
 be set to null in a local context as follows:

 Example 32: Clearing default language
{
 "@context": {
 ...
 "@language": "ja"
 },
 "name": "花澄",
 "details": {
 "@context": {
 "@language": null
 },
 "occupation": "Ninja"
 }
}

 Second, it is possible to associate a language with a specific term
 using an expanded term definition:

 Example 33: Expanded term definition with language
{
 "@context": {
 ...
 "ex": "http://example.com/vocab/",
 "@language": "ja",
 "name": { "@id": "ex:name", "@language": null },
 "occupation": { "@id": "ex:occupation" },
 "occupation_en": { "@id": "ex:occupation", "@language": "en" },
 "occupation_cs": { "@id": "ex:occupation", "@language": "cs" }
 },
 "name": "Yagyū Muneyoshi",
 "occupation": "忍者",
 "occupation_en": "Ninja",
 "occupation_cs": "Nindža",
 ...
}

 The example above would associate 忍者 with the specified default
 language code ja, Ninja with the language code
 en, and Nindža with the language code cs.
 The value of name, Yagyū Muneyoshi wouldn't be
 associated with any language code since @language was reset to
 null in the expanded term definition.

 Note
Language associations are only applied to plain
 strings. Typed values
 or values that are subject to type coercion
 are not language tagged.

 Just as in the example above, systems often need to express the value of a
 property in multiple languages. Typically, such systems also try to ensure that
 developers have a programmatically easy way to navigate the data structures for
 the language-specific data. In this case, language maps
 may be utilized.

 Example 34: Language map expressing a property in three languages
{
 "@context":
 {
 ...
 "occupation": { "@id": "ex:occupation", "@container": "@language" }
 },
 "name": "Yagyū Muneyoshi",
 "occupation":
 {
 "ja": "忍者",
 "en": "Ninja",
 "cs": "Nindža"
 }
 ...
}

 The example above expresses exactly the same information as the previous
 example but consolidates all values in a single property. To access the
 value in a specific language in a programming language supporting dot-notation
 accessors for object properties, a developer may use the
 property.language pattern. For example, to access the occupation
 in English, a developer would use the following code snippet:
 obj.occupation.en.

 Third, it is possible to override the default language by using a
 value object:

 Example 35: Overriding default language using an expanded value
{
 "@context": {
 ...
 "@language": "ja"
 },
 "name": "花澄",
 "occupation": {
 "@value": "Scientist",
 "@language": "en"
 }
}

 This makes it possible to specify a plain string by omitting the
 @language tag or setting it to null when expressing
 it using a value object:

 Example 36: Removing language information using an expanded value
{
 "@context": {
 ...
 "@language": "ja"
 },
 "name": {
 "@value": "Frank"
 },
 "occupation": {
 "@value": "Ninja",
 "@language": "en"
 },
 "speciality": "手裏剣"
}

 6.10 IRI Expansion within a Context
This section is non-normative.

 In general, normal IRI expansion rules apply
 anywhere an IRI is expected (see section 5.2 IRIs). Within
 a context definition, this can mean that terms defined
 within the context may also be used within that context as long as
 there are no circular dependencies. For example, it is common to use
 the xsd namespace when defining typed values:

Example 37: IRI expansion within a context
{
 "@context":
 {
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "http://xmlns.com/foaf/0.1/name",
 "age":
 {
 "@id": "http://xmlns.com/foaf/0.1/age",
 "@type": "xsd:integer"
 },
 "homepage":
 {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 ...
}

In this example, the xsd term is defined
 and used as a prefix for the @type coercion
 of the age property.

Terms may also be used when defining the IRI of another
term:

Example 38: Using a term to define the IRI of another term within a context
{
 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "foaf:name",
 "age":
 {
 "@id": "foaf:age",
 "@type": "xsd:integer"
 },
 "homepage":
 {
 "@id": "foaf:homepage",
 "@type": "@id"
 }
 },
 ...
}

Compact IRIs
 and IRIs may be used on the left-hand side of a
 term definition.

Example 39: Using a compact IRI as a term
{
 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "foaf:name",
 "foaf:age":
 {
 "@type": "xsd:integer"
 },
 "foaf:homepage":
 {
 "@type": "@id"
 }
 },
 ...
}

In this example, the compact IRI form is used in two different
ways.
In the first approach, foaf:age declares both the
IRI for the term (using short-form) as well as the
@type associated with the term. In the second
approach, only the @type associated with the term is
specified. The full IRI for
foaf:homepage is determined by looking up the foaf
prefix in the
context.

Absolute IRIs may also be used in the key position in a context:

Example 40: Associating context definitions with absolute IRIs
{
 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "foaf:name",
 "foaf:age":
 {
 "@id": "foaf:age",
 "@type": "xsd:integer"
 },
 "http://xmlns.com/foaf/0.1/homepage":
 {
 "@type": "@id"
 }
 },
 ...
}

In order for the absolute IRI to match above, the absolute IRI
 needs to be used in the JSON-LD document. Also note that foaf:homepage
 will not use the { "@type": "@id" } declaration because
 foaf:homepage is not the same as http://xmlns.com/foaf/0.1/homepage.
 That is, terms are looked up in a context using
 direct string comparison before the prefix lookup mechanism is applied.

Note
While it is possible to define a compact IRI, or
 an absolute IRI to expand to some other unrelated IRI
 (for example, foaf:name expanding to
 http://example.org/unrelated#species), such usage is strongly
 discouraged.

The only exception for using terms in the context is that
 circular definitions are not allowed. That is,
 a definition of term1 cannot depend on the
 definition of term2 if term2 also depends on
 term1. For example, the following context definition
 is illegal:

Example 41: Illegal circular definition of terms within a context
{
 "@context":
 {
 "term1": "term2:foo",
 "term2": "term1:bar"
 },
 ...
}

6.11 Sets and Lists
This section is non-normative.

A JSON-LD author can express multiple values in a compact way by using
 arrays. Since graphs do not describe ordering for links
 between nodes, arrays in JSON-LD do not provide an ordering of the
 contained elements by default. This is exactly the opposite from regular JSON
 arrays, which are ordered by default. For example, consider the following
 simple document:

Example 42: Multiple values with no inherent order
{
...
 "@id": "http://example.org/people#joebob",
 "nick": ["joe", "bob", "JB"],
...
}

The example shown above would result in the following data being generated,
 each relating the node to an individual value, with no inherent order:

 	Subject
 	Property
 	Value

 	http://example.org/people#joebob
 	http://xmlns.com/foaf/0.1/nick
 	joe

 	http://example.org/people#joebob
 	http://xmlns.com/foaf/0.1/nick
 	bob

 	http://example.org/people#joebob
 	http://xmlns.com/foaf/0.1/nick
 	JB

Multiple values may also be expressed using the expanded form:

Example 43: Using an expanded form to set multiple values
{
 "@id": "http://example.org/articles/8",
 "dc:title":
 [
 {
 "@value": "Das Kapital",
 "@language": "de"
 },
 {
 "@value": "Capital",
 "@language": "en"
 }
]
}

The example shown above would generate the following data, again with
 no inherent order:

 	Subject
 	Property
 	Value
 	Language

 	http://example.org/articles/8
 	http://purl.org/dc/terms/title
 	Das Kapital
 	de

 	http://example.org/articles/8
 	http://purl.org/dc/terms/title
 	Capital
 	en

As the notion of ordered collections is rather important in data
 modeling, it is useful to have specific language support. In JSON-LD,
 a list may be represented using the @list keyword as follows:

Example 44: An ordered collection of values in JSON-LD
{
...
 "@id": "http://example.org/people#joebob",
 "foaf:nick":
 {
 "@list": ["joe", "bob", "jaybee"]
 },
...
}

This describes the use of this array as being ordered,
 and order is maintained when processing a document. If every use of a given multi-valued
 property is a list, this may be abbreviated by setting @container
 to @list in the context:

Example 45: Specifying that a collection is ordered in the context
{
 "@context":
 {
 ...
 "nick":
 {
 "@id": "http://xmlns.com/foaf/0.1/nick",
 "@container": "@list"
 }
 },
...
 "@id": "http://example.org/people#joebob",
 "nick": ["joe", "bob", "jaybee"],
...
}

Note
List of lists in the form of list objects
 are not allowed in this version of JSON-LD. This decision was made due to the
 extreme amount of added complexity when processing lists of lists.

While @list is used to describe ordered lists,
 the @set keyword is used to describe unordered sets.
 The use of @set in the body of a JSON-LD document
 is optimized away when processing the document, as it is just syntactic
 sugar. However, @set is helpful when used within the context
 of a document.
 Values of terms associated with an @set or @list container
 are always represented in the form of an array,
 even if there is just a single value that would otherwise be optimized to
 a non-array form in compact form (see
 section 6.18 Compacted Document Form). This makes post-processing of
 JSON-LD documents easier as the data is always in array form, even if the
 array only contains a single value.

 6.12 Reverse Properties
This section is non-normative.

 JSON-LD serializes directed graphs. That means that
 every property points from a node to another node
 or value. However, in some cases, it is desirable
 to serialize in the reverse direction. Consider for example the case where a person
 and its children should be described in a document. If the used vocabulary does not
 provide a children property but just a parent
 property, every node representing a child would have to
 be expressed with a property pointing to the parent as in the following
 example.

 Example 46: A document with children linking to their parent
[
 {
 "@id": "#homer",
 "http://example.com/vocab#name": "Homer"
 },
 {
 "@id": "#bart",
 "http://example.com/vocab#name": "Bart",
 "http://example.com/vocab#parent": { "@id": "#homer" }
 },
 {
 "@id": "#lisa",
 "http://example.com/vocab#name": "Lisa",
 "http://example.com/vocab#parent": { "@id": "#homer" }
 }
]

 Expressing such data is much simpler by using JSON-LD's @reverse
 keyword:

 Example 47: A person and its children using a reverse property
{
 "@id": "#homer",
 "http://example.com/vocab#name": "Homer",
 "@reverse": {
 "http://example.com/vocab#parent": [
 {
 "@id": "#bart",
 "http://example.com/vocab#name": "Bart"
 },
 {
 "@id": "#lisa",
 "http://example.com/vocab#name": "Lisa"
 }
]
 }
}

 The @reverse keyword can also be used in
 expanded term definitions
 to create reverse properties as shown in the following example:

 Example 48: Using @reverse to define reverse properties
{
 "@context": {
 "name": "http://example.com/vocab#name",
 "children": { "@reverse": "http://example.com/vocab#parent" }
 },
 "@id": "#homer",
 "name": "Homer",
 "children": [
 {
 "@id": "#bart",
 "name": "Bart"
 },
 {
 "@id": "#lisa",
 "name": "Lisa"
 }
]
}

 6.13 Named Graphs
This section is non-normative.

 At times, it is necessary to make statements about a graph
 itself, rather than just a single node. This can be done by
 grouping a set of nodes using the @graph
 keyword. A developer may also name data expressed using the
 @graph keyword by pairing it with an
 @id keyword as shown in the following example:

 Example 49: Identifying and making statements about a graph
{
 "@context": {
 "generatedAt": {
 "@id": "http://www.w3.org/ns/prov#generatedAtTime",
 "@type": "http://www.w3.org/2001/XMLSchema#date"
 },
 "Person": "http://xmlns.com/foaf/0.1/Person",
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@id": "http://example.org/graphs/73",
 "generatedAt": "2012-04-09",
 "@graph":
 [
 {
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "Person",
 "name": "Manu Sporny",
 "knows": "http://greggkellogg.net/foaf#me"
 },
 {
 "@id": "http://greggkellogg.net/foaf#me",
 "@type": "Person",
 "name": "Gregg Kellogg",
 "knows": "http://manu.sporny.org/about#manu"
 }
]
}

 The example above expresses a named graph that is identified
 by the IRI http://example.org/graphs/73. That
 graph is composed of the statements about Manu and Gregg. Metadata about
 the graph itself is expressed via the generatedAt property,
 which specifies when the graph was generated. An alternative view of the
 information above is represented in table form below:

 	Graph
 	Subject
 	Property
 	Value
 	Value Type

 	
 	http://example.org/graphs/73
 	http://www.w3.org/ns/prov#generatedAtTime
 	2012-04-09
 	http://www.w3.org/2001/XMLSchema#date

 	http://example.org/graphs/73
 	http://manu.sporny.org/about#manu
 	http://www.w3.org/2001/XMLSchema#type
 	http://xmlns.com/foaf/0.1/Person
 	

 	http://example.org/graphs/73
 	http://manu.sporny.org/about#manu
 	http://xmlns.com/foaf/0.1/name
 	Manu Sporny
 	

 	http://example.org/graphs/73
 	http://manu.sporny.org/about#manu
 	http://xmlns.com/foaf/0.1/knows
 	http://greggkellogg.net/foaf#me
 	

 	http://example.org/graphs/73
 	http://greggkellogg.net/foaf#me
 	http://www.w3.org/2001/XMLSchema#type
 	http://xmlns.com/foaf/0.1/Person
 	

 	http://example.org/graphs/73
 	http://greggkellogg.net/foaf#me
 	http://xmlns.com/foaf/0.1/name
 	Gregg Kellogg
 	

 	http://example.org/graphs/73
 	http://greggkellogg.net/foaf#me
 	http://xmlns.com/foaf/0.1/knows
 	http://manu.sporny.org/about#manu
 	

 When a JSON-LD document's top-level structure is an
 object that contains no other
 properties than @graph and
 optionally @context (properties that are not mapped to an
 IRI or a keyword are ignored),
 @graph is considered to express the otherwise implicit
 default graph. This mechanism can be useful when a number
 of nodes exist at the document's top level that
 share the same context, which is, e.g., the case when a
 document is flattened. The
 @graph keyword collects such nodes in an array
 and allows the use of a shared context.

 Example 50: Using @graph to explicitly express the default graph
{
 "@context": ...,
 "@graph":
 [
 {
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "foaf:Person",
 "name": "Manu Sporny",
 "knows": "http://greggkellogg.net/foaf#me"
 },
 {
 "@id": "http://greggkellogg.net/foaf#me",
 "@type": "foaf:Person",
 "name": "Gregg Kellogg",
 "knows": "http://manu.sporny.org/about#manu"
 }
]
}

 In this case, embedding doesn't work as each node object
 references the other. This is equivalent to using multiple
 node objects in array and defining
 the @context within each node object:

 Example 51: Context needs to be duplicated if @graph is not used
[
 {
 "@context": ...,
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "foaf:Person",
 "name": "Manu Sporny",
 "knows": "http://greggkellogg.net/foaf#me"
 },
 {
 "@context": ...,
 "@id": "http://greggkellogg.net/foaf#me",
 "@type": "foaf:Person",
 "name": "Gregg Kellogg",
 "knows": "http://manu.sporny.org/about#manu"
 }
]

 6.14 Identifying Blank Nodes
This section is non-normative.

 At times, it becomes necessary to be able to express information without
 being able to uniquely identify the node with an IRI.
 This type of node is called a blank node. JSON-LD does not require
 all nodes to be identified using @id. However, some graph topologies
 may require identifiers to be serializable. Graphs containing loops, e.g., cannot
 be serialized using embedding alone, @id must be used to connect the nodes.
 In these situations, one can use blank node identifiers,
 which look like IRIs using an underscore (_)
 as scheme. This allows one to reference the node locally within the document, but
 makes it impossible to reference the node from an external document. The
 blank node identifier is scoped to the document in which it is used.

 Example 52: Specifying a local blank node identifier
{
 ...
 "@id": "_:n1",
 "name": "Secret Agent 1",
 "knows":
 {
 "name": "Secret Agent 2",
 "knows": { "@id": "_:n1" }
 }
}

 The example above contains information about two secret agents that cannot be identified
 with an IRI. While expressing that agent 1 knows agent 2
 is possible without using blank node identifiers,
 it is necessary to assign agent 1 an identifier so that it can be referenced
 from agent 2.

 It is worth nothing that blank node identifiers may be relabeled during processing.
 If a developer finds that they refer to the blank node more than once,
 they should consider naming the node using a dereferenceable IRI so that
 it can also be referenced from other documents.

 6.15 Aliasing Keywords
This section is non-normative.

 Each of the JSON-LD keywords,
 except for @context, may be aliased to application-specific
 keywords. This feature allows legacy JSON content to be utilized
 by JSON-LD by re-using JSON keys that already exist in legacy documents.
 This feature also allows developers to design domain-specific implementations
 using only the JSON-LD context.

 Example 53: Aliasing keywords
{
 "@context":
 {
 "url": "@id",
 "a": "@type",
 "name": "http://xmlns.com/foaf/0.1/name"
 },
 "url": "http://example.com/about#gregg",
 "a": "http://xmlns.com/foaf/0.1/Person",
 "name": "Gregg Kellogg"
}

 In the example above, the @id and @type
 keywords have been given the aliases
 url and a, respectively.

 Since keywords cannot be redefined, they can also not be aliased to
 other keywords.

 6.16 Data Indexing
This section is non-normative.

 Databases are typically used to make access to
 data more efficient. Developers often extend this sort of functionality into
 their application data to deliver similar performance gains. Often this
 data does not have any meaning from a Linked Data standpoint, but is
 still useful for an application.

 JSON-LD introduces the notion of index maps
 that can be used to structure data into a form that is
 more efficient to access. The data indexing feature allows an author to
 structure data using a simple key-value map where the keys do not map
 to IRIs. This enables direct access to data
 instead of having to scan an array in search of a specific item.
 In JSON-LD such data can be specified by associating the
 @index keyword with a
 @container declaration in the context:

 Example 54: Indexing data in JSON-LD
{
 "@context":
 {
 "schema": "http://schema.org/",
 "name": "schema:name",
 "body": "schema:articleBody",
 "words": "schema:wordCount",
 "post": {
 "@id": "schema:blogPost",
 "@container": "@index"
 }
 },
 "@id": "http://example.com/",
 "@type": "schema:Blog",
 "name": "World Financial News",
 "post": {
 "en": {
 "@id": "http://example.com/posts/1/en",
 "body": "World commodities were up today with heavy trading of crude oil...",
 "words": 1539
 },
 "de": {
 "@id": "http://example.com/posts/1/de",
 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...",
 "words": 1204
 }
 }
}

 In the example above, the post term has
 been marked as an index map. The en and
 de keys will be ignored semantically, but preserved
 syntactically, by the JSON-LD Processor. This allows a developer to
 access the German version of the post using the
 following code snippet: obj.post.de.

 The interpretation of the data above is expressed in
 the table below. Note how the index keys do not appear in the Linked Data
 below, but would continue to exist if the document were compacted or
 expanded (see section 6.18 Compacted Document Form and
 section 6.17 Expanded Document Form) using a JSON-LD processor:

 	Subject
 	Property
 	Value

 	http://example.com/
 	http://www.w3.org/1999/02/22-rdf-syntax-ns#type
 	http://schema.org/Blog

 	http://example.com/
 	http://schema.org/name
 	World Financial News

 	http://example.com/
 	http://schema.org/blogPost
 	http://example.com/posts/1/en

 	http://example.com/
 	http://schema.org/blogPost
 	http://example.com/posts/1/de

 	http://example.com/posts/1/en
 	http://schema.org/articleBody
 	World commodities were up today with heavy trading of crude oil...

 	http://example.com/posts/1/en
 	http://schema.org/wordCount
 	1539

 	http://example.com/posts/1/de
 	http://schema.org/articleBody
 	Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...

 	http://example.com/posts/1/de
 	http://schema.org/wordCount
 	1204

 6.17 Expanded Document Form
This section is non-normative.

 The JSON-LD Processing Algorithms and API specification [JSON-LD-API]
 defines a method for expanding a JSON-LD document.
 Expansion is the process of taking a JSON-LD document and applying a
 @context such that all IRIs, types, and values
 are expanded so that the @context is no longer necessary.

 For example, assume the following JSON-LD input document:

 Example 55: Sample JSON-LD document
{
 "@context":
 {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/"
}

 Running the JSON-LD Expansion algorithm against the JSON-LD input document
 provided above would result in the following output:

 Example 56: Expanded form for the previous example
[
 {
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Manu Sporny" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://manu.sporny.org/" }
]
 }
]

 JSON-LD's media type defines a
 profile parameter which can be used to signal or request
 expanded document form. The profile URI identifying expanded document
 form is http://www.w3.org/ns/json-ld#expanded.

 6.18 Compacted Document Form
This section is non-normative.

 The JSON-LD Processing Algorithms and API specification [JSON-LD-API] defines
 a method for compacting a JSON-LD document. Compaction is the process
 of applying a developer-supplied context to shorten IRIs
 to terms or compact IRIs
 and JSON-LD values expressed in expanded form to simple values such as
 strings or numbers.
 Often this makes it simpler to work with document as the data is expressed in
 application-specific terms. Compacted documents are also typically easier to read
 for humans.

 For example, assume the following JSON-LD input document:

 Example 57: Sample expanded JSON-LD document
[
 {
 "http://xmlns.com/foaf/0.1/name": ["Manu Sporny"],
 "http://xmlns.com/foaf/0.1/homepage": [
 {
 "@id": "http://manu.sporny.org/"
 }
]
 }
]

 Additionally, assume the following developer-supplied JSON-LD context:

 Example 58: Sample context
{
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 }
}

 Running the JSON-LD Compaction algorithm given the context supplied above
 against the JSON-LD input document provided above would result in the following
 output:

 Example 59: Compact form of the sample document once sample context has been applied
{
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/"
}

 JSON-LD's media type defines a
 profile parameter which can be used to signal or request
 compacted document form. The profile URI identifying compacted document
 form is http://www.w3.org/ns/json-ld#compacted.

 6.19 Flattened Document Form
This section is non-normative.

 The JSON-LD Processing Algorithms and API specification [JSON-LD-API] defines
 a method for flattening a JSON-LD document. Flattening collects all
 properties of a node in a single JSON object and labels
 all blank nodes with
 blank node identifiers.
 This ensures a shape of the data and consequently may drastically simplify the code
 required to process JSON-LD in certain applications.

 For example, assume the following JSON-LD input document:

 Example 60: Sample JSON-LD document
{
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": [
 {
 "@id": "http://manu.sporny.org/about#manu",
 "name": "Manu Sporny"
 },
 {
 "name": "Dave Longley"
 }
]
}

 Running the JSON-LD Flattening algorithm against the JSON-LD input document in
 the example above and using the same context would result in the following
 output:

 Example 61: Flattened and compacted form for the previous example
{
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@graph": [
 {
 "@id": "_:b0",
 "name": "Dave Longley"
 },
 {
 "@id": "http://manu.sporny.org/about#manu",
 "name": "Manu Sporny"
 },
 {
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": [
 { "@id": "http://manu.sporny.org/about#manu" },
 { "@id": "_:b0" }
]
 }
]
}

 JSON-LD's media type defines a
 profile parameter which can be used to signal or request
 flattened document form. The profile URI identifying flattened document
 form is http://www.w3.org/ns/json-ld#flattened. It can be
 combined with the profile URI identifying
 expanded document form or
 compacted document from.

 6.20 Embedding JSON-LD in HTML Documents
This section is non-normative.

 HTML script tags can be used to embed blocks of data in documents.
 This way, JSON-LD content can be easily embedded in HTML by placing
 it in a script element with the type attribute set to
 application/ld+json.

 Example 62: Embedding JSON-LD in HTML
<script type="application/ld+json">
{
 "@context": "http://json-ld.org/contexts/person.jsonld",
 "@id": "http://dbpedia.org/resource/John_Lennon",
 "name": "John Lennon",
 "born": "1940-10-09",
 "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"
}
</script>

 Depending on how the HTML document is served, certain strings may need
 to be escaped.

 Defining how such data may be used is beyond the scope of this specification.
 The embedded JSON-LD document might be extracted as is or, e.g., be
 interpreted as RDF.

 If JSON-LD content is extracted as RDF [RDF11-CONCEPTS], it should be expanded into an
 RDF Dataset using the
 Deserialize JSON-LD to RDF Algorithm
 [JSON-LD-API].

 7. Data Model

 JSON-LD is a serialization format for Linked Data based on JSON.
 It is therefore important to distinguish between the syntax, which is
 defined by JSON in [RFC4627], and the data model which is
 an extension of the RDF data model [RDF11-CONCEPTS]. The precise
 details of how JSON-LD relates to the RDF data model are given in
 section 9. Relationship to RDF.

 To ease understanding for developers unfamiliar with the RDF model, the
 following summary is provided:

 	A JSON-LD document serializes a
 generalized RDF Dataset
 [RDF11-CONCEPTS], which is a collection of graphs
 that comprises exactly one default graph
 and zero or more named graphs.

 	The default graph does not have a name and MAY be empty.

 	Each named graph is a pair consisting of an IRI or
 blank node identifier (the
 graph name)
 and a graph. Whenever practical, the graph name SHOULD be an IRI.

 	A graph
 is a labeled directed graph, i.e., a set of nodes
 connected by edges.

 	Every edge has a direction associated with it and is labeled with
 an IRI or a blank node identifier. Within the JSON-LD syntax
 these edge labels are called
 properties.
 Whenever practical, an edge SHOULD be labeled with an IRI.

 	Every node
 is an IRI, a blank node, a JSON-LD value,
 or a list.

 	A node having an outgoing edge MUST be an IRI or a
 blank node.

 	A graph MUST NOT contain unconnected nodes,
 i.e., nodes which are not connected by an edge to any other node.

 	An IRI
 (Internationalized Resource Identifier) is a string that conforms to the syntax
 defined in [RFC3987]. IRIs used within a
 graph SHOULD return a Linked Data document describing
 the resource denoted by that IRI when being dereferenced.

 	A blank node
 is a node which is neither an IRI,
 nor a JSON-LD value, nor a list. A blank node MAY be identified
 using a blank node identifier.

 	A blank node identifier
 is a string that can be used as an identifier for a blank node within
 the scope of a JSON-LD document. Blank node identifiers begin with
 _:.

 	A JSON-LD value is a typed value, a string (which is interpreted
 as typed value with type xsd:string), a number
 (numbers with a non-zero fractional part, i.e., the result of a modulo‑1 operation,
 are interpreted as typed values with type xsd:double, all other
 numbers are interpreted as typed values
 with type xsd:integer), true or false (which are interpreted as
 typed values with type xsd:boolean),
 or a language-tagged string.

 	A typed value consists of a value, which is a string, and a type, which is an
 IRI.

 	A language-tagged string
 consists of a string and a non-empty language tag as defined by [BCP47].
 The language tag MUST be well-formed according to section
 2.2.9 Classes of Conformance
 of [BCP47].

 	A list is a sequence of zero or more IRIs,
 blank nodes, and JSON-LD values.
 Lists are interpreted as
 RDF list structures [RDF11-MT].

 JSON-LD documents MAY contain data
 that cannot be represented by the data model
 defined above. Unless otherwise specified, such data is ignored when a
 JSON-LD document is being processed. One result of this rule
 is that properties which are not mapped to an IRI,
 a blank node, or keyword will be ignored.

 [image: An illustration of the data model]

 Figure 1: An illustration of the data model.

 8. JSON-LD Grammar

 This appendix restates the syntactic conventions described in the
 previous sections more formally.

 A JSON-LD document MUST be a valid JSON document as described
 in [RFC4627].

 A JSON-LD document MUST be a single node object
 or an array whose elements are each
 node objects at the top level.

 In contrast to JSON, in JSON-LD the keys in objects
 MUST be unique.

 Note
JSON-LD allows keywords to be aliased
 (see section 6.15 Aliasing Keywords for details). Whenever a keyword is
 discussed in this grammar, the statements also apply to an alias for
 that keyword. For example, if the active context
 defines the term id as an alias for @id,
 that alias may be legitimately used as a substitution for @id.
 Note that keyword aliases are not expanded during context
 processing.

 8.1 Terms

 A term is a short-hand string that expands
 to an IRI or a blank node identifier.

 A term MUST NOT equal any of the JSON-LD
 keywords.

 To avoid forward-compatibility issues, a term SHOULD NOT start
 with an @ character as future versions of JSON-LD may introduce
 additional keywords. Furthermore, the term MUST NOT
 be an empty string ("") as not all programming languages
 are able to handle empty JSON keys.

 See section 5.1 The Context and
 section 5.2 IRIs for further discussion
 on mapping terms to IRIs.

 8.2 Node Objects

 A node object represents zero or more properties of a
 node in the graph serialized by the
 JSON-LD document. A JSON object is a
 node object if it exists outside of a JSON-LD
 context and:

 	it does not contain the @value, @list,
 or @set keywords, and

 	it is not the top-most JSON object in the JSON-LD document
 consisting of no other members than @graph and
 @context.

 The properties of a node in
 a graph may be spread among different
 node objects within a document. When
 that happens, the keys of the different
 node objects need to be merged to create the
 properties of the resulting node.

 A node object MUST be a JSON object. All keys
 which are not IRIs,
 compact IRIs, terms
 valid in the active context, or one of the following
 keywords MUST be ignored when processed:

 	@context,

 	@id,

 	@graph,

 	@type,

 	@reverse, or

 	@index

 If the node object contains the @context
 key, its value MUST be null, an absolute IRI,
 a relative IRI, a context definition, or
 an array composed of any of these.

 If the node object contains the @id key,
 its value MUST be an absolute IRI, a relative IRI,
 or a compact IRI (including
 blank node identifiers).
 See section 5.3 Node Identifiers,
 section 6.3 Compact IRIs, and
 section 6.14 Identifying Blank Nodes for further discussion on
 @id values.

 If the node object contains the @graph
 key, its value MUST be
 a node object or
 an array of zero or more node objects.
 If the node object contains an @id keyword,
 its value is used as the label of a named graph.
 See section 6.13 Named Graphs for further discussion on
 @graph values. As a special case, if a JSON object
 contains no keys other than @graph and @context, and the
 JSON object is the root of the JSON-LD document, the
 JSON object is not treated as a node object; this
 is used as a way of defining node
 definitions that may not form a connected graph. This allows a
 context to be defined which is shared by all of the constituent
 node objects.

 If the node object contains the @type
 key, its value MUST be either an absolute IRI, a
 relative IRI, a compact IRI
 (including blank node identifiers),
 a term defined in the active context expanding into an absolute IRI, or
 an array of any of these.
 See section 5.4 Specifying the Type for further discussion on
 @type values.

 If the node object contains the @reverse key,
 its value MUST be a JSON object containing members representing reverse
 properties. Each value of such a reverse property MUST be an absolute IRI,
 a relative IRI, a compact IRI, a blank node identifier,
 a node object or an array containing a combination of these.

 If the node object contains the @index key,
 its value MUST be a string. See
 section 6.16 Data Indexing for further discussion
 on @index values.

 Keys in a node object that are not
 keywords MAY expand to an absolute IRI
 using the active context. The values associated with keys that expand
 to an absolute IRI MUST be one of the following:

 	string,

 	number,

 	true,

 	false,

 	null,

 	node object,

 	value object,

 	list object,

 	set object,

 	an array of zero or more of the possibilities above,

 	a language map, or

 	an index map

 8.3 Value Objects

 A value object is used to explicitly associate a type or a
 language with a value to create a typed value or a language-tagged
 string.

 A value object MUST be a JSON object containing the
 @value key. It MAY also contain an @type,
 an @language, an @index, or an @context key but MUST NOT contain
 both an @type and an @language key at the same time.
 A value object MUST NOT contain any other keys that expand to an
 absolute IRI or keyword.

 The value associated with the @value key MUST be either a
 string, a number, true,
 false or null.

 The value associated with the @type key MUST be a
 term, a compact IRI,
 an absolute IRI, a relative IRI, or null.

 The value associated with the @language key MUST have the
 lexical form described in [BCP47], or be null.

 The value associated with the @index key MUST be a
 string.

 See section 6.4 Typed Values and
 section 6.9 String Internationalization
 for more information on value objects.

 8.4 Lists and Sets

 A list represents an ordered set of values. A set
 represents an unordered set of values. Unless otherwise specified,
 arrays are unordered in JSON-LD. As such, the
 @set keyword, when used in the body of a JSON-LD document,
 represents just syntactic sugar which is optimized away when processing the document.
 However, it is very helpful when used within the context of a document. Values
 of terms associated with an @set or @list container
 will always be represented in the form of an array when a document
 is processed—even if there is just a single value that would otherwise be optimized to
 a non-array form in compact document form.
 This simplifies post-processing of the data as the data is always in a
 deterministic form.

 A list object MUST be a JSON object that contains no
 keys that expand to an absolute IRI or keyword other
 than @list, @context, and @index.

 A set object MUST be a JSON object that contains no
 keys that expand to an absolute IRI or keyword other
 than @list, @context, and @index.
 Please note that the @index key will be ignored when being processed.

 In both cases, the value associated with the keys @list and @set
 MUST be one of the following types:

 	string,

 	number,

 	true,

 	false,

 	null,

 	node object,

 	value object, or

 	an array of zero or more of the above possibilities

 See section 6.11 Sets and Lists for further discussion on sets and lists.

 8.5 Language Maps

 A language map is used to associate a language with a value in a
 way that allows easy programmatic access. A language map may be
 used as a term value within a node object if the term is defined
 with @container set to @language. The keys of a
 language map MUST be strings representing
 [BCP47] language codes and the values MUST be any of the following types:

 	null,

 	string, or

 	an array of zero or more of the above possibilities

 See section 6.9 String Internationalization for further discussion
 on language maps.

 8.6 Index Maps

 An index map allows keys that have no semantic meaning,
 but should be preserved regardless, to be used in JSON-LD documents.
 An index map may
 be used as a term value within a node object if the
 term is defined with @container set to @index.
 The values of the members of an index map MUST be one
 of the following types:

 	string,

 	number,

 	true,

 	false,

 	null,

 	node object,

 	value object,

 	list object,

 	set object,

 	an array of zero or more of the above possibilities

 See section 6.16 Data Indexing for further information on this topic.

 8.7 Context Definitions

 A context definition defines a local context in a
 node object.

 A context definition MUST be a JSON object whose
 keys MUST either be terms,
 compact IRIs, absolute IRIs,
 or the keywords @language, @base,
 and @vocab.

 If the context definition has an @language key,
 its value MUST have the lexical form described in [BCP47] or be null.

 If the context definition has an @base key,
 its value MUST be an absolute IRI, a relative IRI,
 or null.

 If the context definition has an @vocab key,
 its value MUST be a absolute IRI, a compact IRI,
 a blank node identifier, a term, or null.

 The value of keys that are not keywords MUST be either an
 absolute IRI, a compact IRI, a term,
 a blank node identifier, a keyword, null,
 or an expanded term definition.

 An expanded term definition is used to describe the mapping
 between a term and its expanded identifier, as well as other
 properties of the value associated with the term when it is
 used as key in a node object.

 An expanded term definition MUST be a JSON object
 composed of zero or more keys from @id, @reverse,
 @type, @language or @container. An
 expanded term definition SHOULD NOT contain any other keys.

 If an expanded term definition has an @reverse member,
 it MUST NOT have an @id member at the same time. If an
 @container member exists, its value MUST be null,
 @set, or @index.

 If the term being defined is not a compact IRI or
 absolute IRI and the active context does not have an
 @vocab mapping, the expanded term definition MUST
 include the @id key.

 If the expanded term definition contains the @id
 keyword, its value MUST be null, an absolute IRI,
 a blank node identifier, a compact IRI, a term,
 or a keyword.

 If the expanded term definition contains the @type
 keyword, its value MUST be an absolute IRI, a
 compact IRI, a term, null, or the one of the
 keywords @id or @vocab.

 If the expanded term definition contains the @language keyword,
 its value MUST have the lexical form described in [BCP47] or be null.

 If the expanded term definition contains the @container
 keyword, its value MUST be either @list, @set,
 @language, @index, or be null. If the value
 is @language, when the term is used outside of the
 @context, the associated value MUST be a language map.
 If the value is @index, when the term is used outside of
 the @context, the associated value MUST be an
 index map.

 Terms MUST NOT be used in a circular manner. That is,
 the definition of a term cannot depend on the definition of another term if that other
 term also depends on the first term.

 See section 5.1 The Context for further discussion on contexts.

 9. Relationship to RDF

 JSON-LD is a
 concrete RDF syntax
 as described in [RDF11-CONCEPTS]. Hence, a JSON-LD document is both an
 RDF document and a JSON document and correspondingly represents an
 instance of an RDF data model. However, JSON-LD also extends the RDF data
 model to optionally allow JSON-LD to serialize
 Generalized RDF Datasets.
 The JSON-LD extensions to the RDF data model are:

 	In JSON-LD properties can be
 IRIs or blank nodes
 whereas in RDF properties (predicates) have to be IRIs. This
 means that JSON-LD serializes
 generalized RDF Datasets.

 	In JSON-LD lists are part of the data model
 whereas in RDF they are part of a vocabulary, namely [RDF11-SCHEMA].

 	RDF values are either typed literals
 (typed values) or
 language-tagged strings whereas
 JSON-LD also supports JSON's native data types, i.e., number,
 strings, and the boolean values true
 and false. The JSON-LD Processing Algorithms and API specification [JSON-LD-API]
 defines the conversion rules
 between JSON's native data types and RDF's counterparts to allow round-tripping.

 Summarized, these differences mean that JSON-LD is capable of serializing any RDF
 graph or dataset and most, but not all, JSON-LD documents can be directly
 interpreted as RDF as described in RDF 1.1 Concepts [RDF11-CONCEPTS].

 For authors and developers working with blank nodes
 as properties when deserializing to RDF,
 three potential approaches are suggested:

 	If the author is not yet ready to commit to a stable IRI, the
 property should be mapped to an IRI that is documented as unstable.

 	If the developer wishes to use blank nodes
 as properties and also wishes to interpret the
 data as a
 generalized RDF Dataset,
 there is an option, produce generalized RDF, in the
 Deserialize JSON-LD to RDF algorithm [JSON-LD-API] to do so. Note that a
 generalized RDF Dataset
 is an extension of RDF; it does not conform to the RDF standard.

 	If the author or developer wishes to use blank nodes
 as properties and wishes to interpret the data
 as a standard (non-generalized)
 RDF Dataset,
 it is possible to losslessly interpret JSON-LD as RDF by transforming
 blank nodes used as
 properties to IRIs,
 by minting new "Skolem IRIs" as per
 Replacing Blank Nodes with IRIs
 of [RDF11-CONCEPTS].

 The normative algorithms for interpreting JSON-LD as RDF and serializing
 RDF as JSON-LD are specified in the JSON-LD Processing Algorithms and API
 specification [JSON-LD-API].

 Even though JSON-LD serializes
 generalized RDF Datasets, it can
 also be used as a RDF graph source.
 In that case, a consumer MUST only use the default graph and ignore all named graphs.
 This allows servers to expose data in languages such as Turtle and JSON-LD
 using content negotiation.

 Note
Publishers supporting both dataset and graph syntaxes have to ensure that
 the primary data is stored in the default graph to enable consumers that do not support
 datasets to process the information.

 9.1 Serializing/Deserializing RDF
This section is non-normative.

 The process of serializing RDF as JSON-LD and deserializing JSON-LD to RDF
 depends on executing the algorithms defined in
 RDF Serialization-Deserialization Algorithms
 in the JSON-LD Processing Algorithms and API specification [JSON-LD-API].
 It is beyond the scope of this document to detail these algorithms any further,
 but a summary of the necessary operations is provided to illustrate the process.

 The procedure to deserialize a JSON-LD document to RDF involves the
 following steps:

 	Expand the JSON-LD document, removing any context; this ensures
 that properties, types, and values are given their full representation
 as IRIs and expanded values. Expansion
 is discussed further in section 6.17 Expanded Document Form.

 	Flatten the document, which turns the document into an array of
 node objects. Flattening is discussed
 further in section 6.19 Flattened Document Form.

 	Turn each node object into a series of
 RDF triples.

 For example, consider the following JSON-LD document in compact form:

 Example 63: Sample JSON-LD document
{
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": [
 {
 "@id": "http://manu.sporny.org/about#manu",
 "name": "Manu Sporny"
 },
 {
 "name": "Dave Longley"
 }
]
}

 Running the JSON-LD Expansion and Flattening algorithms against the
 JSON-LD input document in the example above would result in the
 following output:

 Example 64: Flattened and expanded form for the previous example
[
 {
 "@id": "_:b0",
 "http://xmlns.com/foaf/0.1/name": "Dave Longley"
 },
 {
 "@id": "http://manu.sporny.org/about#manu",
 "http://xmlns.com/foaf/0.1/name": "Manu Sporny"
 },
 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": "Markus Lanthaler",
 "http://xmlns.com/foaf/0.1/knows": [
 { "@id": "http://manu.sporny.org/about#manu" },
 { "@id": "_:b0" }
]
 }
]

 Deserializing this to RDF now is a straightforward process of turning
 each node object into one or more RDF triples. This can be
 expressed in Turtle as follows:

 Example 65: Turtle representation of expanded/flattened document
_:b0 <http://xmlns.com/foaf/0.1/name> "Dave Longley" .

<http://manu.sporny.org/about#manu> <http://xmlns.com/foaf/0.1/name> "Manu Sporny" .

<http://me.markus-lanthaler.com/> <http://xmlns.com/foaf/0.1/name> "Markus Lanthaler" ;
 <http://xmlns.com/foaf/0.1/knows> <http://manu.sporny.org/about#manu>, _:b0 .

 The process of serializing RDF as JSON-LD can be thought of as the
 inverse of this last step, creating an expanded JSON-LD document closely
 matching the triples from RDF, using a single node object
 for all triples having a common subject, and a single property
 for those triples also having a common predicate.

 A. Relationship to Other Linked Data Formats
This section is non-normative.

 The JSON-LD examples below demonstrate how JSON-LD can be used to
 express semantic data marked up in other linked data formats such as Turtle,
 RDFa, Microformats, and Microdata. These sections are merely provided as
 evidence that JSON-LD is very flexible in what it can express across different
 Linked Data approaches.

 A.1 Turtle
This section is non-normative.

 The following are examples of transforming RDF expressed in Turtle [TURTLE]
 into JSON-LD.

 Prefix definitions
This section is non-normative.

 The JSON-LD context has direct equivalents for the Turtle
 @prefix declaration:

 Example 66: A set of statements serialized in Turtle
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://manu.sporny.org/about#manu> a foaf:Person;
 foaf:name "Manu Sporny";
 foaf:homepage <http://manu.sporny.org/> .

 Example 67: The same set of statements serialized in JSON-LD
{
 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/"
 },
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "foaf:Person",
 "foaf:name": "Manu Sporny",
 "foaf:homepage": { "@id": "http://manu.sporny.org/" }
}

 Embedding

 Both Turtle and JSON-LD allow embedding, although Turtle only allows embedding of
 blank nodes.

 Example 68: Embedding in Turtle
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://manu.sporny.org/about#manu>
 a foaf:Person;
 foaf:name "Manu Sporny";
 foaf:knows [a foaf:Person; foaf:name "Gregg Kellogg"] .

 Example 69: Same embedding example in JSON-LD
{
 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/"
 },
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "foaf:Person",
 "foaf:name": "Manu Sporny",
 "foaf:knows":
 {
 "@type": "foaf:Person",
 "foaf:name": "Gregg Kellogg"
 }
}

 Conversion of native data types

 In JSON-LD numbers and boolean values are native data types. While Turtle
 has a shorthand syntax to express such values, RDF's abstract syntax requires
 that numbers and boolean values are represented as typed literals. Thus,
 to allow full round-tripping, the JSON-LD Processing Algorithms and API specification [JSON-LD-API]
 defines conversion rules between JSON-LD's native data types and RDF's
 counterparts. Numbers without fractions are
 converted to xsd:integer-typed literals, numbers with fractions
 to xsd:double-typed literals and the two boolean values
 true and false to a xsd:boolean-typed
 literal. All typed literals are in canonical lexical form.

 Example 70: JSON-LD using native data types for numbers and boolean values
{
 "@context":
 {
 "ex": "http://example.com/vocab#"
 },
 "@id": "http://example.com/",
 "ex:numbers": [14, 2.78],
 "ex:booleans": [true, false]
}

 Example 71: Same example in Turtle using typed literals
@prefix ex: <http://example.com/vocab#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.com/>
 ex:numbers "14"^^xsd:integer, "2.78E0"^^xsd:double ;
 ex:booleans "true"^^xsd:boolean, "false"^^xsd:boolean .

 Lists

 Both JSON-LD and Turtle can represent sequential lists of values.

 Example 72: A list of values in Turtle
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example.org/people#joebob> a foaf:Person;
 foaf:name "Joe Bob";
 foaf:nick ("joe" "bob" "jaybee") .

 Example 73: Same example with a list of values in JSON-LD
{
 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/"
 },
 "@id": "http://example.org/people#joebob",
 "@type": "foaf:Person",
 "foaf:name": "Joe Bob",
 "foaf:nick":
 {
 "@list": ["joe", "bob", "jaybee"]
 }
}

 A.2 RDFa
This section is non-normative.

 The following example describes three people with their respective names and
 homepages in RDFa [RDFA-CORE].

 Example 74: RDFa fragment that describes three people
<div prefix="foaf: http://xmlns.com/foaf/0.1/">

 <li typeof="foaf:Person">
 Bob

 <li typeof="foaf:Person">
 Eve

 <li typeof="foaf:Person">
 Manu

</div>

 An example JSON-LD implementation using a single context is
 described below.

 Example 75: Same description in JSON-LD (context shared among node objects)
{
 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/"
 },
 "@graph":
 [
 {
 "@type": "foaf:Person",
 "foaf:homepage": "http://example.com/bob/",
 "foaf:name": "Bob"
 },
 {
 "@type": "foaf:Person",
 "foaf:homepage": "http://example.com/eve/",
 "foaf:name": "Eve"
 },
 {
 "@type": "foaf:Person",
 "foaf:homepage": "http://example.com/manu/",
 "foaf:name": "Manu"
 }
]
}

 A.3 Microformats
This section is non-normative.

 The following example uses a simple Microformats hCard example to express
 how Microformats [MICROFORMATS] are represented in JSON-LD.

 Example 76: HTML fragment with a simple Microformats hCard
<div class="vcard">
 Tantek Çelik
</div>

 The representation of the hCard expresses the Microformat terms in the
 context and uses them directly for the url and fn
 properties. Also note that the Microformat to JSON-LD processor has
 generated the proper URL type for http://tantek.com/.

 Example 77: Same hCard representation in JSON-LD
{
 "@context":
 {
 "vcard": "http://microformats.org/profile/hcard#vcard",
 "url":
 {
 "@id": "http://microformats.org/profile/hcard#url",
 "@type": "@id"
 },
 "fn": "http://microformats.org/profile/hcard#fn"
 },
 "@type": "vcard",
 "url": "http://tantek.com/",
 "fn": "Tantek Çelik"
}

 A.4 Microdata
This section is non-normative.

 The HTML Microdata [MICRODATA] example below expresses book information as
 a Microdata Work item.

 Example 78: HTML fragments that describes a book using microdata
<dl itemscope
 itemtype="http://purl.org/vocab/frbr/core#Work"
 itemid="http://purl.oreilly.com/works/45U8QJGZSQKDH8N">
 <dt>Title</dt>
 <dd><cite itemprop="http://purl.org/dc/terms/title">Just a Geek</cite></dd>
 <dt>By</dt>
 <dd>Wil Wheaton</dd>
 <dt>Format</dt>
 <dd itemprop="http://purl.org/vocab/frbr/core#realization"
 itemscope
 itemtype="http://purl.org/vocab/frbr/core#Expression"
 itemid="http://purl.oreilly.com/products/9780596007683.BOOK">
 <link itemprop="http://purl.org/dc/terms/type" href="http://purl.oreilly.com/product-types/BOOK">
 Print
 </dd>
 <dd itemprop="http://purl.org/vocab/frbr/core#realization"
 itemscope
 itemtype="http://purl.org/vocab/frbr/core#Expression"
 itemid="http://purl.oreilly.com/products/9780596802189.EBOOK">
 <link itemprop="http://purl.org/dc/terms/type" href="http://purl.oreilly.com/product-types/EBOOK">
 Ebook
 </dd>
</dl>

 Note that the JSON-LD representation of the Microdata information stays
 true to the desires of the Microdata community to avoid contexts and
 instead refer to items by their full IRI.

 Example 79: Same book description in JSON-LD (avoiding contexts)
[
 {
 "@id": "http://purl.oreilly.com/works/45U8QJGZSQKDH8N",
 "@type": "http://purl.org/vocab/frbr/core#Work",
 "http://purl.org/dc/terms/title": "Just a Geek",
 "http://purl.org/dc/terms/creator": "Whil Wheaton",
 "http://purl.org/vocab/frbr/core#realization":
 [
 "http://purl.oreilly.com/products/9780596007683.BOOK",
 "http://purl.oreilly.com/products/9780596802189.EBOOK"
]
 },
 {
 "@id": "http://purl.oreilly.com/products/9780596007683.BOOK",
 "@type": "http://purl.org/vocab/frbr/core#Expression",
 "http://purl.org/dc/terms/type": "http://purl.oreilly.com/product-types/BOOK"
 },
 {
 "@id": "http://purl.oreilly.com/products/9780596802189.EBOOK",
 "@type": "http://purl.org/vocab/frbr/core#Expression",
 "http://purl.org/dc/terms/type": "http://purl.oreilly.com/product-types/EBOOK"
 }
]

 B. IANA Considerations

 This section has been submitted to the Internet Engineering Steering
 Group (IESG) for review, approval, and registration with IANA.

 application/ld+json

 	Type name:

 	application

 	Subtype name:

 	ld+json

 	Required parameters:

 	None

 	Optional parameters:

 	

 	profile

 	
 A a non-empty list of space-separated URIs identifying specific
 constraints or conventions that apply to a JSON-LD document according [RFC6906].
 A profile does not change the semantics of the resource representation
 when processed without profile knowledge, so that clients both with
 and without knowledge of a profiled resource can safely use the same
 representation. The profile parameter MAY be used by
 clients to express their preferences in the content negotiation process.
 If the profile parameter is given, a server SHOULD return a document that
 honors the profiles in the list which are recognized by the server.
 It is RECOMMENDED that profile URIs are dereferenceable and provide
 useful documentation at that URI. For more information and background
 please refer to [RFC6906].

 This specification defines three values for the profile parameter.
 To request or specify expanded JSON-LD document form,
 the URI http://www.w3.org/ns/json-ld#expanded SHOULD be used.
 To request or specify compacted JSON-LD document form,
 the URI http://www.w3.org/ns/json-ld#compacted SHOULD be used.
 To request or specify flattened JSON-LD document form,
 the URI http://www.w3.org/ns/json-ld#flattened SHOULD be used.
 Please note that, according [HTTP11], the value of the profile
 parameter has to be enclosed in quotes (") because it contains
 special characters and, if multiple profiles are combined, whitespace.

 When processing the "profile" media type parameter, it is important to
 note that its value contains one or more URIs and not IRIs. In some cases
 it might therefore be necessary to convert between IRIs and URIs as specified in
 section 3 Relationship between IRIs and URIs
 of [RFC3987].

 	Encoding considerations:

 	See RFC 6839, section 3.1.

 	Security considerations:

 	See [RFC4627]
 Since JSON-LD is intended to be a pure data exchange format for
 directed graphs, the serialization SHOULD NOT be passed through a
 code execution mechanism such as JavaScript's eval()
 function to be parsed. An (invalid) document may contain code that,
 when executed, could lead to unexpected side effects compromising
 the security of a system.

 When processing JSON-LD documents, links to remote contexts are
 typically followed automatically, resulting in the transfer of files
 without the explicit request of the user for each one. If remote
 contexts are served by third parties, it may allow them to gather
 usage patterns or similar information leading to privacy concerns.
 Specific implementations, such as the API defined in the
 JSON-LD Processing Algorithms and API specification [JSON-LD-API],
 may provide fine-grained mechanisms to control this behavior.

 JSON-LD contexts that are loaded from the Web over non-secure connections,
 such as HTTP, run the risk of being altered by an attacker such that
 they may modify the JSON-LD active context in a way that
 could compromise security. It is advised that any application that
 depends on a remote context for mission critical purposes vet and
 cache the remote context before allowing the system to use it.

 Given that JSON-LD allows the substitution of long IRIs with short terms,
 JSON-LD documents may expand considerably when processed and, in the worst case,
 the resulting data might consume all of the recipient's resources. Applications
 should treat any data with due skepticism.

 	Interoperability considerations:

 	Not Applicable

 	Published specification:

 	http://www.w3.org/TR/json-ld

 	Applications that use this media type:

 	Any programming environment that requires the exchange of
 directed graphs. Implementations of JSON-LD have been created for
 JavaScript, Python, Ruby, PHP, and C++.

 	Additional information:

 	

 	Magic number(s):

 	Not Applicable

 	File extension(s):

 	.jsonld

 	Macintosh file type code(s):

 	TEXT

 	Person & email address to contact for further information:

 	Manu Sporny <msporny@digitalbazaar.com>

 	Intended usage:

 	Common

 	Restrictions on usage:

 	None

 	Author(s):

 	Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, Niklas Lindström

 	Change controller:

 	W3C

 Fragment identifiers used with application/ld+json
 are treated as in RDF syntaxes, as per
 RDF 1.1 Concepts and Abstract Syntax
 [RDF11-CONCEPTS].

 C. Acknowledgements
This section is non-normative.

 The authors would like to extend a deep appreciation and the most sincere
 thanks to Mark Birbeck, who contributed foundational concepts
 to JSON-LD via his work on RDFj. JSON-LD uses a number of core concepts
 introduced in RDFj, such as the context as a mechanism to provide an
 environment for interpreting JSON data. Mark had also been very involved in
 the work on RDFa as well. RDFj built upon that work. JSON-LD exists
 because of the work and ideas he started nearly a decade ago in 2004.

 A large amount of thanks goes out to the JSON-LD Community Group
 participants who worked through many of the technical issues on the mailing
 list and the weekly telecons - of special mention are François Daoust,
 Stéphane Corlosquet, Lin Clark, and Zdenko 'Denny' Vrandečić.

 The work of David I. Lehn and Mike Johnson are appreciated for
 reviewing, and performing several early implementations
 of the specification. Thanks also to Ian Davis for this work on RDF/JSON.

 Thanks to the following individuals, in order of their first name, for
 their input on the specification: Adrian Walker, Alexandre Passant,
 Andy Seaborne, Ben Adida, Blaine Cook, Bradley Allen, Brian Peterson,
 Bryan Thompson, Conal Tuohy, Dan Brickley, Danny Ayers, Daniel Leja,
 Dave Reynolds, David Booth, David I. Lehn, David Wood, Dean Landolt,
 Ed Summers, elf Pavlik,
 Eric Prud'hommeaux, Erik Wilde, Fabian Christ, Jon A. Frost, Gavin Carothers,
 Glenn McDonald, Guus Schreiber, Henri Bergius, Jose María Alvarez Rodríguez,
 Ivan Herman, Jack Moffitt, Josh Mandel, KANZAKI Masahide, Kingsley Idehen,
 Kuno Woudt, Larry Garfield, Mark Baker, Mark MacGillivray, Marko Rodriguez,
 Marios Meimaris, Matt Wuerstl,
 Melvin Carvalho, Nathan Rixham, Olivier Grisel, Paolo Ciccarese, Pat Hayes,
 Patrick Logan, Paul Kuykendall, Pelle Braendgaard,
 Peter Patel-Schneider, Peter Williams, Pierre-Antoine Champin,
 Richard Cyganiak, Roy T. Fielding, Sandro Hawke, Simon Grant, Srecko Joksimovic,
 Stephane Fellah, Steve Harris, Ted Thibodeau Jr., Thomas Steiner, Tim Bray,
 Tom Morris, Tristan King, Sergio Fernández, Werner Wilms, and William Waites.

D. References
D.1 Normative references
	[BCP47]
	A. Phillips; M. Davis. Tags for Identifying Languages. September 2009. IETF Best Current Practice. URL: http://tools.ietf.org/html/bcp47

	[RDF11-CONCEPTS]
	Richard Cyganiak, David Wood, Markus Lanthaler, Editors. RDF 1.1 Concepts and Abstract Syntax. 9 January 2014. W3C Proposed Recommendation (work in progress). URL: http://www.w3.org/TR/2014/PR-rdf11-concepts-20140109/. The latest edition is available at http://www.w3.org/TR/rdf11-concepts/

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC3987]
	M. Dürst; M. Suignard. Internationalized Resource Identifiers (IRIs). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3987.txt

	[RFC4627]
	D. Crockford. The application/json Media Type for JavaScript Object Notation (JSON) (RFC 4627). July 2006. RFC. URL: http://www.ietf.org/rfc/rfc4627.txt

	[RFC5988]
	M. Nottingham. Web Linking. October 2010. Internet RFC 5988. URL: http://www.ietf.org/rfc/rfc5988.txt

D.2 Informative references
	[HTTP11]
	R. Fielding et al. Hypertext Transfer Protocol - HTTP/1.1. June 1999. RFC. URL: http://www.ietf.org/rfc/rfc2616.txt

	[JSON-LD-API]
	Markus Lanthaler, Gregg Kellogg, Manu Sporny, Editors. JSON-LD 1.0 Processing Algorithms and API. 16 January 2014. W3C Recommendation. URL: http://www.w3.org/TR/json-ld-api/

	[LINKED-DATA]
	Tim Berners-Lee. Linked Data. Personal View, imperfect but published. URL: http://www.w3.org/DesignIssues/LinkedData.html

	[MICRODATA]
	Ian Hickson, Editor. HTML Microdata. 29 October 2013. W3C Working Group Note. URL: http://www.w3.org/TR/2013/NOTE-microdata-20131029/

	[MICROFORMATS]
	Microformats. URL: http://microformats.org

	[RDF11-MT]
	Patrick J. Hayes, Peter F. Patel-Schneider, Editors. RDF 1.1 Semantics. 9 January 2014. W3C Proposed Recommendation (work in progress). URL: http://www.w3.org/TR/2014/PR-rdf11-mt-20140109/. The latest edition is available at http://www.w3.org/TR/rdf11-mt/

	[RDF11-SCHEMA]
	Dan Brickley; R.V. Guha, Editors. RDF Schema 1.1. 9 January 2014. W3C Proposed Edited Recommendation (work in progress). URL: http://www.w3.org/TR/2014/PER-rdf-schema-20140109/. The latest edition is available at http://www.w3.org/TR/rdf-schema/

	[RDFA-CORE]
	Ben Adida; Mark Birbeck; Shane McCarron; Ivan Herman et al. RDFa Core 1.1 - Second Edition. 22 August 2013. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-core/

	[RFC3986]
	T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax (RFC 3986). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3986.txt

	[RFC6839]
	Tony Hansen, Alexey Melnikov. Additional Media Type Structured Syntax Suffixes. January 2013. Internet RFC 6839. URL: http://www.ietf.org/rfc/rfc6839.txt

	[RFC6906]
	Erik Wilde. The 'profile' Link Relation Type. March 2013. Internet RFC 6906. URL: http://www.ietf.org/rfc/rfc6906.txt

	[TURTLE]
	Eric Prud'hommeaux, Gavin Carothers, Editors. RDF 1.1 Turtle: Terse RDF Triple Language. 9 January 2014. W3C Proposed Recommendation (work in progress). URL: http://www.w3.org/TR/2014/PR-turtle-20140109/. The latest edition is available at http://www.w3.org/TR/turtle/

 [image: W3C]

 JSON-LD 1.0 Processing Algorithms and API

 W3C Recommendation 16 January 2014

 	This version:

 	http://www.w3.org/TR/2014/REC-json-ld-api-20140116/

 	Latest published version:

 	http://www.w3.org/TR/json-ld-api/

 	Test suite:

 	http://www.w3.org/2013/json-ld-tests/

 	Previous version:

 	http://www.w3.org/TR/2013/PR-json-ld-api-20131105/

 	Editors:

 	Markus Lanthaler, Graz University of Technology

	Gregg Kellogg, Kellogg Associates

	Manu Sporny, Digital Bazaar

 	Authors:

 	Dave Longley, Digital Bazaar

	Gregg Kellogg, Kellogg Associates

	Markus Lanthaler, Graz University of Technology

	Manu Sporny, Digital Bazaar

 Please refer to the errata for this document, which may include some normative corrections.

 This document is also available in this non-normative format:

 diff to previous version

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2010-2014

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang), All Rights Reserved.
 W3C liability,
 trademark and
 document use rules apply.

Abstract

 This specification defines a set of algorithms for programmatic transformations
 of JSON-LD documents. Restructuring data according to the defined transformations
 often dramatically simplifies its usage. Furthermore, this document proposes
 an Application Programming Interface (API) for developers implementing the
 specified algorithms.

Status of This Document

 This section describes the status of this document at the time of its publication. Other
 documents may supersede this document. A list of current W3C publications and the latest revision
 of this technical report can be found in the W3C technical reports
 index at http://www.w3.org/TR/.

 This document has been reviewed by W3C Members, by software developers,
 and by other W3C groups and interested parties, and is endorsed by the
 Director as a W3C Recommendation. It is a stable document and may be
 used as reference material or cited from another document. W3C's role in
 making the Recommendation is to draw attention to the specification and
 to promote its widespread deployment. This enhances the functionality
 and interoperability of the Web.

 This specification has been developed by the JSON for Linking Data Community Group
 before it has been transferred to the RDF Working Group for review,
 improvement, and publication along the Recommendation track.
 The document contains small editorial changes arising from comments received
 during the Proposed Recommendation review; see the
 diff-marked version for details.

 There are several independent interoperable implementations of this specification. An
 implementation report
 as of October 2013 is available.

 This document was published by the RDF Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdf-comments@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 This document was produced by a group operating under the

 5 February 2004 W3C Patent Policy.

 W3C maintains a public list of any patent disclosures

 made in connection with the deliverables of the group; that page also includes instructions for
 disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains
 Essential Claim(s) must disclose the
 information in accordance with section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction
	2. Features	2.1 Expansion
	2.2 Compaction
	2.3 Flattening
	2.4 RDF Serialization/Deserialization

	3. Conformance
	4. General Terminology
	5. Algorithm Terms
	6. Context Processing Algorithms	6.1 Context Processing Algorithm
	6.2 Create Term Definition
	6.3 IRI Expansion

	7. Expansion Algorithms	7.1 Expansion Algorithm
	7.2 Value Expansion

	8. Compaction Algorithms	8.1 Compaction Algorithm
	8.2 Inverse Context Creation
	8.3 IRI Compaction
	8.4 Term Selection
	8.5 Value Compaction

	9. Flattening Algorithms	9.1 Flattening Algorithm
	9.2 Node Map Generation
	9.3 Generate Blank Node Identifier

	10. RDF Serialization/Deserialization Algorithms	10.1 Deserialize JSON-LD to RDF algorithm
	10.2 Object to RDF Conversion
	10.3 List to RDF Conversion
	10.4 Serialize RDF as JSON-LD Algorithm
	10.5 RDF to Object Conversion
	10.6 Data Round Tripping

	11. The Application Programming Interface	11.1 The JsonLdProcessor Interface
	11.2 The JsonLdOptions Type
	11.3 Remote Document and Context Retrieval
	11.4 Error Handling

	A. Acknowledgements
	B. References	B.1 Normative references
	B.2 Informative references

 1. Introduction
This section is non-normative.

 This document is a detailed specification of the JSON-LD processing algorithms.
 The document is primarily intended for the following audiences:

 	Software developers who want to implement the algorithms to transform
 JSON-LD documents.

 	Web authors and developers who want a very detailed view of how
 a JSON-LD Processor operates.

 	Developers who want an overview of the proposed JSON-LD API.

 To understand the basics in this specification you must first be familiar with
 JSON, which is detailed in [RFC4627]. You must also understand the
 JSON-LD syntax defined in [JSON-LD], which is the base syntax used by all
 of the algorithms in this document. To understand the API and how it is
 intended to operate in a programming environment, it is useful to have working
 knowledge of the JavaScript programming language [ECMA-262] and
 WebIDL [WEBIDL]. To understand how JSON-LD maps to RDF, it is helpful to be
 familiar with the basic RDF concepts [RDF11-CONCEPTS].

 2. Features
This section is non-normative.

 The JSON-LD Syntax specification [JSON-LD] defines a syntax to
 express Linked Data in JSON. Because there is more than one way to
 express Linked Data using this syntax, it is often useful to be able to
 transform JSON-LD documents so that they may be more easily consumed by
 specific applications.

 JSON-LD uses contexts to allow Linked Data
 to be expressed in a way that is specifically tailored to a particular
 person or application. By providing a context,
 JSON data can be expressed in a way that is a natural fit for a particular
 person or application whilst also indicating how the data should be
 understood at a global scale. In order for people or applications to
 share data that was created using a context that is different
 from their own, a JSON-LD processor must be able to transform a document
 from one context to another. Instead of requiring JSON-LD
 processors to write specific code for every imaginable
 context switching scenario, it is much easier to specify a
 single algorithm that can remove any context. Similarly,
 another algorithm can be specified to subsequently apply any
 context. These two algorithms represent the most basic
 transformations of JSON-LD documents. They are referred to as
 expansion and compaction, respectively.

 There are four major types of transformation that are discussed in this
 document: expansion, compaction, flattening, and RDF serialization/deserialization.

 2.1 Expansion
This section is non-normative.

 The algorithm that removes context is
 called expansion. Before performing any other
 transformations on a JSON-LD document, it is easiest to
 remove any context from it and to make data structures
 more regular.

 To get an idea of how context and data structuring affects the same data,
 here is an example of JSON-LD that uses only terms
 and is fairly compact:

 Example 1: Sample JSON-LD document
{
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/"
}

 The next input example uses one IRI to express a property
 and an array to encapsulate another, but
 leaves the rest of the information untouched.

 Example 2: Sample JSON-LD document using an IRI instead of a term to express a property
{
 "@context": {
 "website": "http://xmlns.com/foaf/0.1/homepage"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": "Markus Lanthaler",
 "website": { "@id": "http://www.markus-lanthaler.com/" }
}

 Note that both inputs are valid JSON-LD and both represent the same
 information. The difference is in their context information
 and in the data structures used. A JSON-LD processor can remove
 context and ensure that the data is more regular by employing
 expansion.

 Expansion has two important goals: removing any contextual
 information from the document, and ensuring all values are represented
 in a regular form. These goals are accomplished by expanding all properties
 to absolute IRIs and by expressing all
 values in arrays in
 expanded form. Expanded form is the most verbose
 and regular way of expressing of values in JSON-LD; all contextual
 information from the document is instead stored locally with each value.
 Running the Expansion algorithm
 (expand
 operation) against the above examples results in the following output:

 Example 3: Expanded sample document
[
 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://www.markus-lanthaler.com/" }
]
 }
]

 Note that in the output above all context definitions have
 been removed, all terms and
 compact IRIs have been expanded to absolute
 IRIs, and all
 JSON-LD values are expressed in
 arrays in expanded form. While the
 output is more verbose and difficult for a human to read, it establishes a
 baseline that makes JSON-LD processing easier because of its very regular
 structure.

 2.2 Compaction
This section is non-normative.

 While expansion removes context from a given
 input, compaction's primary function is to
 perform the opposite operation: to express a given input according to
 a particular context. Compaction applies a
 context that specifically tailors the way information is
 expressed for a particular person or application. This simplifies applications
 that consume JSON or JSON-LD by expressing the data in application-specific
 terms, and it makes the data easier to read by humans.

 Compaction uses a developer-supplied context to
 shorten IRIs to terms or
 compact IRIs and
 JSON-LD values expressed in
 expanded form to simple values such as strings
 or numbers.

 For example, assume the following expanded JSON-LD input document:

 Example 4: Expanded sample document
[
 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://www.markus-lanthaler.com/" }
]
 }
]

 Additionally, assume the following developer-supplied JSON-LD
 context:

 Example 5: JSON-LD context
{
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 }
}

 Running the Compaction Algorithm
 (compact
 operation) given the context supplied above against the JSON-LD input
 document provided above would result in the following output:

 Example 6: Compacted sample document
{
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/"
}

 Note that all IRIs have been compacted to
 terms as specified in the context,
 which has been injected into the output. While compacted output is
 useful to humans, it is also used to generate structures that are easy to
 program against. Compaction enables developers to map any expanded document
 into an application-specific compacted document. While the context provided
 above mapped http://xmlns.com/foaf/0.1/name to name, it
 could also have been mapped to any other term provided by the developer.

 2.3 Flattening
This section is non-normative.

 While expansion ensures that a document is in a uniform structure,
 flattening goes a step further to ensure that the shape of the data
 is deterministic. In expanded documents, the properties of a single
 node may be spread across a number of different
 JSON objects. By flattening a
 document, all properties of a node are collected in a single
 JSON object and all blank nodes
 are labeled with a blank node identifier. This may drastically
 simplify the code required to process JSON-LD data in certain applications.

 For example, assume the following JSON-LD input document:

 Example 7: Sample JSON-LD document
{
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": [
 {
 "name": "Dave Longley"
 }
]
}

 Running the Flattening algorithm
 (flatten
 operation) with a context set to null to prevent compaction
 returns the following document:

 Example 8: Flattened sample document in expanded form
[
 {
 "@id": "_:t0",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Dave Longley" }
]
 },
 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/knows": [
 { "@id": "_:t0" }
]
 }
]

 Note how in the output above all properties of a node are collected in a
 single JSON object and how the blank node representing
 "Dave Longley" has been assigned the blank node identifier
 _:t0.

 To make it easier for humans to read or for certain applications to
 process it, a flattened document can be compacted by passing a context. Using
 the same context as the input document, the flattened and compacted document
 looks as follows:

 Example 9: Flattened and compacted sample document
{
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@graph": [
 {
 "@id": "_:t0",
 "name": "Dave Longley"
 },
 {
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": { "@id": "_:t0" }
 }
]
}

 Please note that the result of flattening and compacting a document
 is always a JSON object which contains an @graph
 member that represents the default graph.

 2.4 RDF Serialization/Deserialization
This section is non-normative.

 JSON-LD can be used to serialize RDF data as described in
 [RDF11-CONCEPTS]. This ensures that data can be round-tripped to and from
 any RDF syntax without any loss in fidelity.

 For example, assume the following RDF input serialized in Turtle [TURTLE]:

 Example 10: Sample Turtle document
<http://me.markus-lanthaler.com/> <http://xmlns.com/foaf/0.1/name> "Markus Lanthaler" .
<http://me.markus-lanthaler.com/> <http://xmlns.com/foaf/0.1/homepage> <http://www.markus-lanthaler.com/> .

 Using the Serialize RDF as JSON-LD algorithm
 a developer could transform this document into expanded JSON-LD:

 Example 11: Sample Turtle document converted to JSON-LD
[
 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://www.markus-lanthaler.com/" }
]
 }
]

 Note that the output above could easily be compacted using the technique outlined
 in the previous section. It is also possible to deserialize the JSON-LD document back
 to RDF using the Deserialize JSON-LD to RDF algorithm.

 3. Conformance

 All examples and notes as well as sections marked as non-normative in this
 specification are non-normative. Everything else in this specification is
 normative.

 The keywords MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED,
 MAY, and OPTIONAL in this specification are to be interpreted as described
 in [RFC2119].

 There are two classes of products that can claim conformance to this
 specification: JSON-LD Processors,
 and RDF Serializers/Deserializers.

 A conforming JSON-LD Processor is a system which can perform the
 Expansion, Compaction,
 and Flattening operations defined in this specification.

 JSON-LD Processors MUST NOT
 attempt to correct malformed IRIs or language tags;
 however, they MAY issue validation warnings. IRIs are not modified other
 than conversion between relative and
 absolute IRIs.

 A conforming RDF Serializer/Deserializer is a system that can
 deserialize JSON-LD to RDF and
 serialize RDF as JSON-LD as
 defined in this specification.

 The algorithms in this specification are generally written with more concern for clarity
 than efficiency. Thus, JSON-LD Processors may
 implement the algorithms given in this specification in any way desired,
 so long as the end result is indistinguishable from the result that would
 be obtained by the specification's algorithms.

 Note
Implementers can partially check their level of conformance to
 this specification by successfully passing the test cases of the JSON-LD test
 suite [JSON-LD-TESTS]. Note, however, that passing all the tests in the test
 suite does not imply complete conformance to this specification. It only implies
 that the implementation conforms to aspects tested by the test suite.

 4. General Terminology

 This document uses the following terms as defined in JSON [RFC4627]. Refer
 to the JSON Grammar section in [RFC4627] for formal definitions.

 	JSON object

 	An object structure is represented as a pair of curly brackets surrounding
 zero or more key-value pairs. A key is a string.
 A single colon comes after each key, separating the key from the value.
 A single comma separates a value from a following key. In contrast to JSON,
 in JSON-LD the keys in an object must be unique.

 	array

 	An array structure is represented as square brackets surrounding zero
 or more values. Values are separated by commas.
 In JSON, an array is an ordered sequence of zero or more values.
 While JSON-LD uses the same array representation as JSON,
 the collection is unordered by default. While order is
 preserved in regular JSON arrays, it is not in regular JSON-LD arrays
 unless specifically defined (see
 "Sets and Lists in
 the JSON-LD specification [JSON-LD]).

 	string

 	A string is a sequence of zero or more Unicode characters,
 wrapped in double quotes, using backslash escapes (if necessary). A
 character is represented as a single character string.

 	number

 	A number is similar to that used in most programming languages, except
 that the octal and hexadecimal formats are not used and that leading
 zeros are not allowed.

 	true and false

 	Values that are used to express one of two possible boolean states.

 	null

 	The null value. A key-value pair in the
 @context where the value, or the @id of the
 value, is null explicitly decouples a term's association
 with an IRI. A key-value pair in the body of a JSON-LD document whose
 value is null has the same meaning as if the key-value pair
 was not defined. If @value, @list, or
 @set is set to null in expanded form, then
 the entire JSON object is ignored.

 Furthermore, the following terminology is used throughout this document:

 	keyword

 	A JSON key that is specific to JSON-LD, specified in the section
 Syntax Tokens and Keywords
 of the JSON-LD specification [JSON-LD].

 	context

 	A set of rules for interpreting a JSON-LD document as specified in the section
 The Context of the JSON-LD
 specification [JSON-LD].

 	JSON-LD document

 	A JSON-LD document is a serialization of a collection of
 graphs and comprises exactly one
 default graph and zero or more named graphs.

 	named graph

 	A named graph is a pair consisting of an IRI or blank node
 (the graph name) and a graph.

 	default graph

 	The default graph is the only graph in a JSON-LD document which has no graph name.

 	Graph

 	A labeled directed graph, i.e., a set of nodes
 connected by edges,
 as specified in the Data Model
 section of the JSON-LD specification [JSON-LD].

 	edge

 	Every edge has a direction associated with it and is labeled with
 an IRI or a blank node identifier. Within the JSON-LD syntax
 these edge labels are called properties. Whenever possible, an
 edge should be labeled with an IRI.

 	node

 	Every node is an IRI, a blank node,
 a JSON-LD value, or a list.

 	IRI

 	An IRI (Internationalized Resource Identifier) is a string that conforms to the syntax
 defined in [RFC3987].

 	absolute IRI

 	An absolute IRI is defined in [RFC3987] containing a scheme along with a path and
 optional query and fragment segments.

 	relative IRI

 	A relative IRI is an IRI that is relative to some other absolute IRI.

 	blank node

 	A node in a graph that is neither an
 IRI, nor a JSON-LD value, nor a list.

 	blank node identifier

 	A blank node identifier is a string that can be used as an identifier for a
 blank node within the scope of a JSON-LD document. Blank node identifiers
 begin with _:.

 	JSON-LD value

 	A JSON-LD value is a string, a number,
 true or false, a typed value, or a
 language-tagged string.

 	typed value

 	A typed value consists of a value, which is a string, and a type,
 which is an IRI.

 	language-tagged string

 	A language-tagged string consists of a string and a non-empty language
 tag as defined by [BCP47]. The language tag must be well-formed according to
 section 2.2.9 Classes of Conformance
 of [BCP47], and is normalized to lowercase.

 	list

 	A list is an ordered sequence of IRIs,
 blank nodes, and
 JSON-LD values.

 5. Algorithm Terms

 	active graph

 	The name of the currently active graph that the processor should use when
 processing.

 	active subject

 	The currently active subject that the processor should use when
 processing.

 	active property

 	The currently active property or keyword that
 the processor should use when processing.

 	active context

 	A context that is used to resolve terms while
 the processing algorithm is running.

 	local context

 	A context that is specified within a JSON object,
 specified via the @context keyword.

 	JSON-LD input

 	The JSON-LD data structure that is provided as input to the algorithm.

 	term

 	A term is a short word defined in a context that may be expanded to
 an IRI

 	compact IRI

 	A compact IRI has the form of prefix:suffix and is used as a way
 of expressing an IRI without needing to define separate term definitions for
 each IRI contained within a common vocabulary identified by prefix.

 	node object

 	A node object represents zero or more properties of a
 node in the graph serialized by the
 JSON-LD document. A JSON object is a node object
 if it exists outside of the JSON-LD context and:

 	it does not contain the @value, @list,
 or @set keywords, or

 	it is not the top-most JSON object in the JSON-LD document consisting
 of no other members than @graph and @context.

 	value object

 	A value object is a JSON object that has an @value
 member.

 	list object

 	A list object is a JSON object that has an @list
 member.

 	set object

 	A set object is a JSON object that has an @set
 member.

 	scalar

 	A scalar is either a JSON string, number, true,
 or false.

 	RDF subject

 	A subject
 as specified by [RDF11-CONCEPTS].

 	RDF predicate

 	A predicate
 as specified by [RDF11-CONCEPTS].

 	RDF object

 	An object
 as specified by [RDF11-CONCEPTS].

 	RDF triple

 	A triple
 as specified by [RDF11-CONCEPTS].

 	RDF dataset

 	A dataset
 as specified by [RDF11-CONCEPTS] representing a collection of
 RDF graphs.

 6. Context Processing Algorithms

 6.1 Context Processing Algorithm

 When processing a JSON-LD data structure, each processing rule is applied
 using information provided by the active context. This
 section describes how to produce an active context.

 The active context contains the active
 term definitions which specify how
 properties and values have to be interpreted as well as the current base IRI,
 the vocabulary mapping and the default language. Each
 term definition consists of an IRI mapping, a boolean
 flag reverse property, an optional type mapping
 or language mapping, and an optional container mapping.
 A term definition can not only be used to map a term
 to an IRI, but also to map a term to a keyword,
 in which case it is referred to as a keyword alias.

 When processing, the active context is initialized
 without any term definitions,
 vocabulary mapping, or default language.
 If a local context is encountered during processing, a new
 active context is created by cloning the existing
 active context. Then the information from the
 local context is merged into the new active context.
 Given that local contexts may contain
 references to remote contexts, this includes their retrieval.

 Overview
This section is non-normative.

 First we prepare a new active context result by cloning
 the current active context. Then we normalize the form of the passed
 local context to an array.
 Local contexts may be in the form of a
 JSON object, a string, or an array containing
 a combination of the two. Finally we process each context contained
 in the local context array as follows.

 If context is a string, it represents a reference to
 a remote context. We dereference the remote context and replace context
 with the value of the @context key of the top-level object in the
 retrieved JSON-LD document. If there's no such key, an invalid remote context has
 been detected. Otherwise, we process context by recursively using
 this algorithm ensuring that there is no cyclical reference.

 If context is a JSON object, we first update the
 base IRI, the vocabulary mapping, and the
 default language by processing three specific keywords:
 @base, @vocab, and @language.
 These are handled before any other keys in the local context because
 they affect how the other keys are processed. Please note that @base is
 ignored when processing remote contexts.

 Then, for every other key in local context, we update
 the term definition in result. Since
 term definitions in a local context
 may themselves contain terms or
 compact IRIs, we may need to recurse.
 When doing so, we must ensure that there is no cyclical dependency,
 which is an error. After we have processed any
 term definition dependencies,
 we update the current term definition,
 which may be a keyword alias.

 Finally, we return result as the new active context.

 Algorithm

 This algorithm specifies how a new active context is updated
 with a local context. The algorithm takes three input variables:
 an active context, a local context, and an array
 remote contexts which is used to detect cyclical context inclusions.
 If remote contexts is not passed, it is initialized to an empty
 array.

 	Initialize result to the result of cloning
 active context.

 	If local context is not an array,
 set it to an array containing only
 local context.

 	
 For each item context in local context:

 	If context is null, set result to a
 newly-initialized active context and continue with the
 next context. The base IRI of the
 active context is set to the IRI of the currently being processed
 document (which might be different from the currently being processed context),
 if available; otherwise to null. If set, the
 base
 option of a JSON-LD API Implementation overrides the base IRI.

 	If context is a string,

 	Set context to the result of resolving value against
 the base IRI which is established as specified in
 section 5.1 Establishing a Base URI
 of [RFC3986]. Only the basic algorithm in
 section 5.2
 of [RFC3986] is used; neither
 Syntax-Based Normalization nor
 Scheme-Based Normalization
 are performed. Characters additionally allowed in IRI
 references are treated in the same way that unreserved
 characters are treated in URI references, per
 section 6.5
 of [RFC3987].

 	If context is in the remote contexts array, a
 recursive context inclusion
 error has been detected and processing is aborted;
 otherwise, add context to remote contexts.

 	Dereference context. If context cannot be dereferenced, a
 loading remote context failed
 error has been detected and processing is aborted. If the dereferenced document has no
 top-level JSON object with an @context member, an
 invalid remote context
 has been detected and processing is aborted; otherwise,
 set context to the value of that member.

 	Set result to the result of recursively calling this algorithm,
 passing result for active context,
 context for local context, and remote contexts.

 	Continue with the next context.

 	If context is not a JSON object, an
 invalid local context
 error has been detected and processing is aborted.

 	If context has an @base key and remote contexts is empty, i.e., the currently
 being processed context is not a remote context:

 	Initialize value to the value associated with the
 @base key.

 	If value is null, remove the
 base IRI of result.

 	Otherwise, if value is an absolute IRI,
 the base IRI of result is set to value.

 	Otherwise, if value is a relative IRI and
 the base IRI of result is not null,
 set the base IRI of result to the result of
 resolving value against the current base IRI
 of result.

 	Otherwise, an
 invalid base IRI
 error has been detected and processing is aborted.

 	If context has an @vocab key:

 	Initialize value to the value associated with the
 @vocab key.

 	If value is null, remove
 any vocabulary mapping from result.

 	Otherwise, if value is an absolute IRI
 or blank node identifier, the vocabulary mapping
 of result is set to value. If it is not an
 absolute IRI or blank node identifier, an
 invalid vocab mapping
 error has been detected and processing is aborted.

 	If context has an @language key:

 	Initialize value to the value associated with the
 @language key.

 	If value is null, remove
 any default language from result.

 	Otherwise, if value is string, the
 default language of result is set to
 lowercased value. If it is not a string, an
 invalid default language
 error has been detected and processing is aborted.

 	Create a JSON object defined to use to keep
 track of whether or not a term has already been defined
 or currently being defined during recursion.

 	For each key-value pair in context where
 key is not @base, @vocab, or
 @language, invoke the
 Create Term Definition algorithm,
 passing result for active context,
 context for local context, key,
 and defined.

 	Return result.

 6.2 Create Term Definition

 This algorithm is called from the
 Context Processing algorithm
 to create a term definition in the active context
 for a term being processed in a local context.

 Overview
This section is non-normative.

 Term definitions are created by
 parsing the information in the given local context for the
 given term. If the given term is a
 compact IRI, it may omit an IRI mapping by
 depending on its prefix having its own
 term definition. If the prefix is
 a key in the local context, then its term definition
 must first be created, through recursion, before continuing. Because a
 term definition can depend on other
 term definitions, a mechanism must
 be used to detect cyclical dependencies. The solution employed here
 uses a map, defined, that keeps track of whether or not a
 term has been defined or is currently in the process of
 being defined. This map is checked before any recursion is attempted.

 After all dependencies for a term have been defined, the rest of
 the information in the local context for the given
 term is taken into account, creating the appropriate
 IRI mapping, container mapping, and
 type mapping or language mapping for the
 term.

 Algorithm

 The algorithm has four required inputs which are:
 an active context, a local context,
 a term, and a map defined.

 	If defined contains the key term and the associated
 value is true (indicating that the
 term definition has already been created), return. Otherwise,
 if the value is false, a
 cyclic IRI mapping
 error has been detected and processing is aborted.

 	Set the value associated with defined's term key to
 false. This indicates that the term definition
 is now being created but is not yet complete.

 	Since keywords cannot be overridden,
 term must not be a keyword. Otherwise, a
 keyword redefinition
 error has been detected and processing is aborted.

 	Remove any existing term definition for term in
 active context.

 	Initialize value to a copy of the value associated with the key
 term in local context.

 	If value is null or value
 is a JSON object containing the key-value pair
 @id-null, set the
 term definition in active context to
 null, set the value associated with defined's
 key term to true, and return.

 	Otherwise, if value is a string, convert it
 to a JSON object consisting of a single member whose
 key is @id and whose value is value.

 	Otherwise, value must be a JSON object, if not, an
 invalid term definition
 error has been detected and processing is aborted.

 	Create a new term definition, definition.

 	If value contains the key @type:

 	Initialize type to the value associated with the
 @type key, which must be a string. Otherwise, an
 invalid type mapping
 error has been detected and processing is aborted.

 	Set type to the result of using the
 IRI Expansion algorithm, passing
 active context, type for value,
 true for vocab,
 false for document relative,
 local context, and defined. If the expanded type is
 neither @id, nor @vocab, nor an absolute IRI, an
 invalid type mapping
 error has been detected and processing is aborted.

 	Set the type mapping for definition to type.

 	If value contains the key @reverse:

 	If value contains an @id, member, an
 invalid reverse property
 error has been detected and processing is aborted.

 	If the value associated with the @reverse key
 is not a string, an
 invalid IRI mapping
 error has been detected and processing is aborted.

 	Otherwise, set the IRI mapping of definition to the
 result of using the IRI Expansion algorithm,
 passing active context, the value associated with
 the @reverse key for value, true
 for vocab, false for document relative,
 local context, and defined. If the result
 is neither an absolute IRI nor a blank node identifier,
 i.e., it contains no colon (:), an
 invalid IRI mapping
 error has been detected and processing is aborted.

 	If value contains an @container member,
 set the container mapping of definition
 to its value; if its value is neither @set, nor
 @index, nor null, an
 invalid reverse property
 error has been detected (reverse properties only support set- and
 index-containers) and processing is aborted.

 	Set the reverse property flag of definition
 to true.

 	Set the term definition of term in
 active context to definition and the
 value associated with defined's key term to
 true and return.

 	Set the reverse property flag of definition
 to false.

 	If value contains the key @id and its value
 does not equal term:

 	If the value associated with the @id key is not a string, an
 invalid IRI mapping
 error has been detected and processing is aborted.

 	Otherwise, set the IRI mapping of definition to the
 result of using the IRI Expansion algorithm, passing
 active context, the value associated with the @id key for
 value, true for vocab,
 false for document relative,
 local context, and defined. If the resulting
 IRI mapping is neither a keyword, nor an
 absolute IRI, nor a blank node identifier, an
 invalid IRI mapping
 error has been detected and processing is aborted; if it equals @context, an
 invalid keyword alias
 error has been detected and processing is aborted.

 	
 Otherwise if the term contains a colon (:):

 	If term is a compact IRI with a
 prefix that is a key in local context
 a dependency has been found. Use this algorithm recursively passing
 active context, local context, the
 prefix as term, and defined.

 	If term's prefix has a
 term definition in active context, set
 the IRI mapping of definition to the result of
 concatenating the value associated with the prefix's
 IRI mapping and the term's suffix.

 	Otherwise, term is an absolute IRI or
 blank node identifier. Set the IRI mapping
 of definition to term.

 	Otherwise, if active context has a
 vocabulary mapping, the IRI mapping
 of definition is set to the result of concatenating the value
 associated with the vocabulary mapping and term.
 If it does not have a vocabulary mapping, an
 invalid IRI mapping
 error been detected and processing is aborted.

 	If value contains the key @container:

 	Initialize container to the value associated with the
 @container key, which must be either
 @list, @set, @index,
 or @language. Otherwise, an
 invalid container mapping error
 has been detected and processing is aborted.

 	Set the container mapping of definition to
 container.

 	If value contains the key @language and
 does not contain the key @type:

 	Initialize language to the value associated with the
 @language key, which must be either null
 or a string. Otherwise, an
 invalid language mapping
 error has been detected and processing is aborted.

 	If language is a string set it to
 lowercased language. Set the language mapping
 of definition to language.

 	Set the term definition of term in
 active context to definition and set the value
 associated with defined's key term to
 true.

 6.3 IRI Expansion

 In JSON-LD documents, some keys and values may represent
 IRIs. This section defines an algorithm for
 transforming a string that represents an IRI into
 an absolute IRI or blank node identifier.
 It also covers transforming keyword aliases
 into keywords.

 IRI expansion may occur during context processing or during
 any of the other JSON-LD algorithms. If IRI expansion occurs during context
 processing, then the local context and its related defined
 map from the Context Processing algorithm
 are passed to this algorithm. This allows for term definition
 dependencies to be processed via the
 Create Term Definition algorithm.

 Overview
This section is non-normative.

 In order to expand value to an absolute IRI, we must
 first determine if it is null, a term, a
 keyword alias, or some form of IRI. Based on what
 we find, we handle the specific kind of expansion; for example, we expand
 a keyword alias to a keyword and a term
 to an absolute IRI according to its IRI mapping
 in the active context. While inspecting value we
 may also find that we need to create term definition
 dependencies because we're running this algorithm during context processing.
 We can tell whether or not we're running during context processing by
 checking local context against null.
 We know we need to create a term definition in the
 active context when value is
 a key in the local context and the defined map
 does not have a key for value with an associated value of
 true. The defined map is used during
 Context Processing to keep track of
 which terms have already been defined or are
 in the process of being defined. We create a
 term definition by using the
 Create Term Definition algorithm.

 Algorithm

 The algorithm takes two required and four optional input variables. The
 required inputs are an active context and a value
 to be expanded. The optional inputs are two flags,
 document relative and vocab, that specifying
 whether value can be interpreted as a relative IRI
 against the document's base IRI or the
 active context's
 vocabulary mapping, respectively, and
 a local context and a map defined to be used when
 this algorithm is used during Context Processing.
 If not passed, the two flags are set to false and
 local context and defined are initialized to null.

 	If value is a keyword or null,
 return value as is.

 	If local context is not null, it contains
 a key that equals value, and the value associated with the key
 that equals value in defined is not true,
 invoke the Create Term Definition algorithm,
 passing active context, local context,
 value as term, and defined. This will ensure that
 a term definition is created for value in
 active context during Context Processing.

 	If vocab is true and the
 active context has a term definition for
 value, return the associated IRI mapping.

 	If value contains a colon (:), it is either
 an absolute IRI, a compact IRI, or a
 blank node identifier:

 	Split value into a prefix and suffix
 at the first occurrence of a colon (:).

 	If prefix is underscore (_)
 or suffix begins with double-forward-slash
 (//), return value as it is already an
 absolute IRI or a blank node identifier.

 	If local context is not null, it
 contains a key that equals prefix, and the value
 associated with the key that equals prefix in defined
 is not true, invoke the
 Create Term Definition algorithm,
 passing active context,
 local context, prefix as term,
 and defined. This will ensure that a
 term definition is created for prefix
 in active context during
 Context Processing.

 	If active context contains a term definition
 for prefix, return the result of concatenating
 the IRI mapping associated with prefix and
 suffix.

 	Return value as it is already an absolute IRI.

 	If vocab is true, and
 active context has a vocabulary mapping,
 return the result of concatenating the vocabulary mapping
 with value.

 	Otherwise, if document relative is true,
 set value to the result of resolving value against
 the base IRI. Only the basic algorithm in
 section 5.2
 of [RFC3986] is used; neither
 Syntax-Based Normalization nor
 Scheme-Based Normalization
 are performed. Characters additionally allowed in IRI references are treated
 in the same way that unreserved characters are treated in URI references, per
 section 6.5
 of [RFC3987].

 	Return value as is.

 7. Expansion Algorithms

 7.1 Expansion Algorithm

 This algorithm expands a JSON-LD document, such that all context
 definitions are removed, all terms and
 compact IRIs are expanded to
 absolute IRIs,
 blank node identifiers, or
 keywords and all
 JSON-LD values are expressed in
 arrays in expanded form.

 Overview
This section is non-normative.

 Starting with its root element, we can process the
 JSON-LD document recursively, until we have a fully
 expanded result. When
 expanding an element, we can treat
 each one differently according to its type, in order to break down the
 problem:

 	If the element is null, there is nothing
 to expand.

 	Otherwise, if element is a scalar, we expand it
 according to the Value Expansion algorithm.

 	Otherwise, if the element is an array, then we expand
 each of its items recursively and return them in a new
 array.

 	Otherwise, element is a JSON object. We expand
 each of its keys, adding them to our result, and then we expand
 each value for each key recursively. Some of the keys will be
 terms or
 compact IRIs and others will be
 keywords or simply ignored because
 they do not have definitions in the context. Any
 IRIs will be expanded using the
 IRI Expansion algorithm.

 Finally, after ensuring result is in an array,
 we return result.

 Algorithm

 The algorithm takes three input variables: an active context,
 an active property, and an element to be expanded.
 To begin, the active property is set to null,
 and element is set to the JSON-LD input.

 	If element is null, return null.

 	If element is a scalar,

 	If active property is null or @graph,
 drop the free-floating scalar by returning null.

 	Return the result of the
 Value Expansion algorithm, passing the
 active context, active property, and
 element as value.

 	If element is an array,

 	Initialize an empty array, result.

 	For each item in element:

 	Initialize expanded item to the result of using this
 algorithm recursively, passing active context,
 active property, and item as element.

 	If the active property is @list or its
 container mapping is set to @list, the
 expanded item must not be an array or a
 list object, otherwise a
 list of lists
 error has been detected and processing is aborted.

 	If expanded item is an array, append each
 of its items to result. Otherwise, if
 expanded item is not null, append it to result.

 	Return result.

 	Otherwise element is a JSON object.

 	If element contains the key @context, set
 active context to the result of the
 Context Processing algorithm,
 passing active context and the value of the
 @context key as local context.

 	Initialize an empty JSON object, result.

 	For each key and value in element,
 ordered lexicographically by key:

 	If key is @context, continue to
 the next key.

 	Set expanded property to the result of
 using the IRI Expansion algorithm,
 passing active context, key for
 value, and true for vocab.

 	If expanded property is null or it neither
 contains a colon (:) nor it is a keyword,
 drop key by continuing to the next key.

 	If expanded property is a keyword:

 	If active property equals @reverse, an
 invalid reverse property map
 error has been detected and processing is aborted.

 	If result has already an expanded property member, an
 colliding keywords
 error has been detected and processing is aborted.

 	If expanded property is @id and
 value is not a string, an
 invalid @id value
 error has been detected and processing is aborted. Otherwise,
 set expanded value to the result of using the
 IRI Expansion algorithm,
 passing active context, value, and true
 for document relative.

 	If expanded property is @type and value
 is neither a string nor an array of
 strings, an
 invalid type value
 error has been detected and processing is aborted. Otherwise,
 set expanded value to the result of using the
 IRI Expansion algorithm, passing
 active context, true for vocab,
 and true for document relative to expand the value
 or each of its items.

 	If expanded property is @graph, set
 expanded value to the result of using this algorithm
 recursively passing active context, @graph
 for active property, and value for element.

 	If expanded property is @value and
 value is not a scalar or null, an
 invalid value object value
 error has been detected and processing is aborted. Otherwise,
 set expanded value to value. If expanded value
 is null, set the @value
 member of result to null and continue with the
 next key from element. Null values need to be preserved
 in this case as the meaning of an @type member depends
 on the existence of an @value member.

 	If expanded property is @language and
 value is not a string, an
 invalid language-tagged string
 error has been detected and processing is aborted. Otherwise,
 set expanded value to lowercased value.

 	If expanded property is @index and
 value is not a string, an
 invalid @index value
 error has been detected and processing is aborted. Otherwise,
 set expanded value to value.

 	If expanded property is @list:

 	If active property is null or
 @graph, continue with the next key
 from element to remove the free-floating list.

 	Otherwise, initialize expanded value to the result of using
 this algorithm recursively passing active context,
 active property, and value for element.

 	If expanded value is a list object, a
 list of lists
 error has been detected and processing is aborted.

 	If expanded property is @set, set
 expanded value to the result of using this algorithm
 recursively, passing active context,
 active property, and value for
 element.

 	If expanded property is @reverse and
 value is not a JSON object, an
 invalid @reverse value
 error has been detected and processing is aborted. Otherwise

 	Initialize expanded value to the result of using this
 algorithm recursively, passing active context,
 @reverse as active property, and
 value as element.

 	If expanded value contains an @reverse member,
 i.e., properties that are reversed twice, execute for each of its
 property and item the following steps:

 	If result does not have a property member, create
 one and set its value to an empty array.

 	Append item to the value of the property member
 of result.

 	If expanded value contains members other than @reverse:

 	If result does not have an @reverse member, create
 one and set its value to an empty JSON object.

 	Reference the value of the @reverse member in result
 using the variable reverse map.

 	For each property and items in expanded value
 other than @reverse:

 	For each item in items:

 	If item is a value object or list object, an
 invalid reverse property value
 has been detected and processing is aborted.

 	If reverse map has no property member, create one
 and initialize its value to an empty array.

 	Append item to the value of the property
 member in reverse map.

 	Continue with the next key from element.

 	Unless expanded value is null, set
 the expanded property member of result to
 expanded value.

 	Continue with the next key from element.

 	Otherwise, if key's container mapping in
 active context is @language and
 value is a JSON object then value
 is expanded from a language map
 as follows:

 	Initialize expanded value to an empty
 array.

 	For each key-value pair language-language value
 in value, ordered lexicographically by language:

 	If language value is not an array
 set it to an array containing only
 language value.

 	For each item in language value:

 	item must be a string,
 otherwise an
 invalid language map value
 error has been detected and processing is aborted.

 	Append a JSON object to
 expanded value that consists of two
 key-value pairs: (@value-item)
 and (@language-lowercased
 language).

 	Otherwise, if key's container mapping in
 active context is @index and
 value is a JSON object then value
 is expanded from an index map as follows:

 	Initialize expanded value to an empty
 array.

 	For each key-value pair index-index value
 in value, ordered lexicographically by index:

 	If index value is not an array
 set it to an array containing only
 index value.

 	Initialize index value to the result of
 using this algorithm recursively, passing
 active context,
 key as active property,
 and index value as element.

 	For each item in index value:

 	If item does not have the key
 @index, add the key-value pair
 (@index-index) to
 item.

 	Append item to expanded value.

 	Otherwise, initialize expanded value to the result of
 using this algorithm recursively, passing active context,
 key for active property, and value
 for element.

 	If expanded value is null, ignore key
 by continuing to the next key from element.

 	If the container mapping associated to key in
 active context is @list and
 expanded value is not already a list object,
 convert expanded value to a list object
 by first setting it to an array containing only
 expanded value if it is not already an array,
 and then by setting it to a JSON object containing
 the key-value pair @list-expanded value.

 	Otherwise, if the term definition associated to
 key indicates that it is a reverse property

 	If result has no @reverse member, create
 one and initialize its value to an empty JSON object.

 	Reference the value of the @reverse member in result
 using the variable reverse map.

 	If expanded value is not an array, set
 it to an array containing expanded value.

 	For each item in expanded value

 	If item is a value object or list object, an
 invalid reverse property value
 has been detected and processing is aborted.

 	If reverse map has no expanded property member,
 create one and initialize its value to an empty array.

 	Append item to the value of the expanded property
 member of reverse map.

 	Otherwise, if key is not a reverse property:

 	If result does not have an expanded property
 member, create one and initialize its value to an empty
 array.

 	Append expanded value to value of the expanded property
 member of result.

 	If result contains the key @value:

 	The result must not contain any keys other than
 @value, @language, @type,
 and @index. It must not contain both the
 @language key and the @type key.
 Otherwise, an
 invalid value object
 error has been detected and processing is aborted.

 	If the value of result's @value key is
 null, then set result to null.

 	Otherwise, if the value of result's @value member
 is not a string and result contains the key
 @language, an
 invalid language-tagged value
 error has been detected (only strings
 can be language-tagged) and processing is aborted.

 	Otherwise, if the result has an @type member
 and its value is not an IRI, an
 invalid typed value
 error has been detected and processing is aborted.

 	Otherwise, if result contains the key @type
 and its associated value is not an array, set it to
 an array containing only the associated value.

 	Otherwise, if result contains the key @set
 or @list:

 	The result must contain at most one other key and that
 key must be @index. Otherwise, an
 invalid set or list object
 error has been detected and processing is aborted.

 	If result contains the key @set, then
 set result to the key's associated value.

 	If result contains only the key
 @language, set result to null.

 	If active property is null or @graph,
 drop free-floating values as follows:

 	If result is an empty JSON object or contains
 the keys @value or @list, set result to
 null.

 	Otherwise, if result is a JSON object whose only
 key is @id, set result to null.

 	Return result.

 If, after the above algorithm is run, the result is a
 JSON object that contains only an @graph key, set the
 result to the value of @graph's value. Otherwise, if the result
 is null, set it to an empty array. Finally, if
 the result is not an array, then set the result to an
 array containing only the result.

 7.2 Value Expansion

 Some values in JSON-LD can be expressed in a
 compact form. These values are required
 to be expanded at times when processing
 JSON-LD documents. A value is said to be in expanded form
 after the application of this algorithm.

 Overview
This section is non-normative.

 If active property has a type mapping in the
 active context set to @id or @vocab,
 a JSON object with a single member @id whose
 value is the result of using the
 IRI Expansion algorithm on value
 is returned.

 Otherwise, the result will be a JSON object containing
 an @value member whose value is the passed value.
 Additionally, an @type member will be included if there is a
 type mapping associated with the active property
 or an @language member if value is a
 string and there is language mapping associated
 with the active property.

 Algorithm

 The algorithm takes three required inputs: an active context,
 an active property, and a value to expand.

 	If the active property has a type mapping
 in active context that is @id, return a new
 JSON object containing a single key-value pair where the
 key is @id and the value is the result of using the
 IRI Expansion algorithm, passing
 active context, value, and true for
 document relative.

 	If active property has a type mapping in
 active context that is @vocab, return
 a new JSON object containing a single key-value pair
 where the key is @id and the value is the result of
 using the IRI Expansion algorithm, passing
 active context, value, true for
 vocab, and true for
 document relative.

 	Otherwise, initialize result to a JSON object
 with an @value member whose value is set to
 value.

 	If active property has a type mapping in
 active context, add an @type member to
 result and set its value to the value associated with the
 type mapping.

 	Otherwise, if value is a string:

 	If a language mapping is associated with
 active property in active context,
 add an @language to result and set its
 value to the language code associated with the
 language mapping; unless the
 language mapping is set to null in
 which case no member is added.

 	Otherwise, if the active context has a
 default language, add an @language
 to result and set its value to the
 default language.

 	Return result.

 8. Compaction Algorithms

 8.1 Compaction Algorithm

 This algorithm compacts a JSON-LD document, such that the given
 context is applied. This must result in shortening
 any applicable IRIs to
 terms or
 compact IRIs, any applicable
 keywords to
 keyword aliases, and
 any applicable JSON-LD values
 expressed in expanded form to simple values such as
 strings or
 numbers.

 Overview
This section is non-normative.

 Starting with its root element, we can process the
 JSON-LD document recursively, until we have a fully
 compacted result. When
 compacting an element, we can treat
 each one differently according to its type, in order to break down the
 problem:

 	If the element is a scalar, it is
 already in compacted form, so we simply return it.

 	If the element is an array, we compact
 each of its items recursively and return them in a new
 array.

 	Otherwise element is a JSON object. The value
 of each key in element is compacted recursively. Some of the keys will be
 compacted, using the IRI Compaction algorithm,
 to terms or compact IRIs
 and others will be compacted from keywords to
 keyword aliases or simply left
 unchanged because they do not have definitions in the context.
 Values will be converted to compacted form via the
 Value Compaction algorithm. Some data
 will be reshaped based on container mappings
 specified in the context such as @index or @language
 maps.

 The final output is a JSON object with an @context
 key, if a non-empty context was given, where the JSON object
 is either result or a wrapper for it where result appears
 as the value of an (aliased) @graph key because result
 contained two or more items in an array.

 Algorithm

 The algorithm takes five required input variables: an active context,
 an inverse context, an active property, an
 element to be compacted, and a flag
 compactArrays.
 To begin, the active context is set to the result of
 performing Context Processing
 on the passed context, the inverse context is
 set to the result of performing the
 Inverse Context Creation algorithm
 on active context, the active property is
 set to null, element is set to the result of
 performing the Expansion algorithm
 on the JSON-LD input, and, if not passed,
 compactArrays
 is set to true.

 	If element is a scalar, it is already in its most
 compact form, so simply return element.

 	If element is an array:

 	Initialize result to an empty array.

 	For each item in element:

 	Initialize compacted item to the result of using this
 algorithm recursively, passing active context,
 inverse context, active property, and
 item for element.

 	If compacted item is not null, then append
 it to result.

 	If result contains only one item (it has a length of
 1), active property has no
 container mapping in active context, and
 compactArrays
 is true, set result to its only item.

 	Return result.

 	Otherwise element is a JSON object.

 	If element has an @value or @id
 member and the result of using the
 Value Compaction algorithm,
 passing active context, inverse context,
 active property,and element as value is
 a scalar, return that result.

 	Initialize inside reverse to true if
 active property equals @reverse,
 otherwise to false.

 	Initialize result to an empty JSON object.

 	For each key expanded property and value expanded value
 in element, ordered lexicographically by expanded property:

 	If expanded property is @id or
 @type:

 	If expanded value is a string,
 then initialize compacted value to the result
 of using the IRI Compaction algorithm,
 passing active context, inverse context,
 expanded value for iri,
 and true for vocab if
 expanded property is @type,
 false otherwise.

 	Otherwise, expanded value must be a
 @type array:

 	Initialize compacted value to an empty
 array.

 	For each item expanded type in
 expanded value, append the result of
 of using the IRI Compaction algorithm,
 passing active context, inverse context,
 expanded type for iri, and
 true for vocab,
 to compacted value.

 	If compacted value contains only one
 item (it has a length of 1), then
 set compacted value to its only item.

 	Initialize alias to the result of using the
 IRI Compaction algorithm,
 passing active context, inverse context,
 expanded property for iri,
 and true for vocab.

 	Add a member alias to result whose value is
 set to compacted value and continue to the next
 expanded property.

 	If expanded property is @reverse:

 	Initialize compacted value to the result of using this
 algorithm recursively, passing active context,
 inverse context, @reverse for
 active property, and expanded value
 for element.

 	For each property and value in compacted value:

 	If the term definition for property in the
 active context indicates that property is
 a reverse property

 	If the term definition for property in
 the active context has a
 container mapping of @set or
 compactArrays
 is false, and value is not an
 array, set value to a new
 array containing only value.

 	If property is not a member of
 result, add one and set its value to value.

 	Otherwise, if the value of the property member of
 result is not an array, set it to a new
 array containing only the value. Then
 append value to its value if value
 is not an array, otherwise append each
 of its items.

 	Remove the property member from
 compacted value.

 	If compacted value has some remaining members, i.e.,
 it is not an empty JSON object:

 	Initialize alias to the result of using the
 IRI Compaction algorithm,
 passing active context, inverse context,
 @reverse for iri,
 and true for vocab.

 	Set the value of the alias member of result to
 compacted value.

 	Continue with the next expanded property from element.

 	If expanded property is @index and
 active property has a container mapping
 in active context that is @index,
 then the compacted result will be inside of an @index
 container, drop the @index property by continuing
 to the next expanded property.

 	Otherwise, if expanded property is @index,
 @value, or @language:

 	Initialize alias to the result of using
 the IRI Compaction algorithm,
 passing active context, inverse context,
 expanded property for iri,
 and true for vocab.

 	Add a member alias to result whose value is
 set to expanded value and continue with the next
 expanded property.

 	If expanded value is an empty array:

 	Initialize item active property to the result of
 using the IRI Compaction algorithm,
 passing active context, inverse context,
 expanded property for iri,
 expanded value for value,
 true for vocab, and
 inside reverse.

 	If result does not have the key that equals
 item active property, set this key's value in
 result to an empty array. Otherwise, if
 the key's value is not an array, then set it
 to one containing only the value.

 	
 At this point, expanded value must be an
 array due to the
 Expansion algorithm.
 For each item expanded item in expanded value:

 	Initialize item active property to the result of using
 the IRI Compaction algorithm,
 passing active context, inverse context,
 expanded property for iri,
 expanded item for value,
 true for vocab, and
 inside reverse.

 	Initialize container to null. If there
 is a container mapping for
 item active property in active context,
 set container to its value.

 	Initialize compacted item to the result of using
 this algorithm recursively, passing
 active context, inverse context,
 item active property for active property,
 expanded item for element if it does
 not contain the key @list, otherwise pass
 the key's associated value for element.

 	
 If expanded item is a list object:

 	If compacted item is not an array,
 then set it to an array containing only
 compacted item.

 	If container is not @list:

 	Convert compacted item to a
 list object by setting it to a
 JSON object containing key-value pair
 where the key is the result of the
 IRI Compaction algorithm,
 passing active context, inverse context,
 @list for iri, and compacted item
 for value.

 	If expanded item contains the key
 @index, then add a key-value pair
 to compacted item where the key is the
 result of the IRI Compaction algorithm,
 passing active context, inverse context,
 @index as iri, and the value associated with the
 @index key in expanded item as value.

 	Otherwise, item active property must not be a key
 in result because there cannot be two
 list objects associated
 with an active property that has a
 container mapping; a
 compaction to list of lists
 error has been detected and processing is aborted.

 	
 If container is @language or
 @index:

 	If item active property is not a key in
 result, initialize it to an empty JSON object.
 Initialize map object to the value of item active property
 in result.

 	If container is @language and
 compacted item contains the key
 @value, then set compacted item
 to the value associated with its @value key.

 	Initialize map key to the value associated with
 with the key that equals container in
 expanded item.

 	If map key is not a key in map object,
 then set this key's value in map object
 to compacted item. Otherwise, if the value
 is not an array, then set it to one
 containing only the value and then append
 compacted item to it.

 	
 Otherwise,

 	If
 compactArrays
 is false, container is @set or
 @list, or expanded property is
 @list or @graph and
 compacted item is not an array,
 set it to a new array
 containing only compacted item.

 	If item active property is not a key in
 result then add the key-value pair,
 (item active property-compacted item),
 to result.

 	Otherwise, if the value associated with the key that
 equals item active property in result
 is not an array, set it to a new
 array containing only the value. Then
 append compacted item to the value if
 compacted item is not an array,
 otherwise, concatenate it.

 	Return result.

 If, after the algorithm outlined above is run, the result result
 is an array, replace it with a new
 JSON object with a single member whose key is the result
 of using the IRI Compaction algorithm,
 passing active context, inverse context, and
 @graph as iri and whose value is the array
 result. Finally, if a non-empty context has been passed,
 add an @context member to result and set its value
 to the passed context.

 8.2 Inverse Context Creation

 When there is more than one term that could be chosen
 to compact an IRI, it has to be ensured that the term
 selection is both deterministic and represents the most context-appropriate
 choice whilst taking into consideration algorithmic complexity.

 In order to make term selections, the concept of an
 inverse context is introduced. An inverse context
 is essentially a reverse lookup table that maps
 container mappings,
 type mappings, and
 language mappings to a simple
 term for a given active context. A
 inverse context only needs to be generated for an
 active context if it is being used for compaction.

 To make use of an inverse context, a list of preferred
 container mappings and the
 type mapping or language mapping are gathered
 for a particular value associated with an IRI. These parameters
 are then fed to the Term Selection algorithm,
 which will find the term that most appropriately
 matches the value's mappings.

 Overview
This section is non-normative.

 To create an inverse context for a given
 active context, each term in the
 active context is visited, ordered by length, shortest
 first (ties are broken by choosing the lexicographically least
 term). For each term, an entry is added to
 the inverse context for each possible combination of
 container mapping and type mapping
 or language mapping that would legally match the
 term. Illegal matches include differences between a
 value's type mapping or language mapping and
 that of the term. If a term has no
 container mapping, type mapping, or
 language mapping (or some combination of these), then it
 will have an entry in the inverse context using the special
 key @none. This allows the
 Term Selection algorithm to fall back
 to choosing more generic terms when a more
 specifically-matching term is not available for a particular
 IRI and value combination.

 Algorithm

 The algorithm takes one required input: the active context that
 the inverse context is being created for.

 	Initialize result to an empty JSON object.

 	Initialize default language to @none. If the
 active context has a default language,
 set default language to it.

 	For each key term and value term definition in
 the active context, ordered by shortest term
 first (breaking ties by choosing the lexicographically least
 term):

 	If the term definition is null,
 term cannot be selected during compaction,
 so continue to the next term.

 	Initialize container to @none. If there
 is a container mapping in
 term definition, set container to
 its associated value.

 	Initialize iri to the value of the IRI mapping
 for the term definition.

 	If iri is not a key in result, add
 a key-value pair where the key is iri and the value
 is an empty JSON object to result.

 	Reference the value associated with the iri member in
 result using the variable container map.

 	If container map has no container member,
 create one and set its value to a new
 JSON object with two members. The first member is
 @language and its value is a new empty
 JSON object, the second member is @type
 and its value is a new empty JSON object.

 	Reference the value associated with the container member
 in container map using the variable type/language map.

 	If the term definition indicates that the term
 represents a reverse property:

 	Reference the value associated with the @type
 member in type/language map using the variable
 type map.

 	If type map does not have an @reverse
 member, create one and set its value to the term
 being processed.

 	Otherwise, if term definition has a
 type mapping:

 	Reference the value associated with the @type
 member in type/language map using the variable
 type map.

 	If type map does not have a member corresponding
 to the type mapping in term definition,
 create one and set its value to the term
 being processed.

 	Otherwise, if term definition has a
 language mapping (might be null):

 	Reference the value associated with the @language
 member in type/language map using the variable
 language map.

 	If the language mapping equals null,
 set language to @null; otherwise set it
 to the language code in language mapping.

 	If language map does not have a language member,
 create one and set its value to the term
 being processed.

 	Otherwise:

 	Reference the value associated with the @language
 member in type/language map using the variable
 language map.

 	If language map does not have a default language
 member, create one and set its value to the term
 being processed.

 	If language map does not have an @none
 member, create one and set its value to the term
 being processed.

 	Reference the value associated with the @type
 member in type/language map using the variable
 type map.

 	If type map does not have an @none
 member, create one and set its value to the term
 being processed.

 	Return result.

 8.3 IRI Compaction

 This algorithm compacts an IRI to a term or
 compact IRI, or a keyword to a
 keyword alias. A value that is associated with the
 IRI may be passed in order to assist in selecting the most
 context-appropriate term.

 Overview
This section is non-normative.

 If the passed IRI is null, we simply
 return null. Otherwise, we first try to find a term
 that the IRI or keyword can be compacted to if
 it is relative to active context's
 vocabulary mapping. In order to select the most appropriate
 term, we may have to collect information about the passed
 value. This information includes which
 container mappings
 would be preferred for expressing the value, and what its
 type mapping or language mapping is. For
 JSON-LD lists, the type mapping
 or language mapping will be chosen based on the most
 specific values that work for all items in the list. Once this
 information is gathered, it is passed to the
 Term Selection algorithm, which will
 return the most appropriate term to use.

 If no term was found that could be used to compact the
 IRI, an attempt is made to compact the IRI using the
 active context's vocabulary mapping,
 if there is one. If the IRI could not be compacted, an
 attempt is made to find a compact IRI. If there is no
 appropriate compact IRI, the IRI is
 transformed to a relative IRI using the document's
 base IRI. Finally, if the IRI or
 keyword still could not be compacted, it is returned
 as is.

 Algorithm

 This algorithm takes three required inputs and three optional inputs.
 The required inputs are an active context, an inverse context,
 and the iri to be compacted. The optional inputs are a value associated
 with the iri, a vocab flag which specifies whether the
 passed iri should be compacted using the
 active context's
 vocabulary mapping, and a reverse flag which specifies whether
 a reverse property is being compacted. If not passed, value is set to
 null and vocab and reverse are both set to
 false.

 	If iri is null, return null.

 	If vocab is true and iri is a
 key in inverse context:

 	Initialize default language to
 active context's
 default language, if it has one, otherwise to
 @none.

 	Initialize containers to an empty array. This
 array will be used to keep track of an ordered list of
 preferred container mappings
 for a term, based on what is compatible with
 value.

 	Initialize type/language to @language,
 and type/language value to @null. These two
 variables will keep track of the preferred
 type mapping or language mapping for
 a term, based on what is compatible with value.

 	If value is a JSON object that contains the
 key @index, then append the value @index
 to containers.

 	If reverse is true, set type/language
 to @type, type/language value to
 @reverse, and append @set to containers.

 	Otherwise, if value is a list object, then set
 type/language and type/language value
 to the most specific values that work for all items in
 the list as follows:

 	If @index is a not key in value, then
 append @list to containers.

 	Initialize list to the array associated
 with the key @list in value.

 	Initialize common type and common language to null. If
 list is empty, set common language to
 default language.

 	For each item in list:

 	Initialize item language to @none and
 item type to @none.

 	If item contains the key @value:

 	If item contains the key @language,
 then set item language to its associated
 value.

 	Otherwise, if item contains the key
 @type, set item type to its
 associated value.

 	Otherwise, set item language to
 @null.

 	Otherwise, set item type to @id.

 	If common language is null, set it
 to item language.

 	Otherwise, if item language does not equal
 common language and item contains the
 key @value, then set common language
 to @none because list items have conflicting
 languages.

 	If common type is null, set it
 to item type.

 	Otherwise, if item type does not equal
 common type, then set common type
 to @none because list items have conflicting
 types.

 	If common language is @none and
 common type is @none, then
 stop processing items in the list because it has been
 detected that there is no common language or type amongst
 the items.

 	If common language is null, set it to
 @none.

 	If common type is null, set it to
 @none.

 	If common type is not @none then set
 type/language to @type and
 type/language value to common type.

 	Otherwise, set type/language value to
 common language.

 	Otherwise:

 	If value is a value object:

 	If value contains the key @language
 and does not contain the key @index,
 then set type/language value to its associated
 value and append @language to
 containers.

 	Otherwise, if value contains the key
 @type, then set type/language value to
 its associated value and set type/language to
 @type.

 	Otherwise, set type/language to @type
 and set type/language value to @id.

 	Append @set to containers.

 	Append @none to containers. This represents
 the non-existence of a container mapping, and it will
 be the last container mapping value to be checked as it
 is the most generic.

 	If type/language value is null, set it to
 @null. This is the key under which null values
 are stored in the inverse context entry.

 	Initialize preferred values to an empty array.
 This array will indicate, in order, the preferred values for
 a term's type mapping or
 language mapping.

 	If type/language value is @reverse, append
 @reverse to preferred values.

 	If type/language value is @id or @reverse
 and value has an @id member:

 	If the result of using the
 IRI compaction algorithm,
 passing active context, inverse context,
 the value associated with the @id key in value for
 iri, true for vocab, and
 true for document relative has a
 term definition in the active context
 with an IRI mapping that equals the value associated
 with the @id key in value,
 then append @vocab, @id, and
 @none, in that order, to preferred values.

 	Otherwise, append @id, @vocab, and
 @none, in that order, to preferred values.

 	Otherwise, append type/language value and @none, in
 that order, to preferred values.

 	Initialize term to the result of the
 Term Selection algorithm, passing
 inverse context, iri, containers,
 type/language, and preferred values.

 	If term is not null, return term.

 	At this point, there is no simple term that iri
 can be compacted to. If vocab is true and
 active context has a vocabulary mapping:

 	If iri begins with the
 vocabulary mapping's value
 but is longer, then initialize suffix to the substring
 of iri that does not match. If suffix does not
 have a term definition in active context,
 then return suffix.

 	The iri could not be compacted using the
 active context's vocabulary mapping.
 Try to create a compact IRI, starting by initializing
 compact IRI to null. This variable will be used to
 tore the created compact IRI, if any.

 	For each key term and value term definition in
 the active context:

 	If the term contains a colon (:),
 then continue to the next term because
 terms with colons can't be
 used as prefixes.

 	If the term definition is null,
 its IRI mapping equals iri, or its
 IRI mapping is not a substring at the beginning of
 iri, the term cannot be used as a prefix
 because it is not a partial match with iri.
 Continue with the next term.

 	Initialize candidate by concatenating term,
 a colon (:), and the substring of iri
 that follows after the value of the
 term definition's
 IRI mapping.

 	If either compact IRI is null or candidate is
 shorter or the same length but lexicographically less than
 compact IRI and candidate does not have a
 term definition in active context or if the
 term definition has an IRI mapping
 that equals iri and value is null,
 set compact IRI to candidate.

 	If compact IRI is not null, return compact IRI.

 	If vocab is false then
 transform iri to a relative IRI using
 the document's base IRI.

 	Finally, return iri as is.

 8.4 Term Selection

 This algorithm, invoked via the IRI Compaction algorithm,
 makes use of an active context's
 inverse context to find the term that is best
 used to compact an IRI. Other
 information about a value associated with the IRI is given,
 including which container mappings
 and which type mapping or language mapping would
 be best used to express the value.

 Overview
This section is non-normative.

 The inverse context's entry for
 the IRI will be first searched according to the preferred
 container mappings, in the order
 that they are given. Amongst terms with a matching
 container mapping, preference will be given to those
 with a matching type mapping or language mapping,
 over those without a type mapping or
 language mapping. If there is no term
 with a matching container mapping then the term
 without a container mapping that matches the given
 type mapping or language mapping is selected. If
 there is still no selected term, then a term
 with no type mapping or language mapping will
 be selected if available. No term will be selected that
 has a conflicting type mapping or language mapping.
 Ties between terms that have the same
 mappings are resolved by first choosing the shortest terms, and then by
 choosing the lexicographically least term. Note that these ties are
 resolved automatically because they were previously resolved when the
 Inverse Context Creation algorithm
 was used to create the inverse context.

 Algorithm

 This algorithm has five required inputs. They are:
 an inverse context, a keyword or IRI
 iri, an array containers that represents an
 ordered list of preferred container mappings,
 a string type/language that indicates whether
 to look for a term with a matching type mapping
 or language mapping, and an array representing
 an ordered list of preferred values for the type mapping
 or language mapping to look for.

 	Initialize container map to the value associated with
 iri in the inverse context.

 	For each item container in containers:

 	If container is not a key in container map, then
 there is no term with a matching
 container mapping for it, so continue to the next
 container.

 	Initialize type/language map to the value associated
 with the container member in container map.

 	Initialize value map to the value associated
 with type/language member in type/language map.

 	For each item in preferred values:

 	If item is not a key in value map,
 then there is no term with a matching
 type mapping or language mapping,
 so continue to the next item.

 	Otherwise, a matching term has been found, return the value
 associated with the item member in
 value map.

 	No matching term has been found. Return null.

 8.5 Value Compaction

 Expansion transforms all values into expanded form
 in JSON-LD. This algorithm performs the opposite operation, transforming
 a value into compacted form. This algorithm compacts a
 value according to the term definition in the given
 active context that is associated with the value's associated
 active property.

 Overview
This section is non-normative.

 The value to compact has either an @id or an
 @value member.

 For the former case, if the type mapping of
 active property is set to @id or @vocab
 and value consists of only an @id member and, if
 the container mapping of active property
 is set to @index, an @index member, value
 can be compacted to a string by returning the result of
 using the IRI Compaction algorithm
 to compact the value associated with the @id member.
 Otherwise, value cannot be compacted and is returned as is.

 For the latter case, it might be possible to compact value
 just into the value associated with the @value member.
 This can be done if the active property has a matching
 type mapping or language mapping and there
 is either no @index member or the container mapping
 of active property is set to @index. It can
 also be done if @value is the only member in value
 (apart an @index member in case the container mapping
 of active property is set to @index) and
 either its associated value is not a string, there is
 no default language, or there is an explicit
 null language mapping for the
 active property.

 Algorithm

 This algorithm has four required inputs: an active context, an
 inverse context, an active property, and a value
 to be compacted.

 	Initialize number members to the number of members
 value contains.

 	If value has an @index member and the
 container mapping associated to active property
 is set to @index, decrease number members by
 1.

 	If number members is greater than 2, return
 value as it cannot be compacted.

 	If value has an @id member:

 	If number members is 1 and
 the type mapping of active property
 is set to @id, return the result of using the
 IRI compaction algorithm,
 passing active context, inverse context,
 and the value of the @id member for iri.

 	Otherwise, if number members is 1 and
 the type mapping of active property
 is set to @vocab, return the result of using the
 IRI compaction algorithm,
 passing active context, inverse context,
 the value of the @id member for iri, and
 true for vocab.

 	Otherwise, return value as is.

 	Otherwise, if value has an @type member whose
 value matches the type mapping of active property,
 return the value associated with the @value member
 of value.

 	Otherwise, if value has an @language member whose
 value matches the language mapping of
 active property, return the value associated with the
 @value member of value.

 	Otherwise, if number members equals 1 and either
 the value of the @value member is not a string,
 or the active context has no default language,
 or the language mapping of active property
 is set to null,, return the value associated with the
 @value member.

 	Otherwise, return value as is.

 9. Flattening Algorithms

 9.1 Flattening Algorithm

 This algorithm flattens an expanded JSON-LD document by collecting all
 properties of a node in a single JSON object
 and labeling all blank nodes with
 blank node identifiers.
 This resulting uniform shape of the document, may drastically simplify
 the code required to process JSON-LD data in certain applications.

 Overview
This section is non-normative.

 First, a node map is generated using the
 Node Map Generation algorithm
 which collects all properties of a node in a single
 JSON object. In the next step, the node map is
 converted to a JSON-LD document in
 flattened document form.
 Finally, if a context has been passed, the flattened document
 is compacted using the Compaction algorithm
 before being returned.

 Algorithm

 The algorithm takes two input variables, an element to flatten and
 an optional context used to compact the flattened document. If not
 passed, context is set to null.

 This algorithm generates new blank node identifiers
 and relabels existing blank node identifiers.
 The used Generate Blank Node Identifier algorithm
 keeps an identifier map and a counter to ensure consistent
 relabeling and avoid collisions. Thus, before this algorithm is run,
 the identifier map is reset and the counter is initialized
 to 0.

 	Initialize node map to a JSON object consisting of
 a single member whose key is @default and whose value is
 an empty JSON object.

 	Perform the Node Map Generation algorithm, passing
 element and node map.

 	Initialize default graph to the value of the @default
 member of node map, which is a JSON object representing
 the default graph.

 	For each key-value pair graph name-graph in node map
 where graph name is not @default, perform the following steps:

 	If default graph does not have a graph name member, create
 one and initialize its value to a JSON object consisting of an
 @id member whose value is set to graph name.

 	Reference the value associated with the graph name member in
 default graph using the variable entry.

 	Add an @graph member to entry and set it to an
 empty array.

 	For each id-node pair in graph ordered by id,
 add node to the @graph member of entry,
 unless the only member of node is @id.

 	Initialize an empty array flattened.

 	For each id-node pair in default graph ordered by id,
 add node to flattened,
 unless the only member of node is @id.

 	If context is null, return flattened.

 	Otherwise, return the result of compacting flattened according the
 Compaction algorithm passing context
 ensuring that the compaction result has only the @graph keyword (or its alias)
 at the top-level other than @context, even if the context is empty or if there is only one element to
 put in the @graph array. This ensures that the returned
 document has a deterministic structure.

 9.2 Node Map Generation

 This algorithm creates a JSON object node map holding an indexed
 representation of the graphs and nodes
 represented in the passed expanded document. All nodes that are not
 uniquely identified by an IRI get assigned a (new) blank node identifier.
 The resulting node map will have a member for every graph in the document whose
 value is another object with a member for every node represented in the document.
 The default graph is stored under the @default member, all other graphs are
 stored under their graph name.

 Overview
This section is non-normative.

 The algorithm recursively runs over an expanded JSON-LD document to
 collect all properties of a node
 in a single JSON object. The algorithm constructs a
 JSON object node map whose keys represent the
 graph names used in the document
 (the default graph is stored under the key @default)
 and whose associated values are JSON objects
 which index the nodes in the
 graph. If a
 property's value is a node object,
 it is replaced by a node object consisting of only an
 @id member. If a node object has no @id
 member or it is identified by a blank node identifier,
 a new blank node identifier is generated. This relabeling
 of blank node identifiers is
 also done for properties and values of
 @type.

 Algorithm

 The algorithm takes as input an expanded JSON-LD document element and a reference to
 a JSON object node map. Furthermore it has the optional parameters
 active graph (which defaults to @default), an active subject,
 active property, and a reference to a JSON object list. If
 not passed, active subject, active property, and list are
 set to null.

 	If element is an array, process each item in element
 as follows and then return:

 	Run this algorithm recursively by passing item for element,
 node map, active graph, active subject,
 active property, and list.

 	Otherwise element is a JSON object. Reference the
 JSON object which is the value of the active graph
 member of node map using the variable graph. If the
 active subject is null, set node to null
 otherwise reference the active subject member of graph using the
 variable node.

 	If element has an @type member, perform for each
 item the following steps:

 	If item is a blank node identifier, replace it with a newly
 generated blank node identifier
 passing item for identifier.

 	If element has an @value member, perform the following steps:

 	If list is null:

 	If node does not have an active property member,
 create one and initialize its value to an array
 containing element.

 	Otherwise, compare element against every item in the
 array associated with the active property
 member of node. If there is no item equivalent to element,
 append element to the array. Two
 JSON objects are considered
 equal if they have equivalent key-value pairs.

 	Otherwise, append element to the @list member of list.

 	Otherwise, if element has an @list member, perform
 the following steps:

 	Initialize a new JSON object result consisting of a single member
 @list whose value is initialized to an empty array.

 	Recursively call this algorithm passing the value of element's
 @list member for element, active graph,
 active subject, active property, and
 result for list.

 	Append result to the value of the active property member
 of node.

 	Otherwise element is a node object, perform
 the following steps:

 	If element has an @id member, set id
 to its value and remove the member from element. If id
 is a blank node identifier, replace it with a newly
 generated blank node identifier
 passing id for identifier.

 	Otherwise, set id to the result of the
 Generate Blank Node Identifier algorithm
 passing null for identifier.

 	If graph does not contain a member id, create one and initialize
 its value to a JSON object consisting of a single member @id whose
 value is id.

 	Reference the value of the id member of graph using the
 variable node.

 	If active subject is a JSON object, a reverse property relationship
 is being processed. Perform the following steps:

 	If node does not have an active property member,
 create one and initialize its value to an array
 containing active subject.

 	Otherwise, compare active subject against every item in the
 array associated with the active property
 member of node. If there is no item equivalent to active subject,
 append active subject to the array. Two
 JSON objects are considered
 equal if they have equivalent key-value pairs.

 	Otherwise, if active property is not null, perform the following steps:

 	Create a new JSON object reference consisting of a single member
 @id whose value is id.

 	If list is null:

 	If node does not have an active property member,
 create one and initialize its value to an array
 containing reference.

 	Otherwise, compare reference against every item in the
 array associated with the active property
 member of node. If there is no item equivalent to reference,
 append reference to the array. Two
 JSON objects are considered
 equal if they have equivalent key-value pairs.

 	Otherwise, append element to the @list member of list.

 	If element has an @type key, append
 each item of its associated array to the
 array associated with the @type key of
 node unless it is already in that array. Finally
 remove the @type member from element.

 	If element has an @index member, set the @index
 member of node to its value. If node has already an
 @index member with a different value, a
 conflicting indexes
 error has been detected and processing is aborted. Otherwise, continue by
 removing the @index member from element.

 	If element has an @reverse member:

 	Create a JSON object referenced node with a single member @id whose
 value is id.

 	Set reverse map to the value of the @reverse member of
 element.

 	For each key-value pair property-values in reverse map:

 	For each value of values:

 	Recursively invoke this algorithm passing value for
 element, node map, active graph,
 referenced node for active subject, and
 property for active property. Passing a
 JSON object for active subject indicates to the
 algorithm that a reverse property relationship is being processed.

 	Remove the @reverse member from element.

 	If element has an @graph member, recursively invoke this
 algorithm passing the value of the @graph member for element,
 node map, and id for active graph before removing
 the @graph member from element.

 	Finally, for each key-value pair property-value in element ordered by
 property perform the following steps:

 	If property is a blank node identifier, replace it with a newly
 generated blank node identifier
 passing property for identifier.

 	If node does not have a property member, create one and initialize
 its value to an empty array.

 	Recursively invoke this algorithm passing value for element,
 node map, active graph, id for active subject,
 and property for active property.

 9.3 Generate Blank Node Identifier

 This algorithm is used to generate new
 blank node identifiers or to
 relabel an existing blank node identifier to avoid collision
 by the introduction of new ones.

 Overview
This section is non-normative.

 The simplest case is if there exists already a blank node identifier
 in the identifier map for the passed identifier, in which
 case it is simply returned. Otherwise, a new blank node identifier
 is generated by concatenating the string _:b and the
 counter. If the passed identifier is not null,
 an entry is created in the identifier map associating the
 identifier with the blank node identifier. Finally,
 the counter is increased by one and the new
 blank node identifier is returned.

 Algorithm

 The algorithm takes a single input variable identifier which may
 be null. Between its executions, the algorithm needs to
 keep an identifier map to relabel existing
 blank node identifiers
 consistently and a counter to generate new
 blank node identifiers. The
 counter is initialized to 0 by default.

 	If identifier is not null and has an entry in the
 identifier map, return the mapped identifier.

 	Otherwise, generate a new blank node identifier by concatenating
 the string _:b and counter.

 	Increment counter by 1.

 	If identifier is not null, create a new entry
 for identifier in identifier map and set its value
 to the new blank node identifier.

 	Return the new blank node identifier.

 10. RDF Serialization/Deserialization Algorithms

 This section describes algorithms to deserialize a JSON-LD document to an
 RDF dataset and vice versa. The algorithms are designed for in-memory
 implementations with random access to JSON object elements.

 Throughout this section, the following vocabulary
 prefixes are used in
 compact IRIs:

 	Prefix
 	IRI

 	rdf
 	http://www.w3.org/1999/02/22-rdf-syntax-ns#

 	rdfs
 	 http://www.w3.org/2000/01/rdf-schema#

 	xsd
 	http://www.w3.org/2001/XMLSchema#

 10.1 Deserialize JSON-LD to RDF algorithm

 This algorithm deserializes a JSON-LD document to an RDF dataset.
 Please note that RDF does not allow a blank node to be used
 as a property, while JSON-LD does. Therefore, by default
 RDF triples that would have contained blank nodes as properties are
 discarded when interpreting JSON-LD as RDF.

 Overview
This section is non-normative.

 The JSON-LD document is expanded and converted to a node map using the
 Node Map Generation algorithm.
 This allows each graph represented within the document to be
 extracted and flattened, making it easier to process each
 node object. Each graph from the node map
 is processed to extract RDF triples,
 to which any (non-default) graph name is applied to create an
 RDF dataset. Each node object in the
 node map has an @id member which corresponds to the
 RDF subject, the other members
 represent RDF predicates. Each
 member value is either an IRI or
 blank node identifier or can be transformed to an
 RDF literal
 to generate an RDF triple. Lists
 are transformed into an
 RDF Collection
 using the List to RDF Conversion algorithm.

 Algorithm

 The algorithm takes a JSON-LD document element and returns an
 RDF dataset. Unless the produce generalized RDF flag
 is set to true, RDF triples
 containing a blank node predicate
 are excluded from output.

 This algorithm generates new blank node identifiers
 and relabels existing blank node identifiers.
 The used Generate Blank Node Identifier algorithm
 keeps an identifier map and a counter to ensure consistent
 relabeling and avoid collisions. Thus, before this algorithm is run,
 the identifier map is reset and the counter is initialized
 to 0.

 	Expand element according to the
 Expansion algorithm.

 	Generate a node map according to the
 Node Map Generation algorithm.

 	Initialize an empty RDF dataset dataset.

 	For each graph name and graph in node map
 ordered by graph name:

 	If graph name is a relative IRI, continue
 with the next graph name-graph pair.

 	Initialize triples as an empty array.

 	For each subject and node in graph ordered
 by subject:

 	If subject is a relative IRI, continue
 with the next subject-node pair.

 	For each property and values in node
 ordered by property:

 	If property is @type, then for each
 type in values, append a triple
 composed of subject, rdf:type,
 and type to triples.

 	Otherwise, if property is a keyword
 continue with the next property-values pair.

 	Otherwise, if property is a blank node identifier and
 the produce generalized RDF flag is not true,
 continue with the next property-values pair.

 	Otherwise, if property is a relative IRI,
 continue with the next property-values pair.

 	Otherwise, property is an absolute IRI or
 blank node identifier. For each item
 in values:

 	If item is a list object, initialize
 list triples as an empty array and
 list head to the result of the List Conversion algorithm, passing
 the value associated with the @list key from
 item and list triples. Append first a
 triple composed of subject,
 property, and list head to triples and
 finally append all triples from
 list triples to triples.

 	Otherwise, item is a value object
 or a node object. Append a triple
 composed of subject, property, and
 the result of using the
 Object to RDF Conversion algorithm
 passing item to triples, unless the result is
 null, indicating a relative IRI that has
 to be ignored.

 	If graph name is @default, add
 triples to the default graph in dataset.

 	Otherwise, create a named graph in dataset
 composed of graph name and add triples.

 	Return dataset.

 10.2 Object to RDF Conversion

 This algorithm takes a node object or value object
 and transforms it into an
 RDF resource
 to be used as the object of an RDF triple. If a
 node object containing a relative IRI is passed to
 the algorithm, null is returned which then causes the resulting
 RDF triple to be ignored.

 Overview
This section is non-normative.

 Value objects are transformed to
 RDF literals as described in
 section 10.6 Data Round Tripping
 whereas node objects are transformed
 to IRIs,
 blank node identifiers,
 or null.

 Algorithm

 The algorithm takes as its sole argument item which must be
 either a value object or node object.

 	If item is a node object and the value of
 its @id member is a relative IRI, return
 null.

 	If item is a node object, return the
 IRI or blank node identifier associated
 with its @id member.

 	Otherwise, item is a value object. Initialize
 value to the value associated with the @value
 member in item.

	Initialize datatype to the value associated with the
 @type member of item or null if
 item does not have such a member.

 	If value is true or
 false, set value to the string
 true or false which is the
 canonical lexical form as described in
 section 10.6 Data Round Tripping
 If datatype is null, set it to
 xsd:boolean.

 	Otherwise, if value is a number with a non-zero fractional
 part (the result of a modulo‑1 operation) or value is a number
 and datatype equals xsd:double, convert value to a
 string in canonical lexical form of
 an xsd:double as defined in [XMLSCHEMA11-2]
 and described in
 section 10.6 Data Round Tripping.
 If datatype is null, set it to
 xsd:double.

 	Otherwise, if value is a number with no non-zero
 fractional part (the result of a modulo‑1 operation) or value
 is a number and datatype
 equals xsd:integer, convert value to a
 string in canonical lexical form of
 an xsd:integer as defined in [XMLSCHEMA11-2]
 and described in
 section 10.6 Data Round Tripping.
 If datatype is null, set it to
 xsd:integer.

 	Otherwise, if datatype is null, set it to
 xsd:string or rdf:langString, depending on if
 item has an @language member.

 	Initialize literal as an RDF literal using
 value and datatype. If item has an
 @language member, add the value associated with the
 @language key as the language tag of literal.

 	Return literal.

 10.3 List to RDF Conversion

 List Conversion is the process of taking a list object
 and transforming it into an
 RDF Collection
 as defined in RDF Semantics [RDF11-MT].

 Overview
This section is non-normative.

 For each element of the list a new blank node identifier
 is allocated which is used to generate rdf:first and
 rdf:rest triples. The
 algorithm returns the list head, which is either the first allocated
 blank node identifier or rdf:nil if the
 list is empty. If a list element represents a relative IRI,
 the corresponding rdf:first triple is omitted.

 Algorithm

 The algorithm takes two inputs: an array list
 and an empty array list triples used for returning
 the generated triples.

 	If list is empty, return rdf:nil.

 	Otherwise, create an array bnodes composed of a
 newly generated blank node identifier
 for each entry in list.

 	Initialize an empty array list triples.

 	For each pair of subject from bnodes and item from list:

 	Initialize object to the result of using the
 Object to RDF Conversion algorithm
 passing item to list triples.

 	Unless object is null, append a triple
 composed of subject, rdf:first, and object.

 	Set rest as the next entry in bnodes, or if that
 does not exist, rdf:nil. Append a
 triple composed of subject,
 rdf:rest, and rest to list triples.

 	Return the first blank node from bnodes or
 rdf:nil if bnodes is empty.

 10.4 Serialize RDF as JSON-LD Algorithm

 This algorithm serializes an RDF dataset consisting of a
 default graph and zero or more
 named graphs into a JSON-LD document.

 Overview
This section is non-normative.

 Iterate through each graph in the dataset, converting each
 RDF Collection into a list
 and generating a JSON-LD document in expanded form for all
 RDF literals, IRIs
 and blank node identifiers.
 If the use native types flag is set to true,
 RDF literals with a
 datatype IRI
 that equals xsd:integer or xsd:double are converted
 to a JSON numbers and RDF literals
 with a datatype IRI
 that equals xsd:boolean are converted to true or
 false based on their
 lexical form
 as described in
 section 10.6 Data Round Tripping.
 Unless the use rdf:type flag is set to true, rdf:type
 predicates will be serialized as @type as long as the associated object is
 either an IRI or blank node identifier.

 Algorithm

 The algorithm takes one required and two optional inputs: an RDF dataset
 and the two flags use native types and use rdf:type
 that both default to false.

 	Initialize default graph to an empty JSON object.

 	Initialize graph map to a JSON object consisting
 of a single member @default whose value references
 default graph.

 	For each graph in RDF dataset:

 	If graph is the default graph,
 set name to @default, otherwise to the
 graph name associated with graph.

 	If graph map has no name member, create one and set
 its value to an empty JSON object.

 	If graph is not the default graph and
 default graph does not have a name member,
 create such a member and initialize its value to a new
 JSON object with a single member @id
 whose value is name.

 	Reference the value of the name member in graph map
 using the variable node map.

 	For each RDF triple in graph
 consisting of subject, predicate, and object:

 	If node map does not have a subject member,
 create one and initialize its value to a new JSON object
 consisting of a single member @id whose value is
 set to subject.

 	Reference the value of the subject member in node map
 using the variable node.

 	If object is an IRI or blank node identifier,
 and node map does not have an object member,
 create one and initialize its value to a new JSON object
 consisting of a single member @id whose value is
 set to object.

 	If predicate equals rdf:type, the
 use rdf:type flag is not true, and object
 is an IRI or blank node identifier,
 append object to the value of the @type
 member of node; unless such an item already exists.
 If no such member exists, create one
 and initialize it to an array whose only item is
 object. Finally, continue to the next
 RDF triple.

 	Set value to the result of using the
 RDF to Object Conversion algorithm,
 passing object and use native types.

 	If node does not have an predicate member, create one
 and initialize its value to an empty array.

 	If there is no item equivalent to value in the array
 associated with the predicate member of node, append a
 reference to value to the array. Two JSON objects
 are considered equal if they have equivalent key-value pairs.

 	If object is a blank node identifier or IRI,
 it might represent the list node:

 	If the object member of node map has no
 usages member, create one and initialize it to
 an empty array.

 	Reference the usages member of the object
 member of node map using the variable usages.

 	Append a new JSON object consisting of three
 members, node, property, and value
 to the usages array. The node member
 is set to a reference to node, property to predicate,
 and value to a reference to value.

 	For each name and graph object in graph map:

 	If graph object has no rdf:nil member, continue
 with the next name-graph object pair as the graph does
 not contain any lists that need to be converted.

 	Initialize nil to the value of the rdf:nil member
 of graph object.

 	For each item usage in the usages member of
 nil, perform the following steps:

 	Initialize node to the value of the value of the
 node member of usage, property to
 the value of the property member of usage,
 and head to the value of the value member
 of usage.

 	Initialize two empty arrays list
 and list nodes.

 	While property equals rdf:rest, the value
 associated to the usages member of node has
 exactly 1 entry, node has a rdf:first and
 rdf:rest property, both of which have as value an
 array consisting of a single element, and node
 has no other members apart from an optional @type
 member whose value is an array with a single item equal to
 rdf:List, node represents a well-formed list
 node. Perform the following steps to traverse the list backwards
 towards its head:

 	Append the only item of rdf:first member of
 node to the list array.

 	Append the value of the @id member of
 node to the list nodes array.

 	Initialize node usage to the only item of the
 usages member of node.

 	Set node to the value of the node member
 of node usage, property to the value of the
 property member of node usage, and
 head to the value of the value member
 of node usage.

 	If the @id member of node is an
 IRI instead of a blank node identifier,
 exit the while loop.

 	If property equals rdf:first, i.e., the
 detected list is nested inside another list

 	and the value of the @id of node equals
 rdf:nil, i.e., the detected list is empty,
 continue with the next usage item. The
 rdf:nil node cannot be converted to a
 list object as it would result in a list of
 lists, which isn't supported.

 	Otherwise, the list consists of at least one item. We preserve the
 head node and transform the rest of the linked list to a
 list object.

 	Set head id to the value of the @id
 member of head.

 	Set head to the value of the head id member of
 graph object so that all it's properties can be accessed.

 	Then, set head to the only item in the value of the
 rdf:rest member of head.

 	Finally, remove the last item of the list array
 and the last item of the list nodes array.

 	Remove the @id member from head.

 	Reverse the order of the list array.

 	Add an @list member to head and initialize
 its value to the list array.

 	For each item node id in list nodes, remove the
 node id member from graph object.

 	Initialize an empty array result.

 	For each subject and node in default graph
 ordered by subject:

 	If graph map has a subject member:

 	Add an @graph member to node and initialize
 its value to an empty array.

 	For each key-value pair s-n in the subject
 member of graph map ordered by s, append n
 to the @graph member of node after
 removing its usages member, unless the only
 remaining member of n is @id.

 	Append node to result after removing its
 usages member, unless the only remaining member of
 node is @id.

 	Return result.

 10.5 RDF to Object Conversion

 This algorithm transforms an RDF literal to a JSON-LD value object
 and a RDF blank node or IRI to an JSON-LD node object.

 Overview
This section is non-normative.

 RDF literals are transformed to
 value objects whereas IRIs and
 blank node identifiers are
 transformed to node objects.
 If the use native types flag is set to true,
 RDF literals with a
 datatype IRI
 that equals xsd:integer or xsd:double are converted
 to a JSON numbers and RDF literals
 with a datatype IRI
 that equals xsd:boolean are converted to true or
 false based on their
 lexical form
 as described in
 section 10.6 Data Round Tripping.

 Algorithm

 This algorithm takes two required inputs: a value to be converted
 to a JSON object and a flag use native types.

 	If value is an IRI or a
 blank node identifier, return a new JSON object
 consisting of a single member @id whose value is set to
 value.

 	Otherwise value is an
 RDF literal:

 	Initialize a new empty JSON object result.

 	Initialize converted value to value.

 	Initialize type to null

 	If use native types is true

 	If the
 datatype IRI
 of value equals xsd:string, set
 converted value to the
 lexical form
 of value.

 	Otherwise, if the
 datatype IRI
 of value equals xsd:boolean, set
 converted value to true if the
 lexical form
 of value matches true, or false
 if it matches false. If it matches neither,
 set type to xsd:boolean.

 	Otherwise, if the
 datatype IRI
 of value equals xsd:integer or
 xsd:double and its
 lexical form
 is a valid xsd:integer or xsd:double
 according [XMLSCHEMA11-2], set converted value
 to the result of converting the
 lexical form
 to a JSON number.

 	Otherwise, if value is a
 language-tagged string
 add a member @language to result and set its value to the
 language tag
 of value.

 	Otherwise, set type to the
 datatype IRI
 of value, unless it equals xsd:string which is ignored.

 	Add a member @value to result whose value
 is set to converted value.

 	If type is not null, add a member @type
 to result whose value is set to type.

 	Return result.

 10.6 Data Round Tripping

 When deserializing JSON-LD to RDF
 JSON-native numbers are automatically
 type-coerced to xsd:integer or xsd:double
 depending on whether the number has a non-zero fractional part
 or not (the result of a modulo‑1 operation), the boolean values
 true and false are coerced to xsd:boolean,
 and strings are coerced to xsd:string.
 The numeric or boolean values themselves are converted to
 canonical lexical form, i.e., a deterministic string
 representation as defined in [XMLSCHEMA11-2].

 The canonical lexical form of an integer, i.e., a
 number with no non-zero fractional part or a number
 coerced to xsd:integer, is a finite-length sequence of decimal
 digits (0-9) with an optional leading minus sign; leading
 zeros are prohibited. In JavaScript, implementers can use the following
 snippet of code to convert an integer to
 canonical lexical form:

 Example 12: Sample integer serialization implementation in JavaScript
(value).toFixed(0).toString()

 The canonical lexical form of a double, i.e., a
 number with a non-zero fractional part or a number
 coerced to xsd:double, consists of a mantissa followed by the
 character E, followed by an exponent. The mantissa is a
 decimal number and the exponent is an integer. Leading zeros and a
 preceding plus sign (+) are prohibited in the exponent.
 If the exponent is zero, it is indicated by E0. For the
 mantissa, the preceding optional plus sign is prohibited and the
 decimal point is required. Leading and trailing zeros are prohibited
 subject to the following: number representations must be normalized
 such that there is a single digit which is non-zero to the left of
 the decimal point and at least a single digit to the right of the
 decimal point unless the value being represented is zero. The
 canonical representation for zero is 0.0E0.
 xsd:double's value space is defined by the IEEE
 double-precision 64-bit floating point type [IEEE-754-2008] whereas
 the value space of JSON numbers is not
 specified; when deserializing JSON-LD to RDF the mantissa is rounded to
 15 digits after the decimal point. In JavaScript, implementers
 can use the following snippet of code to convert a double to
 canonical lexical form:

 Example 13: Sample floating point number serialization implementation in JavaScript
(value).toExponential(15).replace(/(\d)0*e\+?/,'$1E')

 The canonical lexical form of the boolean
 values true and false are the strings
 true and false.

 When JSON-native numbers are deserialized
 to RDF, lossless data round-tripping cannot be guaranteed, as rounding
 errors might occur. When
 serializing RDF as JSON-LD,
 similar rounding errors might occur. Furthermore, the datatype or the lexical
 representation might be lost. An xsd:double with a value
 of 2.0 will, e.g., result in an xsd:integer
 with a value of 2 in canonical lexical form
 when converted from RDF to JSON-LD and back to RDF. It is important
 to highlight that in practice it might be impossible to losslessly
 convert an xsd:integer to a number because
 its value space is not limited. While the JSON specification [RFC4627]
 does not limit the value space of numbers
 either, concrete implementations typically do have a limited value
 space.

 To ensure lossless round-tripping the
 Serialize RDF as JSON-LD algorithm
 specifies a use native types flag which controls whether
 RDF literals
 with a datatype IRI
 equal to xsd:integer, xsd:double, or
 xsd:boolean are converted to their JSON-native
 counterparts. If the use native types flag is set to
 false, all literals remain in their original string
 representation.

 Some JSON serializers, such as PHP's native implementation in some versions,
 backslash-escape the forward slash character. For example, the value
 http://example.com/ would be serialized as http:\/\/example.com\/.
 This is problematic as other JSON parsers might not understand those escaping characters.
 There is no need to backslash-escape forward slashes in JSON-LD. To aid
 interoperability between JSON-LD processors, forward slashes MUST NOT be
 backslash-escaped.

 11. The Application Programming Interface
This section is non-normative.

 This API provides a clean mechanism that enables developers to convert
 JSON-LD data into a variety of output formats that are often easier to
 work with.

 The JSON-LD API uses Promises to represent
 the result of the various asynchronous operations.
 Promises are temporarily being drafted on
 GitHub
 [PROMISES] but are expected to be standardized as part of ECMAScript 6.

 11.1 The JsonLdProcessor Interface
This section is non-normative.

 The JsonLdProcessor interface is the high-level programming structure
 that developers use to access the JSON-LD transformation methods.

 It is important to highlight that implementations do not modify the input parameters.
 If an error is detected, the Promise is
 rejected passing a JsonLdError with the corresponding error
 code
 and processing is stopped.

 If the documentLoader
 option is specified, it is used to dereference remote documents and contexts.
 The documentUrl
 in the returned RemoteDocument
 is used as base IRI and the
 contextUrl
 is used instead of looking at the HTTP Link Header directly. For the sake of simplicity, none of the algorithms
 in this document mention this directly.

 [Constructor]
interface JsonLdProcessor {
 Promise compact (any input, JsonLdContext context, optional JsonLdOptions options);
 Promise expand (any input, optional JsonLdOptions options);
 Promise flatten (any input, optional JsonLdContext? context, optional JsonLdOptions options);
};
Methods
This section is non-normative.
	compact
	
 Compacts the given input using the
 context according to the steps in the
 Compaction algorithm:

 	Create a new Promise promise and return it. The
 following steps are then executed asynchronously.

 	If the passed input is a DOMString
 representing the IRI of a remote document, dereference it.
 If the retrieved document's content type is neither application/json,
 nor application/ld+json, nor any other media type using a
 +json suffix as defined in [RFC6839]
 or if the document cannot be parsed as JSON, reject the promise passing an
 loading document failed
 error.

 	Initialize a new empty active context. The base IRI
 of the active context is set to the IRI of the currently being processed
 document, if available; otherwise to null. If set, the
 base option
 overrides the base IRI.

 	If an
 expandContext
 has been passed, update the active context using the
 Context Processing algorithm, passing the
 expandContext
 as local context. If
 expandContext
 is a JSON object having an @context member, pass that member's value instead.

 	If the input has been retrieved, the response has an HTTP Link Header [RFC5988]
 using the http://www.w3.org/ns/json-ld#context link relation
 and a content type of application/json or any media type
 with a +json suffix as defined in [RFC6839] except
 application/ld+json, update the active context using the
 Context Processing algorithm, passing the
 context referenced in the HTTP Link Header as local context. The
 HTTP Link Header is ignored for documents served as application/ld+json If
 multiple HTTP Link Headers using the http://www.w3.org/ns/json-ld#context
 link relation are found, the promise is rejected with a JsonLdError whose code is set to
 multiple context link headers
 and processing is terminated.

 	Set expanded to the result of using the
 Expansion algorithm, passing the
 active context and input as element.

 	If context is a JSON object having an @context member, set
 context to that member's value.

 	Set compacted to the result of using the
 Compaction algorithm, passing
 context, expanded as element, and if passed, the
 compactArrays
 flag in options.

 	Fulfill the promise passing compacted.

 	Parameter	Type	Nullable	Optional	Description
	input	any	✘	✘	The JSON-LD object or array of JSON-LD objects to perform the compaction upon or an
 IRI referencing the JSON-LD document to compact.
	context	JsonLdContext	✘	✘	The context to use when compacting the input;
 it can be specified by using a JSON object, an
 IRI, or an array consisting of
 JSON objects and IRIs.
	options	JsonLdOptions	✘	✔	A set of options to configure the algorithms. This allows, e.g.,
 to set the input document's base IRI.

Return type: Promise

	expand
	
 Expands the given input according to
 the steps in the Expansion algorithm:

 	Create a new Promise promise and return it. The
 following steps are then executed asynchronously.

 	If the passed input is a DOMString
 representing the IRI of a remote document, dereference it.
 If the retrieved document's content type is neither application/json,
 nor application/ld+json, nor any other media type using a
 +json suffix as defined in [RFC6839], reject the promise passing an
 loading document failed
 error.

 	Initialize a new empty active context. The base IRI
 of the active context is set to the IRI of the currently being processed
 document, if available; otherwise to null. If set, the
 base option
 overrides the base IRI.

 	If an
 expandContext
 has been passed, update the active context using the
 Context Processing algorithm, passing the
 expandContext
 as local context. If
 expandContext
 is a JSON object having an @context member, pass that member's value instead.

 	If the input has been retrieved, the response has an HTTP Link Header [RFC5988]
 using the http://www.w3.org/ns/json-ld#context link relation
 and a content type of application/json or any media type
 with a +json suffix as defined in [RFC6839] except
 application/ld+json, update the active context using the
 Context Processing algorithm, passing the
 context referenced in the HTTP Link Header as local context. The
 HTTP Link Header is ignored for documents served as application/ld+json If
 multiple HTTP Link Headers using the http://www.w3.org/ns/json-ld#context
 link relation are found, the promise is rejected with a JsonLdError whose code is set to
 multiple context link headers
 and processing is terminated.

 	Set expanded to the result of using the
 Expansion algorithm, passing the
 active context and input as element.

 	Fulfill the promise passing expanded.

 	Parameter	Type	Nullable	Optional	Description
	input	any	✘	✘	The JSON-LD object or array of JSON-LD objects to perform the expansion upon or an
 IRI referencing the JSON-LD document to expand.
	options	JsonLdOptions	✘	✔	A set of options to configure the used algorithms such. This allows, e.g.,
 to set the input document's base IRI.

Return type: Promise

	flatten
	
 Flattens the given input and
 compacts it using the passed context
 according to the steps in the Flattening algorithm:

 	Create a new Promise promise and return it. The
 following steps are then executed asynchronously.

 	If the passed input is a DOMString
 representing the IRI of a remote document, dereference it.
 If the retrieved document's content type is neither application/json,
 nor application/ld+json, nor any other media type using a
 +json suffix as defined in [RFC6839], reject the promise passing an
 loading document failed
 error.

 	Initialize a new empty active context. The base IRI
 of the active context is set to the IRI of the currently being processed
 document, if available; otherwise to null. If set, the
 base option
 overrides the base IRI.

 	If an
 expandContext
 has been passed, update the active context using the
 Context Processing algorithm, passing the
 expandContext
 as local context. If
 expandContext
 is a JSON object having an @context member, pass that member's value instead.

 	If the input has been retrieved, the response has an HTTP Link Header [RFC5988]
 using the http://www.w3.org/ns/json-ld#context link relation
 and a content type of application/json or any media type
 with a +json suffix as defined in [RFC6839] except
 application/ld+json, update the active context using the
 Context Processing algorithm, passing the
 context referenced in the HTTP Link Header as local context. The
 HTTP Link Header is ignored for documents served as application/ld+json If
 multiple HTTP Link Headers using the http://www.w3.org/ns/json-ld#context
 link relation are found, the promise is rejected with a JsonLdError whose code is set to
 multiple context link headers
 and processing is terminated.

 	Set expanded to the result of using the
 Expansion algorithm, passing the
 active context and input as element.

 	If context is a JSON object having an @context member, set
 context to that member's value.

 	Initialize an empty identifier map and a counter (set to 0)
 to be used by the
 Generate Blank Node Identifier algorithm.

 	Set flattened to the result of using the
 Flattening algorithm, passing
 expanded as element, context, and if passed, the
 compactArrays
 flag in options (which is internally passed to the
 Compaction algorithm).

 	Fulfill the promise passing flattened.

 	Parameter	Type	Nullable	Optional	Description
	input	any	✘	✘	The JSON-LD object or array of JSON-LD objects or an IRI
 referencing the JSON-LD document to flatten.
	context	JsonLdContext	✔	✔	The context to use when compacting the flattened input;
 it can be specified by using a JSON object, an
 IRI, or an array consisting of JSON objects
 and IRIs. If not
 passed or null is passed, the result will not be compacted
 but kept in expanded form.
	options	JsonLdOptions	✘	✔	A set of options to configure the used algorithms such. This allows, e.g.,
 to set the input document's base IRI.

Return type: Promise

 typedef (object or DOMString or (object or DOMString[])) JsonLdContext;

 The JsonLdContext type is used to refer to a value that
 that may be a JSON object, a string representing an
 IRI, or an array of JSON objects
 and strings.

 11.2 The JsonLdOptions Type
This section is non-normative.

 The JsonLdOptions type is used to pass various options to the
 JsonLdProcessor methods.

 dictionary JsonLdOptions {
 DOMString? base;
 boolean compactArrays = true;
 LoadDocumentCallback documentLoader = null;
 (object? or DOMString) expandContext = null;
 DOMString processingMode = "json-ld-1.0";
};
Dictionary JsonLdOptions Members
This section is non-normative.
	base of type DOMString, nullable
	The base IRI to use when expanding or compacting the document. If set, this overrides
 the input document's IRI.
	compactArrays of type boolean, defaulting to true
	If set to true, the JSON-LD processor replaces arrays with just
 one element with that element during compaction. If set to false,
 all arrays will remain arrays even if they have just one element.

	documentLoader of type LoadDocumentCallback, defaulting to null
	The callback of the loader to be used to retrieve remote documents and contexts.
 If specified, it is used to retrieve remote documents and contexts; otherwise,
 if not specified, the processor's built-in loader is used.
	expandContext of type (object? or DOMString), defaulting to null
	A context that is used to initialize the active context when expanding a document.
	processingMode of type DOMString, defaulting to "json-ld-1.0"
	If set to json-ld-1.0, the implementation has to produce
 exactly the same results as the algorithms defined in this specification.
 If set to another value, the JSON-LD processor is allowed to extend
 or modify the algorithms defined in this specification to enable
 application-specific optimizations. The definition of such
 optimizations is beyond the scope of this specification and thus
 not defined. Consequently, different implementations may implement
 different optimizations. Developers must not define modes beginning
 with json-ld as they are reserved for future versions
 of this specification.

 11.3 Remote Document and Context Retrieval
This section is non-normative.

 Users of an API implementation can utilize a callback to control how remote
 documents and contexts are retrieved. This section details the parameters of
 that callback and the data structure used to return the retrieved context.

 LoadDocumentCallback
This section is non-normative.

 The LoadDocumentCallback defines a callback that custom document loaders
 have to implement to be used to retrieve remote documents and contexts.

 callback LoadDocumentCallback = Promise (DOMString url);
Callback LoadDocumentCallback Parameters
This section is non-normative.
	url of type DOMString
	The URL of the remote document or context to load.

 All errors result in the Promise being rejected with
 a JsonLdError whose code is set to
 loading document failed
 or multiple context link headers
 as described in the next section.

 RemoteDocument
This section is non-normative.

 The RemoteDocument type is used by a LoadDocumentCallback
 to return information about a remote document or context.

 dictionary RemoteDocument {
 DOMString contextUrl = null;
 DOMString documentUrl;
 any document;
};
Dictionary RemoteDocument Members
This section is non-normative.
	contextUrl of type DOMString, defaulting to null
	If available, the value of the HTTP Link Header [RFC5988] using the
 http://www.w3.org/ns/json-ld#context link relation in the
 response. If the response's content type is application/ld+json,
 the HTTP Link Header is ignored. If multiple HTTP Link Headers using
 the http://www.w3.org/ns/json-ld#context link relation are found,
 the Promise of the LoadDocumentCallback is rejected with
 a JsonLdError whose code is set to
 multiple context link headers.
	document of type any
	The retrieved document. This can either be the raw payload or the already
 parsed document.
	documentUrl of type DOMString
	The final URL of the loaded document. This is important
 to handle HTTP redirects properly.

 11.4 Error Handling
This section is non-normative.

 This section describes the datatype definitions used within the
 JSON-LD API for error handling.

 JsonLdError
This section is non-normative.

 The JsonLdError type is used to report processing errors.

 dictionary JsonLdError {
 JsonLdErrorCode code;
 DOMString? message = null;
};
Dictionary JsonLdError Members
This section is non-normative.
	code of type JsonLdErrorCode
	a string representing the particular error type, as described in
 the various algorithms in this document.
	message of type DOMString, nullable, defaulting to null
	an optional error message containing additional debugging information.
 The specific contents of error messages are outside the scope of this
 specification.

 JsonLdErrorCode
This section is non-normative.

 The JsonLdErrorCode represents the collection of valid JSON-LD error
 codes.

 enum JsonLdErrorCode {
 "loading document failed",
 "list of lists",
 "invalid @index value",
 "conflicting indexes",
 "invalid @id value",
 "invalid local context",
 "multiple context link headers",
 "loading remote context failed",
 "invalid remote context",
 "recursive context inclusion",
 "invalid base IRI",
 "invalid vocab mapping",
 "invalid default language",
 "keyword redefinition",
 "invalid term definition",
 "invalid reverse property",
 "invalid IRI mapping",
 "cyclic IRI mapping",
 "invalid keyword alias",
 "invalid type mapping",
 "invalid language mapping",
 "colliding keywords",
 "invalid container mapping",
 "invalid type value",
 "invalid value object",
 "invalid value object value",
 "invalid language-tagged string",
 "invalid language-tagged value",
 "invalid typed value",
 "invalid set or list object",
 "invalid language map value",
 "compaction to list of lists",
 "invalid reverse property map",
 "invalid @reverse value",
 "invalid reverse property value"
};
	Enumeration description
	loading document failed	The document could not be loaded or parsed as JSON.
	list of lists	A list of lists was detected. List of lists are not supported in
 this version of JSON-LD due to the algorithmic complexity.
	invalid @index value	An @index member was encountered whose value was
 not a string.
	conflicting indexes	Multiple conflicting indexes have been found for the same node.
	invalid @id value	An @id member was encountered whose value was not a
 string.
	invalid local context	In invalid local context was detected.
	multiple context link headers	Multiple HTTP Link Headers [RFC5988] using the
 http://www.w3.org/ns/json-ld#context link relation
 have been detected.
	loading remote context failed	There was a problem encountered loading a remote context.
	invalid remote context	No valid context document has been found for a referenced,
 remote context.
	recursive context inclusion	A cycle in remote context inclusions has been detected.
	invalid base IRI	An invalid base IRI has been detected, i.e., it is
 neither an absolute IRI nor null.
	invalid vocab mapping	An invalid vocabulary mapping has been detected, i.e.,
 it is neither an absolute IRI nor null.
	invalid default language	The value of the default language is not a string
 or null and thus invalid.
	keyword redefinition	A keyword redefinition has been detected.
	invalid term definition	An invalid term definition has been detected.
	invalid reverse property	An invalid reverse property definition has been detected.
	invalid IRI mapping	A local context contains a term that has
 an invalid or missing IRI mapping.
	cyclic IRI mapping	A cycle in IRI mappings has been detected.
	invalid keyword alias	An invalid keyword alias definition has been
 encountered.
	invalid type mapping	An @type member in a term definition
 was encountered whose value could not be expanded to an
 absolute IRI.
	invalid language mapping	An @language member in a term definition
 was encountered whose value was neither a string nor
 null and thus invalid.
	colliding keywords	Two properties which expand to the same keyword have been detected.
 This might occur if a keyword and an alias thereof
 are used at the same time.
	invalid container mapping	An @container member was encountered whose value was
 not one of the following strings:
 @list, @set, or @index.
	invalid type value	An invalid value for an @type member has been detected,
 i.e., the value was neither a string nor an array
 of strings.
	invalid value object	A value object with disallowed members has been
 detected.
	invalid value object value	An invalid value for the @value member of a
 value object has been detected, i.e., it is neither
 a scalar nor null.
	invalid language-tagged string	A language-tagged string with an invalid language
 value was detected.
	invalid language-tagged value	A number, true, or false with an
 associated language tag was detected.
	invalid typed value	A typed value with an invalid type was detected.
	invalid set or list object	A set object or list object with
 disallowed members has been detected.
	invalid language map value	An invalid value in a language map
 has been detected. It has to be a string or an array of
 strings.
	compaction to list of lists	The compacted document contains a list of lists as multiple
 lists have been compacted to the same term.
	invalid reverse property map	An invalid reverse property map has been detected. No
 keywords apart from @context
 are allowed in reverse property maps.
	invalid @reverse value	An invalid value for an @reverse member has been detected,
 i.e., the value was not a JSON object.
	invalid reverse property value	An invalid value for a reverse property has been detected. The value of an inverse
 property must be a node object.

 A. Acknowledgements
This section is non-normative.

 A large amount of thanks goes out to the JSON-LD Community Group
 participants who worked through many of the technical issues on the mailing
 list and the weekly telecons - of special mention are Niklas Lindström,
 François Daoust, Lin Clark, and Zdenko 'Denny' Vrandečić.
 The editors would like to thank Mark Birbeck, who provided a great deal of
 the initial push behind the JSON-LD work via his work on RDFj.
 The work of Dave Lehn and Mike Johnson are appreciated for reviewing,
 and performing several implementations of the specification. Ian Davis is
 thanked for his work on RDF/JSON. Thanks also to Nathan Rixham,
 Bradley P. Allen, Kingsley Idehen, Glenn McDonald, Alexandre Passant,
 Danny Ayers, Ted Thibodeau Jr., Olivier Grisel, Josh Mandel, Eric Prud'hommeaux,
 David Wood, Guus Schreiber, Pat Hayes, Sandro Hawke, and Richard Cyganiak
 for their input on the specification.

B. References
B.1 Normative references
	[IEEE-754-2008]
	IEEE 754-2008 Standard for Floating-Point Arithmetic. URL: http://standards.ieee.org/findstds/standard/754-2008.html

	[JSON-LD]
	Manu Sporny, Gregg Kellogg, Markus Lanthaler, Editors. JSON-LD 1.0. 16 January 2014. W3C Recommendation. URL: http://www.w3.org/TR/json-ld/

	[RDF11-MT]
	Patrick J. Hayes, Peter F. Patel-Schneider, Editors. RDF 1.1 Semantics. 9 January 2014. W3C Proposed Recommendation (work in progress). URL: http://www.w3.org/TR/2014/PR-rdf11-mt-20140109/. The latest edition is available at http://www.w3.org/TR/rdf11-mt/

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC3986]
	T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax (RFC 3986). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3986.txt

	[RFC3987]
	M. Dürst; M. Suignard. Internationalized Resource Identifiers (IRIs). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3987.txt

	[RFC4627]
	D. Crockford. The application/json Media Type for JavaScript Object Notation (JSON) (RFC 4627). July 2006. RFC. URL: http://www.ietf.org/rfc/rfc4627.txt

	[RFC5988]
	M. Nottingham. Web Linking. October 2010. Internet RFC 5988. URL: http://www.ietf.org/rfc/rfc5988.txt

	[XMLSCHEMA11-2]
	David Peterson; Sandy Gao; Ashok Malhotra; Michael Sperberg-McQueen; Henry Thompson; Paul V. Biron et al. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. 5 April 2012. W3C Recommendation. URL: http://www.w3.org/TR/xmlschema11-2/

B.2 Informative references
	[BCP47]
	A. Phillips; M. Davis. Tags for Identifying Languages. September 2009. IETF Best Current Practice. URL: http://tools.ietf.org/html/bcp47

	[ECMA-262]
	ECMAScript Language Specification, Edition 5.1. June 2011. URL: http://www.ecma-international.org/publications/standards/Ecma-262.htm

	[JSON-LD-TESTS]
	JSON-LD 1.0 Test Suite. W3C Test Suite. URL: http://www.w3.org/2013/json-ld-tests/

	[PROMISES]
	Domenic Denicola. Promise Objects. January 2014 (work in progress). URL: http://www.w3.org/2013/10/json-ld-api/snapshot-promises-draft. The latest draft is available at https://github.com/domenic/promises-unwrapping

	[RDF11-CONCEPTS]
	Richard Cyganiak, David Wood, Markus Lanthaler, Editors. RDF 1.1 Concepts and Abstract Syntax. 9 January 2014. W3C Proposed Recommendation (work in progress). URL: http://www.w3.org/TR/2014/PR-rdf11-concepts-20140109/. The latest edition is available at http://www.w3.org/TR/rdf11-concepts/

	[RFC6839]
	Tony Hansen, Alexey Melnikov. Additional Media Type Structured Syntax Suffixes. January 2013. Internet RFC 6839. URL: http://www.ietf.org/rfc/rfc6839.txt

	[TURTLE]
	Eric Prud'hommeaux, Gavin Carothers, Editors. RDF 1.1 Turtle: Terse RDF Triple Language. 9 January 2014. W3C Proposed Recommendation (work in progress). URL: http://www.w3.org/TR/2014/PR-turtle-20140109/. The latest edition is available at http://www.w3.org/TR/turtle/

	[WEBIDL]
	Cameron McCormack, Editor. Web IDL. 19 April 2012. W3C Candidate Recommendation (work in progress). URL: http://www.w3.org/TR/2012/CR-WebIDL-20120419/. The latest edition is available at http://www.w3.org/TR/WebIDL/

 [image: W3C]

 RDFa 1.1 Primer - Second Edition

 Rich Structured Data Markup for Web Documents

 W3C Working Group Note 22 August 2013

 	This version:

 	http://www.w3.org/TR/2013/NOTE-rdfa-primer-20130822/

 	Latest published version:

 	http://www.w3.org/TR/rdfa-primer/

 	Previous version:

 	http://www.w3.org/TR/2012/NOTE-rdfa-primer-20120607/

 	Editors:

 	Ivan Herman, W3C, ivan@w3.org

	Ben Adida, Creative Commons, ben@adida.net

	Manu Sporny, Digital Bazaar, msporny@digitalbazaar.com

	Mark Birbeck, webBackPlane.com, mark.birbeck@webBackplane.com

 Please refer to the errata for this document, which may include some normative corrections.

 Copyright ©
 2010-2013

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang), All Rights Reserved.
 W3C liability,
 trademark and
 document use rules apply.

 Abstract

 The last couple of years have witnessed a fascinating evolution: while the Web was initially
 built predominantly for human consumption, web content is increasingly consumed by machines
 which expect some amount of structured data. Sites have started to identify a page's title,
 content type, and preview image to provide appropriate information in a user's newsfeed when
 she clicks the "Like" button. Search engines have started to provide richer search results by
 extracting fine-grained structured details from the Web pages they crawl. In turn, web
 publishers are producing increasing amounts of structured data within their Web content to
 improve their standing with search engines.

 A key enabling technology behind these developments is the ability to add structured data to
 HTML pages directly. RDFa (Resource Description Framework in Attributes) is a technique that
 allows just that: it provides a set of markup attributes to augment the visual information on
 the Web with machine-readable hints. In this Primer, we show how to express data using RDFa
 in HTML, and in particular how to mark up existing human-readable Web page content to express
 machine-readable data.

 This document provides only a Primer to RDFa 1.1. The complete specification of RDFa, with
 further examples, can be found in the RDFa 1.1 Core [rdfa-core], RDFa Lite [rdfa-lite],
 XHTML+RDFa 1.1 [xhtml-rdfa], and the HTML5+RDFa 1.1 [rdfa-in-html] specifications.

 Status of This Document

 This section describes the status of this document at the time of its publication. Other
 documents may supersede this document. A list of current W3C publications and the latest revision
 of this technical report can be found in the W3C technical reports
 index at http://www.w3.org/TR/.

 This document was published by the RDFa Working Group as a Working Group Note.

 If you wish to make comments regarding this document, please send them to
 public-rdfa@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 Publication as a Working Group Note does not imply endorsement by the W3C Membership.
 This is a draft document and may be updated, replaced or obsoleted by other documents at
 any time. It is inappropriate to cite this document as other than work in progress.

 This document was produced by a group operating under the

 5 February 2004 W3C Patent Policy.

 W3C maintains a public list of any patent disclosures

 made in connection with the deliverables of the group; that page also includes instructions for
 disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains
 Essential Claim(s) must disclose the
 information in accordance with section
 6 of the W3C Patent Policy.

Table of Contents
	1.
 Introduction
 	1.1
 HTML vs. XHTML

	1.2
 Validation

	2.
 Using RDFa
 	2.1
 The Basics of RDFa: RDFa Lite
 	2.1.1
 The First Steps: Adding Machine-Readable Hints to Web Pages
 	2.1.1.1
 Hints on Social Networking Sites

	2.1.1.2
 Links with Flavor

	2.1.1.3
 Setting a Default Vocabulary

	2.1.1.4
 Multiple Items per Page

	2.1.2
 Exploring Further: Social networks
 	2.1.2.1
 Contact Information

	2.1.2.2
 Describing Social Networks

	2.1.3 Repeated Patterns
	2.1.4
 Internal References

	2.1.5
 Using Multiple Vocabularies
 	2.1.5.1
 Repeating properties

	2.1.5.2
 Default Prefixes (Initial Context)

	2.2
 Going Deeper: RDFa Core
 	2.2.1
 Using the content attribute

	2.2.2
 Datatypes

	2.2.3
 Alternative for setting the context: about

	2.2.4
 Alternative for setting the property: rel

	3.
 You Said Something about RDF?
 	3.1
 Custom Vocabularies

	4.
 RDFa Tools

	5.
 Acknowledgments

	A. References	A.1 Informative references

 1.
 Introduction

 The web is a rich, distributed repository of interconnected information. Until recently, it
 was organized primarily for human consumption. On a typical web page, an HTML author might
 specify a headline, then a smaller sub-headline, a block of italicized text, a few paragraphs
 of average-size text, and, finally, a few single-word links. Web browsers will follow these
 presentation instructions faithfully. However, only the human mind understands what the
 headline expresses-a blog post title. The sub-headline indicates the author, the italicized
 text is the article's publication date, and the single-word links are subject categories.
 Computers do not understand the nuances between the information; the gap between what
 programs and humans understand is large.

 [image: presentation vs. semantics]

 Figure 1: On the left, what browsers see. On the right, what
 humans see. Can we bridge the gap so that browsers see more of what we see?

 Fig. 1 presentation vs. semantics

 What if the browser, or any machine consumer such as a Web crawler, received information on
 the meaning of a web page's visual elements? A dinner party announced on a blog could be
 copied to the user's calendar, an author's complete contact information to the user's address
 book. Users could automatically recall previously browsed articles according to
 categorization labels (i.e., tags). A photo copied and pasted from a web site to a school
 report would carry with it a link back to the photographer, giving him proper credit. A link
 shared by a user to his social network contacts would automatically carry additional data
 pulled from the original web page: a thumbnail, an author, and a specific title. When web
 data meant for humans is augmented with hints meant for computer programs, these programs
 become significantly more helpful, because they begin to understand the data's structure.

 RDFa allows HTML authors to do just that. Using a few simple HTML attributes, authors can
 mark up human-readable data with machine-readable indicators for browsers and other programs
 to interpret. A web page can include markup for items as simple as the title of an article,
 or as complex as a user's complete social network.

 1.1
 HTML vs. XHTML

 Historically, RDFa 1.0 [rdfa-syntax] was specified only for XHTML. RDFa 1.1 [rdfa-core]
 is the newer version and the one used in this document. RDFa 1.1 is
 specified for both XHTML [xhtml-rdfa] and HTML5 [rdfa-in-html]. In fact, RDFa 1.1 also
 works for any XML-based languages like SVG [SVG11]. This document uses HTML in all of
 the examples; for simplicity, we use the term "HTML" throughout this document to refer to
 all of the HTML-family languages.

 1.2
 Validation

 RDFa is based on attributes. While some of the HTML attributes (e.g., href,
 src) have been re-used, other RDFa attributes are new. This is important
 because some of the (X)HTML validators may not properly validate the HTML code until they
 are updated to recognize the new RDFa attributes. This is rarely a problem in practice
 since browsers simply ignore attributes that they do not recognize. None of the
 RDFa-specific attributes have any effect on the visual display of the HTML content.
 Authors do not have to worry about pages marked up with RDFa looking any different to a
 human being from pages not marked up with RDFa.

 2.
 Using RDFa

 2.1
 The Basics of RDFa: RDFa Lite

 We begin the introduction to RDFa by using a subset of all the possibilities called RDFa
 Lite 1.1 [rdfa-lite]. The goal, when defining that subset, was to define a set of
 possibilities that can be applied to most simple to moderate structured data markup
 tasks, without burdening the authors with additional complexities. Many Web authors will
 not need to use more than this minimal subset.

 2.1.1
 The First Steps: Adding Machine-Readable Hints to Web Pages

 Consider Alice, a blogger who publishes a mix of professional and personal articles
 at http://example.com/alice. We will construct markup examples to
 illustrate how Alice can use RDFa. A more complete markup of these examples is
 available on a
 dedicated page.

 2.1.1.1
 Hints on Social Networking Sites

 Alice publishes a blog and would like to provide extra structural information on
 her pages like the publication date or the title. She would like to use the terms
 defined in the Dublin Core vocabulary [DC11], a set of terms that are widely
 used by, for example, the publishing industry or libraries. Her blog already
 contain that information:

 Example 1
<html>
<head>
 ...
</head>
<body>
 ...
 <h2>The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
</body>

 This information is, however, aimed at humans only; computers need some
 sophisticated methods to extract it. But, using RDFa, she can annotate her
 page to make the structured data clear:

 Example 2
<html>
<head>
 ...
</head>
<body>
 ...
 <h2 property="http://purl.org/dc/terms/title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
</body>

 (Notice the markup colored in red: these are the RDFa "hints".)

 One useful way to visualize the structured data is:

 [image: relationship value is text]

 Figure 2: A visualization of the structured data
 for a blog post with a title of "The Trouble with Bob" and a creation date.

 Fig. 2 relationship value is text

 It is worth emphasizing that RDFa uses URLs to identify just about everything.
 This is why, instead of just using properties like title or
 created, we use http://purl.org/dc/terms/title and
 http://purl.org/dc/terms/created. The reason behind this design
 decision is rooted in data portability, consistency, and information sharing.
 Using URLs removes the possibility for ambiguities in terminology. Without
 ensuring that there is no ambiguity, the term "title" might mean "the title of a
 work", "a job title", or "the deed for real-estate property". When each
 vocabulary term is a URL, a detailed explanation for the vocabulary term is just
 one click away. It allows anything, humans or machines, to follow the link to
 find out what a particular vocabulary term means. By using a URL to identify a
 particular type of title, for example
 http://purl.org/dc/terms/title, both humans and machines can
 understand that the URL unambiguously refers to the "Date of creation of the
 resource", such as a web page.

 By using URLs as identifiers, RDFa provides a solid way of disambiguating
 vocabulary terms. It becomes trivial to determine whether or not vocabulary terms
 used in different documents mean the same thing. If the URLs are the same, the
 vocabulary terms mean the same thing. It also becomes very easy to create new
 vocabulary terms and vocabulary documents. If one can publish a document to the
 Web, one automatically has the power to create a new vocabulary document
 containing new vocabulary terms.

 2.1.1.2
 Links with Flavor

 The previous example demonstrated how Alice can markup text to make it machine
 readable. She would also like to mark up the links in a machine-readable way, to
 express the type of link being described. RDFa lets the publisher add a "flavor",
 i.e., a label, to an existing clickable link that processors can understand. This
 makes the same markup help both humans and machines.

 In her blog's footer, Alice already declares her content to be freely reusable,
 as long as she receives due credit when her articles are cited. The HTML includes
 a link to a Creative Commons [CC-ABOUT] license:

 Example 3
<p>All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>

 A human clearly understands this sentence, in particular the meaning of
 the link with respect to the current document: it indicates the document's
 license, the conditions under which the page's contents are distributed.
 Unfortunately, when Bob visits Alice's blog, his browser sees only a plain link
 that could just as well point to one of Alice's friends or to her CV. For Bob's
 browser to understand that this link actually points to the document's licensing
 terms, Alice needs to add some flavor, some indication of what
 kind of link this is.

 She can add this flavor using again the property attribute. Indeed,
 when the element contains the href (or src) attribute,
 property is automatically associated with the value of this
 attribute rather than the textual content of the a element. The
 value of the attribute is the http://creativecommons.org/ns#license,
 defined by the Creative Commons:

 Example 4
<p>All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>

 With this small update, Bob's browser will now understand that this link has a
 flavor: it indicates the blog's license:

 [image: two Web pages connected by a link labeled 'license' and two notes with a 'license' relationship]

 Figure 3: A link with flavor: the link indicates
 the web page's license. We can represent web pages as nodes, the link as an
 arrow connecting those nodes, and the link's flavor as the label on that
 arrow.

 Fig. 3 two Web pages connected by a link labeled 'license' and two notes with a 'license' relationship

 Alice is quite pleased that she was able to add only structured-data hints via
 RDFa, never having to repeat the content of her text or the URL of her clickable
 links.

 2.1.1.3
 Setting a Default Vocabulary

 In a number of simple use cases, such as our example with Alice's blog, HTML
 authors will predominantly use a single vocabulary. However, while generating
 full URLs via a CMS system is not a particular problem, typing these by hand may
 be error prone and tedious for humans. To alleviate this problem RDFa introduces
 the vocab attribute to let the author declare a single vocabulary
 for a chunk of HTML. Thus, instead of:

 Example 5
<html>
<head>
 ...
</head>
<body>
 ...
 <h2 property="http://purl.org/dc/terms/title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
</body>

 Alice can write:

 Example 6
<html>
<head>
 ...
</head>
<body vocab="http://purl.org/dc/terms/">
 ...
 <h2 property="title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
</body>

 Note how the property values are single "terms" now; these are simply
 concatenated to the URL defined via the vocab attribute. The
 attribute can be placed on any HTML element (i.e., not only on the
 body element like in the example) and its effect is valid for all
 the elements below that point.

 Default vocabularies and full URIs can be mixed at any time. I.e., Alice could
 have written:

 Example 7
<html>
<head>
 ...
</head>
<body vocab="http://purl.org/dc/terms/">
 ...
 <h2 property="title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
</body>

 Perhaps a more interesting example is the combination of the header with the
 licensing segment of her web page:

 Example 8
<html>
<head>
 ...
</head>
<body vocab="http://purl.org/dc/terms/">
 ...
 <h2 property="title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
 <p>All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
</body>
</html>

 The full URL for the license term is necessary to avoid mixing vocabularies. As
 an alternative, Alice could have also chosen to use the vocab
 attribute again:

 Example 9
<html>
<head>
 ...
</head>
<body vocab="http://purl.org/dc/terms/">
 ...
 <h2 property="title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
 <p vocab="http://creativecommons.org/ns#">All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
</body>
</html>

 because the vocab in the license paragraph overrides the definition
 inherited from the body of the document.

 Note
The vocab attribute references structured data vocabularies, identified using URLs.
 RDFa does not limit the form of these URLs or the document formats accessible by de-referencing them;
 however users SHOULD aim to use widely shared, conventional values for identifying such vocabularies,
 following conventions of case, spelling etc. established by their publishers.

 2.1.1.4
 Multiple Items per Page

 Alice's blog page may contain, of course, multiple entries. Sometimes, Alice's
 sister Eve guest blogs, too. The front page of the blog lists the 10 most recent
 entries, each with its own title, author, and introductory paragraph. How, then,
 should Alice mark up the title of each of these entries individually even though
 they all appear within the same web page? RDFa provides resource, an
 attribute for specifying the "context", i.e., the exact URL to which the
 contained RDFa markup applies:

 Example 10
<body vocab="http://purl.org/dc/terms/">
 ...
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 <h3 property="creator">Alice</h3>
 ...
 </div>
 ...
 <div resource="/alice/posts/jos_barbecue">
 <h2 property="title">Jo's Barbecue</h2>
 <p>Date: 2011-09-14</p>
 <h3 property="creator">Eve</h3>
 ...
 </div>
 ...
</body>

 (Note that we used relative URLs in the example; the value of
 resource could have been any URLs, i.e., relative or
 absolute.) We can represent this, once again, as a diagram connecting URLs to
 properties:

 [image: two separate nodes, each with two properties]

 Figure 4: Multiple Items per Page: each blog entry
 is represented by its own node, with properties attached to each.

 Fig. 4 two separate nodes, each with two properties

 Alice can use the same technique to give her friend Bob proper credit when she
 posts one of his photos:

 Example 11
<div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 ...
 The trouble with Bob is that he takes much better photos than I do:
 ...
 <div resource="http://example.com/bob/photos/sunset.jpg">

 Beautiful Sunset
 by Bob.
 </div>
 </div>

 Notice how the innermost resource value,
 http://example.com/bob/photos/sunset.jpg, "overrides" the outer
 value /alice/posts/trouble_with_bob for all markup inside the
 containing div. Once again, here is a diagram that represents the
 underlying data of this new portion of markup:

 [image: two separate nodes, each with two properties]

 Figure 5: Describing a Photo

 Fig. 5 two separate nodes, each with two properties

 2.1.2
 Exploring Further: Social networks

 2.1.2.1
 Contact Information

 Alice would also like to make information about herself, such as her email
 address, phone number, and other details, easily available to her friends'
 contact management software. This time, instead of describing the properties of a
 web page, she's going to describe the properties of a person: herself.

 Alice already has contact information displayed on her blog.

 Example 12
<div>
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
</div>

 The Dublin Core vocabulary does not provide property names for describing contact
 information, but the Friend-of-a-Friend [FOAF] vocabulary does. Alice therefore
 decides to use the FOAF vocabulary. As a first step, she declares a FOAF
 "Person". For this purpose, Alice uses typeof, an RDFa attribute
 that is specifically meant to declare a new data item with a certain type:

 Example 13
<div typeof="http://xmlns.com/foaf/0.1/Person">
 ...

 Alice realizes that she only intends to use the FOAF vocabulary at this point, so
 she uses the vocab attribute to simplify her markup further (and
 overriding the effects of any vocab attributes that may have been
 used in, for example, the body element at the top).

 Example 14
<div vocab="http://xmlns.com/foaf/0.1/" typeof="Person">
 ...

 Then, Alice indicates which content on the page represents her full name, email
 address, and phone number:

 Example 15
<div vocab="http://xmlns.com/foaf/0.1/" typeof="Person"><p>
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
</div>

 Note how Alice did not specify a resource like she did when adding
 blog entry metadata. But, if she is not declaring what she is talking about, how
 does the RDFa Processor know what she's identifying? In RDFa, in the absence of a
 resource attribute, the typeof attribute on the
 enclosing div implicitly sets the subject of the properties marked
 up within that div. That is, the name, email address, and phone
 number are associated with a new node of type Person. This node has
 no URL to identify it, so it is called a blank node as shown on the
 figure:

 [image: single 'blank' node with 4 properties]

 Figure 6: A Blank Node: blank nodes are not
 identified by URL. Instead, many of them have an RDFa typeof
 attribute that identifies the type of data they represent.

 (We've used a short-hands to label the arrows, in order to save space and
 clarify the diagram. The actual labels are always the full URLs.)

 Fig. 6 single 'blank' node with 4 properties

 2.1.2.2
 Describing Social Networks

 Alice continues to mark up her page by adding information about her friends,
 including at least their names and homepages. She starts with plain HTML:

 Example 16
<div>

 Bob

 Eve

 Manu

</div>

 First, Alice indicates that the friends she is describing are people, as opposed
 to animals or imaginary friends, by using again the Person type in
 typeof attributes.

 Example 17
<div vocab="http://xmlns.com/foaf/0.1/">

 <li typeof="Person">
 Bob

 <li typeof="Person">
 Eve

 <li typeof="Person">
 Manu

</div>

 Beyond declaring the type of data we are dealing with, each typeof
 creates a new blank node with its own distinct properties. Thus, Alice can
 indicate each friend's homepage:

 Example 18
<div vocab="http://xmlns.com/foaf/0.1/">

 <li typeof="Person">
 Bob

 <li typeof="Person">
 Eve

 <li typeof="Person">
 Manu

</div>

 Alice would also like to improve the markup by expressing each person's name
 using RDFa, too. That can be done by adding a separate span element
 and the relevant property:

 Example 19
<div vocab="http://xmlns.com/foaf/0.1/">

 <li typeof="Person">
 Bob

 <li typeof="Person">
 Eve

 <li typeof="Person">
 Manu

</div>

 Alice is happy that, with so little additional markup, she's able to fully
 express both a pleasant human-readable page and a machine-readable dataset.

 Alice is a member of 5 different social networking sites. She is tired of
 repeatedly entering information about her friends in each new social networking
 site, so she decides to list her friends in one place-on her website, combining
 it with her own FOAF data. With RDFa, she can indicate her friendships on her own
 web page and let social networking sites read it automatically. So far, Alice has
 listed three individuals but has not specified her relationship with them; they
 might be her friends, or they might be her favorite 17th century poets. To
 indicate that she knows them, she uses the FOAF property foaf:knows:

 Example 20
<div vocab="http://xmlns.com/foaf/0.1/" typeof="Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>

 <li property="knows" typeof="Person">
 Bob

 <li property="knows" typeof="Person">
 Eve

 <li property="knows" typeof="Person">
 Manu

</div>

 With this, Alice could describe here social network:

 [image: 8 node network with 12 relationships]

 Figure 7: Alice's social network. Note that, with
 RDFa, Alice could express a fairly complex set of information that others can
 use.

 Fig. 7 8 node network with 12 relationships

 2.1.3 Repeated Patterns

 We have seen, in a previous section, how Alice can use RDFa to include Creative Commons statements on her blog. However, the solution in that section assigned these statements to the whole page, and not to individual blog items. This may be an issue if the page includes multiple items. Indeed, Alice may be forced to repeat the relevant statements like this:

 Example 21
<body vocab="http://purl.org/dc/terms/">
 ...
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 <h3 property="creator">Alice</h3>
 ...
 <p vocab="http://creativecommons.org/ns#">All content on this blog item is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
 </div>
 ...
 <div resource="/alice/posts/jims_concert">
 <h2 property="title">I was at Jim's concert the other day</h2>
 <p>Date: 2011-10-22</p>
 <h3 property="creator">Alice</h3>
 ...
 <p vocab="http://creativecommons.org/ns#">All content on this blog item is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
 </div>
 ...
</body>

 which may be tedious and error prone.

 HTML+RDFa introduces the notion of "Property copying" to alleviate this situation. Using this feature Alice can "collect" a number of statements as a pattern, and refer to that pattern from other parts of the page. This is done using the magic property rdfa:copy and the magic type rdfa:Pattern as follows:

 Example 22
<body vocab="http://purl.org/dc/terms/">
 ...
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 <h3 property="creator">Alice</h3>
 ...
 <link property="rdfa:copy" href="#ccpattern"/>
 </div>
 ...
 <div resource="/alice/posts/jims_concert">
 <h2 property="title">I was at Jim's concert the other day</h2>
 <p>Date: 2011-10-22</p>
 <h3 property="creator">Alice</h3>
 ...
 <link property="rdfa:copy" href="#ccpattern"/>
 </div>
 ...

 <div resource="#ccpattern" typeof="rdfa:Pattern">
 <p vocab="http://creativecommons.org/ns#">All content on this blog item is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>
 </div>

</body>

 (Alice may choose to use CSS to make the CC statements invisible on the screen if she wants.) The effect of this structure is to, conceptually, "copy" all the RDFa statements appearing in the pattern to replace the link element, yielding the following structure:

 [image: 8 node network with 12 relationships]

 Figure 8: Creative Commons statements added to each blog item separately.

 Fig. 8 8 node network with 12 relationships

 2.1.4
 Internal References

 Alice may want to add her personal data to her individual blog items, too. She
 decides to combine her FOAF data with the blog items, i.e.:

 Example 23
<div vocab="http://purl.org/dc/terms/">

 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 ...
 <h3 vocab="http://xmlns.com/foaf/0.1/" property="http://purl.org/dc/terms/creator" typeof="Person">
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </h3>
 ...
 </div>
 ...
</div>

 The structured data she generates looks like this:

 [image: The simple blog structure extended with Alice's foaf data as blank node]

 Figure 9: Alice's blog item with data about herself.

 Fig. 9 The simple blog structure extended with Alice's foaf data as blank node

 Unfortunately, this solution is not optimal in two respects. First of all, notice
 that Alice had to use the full URI for the creator property: this is
 because the vocab attribute is used to set the FOAF terms, i.e., the
 simple creator value would have been misinterpreted. We will come back
 to the issue of using several vocabularies in another
 section below.

 The other issue is that Alice would like to design her Web page so that her personal
 data would not appear on the page in each individual blog item but, rather, in one
 place like a footnote or a sidebar. I.e., what she would like to see is something
 like:

 [image: Mock-up of Alice's blog page design, with blogs on the left and personal data on the right]

 Figure 10: Structure of Alice's Site: individual blog
 items on the left, personal data, linked from the blog using RDFa terms, in a
 sidebar.

 Fig. 10 Mock-up of Alice's blog page design, with blogs on the left and personal data on the right

 If the FOAF data was included into each blog item, Alice would have to create a
 complex set of CSS rules to achieve the visual effect she wants.

 To solve this, Alice decides to make use of the structure she already used for her
 FOAF data but, this time, assigning it a separate URI using the resource
 attribute:

 Example 24
<div vocab="http://xmlns.com/foaf/0.1/" resource="#me" typeof="Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...
</div>

 It is actually considered as a good practice to use real URIs whenever possible,
 i.e., Alice's new alternative should be preferred in general. Indeed, if a real URI
 is used, then it becomes possible to unambiguously refer to that particular piece of
 information, whereas that becomes more complicated with blank nodes.

 Note

 The resource="#me" markup is a FOAF convention: the URL that represents
 the person Alice is http://example.com/alice#me. It should not
 be confused with Alice's homepage, http://example.com/alice. Of course,
 Alice could have used a different URI if, for example, her blog and her personal
 homepage were kept separate; e.g., she could have used
 resource="http://alice.example.com/alice/home#myself" instead of
 resource="#me".

 Using the explicit URI for her FOAF data Alice can add a direct reference to the blog
 item using again the resource attribute:

 Example 25
<div vocab="http://purl.org/dc/terms/">
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...
 </div>
</div>
 ...
<div class="sidebar" vocab="http://xmlns.com/foaf/0.1/" resource="#me" typeof="Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...
</div>

 The resource attribute appears, in this case, together with
 property on the same element: in this situation
 resource indicates the "target" of the relation. Usage of this attribute
 allows Alice to "distribute" the various parts of her structured data on her page.
 What she gets is a slightly modified version of the previous structure, where the
 only difference is the usage of an explicit URI instead of a blank node:

 [image: The simple blog structure extended with Alice's foaf data with an explicit URI]

 Figure 11: Alice's blog item with data about herself,
 using an explicit URI for her FOAF data.

 Fig. 11 The simple blog structure extended with Alice's foaf data with an explicit URI

 Using this approach, it becomes very easy to also add references to the same
 data from different blogs:

 Example 26
<div vocab="http://purl.org/dc/terms/">
 <div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...
 </div>
</div>
 ...
<div vocab="http://purl.org/dc/terms/">
 <div resource="/alice/posts/my_photos">
 <h2 property="title">I will post my photos nevertheless…</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...
 </div>
</div>
 ...
<div class="sidebar" vocab="http://xmlns.com/foaf/0.1/" resource="#me" typeof="Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...
</div>

 Leading to the following structure:

 [image: The simple blog structure with two blogs extended with Alice's foaf data with an explicit URI]

 Figure 12: Several of Alice's blog items with data
 about herself, using an explicit URI for her FOAF data.

 Fig. 12 The simple blog structure with two blogs extended with Alice's foaf data with an explicit URI
 Note

 Combined with property, the resource attribute plays
 exactly the same role as href, already used for "links with flavor",
 except that it does not provide a clickable link to the browser like
 href does. Also, the resource attribute can be used on
 any HTML element, as opposed to href whose usage is restricted,
 in HTML, to the a and link elements.

 Note
There is a similarity between this issue and its solution and the issue and the approach taken in the section on property copying. There is, however, a subtle but important difference between the two. The solution using the resource attribute introduces a new node in the graph, as shown on Figure 12, whereas copying the properties does not. Which of the two approaches should be adopted is often based on the vocabulary that is used.

 2.1.5
 Using Multiple Vocabularies

 The previous examples show that, for more complex cases, multiple vocabularies have
 to be used to express the various aspects of structured data. We have seen Alice
 using the Dublin Core, as well as the FOAF and the Creative Commons vocabularies, but
 there may be more. For example. Alice may want to add vocabulary elements defined by
 search engines on their schema.org site [schema].

 Alice can use either full URLs for all the terms, or can use the vocab
 attribute to abbreviate the terms for the predominant vocabulary. But, in some cases,
 the vocabularies cannot be separated easily, which means that the usage of
 vocab may become awkward. Here is, for example, the kind of HTML she
 might end up with:

 Example 27
<html>
 <head>
 ...
 </head>
 <body vocab="http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="BlogPosting">
 <h2 property="http://purl.org/dc/terms/title">The trouble with Bob</h2>
 ...
 <h3 property="http://purl.org/dc/terms/creator" resource="#me">Alice</h3>
 <div property="articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 ...
 </body>
 </html>

 Note that the schema.org and the Dublin Core terms are intertwined for a specific
 blog, and it becomes an arbitrary choice whether to use the vocab
 attribute for http://purl.org/dc/terms/ or for
 http://schema.org/. We have seen the same problem in a previous section when FOAF and Dublin Core terms were
 mixed.

 To alleviate this problem, RDFa offers the possibility of using prefixed
 terms: a special prefix attribute can assign prefixes to represent URLs
 and, using those prefixes, the vocabulary elements themselves can be abbreviated. The
 prefix:reference syntax is used: the URL associated with
 prefix is simply concatenated to reference to create a full
 URL. (Note that we have already used this convention to simplify our figures.) Here
 is how the HTML of the previous example looks like when prefixes are used:

 Example 28
<html>
 <head>
 ...
 </head>
 <body prefix="dc: http://purl.org/dc/terms/ schema: http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="schema:BlogPosting">
 <h2 property="dc:title">The trouble with Bob</h2>
 ...
 <h3 property="dc:creator" resource="#me">Alice</h3>
 <div property="schema:articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>
</html>

 The usage of prefixes can greatly reduce possible errors by concentrating the
 vocabulary choices to one place in the file. Just like vocab, the
 prefix attribute can appear anywhere in the HTML file, only affecting
 the elements below. prefix and vocab can also be mixed, for
 example:

 Example 29
<html>
 <head>
 ...
 </head>
 <body vocab="http://purl.org/dc/terms/" prefix="schema: http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="schema:BlogPosting">
 <h2 property="title">The trouble with Bob</h2>
 ...
 <h3 property="creator" resource="#me">Alice</h3>
 <div property="schema:articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>
</html>

 Note

 An important issue may arise if the html element contains a large number
 of prefix declarations. The character encoding (i.e., UTF-8, UTF-16, ASCII, etc.)
 used for an HTML5 file is declared using a meta element in the header.
 In HTML5 this meta declaration must fall within the first 512 bytes of the page, or
 the HTML5 processor (browser, parser, etc.) will try to detect the encoding using
 some heuristics. A very "long" html tag may therefore lead to problems.
 One way of avoiding the issue is to place most of the prefix declarations on the
 body element.

 2.1.5.1
 Repeating properties

 The previous example, whereby the Dublin Core and the schema.org vocabularies are
 used within the same blog post, raises another issue. It so happens that not only
 Dublin Core, but also schema.org has a property called creator.
 Because RDFa uses URIs to denote properties that, by itself, is not a problem.
 However, if Alice wants to use both these properties in the same blog
 post (e.g., because she wants search engines to manage her blog post but, at the
 same times, she wants Dublin Core aware applications, like catalogs, to handle
 her blog post, too) this is what she may have to do:

 Example 30
<html>
 <head>
 ...
 </head>
 <body prefix="dc: http://purl.org/dc/terms/ schema: http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="schema:BlogPosting">
 <h2 property="dc:title">The trouble with Bob</h2>
 ...
 <h3 property="dc:creator" resource="#me">Alice</h3>
 <div property="schema:articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>
</html>

 Which is a bit awkward. Fortunately, RDFa allows the value of a
 property attribute to be a list of values, i.e., she can also write:

 Example 31
<html>
 <head>
 ...
 </head>
 <body prefix="dc: http://purl.org/dc/terms/ schema: http://schema.org/">
 <div resource="/alice/posts/trouble_with_bob" typeof="schema:BlogPosting">
 <h2 property="dc:title">The trouble with Bob</h2>
 ...
 <h3 property="dc:creator schema:creator" resource="#me">Alice</h3>
 <div property="schema:articleBody">
 <p>The trouble with Bob is that he takes much better photos than I do:</p>
 </div>
 ...
 </div>
 </body>
</html>

 yielding the structure:

 [image: The simple blog structure with two different creator properties]

 Figure 13: Alice's blog item using two different
 vocabularies, including two properties with the same context and target.

 Fig. 13 The simple blog structure with two different creator properties
 Similarly to property, typeof also accepts a list of values. For example,
 schema.org also has a notion of a Person, similar to FOAF; Alice may choose to use both:

 Example 32
<div class="sidebar" prefix="http://xmlns.com/foaf/0.1/ schema: http://schema.org/"
 resource="#me" typeof="foaf:Person schema:Person">
 <p>
 Alice Birpemswick,
 Email: alice@example.com,
 Phone: +1 617.555.7332
 </p>
 ...
</div>

 2.1.5.2
 Default Prefixes (Initial Context)

 A number of vocabularies are very widely used by the Web community with
 well-known prefixes—the Dublin Core vocabulary is a good example. These common
 vocabularies tend to be defined over and over again, and sometimes Web page
 authors forget to declare them altogether.

 To alleviate this issue, RDFa introduces the concept of an initial
 context that defines a set of default prefixes. These prefixes, whose list
 is maintained and regularly updated by the W3C, provide a number of pre-defined
 prefixes that are known to the RDFa processor. Prefix declarations in a document
 always override declarations made through the defaults, but if a web page author
 forgets to declare a common vocabulary such as Dublin Core or FOAF, the RDFa
 Processor will fall back to those. The list of default prefixes are available on the Web for
 everyone to read.

 For example, the following example does not declare the dc:
 prefix using a prefix attribute:

 Example 33
<html>
 <head>
 ...
 </head>
 <body>
 <div>
 <h2 property="dc:title">The trouble with Bob</h2>
 ...
 <h3 property="dc:creator" resource="#me">Alice</h3>
 ...
 </div>
 </body>
</html>

 However, an RDFa processor still recognizes the dc:title and
 dc:creator short-hands and expands the values to the corresponding
 URLs. The RDFa processor is able to do this because the dc prefix is
 part of the default prefixes in the initial context.

 Note

 Default prefixes are used as a mechanism to correct RDFa documents where authors
 accidentally forgot to declare common prefixes. While authors may rely on these
 to be available for RDFa documents, the prefixes may change over the course
 of 5-10 years, although the policy of W3C is that once a prefix is defined as
 part of a default profile, that particular prefix will not be changed or
 removed. Nevertheless, the best way to ensure that the prefixes that document
 authors use always map to the intent of the author is to use the
 prefix attribute to declare these prefixes.

 Since default prefixes are meant to be a last-resort mechanism to help novice
 document authors, the markup above is not recommended. The rest of this document
 will utilize authoring best practices by declaring all prefixes in order to make
 the document author's intentions explicit.

 2.2
 Going Deeper: RDFa Core

 As we have seen in the previous sections, RDFa Lite is fairly powerful. Alice could
 indeed express complex sets of structured information. However, there are cases when the
 set of attributes presented so far does not cover all the needs, or make the resulting HTML
 structure a bit awkward and possibly error-prone. In those cases additional RDFa
 possibilities, provided through additional RDFa attributes, may come to the rescue; some
 of these will be presented in this section.

 Note

 RDFa Lite does not define a separate class of RDFa processors. In other words conforming
 RDFa processors are supposed to handle all RDFa features, not only those listed used by
 RDFa Lite.

 2.2.1
 Using the content attribute

 When creating her blog, Alice decided to use this simple structure to add Dublin Core
 information to her blog post (see also Figure 2):

 Example 34
<html>
 <head>
 ...
 </head>
 <body>
 ...
 <h2 property="http://purl.org/dc/terms/title">The Trouble with Bob</h2>
 <p>Date: 2011-09-10</p>
 ...
 </body>
</html>

 However, to do that, Alice had to accept a small compromise. Indeed, although the
 string "2011-09-10" unambiguously identifies a date for a machine, it does not looks
 very natural for a human reader. Surely a native English reader would prefer
 something like "10th of September, 2011". On the other hand, although it is of course
 possible for a machine to parse and interpret that string as a date, too, it is
 clearly more complicated to do so. The problem is that, as a default, RDFa uses the
 textual content of the element for the property value. While this works well in most
 of the cases, sometimes, like in this example, this has awkward consequences.

 To alleviate this problem RDFa makes it possible to re-use the content
 attribute of HTML. The blog entry could be written as follows:

 Example 35
<html>
 <head>
 ...
 </head>
 <body>
 ...
 <h2 property="http://purl.org/dc/terms/title">The Trouble with Bob</h2>
 <p>Date: 10th of September, 2011</p>
 ...
 </body>
</html>

 The resulting structure is exactly the same as before (i.e., Figure
 2). The difference is the presence of the content attribute: it
 instructs the RDFa processor to overrule the default behavior of using the textual
 content, and to use the value of the content attribute instead. Using
 this attribute Alice could provide a more readable date, while maintaining an
 unambiguous content for machines using the structured data.

 The content attribute has another important usage. The "traditional"
 approach to add simple metadata to a Web page has been to use the document header
 through the link and the meta elements. While there is no
 problem using link in RDFa Lite (which uses the href
 attribute, i.e., can be used to define "flavored" links), the fact that, in a
 conforming HTML file, the meta element may have no text content means
 that the only way of using the header for such statements is to use the
 content attribute. For example, using the meta element is
 the approach suggested by Facebook for the Open Graph Protocol [OGP] vocabulary;
 i.e., if Alice wants to make use of the "Like" button in her posts, this is what she
 would add to her header:

 Example 36
<html>
 <head prefix="og: http://ogp.me/ns#" >
 ...
 <meta property="og:title" content="The Trouble with Bob" />
 <meta property="og:type" content="text" />
 <meta property="og:image" content="http://example.com/alice/bob-ugly.jpg" />
 ...
 </head>
 <body>
 ...
 </body>
</html>

 Note

 In this example the prefix for the Open Graph Protocol vocabulary is defined via the
 prefix attribute. Alas, many authors forget to do so. Fortunately, the
 og prefix is part of the initial context for RDFa, i.e., the resulting
 information will be valid even without the prefix declaration…

 2.2.2
 Datatypes

 Alice has already put license information on her page:

 Example 37
<p>All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>

 but she would like to complete this by recording the date of her copyright statement
 as a structured data, too. She can use the date term of Dublin Core:

 Example 38
<p>All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>

 However, the value used for the date may be ambiguous for machines. Of course, if a
 program "knows" that that http://purl.org/dc/terms/date refers to a
 date, then of course it can find out that the string "2011" stands for a year. But
 there may be processors that, for example, provide a visual presentation of all the
 structured data on a specific page, and would like to use a different "widget" to
 represent a year and again another one to represent, say, an integer number. How
 would such a processor know which one to choose?

 Alice may decide to be helpful by adding an additional information to that item in
 the form of a datatype. This additional information can be conveyed to the
 RDFa processor using the datatype RDFa attribute as follows:

 Example 39
<p>All content on this site is licensed under

 a Creative Commons License. ©2011 Alice Birpemswick.</p>

 where xsd:gYear stands for
 http://www.w3.org/2001/XMLSchema#gYear, and is one of the standard
 datatypes defined by W3C's Datatype
 specification [xmlschema11-2] which contains such types as booleans, integers, dates,
 or doubles. (xsd is one of the default
 prefixes for RDFa.)

 2.2.3
 Alternative for setting the context: about

 Alice has used the following patterns to define structured data for the individual
 blogs:

 Example 40
<div resource="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...
</div>

 The role of the resource attribute in the div element is to
 set the "context", i.e., the subject for all the subsequent statements. Also, when
 combined with the property attribute, resource can be used
 to set the "target", i.e., the object for the statement (much as href).

 This pattern is perfectly fine, but it may become too verbose in some cases. Indeed,
 let us suppose that Alice would like to set up a separate index page for all her
 blogs, and the only information she would like to put there, as structured data, is
 references to the titles. Following the same pattern, she would have to do something
 like:

 Example 41

 <li resource="/alice/posts/trouble_with_bob">The trouble with Bob
 <li resource="/alice/posts/jos_barbecue">Jo's Barbecue
 ...

 This of course works, but it is a bit convoluted. Merging the information into one
 element, i.e.:

 Example 42
<ul resource="/alice/posts/trouble_with_bob">
 <li resource="/alice/posts/trouble_with_bob" property="title">The trouble with Bob
 ...

 would not be correct; the combination of property and
 resource would generate a different statement than originally intended.

 RDFa introduces a separate attribute, called about, that can be used as
 an alternative to resource in setting the the context. Using that
 attribute, Alice could write:

 Example 43

 <li about="/alice/posts/trouble_with_bob" property="title">The trouble with Bob
 <li about="/alice/posts/jos_barbecue" property="title">Jo's Barbecue
 ...

 The fundamental difference between about and resource is
 that the former is only used to set the context, whether combined with the
 property attribute on the same element or not. This also means that, for
 such usage, about and resource are interchangeable; i.e.,
 in her original blog item, Alice could have chosen to write:

 Example 44
<div about="/alice/posts/trouble_with_bob">
 <h2 property="title">The trouble with Bob</h2>
 <h3 property="creator" resource="#me">Alice</h3>
 ...
</div>

 2.2.4
 Alternative for setting the property: rel

 Another pattern that Alice used in her code is as follows:

 Example 45
<div vocab="http://xmlns.com/foaf/0.1/" resource="#me">

 <li property="knows" resource="http://example.com/bob/#me" typeof="Person">
 Bob

 <li property="knows" resource="http://example.com/eve/#me" typeof="Person">
 Eve

 <li property="knows" resource="http://example.com/manu/#me" typeof="Person">
 Manu

</div>

 Each "branch" in the list sets a separate object (blank nodes in this example) and
 the same property (foaf:knows) is used to bind them to the same context.
 The property="knows" had to be repeated in each list element to define
 the corresponding property. If this structure is generated by some CMS systems, this
 is of course not a problem. However, if such structure is authored manually, it is
 clearly error prone: the property name can be misspelled or forgotten.

 Instead, Alice could use another RDFa attribute, namely rel. Using this
 attribute the corresponding HTML would look as:

 Example 46
<div vocab="http://xmlns.com/foaf/0.1/" resource="#me">
 <ul rel="knows">
 <li resource="http://example.com/bob/#me" typeof="Person">
 Bob

 <li resource="http://example.com/eve/#me" typeof="Person">
 Eve

 <li resource="http://example.com/manu/#me" typeof="Person">
 Manu

</div>

 In contrast to property, rel never considers the
 textual content of an element (or the value of the content attribute).
 Instead, if no clear target has been specified for a link via, e.g., a
 resource or an href attribute, the processor is supposed to
 go “down” and find one or more targets in the hierarchy and use those. This is what
 happens in this case: the knows attribute on the ul
 element does not include any obvious target; however, the processor finds those in
 the individual li elements and will use those. This
 pattern is typical for the usage of rel.

 Note

 In many situations, property and rel are interchangeable
 when the intended structured data involves (flavored) links. There are, however,
 subtle differences involving, for example, “chaining” that must be used with care.
 The interested reader should consult the relevant section of the RDFa 1.1
 specification for further details.
 In general, it is advised to use property, when possible.

 3.
 You Said Something about RDF?

 RDFa benefits from the power of RDF [rdf-primer], the W3C's standard for interoperable
 machine-readable data. Although readers of this document are not expected to understand RDF,
 some may be interested in how these two specifications interrelate.

 RDF, the Resource Description Framework, is the abstract data representation we have drawn
 out as graphs in the examples above. Each arrow in the graph is represented as a
 subject-property-object triple: the subject is the node at the start of the arrow, the
 property is the arrow itself, and the object is the node or literal at the end of the arrow.
 A set of such RDF triples is often called an "RDF graph", and is typically stored in what is
 often called a "Triple Store" or a "Graph Store".

 Consider the first example graph:

 [image: relationship value is text]
 Fig. 14 relationship value is text

 The two RDF triples for this graph are written, using the Turtle syntax [turtle] for RDF,
 is as follows:

 Example 47
<http://www.example.com/alice/posts/trouble_with_bob>
 <http://purl.org/dc/terms/title> "The Trouble with Bob" ;
 <http://purl.org/dc/terms/created> "2011-09-10" .

 The TYPE arrows we drew are no different from other arrows. The
 TYPE is just another property that happens to be a core RDF property, namely
 rdf:type. The rdf vocabulary is located at
 http://www.w3.org/1999/02/22-rdf-syntax-ns#. The contact information example
 from above should thus be diagrammed as:

 [image: blank node with rdf:type foaf:Person]
 Fig. 15 blank node with rdf:type foaf:Person

 The point of RDF is to provide a universal language for expressing data and relationships. A
 unit of data can have any number of properties that are expressed as URLs. These URLs can be
 reused by any publisher, much like any web publisher can link to any web page, even ones they
 did not create themselves. Using data in the form of RDF triples, collected from various
 locations, and also using the RDF query language SPARQL [sparql11-query], one can search for
 "friends of Alice's who created items whose title contains the word 'Bob'," whether those
 items are blog posts, videos, calendar events, or other data types.

 RDF is an abstract data model meant to maximize the reuse of vocabularies. RDFa is a way to
 express RDF data within HTML, in a way that is machine-readable, and by reusing the existing
 human-readable data in the document.

 3.1
 Custom Vocabularies

 As Alice marks up her page with RDFa, she may discover the need to express data, such as
 her favorite photos, that is not covered by existing vocabularies. If she needs to, Alice
 can create a custom vocabulary suited for her needs. Once a vocabulary is created, it can
 be used in RDFa markup like any other vocabulary.

 The instructions on how to create a vocabulary, also known as an RDF Schema, are
 available in the RDF Primer [rdf-primer]. At a high level, the creation of
 a vocabulary for RDFa involves:

 	Selecting a URL where the vocabulary will reside, for example:
 http://example.com/photos/vocab#.

 	Publishing the vocabulary document at the specified vocabulary URL. The vocabulary
 document defines the classes and properties that make up the vocabulary. For example,
 Alice may want to define the classes Photo and Camera, as well
 as the property takenWith that relates a photo to the camera with which it
 was taken.

 	Using the vocabulary in an HTML document either with the vocab attribute
 or with the prefix declaration mechanism. For example: prefix="photo:
 http://example.com/photos/vocab#" and typeof="photo:Camera".

 It is worth noting that anyone who can publish a document on the Web can publish a
 vocabulary and thus define new data fields they may wish to express. RDF and RDFa allow
 fully distributed extensibility of vocabularies.

 4.
 RDFa Tools

 There is a wide variety of tools that can be used to generate or process RDFa data. Good
 sources for these are the RDFa page of the W3C
 Semantic Web Wiki, although care should be taken that some tools may be related to a previous
 version of RDFa. Another source may be the RDFa community site’s
 implementation page. Both these sources are constantly evolving. By the way, the latter is
 part of a more general community page that
 contains further examples for using RDFa, general information, as well as information on how to get involved.
 In particular, RDFa fragments can be tested using the
 real-time RDFa 1.1 editor that can also display a
 visual representation of the underlying structural data.

 5.
 Acknowledgments

 At the time of publication, the active members of the RDF Web Application Working Group were:

 	Stéphane Corlosquet, Massachusetts General Hospital

 	Ivan Herman, W3C

 	Gregg Kellogg (Invited Expert)

 	Niklas Lindström (Invited Expert)

 	Shane McCarron, Applied Testing and Technology, Inc. (Invited Expert)

 	Steven Pemberton, Centre Mathematics and Computer Science

 	Manu Sporny, Digital Bazaar (Chair, Invited Expert)

 	Ted Thibodeau, OpenLink Software

 Thanks also to Grant Robertson and Guus Schreiber who, though not part of the Working Group,
 have provided useful comments on earlier drafts of this note.

A. References
A.1 Informative references
	[CC-ABOUT]
	Creative Commons: About Licenses URL: http://creativecommons.org/about/licenses/

	[DC11]
	Dublin Core metadata initiative. Dublin Core metadata element set, version 1.1. July 1999. Dublin Core recommendation. URL: http://dublincore.org/documents/dcmi-terms/

	[FOAF]
	Dan Brickley, Libby Miller. FOAF Vocabulary Specification 0.98. 9 August 2010. URL: http://xmlns.com/foaf/spec/

	[OGP]
	 The Open Graph Protocol. December 2010. URL: http://ogp.me

	[SVG11]
	Erik Dahlström; Patrick Dengler; Anthony Grasso; Chris Lilley; Cameron McCormack; Doug Schepers; Jonathan Watt; Jon Ferraiolo; Jun Fujisawa; Dean Jackson et al. Scalable Vector Graphics (SVG) 1.1 (Second Edition). 16 August 2011. W3C Recommendation. URL: http://www.w3.org/TR/SVG11/

	[rdf-primer]
	Frank Manola; Eric Miller. RDF Primer. 10 February 2004. W3C Recommendation. URL: http://www.w3.org/TR/rdf-primer/

	[rdfa-core]
	Ben Adida; Mark Birbeck; Shane McCarron; Ivan Herman. RDFa Core 1.1 - Second Edition. 22 August 2013. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-core/

	[rdfa-in-html]
	Manu Sporny. HTML+RDFa 1.1. 22 August 2013. W3C Recommendation. URL: http://www.w3.org/TR/html-rdfa/

	[rdfa-lite]
	Manu Sporny. RDFa Lite 1.1. 7 June 2012. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-lite/

	[rdfa-syntax]
	Ben Adida; Mark Birbeck; Shane McCarron; Steven Pemberton et al. RDFa in XHTML: Syntax and Processing. 14 October 2008. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-syntax

	[schema]
	Schemas—schema.org

	[sparql11-query]
	Steven Harris; Andy Seaborne. SPARQL 1.1 Query Language. 21 March 2013. W3C Recommendation. URL: http://www.w3.org/TR/sparql11-query/

	[turtle]
	Eric Prud'hommeaux; Gavin Carothers. Turtle. 19 February 2013. W3C Candidate Recommendation. URL: http://www.w3.org/TR/turtle/

	[xhtml-rdfa]
	Shane McCarron. XHTML+RDFa 1.1 - Second Edition. 22 August 2013. W3C Recommendation. URL: http://www.w3.org/TR/xhtml-rdfa/

	[xmlschema11-2]
	David Peterson; Sandy Gao; Ashok Malhotra; Michael Sperberg-McQueen; Henry Thompson; Paul V. Biron et al. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. 5 April 2012. W3C Recommendation. URL: http://www.w3.org/TR/xmlschema11-2/

 [image: W3C]

 RDFa Core 1.1 - Second Edition

 Syntax and processing rules for embedding RDF through attributes

 W3C Recommendation 22 August 2013

 	This version:

 	http://www.w3.org/TR/2013/REC-rdfa-core-20130822/

 	Latest version:

 	http://www.w3.org/TR/rdfa-core/

 	Previous version:

 	http://www.w3.org/TR/2013/PER-rdfa-core-20130625/

 	Previous recommendation:

 	http://www.w3.org/TR/2012/REC-rdfa-core-20120607/

 	Editors:

 	Ben Adida, Creative Commons, ben@adida.net

	Mark Birbeck, webBackplane, mark.birbeck@webBackplane.com

	Shane McCarron, Applied Testing and Technology, Inc., shane@aptest.com

	Ivan Herman, W3C, ivan@w3.org

 Please refer to the errata for this document, which may include some normative corrections.

 This document is also available in these non-normative formats:

 Diff from Previous Recommendation, PostScript version, and PDF version

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2007-2013

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang), All Rights Reserved.
 W3C liability,
 trademark and
 document use rules apply.

 Abstract

 The current Web is primarily made up of an enormous number of documents
 that have been created using HTML. These documents contain significant
 amounts of structured data, which is largely unavailable to tools and
 applications. When publishers can express this data more completely, and
 when tools can read it, a new world of user functionality becomes
 available, letting users transfer structured data between applications
 and web sites, and allowing browsing applications to improve the user
 experience: an event on a web page can be directly imported into a
 user's desktop calendar; a license on a document can be detected so that
 users can be informed of their rights automatically; a photo's creator,
 camera setting information, resolution, location and topic can be
 published as easily as the original photo itself, enabling structured
 search and sharing.

 RDFa Core is a specification for attributes to express structured data
 in any markup language. The embedded data already available in the
 markup language (e.g., HTML) can often be reused by the RDFa markup, so
 that publishers don't need to repeat significant data in the document
 content. The underlying abstract representation is RDF [RDF-PRIMER],
 which lets publishers build their own vocabulary, extend others, and
 evolve their vocabulary with maximal interoperability over time. The
 expressed structure is closely tied to the data, so that rendered data
 can be copied and pasted along with its relevant structure.

 The rules for interpreting the data are generic, so that there is no
 need for different rules for different formats; this allows authors and
 publishers of data to define their own formats without having to update
 software, register formats via a central authority, or worry that two
 formats may interfere with each other.

 RDFa shares some of the same goals with microformats [MICROFORMATS].
 Whereas microformats specify both a syntax for embedding structured data
 into HTML documents and a vocabulary of specific terms for each
 microformat, RDFa specifies only a syntax and relies on independent
 specification of terms (often called vocabularies or taxonomies) by
 others. RDFa allows terms from multiple independently-developed
 vocabularies to be freely intermixed and is designed such that the
 language can be parsed without knowledge of the specific vocabulary
 being used.

 This document is a detailed syntax specification for RDFa, aimed at:

 	those looking to create an RDFa Processor, and who therefore need a
 detailed description of the parsing rules;

 	those looking to integrate RDFa into a new markup language;

 	those looking to recommend the use of RDFa within their
 organization, and who would like to create some guidelines for their
 users;

 	anyone familiar with RDF, and who wants to understand more about
 what is happening 'under the hood', when an RDFa Processor runs.

 For those looking for an introduction to the use of RDFa and some
 real-world examples, please consult the [RDFA-PRIMER].

 How to Read this Document

 First, if you are not familiar with either RDFa or RDF, and
 simply want to add RDFa to your documents, then you may find the RDFa
 Primer [RDFA-PRIMER] to be a better introduction.

 If you are already familiar with RDFa, and you want to examine the
 processing rules — perhaps to create an RDFa Processor — then you'll
 find the Processing Model section of most
 interest. It contains an overview of each of the processing steps,
 followed by more detailed sections, one for each rule.

 If you are not familiar with RDFa, but you are familiar
 with RDF, then you might find reading the Syntax

 Overview useful, before looking at the Processing

 Model since it gives a range of examples of markup that use
 RDFa. Seeing some examples first should make reading the processing
 rules easier.

 If you are not familiar with RDF, then you might want to take a look
 at the section on RDF Terminology
 before trying to do too much with RDFa. Although RDFa is designed to
 be easy to author — and authors don't need to understand RDF to use it
 — anyone writing applications that consume RDFa will need to
 understand RDF. There is a lot of material about RDF on the web, and a
 growing range of tools that support RDFa. This document only contains
 enough background on RDF to make the goals of RDFa more clear.

 Note
RDFa is a way of expressing RDF-style
 relationships using simple attributes in existing markup languages
 such as HTML. RDF is fully internationalized, and permits the use of
 Internationalized Resource Identifiers, or IRIs. You will see the term
 'IRI' used throughout this specification. Even if you are not familiar
 with the term IRI, you probably have seen the term 'URI' or 'URL'.
 IRIs are an extension of URIs that permits the use of characters
 outside those of plain ASCII. RDF allows the use of these characters,
 and so does RDFa. This specification has been careful to use the
 correct term, IRI, to make it clear that this is the case.

 Note
Even though this specification exclusively
 references IRIs, it is possible that a Host Language will
 restrict the syntax for its attributes to a subset of IRIs
 (e.g., @href in HTML5). Regardless of
 validation constraints in Host Languages, an RDFa Processor
 is capable of processing IRIs.

 Status of This Document

 This section describes the status of this document at the time of its publication. Other
 documents may supersede this document. A list of current W3C publications and the latest revision
 of this technical report can be found in the W3C technical reports
 index at http://www.w3.org/TR/.

 This document has been reviewed by W3C Members, by software
developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention
to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.

 This version reflects changes made as
 a result of comments received since the Recommendation was first
 published. These changes are mostly editorial. In particular,
 there are minor editorial changes to the Processing Sequence
 section 7.5.

 This is a revision of RDFa Syntax 1.0 [RDFA-SYNTAX].
 This document
 supersedes the previous Recommendation. There are a number of substantive differences
 between this version and its predecessor, including:

 	The removal of the specific rules for XHTML - these are now defined
 in XHTML+RDFa [XHTML-RDFA].

 	An expansion of the datatypes of some RDFa attributes so that they
 can contain Terms, CURIES, or Absolute IRIs.

 	Host languages are permitted to define collections of default terms,
 default prefix mappings, and a default vocabulary.

 	The ability to define a default vocabulary to use for Terms that are
 undefined.

 	Terms are required to be compared in a case-insensitive manner.

 	A richer behavior of the @property attribute, that can replace, in many cases the
 @rel attribute.

 	A slightly different handling of @typeof, making it better adapted to practical usage.

 There is a more thorough list of changes in Changes.

 A sample test
 harness is available. This set of tests is not intended to be
 exhaustive. Users may find the tests to be useful examples of RDFa
 usage.

The
implementation report
used by the director to transition to Recommendation has been
made available. There have been no formal objections to the publication of this document.

 This document was published by the RDF Web Applications Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdfa@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 This document was produced by a group operating under the

 5 February 2004 W3C Patent Policy.

 W3C maintains a public list of any patent disclosures

 made in connection with the deliverables of the group; that page also includes instructions for
 disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains
 Essential Claim(s) must disclose the
 information in accordance with section
 6 of the W3C Patent Policy.

Table of Contents
	1. Motivation
	2. Syntax Overview	2.1 The RDFa Attributes
	2.2 Examples

	3. RDF Terminology	3.1 Statements
	3.2 Triples
	3.3 IRI References
	3.4 Plain Literals
	3.5 Typed Literals
	3.6 Turtle
	3.7 Graphs
	3.8 Compact URI Expressions
	3.9 Markup Fragments and RDFa
	3.10 A Description of RDFa in RDF Terms

	4. Conformance	4.1 RDFa Processor Conformance
	4.2 RDFa Host Language Conformance
	4.3 XML+RDFa Document Conformance

	5. Attributes and Syntax	5.1 Roles of attributes
	5.2 White space within attribute values

	6. CURIE Syntax Definition	6.1 Why CURIEs and not QNames?

	7. Processing Model	7.1 Overview
	7.2 Evaluation Context
	7.3 Chaining
	7.4 CURIE and IRI Processing	7.4.1 Scoping of Prefix Mappings
	7.4.2 General Use of CURIEs in Attributes
	7.4.3 General Use of Terms in Attributes
	7.4.4 Use of CURIEs in Specific Attributes
	7.4.5 Referencing Blank Nodes

	7.5 Sequence
	7.6 Processor Status	7.6.1 Accessing the Processor Graph
	7.6.2 Processor Graph Terms

	7.7 Vocabulary Expansion

	8. RDFa Processing in detail	8.1 Changing the Evaluation Context	8.1.1 Setting the current subject	8.1.1.1 The current document
	8.1.1.2 Using @about
	8.1.1.3 Typing resources with @typeof	8.1.1.3.1 Chaining with @property and @typeof

	8.1.1.4 Determining the subject with neither @about nor @typeof	8.1.1.4.1 Inheriting subject from @resource
	8.1.1.4.2 Inheriting an anonymous subject

	8.2 Completing incomplete triples
	8.3 Object resolution	8.3.1 Object resolution for the @property attribute	8.3.1.1 Plain Literals	8.3.1.1.1 Language Tags

	8.3.1.2 Typed Literals
	8.3.1.3 XML Literals

	8.3.2 IRI object resolution	8.3.2.1 Using @resource to set the object
	8.3.2.2 Using @href or @src to set the object
	8.3.2.3 Incomplete triples

	8.4 List Generation

	9. RDFa Initial Contexts
	10. RDFa Vocabulary Expansion	10.1 Details of the RDFa Vocabulary Expansion	10.1.1 RDFa Vocabulary Entailment

	10.2 Vocabulary Expansion Control of RDFa Processors	10.2.1 Notes to RDFa Vocabulary Implementations and Publishing

	A. CURIE Datatypes	A.1 XML Schema Definition
	A.2 XML DTD Definition

	B. The RDFa Vocabulary	B.1 Term and Prefix Assignments
	B.2 Processor Graph Reporting
	B.3 Term for vocabulary expansion

	C. Changes	C.1 Major differences with RDFa Syntax 1.0

	D. Acknowledgments
	E. References	E.1 Normative references
	E.2 Informative references

 1. Motivation
This section is non-normative.

 RDF/XML [RDF-SYNTAX] provides sufficient flexibility to represent all
 of the abstract concepts in RDF. However, it presents a
 number of challenges; first it is difficult or impossible to validate
 documents that contain RDF/XML using XML Schemas or DTDs, which
 therefore makes it difficult to import RDF/XML into other markup
 languages. Whilst newer schema languages such as RELAX NG
 [RELAXNG-SCHEMA] do provide a way to validate documents that contain
 arbitrary RDF/XML, it will be a while before they gain wide support.

 Second, even if one could add RDF/XML directly into an XML dialect like
 XHTML, there would be significant data duplication between the rendered
 data and the RDF/XML structured data. It would be far better to add RDF
 to a document without repeating the document's existing data. For
 example, an XHTML document that explicitly renders its author's name in
 the text — perhaps as a byline on a news site — should not need to repeat
 this name for the RDF expression of the same concept: it should be
 possible to supplement the existing markup in such a way that it can
 also be interpreted as RDF.

 Another reason for aligning the rendered data with the structured data
 is that it is highly beneficial to express the web data's structure 'in
 context'; as users often want to transfer structured data from one
 application to another, sometimes to or from a non-web-based
 application, the user experience can be enhanced. For example,
 information about specific rendered data could be presented to the user
 via 'right-clicks' on an item of interest. Moreover, organizations that generate
 a lot of content (e.g., news outlets) find it easier to embed the
 semantic data inline than to maintain it separately.

 In the past, many attributes were 'hard-wired' directly into the markup
 language to represent specific concepts. For example, in XHTML 1.1
 [XHTML11] and HTML [HTML401] there is @cite;
 the attribute allows an author to add information to a document which is
 used to indicate the origin of a quote.

 However, these 'hard-wired' attributes make it difficult to define a
 generic process for extracting metadata from any document since an RDFa
 Processor would need to know about each of the special attributes. One
 motivation for RDFa has been to devise a means by which documents can be
 augmented with metadata in a general, rather than hard-wired, manner.
 This has been achieved by creating a fixed set of attributes and parsing
 rules, but allowing those attributes to contain properties from any of a
 number of the growing range of available RDF vocabularies. In most cases
 the values of those properties are the information that is
 already in an author's document.

 RDFa alleviates the pressure on markup language designers to anticipate
 all the structural requirements users of their language might have, by
 outlining a new syntax for RDF that relies only on attributes. By
 adhering to the concepts and rules in this specification, language
 designers can import RDFa into their environment with a minimum of
 hassle and be confident that semantic data will be extractable from
 their documents by conforming processors.

 2. Syntax Overview
This section is non-normative.

 The following examples are intended to help readers who are not
 familiar with RDFa to quickly get a sense of how it works. For a more
 thorough introduction, please read the RDFa Primer [RDFA-PRIMER].

 In RDF, it is common for people to shorten vocabulary terms via
 abbreviated IRIs that use a 'prefix' and a 'reference'. This mechanism
 is explained in detail in the section titled Compact URI Expressions.
 The examples throughout this document assume that the following
 vocabulary prefixes have been defined:

 	bibo:
 	http://purl.org/ontology/bibo/

 	cc:
 	http://creativecommons.org/ns#

 	dbp:
 	http://dbpedia.org/property/

 	dbp-owl:
 	http://dbpedia.org/ontology/

 	dbr:
 	http://dbpedia.org/resource/

 	dc:
 	http://purl.org/dc/terms/

 	ex:
 	http://example.org/

 	foaf:
 	http://xmlns.com/foaf/0.1/

 	owl:
 	http://www.w3.org/2002/07/owl#

 	rdf:
 	
 http://www.w3.org/1999/02/22-rdf-syntax-ns#

 	rdfa:
 	 http://www.w3.org/ns/rdfa#

 	rdfs:
 	 http://www.w3.org/2000/01/rdf-schema#

 	xhv:
 	http://www.w3.org/1999/xhtml/vocab#

 	xsd:
 	http://www.w3.org/2001/XMLSchema#

 Note
In some of the examples below we have used IRIs with
 fragment identifiers that are local to the document containing the RDFa
 fragment identifiers shown (e.g., 'about="#me"'). This
 idiom, which is also used in RDF/XML [RDF-SYNTAX-GRAMMAR] and other
 RDF serializations, gives a simple way to 'mint' new IRIs for entities
 described by RDFa and therefore contributes considerably to the
 expressive power of RDFa. The precise meaning of IRIs which include
 fragment identifiers when they appear in RDF graphs is given in
 Section 7 of [RDF-SYNTAX]. To ensure that such fragment
 identifiers can be interpreted correctly, media type registrations
 for markup languages that incorporate RDFa should directly or
 indirectly reference this specification.

 2.1 The RDFa Attributes
This section is non-normative.

 RDFa makes use of a number of commonly found attributes, as well as
 providing a few new ones. Attributes that already exist in widely
 deployed languages (e.g., HTML) have the same meaning they always did,
 although their syntax has been slightly modified in some cases. For
 example, in (X)HTML there is no clear way to add new @rel
 values; RDFa sets out to explicitly solve this problem, and does so by
 allowing IRIs as values. It also introduces the concepts of terms
 and 'compact URI expressions'
 — referred to
 as CURIEs in this document — which allow a full IRI value to be
 expressed succinctly. For a complete list of RDFa attribute names and
 syntax, see Attributes and Syntax.

 2.2 Examples

 In (X)HTML, authors can include metadata and relationships concerning
 the current document by using the meta and link
 elements (in these examples, XHTML+RDFa [XHTML-RDFA] is used).
 For example, the author of the page along with the pages
 preceding and following the current page can be expressed using the
 link and meta elements:

 Example 1
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Page 7</title>
 <meta name="author" content="Mark Birbeck" />
 <link rel="prev" href="page6.html" />
 <link rel="next" href="page8.html" />
 </head>
 <body>...</body>
</html>

 RDFa makes use of this concept, enhancing it with the ability to make
 use of other vocabularies by using full IRIs:

 Example 2
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>My home-page</title>
 <meta property="http://purl.org/dc/terms/creator" content="Mark Birbeck" />
 <link rel="http://xmlns.com/foaf/0.1/topic" href="http://www.example.com/#us" />
 </head>
 <body>...</body>
</html>

 Because using full IRIs like those above can be cumbersome, RDFa also
 permits the use of compact URI expressions
 so an author can use a shorthand to reference terms in multiple
 vocabularies:

 Example 3
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="foaf: http://xmlns.com/foaf/0.1/
 dc: http://purl.org/dc/terms/"
 >
 <head>
 <title>My home-page</title>
 <meta property="dc:creator" content="Mark Birbeck" />
 <link rel="foaf:topic" href="http://www.example.com/#us" />
 </head>
 <body>...</body>
</html>

 RDFa supports the use of @rel and @rev on
 any element. This is even more useful with the addition of support for
 different vocabularies:

 Example 4
This document is licensed under the
<a prefix="cc: http://creativecommons.org/ns#"
 rel="cc:license"
 href="http://creativecommons.org/licenses/by-nc-nd/3.0/"
 >Creative Commons By-NC-ND License.

 Not only can IRIs in the document be re-used to provide metadata, but
 so can inline text when used with @property:

 Example 5
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="dc: http://purl.org/dc/terms/"
 >
 <head><title>My Home Page</title></head>
 <body>
 <h1 property="dc:title">My home-page</h1>
 <p>Last modified: 16 September 2015</p>
 </body>
</html>

 If some displayed text is different from the actual 'value' it
 represents, a more precise value can be added using
		 @content. A value can also optionally
 be typed using @datatype:

 Example 6
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="xsd: http://www.w3.org/2001/XMLSchema#
 dc: http://purl.org/dc/terms/"
 >
 <head><title>My Home Page</title></head>
 <body>
 <h1 property="dc:title">My home-page</h1>
 <p>Last modified: <span property="dc:modified"
 content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">16 September 2015.</p>
 </body>
</html>

 RDFa allows the document to contain metadata information about other
 documents and resources:

 Example 7
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="bibo: http://purl.org/ontology/bibo/
 dc: http://purl.org/dc/terms/"
 >
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White's book
 '<span about="urn:ISBN:0091808189"
 property="dc:title">Canteen Cuisine'
 is well worth getting since although it's quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span
 about="urn:ISBN:1596913614"
 property="dc:description"
 >White's autobiography.
 </body>
</html>

 In many cases a block of markup will contain a number of properties
 that relate to the same item. It's possible with RDFa to indicate the
 type of that item using @typeof:

 Example 8
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="bibo: http://purl.org/ontology/bibo/
 dc: http://purl.org/dc/terms/"
 >
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White's book
 '<span about="urn:ISBN:0091808189" typeof="bibo:Book"
 property="dc:title">Canteen Cuisine'
 is well worth getting since although it's quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span
 about="urn:ISBN:1596913614"
 typeof="bibo:Book"
 property="dc:description"
 >White's autobiography.
 </body>
</html>

 When dealing with small amounts of markup, it is sometimes easier to
 use full IRIs, rather than CURIEs. The previous example can also be
 written as follows:

 Example 9
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White's book
 '<span
 about="urn:ISBN:0091808189"
 typeof="http://purl.org/ontology/bibo/Book"
 property="http://purl.org/dc/terms/title"
 >Canteen Cuisine'
 is well worth getting since although it's quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span
 about="urn:ISBN:1596913614"
 typeof="http://purl.org/ontology/bibo/Book"
 property="http://purl.org/dc/terms/description"
 >White's autobiography.
 </body>
</html>

 A simple way of defining a portion of a document using terms from a
 specific vocabulary is to use @vocab to define a default
 vocabulary IRI. For example, to use FOAF terms:

 Example 10
<div vocab="http://xmlns.com/foaf/0.1/" about="#me">
 My name is John Doe and my blog is called
 Understanding Semantics.
</div>

 The example above will produce the following triples, expressed here
 in Turtle syntax:

 Example 11
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<#me> foaf:name "John Doe" ;
 foaf:homepage <http://example.org/blog/> .

 In simple cases the @property property can also be used
 in place of @rel. Indeed, in case when the element does
 not contain @rel, @datatype, or @content,
 but there is, for example, a @href, the effect of @property
 is analogous to the role of @rel. For example, the
 previous example could have been written:

 Example 12
<div vocab="http://xmlns.com/foaf/0.1/" about="#me">
 My name is John Doe and my blog is called
 Understanding Semantics.
</div>

 3. RDF Terminology
This section is non-normative.

 The previous section gave examples of typical markup in order to
 illustrate the structure of RDFa markup. RDFa is short for "RDF in
 Attributes". In order to author RDFa you do not need to understand RDF,
 although it would certainly help. However, if you are building a system
 that consumes the RDF output of a language that supports RDFa you will
 almost certainly need to understand RDF. This section introduces the
 basic concepts and terminology of RDF. For a more thorough explanation
 of RDF, please refer to the RDF Concepts document [RDF-SYNTAX] and
 the RDF Syntax Document [RDF-SYNTAX].

 3.1 Statements
This section is non-normative.

 The structured data that RDFa provides access to is a collection of
 statements. A statement is a basic unit of information that
 has been constructed in a specific format to make it easier to
 process. In turn, by breaking large sets of information down into a
 collection of statements, even very complex metadata can be processed
 using simple rules.

 To illustrate, suppose we have the following set of facts:

 Example 13
Albert was born on March 14, 1879, in the German Empire. There is a picture of him at
the web address, http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

 This would be quite difficult for a machine to interpret, and it is
 certainly not in a format that could be passed from one data
 application to another. However, if we convert the information to a
 set of statements it begins to be more manageable. The same
 information could therefore be represented by the following shorter
 'statements':

 Example 14
Albert was born on March 14, 1879.
Albert was born in the German Empire.
Albert has a picture at
 http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

 3.2 Triples

 To make this information machine-processable, RDF defines a
 structure for these statements. A statement is formally called a triple,
 meaning that it is made up of three components. The first is the subject
 of the triple, and is what we are making our statement about.
 In all of these examples the subject is 'Albert'.

 The second part of a triple is the property of the subject that we
 want to define. In the examples here, the properties would be 'was
 born on', 'was born in', and 'has a picture at'. These properties are
 typically called predicates in RDF.

 The final part of a triple is called the object. In the
 examples here the three objects have the values 'March 14, 1879', 'the
 German Empire', and
 'http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg'.

 Note
RDFa supports internationalized
 characters in the subject,
 'predicate', and the object.

 3.3 IRI References

 Breaking complex information into manageable units helps us be
 specific about our data, but there is still some ambiguity. For
 example, which 'Albert' are we talking about? If another system has
 more facts about 'Albert', how could we know whether they are about
 the same person, and so add them to the list of things we know about
 that person? If we wanted to find people born in the German Empire,
 how could we know that the predicate 'was born in' has the same
 purpose as the predicate 'birthplace' that might exist in some other
 system? RDF solves this problem by replacing our vague terms with
 IRI references.

 IRIs are most commonly used to identify web pages, but RDF makes use
 of them as a way to provide unique identifiers for concepts. For
 example, we could identify the subject of all of our statements (the
 first part of each triple) by using the DBPedia [http://dbpedia.org]
 IRI for Albert Einstein, instead of the ambiguous string 'Albert':

 Example 15
<http://dbpedia.org/resource/Albert_Einstein>
 has the name
 Albert Einstein.
<http://dbpedia.org/resource/Albert_Einstein>
 was born on
 March 14, 1879.
<http://dbpedia.org/resource/Albert_Einstein>
 was born in
 the German Empire.
<http://dbpedia.org/resource/Albert_Einstein>
 has a picture at
 http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

 IRI references are also used to uniquely identify the objects in
 metadata statements (the third part of each triple). The picture of
 Einstein is already an IRI, but we could also use an IRI to uniquely
 identify the country 'German Empire'. At the same time we'll indicate
 that the name and date of birth really are literals (and not IRIs), by
 putting quotes around them:

 Example 16
<http://dbpedia.org/resource/Albert_Einstein>
 has the name
 "Albert Einstein".
<http://dbpedia.org/resource/Albert_Einstein>
 was born on
 "March 14, 1879".
<http://dbpedia.org/resource/Albert_Einstein>
 was born in
 <http://dbpedia.org/resource/German_Empire>.
<http://dbpedia.org/resource/Albert_Einstein>
 has a picture at
 <http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg>.

 IRI references are also used to ensure that predicates are
 unambiguous; now we can be sure that 'birthplace', 'place of birth',
 'Lieu de naissance' and so on, all mean the same thing:

 Example 17
<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/name>
 "Albert Einstein".
<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/dateOfBirth>
 "March 14, 1879".
<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/birthPlace>
 <http://dbpedia.org/resource/German_Empire>.
<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/depiction>
 <http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg>.

 3.4 Plain Literals

 Although IRI resources are always used for subjects and predicates,
 the object part of a triple can be either an IRI or a literal.
 In the example triples, Einstein's name is represented by a plain

 literal, specifically a basic string with no
 type or language information:

 Example 18
<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/name> "Albert Einstein".

 A plain literal can also be given a language tag, to capture plain
 text in a natural language. For example, Einstein's birthplace has
 different names in English and German:

 Example 19
<http://dbpedia.org/resource/German_Empire>
 rdfs:label "German Empire"@en;
 rdfs:label "Deutsches Kaiserreich"@de .

 3.5 Typed Literals

 Some literals, such as dates and numbers, have very specific
 meanings, so RDF provides a mechanism for indicating the type of a
 literal. A typed literal
 is indicated by attaching an IRI to the end of a plain literal,
 and this IRI indicates the literal's datatype. This IRI is usually
 based on datatypes defined in the XML Schema Datatypes specification
 [XMLSCHEMA11-2]. The following syntax would be used to unambiguously
 express Einstein's date of birth as a literal of type http://www.w3.org/2001/XMLSchema#date:

 Example 20
<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/dateOfBirth>
 "1879-03-14"^^<http://www.w3.org/2001/XMLSchema#date>.

 3.6 Turtle

 RDF itself does not have one set way to express triples, since the
 key ideas of RDF are the triple and the use of IRIs, and not
 any particular syntax. However, there are a number of mechanisms for
 expressing triples, such as RDF/XML [RDF-SYNTAX-GRAMMAR], Turtle
 [TURTLE], and of course RDFa. Many discussions of RDF make use of
 the Turtle syntax to explain their ideas, since it is quite
 compact. The examples we have just seen are already using this syntax,
 and we'll continue to use it throughout this document when we need to
 talk about the RDF that could be generated from some RDFa. Turtle
 allows long IRIs to be abbreviated by using an IRI mapping, which can
 be used to express a compact IRI expression as follows:

 Example 21
@prefix dbp: <http://dbpedia.org/property/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://dbpedia.org/resource/Albert_Einstein>
 foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein>
 dbp:birthPlace <http://dbpedia.org/resource/German_Empire> .

 Here 'dbp:' has been mapped to the IRI for DBPedia and 'foaf:' has
 been mapped to the IRI for the 'Friend of a Friend' vocabulary.

 Any IRI in Turtle could be abbreviated in this way. This means that
 we could also have used the same technique to abbreviate the
 identifier for Einstein, as well as the datatype indicator:

 Example 22
@prefix dbp: <http://dbpedia.org/property/> .
@prefix dbr: <http://dbpedia.org/resource/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

dbr:Albert_Einstein
 foaf:name "Albert Einstein";
 dbp:birthPlace dbr:German_Empire;
 dbp:dateOfBirth "1879-03-14"^^xsd:date;
 foaf:depiction <http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg> .

dbr:German_Empire
 rdfs:label "German Empire"@en;
 rdfs:label "Deutsches Kaiserreich"@de .

 When writing examples, you will often see the following IRI in the
 Turtle representation:

 Example 23
<>

 This indicates the 'current document', i.e., the document being
 processed. In the end there will always be a full IRI based on the
 document's location, but this abbreviation serves to make examples
 more compact. Note in particular that the whole technique of
 abbreviation is merely a way to make examples more compact, and the
 actual triples generated would always use the full IRIs.

 3.7 Graphs

 A collection of triples is called a graph. All of the
 triples that are defined by this specification are contained in the output

 graph by an RDFa Processor. For more information on graphs
 and other RDF concepts, see [RDF-SYNTAX].

 3.8 Compact URI Expressions

 In order to allow for the compact expression of RDF statements, RDFa
 allows the contraction of most IRI references into a
 form called a 'compact URI expression', or CURIE. A
 detailed discussion of this mechanism is in the section CURIE

 and IRI Processing.

 Note that CURIEs are only used in the markup and Turtle examples, and
 will never appear in the generated triples, which are
 defined by RDF to use IRI references.

 3.9 Markup Fragments and RDFa

 A growing use of embedded metadata is to take fragments of markup and
 move them from one document to another. This may happen through the
 use of tools, such as drag-and-drop in a browser, or through snippets
 of code provided to authors for inclusion in their documents. A good
 example of the latter is the licensing fragment
 provided by Creative Commons.

 However, those involved in creating fragments (either by building
 tools, or authoring snippets), should be aware that this specification
 does not say how fragments are processed. Specifically, the processing
 of a fragment 'outside' of a complete document is undefined because
 RDFa processing is largely about context. Future versions of this or
 related specifications may do more to define this behavior.

 Developers of tools that process fragments, or authors of fragments
 for manual inclusion, should also bear in mind what will happen to
 their fragment once it is included in a complete document. They should
 carefully consider the amount of 'context' information that will be
 needed in order to ensure a correct interpretation of their fragment.

 3.10 A Description of RDFa in RDF Terms

 The following is a brief description of RDFa in terms of the RDF
 terminology introduced here. It may be useful to readers with an RDF
 background:

 An RDF graph
 comprises nodes linked by relationships. The aim of RDFa is to allow a single RDF graph to be carried in various types of document markup. The basic unit
 of an RDF graph is a triple, in which a
 subject node is linked to an object node
 via a predicate. The subject node
 is always either a IRI reference or a blank
 node (or bnode), the predicate is always
 a IRI reference, and the object of a statement can be a
 IRI reference, a literal, or a bnode.

 In RDFa, a subject IRI reference is generally indicated
 using @about and predicates are represented using one of
 @property, @rel, or @rev.
 Objects which are IRI references are represented using @resource,
 @src, or @href, whilst objects that are literals
 are represented either with @content or the content of
 the element in question (with an optional datatype expressed using @datatype,
 and an optional language expressed using a Host Language-defined
 mechanism such as @xml:lang).

 4. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
 and notes in this specification are non-normative. Everything else in this specification is
 normative.

 The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY,
 and OPTIONAL in this specification are to be interpreted as described in [RFC2119].

 4.1 RDFa Processor Conformance

 This specification uses the term output
 graph to mean all of the triples asserted by a document
 according to the Processing Model section. A conforming RDFa Processor MUST make available to a consuming application a single RDF graph containing all possible triples generated by using the rules in the Processing Model section.
 The
 term processor graph is used to denote the collection of
 all informational, warning, and error triples that MAY be generated by
 the RDFa Processor to report its status.
 The output graph and the processor graph
 are separate graphs and MUST NOT be stored in the same graph by the
 RDFa Processor.

 A conforming RDFa Processor MAY make available additional triples
 that have been generated using rules not described here, but these
 triples MUST NOT be made available in the output graph.
 (Whether these additional triples are made available in one or more
 additional RDF graphs is implementation-specific, and
 therefore not defined here.)

 A conforming RDFa Processor MUST preserve white space in both plain

 literals and XML literals.
 However, it may be the case that the architecture in which a processor
 operates has made changes to the white space in a document before that
 document ever reaches the RDFa Processor (e.g., [XMLSCHEMA11-1]
 processors are permitted to 'normalize' white space in attribute
 values - see section 3.1.4). To ensure maximum consistency between
 processing environments, authors SHOULD remove any unnecessary white
 space in their plain and XML Literal content.

 A conforming RDFa Processor MUST examine the media type of a document
 it is processing to determine the document's Host Language. If the
 RDFa Processor is unable to determine the media type, or does not
 support the media type, the RDFa Processor MUST process the document
 as if it were media type application/xml. See XML+RDFa

 Document Conformance. A Host Language MAY specify additional
 announcement mechanisms.

 Note
A conforming RDFa Processor MAY use additional
 mechanisms (e.g., the DOCTYPE, a file extension, the root element, an overriding
 user-defined parameter) to
 attempt to determine the Host Language if the media type is
 unavailable. These mechanisms are unspecified.

 4.2 RDFa Host Language Conformance

 Host Languages that incorporate RDFa must adhere to the following:

 	All of the facilities required in this specification MUST be
 included in the Host Language.

 	The required attributes defined in this specification MUST be included in
 the content model of the Host Language.
 Note
For the avoidance of doubt, there is no requirement that attributes
 such as @href and @src are used in a
 conforming Host Language. Nor is there any requirement that all
 required attributes are incorporated into the content model of
 all elements. The working group recommends that Host Language designers
 ensure that the required attributes are incorporated into the content
 model of elements that are commonly used throughout the
 content model of the Host Language.

 	If the Host Language uses XML Namespaces [XML-NAMES], the
 attributes in this specification SHOULD be defined in 'no
 namespace' (e.g., when the attributes are used on elements in the
 Host Language's namespace, they can be used with no qualifying
 prefix: <myml:myElement property="license">).

 When a Host Language does not use the attributes in 'no namespace',
 they MUST be referenced via the XHTML Namespace (http://www.w3.org/1999/xhtml).

 	If the Host Language has its own definition for any attribute
 defined in this specification, that definition MUST be such that the
 processing required by this specification remains possible when the
 attribute is used in a way consistent with the requirements herein.

 	The Host Language MAY specify an initial context
 (e.g., IRI mappings and/or a definition of terms or a default
 vocabulary IRI). Such an initial context SHOULD be
 defined using the conventions defined in RDFa

 Initial Contexts.

 4.3 XML+RDFa Document Conformance

 This specification does not define a stand-alone document type. The
 attributes herein are intended to be integrated into other host
 languages (e.g., HTML+RDFa or XHTML+RDFa). However, this specification
 does define processing rules for generic XML
 documents - that is, those documents delivered as media types text/xml
 or application/xml. Such documents must meet all of the
 following criteria:

 	The document MUST be well-formed as defined in [XML10-4e].

 	The document SHOULD use the attributes defined in this
 specification in 'no namespace' (e.g., when the attributes are used on
 elements they are used with no qualifying
 prefix: <myml:myElement property="license">).
 Note
It is possible that an XML grammar will have native attributes that
 conflict with attributes in this specification. This could result in an RDFa
 processor generating unexpected triples.

 When an RDFa Processor processes an XML+RDFa document, it does so via
 the following initial context:

 	There are default terms (e.g., describedby, license, and role), defined
 in http://www.w3.org/2011/rdfa-context/rdfa-1.1.

 	There are default prefix mappings (e.g., dc),
 defined in http://www.w3.org/2011/rdfa-context/rdfa-1.1.

 	There is no default vocabulary IRI.

 	The base can be set using the @xml:base
 attribute as defined in [XML10-4e].

 	The current language can be set using @xml:lang
 attribute.

 5. Attributes and Syntax

 This specification defines a number of attributes and the way in which
 the values of those attributes are to be interpreted when generating RDF
 triples. This section defines the attributes and the syntax of their
 values.

 	about

 	a SafeCURIEorCURIEorIRI, used for stating what the
 data is about (a 'subject' in RDF terminology);

 	content

 	a CDATA string, for supplying machine-readable content
 for a literal (a 'literal object', in RDF terminology);

 	datatype

 	a TERMorCURIEorAbsIRI representing a datatype, to
 express the datatype of a literal;

 	href (optional)

 	a traditionally navigable IRI for expressing the
 partner resource of a relationship (a 'resource object', in RDF
 terminology);

 	inlist

 	An attribute used to indicate that the object
 associated with a rel or property
 attribute on the same element is to be added to the list for that
 predicate. The value of this attribute MUST be ignored.
 Presence of this attribute causes a list to be created if it does not already exist.

 	prefix

 	a white space separated list of prefix-name IRI pairs of the form
 NCName ':' ' '+ xsd:anyURI

 	property

 	a white space separated list of TERMorCURIEorAbsIRIs,
 used for expressing relationships between a subject and either a resource
 object if given or some literal
 text (also a 'predicate');

 	rel

 	a white space separated list of TERMorCURIEorAbsIRIs,
 used for expressing relationships between two resources ('predicates'
 in RDF terminology);

 	resource

 	a SafeCURIEorCURIEorIRI for expressing the partner
 resource of a relationship that is not intended to be navigable (e.g.,
 a 'clickable' link) (also an 'object');

 	rev

 	a white space separated list of TERMorCURIEorAbsIRIs,
 used for expressing reverse relationships between two resources (also
 'predicates');

 	src (optional)

 	an IRI for expressing the partner resource of a
 relationship when the resource is embedded (also a 'resource object');

 	typeof

 	a white space separated list of TERMorCURIEorAbsIRIs
 that indicate the RDF type(s) to associate with a subject;

 	vocab

 	an IRI that defines the mapping to use when a TERM
 is referenced in an attribute value. See General
 Use of Terms in Attributes and the section
 on Vocabulary Expansion.

 Note
In all cases it is possible for these attributes to be used with
 no value (e.g., @datatype="") or with a value that evaluates to
 no value after evaluation using the rules for
 CURIE and IRI Processing
 (e.g., @datatype="[noprefix:foobar]").

 5.1 Roles of attributes

 The RDFa attributes play different roles in a semantically rich document.
 Briefly, those roles are:

 	Syntax attributes: @prefix, @vocab.

 	Subject attributes: @about.

 	Predicate attributes: @property, @rel, @rev.

 	Resource attributes: @resource, @href, @src.

 	Literal attributes: @datatype, @content, @xml:lang or @lang.

 	Macro attributes: @typeof, @inlist.

 5.2 White space within attribute values

 Many attributes accept a white space separated list of tokens. This
 specification defines white space as:

 whitespace ::= (#x20 | #x9 | #xD | #xA)+

 When

 attributes accept a white space separated list of tokens, an RDFa
 Processor MUST ignore any leading or trailing white space.

 Note
This definition is consistent with the definition found
 in [XML10].

 6. CURIE Syntax Definition

 Note
The working group is currently examining the productions
 for CURIE below in light of recent comments received from the RDF
 Working Group and members of the RDF Web Applications Working
 Group. It is possible that there will be minor changes to the production
 rules below in the near future, and that these changes will be
 backward incompatible. However, any such incompatibility will be
 limited to edge cases.

 The key component of RDF is the IRI, but these are usually long and
 unwieldy. RDFa therefore supports a mechanism by which IRIs can be
 abbreviated, called 'compact URI expressions' or simply, CURIEs.

 When expanded, the resulting IRI MUST be a syntactically valid IRI
 [RFC3987]. For a more detailed explanation see CURIE

 and IRI Processing. The lexical space of a CURIE is as
 defined in curie below. The value space
 is the set of IRIs.

 A CURIE is comprised of two components, a prefix
 and a reference. The prefix is separated from the
 reference by a colon (:). In general use it is possible to
 omit the prefix, and so create a CURIE that makes use of the 'default
 prefix' mapping; in RDFa the 'default prefix' mapping is http://www.w3.org/1999/xhtml/vocab#.
 It's also possible to omit both the prefix and the colon, and
 so create a CURIE that contains just a reference which makes use of the
 'no prefix' mapping. This specification does not define a 'no prefix'
 mapping. RDFa Host Languages MUST NOT define a 'no prefix' mapping.

 Note
 The RDFa 'default prefix' should not be confused with the
 'default namespace' as defined in [XML-NAMES]. An RDFa Processor MUST
 NOT treat an XML-NAMES 'default namespace' declaration as if it were
 setting the 'default prefix'.

 The general syntax of a CURIE can be summarized as follows:

 prefix ::= NCName

reference ::= (ipath-absolute / ipath-rootless / ipath-empty)
 ["?" iquery] ["#" ifragment] (as defined in [[!RFC3987]])

curie ::= [[prefix] ':'] reference

safe_curie ::= '[' [[prefix] ':'] reference ']'

 Note
 The production safe_curie is not required,
 even in situations where an attribute value is permitted to be a CURIE
 or an IRI: An IRI that uses a scheme that is not an in-scope mapping cannot
 be confused with a CURIE. The concept of a safe_curie is retained for
 backward compatibility.

 Note
 It is possible to define a CURIE prefix mapping in such a way that
 it would overshadow a defined IRI scheme. For example, a document could map the prefix
 'mailto' to 'http://www.example.com/addresses/'. Then a @resource that
 contained 'mailto:user@example.com' might create a triple with the object
 'http://www.example.com/addresses/user@example.com'. Moreover, it is possible
 though unlikely, that schemes will be introduced in the future that will conflict
 with prefix mappings defined in a document (e.g., the newly proposed 'widget'
 scheme [WIDGETS-URI]). In neither case would this RDFa overshadowing of the
 underlying scheme alter the way other consumers of the IRI treat that IRI. It
 could, however, mean that the document author's intended use of the CURIE is
 mis-interpreted by another consumer as an IRI. The working group considers this
 risk to be minimal.

 In normal evaluation of CURIEs the following context information would
 need to be provided:

 	a set of mappings from prefixes to IRIs;

 	a mapping to use with the default prefix (for example, :p);

 	a mapping to use when there is no prefix (for example, p);

 	a mapping to use with the '_' prefix, which is used to generate
 unique identifiers (for example, _:p).

 In RDFa these values are defined as follows:

 	the set of mappings from prefixes to IRIs is
 provided by the current in-scope prefix declarations of the current

 element during parsing;

 	the mapping to use with the default prefix is the
 current default prefix mapping;

 	the mapping to use when there is no prefix is not
 defined;

 	the mapping to use with the '_' prefix, is not
 explicitly stated, but since it is used to generate bnodes,

 its implementation needs to be compatible with the RDF definition and
 rules in Referencing Blank Nodes. A
 document SHOULD NOT define a mapping for the '_' prefix. A Conforming
 RDFa Processor MUST ignore any definition of a mapping for the '_'
 prefix.

 A CURIE is a representation of a full IRI. The rules for determining
 that IRI are:

 	If a CURIE consists of an empty prefix and a reference,
 the IRI is obtained by taking the current default prefix mapping and
 concatenating it with the reference. If there is no
 current default prefix mapping, then this is not a valid CURIE and
 MUST be ignored.

 	Otherwise, if a CURIE consists of a non-empty prefix
 and a reference, and if there is an in-scope mapping for prefix
 (when compared case-insensitively), then the IRI is created by using
 that mapping, and concatenating it with the reference.

 	Finally, if there is no in-scope mapping for prefix,
 then the value is not a CURIE.

 Note
See General Use of Terms in Attributes
 for the way items with no colon can be interpreted in some datatypes by
 RDFa Processors.

 6.1 Why CURIEs and not QNames?
This section is non-normative.

 In many cases, language designers have attempted to use QNames for an
 extension mechanism [XMLSCHEMA11-2]. QNames do permit independent
 management of the name collection, and can map the names to
 a resource. Unfortunately, QNames are unsuitable in most cases because
 1) the use of QName as identifiers in attribute values and element
 content is problematic as discussed in [QNAMES] and 2) the syntax of
 QNames is overly restrictive and does not allow all possible IRIs to
 be expressed.

 A specific example of the problem this causes comes from attempting
 to define the name collection for books. In a QName, the part after
 the colon must be a valid element name, making an example such as the
 following invalid: isbn:0321154991

 This is not a valid QName simply because "0321154991" is not a valid
 element name. Yet, in the example given, we don't really want to
 define a valid element name anyway. The whole reason for using a QName
 was to reference an item in a private scope - that of ISBNs. Moreover,
 in this example, we want the names within that scope to map to an IRI
 that will reveal the meaning of that ISBN. As you can see, the
 definition of QNames and this (relatively common) use case are in
 conflict with one another.

 This specification addresses the problem by defining CURIEs.
 Syntactically, CURIEs are a superset of QNames.

 Note that this specification is targeted at language designers, not
 document authors. Any language designer considering the use of QNames
 as a way to represent IRIs or unique tokens should consider instead
 using CURIEs:

 	CURIEs are designed from the ground up to be used in attribute
 values. QNames are designed for unambiguously naming elements and
 attributes.

 	CURIEs expand to IRIs, and any IRI can be represented by such an
 expansion. QNames are treated as value pairs, but even if those
 pairs are combined into a string, only a subset of IRIs can be
 represented.

 	CURIEs can be used in non-XML grammars, and can even be used in
 XML languages that do not support XML Namespaces. QNames are limited
 to XML Namespace-aware XML Applications.

 7. Processing Model

 This section looks at a generic set of processing rules for creating a
 set of triples that represent the structured data present in an RDFa
 document. Processing need not follow the DOM traversal technique
 outlined here, although the effect of following some other manner of
 processing must be the same as if the processing outlined here were
 followed. The processing model is explained using the idea of DOM
 traversal which makes it easier to describe (particularly in relation to
 the evaluation context).

 Note that in this section, explanations about the
 processing model or guidance to implementors are enclosed in sections
 like this.

 7.1 Overview

 Evaluating a document for RDFa triples is carried out by starting at
 the document object, and then visiting each of its child elements in
 turn, in document order, applying processing rules. Processing is
 recursive in that for each child element the processor also visits
 each of its child elements, and applies the same processing
 rules.

 Note
 In some environments there will be little difference
 between starting at the root element of the document, and starting at
 the document object itself. It is defined this way because in some
 environments important information is present at the document object
 level which is not present on the root element.

 As processing continues, rules are applied which may generate
 triples, and may also change the evaluation context
 information that will then be used when processing descendant
 elements.

 Note
 This specification does not say anything about what
 should happen to the triples generated, or whether more triples might
 be generated during processing than are outlined here. However, to be
 conforming, an RDFa Processor MUST act as if at a minimum the rules in
 this section are applied, and a single RDF graph
 produced. As described in the RDFa Processor
 Conformance section, any additional triples generated MUST NOT
 appear in the output graph. They MAY be included in
 the processor graph.

 7.2 Evaluation Context

 During processing, each rule is applied using information provided
 by an evaluation context. An initial context
 is created when processing begins. That context has the following
 members:

 	 The base. This will usually be the IRI of the
 document being processed, but it could be some other IRI, set by
 some other mechanism, such as the (X)HTML base
 element. The important thing is that it establishes an IRI against
 which relative paths can be resolved.

 	 The parent subject. The initial
 value will be the same as the initial value of base,
 but it will usually change during the course of processing.

 	 The parent object. In some
 situations the object of a statement becomes the subject of any
 nested statements, and this member is used to convey this value.
 Note that this value may be a bnode, since in some
 situations a number of nested statements are grouped together on one
 bnode. This means that the bnode must be
 set in the containing statement and passed down.

 	A list of current, in-scope IRI

 mappings.

 	A list of incomplete triples. A triple can be
 incomplete when no object resource is provided alongside a predicate
 that requires a resource (i.e., @rel or @rev).

 The triples can be completed when a resource becomes available,
 which will be when the next subject is specified (part of the
 process called chaining).

 	A list mapping that associates IRIs with lists.

 	The language. Note that there is no default
 language.

 	The term mappings, a list of terms and their
 associated IRIs. This specification does not define an initial list.
 Host Languages MAY define an initial list.

 	The default vocabulary, a value to use as the prefix
 IRI when a term unknown to the RDFa
 Processor is used. This specification does not
 define an initial setting for the default vocabulary. Host Languages
 MAY define an initial setting.

 During the course of processing, new evaluation contexts
 are created which are passed to each child element. The initial rules
 described below will determine the values of the items in the context.
 Then the core rules will cause new triples to be created by
 combining information provided by an element with information from the
 evaluation context.

 During the course of processing a number of locally scoped values are
 needed, as follows:

 	An initially empty list of IRI mappings, called the
 local list of IRI mappings.

 	An initially empty list of incomplete triples,
 called the local list of incomplete triples.

 	An initially empty language value.

 	 A skip element flag, which indicates whether the current

 element can safely be ignored since it has no relevant RDFa
 attributes. Note that descendant elements will still be processed.

 	 A new subject value, which once calculated will set
 the parent subject in an evaluation
 context, as well as being used to complete any incomplete

 triples, as described in the next section.

 	 A value for the current
 property value, the literal to use when creating triples
 that have a literal object, or IRI-s in the absence of @rel
 or @rev.

 	 A value for the current
 object resource, the resource to use when creating triples
 that have a resource object.

 	 A value for the typed resource,
 the source for creating rdf:type relationships to
 types specified in @typeof.

 	 The local term mappings, a list of terms and their
 associated IRIs.

 	 The local list mapping, mapping IRIs to lists

 	 A local default vocabulary, an IRI to use as a
 prefix mapping when a term is used.

 7.3 Chaining

 Statement chaining is an RDFa feature that allows the
 author to link RDF statements together while avoiding unnecessary
 repetitive markup. For example, if an author were to add statements as
 children of an object that was a resource, these statements should be
 interpreted as being about that resource:

 Example 24
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire
 </div>
</div>

 In this example we can see that an object resource
 ('German_Empire'), has become the subject for nested statements. This
 markup also illustrates the basic chaining pattern of 'A has a B has a
 C' (i.e., Einstein has a birth place of the German Empire, which has a
 long name of 'the German Empire').

 It's also possible for the subject of nested statements to provide
 the object for containing statements — essentially the
 reverse of the example we have just seen. To illustrate, we'll take an
 example of the type of chaining just described, and show how it could
 be marked up more efficiently. To start, we mark up the fact that
 Albert Einstein had, at some point in his life, a residence both in
 the German Empire and in Switzerland:

 Example 25
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp-owl:residence" resource="http://dbpedia.org/resource/German_Empire"></div>
 <div rel="dbp-owl:residence" resource="http://dbpedia.org/resource/Switzerland"></div>
</div>

 Now, we show the same information, but this time we create an incomplete

 triple from the residence part, and then use any number of
 further subjects to 'complete' that triple, as follows:

 Example 26
<div about="http://dbpedia.org/resource/Albert_Einstein" rel="dbp-owl:residence">

</div>

 In this example, the incomplete triple actually gets
 completed twice, once for the German Empire and once for Switzerland,
 giving exactly the same information as we had in the earlier example:

 Example 27
<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/Switzerland> .

 Chaining can sometimes involve elements containing relatively
 minimal markup, for example showing only one resource, or only one
 predicate. Here the img element is used to carry a
 picture of Einstein:

 Example 28
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="foaf:depiction">

 </div>
</div>

 When such minimal markup is used, any of the resource-related
 attributes could act as a subject or an object in the chaining:

 Example 29
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp-owl:residence">

 </div>
</div>

 Note that, as noted above, in many situations the @property
 and @rel are interchangeable. This is not true
 for chaining. Taking the first example, if that example was used as
 follows:

 Example 30
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div property="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire
 </div>
</div>

 The subject for 'the German Empire' would remain Albert Einstein (and
 that would, of course, be an error). This is the main difference
 between @property and @rel: the latter
 induces chaining, whereas the former, usually, does not.

 7.4 CURIE and IRI Processing

 Since RDFa is ultimately a means for transporting RDF, a key concept
 is the resource and its manifestation as an IRI. RDF deals
 with complete IRIs (not relative paths); when converting RDFa to
 triples, any relative IRIs MUST be resolved relative to the base IRI,
 using the algorithm defined in section 6.5 of RFC 3987 [RFC3987], Reference

 Resolution. The values of RDFa attributes
 that refer to IRIs use three different datatypes: IRI,
 SafeCURIEorCURIEorIRI, or TERMorCURIEorAbsIRI.
 All these attributes are mapped, after processing, to IRIs. The
 handling of these attributes is as follows:

 	IRI

 	The content is an IRI, and is used as such.

 	SafeCURIEorCURIEorIRI

 	

 	When the value is surrounded by square brackets, then the
 content within the brackets is evaluated as a CURIE according to
 the CURIE Syntax Definition. If it is
 not a valid CURIE, the value MUST be ignored.

 	Otherwise, the value is evaluated as a CURIE. If it is a valid
 CURIE, the resulting IRI is used; otherwise, the value is
 processed as an IRI.

 Note
A consequence of this is that when the value of an attribute of this
 datatype is the empty string (e.g., @about=""), that value resolves to an
 IRI. An IRI of "" is a relative IRI that is interpreted as being the same as the base.
 In other words, a value of "" will usually resolve to the IRI of the current document.

 Note
A related consequence of this is that when the value of an attribute of this datatype is an empty SafeCURIE (e.g., @about="[]"), that value does not result in an IRI and therefore the value is ignored.

 	TERMorCURIEorAbsIRI

 	

 	If the value is a term
 then it is evaluated as a term according to General Use of Terms in Attributes. Note that this step may mean
 that the value is to be ignored.

 	If the value is a valid CURIE, then the resulting IRI is used.

 	If the value is an absolute IRI, that value is used.

 	Otherwise, the value is ignored.

 Note

 that it is possible for all values in an attribute to be ignored. When
 that happens, the attribute MUST be treated as if it were empty.

 For example, the full IRI for Albert Einstein on DBPedia is:

 Example 31
http://dbpedia.org/resource/Albert_Einstein

 This can be shortened by authors to make the information easier to
 manage, using a CURIE. The first step is for the author to create a
 prefix mapping that links a prefix to some leading segment of the IRI.
 In RDFa these mappings are expressed using @prefix:

 Example 32
<div prefix="db: http://dbpedia.org/">
 ...
</div>

 Once the prefix has been established, an author can then use it to
 shorten an IRI as follows:

 Example 33
<div prefix="db: http://dbpedia.org/">
 <div about="db:resource/Albert_Einstein">
 ...
 </div>
</div>

 The author is free to split the IRI at any point.
 However, since a common use of CURIEs is to
 make available libraries of terms and values, the prefix will usually
 be mapped to some common segment that provides the most re-use, often
 provided by those who manage the library of terms. For example, since
 DBPedia contains an enormous list of resources, it is more efficient
 to create a prefix mapping that uses the base location of the
 resources:

 Example 34
<div prefix="dbr: http://dbpedia.org/resource/">
 <div about="dbr:Albert_Einstein">
 ...
 </div>
 <div about="dbr:Baruch_Spinoza">
 ...
 </div>
</div>

 Note that it is generally considered a bad
 idea to use relative paths in prefix declarations. Since it is
 possible that an author may ignore this guidance, it is further
 possible that the IRI obtained from a CURIE is relative. However,
 since all IRIs must be resolved relative to base before
 being used to create triples, the use of relative paths should not
 have any effect on processing.

 7.4.1 Scoping of Prefix Mappings

 CURIE prefix mappings are defined on the current element and its
 descendants. The inner-most mapping for a given prefix takes
 precedence. For example, the IRIs expressed by the following two
 CURIEs are different, despite the common prefix, because the prefix
 mappings are locally scoped:

 Example 35
<div prefix="dbr: http://dbpedia.org/resource/">
 <div about="dbr:Albert_Einstein">
 ...
 </div>
</div>
<div prefix="dbr: http://someotherdb.org/resource/">
 <div about="dbr:Albert_Einstein">
 ...
 </div>
</div>

 Note
In general it is a bad practice to redefine prefix
 mappings within a document. In particular, while it is permitted, mapping a
 prefix to different values at different places within a document could lead to
 confusion. The working group recommends that document authors use the same
 prefix to map to the same vocabulary throughout a document. Many vocabularies
 have recommended prefix names. The working group recommends that these names
 are used whenever possible.

 7.4.2 General Use of CURIEs in Attributes

 There are a number of ways that attributes make use of CURIEs, and
 they need to be dealt with differently. These are:

 	An attribute may allow one or more values that are a mixture of
 TERMs, CURIEs, and absolute IRIs.

 	An attribute may allow one or more values that are a mixture of
 CURIEs and IRIs. In this case any value that is not a CURIE, as
 outlined in section CURIE Syntax Definition,
 will be processed as an IRI.

 	If the value is surrounded by square brackets, then
 the content within the brackets is always evaluated according to
 the rules in CURIE Syntax Definition -
 and if that content is not a CURIE, then the content MUST be
 ignored.

 Note
An empty attribute value (e.g., typeof='')
 is still a CURIE, and is processed as such. The rules
 for this processing are defined in Sequence.
 Specifically, however, an empty attribute value is never
 treated as a relative IRI by this specification.

 An example of an attribute that can contain a CURIEorIRI is @about.
 To express an IRI directly, an author might do this:

 Example 36
<div about="http://dbpedia.org/resource/Albert_Einstein">
 ...
</div>

 whilst to express the IRI above as a CURIE an author would do this:

 Example 37
<div about="dbr:Albert_Einstein">
 ...
</div>

 The author could also use a safe CURIE, as follows:

 Example 38
<div about="[dbr:Albert_Einstein]">
 ...
</div>

 Since non-CURIE values MUST be ignored, the following value in @about
 would not set a new subject, since @about
 does not permit the use of TERMs, and the CURIE
 has no prefix separator.

 Example 39
<div about="[Albert_Einstein]">
 ...
</div>

 However, this markup would set a subject, since it is not
 a CURIE, but a valid relative IRI:

 Example 40
<div about="Albert_Einstein">
 ...
</div>

 Note that several RDFa attributes are able to also take TERMS as their value.
 This is discussed in the next section.

 7.4.3 General Use of Terms in Attributes

 Some RDFa attributes have a datatype that permits a term to be referenced.
 RDFa defines the syntax of a term as:

 term ::= NCNameStartChar termChar*
termChar ::= (NameChar - ':') | '/'

 Note
For the avoidance of doubt, this production
 means a 'term' in RDFa is an XML NCName that also permits
 slash as a non-leading character.

 When an RDFa attribute permits the use of a term, and the value
 being evaluated matches the production for term above, it is
 transformed to an IRI using the following logic:

 	If there is a local default vocabulary the IRI is
 obtained by concatenating that value and the term.

 	Otherwise, check if the term matches an item in the list of local
 term mappings. First compare against the list case-sensitively,
 and if there is no match then compare case-insensitively.
 If there is a match, use the associated IRI.

 	Otherwise, the term
 has no associated IRI and MUST be ignored.

 Note
A local default vocabulary can be defined by the
 Host Language as part of the initial context, and can be overridden on
 the current element and its children using @vocab.

 7.4.4 Use of CURIEs in Specific Attributes

 The general rules discussed in the previous sections apply to the
 RDFa attributes in the following ways:

 	@about and @resource support the
 datatype SafeCURIEorCURIEorIRI - allowing a
 SafeCURIE, a CURIE, or an IRI.

 	@href and @src are as defined in the
 Host Language (e.g., XHTML), and support only an IRI.

 	@vocab supports an IRI.

 	@datatype supports the datatype TERMorCURIEorAbsIRI
 - allowing a single Term, CURIE, or Absolute IRI.

 	@property, @typeof, @rel,
 and @rev support the datatype TERMorCURIEorAbsIRIs
 - allowing one or more Terms, CURIEs, or Absolute IRIs.

 Any value that matches a defined term MUST be expanded into a
 reference to the corresponding IRI. For example in
 the following examples:

 Example 41
<link rel="license" href="http://example.org/license.html" />
<link rel="xhv:license" href="http://example.org/license.html" />

 would each generate the following triple:

 Example 42
<> <http://www.w3.org/1999/xhtml/vocab#license> <http://example.org/license.html> .

 7.4.5 Referencing Blank Nodes

 In RDFa, it is possible to establish relationships using various
 types of resource references, including bnodes. If a
 subject or object is defined using a CURIE, and that CURIE
 explicitly names a bnode, then a Conforming Processor
 MUST create the bnode when it is encountered during
 parsing. The RDFa Processor MUST also ensure that no bnode
 created automatically (e.g., as a result of chaining) has a
 name that collides with a bnode that is defined by
 explicit reference in a CURIE.

 Consider the following example:

 Example 43
<link about="_:john" rel="foaf:mbox"
 href="mailto:john@example.org" />
<link about="_:sue" rel="foaf:mbox"
 href="mailto:sue@example.org" />
<link about="_:john" rel="foaf:knows"
 resource="_:sue" />

 In the above fragment, two bnodes are
 explicitly created as the subject of triples. Those bnodes
 are then referenced to demonstrate the relationship between the
 parties. After processing, the following triples will be generated:

 Example 44
_:john foaf:mbox <mailto:john@example.org> .
_:sue foaf:mbox <mailto:sue@example.org> .
_:john foaf:knows _:sue .

 Note

 RDFa Processors use, internally, implementation-dependent
 identifiers for bnodes. When triples are retrieved, new
 bnode indentifiers are used, which usually bear no relation to the
 original identifiers. However, implementations do ensure that these
 generated bnode identifiers are consistent: each bnode will have its
 own identifier, all references to a particular bnode will use the
 same identifier, and different bnodes will have different
 identifiers.

 As a special case, _: is also a valid reference for one
 specific bnode.

 7.5 Sequence

 Processing would normally begin after the document to be parsed has
 been completely loaded. However, there is no requirement for this to
 be the case, and it is certainly possible to use a stream-based
 approach, such as SAX [SAX] to extract the RDFa information.
 However, if some approach other than the DOM traversal technique
 defined here is used, it is important to ensure that Host
 Language-specific processing rules are applied (e.g., XHTML+RDFa
 [XHTML-RDFA] indicates the base element can be used,
 and base will affect the interpretation of IRIs in meta
 or link elements even if those elements are before the base
 element in the stream).

 Note

 In this section the term 'resource' is used to mean 'IRI
 or bnode'. It is possible that this term will be replaced with
 some other, more formal term after consulting with other groups. Changing this
 term will in no way change this processing sequence.

 At the beginning of processing, an initial evaluation

 context is created, as follows:

 	the base is set to the IRI of the document (or
 another value specified in a language specific manner such as the
 HTML base element);

 	the parent subject is set to the base
 value;

 	the parent object is set to null;

 	the list of incomplete triples is empty;

 	the list mapping is empty;

 	the language is set to null.

 	
 the list of IRI mappings is empty (or a list defined
 in the initial context of the Host
 Language).

 	the

 term mappings is set to null (or a list defined in the
 initial context of the Host
 Language).

 	the

 default vocabulary is set to null (or an IRI defined in
 the initial context of the Host
 Language).

 Processing begins by applying the processing rules below to the
 document object, in the context of this initial evaluation
 context. All elements in the tree are also processed
 according to the rules described below, depth-first, although the evaluation

 context used for each set of rules will be based on previous
 rules that may have been applied.

 Note
This specification defines processing rules for optional
 attributes that may not be present in all Host Languages (e.g., @href).
 If these attributes are not supported in the Host Language, then the
 corresponding processing rules are not relevant for that language.

 The processing rules are:

 	 First, the local values are initialized,
 as follows:

 	the skip element flag is set to 'false';

 	new subject is set to null;

 	current object resource is set to null;

 	typed resource is set to null;

 	the local list of IRI mappings is set to the
 list of IRI mappings from the evaluation context;

 	the local list of incomplete triples is set to
 null;

 	the list mapping is set to (a reference of) the
 list mapping from the evaluation context;

 	the current language value is set to the language
 value from the evaluation context.

 	the local term mappings is set to the term

 mappings from the evaluation context.

 	the local default vocabulary is set to the default

 vocabulary from the evaluation context.

 Note that some of the local variables are
 temporary containers for values that will be passed to descendant
 elements via an evaluation context. In some cases
 the containers will have the same name, so to make it clear which
 is being acted upon in the following steps, the local version of
 an item will generally be referred to as such.

 Note that the local term mappings is always reset to a global
 value, provided by the initial context.
 Future versions of this specification may introduce
 a mechanism whereby the local term mappings
 can be set dynamically, in which case the
 local term mappings would inherit from the parent's values.

 	 Next the current element
 is examined for any change to the default vocabulary
 via @vocab. If @vocab is present and contains
 a value, the local default vocabulary is updated
 according to the section on CURIE and IRI Processing.
 If the value is empty, then the local
 default vocabulary MUST be reset to the Host Language
 defined default (if any).
 The value of @vocab is used
 to generate a triple as follows:

 	subject

 	base

 	predicate

 	http://www.w3.org/ns/rdfa#usesVocabulary

 	object

 	value from @vocab

 A Host Language is not required to define
 a default vocabulary. In such a case, setting @vocab
 to the empty value has the effect of setting the local
 default vocabulary to null.

 	Next, the current element is
 examined for IRI mappings and these are added to the local

 list of IRI mappings. Note that an IRI mapping
 will simply overwrite any current mapping in the list that has the
 same name;
 Mappings are defined via @prefix.
 Values

 in this attribute are evaluated from beginning to end (e.g.,
 left to right in typical documents). For

 backward compatibility, RDFa Processors SHOULD also permit the
 definition of mappings via @xmlns. In
 this case, the value to be mapped is set by the XML namespace
 prefix, and the value to map is the value of the attribute — an
 IRI. (Note that prefix mapping via @xmlns
 is deprecated, and may be removed in a future version of this
 specification.) When xmlns is
 supported, such mappings MUST be processed before processing any
 mappings from @prefix on the same element.
 Regardless of how the mapping is declared, the value to be
 mapped MUST be converted to lower case, and the IRI is
 not processed in any way; in particular if it is a relative path
 it MUST NOT be resolved against the current base.
 Authors SHOULD NOT use relative paths as the IRI.

 	
 The current element is also parsed for any language
 information, and if present, current language is set
 accordingly;
 Host Languages that incorporate RDFa MAY
 provide a mechanism for specifying the natural language of an
 element and its contents (e.g., XML provides the general-purpose
 XML attribute @xml:lang).

 	 If the current element contains
 no @rel or @rev attribute, then the next
 step is to establish a value for new subject. This
 step has two possible alternatives.

 	
 If the current element contains the @property
 attribute, but does not contain either the @content
 or @datatype attributes, then
 new subject is set to
 the resource obtained from the first match from the following rule:

 	by using the resource from @about, if present,
 obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, if the element is the root element of the document, then
 act as if there is an empty @about present,
 and process it according to the rule for @about,
 above;

 	otherwise, if parent object is
 present, new subject is set to the value of
 parent object.

 If @typeof is present then typed resource
 is set to the resource obtained from the first match from the following rules:

 	by using the resource from @about, if present,
 obtained according to the section on CURIE and IRI Processing;

 	otherwise, if the element is the root element of the document, then
 act as if there is an empty @about present and process it according to the previous
 rule;

 	otherwise,

								by using the resource from @resource, if present,
							 obtained according to the section on CURIE
	
								and IRI Processing;

								otherwise, by using the
							IRI from @href,
							 if present, obtained according to the section on CURIE
	
								and IRI Processing;

								otherwise, by using the IRI from @src,
							 if present, obtained according to the section on CURIE
	
								and IRI Processing;

								otherwise, the value of typed resource is
							 set to a newly created bnode.

								The value of the current object resource
							 is then set to the value of typed resource.

 	otherwise:

 	If the element contains an @about, @href,
 @src, or @resource attribute,
 new subject is set to the resource obtained as follows:

 	by using the resource from @about, if present,
 obtained according to the section on CURIE
 and IRI Processing;

 	otherwise, by using the resource from @resource, if present,
 obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, by using the
 IRI from @href,
 if present, obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, by using the IRI from @src,
 if present, obtained according to the section on CURIE

 and IRI Processing.

 	otherwise, if no resource is provided by a resource attribute, then the
 first match from the following rules will apply:

 	if the element is the root element of the document, then
 act as if there is an empty @about present,
 and process it according to the rule for @about,
 above;

 	otherwise, if @typeof is present, then new
 subject is set to be a newly created bnode;

 	otherwise, if parent object is
 present, new subject is set to the value of
 parent object. Additionally, if @property
 is not present then the skip element
 flag is set to 'true'.

 	
 Finally, if

 @typeof is present, set the
 typed resource to the value of new subject.

 	 If the current element
 does contain a @rel or @rev
 attribute, then the next step is to establish both a value
 for new subject and a value for current object
 resource:
 new subject is set to the
 resource obtained from the first match from the following rules:

 	by using the resource from @about, if present,
 obtained according to the section on CURIE

 and IRI Processing;

 if the @typeof attribute is present, set typed

 resource to new subject.

 If no resource is provided then the first match from the following
 rules will apply:

 	if the element is the root element of the document then act
 as if there is an empty @about present, and
 process it according to the rule for @about,
 above;

 	otherwise, if parent object is
 present, new subject is set to that.

 Then the current object resource is set to the
 resource obtained from the first match from the following rules:

 	by using the resource from @resource, if present,
 obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, by using the
 IRI from @href,
 if present, obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, by using the IRI from @src,
 if present, obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, if @typeof is present and @about
 is not, use a newly created bnode.

 If @typeof is present and @about is
 not, set typed resource to current object
 resource.

 Note that final value of the current object resource
 will either be null (from initialization) or a full IRI or bnode.

 	
 If in any of the previous steps a typed resource was
 set to a non-null value, it is now used to provide a subject for
 type values;
 One or more 'types' for the typed
 resource can be set by using @typeof. If
 present, the attribute may contain one or more IRIs, obtained
 according to the section on CURIE
 and IRI Processing, each of which is used to generate a
 triple as follows:

 	subject

 	typed resource

 	predicate

 	http://www.w3.org/1999/02/22-rdf-syntax-ns#type

 	object

 	current full IRI of 'type' from typed resource

 	 If in any of the previous steps a new

 subject was set to a non-null value different
 from the parent object;
 The list mapping taken from
 the evaluation context is set to a new, empty
 mapping.

 	 If in any of the previous steps a current

 object resource was set to a non-null value, it is now used
 to generate triples and add entries to the local list mapping:
 If the element contains both the
 @inlist and the @rel attributes the @rel
 may contain one or more resources, obtained according to the section on
 CURIE and IRI Processing each of
 which is used to add an entry to the list mapping as
 follows:

 	if the local list mapping does not contain a
 list associated with the IRI, instantiate a new list and add
 to local list mappings

 	add the current object resource to the list
 associated with the resource in the local list mapping

 Predicates for the current object
 resource can be set by using one or both of the @rel
 and the @rev attributes but, in case of the @rel
 attribute, only if the @inlist is not
 present:

 	 If present, @rel may contain one or more resources,
 obtained according to the section on CURIE

 and IRI Processing each of which is used to generate a
 triple as follows:

 	subject

 	new subject

 	predicate

 	full IRI

 	object

 	current object resource

 	 If present, @rev may contain one or more resources,
 obtained according to the section on CURIE

 and IRI Processing each of which is used to generate a
 triple as follows:

 	subject

 	current object resource

 	predicate

 	full IRI

 	object

 	new subject

 	 If however current object
 resource was set to null, but there are predicates present,
 then they must be stored as incomplete triples,
 pending the discovery of a subject that can be used as the object.
 Also, current object resource should be set to a newly
 created bnode (so that the incomplete triples have a
 subject to connect to if they are ultimately turned into triples);
 Predicates for incomplete triples
 can be set by using one or both of the @rel and @rev
 attributes:

 	 If present, @rel must contain one or more
 resources, obtained according to the section on CURIE

 and IRI Processing each of which is added to the local

 list of incomplete triples as follows:

 	 If the element contains the @inlist
 attribute, then

 	if the local list mapping does not
 contain a list associated with the IRI, instantiate a
 new list and add to local list mappings.

 	Add:

 	list

 	list from local list mapping for
 this IRI

 	direction

 	none

 	Otherwise add:

 	

 	predicate

 	full IRI

 	direction

 	forward

 	 If present, @rev must contain one or more
 resources, obtained according to the section on CURIE

 and IRI Processing, each of which is added to the local

 list of incomplete triples as follows:

 	predicate

 	full IRI

 	direction

 	reverse

 	 The next step of the iteration is
 to establish any current property value;
 Predicates for the current property
 value can be set by using @property. If
 present, one or more resources are obtained according to the section on
 CURIE and IRI Processing, and
 then the actual literal value is obtained as follows:

 	 as a typed literal if @datatype
 is present, does not have an empty value according to the
 section on CURIE and IRI
 Processing, and is not set to XMLLiteral
 in the vocabulary http://www.w3.org/1999/02/22-rdf-syntax-ns#.
 The actual literal is either the value of @content
 (if present) or a string created by concatenating
 the value of all descendant text nodes, of the current

 element in turn. The final string includes the
 datatype IRI, as described in [RDF-SYNTAX], which will
 have been obtained according to the section on CURIE

 and IRI Processing.

 	 otherwise, as a plain literal if @datatype
 is present but has an empty value according to the section on
 CURIE and IRI Processing.

 The actual literal is either the value of @content
 (if present) or a string created by concatenating
 the value of all descendant text nodes, of the current
 element in turn.

 	
 otherwise, as an XML
 literal if @datatype is present and is
 set to XMLLiteral in the vocabulary http://www.w3.org/1999/02/22-rdf-syntax-ns#.
 The value of the XML literal
 is a string created by serializing to text, all nodes that
 are descendants of the current element, i.e.,
 not including the element itself, and giving it a datatype
 of XMLLiteral in the vocabulary http://www.w3.org/1999/02/22-rdf-syntax-ns#.
 The format of the resulting serialized content is as defined
 in Exclusive XML Canonicalization Version 1.0 [XML-EXC-C14N].

 Note

 In order to maintain maximum portability of this literal,
 any children of the current node that are elements MUST have
 the current XML namespace declarations (if any) declared on
 the serialized element. Since the child element node could
 also declare new XML namespaces, the RDFa Processor MUST be
 careful to merge these together when generating the
 serialized element definition. For avoidance of doubt, any
 re-declarations on the child node MUST take precedence over
 declarations that were active on the current node.

 	
 otherwise, as a plain literal using
 the value of @content if @content is
 present.

 	
 otherwise, if the @rel, @rev,
 and @content attributes are not present,
 as a resource
 obtained from one of the following:

 	by using the resource from @resource, if present,
 obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, by using the
 IRI from @href,
 if present, obtained according to the section on CURIE

 and IRI Processing;

 	otherwise, by using the IRI from @src,
 if present, obtained according to the section on CURIE

 and IRI Processing.

 	
 otherwise, if @typeof is present and @about
 is not, the value of typed resource.

 	
 otherwise as a plain literal.

 Additionally, if there is a value for current
 language then the value of the plain literal
 should include this language information, as described in
 [RDF-SYNTAX]. The actual literal is either the value of
 @content (if present) or a string
 created by concatenating the text content of each of the
 descendant elements of the current element in
 document order.

 The current property value is then used with each
 predicate as follows:

 	If the element also includes the @inlist
 attribute, the current property value is added
 to the local list mapping as follows:

 	if the local list mapping does not contain
 a list associated with the predicate IRI, instantiate a
 new list and add to local list mappings

 	add the current property value to the list
 associated with the predicate IRI in the local list
 mapping

 	Otherwise the current property value is used
 to generate a triple as follows:

 	subject

 	new subject

 	predicate

 	full IRI

 	object

 	current property value

 	 If the skip element flag
 is 'false', and new subject was set to a
 non-null value, then any incomplete triples within

 the current context should be completed:
 The list of incomplete triples
 from the current evaluation context (not
 the local list of incomplete triples) will contain
 zero or more predicate IRIs. This list is iterated over and each
 of the predicates is used with parent subject and new

 subject to generate a triple or add a new element to the
 local list mapping. Note that at each level there are
 two lists of incomplete triples; one for
 the current processing level (which is passed to each child
 element in the previous step), and one that was received as part
 of the evaluation context. It is the latter that is
 used in processing during this step.

 Note that each incomplete triple
 has a direction value that is used to determine what
 will become the subject, and what will become the object, of each
 generated triple:

 	If direction is 'none', the new subject
 is added to the list from the iterated incomplete
 triple.

 	 If direction is 'forward' then the following
 triple is generated:

 	subject

 	parent subject

 	predicate

 	the predicate from the iterated incomplete triple

 	object

 	new subject

 	 If direction is 'reverse'
 then this is the triple generated:

 	subject

 	new subject

 	predicate

 	the predicate from the iterated incomplete triple

 	object

 	parent subject

 	 Next, all elements that are children of the current

 element are processed using the rules described here, using
 a new evaluation context, initialized as follows:

 	 If the skip element flag is 'true' then the new
 evaluation context is a copy of the current context
 that was passed in to this level of processing, with the language
 and list of IRI mappings values replaced with the
 local values;

 	 Otherwise, the values are:

 	the base is set to the base
 value of the current evaluation context;

 	the parent subject is set to the value of new

 subject, if non-null, or the value of the
 parent subject of the current evaluation
 context;

 	the parent object is set to value of current

 object resource, if non-null, or the
 value of new subject, if non-null, or
 the value of the parent subject of the current
 evaluation context;

 	the list of IRI mappings is set to the local

 list of IRI mappings;

 	the list of incomplete triples is set to the
 local list of incomplete triples;

 	the list mapping is set to the local
 list mapping;

 	language is set to the value of current

 language.

 	the default vocabulary is set to the value
 of the local default vocabulary.

 	Finally, if there is one or more mapping in
 the local list mapping, list triples are generated as
 follows:

 For each IRI in the local list mapping,
 if the equivalent list does not exist in the
 evaluation context, indicating that the list was
 originally instantiated on the current element, use the list as
 follows:

 	
 If there are zero items in the list associated with the IRI,
 generate the following triple:

 	subject

 	current subject

 	predicate

 	full IRI of the local list mapping
 associated with this list

 	object

 	http://www.w3.org/1999/02/22-rdf-syntax-ns#nil

 	Otherwise,

 	Create a new ‘bnode’ array containing newly created bnodes,

 one for each item in the list

 	For each bnode-(IRI or literal) pair from the list
 the following triple is generated:

 	subject

 	bnode

 	predicate

 	http://www.w3.org/1999/02/22-rdf-syntax-ns#first

 	object

 	full IRI or literal

 	For each item in the ‘bnode’ array the following triple
 is generated:

 	subject

 	bnode

 	predicate

 	http://www.w3.org/1999/02/22-rdf-syntax-ns#rest

 	object

 	next item in the ‘bnode’ array or, if that does not
 exist, http://www.w3.org/1999/02/22-rdf-syntax-ns#nil

 	A single additional triple is generated:

 	subject

 	current subject

 	predicate

 	full IRI of the local list mapping
 associated with this list

 	object

 	first item of the ‘bnode’ array

 7.6 Processor Status

 The processing rules covered in the previous section are designed to
 extract as many triples as possible from a document. The RDFa
 Processor is designed to continue processing, even in the event of
 errors. For example, failing to resolve a prefix mapping or term
 would result in the RDFa Processor skipping the generation of a triple
 and continuing with document processing. There are cases where knowing
 each RDFa Processor warning or error would be beneficial to authors.
 The processor graph is designed as the mechanism
 to capture all informational, warning, and error messages as triples
 from the RDFa Processor. These status triples may be retrieved and
 used to aid RDFa authoring or automated error detection.

 If an RDFa Processor supports the generation of a processor graph,
 then it MUST generate a set of triples when the following processing
 issues occur:

 	An rdfa:Error MUST be generated when the document fails to be
 fully processed as a result of non-conformant Host Language markup.

 	A rdfa:Warning MUST be generated when a CURIE prefix fails to be
 resolved.

 	A rdfa:Warning MUST be generated when a Term fails to be resolved.

 Other implementation-specific rdfa:Info, rdfa:Warning,
 or rdfa:Error triples MAY be generated by the RDFa Processor.

 7.6.1 Accessing the Processor Graph

 Accessing the processor graph may be accomplished in
 a variety of ways and is dependent on the type of RDFa Processor and
 access method that the developer is utilizing.

 SAX-based processors or processors that utilize function or method
 callbacks to report the generation of triples are classified as event-based

 RDFa Processors. For Event-based RDFa Processors, the
 software MUST allow the developer to register a function or callback
 that is called when a triple is generated for the processor
 graph. The callback MAY be the same as the one that is used
 for the output graph as long as it can be determined
 if a generated triple belongs in the processor graph
 or the output graph.

 A whole-graph RDFa Processor is defined as any RDFa
 Processor that processes the entire document and only
 provides the
 developer access to the triples after processing has completed. RDFa
 Processors that typically fall into this category express their
 output via a single call using RDF/XML, N3, TURTLE, or N-Triples
 notation. For whole-graph RDFa Processors, the software MUST allow
 the developer to specify if they would like to retrieve the output

 graph, the processor graph, or both graphs as
 a single, combined graph from the RDFa Processor.
 If the graph preference is not specified, the output graph
 MUST be returned.

 A web service RDFa Processor is defined as any RDFa
 Processor that is capable of processing a document by performing an
 HTTP GET, POST or similar action on an RDFa Processor IRI. For this
 class of RDFa Processor, the software MUST allow the caller to
 specify if they would like to retrieve the output graph,
 the processor graph, or both graphs as a single,
 combined graph from the web service. The rdfagraph
 query parameter MUST be used to specify the value. The allowable
 values are output, processor or both
 values, in any order, separated by a comma character.
 If the graph preference is not specified, the output graph
 MUST be returned.

 7.6.2 Processor Graph Terms

 To ensure interoperability, a core hierarchy of classes is defined
 for the content of the processor graph. Separate errors or warnings
 are resources (typically blank nodes) of a specific type, with
 additional properties giving more details on the error condition or
 the warning. This specification defines only the top level classes
 and the ones referring to the error and warning conditions defined explicitly
 by this document. Other, implementation-specific subclasses may be
 defined by the RDFa Processor.

 The top level classes are rdfa:Error, rdfa:Warning,
 and rdfa:Info, defined as part of the RDFa

 Vocabulary. Furthermore, a single property is defined on those
 classes, namely rdfa:context, that provides an extra
 context for the error, e.g., http response, an XPath information, or
 simply the IRI to the RDFa resource. Usage of this property is
 optional, and more than one triple can be used with this predicate
 on the same subject. Finally, error and warning instances SHOULD use
 the dc:description and dc:date
 properties. dc:description should provide a short,
 human readable but implementation dependent description of the
 error. dc:date should give the time when the error was
 found and it is advised to be as precise as possible to allow the
 detection of, for example, possible network errors.

 The example below shows the triples that should be minimally
 present in the processor graph as a result of an error (the content
 of the literal for the dc:description predicate is
 implementation dependent):

 Example 45
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dc: <http://purl.org/dc/terms/> .
[] a rdfa:DocumentError ;
 dc:description "The document could not be parsed due to parsing errors." ;
 dc:date "2010-06-30T13:40:23"^^xsd:dateTime .

 A slightly more elaborate example makes use of the rdfa:context
 property to provide further information, using external vocabularies
 to represent HTTP headers or XPointer information (note that a
 processor may not have these information in all cases, i.e., these rdfa:context
 information are not required):

 Example 46
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix ptr: <http://www.w3.org/2009/pointers#> .
@prefix ht: <http://www.w3.org/2006/http#> .

[] a rdfa:DocumentError ;
 dc:description "The document could not be parsed due to parsing errors." ;
 dc:date "2010-06-30T13:40:23"^^xsd:dateTime ;
 rdfa:context <http://www.example.org/doc> ;
 rdfa:context [
 a ptr:Pointer ;
 # Detailed xpointer/xpath information provided here to locate the error.
] ;
 rdfa:context [
 a ht:Response ;
 ht:responseCode <http://www.w3.org/2006/http#404>
 # The HTTP response headers on the request for the source file.
].

 7.7 Vocabulary Expansion

 Processors MAY perform vocabulary expansion by
 utilizing limited RDFS and OWL entailment rules,
 as described in RDFa

 Vocabulary Expansion.

 8. RDFa Processing in detail
This section is non-normative.

 This section provides an in-depth examination of the processing steps
 described in the previous section. It also includes examples which may
 help clarify some of the steps involved.

 The key to processing is that a triple is generated whenever a
 predicate/object combination is detected. The actual triple generated
 will include a subject that may have been set previously, so this is
 tracked in the current evaluation context and is called
 the parent subject. Since the subject will default to the
 current document if it hasn't been set explicitly, then a
 predicate/object combination is always enough to generate one or more
 triples.

 The attributes for setting a predicate are @rel, @rev
 and @property, whilst the attributes for setting an object
 are @resource, @href, @content,
 and @src. @typeof is unique in that it sets both
 a predicate and an object at the same time (and also a subject when it
 appears in the absence of other attributes that would set a subject).
 Inline content might also set an object, if @content is not
 present, but @property is present.

 Note
 There are many examples in this section. The examples are
 all written using XHTML+RDFa. However, the explanations are relevant
 regardless of the Host Language.

 8.1 Changing the Evaluation Context
This section is non-normative.

 8.1.1 Setting the current subject
This section is non-normative.

 When triples are created they will always be in relation to a
 subject resource which is provided either by new subject
 (if there are rules on the current element that have set a subject)
 or parent subject, as passed in via the evaluation

 context. This section looks at the specific ways in which
 these values are set. Note that it doesn't matter how the subject is
 set, so in this section we use the idea of the current
 subject which may be either new subject
 or parent subject.

 8.1.1.1 The current document
This section is non-normative.

 When parsing begins, the current subject will be
 the IRI of the document being parsed, or a value as set by a Host
 Language-provided mechanism (e.g., the base element
 in (X)HTML). This means that by default any metadata found in the
 document will concern the document itself:

 Example 47
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Jo's Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dc:creator" content="Jo" />
 </head>
 <body>
 ...
 </body>
</html>

 This would generate the following triples:

 Example 48
<> foaf:primaryTopic <#bbq> .
<> dc:creator "Jo" .

 It is possible for the data to appear elsewhere in the document:

 Example 49
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Jo's Blog</title>
 </head>
 <body>
 <h1>Jo's blog</h1>
 <p>
 Welcome to my blog.
 </p>
 </body>
</html>

 which would still generate the triple:

 Example 50
<> dc:creator "Jo" .

 In (X)HTML the value of base may change the initial
 value of current subject:

 Example 51
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <base href="http://www.example.org/jo/blog" />
 <title>Jo's Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dc:creator" content="Jo" />
 </head>
 <body>
 ...
 </body>
</html>

 An RDFa Processor should now generate the following triples,
 regardless of the IRI from which the document is served:

 Example 52
<http://www.example.org/jo/blog> foaf:primaryTopic <http://www.example.org//jo/blog#bbq> .
<http://www.example.org/jo/blog> dc:creator "Jo" .

 8.1.1.2 Using @about

 As processing progresses, any @about attributes will
 change the current subject. The value of @about
 is an IRI or a CURIE. If it is a relative IRI then it needs to be
 resolved against the current base value. To
 illustrate how this affects the statements, note in this markup
 how the properties inside the (X)HTML body element
 become part of a new calendar event object, rather than referring
 to the document as they do in the head of the document:

 Example 53
<html xmlns="http://www.w3.org/1999/xhtml"
 prefix="cal: http://www.w3.org/2002/12/cal/ical#">
 <head>
 <title>Jo's Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dc:creator" content="Jo" />
 </head>
 <body>
 <p about="#bbq" typeof="cal:Vevent">
 I'm holding

 one last summer barbecue
 ,
 on
 <span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">
 September 16th at 4pm
 .
 </p>
 </body>
</html>

 With this markup an RDFa Processor will generate the following
 triples:

 Example 54
<> foaf:primaryTopic <#bbq> .
<> dc:creator "Jo" .
<#bbq> rdf:type cal:Vevent .
<#bbq> cal:summary "one last summer barbecue" .
<#bbq> cal:dtstart "2015-09-16T16:00:00-05:00"^^xsd:dateTime .

 Other kinds of resources can be used to set the current
 subject, not just references to web-pages. Although not
 advised, email addresses might be used to represent a person:

 Example 55
John knows
<a about="mailto:john@example.org"
 rel="foaf:knows" href="mailto:sue@example.org">Sue.

Sue knows
<a about="mailto:sue@example.org"
 rel="foaf:knows" href="mailto:jim@example.org">Jim.

 This should generate the following triples:

 Example 56
<mailto:john@example.org> foaf:knows <mailto:sue@example.org> .
<mailto:sue@example.org> foaf:knows <mailto:jim@example.org> .

 Similarly, authors may make statements about images:

 Example 57
<div about="photo1.jpg">
 this photo was taken by
 Mark Birbeck
</div>

 which should generate the following triple:

 Example 58
<photo1.jpg> dc:creator "Mark Birbeck" .

 8.1.1.3 Typing resources with @typeof

 @typeof defines typing triples. @typeof
 works differently to other ways of setting a predicate since the
 predicate is always rdf:type, which means that the
 processor only requires the value of the type. The
 question is: which resource gets these typing information?

 If the element has an @about, which creates a new
 context for statements, the typing relationships are defined on
 that resource. For example, the following:

 Example 59
<div about="http://dbpedia.org/resource/Albert_Einstein" typeof="foaf:Person">
 Albert Einstein
 Albert
</div>

 also creates the triple:

 Example 60
<http://dbpedia.org/resource/Albert_Einstein> rdf:type foaf:Person .

 The @about attribute is the main source for typing;
 if it is present on an element, it determines the effect of @typeof
 with the highest priority. If @about is not
 present, but the element is used only to define possible subject
 resources via, e.g., @resource (i.e., there is no
 @rel, @rev, or @property
 present), then that resource is used for the typed resource, just
 like @about.

 If an @rel is present (and still no @about)
 then the explicit object of the triples defined by @rel
 is typed. For example, in the case of:

 Example 61
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp:birthPlace"
 resource="http://dbpedia.org/resource/German_Empire"
 typeof="http://schema.org/Country">
 </div>
</div>

 the generated triples also include:

 Example 62
<http://dbpedia.org/resource/German_Empire> rdf:type <http://schema.org/Country> .

 Finally, @typeof also has the additional feature of
 creating a new context for statements, in case no other
 attributes define any. This involves generating a new bnode
 (see below for more about bnodes). For example, an author may wish
 to create markup for a person using the FOAF vocabulary, but
 without having a clear identifier for the item:

 Example 63
<div typeof="foaf:Person">
 Albert Einstein
 Albert
</div>

 This markup would cause a bnode to be created
 which has a 'type' of foaf:Person, as well as name
 and given name properties:

 Example 64
_:a rdf:type foaf:Person .
_:a foaf:name "Albert Einstein" .
_:a foaf:givenName "Albert" .

 This usage of “isolated” @typeof may be viewed as a shorthand for:

 Example 65
<div resource="_:a" typeof="foaf:Person">
 Albert Einstein
 Albert
</div>

 Similarly,

 Example 66
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp:birthPlace" typeof="http://schema.org/Country">
 the German Empire
 </div>
</div>

 generates:

 Example 67
<http://dbpedia.org/resource/Albert_Einstein"> dbp:birthPlace _:b .
_:b dbp:conventionalLongName "the German Empire" .

 A bnode is simply a unique
 identifier that is only available to the processor, not to any
 external software. By generating values internally, the processor
 is able to keep track of properties for _:a as being
 distinct from _:b. But by not exposing these values
 to any external software, it is possible to have complete control
 over the identifier, as well as preventing further statements
 being made about the item.

 8.1.1.3.1 Chaining with @property and @typeof
This section is non-normative.

 As emphasized in the section on chaining,
 one of the main differences between @property and @rel
 (or @rev) is that the former does not induce
 chaining. The only exception to this rule is when @typeof
 is also present on the element. In that case the effect of @property
 is identical to @rel. For example, the previous
 example could have been written as:

 Example 68
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div property="dbp:birthPlace" typeof="http://schema.org/Country">
 the German Empire
 </div>
</div>

 generating the same triples as before. Here again, a @typeof without
 an @about or a @resource can be regarded as a shorthand
 for an additional @resource attribute referring to the identifier of a fresh bnode.

 8.1.1.4 Determining the subject with neither @about nor @typeof

 As described in the previous two sections, @about
 will always take precedence and mark a new subject, but if no @about
 value is available then @typeof will do the same job,
 although using an implied identifier, i.e., a bnode.

 But if neither @about or @typeof are
 present, there are a number of ways that the subject could be
 arrived at. One of these is to 'inherit' the subject from the
 containing statement, with the value to be inherited set either
 explicitly, or implicitly.

 8.1.1.4.1 Inheriting subject from @resource

 The most usual way that an inherited subject might get set
 would be when the parent statement has an object that is a
 resource. Returning to the earlier example, in which the long
 name for the German_Empire was added, the following markup was
 used:

 Example 69
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
</div>

 In an earlier illustration the subject and object for the
 German Empire were connected by removing the @resource,
 relying on the @about to set the object:

 Example 70
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace">
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
 </div>
</div>

 but it is also possible for authors to achieve the same effect
 by removing the @about and leaving the @resource:

 Example 71
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire
 </div>
</div>

 In this situation, all statements that are 'contained' by the
 object resource representing the German Empire (the value in @resource)
 will have the same subject, making it easy for authors to add
 additional statements:

 Example 72
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire

 </div>
</div>

 Looking at the triples that an RDFa Processor would generate,
 we can see that we actually have two groups of statements; the
 first group is set to refer to the @about that
 contains them:

 Example 73
<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein> dbp:dateOfBirth "1879-03-14"^^xsd:date .
<http://dbpedia.org/resource/Albert_Einstein> dbp:birthPlace <http://dbpedia.org/resource/German_Empire> .

 while the second group refers to the @resource
 that contains them:

 Example 74
<http://dbpedia.org/resource/German_Empire>
 dbp:conventionalLongName "the German Empire" .
<http://dbpedia.org/resource/German_Empire>
 dbp-owl:capital <http://dbpedia.org/resource/Berlin> .

 Note also that the same principle described here applies to @src
 and @href.

 8.1.1.4.2 Inheriting an anonymous subject

 There will be occasions when the author wants to connect the
 subject and object as shown above, but is not concerned to name
 the resource that is common to the two statements (i.e., the
 object of the first statement, which is the subject of the
 second). For example, to indicate that Einstein was influenced
 by Spinoza the following markup could well be used:

 Example 75
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 <div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 </div>
</div>

 An RDFa Processor will generate the following triples:

 Example 76
<http://dbpedia.org/resource/Baruch_Spinoza>
 dbp-owl:influenced <http://dbpedia.org/resource/Albert_Einstein> .
<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein> dbp:dateOfBirth "1879-03-14"^^xsd:date .

 However, an author could just as easily say that Spinoza
 influenced something by the name of Albert Einstein, that
 was born on March 14th, 1879:

 Example 77
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 <div>
 Albert Einstein
 1879-03-14
 </div>
</div>

 In RDF terms, the item that 'represents' Einstein is anonymous,
 since it has no IRI to identify it. However, the item is given
 an automatically generated bnode, and it is onto
 this identifier that all child statements are attached:

 An RDFa Processor will generate the following triples:

 Example 78
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced _:a .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .

 Note that the div is superfluous, and an RDFa
 Processor will create the intermediate object even if the
 element is removed:

 Example 79
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 Albert Einstein
 1879-03-14
</div>

 An alternative pattern is to keep the div
 and move the @rel onto it:

 Example 80
<div about="http://dbpedia.org/resource/Baruch_Spinoza">
 <div rel="dbp-owl:influenced">
 Albert Einstein
 1879-03-14
 </div>
</div>

 From the point of view of the markup, this latter layout is to
 be preferred, since it draws attention to the 'hanging rel'. But
 from the point of view of an RDFa Processor, all of these
 permutations need to be supported.

 8.2 Completing incomplete triples

 When a new subject is calculated, it is also used to complete any
 incomplete triples that are pending. This situation arises when the
 author wants to 'chain' a number of statements together. For example,
 an author could have a statement that Albert Einstein was born in the
 German Empire:

 Example 81
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
</div>

 and then a further statement that the 'long name' for this country
 is the German Empire:

 Example 82
<span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire

 RDFa allows authors to insert this statement as a self-contained
 unit into other contexts:

 Example 83
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
</div>

 But it also allows authors to avoid unnecessary repetition and to
 'normalize' out duplicate identifiers, in this case the one for the
 German Empire:

 Example 84
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace">
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire
 </div>
</div>

 When this happens the @rel for 'birth place' is
 regarded as a 'hanging rel' because it has not yet generated any
 triples, but these 'incomplete triples' are completed by the @about
 that appears on the next line. The first step is therefore to store
 the two parts of the triple that the RDFa Processor does
 have, but without an object:

 Example 85
<http://dbpedia.org/resource/Albert_Einstein> dbp:birthPlace ? .

 Then as processing continues, the RDFa Processor encounters the
 subject of the statement about the long name for the German Empire,
 and this is used in two ways. First it is used to complete the
 'incomplete triple':

 Example 86
<http://dbpedia.org/resource/Albert_Einstein>
 dbp:birthPlace <http://dbpedia.org/resource/German_Empire> .

 and second it is used to generate its own triple:

 Example 87
<http://dbpedia.org/resource/German_Empire>
 dbp:conventionalLongName "the German Empire" .

 Note that each occurrence of @about will complete any
 incomplete triples. For example, to mark up the fact that Albert
 Einstein had a residence both in the German Empire and Switzerland, an
 author need only specify one @rel value that is then used
 with multiple @about values:

 Example 88
<div about="http://dbpedia.org/resource/Albert_Einstein" rel="dbp-owl:residence">

</div>

 In this example there is one incomplete triple:

 Example 89
<http://dbpedia.org/resource/Albert_Einstein> dbp-owl:residence ? .

 When the processor meets each of the @about values,
 this triple is completed, giving:

 Example 90
<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/Switzerland> .

 These examples show how @about completes triples, but
 there are other situations that can have the same effect. For example,
 when @typeof creates a new bnode (as
 described above), that will be used to complete any 'incomplete
 triples'. To indicate that Spinoza influenced both
 Einstein and Schopenhauer, the following markup could be used:

 Example 91
<div about="http://dbpedia.org/resource/Baruch_Spinoza">
 <div rel="dbp-owl:influenced">
 <div typeof="foaf:Person">
 Albert Einstein
 1879-03-14
 </div>
 <div typeof="foaf:Person">
 Arthur Schopenhauer
 1788-02-22
 </div>
 </div>
</div>

 First the following incomplete triple is stored:

 Example 92
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced ? .

 Then when the RDFa Processor processes the two occurrences of @typeof,
 each generates a bnode, which is used to both complete
 the 'incomplete triple', and to set the subject for further
 statements:

 Example 93
<http://dbpedia.org/resource/Baruch_Spinoza"> dbp-owl:influenced _:a .
_:a rdf:type foaf:Person .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .
<http://dbpedia.org/resource/Baruch_Spinoza"> dbp-owl:influenced _:b .
_:b rdf:type foaf:Person .
_:b foaf:name "Arthur Schopenhauer" .
_:b dbp:dateOfBirth "1788-02-22"^^xsd:date .

 Triples are also 'completed' if any one of @property, @rel
 or @rev are present. However, unlike the situation when @about
 or @typeof are present, all predicates are attached to
 one bnode:

 Example 94
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 Albert Einstein
 1879-03-14
 <div rel="dbp-owl:residence">

 </div>
</div>

 This example has two 'hanging rels', and so two situations when
 'incomplete triples' will be created. Processing would proceed as
 follows; first an incomplete triple is stored:

 Example 95
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced ? .

 Next, the RDFa Processor processes the predicate values for foaf:name,
 dbp:dateOfBirth and dbp-owl:residence, but
 note that only the first needs to 'complete' the 'hanging rel'. So
 processing foaf:name generates two triples:

 Example 96
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced _:a .
_:a foaf:name "Albert Einstein" .

 but processing dbp:dateOfBirth generates only one:

 Example 97
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .

 Processing dbp-owl:residence also uses the same bnode,
 but note that it also generates its own 'incomplete triple':

 Example 98
_:a dbp-owl:residence ? .

 As before, the two occurrences of @about complete the
 'incomplete triple', once each:

 Example 99
_:a dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
_:a dbp-owl:residence <http://dbpedia.org/resource/Switzerland> .

 The entire set of triples that an RDFa Processor should
 generate is as follows:

 Example 100
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced _:a .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .
_:a dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
_:a dbp-owl:residence <http://dbpedia.org/resource/Switzerland> .

 8.3 Object resolution

 Although objects have been discussed in the previous sections, as
 part of the explanation of subject resolution, chaining, evaluation
 contexts, and so on, this section will look at objects in more detail.

 There are two types of object, IRI resources and literals.

 A literal object can be set by @content or the inline
 text of element if @property to express a predicate.
 Note that the use of @content prohibits the inclusion of
 rich markup in your literal. If the inline content of an element
 accurately represents the object, then documents should rely upon
 that rather than duplicating that data using the @content.

 An IRI resource object can be set using one of @rel
 or @rev to express a predicate, and then either
 using one of @href, @resource or @src
 to provide an object resource explicitly, or using the
 chaining techniques described above to obtain an object from a nested
 subject, or from a bnode. Alternatively, the @property
 can also be used to define an IRI resource; this requires the presence of a
 @resource, @href, or @src and the
 absence of @rel, @rev, @datatype,
 or @content.

 8.3.1 Object resolution for the @property attribute

 An object literal will be generated when @property
 is present and no resource attribute is present. @property provides the predicate, and the
 following sections describe how the actual literal to be generated
 is determined.

 8.3.1.1 Plain Literals

 @content can be used to indicate a plain
 literal, as follows:

 Example 101
<meta about="http://internet-apps.blogspot.com/"
 property="dc:creator" content="Mark Birbeck" />

 The plain literal can also be specified by using
 the content of the element:

 Example 102
<span about="http://internet-apps.blogspot.com/"
 property="dc:creator">Mark Birbeck

 Both of these examples give the following triple:

 Example 103
<http://internet-apps.blogspot.com/> dc:creator "Mark Birbeck" .

 The value of @content is given precedence over any
 element content, so the following would give exactly the same
 triple as shown above:

 Example 104
<span about="http://internet-apps.blogspot.com/"
 property="dc:creator" content="Mark Birbeck">John Doe

 8.3.1.1.1 Language Tags

 RDF allows plain literals to have a language tag,
 as illustrated by the following example from [RDF-TESTCASES]:

 Example 105
<http://example.org/node>
 <http://example.org/property> "chat"@fr .

 In RDFa the Host Language may provide a mechanism for setting
 the language tag. In XHTML+RDFa [XHTML-RDFA], for example,
 the XML language attribute @xml:lang
 or the attribute @lang is used to add
 this information, whether the plain literal is designated by @content,
 or by the inline text of the element:

 Example 106
<meta about="http://example.org/node"
 property="ex:property" xml:lang="fr" content="chat" />

 Note that the language value can be inherited as defined in
 [XML10-4e], so the following syntax will give the same triple
 as above:

 Example 107
<html xmlns="http://www.w3.org/1999/xhtml"
 prefix="ex: http://www.example.com/ns/" xml:lang="fr">
 <head>
 <title xml:lang="en">Example</title>
 <meta about="http://example.org/node"
 property="ex:property" content="chat" />
 </head>
 ...
</html>

 8.3.1.2 Typed Literals

 Literals can be given a data type using @datatype.

 This can be represented in RDFa as follows:

 Example 108
<span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">
 September 16th at 4pm
.

 The triple that this markup generates includes the datatype after
 the literal:

 Example 109
<> cal:dtstart "2015-09-16T16:00:00-05:00"^^xsd:dateTime .

 8.3.1.3 XML Literals

 XML documents cannot contain XML markup in their attributes,
 which means it is not possible to represent XML within @content
 (the following would cause an XML parser to generate an error):

 Example 110
<head>
 <meta property="dc:title"
 content="E = mc²: The Most Urgent Problem of Our Time" />
</head>

 RDFa therefore supports the use of arbitrary markup to express XML
 literals by using @datatype:

 Example 111
<h2 property="dc:title" datatype="rdf:XMLLiteral">
 E = mc²: The Most Urgent Problem of Our Time
</h2>

 This would generate the following triple, with the XML preserved
 in the literal:

 Example 112
<> dc:title "E = mc²: The Most Urgent Problem of Our Time"^^rdf:XMLLiteral .

 Note
 This requires that an IRI mapping for the prefix rdf
 has been defined.

 In the examples given here the sup element is
 actually part of the meaning of the literal, but there will be
 situations where the extra markup means nothing, and can therefore
 be ignored. In this situation omitting the @datatype
 attribute or specifying an empty @datatype value can
 be used to create a plain literal:

 Example 113
<p>You searched for Einstein:</p>
<p about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 (b. March 14, 1879, d. April 18, 1955) was a German-born theoretical physicist.
</p>

 Rendering of this page has highlighted the term the
 user searched for. Setting @datatype to nothing
 ensures that the data is interpreted as a plain literal, giving
 the following triple:

 Example 114
<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .

 Note
The value of this XML
 Literal is the exclusive canonicalization
 [XML-EXC-C14N] of the RDFa element's value.

 8.3.2 IRI object resolution

 Most of the rules governing the processing of objects that are
 resources are to be found in the processing descriptions given
 above, since they are important for establishing the subject. This
 section aims to highlight general concepts, and anything that might
 have been missed.

 One or more IRI objects are needed when @rel or
 @rev is present. Each
 attribute will cause triples to be generated when used with @href,
 @resource or @src, or with the subject
 value of any nested statement if none of these attributes are
 present.

 If @rel or @rev is not present, and neither is
 @datatype or @content, a @property attribute
 will cause triples to be generated when used with @href,
 @resource or @src.
 (See also the section on @property and
 @typeof for an additional special case involving @property.)

 @rel and @rev are essentially the
 inverse of each other; whilst @rel establishes a
 relationship between the current subject as subject,
 and the current object resource as the object, @rev
 does the exact opposite, and uses the current object resource
 as the subject, and the current subject as the object.

 8.3.2.1 Using @resource to set the object

 RDFa provides the @resource attribute as a way to
 set the object of statements. This is particularly useful when
 referring to resources that are not themselves navigable links:

 Example 115
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>On Crime and Punishment</title>
 <base href="http://www.example.com/candp.xhtml" />
 </head>
 <body>
 <blockquote about="#q1" rel="dc:source" resource="urn:ISBN:0140449132" >
 <p id="q1">
 Rodion Romanovitch! My dear friend! If you go on in this way
 you will go mad, I am positive! Drink, pray, if only a few drops!
 </p>
 </blockquote>
 </body>
</html>

 The blockquote element generates the following
 triple:

 Example 116
<http://www.example.com/candp.xhtml#q1>
 <http://purl.org/dc/terms/source> <urn:ISBN:0140449132> .

 Note that, in the example above, @property could
 have been used instead of @rel, yielding the same
 triple.

 8.3.2.2 Using @href or @src to set the object

 If no @resource is present, then @href
 or @src are next in priority order for setting the
 object.

 When a predicate has been expressed using @rel, the
 @href or @src on the RDFa statement's
 element is used to identify the object with a IRI reference.
 Their types are an IRI:

 Example 117
<link about="mailto:john@example.org"
 rel="foaf:knows" href="mailto:sue@example.org" />

 It's also possible to use both @rel and @rev
 at the same time on an element. This is particularly useful when
 two things stand in two different relationships with each other,
 for example when a picture is taken by Mark, but that
 picture also depicts him:

 Example 118
<img about="http://www.blogger.com/profile/1109404"
 src="photo1.jpg" rev="dc:creator" rel="foaf:img"/>

 which then yields two triples:

 Example 119
<photo1.jpg>
 dc:creator <http://www.blogger.com/profile/1109404> .
<http://www.blogger.com/profile/1109404>
 foaf:img <photo1.jpg> .

 8.3.2.3 Incomplete triples

 When a triple predicate has been expressed using @rel
 or @rev, but no @href, @src,
 or @resource exists on the same element, there is a
 'hanging rel'. This causes the current subject and all possible
 predicates (with an indicator of whether they are 'forwards, i.e.,
 @rel values, or not, i.e., @rev values),
 to be stored as 'incomplete triples' pending discovery of a
 subject that could be used to 'complete' those triples.

 This process is described in more detail in Completing

 'Incomplete Triples'.

 8.4 List Generation

 An RDF graph is a collection of triples. This also means that if the
 graph contains two triples sharing the same subject and predicate:

 Example 120
<http://www.example.com> <http://www.example.com/predicate> "first object", "second object" ;

 There is no way for an application to rely on the relative order of
 the two triples when, for example, querying a database containing
 these triples. For most of the applications and data sets this is not
 a problem, but, in some cases, the order is important. A typical case
 is publications: when a book or an article has several co-authors, the
 order of the authors may be important.

 RDF has a set of predefined predicates that have an agreed-upon
 semantic of order. For example, the publication: "Semantic Annotation
 and Retrieval, by Ben Adida, Mark Birbeck, and Ivan Herman" could be
 described in RDF triples using these terms as follows:

 Example 121
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;
 dc:creator [
 rdf:first <http://ben.adida.net/#me ;
 rdf:rest [
 rdf:first <http://twitter.com/markbirbeck> ;
 rdf:rest [
 rdf:first <http://www.ivan-herman.net/foaf#me> ;
 rdf:rest rdf:nil .
] .
] .
] .
	...
]

 which conveys the notion of 'order' for the three authors.
 Admittedly, this is not very readable. However, Turtle has a
 syntactic shorthand for these structures:

 Example 122
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;
 dc:creator
 (<http://ben.adida.net/#me>
 <http://twitter.com/markbirbeck>
 <http://www.ivan-herman.net/foaf#me>
) .
 ...
]

 It would of course be possible to reproduce the same structure in
 RDFa, using the RDF predicates rdf:first, rdf:rest,
 as well as the special resource rdf:nil. However, to
 make this easier, RDFa provides the @inlist. What this
 attribute signals is that the object generated on that element should
 be put on a list; the list is used with the common predicate
 and subject. Here is how the previous structure could look like in
 RDFa:

 Example 123
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/ typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval" by
 <a inlist="" property="dc:creator"
 href="http://ben.adida.net/#me">Ben Adida,
 <a inlist="" property="dc:creator"
 href="http://twitter.com/markbirbeck">Mark Birbeck, and
 <a inlist="" property="dc:creator"
 href="http://www.ivan-herman.net/foaf#me">Ivan Herman.
</p>

 Note that the order in the list is determined by the document order.
 (The value of the @inlist is not relevant, only its
 presence is.)

 Lists may also include IRIs and not only literals. For example, two
 of the three co-authors could decide to publicise their FOAF address
 in the authors’ list:

 Example 124
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/ typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval", by
 Ben Adida,
 Mark Birbeck, and
 Ivan Herman.
</p>

 yielding:

 Example 125
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;
 dc:creator (<http://ben.adida.net/#me> "Mark Birbeck" <http://www.ivan-herman.net/foaf#me>) .
 ...
]

 In the example above, @rel could have been used leading
 exactly to the same triples:

 Example 126
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/ typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval", by
 Ben Adida,
 Mark Birbeck, and
 Ivan Herman.
</p>

 Incomplete Triples can also be
 used in conjunction with lists when all list elements are resources
 and not literals. For example, the previous example, this time with all
 three authors referring to their FOAF profile, could have been written
 as:

 Example 127
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/ typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval", by

 Ben Adida,
 Mark Birbeck, and
 Ivan Herman.

 </p>

 Resulting in:

 Example 128
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;
 dc:creator (<http://ben.adida.net/#me>
 <http://internet-apps.blogspot.com/2008/03/my-profile.html#me>
 <http://www.ivan-herman.net/foaf#me>) .
 ...
]

 Note that it is also possible to express an empty list,
 without @inlist, using:

 Example 129

 9. RDFa Initial Contexts

 RDFa permits Host Languages to define an initial context.
 Such a context is a collection of terms, prefix mappings, and/or a default
 vocabulary declaration. An initial context is either intrinsically
 known to the parser, or it is loaded as external documents and
 processed. These documents MUST be defined in an approved RDFa Host
 Language (currently XML+RDFa, XHTML+RDFa [XHTML-RDFA], and HTML+RDFa [HTML-RDFA]).

 They MAY also be defined in other formats (e.g., RDF/XML
 [RDF-SYNTAX-GRAMMAR], or Turtle [TURTLE]). When an initial
 context document is processed, it is evaluated as follows:

 	Parse the content (according to the processing rules for that
 document type) and extract the triples into a collection associated
 with that IRI. Note: These triples MUST NOT be co-mingled with the
 triples being extracted from any other IRI.

 	For every subject with a pair of predicates that have the values rdfa:prefix
 and rdfa:uri, create a key-value mapping from the rdfa:prefix
 object literal (the key) to the rdfa:uri object literal
 (the value). Add this mapping to the list of IRI mappings
 of the initial evaluation context, after
 transforming the 'prefix' component to lower-case.

 	For every subject with a pair of predicates that have the values rdfa:term
 and rdfa:uri, create a key-value mapping from the rdfa:term
 object literal (the key) to the rdfa:uri object literal
 (the value). Add this mapping to the term mappings of
 the initial evaluation context.

 	For an extracted triple that has a predicate of rdfa:vocabulary,
 define the default vocabulary of the initial

 evaluation context to be the object literal of the rdfa:vocabulary
 predicate.

 When an RDFa Initial Context is defined using an RDF serialization, it
 MUST use the vocabulary terms above to declare the components of the
 context.

 Note
Caching of the relevant triples retrieved via this
 mechanism is RECOMMENDED. Embedding definitions for well known, stable
 RDFa Initial Contexts in the implementation is RECOMMENDED.

 Note
	The object literal for the rdfa:uri
 predicate MUST be an absolute IRI.

 	The object literal for the rdfa:term
 predicate MUST match the production for term.

 	The
 object literal for the rdfa:prefix predicate must match
 the production for prefix.

 	The object literal
 for the rdfa:vocabulary predicate MUST be an
 absolute IRI.

 	
 If one of the objects is not a literal, does not match its associated
 production, if there is more than one rdfa:vocabulary
 predicate, or if there are additional rdfa:uri or rdfa:term
 predicates sharing the same subject, an RDFa Processor MUST NOT create
 the associated mapping.

 10. RDFa Vocabulary Expansion

 Since RDFa is based on RDF, the semantics of RDF vocabularies can be
 used to gain more knowledge about data. Vocabularies, properties and
 classes are identified by IRIs, which enables them to be discoverable.
 RDF data published at the location of these IRIs can be retrieved, and
 descriptions of the properties and classes using specified semantics can
 be applied.

 RDFa Vocabulary Expansion is an optional processing step which may be
 added once the normal processing steps described in Processing

 Model are complete. Vocabulary expansion relies on a very small
 sub-set of OWL entailment [OWL2-OVERVIEW] to add triples to the output

 graph based on rules and property/class relationships described
 in referenced vocabularies. Vocabulary expansion MAY be performed as
 part of a larger RDF toolset including, for example, an OWL 2 RL
 reasoner. Alternatively, using vocabulary data added to the output
 graph in processing step 2 of Sequence,
 expansion MAY also be done using a separate and dedicated (e.g., rule
 based) reasoner after the output graph has been generated,
 or as the last processing step by an RDFa processor.

 It can be very useful to make generalized data available for
 subsequent usage of RDFa-embedded data by expanding inferred statements
 entailed by these semantics. This provides for existing vocabularies
 that extend well-known vocabularies to have those properties added to
 the output graph automatically. For example, the namespace document of
 the Creative Commons vocabulary, i.e., http://creativecommons.org/ns,
 defines cc:license to be a sub-property of dc:license.
 By using the @vocab attribute, one can describe a licensing
 information as follows:

 Example 130
This document is licensed under the
<a vocab="http://creativecommons.org/ns#"
 rel="license"
 href="http://creativecommons.org/licenses/by-nc-nd/3.0/">
 Creative Commons By-NC-ND License
.

 which results in the following output graph:

 Example 131
@prefix cc: <http://creativecommons.org/ns#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
<> cc:license <http://creativecommons.org/licenses/by-nc-nd/3.0/> ;
 rdfa:usesVocabulary <http://creativecommons.org/ns#> .

 After vocabulary expansion, the output graph contains:

 Example 132
@prefix cc: <http://creativecommons.org/ns#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix dc: <http://purl.org/dc/terms/> .
<> cc:license <http://creativecommons.org/licenses/by-nc-nd/3.0/>;
 dc:license <http://creativecommons.org/licenses/by-nc-nd/3.0/> ;
 rdfa:usesVocabulary <http://creativecommons.org/ns#> .

 Other vocabularies, specifically intended to provide relations to
 multiple vocabularies, could also be defined by publishers, allowing use
 of terms in a single namespace which result in properties and/or classes
 from other primary vocabularies being imported. This benefits publishers
 as data is now more widely searchable and encourages the practice of
 referencing well-known vocabularies.

 10.1 Details of the RDFa Vocabulary Expansion
This section is non-normative.

 Once the output graph is generated following the
 processing steps defined in Sequence,
 processors MAY perform the following processing steps on the output
 graph. It must do so only if the user of the processor explicitly asks
 for it, as prescribed in Vocabulary
 Expansion Control of RDFa Processors.

 A vocabulary graph is created as follows:
 Each object IRI in the output graph that has a subject the current
 document (base) IRI and a predicate of
 rdfa:usesVocabulary is dereferenced.

 If the dereferencing yields the serialization of an RDF
 graph, that serialization is parsed and the resulting graph is merged
 with the vocabulary graph. (An RDFa processor capable of vocabulary
 expansion MUST accept an RDF graph serialized in RDFa, and SHOULD
 accept other standard serialization formats of RDF such as RDF/XML
 [RDF-SYNTAX-GRAMMAR] and Turtle [TURTLE].)

 Note
 Note that if, in the second step, a particular
 vocabulary is serialized in RDFa, that particular graph is not
 expected to undergo any vocabulary expansion on its own.

 Vocabulary expansion is then performed as follows:

 	The processor operates on the merge of the default and vocabulary
 graphs using RDFa Vocabulary
 Entailment.

 	Add the new triples inferred from the output graph
 using this entailment to the (expanded) output graph.
 The processor SHOULD NOT add the triples appearing in the vocabulary
 graph only.

 The goal of the second step is to avoid adding
 the "axioms", e.g., the sub-property definitions to the output graph.
 Applications usually do not require any of this additional information.

 10.1.1 RDFa Vocabulary Entailment
This section is non-normative.

 For the purpose of vocabulary processing, RDFa used a very
 restricted subset of the OWL vocabulary and is based on the RDF-Based
 Semantics of OWL [OWL2-RDF-BASED-SEMANTICS]. The RDFa
 Vocabulary Entailment uses the following terms:

 	rdf:type

 	rdfs:subClassOf

 	rdfs:subPropertyOf

 	owl:equivalentClass

 	owl:equivalentProperty

 Note
RDFa Vocabulary Entailment considers only the entailment on individuals
 (i.e., not on the relationships that can be deduced on the
 properties or the classes themselves.)

 Note
While the formal definition of the RDFa Entailment
 refers to the general OWL 2 Semantics, practical implementations may
 rely on a subset of the OWL 2 RL Profile’s entailment expressed in
 rules (section

 4.3 of [OWL2-PROFILES]). The
 relevant rules are, using the rule identifications in section

 4.3 of [OWL2-PROFILES]): prp-spo1, prp-eqp1,
 prp-eqp2, cax-sco, cax-eqc1,
 and cax-eqc2.

 The entailment described in this section is the minimum
 useful level for RDFa. Processors may, of course, choose to follow
 more powerful entailment regimes, e.g., include full RDFS [RDF-MT]
 or OWL [OWL2-OVERVIEW] entailments. Using those entailments
 applications may perform datatype validation by checking rdfs:range
 of a property, or use the advanced facilities offered by, e.g., OWL’s
 property chains to interlink vocabularies further.

 10.2 Vocabulary Expansion Control of RDFa Processors

 Conforming RDFa processors are not required to provide vocabulary
 expansion.

 If an RDFa processor provides vocabulary expansion, it MUST NOT be
 performed by default. Instead, the processor MUST provide an option, vocab_expansion,
 which, when used, instructs the RDFa processor to perform a vocabulary
 expansion before returning the output graph.

 Note
 Although vocabulary expansion is described in terms of
 a vocabulary graph and OWL 2 entailment rules, processors
 are free to use any process which obtains equivalent results.

 10.2.1 Notes to RDFa Vocabulary Implementations and Publishing
This section is non-normative.

 For RDFa Processors caching the relevant graphs retrieved via this
 mechanism is RECOMMENDED. Caching is usually based on HTTP response
 headers like expiration time, cache control, etc.

 For publishers of vocabularies, the IRI for the vocabularies SHOULD
 be dereferenceable, and should return an RDF graph with the
 vocabulary description. This vocabulary description SHOULD be
 available encoded in RDFa, and MAY also be available in other RDF
 serialization syntaxes (using content negotiation to choose among
 the different formats). If possible, vocabulary descriptions SHOULD
 include subproperty and subclass statements linking the vocabulary
 terms to other, well-known vocabularies. Finally, HTTP responses
 SHOULD include fields usable for cache control, e.g., expiration
 date.

 A. CURIE Datatypes

 In order to facilitate the use of CURIEs in markup languages, this
 specification defines some additional datatypes in the XHTML datatype
 space (http://www.w3.org/1999/xhtml/datatypes/). Markup
 languages that want to import these definitions can find them in the
 "datatypes" file for their schema grammar:

 	DTD
 xhtml-datatypes.mod

 	XML
 Schema xhtml-datatypes.xsd

 Specifically, the following datatypes are defined:

 	CURIE

 	A single curie

 	CURIEs

 	A white space separated list of CURIEs

 	CURIEorIRI

 	A CURIE or an IRI

 	CURIEorIRIs

 	A white space separated list of CURIEorIRIs

 	SafeCURIE

 	A single safe_curie

 	SafeCURIEorCURIEorIRI

 	A single SafeCURIE or CURIEorIRI

 	SafeCURIEorCURIEorIRIs

 	A white space separated list of SafeCURIEorCURIEorIRIs.

 	TERM

 	A single term

 	TERMorCURIEorAbsIRI

 	A TERM or a CURIEorIRI

 	TERMorCURIEorAbsIRIs

 	A white space separated list of TERMorCURIEorAbsIRIs

 A.1 XML Schema Definition
This section is non-normative.

 The following informative XML Schema definition for these
 datatypes is included as an example:

 Example 133
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/1999/xhtml/datatypes/"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/"
 targetNamespace="http://www.w3.org/1999/xhtml/datatypes/"
 elementFormDefault="qualified"
>
 <xs:simpleType name="CURIE">
 <xs:restriction base="xs:string">
 <xs:pattern value="(([\i-[:]][\c-[:]]*)?:)?(/[^\s/][^\s]*|[^\s/][^\s]*|[^\s]?)" />
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="CURIEs">
 <xs:list itemType="xh11d:CURIE"/>
 </xs:simpleType>

 <xs:simpleType name="SafeCURIE">
 <xs:restriction base="xs:string">
 <xs:pattern value="\[(([\i-[:]][\c-[:]]*)?:)?(/[^\s/][^\s]*|[^\s/][^\s]*|[^\s]?)\]" />
 <xs:minLength value="3"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="SafeCURIEs">
 <xs:list itemType="xh11d:SafeCURIE"/>
 </xs:simpleType>

 <xs:simpleType name="TERM">
 <xs:restriction base="xs:Name">
 <xs:pattern value="[\i-[:]][/\c-[:]]*" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="CURIEorIRI">
 <xs:union memberTypes="xh11d:CURIE xsd:anyURI" />
 </xs:simpleType>

 <xs:simpleType name="CURIEorIRIs">
 <xs:list itemType="xh11d:CURIEorIRI"/>
 </xs:simpleType>

 <xs:simpleType name="SafeCURIEorCURIEorIRI">
 <xs:union memberTypes="xh11d:SafeCURIE xh11d:CURIE xsd:anyURI" />
 </xs:simpleType>

 <xs:simpleType name="SafeCURIEorCURIEorIRIs">
 <xs:list itemType="xh11d:SafeCURIEorCURIEorIRI"/>
 </xs:simpleType>

 <xs:simpleType name='AbsIRI'>
 <xs:restriction base='xs:string'>
 <xs:pattern value="[\i-[:]][\c-[:]]+:.+" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="TERMorCURIEorAbsIRI">
 <xs:union memberTypes="xh11d:TERM xh11d:CURIE xh11d:AbsIRI" />
 </xs:simpleType>

 <xs:simpleType name="TERMorCURIEorAbsIRIs">
 <xs:list itemType="xh11d:SafeCURIEorCURIEorAbsIRI"/>
 </xs:simpleType>
</xs:schema>

 A.2 XML DTD Definition
This section is non-normative.

 The following informative XML DTD definition for these
 datatypes is included as an example:

 Example 134
<!ENTITY % CURIE.datatype "CDATA" >
<!ENTITY % CURIEs.datatype "CDATA" >
<!ENTITY % CURIEorIRI.datatype "CDATA" >
<!ENTITY % CURIEorIRIs.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRI.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRIs.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsIRI.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsIRIs.datatype "CDATA" >

 B. The RDFa Vocabulary

 The RDFa Vocabulary has three roles: it contains the predicates to
 define the terms and prefixes in initial context
 documents, it contains the classes and predicates for the messages that
 a processor graph may contain and, finally, it contains
 the predicate necessary for vocabulary processing. The IRI of the
 vocabulary is http://www.w3.org/ns/rdfa#; the usual prefix
 used in this document is rdfa.

 This vocabulary specification is available in XHTML+RDFa

 1.1, Turtle, and in RDF/XML
 formats.

 B.1 Term and Prefix Assignments

 The RDFa Vocabulary includes the following triples (shown here in
 Turtle [TURTLE] format):

 Example 135
@prefix dc: <http://purl.org/dc/terms/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://www.w3.org/ns/rdfa#> a owl:Ontology .

rdfa:PrefixOrTermMapping a rdfs:Class, owl:Class ;
 dc:description "The top level class for prefix or term mappings." .

rdfa:PrefixMapping dc:description "The class for prefix mappings." .
 rdfs:subClassOf rdfa:PrefixOrTermMapping .

rdfa:TermMapping dc:description "The class for term mappings." .
 rdfs:subClassOf rdfa:PrefixOrTermMapping .

rdfa:prefix a rdf:Property, owl:DatatypeProperty ;
 rdfs:domain rdfa:PrefixMapping ;
 dc:description "Defines a prefix mapping for an IRI; the value is supposed to be a NMTOKEN." .

rdfa:term a rdf:Property, owl:DatatypeProperty ;
 rdfs:domain rdfa:TermMapping ;
 dc:description "Defines a term mapping for an IRI; the value is supposed to be a NMTOKEN." .

rdfa:uri a rdf:Property, owl:DatatypeProperty ;
 rdfs:domain rdfa:PrefixOrTermMapping ;
 dc:description """Defines the IRI for either a prefix or a term mapping;
 the value is supposed to be an absolute IRI.""" .

rdfa:vocabulary a rdf:Property, owl:DatatypeProperty ;
 dc:description """Defines an IRI to be used as a default vocabulary;
 the value is can be any string; for documentation purposes it is advised to use
 the string ‘true’ or ‘True’.""" .

 These predicates can be used to define the initial context
 for a given Host Language.

 These predicates are used to 'pair' IRI strings and their usage in
 the form of a prefix and/or a term as part of, for example, a blank
 node. An example can be as follows:

 Example 136
[] rdfa:uri "http://xmlns.com/foaf/0.1/name" ;
 rdfa:prefix "foaf" .

 which defines a prefix for the FOAF IRI.

 B.2 Processor Graph Reporting

 The Vocabulary includes the following term definitions (shown here in
 Turtle [TURTLE] format):

 Example 137
@prefix dc: <http://purl.org/dc/terms/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .

rdfa:PGClass a rdfs:Class, owl:Class;
 dc:description "The top level class of the hierarchy." .

rdfa:Error dcterms:description "The class for all error conditions.";
 rdfs:subClassOf rdfa:PGClass .

rdfa:Warning dcterms:description "The class for all warnings.";
 rdfs:subClassOf rdfa:PGClass .

rdfa:Info dcterms:description "The class for all informations.";
 rdfs:subClassOf rdfa:PGClass .

rdfa:DocumentError dc:description "An error condition to be used when the document
 fails to be fully processed as a result of non-conformant host language markup.";
 rdfs:subClassOf rdfa:Error .

rdfa:VocabReferenceError dc:description "A warning to be used
 when the value of a @vocab attribute cannot be dereferenced, hence the vocabulary expansion
 cannot be completed.";
 rdfs:subClassOf rdfa:Warning .

rdfa:UnresolvedTerm dc:description "A warning to be used when a Term fails to be resolved.";
 rdfs:subClassOf rdfa:Warning .

rdfa:UnresolvedCURIE dc:description "A warning to be used when a CURIE prefix
 fails to be resolved.";
 rdfs:subClassOf rdfa:Warning .

rdfa:context a owl:ObjectProperty, rdf:Property;
 dc:description "Provides extra context for the error, e.g., http response,
 an XPointer/XPath information, or simply the IRI that created the error.";
 rdfs:domain rdfa:PGClass .

 B.3 Term for vocabulary expansion

 The Vocabulary includes the following term definitions (shown here in
 Turtle [TURTLE] format):

 Example 138
@prefix dc: <http://purl.org/dc/terms/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .

rdfa:usesVocabulary a owl:ObjectProperty, rdf:Property;
 dc:description "Provides a relationship between the host document and a vocabulary
 defined using the @vocab facility of RDFa1.1." .

 C. Changes
This section is non-normative.

 C.1 Major differences with RDFa Syntax 1.0
This section is non-normative.

 This specification introduces a number of new features, and extends
 the behavior of some features from the previous version. The
 following summary may be helpful to RDFa Processor developers, but
 is not meant to be comprehensive.

 	Specific rules about XHTML have been moved into a companion
 specification: [XHTML-RDFA].

 	Prefix mappings can now be declared using @prefix
 in addition to @xmlns. The usage of @xmlns
 has been deprecated.

 	Prefix names are now required to be converted to lower-case when
 the mapping is defined. Prefixes are checked in a case-insensitive
 manner during CURIE expansion.

 	You can now use an Absolute IRI everywhere you could previously
 only use a CURIE (e.g., in the value of @datatype).

 	There is now a concept of a term. This concept has
 replaced the concept of a 'reserved word'. It is possible now to
 use a 'term' in most places where you could previously only use a
 CURIE.

 	You can define a default prefix mapping (via @vocab)
 that will be used on undefined terms.

 	When a triple would include an object literal, and there is no
 explicit datatype attribute, the object literal will now be a
 'plain literal'. In version 1.0 it would have been an
 'XMLLiteral'.

 	The @inlist attribute can be used to instruct the
 processor to generate RDF lists with the resources rather than
 simple triples.

 	The effect of @src is now identical to @href
 rather than @about like in version 1.0.

 While this specification strives to be as backward compatible as
 possible with [RDFA-SYNTAX], the changes above mean that there are
 some circumstances where it is possible for different RDF triples to
 be output for the same document when processed by an RDFa 1.0
 processor vs. an RDFa 1.1 processor. In order to minimize these
 differences, a document author can do the following:

 	Use the XHTML+RDFa 1.0 document type as defined in
 [RDFA-SYNTAX].

 	Place a @version attribute with the
 value XHTML+RDFa 1.0 on the html
 element.

 	If there are places in the document where an object literal MUST
 be an XMLLiteral, use datatype='rdf:XMLLiteral'.

 	If there are places in the document where an object literal MUST
 be a plain literal, use datatype=''.

 	If there are places in the document where @src is
 used, add an @about (unless already present) with the
 same IRI.

 When producing XHTML+RDFa 1.1 documents, it is possible to reduce
 the incompatibilities with RDFa 1.0 conforming processors by doing
 the following:

 	DO NOT use the @vocab feature.

 	DO NOT rely upon host language defaults for IRI mappings.

 	DO NOT use absolute IRIs in place of CURIEs.

 	Use @xmlns AND @prefix
 when declaring prefix mappings.

 	DO NOT use TERMs on @datatype, @property,
 or @typeof.

 	When using TERMs in @rel and @rev,
 only use ones defined in [RDFA-SYNTAX].

 	Place a version attribute with the
 value XHTML+RDFa 1.0 on the html
 element.

 	If there are places in the document where an object literal MUST
 be an XMLLiteral, use datatype='rdf:XMLLiteral'.

 	If there are places in the document where an object literal MUST
 be a plain literal, use datatype=''.

 	If there are places in the document where @src is
 used, add an @about (unless already present) with the
 same IRI.

 D. Acknowledgments
This section is non-normative.

 At the time of publication, the active members of the RDF Web Applications Working
 Group were:

 	Stéphane Corlosquet, MIND Center for Interdisciplinary Informatics

 	Ivan Herman, W3C

 	Gregg Kellogg (Invited Expert)

 	Niklas Lindström (Invited Expert)

 	Shane McCarron, Applied Testing and Technology, Inc. (Invited Expert)

 	Steven Pemberton, Centre for Mathematics and Computer Science (CWI)

 	Manu Sporny, Digital Bazaar (Chair, Invited Expert)

E. References
E.1 Normative references
	[HTML-RDFA]
	Manu Sporny et al. HTML+RDFa 1.1. 22 August 2013. W3C Recommendation. URL: http://www.w3.org/TR/html-rdfa/

	[OWL2-OVERVIEW]
	W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview (Second Edition). 11 December 2012. W3C Recommendation. URL: http://www.w3.org/TR/owl2-overview/

	[OWL2-PROFILES]
	Boris Motik; Bernardo Cuenca Grau; Ian Horrocks; Zhe Wu; Achille Fokoue. OWL 2 Web Ontology Language Profiles (Second Edition). 11 December 2012. W3C Recommendation. URL: http://www.w3.org/TR/owl2-profiles/

	[OWL2-RDF-BASED-SEMANTICS]
	Michael Schneider. OWL 2 Web Ontology Language RDF-Based Semantics (Second Edition). 11 December 2012. W3C Recommendation. URL: http://www.w3.org/TR/owl2-rdf-based-semantics/

	[RDF-MT]
	Patrick Hayes. RDF Semantics. 10 February 2004. W3C Recommendation. URL: http://www.w3.org/TR/rdf-mt/

	[RDF-SYNTAX-GRAMMAR]
	Dave Beckett. RDF/XML Syntax Specification (Revised). 10 February 2004. W3C Recommendation. URL: http://www.w3.org/TR/rdf-syntax-grammar

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC3987]
	M. Dürst; M. Suignard. Internationalized Resource Identifiers (IRIs). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3987.txt

	[XHTML-RDFA]
	Shane McCarron. XHTML+RDFa 1.1 - Second Edition. 22 August 2013. W3C Recommendation. URL: http://www.w3.org/TR/xhtml-rdfa/

	[XML-NAMES]
	Tim Bray; Dave Hollander; Andrew Layman; Richard Tobin; Henry Thompson et al. Namespaces in XML 1.0 (Third Edition). 8 December 2009. W3C Recommendation. URL: http://www.w3.org/TR/xml-names

	[XML10-4e]
	C. M. Sperberg-McQueen et al. Extensible Markup Language (XML) 1.0 (Fourth Edition). 26 November 2008. W3C Recommendation. URL: http://www.w3.org/TR/2006/REC-xml-20060816/

	[XMLSCHEMA11-2]
	David Peterson; Sandy Gao; Ashok Malhotra; Michael Sperberg-McQueen; Henry Thompson; Paul V. Biron et al. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. 5 April 2012. W3C Recommendation. URL: http://www.w3.org/TR/xmlschema11-2/

E.2 Informative references
	[HTML401]
	Dave Raggett; Arnaud Le Hors; Ian Jacobs. HTML 4.01 Specification. 24 December 1999. W3C Recommendation. URL: http://www.w3.org/TR/html401

	[MICROFORMATS]
	Microformats. URL: http://microformats.org

	[QNAMES]
	N. Walsh. Using Qualified Names (QNames) as Identifiers in XML Content. 17 March, 2004. TAG Finding. URL: http://www.w3.org/2001/tag/doc/qnameids-2004-03-17

	[RDF-PRIMER]
	Frank Manola; Eric Miller. RDF Primer. 10 February 2004. W3C Recommendation. URL: http://www.w3.org/TR/rdf-primer/

	[RDF-SYNTAX]
	Graham Klyne; Jeremy Carroll. Resource Description Framework (RDF): Concepts and Abstract Syntax. 10 February 2004. W3C Recommendation. URL: http://www.w3.org/TR/rdf-concepts/

	[RDF-TESTCASES]
	jan grant; Dave Beckett. RDF Test Cases. 10 February 2004. W3C Recommendation. URL: http://www.w3.org/TR/rdf-testcases

	[RDFA-PRIMER]
	Ben Adida; Ivan Herman; Manu Sporny; Mark Birbeck. RDFa 1.1 Primer. 22 August 2013. W3C Note. URL: http://www.w3.org/TR/rdfa-primer/

	[RDFA-SYNTAX]
	Ben Adida; Mark Birbeck; Shane McCarron; Steven Pemberton et al. RDFa in XHTML: Syntax and Processing. 14 October 2008. W3C Recommendation. URL: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014

	[RELAXNG-SCHEMA]
	Information technology -- Document Schema Definition Language (DSDL) -- Part 2: Regular-grammar-based validation -- RELAX NG. ISO/IEC 19757-2:2008. URL: http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip

	[SAX]
	D. Megginson, et al. SAX: The Simple API for XML. May 1998. URL: http://www.megginson.com/downloads/SAX/

	[TURTLE]
	David Beckett; Tim Berners-Lee. Turtle: Terse RDF Triple Language. January 2008. W3C Team Submission. URL: http://www.w3.org/TeamSubmission/turtle/

	[WIDGETS-URI]
	Marcos Caceres. Widget URI scheme. 13 March 2012. W3C Note. URL: http://www.w3.org/TR/widgets-uri/

	[XHTML11]
	Shane McCarron; Masayasu Ishikawa. XHTML™ 1.1 - Module-based XHTML - Second Edition. 23 November 2010. W3C Recommendation. URL: http://www.w3.org/TR/xhtml11/

	[XML-EXC-C14N]
	John Boyer; Donald Eastlake; Joseph Reagle. Exclusive XML Canonicalization Version 1.0. 18 July 2002. W3C Recommendation. URL: http://www.w3.org/TR/xml-exc-c14n

	[XML10]
	Tim Bray; Jean Paoli; Michael Sperberg-McQueen; Eve Maler; François Yergeau et al. Extensible Markup Language (XML) 1.0 (Fifth Edition). 26 November 2008. W3C Recommendation. URL: http://www.w3.org/TR/xml

	[XMLSCHEMA11-1]
	Sandy Gao; Michael Sperberg-McQueen; Henry Thompson; Noah Mendelsohn; David Beech; Murray Maloney. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures. 5 April 2012. W3C Recommendation. URL: http://www.w3.org/TR/xmlschema11-1/

[image: W3C]
RDFa Lite 1.1
W3C Recommendation 07 June 2012
	This version:
	http://www.w3.org/TR/2012/REC-rdfa-lite-20120607/
	Latest published version:
	http://www.w3.org/TR/rdfa-lite/
	Previous version:
	http://www.w3.org/TR/2012/PR-rdfa-lite-20120508/
	Editor:
	Manu Sporny, Digital Bazaar, Inc.

Please refer to the errata for this document, which may include some normative corrections.
This document is also available in these non-normative formats: Diff from Proposed Recommendation, PostScript version, and PDF version.
The English version of this specification is the only normative version. Non-normative translations may also be available.
Copyright © 2012 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.

 Abstract

RDFa Lite is a minimal subset of RDFa, the Resource Description Framework in
attributes, consisting of a few attributes that may
be used to express machine-readable data in Web documents like HTML, SVG, and
XML. While it is not a complete solution for advanced data markup tasks, it
does work for most day-to-day needs and can be learned by most Web authors
in a day.

Status of This Document
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

 This document has been reviewed by W3C Members, by software
developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention
to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.

This document is the culmination of a series of discussions between the
World Wide Web Consortium, including the RDF Web Applications Working Group,
the Vocabularies Community Group, the HTML Working Group, and the sponsors
of the schema.org initiative, including
Google, Yahoo!, Microsoft, and Yandex. It has recieved review from
representatives in these organizations and enjoys consensus at this point in
time. There were no changes made during the Proposed Recommendation period.
The
implementation report
used by the director to transition to Recommendation has been
made available.

 This document was published by the W3C RDF Web Applications Working Group as a Recommendation. If you wish to make comments regarding this document, please send them to public-rdfa@w3.org (subscribe, archives). All feedback is welcome.
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction
	2. The Attributes	2.1 vocab, typeof, and property
	2.2 resource
	2.3 prefix

	3. Conformance	3.1 Document Conformance

	A. References	A.1 Normative references
	A.2 Informative references

1. Introduction
This section is non-normative.

The full RDFa syntax [RDFA-CORE] provides a number of basic and advanced
features that enable authors to express fairly complex structured data,
such as relationships among people, places, and events in an HTML or
XML document. Some of these advanced features may make it difficult for
authors, who may not be experts in structured data, to use RDFa.
This lighter version of RDFa is a gentler introduction to the world of
structured data, intended for authors that want to express fairly simple
data in their web pages. The goal is to provide a minimal subset that is
easy to learn and will work for 80% of authors doing simple data markup.

2. The Attributes
This section is non-normative.

RDFa Lite consists of five simple attributes; vocab,
typeof, property, resource, and
prefix. RDFa 1.1 Lite is completely upwards compatible with the
full set of RDFa 1.1 attributes. This means that if an author finds that
RDFa Lite isn't powerful enough, transitioning to the full version of RDFa is
just a matter of adding the more powerful RDFa attributes into the existing
RDFa Lite markup.

 2.1 vocab, typeof, and property

RDFa, like Microformats [MICROFORMATS] and Microdata [MICRODATA],
enables us to talk about things
on the Web such that a machine can understand what we are saying.
Typically when we talk about a thing, we use a particular
vocabulary to talk about it. So, if you wanted to talk about
People, the vocabulary that you would use would specify terms like
name and telephone number. When we want to mark up things on
the Web, we need to do something very similar, which is specify which
vocabulary that we are going to be using. Here is a simple example that
specifies a vocabulary that we intend to use to markup things in the paragraph:

 <p vocab="http://schema.org/">
 My name is Manu Sporny and you can give me a ring via 1-800-555-0199.
</p>

In this example we have specified that we are going to be using the
vocabulary that can be found at
http://schema.org/. This is a vocabulary that has been
released by major search engine companies to talk about common things on the
Web that Search Engines care about – things like People, Places, Reviews,
Recipes, and Events. Once we have specified the vocabulary, we need to specify
the type of the thing that we're talking about. In this
particular case we are talking about a Person, which can be marked up like so:

 <p vocab="http://schema.org/" typeof="Person">
 My name is Manu Sporny and you can give me a ring via 1-800-555-0199.
</p>

Now all we need to do is specify which properties of that
person we want to point out to the search engine. In the following example, we
mark up the person's name, phone number and web page. Both text and URLs can
be marked up with RDFa Lite. In the following example, pay particular attention
to the types of data that are being pointed out to the search engine,
which are highlighted in blue:

 <p vocab="http://schema.org/" typeof="Person">
 My name is
 Manu Sporny
 and you can give me a ring via
 1-800-555-0199
 or visit
 my homepage.
</p>

Now, when somebody types in “phone number for Manu Sporny” into a
search engine, the search engine can more reliably answer the question
directly, or point the person searching to a more relevant Web page.

 2.2 resource

If you want Web authors to be able to talk about each thing on your
page, you need to create an identifier for each of these things. Just like we
create identifiers for parts of a page using the id attribute
in HTML, you can create identifiers for things described on a page using the
resource attribute:

 <p vocab="http://schema.org/" resource="#manu" typeof="Person">
 My name is
 Manu Sporny
 and you can give me a ring via
 1-800-555-0199.

</p>

If we assume that the markup above can be found at
http://example.org/people, then the identifier for the thing is
the address, plus the value in the resource attribute. Therefore,
the identifier for the thing on the page would be:
http://example.org/people#manu. This identifier is also useful if
you want to talk about that same thing on another Web page. By identifying all
things on the Web using a unique Uniform Resource Locator (URL), we can start
building a Web of things. Companies building software for the Web can use this
Web of things to answer complex questions like: "What is Manu Sporny's phone
number and what does he look like?".

 2.3 prefix

In some cases, a vocabulary may not have all of the terms an author needs when
describing their thing. The last feature in RDFa 1.1 Lite that some
authors might need is the ability to specify more than one vocabulary. For
example, if we are describing a Person and we need to specify that they have a
favorite animal, we could do something like the following:

 <p vocab="http://schema.org/" prefix="ov: http://open.vocab.org/terms/" resource="#manu" typeof="Person">
 My name is
 Manu Sporny
 and you can give me a ring via
 1-800-555-0199.

 My favorite animal is the Liger.
</p>

The example assigns a short-hand prefix to the Open Vocabulary
(ov) and uses that prefix to specify the
preferredAnimal vocabulary term. Since schema.org doesn't have
a clear way of expressing a favorite animal, the author instead depends on
this alternate vocabulary to get the job done.

RDFa 1.1 Lite also pre-defines a number of
useful and popular
prefixes, such as dc, foaf, and
schema. This ensures that even if authors forget to declare the
popular prefixes, that their structured data will continue to work. A full list
of pre-declared prefixes can be found in the
initial context
document for RDFa 1.1.

If you would like to learn more about what is possible with RDFa Lite,
including an introduction to the data model, please read the section on
RDFa Lite in the RDFa Primer [RDFA-PRIMER].

3. Conformance
As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative. Everything else in this specification is normative.

The key words must, must not, required, should, should not, recommended, may, and optional in this specification are to be interpreted as described in [RFC2119].

 3.1 Document Conformance

In order for a document to be labeled as a conforming RDFa Lite 1.1
document:

 	
It must only require the facilities described as mandatory
in its Host Language.

 	
It must not use any additional RDFa attributes other than
vocab, typeof, property,
resource, and prefix; it may also use
href and src, when the Host Language authorizes
the usage of those attributes.
However, even if authorized by the Host Language, the usage of
rel and rev
should be restricted to non-RDFa usage patterns, as defined by the
Host Language.

 	
All RDFa attributes should be used in a way that is conformant with
[RDFA-CORE].

 	
In XML-based languages, a document may still be labeled as a conforming RDFa
Lite 1.1 document as long as the usage of the xmlns attribute
is not used to declare CURIE prefixes.

If additional non-RDFa Lite attributes are used from the RDFa Core 1.1
specification, the document must be referred to as a conforming
RDFa 1.1 document. All conforming RDFa Lite 1.1 documents
may be referred to as conforming RDFa 1.1 documents.

A. References
A.1 Normative references
	[RDFA-CORE]
	Shane McCarron; et al. RDFa Core 1.1: Syntax and processing rules for embedding RDF through attributes. 7 June 2012. W3C Recommendation. URL: http://www.w3.org/TR/2012/REC-rdfa-core-20120607/

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

A.2 Informative references
	[MICRODATA]
	Ian Hickson. Microdata 2011. W3C Working Draft. URL: http://www.w3.org/TR/microdata/

	[MICROFORMATS]
	Tantek Çelik; et. al. Microformats 2011. The Microformats Community. URL: http://microformats.org/about

	[RDFA-PRIMER]
	Ben Adida, Ivan Herman, Manu Sporny. RDFa Primer. 07 June 2012. W3C Note. URL: http://www.w3.org/TR/2012/NOTE-rdfa-primer-20120607

 [image: W3C]

 HTML+RDFa 1.1

 Support for RDFa in HTML4 and HTML5

 W3C Recommendation 22 August 2013

 	This version:

 	http://www.w3.org/TR/2013/REC-html-rdfa-20130822/

 	Latest published version:

 	http://www.w3.org/TR/html-rdfa/

 	Previous version:

 	http://www.w3.org/TR/2013/PR-html-rdfa-20130625/

 	Test suite:

 	http://rdfa.info/test-suite/

 	Editor:

 	Manu Sporny, Digital Bazaar, Inc.

 	Authors:

 	Shane McCarron, Applied Testing and Technology, Inc.

	Ben Adida, Creative Commons

	Mark Birbeck, Sidewinder Labs

	Gregg Kellogg, Kellogg Associates

	Ivan Herman, W3C

	Steven Pemberton, CWI

 Please refer to the errata for this document, which may include some normative corrections.

 This document is also available in this non-normative format:

 diff to previous version.

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2009-2013

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang), All Rights Reserved.
 W3C liability,
 trademark and
 document use rules apply.

Abstract

 This specification defines rules and guidelines for adapting the RDFa Core
 1.1 and RDFa Lite 1.1 specifications for use in HTML5 and XHTML5. The rules
 defined in this specification not only apply to HTML5 documents in non-XML
 and XML mode, but also to HTML4 and XHTML documents interpreted through the
 HTML5 parsing rules.

Status of This Document

 This section describes the status of this document at the time of its publication. Other
 documents may supersede this document. A list of current W3C publications and the latest revision
 of this technical report can be found in the W3C technical reports
 index at http://www.w3.org/TR/.

This document has been reviewed by W3C Members, by software developers,
and by other W3C groups and interested parties, and is endorsed by the
Director as a W3C Recommendation. It is a stable document and may be used
as reference material or cited from another document. W3C's role in making
the Recommendation is to draw attention to the specification and to promote
its widespread deployment. This enhances the functionality and
interoperability of the Web.

This specification is an extension to the HTML5 language. All normative
content in the HTML5 specification, unless specifically overridden by this
specification, is intended to be the basis for this specification.

Note
There are two features in this
specification, @datetime processing and rdf:HTML
literals, that are currently defined as non-normative features. The intent
is that these features will eventually become normative features once the
specification that describes the @datetime attribute [HTML5]
and the specification that defines rdf:HTML [RDF-CONCEPTS]
become W3C Recommendations.
Implementers should implement these features now;
a 2nd (or later) edition of this specification will clarify the long-term
stability of those features. Based on the discussion between the RDFa
Working Group, the HTML Working Group, and the RDF Working Group,
it is not expected that implementation changes will be necessary as
HTML5 and RDF 1.1 advance to Recommendation.

A sample test harness is
available for software developers. This set of tests is not intended to be
exhaustive.
A community-maintained website contains more
information on further reading, developer tools, and software libraries
that can be used to extract and process RDFa data from web documents. The final
implementation report
considered by the Director has been made available to the public.

 This document was published by the RDFa Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdfa-wg@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 This document was produced by a group operating under the

 5 February 2004 W3C Patent Policy.

 W3C maintains a public list of any patent disclosures

 made in connection with the deliverables of the group; that page also includes instructions for
 disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains
 Essential Claim(s) must disclose the
 information in accordance with section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction
	2. Conformance	2.1 Document Conformance
	2.2 RDFa Processor Conformance
	2.3 User Agent Conformance

	3. Extensions to RDFa Core 1.1	3.1 Additional RDFa Processing Rules
	3.2 Modifying the Input Document
	3.3 Specifying the Language for a Literal
	3.4 Invalid XMLLiteral Values
	3.5 Property Copying	3.5.1 Implementing Property Copying

	4. Extensions to the HTML5 Syntax
	5. Backwards Compatibility	5.1 @xmlns:-Prefixed Attributes
	5.2 Conformance Criteria for @xmlns:-Prefixed Attributes
	5.3 Preserving Namespaces via Coercion to Infoset
	5.4 Infoset-based Processors	5.4.1 Extracting URI Mappings from Infosets
	5.4.2 Processing RDFa Attributes

	5.5 DOM Level 1 and Level 2-based Processors	5.5.1 Extracting URI Mappings via DOM Level 2
	5.5.2 Processing RDFa Attributes

	A. About this Document	A.1 History
	A.2 Change History
	A.3 Acknowledgments

	B. References	B.1 Normative references
	B.2 Informative references

1. Introduction
This section is non-normative.

 Today's web is built predominantly for human readers. Even as
 machine-readable data begins to permeate the web, it is typically
 distributed in a separate file, with a separate format, and very limited
 correspondence between the human and machine versions. As a result, web
 browsers can provide only minimal assistance to humans in parsing and
 processing web pages: browsers only see presentation information. RDFa is
 intended to solve the problem of marking up machine-readable data in HTML
 documents. RDFa provides a set of HTML attributes to augment visual data with
 machine-readable hints. Using RDFa, authors may turn their existing
 human-visible text and links into machine-readable data without repeating
 content.

2. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
 and notes in this specification are non-normative. Everything else in this specification is
 normative.

 The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY,
 and OPTIONAL in this specification are to be interpreted as described in [RFC2119].

2.1 Document Conformance

 There are two types of document conformance criteria for HTML
 documents containing RDFa semantics; HTML+RDFa and
 HTML+RDFa Lite.

 The following conformance criteria apply to any HTML document
 including RDFa markup:

 	All document conformance requirements stated as mandatory in the
 HTML5 specification MUST be met.

 	The appropriate
 Extensions to the HTML5 Syntax,
 as described in this document, MUST be considered valid and conforming.
 Note that there are fewer supported attributes if the RDFa Lite
 syntax [RDFA-LITE] is desired over the more advanced set of RDFa
 attributes outlined in RDFa Core.

 	All HTML5 elements and attributes SHOULD be used in a way that conforms
 to [HTML5]. All RDFa attributes SHOULD be used in a way that
 is conforms to [RDFA-CORE] and this document.

An example of a conforming HTML+RDFa document, with the RDFa portions
highlighted in green:

Example 1: Example of an HTML+RDFa 1.1 document
<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Example Document</title>
 </head>
 <body vocab="http://schema.org/">
 <p typeof="Blog">
 Welcome to my blog.
 </p>
 </body>
</html>

The following data will be extracted by a conforming RDFa processor, shown in
Turtle format [TURTLE]:

Example 2: Turtle output of Example Document
[] a <http://schema.org/Blog>;
 <http://schema.org/url> <http://example.org/> .

Non-XML mode HTML+RDFa 1.1 documents SHOULD be labeled with the Internet
Media Type text/html as defined in
section 12.1
of the HTML5 specification [HTML5].

XML mode XHTML5+RDFa 1.1 documents SHOULD be labeled with the Internet Media
Type application/xhtml+xml as defined in
section 12.3
of the HTML5 specification [HTML5], MUST NOT use a DOCTYPE
declaration for XHTML+RDFa 1.0 or XHTML+RDFa 1.1, and SHOULD NOT use the
@version attribute.

 2.2 RDFa Processor Conformance

 The RDFa processor conformance criteria are listed below, all of
 which are mandatory:

 	An RDFa processor MUST implement all of the mandatory features
 specified in the RDFa Core 1.1 specification [RDFA-CORE].

 	An RDFa processor MUST support any mandatory features described in this
 specification.

2.3 User Agent Conformance

 A user agent is considered to be a type of RDFa processor when the
 user agent stores or processes RDFa attributes and their values. The
 reason there are separate RDFa Processor Conformance and a
 User Agent Conformance sections is because one can be a valid
 HTML5 RDFa processor but not a valid HTML5 user agent (for example, by only
 providing a very small subset of rendering functionality).

 The user agent conformance criteria are listed below, all of which are
 mandatory:

 	A user agent MUST conform to all requirements listed in
 Section 2.2: Conformance Requirements
 of the HTML5 specification.

 	A user agent MUST implement all of the features required by this
 specification.

 	A user agent MUST implement all of the features required in the RDFa
 Core 1.1 specification, excluding those features which are specifically
 overridden by this specification as detailed in the Extensions to RDFa Core 1.1.

 3. Extensions to RDFa Core 1.1

 The RDFa Core 1.1 [RDFA-CORE] specification is the base document on
 which this specification builds.
 RDFa Core 1.1 specifies the attributes and syntax, in Section 5: Attributes and
 Syntax, and processing model, in Section 7: Processing
 Model, for extracting RDF from a web document. This section
 specifies changes to the attributes and processing model defined in
 RDFa Core 1.1 in order to support extracting RDF from HTML documents.

 The requirements and rules, as specified in RDFa Core and further
 extended in this document, apply to all HTML5 documents. An RDFa processor
 operating on both HTML and XHTML documents, specifically on their
 resulting DOMs or infosets, MUST apply these processing rules
 for HTML4, HTML5 and XHTML5
 serializations, DOMs and/or infosets.

 3.1 Additional RDFa Processing Rules

 Documents conforming to the rules in this specification are processed
 according to [RDFA-CORE] with the following extensions:

 	The default vocabulary URI is undefined.

 	HTML+RDFa uses an additional initial context by default,
 http://www.w3.org/2011/rdfa-context/html-rdfa-1.1, which must
 be applied after the initial context for [RDFA-CORE]
 (http://www.w3.org/2011/rdfa-context/rdfa-1.1).
 	The
 base can be set
 using the base element. For XHTML5+RDFa 1.1 documents,
 base can also be set using the @xml:base
 attribute.

 	The
 current language
 can be set using either the @lang or @xml:lang
 attributes. When the @lang attribute and the
 @xml:lang attribute are specified on the same element, the
 @xml:lang attribute takes precedence. When both
 @lang and @xml:lang are specified on the same
 element, they MUST have the same value. Further details related to setting the
 current language
 can be found in section
 3.3 Specifying the Language for a Literal.

 	When determining which set of RDFa processing rules to use for documents
 served with the application/xhtml+xml media type, a conforming
 RDFa processor MUST look at the value in the DOCTYPE declaration of the
 document. If a DOCTYPE declaration exists, then the
 processing rules are:

 	XHTML1+RDFa 1.0 for a DOCTYPE of <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN" "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd">, or

 	XHTML1+RDFa 1.1 for a DOCTYPE of <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN" "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd">, or

 	XHTML5+RDFa 1.1 for all other values of DOCTYPE.

 Documents served as application/xhtml+xml, that don't contain
 a DOCTYPE declaration, and don't specify a @version attribute MUST be interpreted
 as XHTML5+RDFa 1.1 documents.

 	In
 Section 7.5:
 Sequence, processing step 3, if the
 processor graph
 feature is supported and if an
 IRI mapping
 overwrites a previously existing mapping in the
 local list of IRI mappings
 with a different value, the processor MUST generate an appropriate
 rdfa:PrefixRedefinition
 warning and place the associated triples into the
 processor graph.

 	In
 Section 7.5:
 Sequence, immediately after processing step 4, if the
 @property attribute and the @rel and/or
 @rev attribute exists on the same element, the non-CURIE and
 non-URI @rel and @rev values are ignored. If, after
 this, the value of @rel and/or @rev becomes empty,
 then the processor MUST act as if the respective attribute is not present.

 	In Section 7.5,
 processing step 5, and
 processing step 6, if no IRI is provided by a resource attribute
 (e.g., @about, @href, @resource, or
 @src), then first check to see if the element is the
 head or body element. If it is, then set
 new subject
 to
 parent object.

 	In

 Section 7.5: Sequence, processing step 11, the

 HTML5 @datetime attribute
 MUST be utilized when generating
 the current property value, unless @content is also
 present on the same element. Otherwise, if @datetime is
 present, the current property value must be generated as
 follows. The literal value is the value contained in the
 @datetime attribute. If @datatype is
 present, it is to be used as defined in the RDFa Core [RDFA-CORE]
 processing rules. Otherwise, if the value of
 @datetime lexically matches a valid
 xsd:date, xsd:time, xsd:dateTime,
 xsd:duration, xsd:gYear, or
 xsd:gYearMonth a typed literal must be generated, with its
 datatype set to the matching xsd datatype. Otherwise, a plain literal
 MUST be generated, taking into account the
 current language.
 Implementers should note that the correct order of match testing should be:
 xsd:duration, xsd:dateTime,
 xsd:date, xsd:time,
 xsd:gYearMonth, and xsd:gYear.
 This feature is currently non-normative,
 see the note on when it will become
 normative.

 	In

 Section 7.5: Sequence, processing step 11, if the element is
 time, and the element does not have @datetime
 or @content attributes, the processor MUST act as if there
 is a @datetime attribute containing exactly the elements
 text value. This feature is currently non-normative,
 see the note on when it will become
 normative.

 	In
 Section 7.5:
 Sequence, step 11, immediately after sub-step 2, if the
 @datatype attribute is present and evaluates to
 http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML,
 the value of the HTML Literal is a string
 created by serializing all child nodes to text. This applies to all nodes
 that are descendants of the current
 element, not including the element itself. The HTML Literal is
 given a
 datatype of http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML
 as defined in

 Section 5.2: The rdf:HTML Datatype
 of [RDF-CONCEPTS]. This feature is currently non-normative,
 see the note on when it will become
 normative.

 	Once the
 output graph
 is generated following the processing steps defined in
 Section 7.5: Sequence of
 the RDFa Core 1.1 specification [RDFA-CORE], and the steps in this
 section, perform the operations defined in
 Implementing Property Copying.

The @version attribute is not supported in HTML5 and is
non-conforming. However, if an HTML+RDFa document contains the
@version attribute on the html element, a conforming
RDFa processor MUST examine the value of this attribute. If the value matches
that of a defined version of RDFa, then the processing rules for that version
MUST be used. If the value does not match a defined version, or there is no
@version attribute, then the processing rules for the most recent
version of RDFa 1.1 MUST be used.

 3.2 Modifying the Input Document

 RDFa's tree-based processing rules, outlined in
 Section 7.5: Sequence of
 the RDFa Core 1.1 specification [RDFA-CORE], allow an input document to be
 automatically corrected, cleaned-up, re-arranged, or modified in any way that
 is approved by the host language prior to processing. Element nesting issues
 in HTML documents SHOULD be corrected before the input document is
 translated into the DOM, a valid tree-based model, on which the RDFa
 processing rules will operate.

 Any mechanism that generates a data structure equivalent to the HTML5 or
 XHTML5 DOM, such as the html5lib library, MAY be used as the mechanism to
 construct the tree-based model provided as input to the RDFa processing
 rules.

 3.3 Specifying the Language for a Literal

 According to RDFa Core 1.1 the
 current language
 MAY be specified by the host language. In order to conform
 to this specification, RDFa processors MUST use the mechanism described in
 The lang and xml:lang attributes section of the [HTML5]
 specification to determine the
 language
 of a node.

 If the final encapsulating MIME type for an HTML fragment is not decided
on while editing, it is RECOMMENDED that the author
 specify both @lang and @xml:lang where the value in
 both attributes is exactly the same.

 Note
The HTML5 specification takes the
 Content-Language HTTP header into account when determining the
 language of an element. Some RDFa processor implementations, like those
 written in JavaScript, may not have
 access to this header and will be non-conforming in the edge case where
 the language is only specified in the Content-Language HTTP
 header. In these instances, RDFa document authors are urged to
 set the language in the document via the @lang
 attribute on the html element in order to ensure
 that the document is interpreted correctly across all RDFa processors.

 3.4 Invalid XMLLiteral Values

 When generating literals of type XMLLiteral, the processor MUST ensure
 that the output XMLLiteral is a namespace well-formed XML fragment. A
 namespace well-formed XML fragment has the following properties:

 	The XML fragment, when placed inside of a single root element, MUST
 validate as well-formed XML. The normative language that describes a
 well-formed XML document is specified in Section 2.1 "Well-Formed
 XML Documents" of the XML specification.

 	The XML fragment, when placed inside of a single root element, MUST
 retain all active namespace information. The currently active attributes
 declared using @xmlns and @xmlns: that are stored in the
 RDFa processor's current
 evaluation context
 in the
 IRI mappings
 MUST be preserved in the generated XMLLiteral. The PREFIX value for
 @xmlns:PREFIX MUST be entirely transformed into lower-case characters
 when preserving the value in the XMLLiteral. All active namespaces declared
 via @xmlns, @xmlns:, and @prefix
 MUST be placed in each top-level element in the generated XMLLiteral,
 taking care to not overwrite pre-existing namespace values.

 An RDFa processor that transforms the XML fragment MUST use the

 Coercing an HTML DOM into an infoset algorithm, as specified in the HTML5
 specification, followed by the algorithm defined in the Serializing
 XHTML Fragments section of the HTML5 specification. If an error or
 exception occurs at any point during the transformation, the triple containing
 the XMLLiteral MUST NOT be generated.

 Transformation to a namespace well-formed XML fragment is required
 because an application that consumes XMLLiteral data expects that data to
 be a namespace well-formed XML fragment.

 The transformation requirement does not apply to plain text input data that are
 text-only, such as literals that contain a @datatype attribute
 with an empty value (""), or input data that contain only
 text nodes.

 An example transformation demonstrating the preservation of namespace
 values is provided below. The → symbol is used to denote that the line
 is a continuation of the previous line and is included purely for the
 purposes of readability:

Example 3: Namespace preservation markup
<p xmlns:ex="http://example.org/vocab#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 Two rectangles (the example markup for them are stored in a triple):
 <svg xmlns="http://www.w3.org/2000/svg"
 property="ex:markup" datatype="rdf:XMLLiteral">
 →<rect width="300" height="100" style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/>
 →<rect width="50" height="50" style="fill:rgb(255,0,0);stroke-width:2;stroke:rgb(0,0,0)"/></svg>
</p>

The markup above SHOULD produce the following triple, which preserves the
xmlns declaration in the markup by injecting the @xmlns attribute
in the rect elements:

Example 4: Namespace preservation triple
<>
 <http://example.org/vocab#markup>
 """<rect xmlns="http://www.w3.org/2000/svg" width="300"
→height="100" style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/>
→<rect xmlns="http://www.w3.org/2000/svg" width="50"
→height="50" style="fill:rgb(255,0,0);stroke-width:2;
→stroke:rgb(0,0,0)"/>"""^^<http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral> .

Since the ex and rdf
namespaces are not used in either rect element, they are not
preserved in the XMLLiteral.

Similarly, compound document elements that reside in different
namespaces must have their namespace declarations preserved:

Example 5: Namespace preservation for compound document elements
<p xmlns:ex="http://example.org/vocab#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fb="http://www.facebook.com/2008/fbml">
 This is how you markup a user in FBML:

→<fb:user uid="12345">The User</fb:user>
→
</p>

The markup above SHOULD produce the following triple, which preserves the
fb namespace in the corresponding triple:

Example 6: Namespace element preservation triple
<>
 <http://example.org/vocab#markup>
 """
→<fb:user uid="12345"></fb:user>
→"""^^<http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral> .

 3.5 Property Copying

 There are times when authors will find that they have many resources on a
 page that share a common set of properties. For example, several
 music events may have different performance times, but use
 the same location, band, and ticket prices. In this particular case, it is
 beneficial to have a short-hand notation to instruct the RDFa processor
 to include the location, band, and ticket price information without having
 to repeat all of the markup that expresses the data.

 HTML+RDFa defines a property copying mechanism which allows
 properties associated with a resource to be copied to another resource.
 This mechanism can be activated by using the rdfa:copy
 predicate.
 The feature is illustrated in the following two examples:

 Example 7: Events with duplicate properties
<div vocab="http://schema.org/">
 <p typeof="MusicEvent">
 <link property="image" href="Muse1.jpg"/>
 <link property="image" href="Muse2.jpg"/>
 <link property="image" href="Muse3.jpg"/>
 Muse at the United Center.
 <time property="startDate" datetime="2013-03-03">March 3rd 2013</time>,
 United Center, Chicago, Illinois
 ...
 </p>

 <p typeof="MusicEvent">
 <link property="image" href="Muse1.jpg"/>
 <link property="image" href="Muse2.jpg"/>
 <link property="image" href="Muse3.jpg"/>
 Muse at the Target Center.
 <time property="startDate" datetime="2013-03-07">March 7th 2013</time>,
 Target Center, Minneapolis, Minnesota
 ...
 </p>
</div>

 In this case, two music events are defined with image,
 name, startDate, and location properties. The
 image and name values are identical for the two
 events and are unnecessarily duplicated in the markup.
 Using RDFa's property copying feature, a pattern can be
 declared that expresses the common properties. This pattern can then be
 copied into other resources within the document:

 Example 8: Copying common properties
<div vocab="http://schema.org/">
 <div resource="#muse" typeof="rdfa:Pattern">
 <link property="image" href="Muse1.jpg"/>
 <link property="image" href="Muse2.jpg"/>
 <link property="image" href="Muse3.jpg"/>
 Muse
 </div>

 <p typeof="MusicEvent">
 <link property="rdfa:copy" href="#muse"/>
 Muse at the United Center.
 <time property="startDate" datetime="2013-03-03">March 3rd 2013</time>,
 United Center, Chicago, Illinois
 ...
 </p>

 <p typeof="MusicEvent">
 <link property="rdfa:copy" href="#muse"/>
 Muse at the Target Center.
 <time property="startDate" datetime="2013-03-07">March 7th 2013</time>,
 Target Center, Minneapolis, Minnesota
 ...
 </p>
</div>

 In this case, the common properties for all of the events are expressed in
 the first div. The common properties are copied into each
 event resource via the rdfa:copy predicate. The output for the
 previous two examples is the same:

 Example 9: Turtle output of property copying example
@prefix schema: <http://schema.org/> .
@prefix xsd: http://www.w3.org/2001/XMLSchema#> .

[] a schema:MusicEvent;
 schema:image <Muse1.jpg>, <Muse2.jpg>, <Muse3.jpg>;
 schema:name "Muse";
 schema:startDate "2013-03-03"^^xsd:date;
 schema:location <#united> .

[] a schema:MusicEvent;
 schema:image <Muse1.jpg>, <Muse2.jpg>, <Muse3.jpg>;
 schema:name "Muse";
 schema:startDate "2013-03-07"^^xsd:date;
 schema:location <#target> .

 The copy process is iterative, so that resources may copy
 other resources that copy other resources. For example:

 Example 10: Resources may copy other resources that copy other resources
<div vocab="http://schema.org/">
 <div typeof="Person">
 <link property="rdfa:copy" href="#lennon"/>
 <link property="rdfa:copy" href="#band"/>
 </div>
 <p resource="#lennon" typeof="rdfa:Pattern">
 Name: John Lennon
 <p>
 <div resource="#band" typeof="rdfa:Pattern">
 <div property="band" typeof="MusicGroup">
 <link property="rdfa:copy" href="#beatles"/>
 </div>
 </div>
 <div resource="#beatles" typeof="rdfa:Pattern">
 <p>Band: The Beatles</p>
 <p>Size: 4 players</p>
 </div>
</div>

 In the example above, the properties from #lennon and
 #band are copied into the first resource. Then the
 properties from #beatles are copied into
 #band. Subsequently, those properties are again copied into
 the first resource yielding the following output:

 Example 11: Iterative copying example output in Turtle
@prefix schema: <http://schema.org/> .

[a schema:Person;
 schema:name "John Lennon" ;
 schema:band [
 a schema:MusicGroup;
 schema:name "The Beatles";
 schema:size "4"
]
] .

 Similar to
 Vocabulary Expansion
 as defined in [RDFA-CORE], RDFa Property Copying operates on the
 output graph
 after document processing is complete.

 3.5.1 Implementing Property Copying

 Once the
 output graph
 is generated following the processing steps defined in
 Section 7.5: Sequence of
 the RDFa Core 1.1 specification [RDFA-CORE],
 and the Extensions to the HTML5 Syntax
 defined in this specification, processors MUST update the
 output graph
 using the following rules:

 	Run the following rule for each rdfa:copy statement
 in the
 output graph,
 and for each new rdfa:copy statement added as a result of
 property copying until no new triples are added to the
 output graph:

 	Rule name	If output graph contains	then add

 	pattern-copy	
 ?subject rdfa:copy ?target

 ?target rdf:type rdfa:Pattern

 ?target ?predicate ?object
 	
 ?subject ?predicate ?object

 	Finally, run this rule to remove utilized rdfa:copy
 statements and rdfa:Pattern resources from the
 output graph:

 	Rule name	If output graph contains	then remove

 	pattern-clean	
 ?subject rdfa:copy ?target

 ?target rdf:type rdfa:Pattern

 ?target ?predicate ?object
 	
 ?subject rdfa:copy ?target

 ?subject rdf:type rdfa:Pattern

 ?target ?predicate ?object

 Note
Implementers should be aware that a simplistic implementation of
 the pattern-copy rule may lead to an infinite loop when
 handling circular dependencies. A processor should cease
 the pattern-copy rule when no unique triples are generated.

 Note
Alternate rules may be used to update the output graph as
 long as the end result is the same.

 4. Extensions to the HTML5 Syntax

 There are a few attributes that are added as extensions to the HTML5
 syntax in order to fully support RDFa:

 	If HTML+RDFa Lite document conformance is desired, all RDFa attributes and
 valid values (including CURIEs), as listed in
 RDFa Lite 1.1, Section 2: The Attributes,
 MUST be allowed and validate as conforming when used in an HTML4, HTML5 or
 XHTML5 document. For the avoidance of doubt, the following RDFa attributes
 are allowed on all elements in the HTML5 content model: @vocab,
 @typeof, @property, @resource, and
 @prefix. All other attributes that RDFa may process, such as
 @href and @src, are only allowed when consistent
 with the content model for that element,
 as defined in the HTML5 specification.

 	If HTML+RDFa document conformance is desired, all RDFa attributes and
 valid values (including CURIEs), as listed in
 RDFa Core 1.1, Section 2.1: The RDFa Attributes,
 MUST be allowed and validate as conforming when used in an HTML4, HTML5 or
 XHTML5 document. For the avoidance of doubt, the following RDFa attributes
 are allowed on all elements in the HTML5 content model: @vocab,
 @typeof, @property, @resource,
 @prefix, @content, @about,
 @rel, @rev, @datatype, and
 @inlist. All other attributes that RDFa may process, such as
 @href and @src, are only allowed when consistent
 with the content model for that element,
 as defined in the HTML5 specification.

 	If the @property RDFa attribute is present on the
 link or meta elements, they MUST be viewed as
 conforming if used in the body of the document.
 More specifically,
 when link or meta elements contain the
 RDFa @property attribute and are used in the
 body of an HTML5 document, they MUST be considered
 flow content.

 	If the RDFa @property attribute is present on the link
 element, the @rel attribute is not required.

 	If the RDFa @resource attribute is present on the link
 element, the @href attribute is not required.

 	If the RDFa @property attribute is present on the meta
 element, neither the @name, @http-equiv, nor @charset attributes are required
 and the @content attribute MUST be specified.

 5. Backwards Compatibility

 RDFa Core 1.1 deprecates the usage of @xmlns: in RDFa 1.1
 documents. Web page authors SHOULD NOT use @xmlns: to express
 prefix mappings in RDFa 1.1 documents. Web page authors SHOULD use
 the @prefix attribute to specify prefix mappings.

 However, there are times when XHTML+RDFa 1.0 documents are served by web
 servers using the text/html MIME type. In these instances, the
 HTML5 specification asserts that the document is processed according to the
 non-XML mode HTML5 processing rules. In these particular cases, it is
 important that the prefixes declared via @xmlns: are preserved
 for the RDFa processors to ensure backwards-compatibility with RDFa 1.0
 documents. The following sections elaborate upon the backwards compatibility
 requirements for RDFa processor implementations.

 5.1 @xmlns:-Prefixed Attributes

 The RDFa Core 1.1 [RDFA-CORE] specification deprecates the
 use of the @xmlns: mechanism to declare CURIE prefix mappings in
 favor of the @prefix attribute. However, there are instances
 where its use is unavoidable. For example, publishing legacy documents as HTML5 or
 supporting older XHTML+RDFa 1.0 documents that rely on the @xmlns:
 attribute.

 CURIE prefix mappings specified using attributes prepended with
 @xmlns: MUST be processed using the algorithm defined in
 section 4.4.1:
 Extracting URI Mappings from Infosets
 for infoset-based processors, or section 4.5.1:
 Extracting URI Mappings from DOMs
 for DOM Level 2-based processors. For CURIE prefix mappings using the
 @prefix attribute,
 Section 7.5: Sequence, step 3
 MUST be used to process namespace values.

 Since CURIE prefix mappings have been specified using
 @xmlns:, and since HTML attribute names are case-insensitive,
 CURIE prefix names declared using the @xmlns:attribute-name
 pattern xmlns:<PREFIX>="<URI>" SHOULD be specified
 using only lower-case characters. For example, the text
 "@xmlns:" and the text in "<PREFIX>" SHOULD
 be lower-case only. This is to ensure that prefix mappings are interpreted
 in the same way between HTML (case-insensitive attribute names) and XHTML
 (case-sensitive attribute names) document types.

 5.2 Conformance Criteria for @xmlns:-Prefixed Attributes

 Since RDFa 1.0 documents may contain attributes starting with
 @xmlns: to specify CURIE prefixes, any attribute starting with
 a case-insensitive match on the text string "@xmlns:" MUST be
 preserved in the DOM or other tree-like model that is passed to the RDFa
 Processor.
 For documents conforming to this specification, attributes with
 names that have a case insensitive prefix matching "@xmlns:"
 MUST be considered conforming. Conformance checkers SHOULD
 accept attribute names that have a case insensitive prefix matching
 "@xmlns:" as conforming. Conformance checkers SHOULD generate
 warnings noting that the use of @xmlns: is deprecated.
 Conformance checkers MAY report the use of xmlns: as an error.

 All attributes starting with a case insensitive prefix matching
 "@xmlns:" MUST conform to the production rules outlined in
 Namespaces in XML [XML-NAMES11],
 Section 3: Declaring Namespaces.
 Documents that contain @xmlns: attributes that do not conform to
 Namespaces in XML MUST NOT be accepted as conforming.

 5.3 Preserving Namespaces via Coercion to Infoset

 RDFa 1.0 documents may contain the @xmlns: pattern to
 declare prefix mappings, it is important that namespace information that
 is declared in non-XML mode HTML5 documents are mapped to an infoset
 correctly. In order to ensure this mapping is performed correctly, the
 "Coercing an HTML DOM into an infoset" rules defined in [HTML5]
 must be extended to include the following rule:

 If the XML API is namespace-aware, the tool must ensure that
 ([namespace
 name], [local name],
 [normalized
 value]) namespace tuples are created when converting the non-XML mode
 DOM into an infoset. Given a standard @xmlns: definition,
 xmlns:foo="http://example.org/bar#", the [namespace name]
 is http://www.w3.org/2000/xmlns/,
 the [local name] is foo, and the
 [normalized value] is http://example.org/bar#, thus the
 namespace tuple would be (http://www.w3.org/2000/xmlns/,
 foo, http://example.org/bar#).

 For example, given the following input text:

 Example 12
<div xmlns:com="https://w3id.org/commerce#">

 The div element above, when coerced from an HTML DOM into
 an infoset, should contain an attribute in the [namespace
 attributes] list with a [namespace name] set to
 "http://www.w3.org/2000/xmlns/", a [local name] set to
 com, and a [normalized value] of
 "https://w3id.org/commerce#".

 5.4 Infoset-based Processors

 While the intent of the RDFa processing instructions is to provide a
 set of rules that are as language and toolchain independent as possible, for
 the sake of clarity, detailed methods of extracting RDFa content from
 processors operating on an XML Information Set are provided below.

 5.4.1 Extracting URI Mappings from Infosets

 Extracting URI Mappings declared via @xmlns:
 while operating from within an infoset-based RDFa processor can be achieved
 using the following algorithm:

 While processing an element as described in [RDFA-CORE],
 Section 7.5: Sequence,
 Step #2:

 	For each attribute in the [namespace
 attributes] list that has a [prefix] value,
 create an [IRI
 mapping] by storing the [prefix] as the value to be mapped, and the
 [normalized
 value] as the value to map.

 	For each attribute in the [attributes] list
 that has no value for [prefix] and a
 [local
 name] that starts with @xmlns:, create an [IRI mapping] by
 storing the [local name] part with the @xmlns: characters
 removed as the value to be mapped, and the [normalized
 value] as the value to map.
 Note
This step is unnecessary if the infoset coercion
 rules preserve namespaces specified in non-XML mode.

 For example, assume that the following markup is processed by an
 infoset-based RDFa processor:

Example 13
<div xmlns:ps="https://w3id.org/payswarm#" ...

After the markup is processed, there should exist a [URI mapping] in
the [local list of URI mappings] that contains a mapping from
ps to https://w3id.org/payswarm#.

 5.4.2 Processing RDFa Attributes

 There are a number of non-prefixed attributes that are associated with
 RDFa Processing in HTML5. If an XML Information Set based RDFa processor is
 used to process these attributes, the following algorithm should be used to
 detect and extract the values of the attributes.

 While processing Infoset Attribute Information Items in Element Information
 Items as described in [RDFA-CORE],

 Section 7.5: Sequence, Step #4 through Step #9:

 	For each Attribute Information Item specific to RDFa in the infoset
 [attributes]
 list that has a [prefix] with
 no value, extract and use the [normalized
 value].

 5.5 DOM Level 1 and Level 2-based Processors

 Most DOM-aware RDFa processors are capable of accessing DOM Level 1
 [DOM-LEVEL-1]
 methods to process attributes on elements. To discover all
 @xmlns:-specified CURIE prefix mappings, the

 Node.attributes

 NamedNodeMap can be iterated over. Each

 Attr.name that
 starts with the text string @xmlns: specifies a CURIE prefix
 mapping. The value to be mapped is the string after the @xmlns:
 substring in the Attr.name variable and the value to be mapped is
 the value of the Attr.value variable.

 The intent of the RDFa processing instructions are to provide a
 set of rules that are as language and toolchain independent as possible. If
 a developer chooses to not use the DOM1 environment mechanism outlined in
 the previous paragraph, they may use the following DOM2 [DOM-LEVEL-2-CORE]
 environment mechanism.

 5.5.1 Extracting URI Mappings via DOM Level 2

 Extracting URI Mappings declared via @xmlns: while operating
 from within a DOM Level 2 based RDFa processor can be achieved using the
 following algorithm:

 While processing each DOM2 [Element]
 as described in [RDFA-CORE],

 Section 7.5: Sequence, Step #2:

 	For each [Attr]
 in the [Node.attributes]
 list that has a [namespace
 prefix] value of @xmlns, create an [IRI mapping] by
 storing the [local
 name] as the value to be mapped, and the [Node.nodeValue]
 as the value to map.

 	For each [Attr]
 in the [Node.attributes]
 list that has a [namespace
 prefix] value of null and a [local
 name] that starts with @xmlns:, create an [IRI mapping] by
 storing the [local name] part with the @xmlns: characters
 removed as the value to be mapped, and the [Node.nodeValue]
 as the value to map.
 Note
This step is unnecessary if the XML and non-XML
 mode DOMs are namespace consistent.

 For example, assume that the following markup is processed by a
 DOM2-based RDFa processor:

 Example 14
<div xmlns:com="https://w3id.org/commerce#" ...

After the markup is processed, there should exist a [URI mapping] in
the [local list of URI mappings] that contains a mapping from
com to https://w3id.org/commerce#.

 5.5.2 Processing RDFa Attributes

 There are a number of non-prefixed attributes that are associated with
 RDFa processing in HTML5. If an DOM2-based RDFa processor is used to
 process these attributes, the following algorithm should be used to detect
 and extract the values of the attributes.

 While processing an element as described in [RDFA-CORE],
 Section 5.5: Sequence,
 Step #3 through Step #9:

 	For each RDFa attribute in the [Node.attributes]
 list that has a [namespace
 prefix] that is null, extract and use [Node.nodeValue]
 as the value.

 Note
When extracting values from @href and
 @src, web authors and developers should
 note that certain values MAY be transformed if accessed via the DOM versus
 a non-DOM processor. The rules for modification of URL values can be
 found in the main HTML5 specification under

 Section 2.5: URLs.

A. About this Document

A.1 History
This section is non-normative.

In early 2004, Mark Birbeck published a document named "RDF in XHTML"
via the XHTML2 Working Group wherein he laid
the groundwork for what would eventually become RDFa (The Resource
Description Framework in Attributes).

In 2006, the work was co-sponsored by the Semantic Web Deployment Working
Group, which began to formalize a technology to express semantic data in
XHTML. This technology was successfully developed and reached consensus at
the W3C, later published as an official W3C Recommendation. While HTML
provides a mechanism to express the structure of a document (title,
paragraphs, links), RDFa provides a mechanism to express the meaning in a
document (people, places, events).

The document, titled "RDF in XHTML: Syntax and Processing" [XHTML-RDFA],
defined a set of attributes and rules for
processing those attributes that resulted in the output of machine-readable
semantic data. While the document applied to XHTML, the attributes and
rules were always intended to operate across any tree-based structure
containing attributes on tree nodes (such as HTML4, SVG and ODF).

While RDFa was initially specified for use in XHTML, adoption by a
number of large organizations on the web spurred RDFa's use in non-XHTML
languages. Its use in HTML4, before an official specification was developed
for those languages, caused concern regarding document conformance.

Over the years, the members of the
RDFa Community had discussed the possibility
of applying
the same attributes and processing rules outlined in the XHTML+RDFa
specification to all HTML family documents. By design, the possibility of a
unified semantic data expression mechanism between all HTML and XHTML
family documents was squarely in the realm of possibility.

An RDFa Working Group was created in 2010 to address the issues concerning
multiple language implementations of RDFa. The XHTML+RDFa document was split
into a base specification, called RDFa Core 1.1 [RDFA-CORE], and thin
specifications that layer above RDFa Core 1.1. The XHTML+RDFa 1.1 specification
[XHTML-RDFA] is an example of such a thin specification. This
document, also a thin specification, is targeted at HTML4, HTML5 and
XHTML5.

This document describes the extensions to the RDFa Core 1.1
specification that permits the use of RDFa in all HTML family documents. By
using the attributes and processing rules described in the RDFa Core 1.1
specification and heeding the minor changes in this document, authors can
generate markup that produces the same semantic data output in
HTML4, HTML5 and XHTML5.

A.2 Change History
This section is non-normative.

2009-10-15: First version of the RDFa for HTML4, HTML5 and XHTML5.

2010-03-04: Updated HTML5 coercion to infoset rules, preservation of
namespaces in infoset and DOM2-based processors, clarifying how to
extract RDFa attributes via infoset, how to extract RDFa attributes via DOM2.

2010-05-02: Inheritance of basic processing rules from RDFa 1.1 [RDFA-CORE],
instead of XHTML+RDFa 1.0 [RDFA-SYNTAX], inclusion of the HTML Default
Vocabulary Terms, inclusion of a HTML 4.01 + RDFa 1.1 DTD for validation purposes.

2010-06-24: Inheritance of basic processing rules from RDFa 1.1 [RDFA-CORE],
instead of XHTML+RDFa 1.0 [RDFA-SYNTAX], inclusion of the HTML Default
Vocabulary Terms, added HTML 4.01 + RDFa 1.1 DTD for validation purposes,
added normative definition of @version attribute.

2010-10-19: Removal of @version attribute, migrated HTML Vocabulary Terms to
RDFa Profile document, added statement to send comments to the HTML WG bug tracker.

2011-01-11: Removed decentralized extensibility issue markers, added
DOM Level 1 prefix mapping extraction algorithm.

2011-04-05: Moved all xmlns: rules into a section titled Backwards
Compatibility and brought spec in-line with latest RDFa Core 1.1 spec.

2011-05-12: Generated Last Call document, no substantive changes.

2011-12-30: Addition of normative dependency for RDFa Lite 1.1.
Addition of rules to allow meta and
link elements in flow and phrasing content as long as they
contain at least one RDFa-specific attribute. Added support for
@datetime and value processing.

2012-03-10: Clarification of where each RDFa attribute is allowed to be
used. Feature at risk warning for HTML4+RDFa DTD-based validation.

2012-09-10: Publishing control of the HTML+RDFa document is handed over
from the HTML WG to the newly re-chartered RDFa WG. DTD-based validation is
removed from the specification.

2012-12-13: Addition of new HTML-specific processing rules for dealing with
XHTML5 vs. HTML5 documents, xml:base, HTML Literals, property and rel/rev on
the same element, and more types for the datetime attribute.

2012-12-27: Added Property Copying section and special processing for
head and body.

2013-01-19: Removed @value processing, added @content overriding @datetime
if present, cleanup and prep for Last Call publication in RDFa WG.

2013-06-06: Applied all Last Call comments and editorial fixes in
preparation for Proposed Recommendation phase.

2013-08-07: Fixed invalid dates, bad grammar, updated status of document
for Recommendation publication.

A.3 Acknowledgments
This section is non-normative.

At the time of publication, the members of the RDFa Working Group were:

Ivan Herman (staff contact), Shane McCarron, Gregg Kellogg,
Niklas Lindström, Steven Pemberton, Manu Sporny (chair), Ted Thibodeau, and
Stéphane Corlosquet.

A great deal of thanks to everyone that provided feedback on the
specification (most of whom are listed below):

Adam Powell, Alex Milowski, Andy Seaborne, Arto Bendiken, Austin William, BAI Xi, Benjamin Adrian, Benjamin Nowack, Bjoern Hoehrmann, Christian Langanke, Christoph Lange, Cindy Lewis, Corey Mwamba, Crisfer Inmobiliaria, Dan Brickley, Daniel Friesen, Dave Beckett, David Wood, D. Grant, Dominik Tomaszuk, Dominique Hazael-Massieux, Doug Schepers, Dr. Olaf , Edward O'Connor, Faye Harris, Felix Sasaki, Gavin Carothers, Grant Robertson, Guus Schreiber, Harry Halpin, Michael Hausenblas, Henri Bergius, Henri Sivonen, Henry Story, Holger Knublauch, Ian Hickson, Irene Celino, Alexander Kroener, Knud Möller, Philip Jägenstedt, Reto Bachmann-Gmür, Ivan Mikhailov, James Leigh, Jeff Sonstein, Jeni Tennison, Jens Haupert, Jochen Rau, John Breslin, John Cowan, John O'Donovan, Jonathan Rees, Julian Reschke, KANZAKI Masahide, Kingsley Idehen, Knud Hinnerk, Landong Zuo, Leif Halvard Silli, Liam R., Lin Clark, Maciej Stachowiak, Mark Nottingham, Markus Gylling, Martin Hepp, Martin McEvoy, Matthias Tylkowski, Darin McBeath, Melvin Carvalho, Michael Chan, Michael Hausenblas, Michael Steidl, Michael™ Smith, Mischa Tuffield, Misha Wolf, Nathan Rixham, Nathan Yergler, Nicholas Stimpson, Noah Mendelsohn, Paul Cotton, Paul Sparrow, Pete Cordell, Peter Frederick, Peter Mika, Peter Occil, Phil Archer, Reece Dunn, Richard Cyganiak, Robert Leif, Robert Weir, Ramanathan V. Guha, Sami Korhonen, Sam Ruby, Sandro Hawke, Sebastian Germesin, Sebastian Heath, Shelley Powers, Simon Grant, Simon Reinhardt, Stefan Schumacher, Tab Atkins Jr., Thomas Adamich, Thomas Baker, Thomas Roessler, Thomas Steiner, Tim Berners-Lee, Toby Inkster, Tom Adamich, Tantek Çelik, Ville Skyttä, Wayne Smith, and Will Clark

B. References
B.1 Normative references
	[DOM-LEVEL-1]
	Scott Isaacson; Steven B Byrne; Mike Champion; Ian Jacobs; Arnaud Le Hors; Gavin Nicol; Jonathan Robie; Robert S Sutor; Chris Wilson; Lauren Wood et al. Document Object Model (DOM) Level 1. 1 October 1998. W3C Recommendation. URL: http://www.w3.org/TR/DOM-Level-1/

	[DOM-LEVEL-2-CORE]
	Arnaud Le Hors; Philippe Le Hégaret; Lauren Wood; Gavin Nicol; Jonathan Robie; Mike Champion; Steven B Byrne et al. Document Object Model (DOM) Level 2 Core Specification. 13 November 2000. W3C Recommendation. URL: http://www.w3.org/TR/DOM-Level-2-Core/

	[HTML5]
	Robin Berjon et al. HTML5. 6 August 2013. W3C Candidate Recommendation. URL: http://www.w3.org/TR/html5/

	[RDFA-CORE]
	Ben Adida; Mark Birbeck; Shane McCarron; Ivan Herman et al. RDFa Core 1.1 - Second Edition. 22 August 2013. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-core/

	[RDFA-LITE]
	Manu Sporny. RDFa Lite 1.1. 7 June 2012. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-lite/

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

	[XML-NAMES11]
	Tim Bray; Dave Hollander; Andrew Layman; Richard Tobin et al. Namespaces in XML 1.1 (Second Edition). 16 August 2006. W3C Recommendation. URL: http://www.w3.org/TR/xml-names11/

B.2 Informative references
	[RDF-CONCEPTS]
	Richard Cyganiak, David Wood, Editors. RDF 1.1 Concepts and Abstract Syntax World Wide Web Consortium (work in progress). 23 July 2013. Last Call Working Draft.

	[RDFA-SYNTAX]
	Ben Adida; Mark Birbeck; Shane McCarron; Steven Pemberton et al. RDFa in XHTML: Syntax and Processing. 14 October 2008. W3C Recommendation. URL: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/

	[TURTLE]
	Eric Prud'hommeaux, Gavin Carothers. Turtle: Terse RDF Triple Language. 19 February 2013. W3C Candidate Recommendation. URL: http://www.w3.org/TR/turtle/

	[XHTML-RDFA]
	Shane McCarron. XHTML+RDFa 1.1 - Second Edition. 22 August 2013. W3C Proposed Edited Recommendation. URL: http://www.w3.org/TR/xhtml-rdfa/

 [image: W3C]

 XHTML+RDFa 1.1 - Second Edition

 Support for RDFa via XHTML Modularization

 W3C Recommendation 22 August 2013

 	This version:

 	http://www.w3.org/TR/2013/REC-xhtml-rdfa-20130822/

 	Latest version:

 	http://www.w3.org/TR/xhtml-rdfa/

 	Previous version:

 	http://www.w3.org/TR/2013/PER-xhtml-rdfa-20130625/

 	Previous recommendation:

 	http://www.w3.org/TR/2012/REC-xhtml-rdfa-20120607/

 	Editor:

 	Shane McCarron, Applied Testing and Technology, Inc., shane@aptest.com

 Please refer to the errata for this document, which may include some normative corrections.

 This document is also available in these non-normative formats:

 XHTML+RDFa, Diff from Previous Recommendation, Postscript version, and PDF version

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2007-2013

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang), All Rights Reserved.
 W3C liability,
 trademark and
 document use rules apply.

 Abstract

RDFa Core 1.1 [RDFA-CORE] defines attributes and syntax for embedding semantic
markup in Host Languages. This document defines one such Host Language. This language
is a superset of XHTML 1.1 [XHTML11-2e], integrating the attributes as defined in RDFa
Core 1.1. This document is intended for authors who want to create
XHTML Family documents that embed rich semantic markup.

Status of This Document

 This section describes the status of this document at the time of its publication. Other
 documents may supersede this document. A list of current W3C publications and the latest revision
 of this technical report can be found in the W3C technical reports
 index at http://www.w3.org/TR/.

This document has been reviewed by W3C Members, by software
developers, and by other W3C groups and interested parties, and is
endorsed by the Director as a W3C Recommendation. It is a stable
document and may be used as reference material or cited from another
document. W3C's role in making the Recommendation is to draw attention
to the specification and to promote its widespread deployment. This
enhances the functionality and interoperability of the Web.

This version represents minor editorial changes
and changes to references. No other changes were made from the
original version of the Recommendation.

This is a revision of Sections 8 and 9 and Appendix A of RDFa Syntax 1.0 [RDFA-SYNTAX].
This document supersedes those sections of the previous
Recommendation. There are a number of substantive differences between
this version and its predecessor, including:

	Inheritance of basic processing rules from [RDFA-CORE].

	The inclusion of an implementation of the markup language using
XML Schema.

	The addition of @lang to be consistent with recent
changes in [XHTML11-2e].

	Removal of the collection of TERMs from this document - instead deferring the
definitions in an RDFa Initial Context document.

A sample test harness is available. This set of tests is
not intended to be exhaustive. Users may find the tests to
be useful examples of RDFa usage.

The
implementation report
used by the director to transition to Recommendation has been
made available. There have been no formal objections to the publication of this document.

 This document was published by the RDF Web Applications Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdfa@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 This document was produced by a group operating under the

 5 February 2004 W3C Patent Policy.

 W3C maintains a public list of any patent disclosures

 made in connection with the deliverables of the group; that page also includes instructions for
 disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains
 Essential Claim(s) must disclose the
 information in accordance with section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction
	2. Conformance	2.1 Document Conformance
	2.2 User Agent Conformance

	3. Additional RDFa Processing Rules
	4. XHTML+RDFa 1.1 Definition
	5. Metainformation Attributes Module	5.1 Metainformation Attributes Collection
	5.2 XHTML RDFa Initial Context

	A. XHTML+RDFa XML Schema	A.1 XHTML Metainformation Attributes Module
	A.2 XHTML+RDFa Schema Content Model Module
	A.3 XHTML+RDFa Schema Modules
	A.4 XHTML+RDFa XML Schema Driver Module

	B. XHTML+RDFa Document Type Definition	B.1 XHTML Metainformation Attributes Module
	B.2 XHTML+RDFa Content Model Module
	B.3 XHTML+RDFa Driver Module
	B.4 SGML Open Catalog Entry for XHTML+RDFa

	C. Deployment Advice
	D. Change History
	E. Acknowledgments
	F. References	F.1 Normative references
	F.2 Informative references

1. Introduction

XHTML+RDFa 1.1 is an XHTML Family markup language. It extends the XHTML 1.1 markup
language with the attributes defined in RDFa Core 1.1. The document also defines an
XHTML Modularization-compatible [XHTML-MODULARIZATION11-2e] module for the RDFa Core
attributes in both XML DTD and XML Schema formats.

2. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
 and notes in this specification are non-normative. Everything else in this specification is
 normative.

 The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY,
 and OPTIONAL in this specification are to be interpreted as described in [RFC2119].

2.1 Document Conformance

A strictly conforming XHTML+RDFa document is a document that
requires only the facilities described as mandatory in this
specification. Such a document satisfies the following
criteria:

 	
The document MUST conform to the constraints expressed in the schemas in
Appendix A - XHTML+RDFa XML Schema and
Appendix B - XHTML+RDFa Document Type Definition.

	
The local part of the root element of the document MUST be
html.

	
The start tag of the root element of the document MUST explicitly
contain a default namespace declaration for the XHTML namespace
[XML-NAMES11].
The namespace URI for XHTML is defined to be
http://www.w3.org/1999/xhtml.

The start tag MAY also contain the
declaration of the
XML Schema Instance Namespace and an XML Schema Instance
schemaLocation attribute [XMLSCHEMA11-2]. Such
an attribute would associate the XHTML namespace
http://www.w3.org/1999/xhtml with the XML Schema at the
URI http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-2.xsd.

	There MAY Be a @version attribute on the html element with the value "XHTML+RDFa 1.1".

Example 1: Example of an XHTML+RDFa 1.1 document
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 version="XHTML+RDFa 1.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/1999/xhtml
 http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-2.xsd"
 lang="en"
 xml:lang="en">
 <head>
 <title>Virtual Library</title>
 </head>
 <body>
 <p>Moved to example.org.</p>
 </body>
</html>

Note that in this example, the XML declaration is included. An XML
declaration like the one above is
not required in all XML documents. XHTML document authors
SHOULD use XML declarations in all their documents.
XHTML document authors MUST use an XML declaration
when the character encoding of the document is other than the default UTF-8 or
UTF-16 and
no encoding is specified by a higher-level protocol.

XHTML+RDFa documents SHOULD be labeled with the Internet Media Type "application/xhtml+xml" as defined in [RFC3236]. For further information on using media types with XHTML Family markup languages, see the informative note [XHTML-MEDIA-TYPES].

2.2 User Agent Conformance

A conforming user agent MUST support all of the features required
in this specification. A conforming user agent must also
support the User Agent conformance requirements as defined in XHTML Modularization
[XHTML-MODULARIZATION11-2e] section on "XHTML Family User Agent
Conformance".

3. Additional RDFa Processing Rules

Documents conforming to the rules in this specification are processed
according to [RDFA-CORE] with the following extensions:

	The default vocabulary IRI is undefined.

	XHTML+RDFa uses an additional initial context by default, http://www.w3.org/2011/rdfa-context/xhtml-rdfa-1.1,
which must be applied after the initial context for [RDFA-CORE]
(http://www.w3.org/2011/rdfa-context/rdfa-1.1).

	The base can be set using the base element as defined in [XHTML-MODULARIZATION11-2e].

	The current language can be set using either the
@lang or @xml:lang attributes.

	In section 7.5, processing step 5,
if no IRI is provided by a resource attribute (e.g., @about, @href, @resource, or @src),
then first check to see if the element is the head or
 body element. If it is, then act as if the new subject is set to the parent object.

	In section 7.5, processing step 6,
if no IRI is provided by a resource attribute (e.g., @about, @href, @resource, or @src),
then first check to see if the element is the head or
 body element. If it is, then act as if the new subject is set to the parent object.

When an XHTML+RDFa document uses @version on the html element,
a conforming RDFa Processor MUST examine the value of this attribute.
If the value matches that of a defined version of XHTML+RDFa, then the
processing rules for that version MUST be used. If the value does not
match a defined version, or there is no @version
attribute, then the processing rules for the most recent version of
XHTML+RDFa must be used.

4. XHTML+RDFa 1.1 Definition

The XHTML+RDFa 1.1 document type is a fully functional document type
with rich semantics. It is a superset of [XHTML11-2e].

The XHTML+RDFa 1.1
document type is made up of the following XHTML modules. The elements,
attributes, and content models associated with these modules
are defined in "XHTML Modularization" [XHTML-MODULARIZATION11-2e].
The elements are listed here for information purposes, but the
definitions
in XHTML Modularization should be considered authoritative.

 	Structure Module

 	body, head, html, title.

 	Text Module

 	abbr, acronym, address, blockquote, br, cite, code, dfn, div, em,
 h1, h2, h3, h4, h5, h6, kbd, p, pre, q, samp, span, strong, var

 	Hypertext Module

 	a. @href is available on all elements.

 	List Module

 	dl, dt, dd, ol, ul, li

 	Object Module

 	object, param

 	Presentation Module

 	b, big, hr, i, small, sub, sup, tt

 	Edit Module

 	del, ins

 	Bidirectional Text Module

 	bdo

 	Forms Module

 	button, fieldset, form, input, label, legend, select, optgroup, option, textarea

 	Table Module

 	caption, col, colgroup, table, tbody, td, tfoot, th, thead, tr

 	Image Module

 	img

 	Client-side Image Map Module

 	area, map

 	Server-side Image Map Module

 	Attribute ismap on img

 	Intrinsic Events Module

 	Events attributes

 	Metainformation Module

 	meta

 	Scripting Module

 	noscript, script

 	Stylesheet Module

 	style element

 	Style Attribute Module Deprecated

 	@style

 	Target Module

 	@target

 	Link Module

 	link

 	Base Module

 	base

 	Metainformation Attributes Module

 	@about, @content, @datatype,
 @typeof, @prefix, @property, @rel,
 @resource, @rev, @vocab are available
 on all elements.

 	Ruby Annotation Module from [RUBY]

 	ruby, rbc, rtc, rb, rt, rp

This specification also adds the lang attribute to the I18N
attribute collection as defined in [XHTML-MODULARIZATION11-2e].
The
lang attribute is defined in [HTML401].
When this attribute
and the xml:lang attribute are specified on the same element, the
xml:lang attribute takes precedence.
When both lang and xml:lang are
specified on the same element, they MUST have the same value.

There are no additional definitions
required by this document type. An implementation of this document type as an
XML Schema is defined in
Appendix A, and as an
XML DTD is defined in
Appendix B.

5. Metainformation Attributes Module

The Metainformation Attributes Module
defines the Metainformation attribute collection
in the format required by [XHTML-MODULARIZATION11-2e].
This collection allows elements to be annotated with metadata
throughout an XHTML Family document. When this module is included
in a markup language,
this collection is added to the Common attribute
collection as defined in [XHTML-MODULARIZATION11-2e].

5.1 Metainformation Attributes Collection

The following attributes are included in the attribute collection, and
take values in the associated datatype:

Metainformation Attribute Collection

		Attributes
		Notes

 	about (SafeCURIEorCURIEorIRI)
		

 	content (CDATA)
		

 	datatype (TERMorCURIEorAbsIRI)
 	If not specified, then the default value is string as defined in [XMLSCHEMA11-2].

 	prefix(NCName ': ' IRI)+
 	

 	property (TERMorCURIEorAbsIRIs)
 	

 	rel (TERMorCURIEorAbsIRIs)
 	

 	resource (SafeCURIEorCURIEorIRI)
		

 	rev (TERMorCURIEorAbsIRIs)
 	

 	typeof (TERMorCURIEorAbsIRIs)
		

 	vocab (IRI)
 	An IRI that defines the prefix to use when a CURIE is specified with no prefix
 and no colon.

An implementation of this module in XML Schema can be
found in Appendix A and in
XML DTD in Appendix B.

5.2 XHTML RDFa Initial Context
This section is non-normative.

This specification defines an RDFa Initial Context. It
is available at http://www.w3.org/2011/rdfa-context/xhtml-rdfa-1.1.

A. XHTML+RDFa XML Schema

This appendix is normative.

This appendix includes an implementation of the
XHTML+RDFa 1.1 language using XML Schema.
It is implemented by combining the XHTML 1.1 Schema
with the XHTML Metainformation Attribute Module.
This is done by using
a content model module, and then a driver module.
There are direct links to the various files for download purposes.
Please note that the files targeted by the "latest version" links may
change slowly over time. See the
W3C XHTML2 Working Group home page for more
information.

A.1 XHTML Metainformation Attributes Module

You can download this version of this file from SCHEMA/xhtml-metaAttributes-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-metaAttributes-2.xsd.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/"
 elementFormDefault="qualified"
>
 <xs:import namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd" />
 <xs:annotation>
 <xs:documentation>
 This is the XML Schema Metainformation Attributes module for XHTML

 $Id: Overview.html,v 1.2 2013-08-15 08:11:45 ivan Exp $
 </xs:documentation>
 <xs:documentation source="xhtml-rdfa-copyright-1.xsd"/>
 </xs:annotation>

 <xs:annotation>
 <xs:documentation>
 XHTML Metainformation Attributes
 </xs:documentation>
 </xs:annotation>

 <xs:attribute name="about" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="content" type="xh11d:CDATA"/>
 <xs:attribute name="datatype" type="xh11d:TERMorCURIEoAbsIRI"/>
 <xs:attribute name="inlist" type="xh11d:CDATA"/>
 <xs:attribute name="typeof" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="prefix" type="xh11d:PREFIX"/>
 <xs:attribute name="property" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="rel" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="resource" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="rev" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="vocab" type="xs:anyURI"/>

 <xs:attributeGroup name="xhtml.metaAttributes.attrib">
 <xs:attribute name="about"/>
 <xs:attribute name="content"/>
 <xs:attribute name="datatype"/>
 <xs:attribute name="inlist"/>
 <xs:attribute name="typeof"/>
 <xs:attribute name="prefix"/>
 <xs:attribute name="property"/>
 <xs:attribute name="rel"/>
 <xs:attribute name="resource"/>
 <xs:attribute name="rev"/>
 <xs:attribute name="vocab"/>
 </xs:attributeGroup>

</xs:schema>

A.2 XHTML+RDFa Schema Content Model Module

You can download this version of this file from SCHEMA/xhtml-rdfa-model-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-model-2.xsd.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/"
 elementFormDefault="qualified" >
 <xs:import
 namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd"/>
 <xs:annotation>
 <xs:documentation>
 This is the XML Schema module of common content models for XHTML11

 $Id: Overview.html,v 1.2 2013-08-15 08:11:45 ivan Exp $
 </xs:documentation>
 <xs:documentation source="xhtml-copyright-1.xsd"/>
 </xs:annotation>
 <xs:annotation>
 <xs:documentation>
 XHTML Document Model
 This module describes the groupings of elements/attributes
 that make up common content models for XHTML elements.
 XHTML has following basic content models:
 xhtml.Inline.mix; character-level elements
 xhtml.Block.mix; block-like elements, e.g., paragraphs and lists
 xhtml.Flow.mix; any block or inline elements
 xhtml.HeadOpts.mix; Head Elements
 xhtml.InlinePre.mix; Special class for pre content model
 xhtml.InlineNoAnchor.mix; Content model for Anchor

 Any groups declared in this module may be used to create
 element content models, but the above are considered 'global'
 (insofar as that term applies here). XHTML has the
 following Attribute Groups
 xhtml.Core.extra.attrib
 xhtml.I18n.extra.attrib
 xhtml.Common.extra

 The above attribute Groups are considered Global
 </xs:documentation>
 </xs:annotation>
 <xs:include schemaLocation="xhtml-metaAttributes-2.xsd">
 <xs:annotation>
 <xs:documentation>
 XHTML Metainformation Modules

 Attributes defined here:
 XHTML RDFa attribtues
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/rdfa-syntax"/>
 </xs:annotation>
 </xs:include>
 <xs:attributeGroup
 name="xhtml.I18n.extra.attrib">
 <xs:annotation>
 <xs:documentation> Extended I18n attribute </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup
 ref="xhtml.dir.attrib">
 <xs:annotation>
 <xs:documentation>
 "dir" Attribute from Bi Directional Text (bdo) Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Common.extra">
 <xs:annotation>
 <xs:documentation> Extended Common Attributes </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup
 ref="xhtml.style.attrib">
 <xs:annotation>
 <xs:documentation>
 "style" attribute from Inline Style Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 	<xs:attributeGroup ref="xhtml.Events.attrib">
			<xs:annotation>
				<xs:documentation>
				Attributes from Events Module
				</xs:documentation>
			</xs:annotation>
		</xs:attributeGroup>
 	<xs:attributeGroup ref="xhtml.metaAttributes.attrib">
			<xs:annotation>
				<xs:documentation>
				Attributes from Metainformation Module
				</xs:documentation>
			</xs:annotation>
		</xs:attributeGroup>
	</xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Core.extra.attrib">
 <xs:annotation>
 <xs:documentation> Extend Core Attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Global.core.extra.attrib">
 <xs:annotation>
 <xs:documentation> Extended Global Core Attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Global.I18n.extra.attrib">
 <xs:annotation>
 <xs:documentation> Extended Global I18n attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Global.Common.extra">
 <xs:annotation>
 <xs:documentation> Extended Global Common Attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:group
 name="xhtml.Head.extra">
 <xs:sequence/>
 </xs:group>
 <xs:group
 name="xhtml.HeadOpts.mix">
 <xs:choice>
 <xs:element name="script"
 type="xhtml.script.type"/>
 <xs:element name="style"
 type="xhtml.style.type"/>
 <xs:element name="meta"
 type="xhtml.meta.type"/>
 <xs:element name="link"
 type="xhtml.link.type"/>
 <xs:element name="object"
 type="xhtml.object.type"/>
 <xs:group
 ref="xhtml.Head.extra"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.head.content">
 <xs:sequence>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:choice>
 <xs:sequence>
 <xs:element name="title"
 minOccurs="1"
 maxOccurs="1"
 type="xhtml.title.type"/>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:sequence
 minOccurs="0">
 <xs:element name="base"
 type="xhtml.base.type"/>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:sequence>
 <xs:sequence>
 <xs:element name="base"
 type="xhtml.base.type"
 minOccurs="1"
 maxOccurs="1"/>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="title"
 minOccurs="1"
 maxOccurs="1"
 type="xhtml.title.type"/>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:choice>
 </xs:sequence>
 </xs:group>
 <!--
 ins and del are used to denote editing changes
 -->
 <xs:group
 name="xhtml.Edit.class">
 <xs:choice>
 <xs:element name="ins"
 type="xhtml.edit.type"/>
 <xs:element name="del"
 type="xhtml.edit.type"/>
 </xs:choice>
 </xs:group>
 <!--
 script and noscript are used to contain scripts
 and alternative content
 -->
 <xs:group
 name="xhtml.Script.class">
 <xs:choice>
 <xs:element name="script"
 type="xhtml.script.type"/>
 <xs:element name="noscript"
 type="xhtml.noscript.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Misc.extra">
 <xs:sequence/>
 </xs:group>
 <!--
 These elements are neither block nor inline, and can
 essentially be used anywhere in the document body.
 -->
 <xs:group
 name="xhtml.Misc.class">
 <xs:choice>
 <xs:group
 ref="xhtml.Edit.class"/>
 <xs:group
 ref="xhtml.Script.class"/>
 <xs:group
 ref="xhtml.Misc.extra"/>
 </xs:choice>
 </xs:group>
 <!-- Inline Elements -->
 <xs:group
 name="xhtml.InlStruct.class">
 <xs:choice>
 <xs:element name="br"
 type="xhtml.br.type"/>
 <xs:element name="span"
 type="xhtml.span.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.InlPhras.class">
 <xs:choice>
 <xs:element name="em"
 type="xhtml.em.type"/>
 <xs:element name="strong"
 type="xhtml.strong.type"/>
 <xs:element name="dfn"
 type="xhtml.dfn.type"/>
 <xs:element name="code"
 type="xhtml.code.type"/>
 <xs:element name="samp"
 type="xhtml.samp.type"/>
 <xs:element name="kbd"
 type="xhtml.kbd.type"/>
 <xs:element name="var"
 type="xhtml.var.type"/>
 <xs:element name="cite"
 type="xhtml.cite.type"/>
 <xs:element name="abbr"
 type="xhtml.abbr.type"/>
 <xs:element name="acronym"
 type="xhtml.acronym.type"/>
 <xs:element name="q"
 type="xhtml.q.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.InlPres.class">
 <xs:choice>
 <xs:element name="tt"
 type="xhtml.InlPres.type"/>
 <xs:element name="i"
 type="xhtml.InlPres.type"/>
 <xs:element name="b"
 type="xhtml.InlPres.type"/>
 <xs:element name="big"
 type="xhtml.InlPres.type"/>
 <xs:element name="small"
 type="xhtml.InlPres.type"/>
 <xs:element name="sub"
 type="xhtml.InlPres.type"/>
 <xs:element name="sup"
 type="xhtml.InlPres.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.I18n.class">
 <xs:sequence>
 <xs:element name="bdo"
 type="xhtml.bdo.type"/>
 </xs:sequence>
 </xs:group>
 <xs:group
 name="xhtml.Anchor.class">
 <xs:sequence>
 <xs:element name="a"
 type="xhtml.a.type"/>
 </xs:sequence>
 </xs:group>
 <xs:group
 name="xhtml.InlSpecial.class">
 <xs:choice>
 <xs:element name="img"
 type="xhtml.img.type"/>
 <xs:element name="map"
 type="xhtml.map.type"/>
 <xs:element name="object"
 type="xhtml.object.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.InlForm.class">
 <xs:choice>
 <xs:element name="input"
 type="xhtml.input.type"/>
 <xs:element name="select"
 type="xhtml.select.type"/>
 <xs:element name="textarea"
 type="xhtml.textarea.type"/>
 <xs:element name="label"
 type="xhtml.label.type"/>
 <xs:element name="button"
 type="xhtml.button.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Inline.extra">
 <xs:sequence/>
 </xs:group>
 <xs:group
 name="xhtml.Ruby.class">
 <xs:sequence>
 <xs:element name="ruby"
 type="xhtml.ruby.type"/>
 </xs:sequence>
 </xs:group>
 <!--
 Inline.class includes all inline elements,
 used as a component in mixes
 -->
 <xs:group
 name="xhtml.Inline.class">
 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>
 <xs:group
 ref="xhtml.InlPhras.class"/>
 <xs:group
 ref="xhtml.InlPres.class"/>
 <xs:group
 ref="xhtml.I18n.class"/>
 <xs:group
 ref="xhtml.Anchor.class"/>
 <xs:group
 ref="xhtml.InlSpecial.class"/>
 <xs:group
 ref="xhtml.InlForm.class"/>
 <xs:group
 ref="xhtml.Ruby.class"/>
 <xs:group
 ref="xhtml.Inline.extra"/>
 </xs:choice>
 </xs:group>
 <!--
 InlNoRuby.class includes all inline elements
 except ruby
 -->
 <xs:group
 name="xhtml.InlNoRuby.class">
 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>
 <xs:group
 ref="xhtml.InlPhras.class"/>
 <xs:group
 ref="xhtml.InlPres.class"/>
 <xs:group
 ref="xhtml.I18n.class"/>
 <xs:group
 ref="xhtml.Anchor.class"/>
 <xs:group
 ref="xhtml.InlSpecial.class"/>
 <xs:group
 ref="xhtml.InlForm.class"/>
 <xs:group
 ref="xhtml.Inline.extra"/>
 </xs:choice>
 </xs:group>
 <!--
 InlinePre.mix
 Used as a component in pre model
 -->
 <xs:group
 name="xhtml.InlinePre.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>
 <xs:group
 ref="xhtml.InlPhras.class"/>
 <xs:element name="tt"
 type="xhtml.InlPres.type"/>
 <xs:element name="i"
 type="xhtml.InlPres.type"/>
 <xs:element name="b"
 type="xhtml.InlPres.type"/>
 <xs:group
 ref="xhtml.I18n.class"/>
 <xs:group
 ref="xhtml.Anchor.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 <xs:element name="map"
 type="xhtml.map.type"/>
 <xs:group
 ref="xhtml.Inline.extra"/>
 </xs:choice>
 </xs:group>
 <!--
 InlNoAnchor.class includes all non-anchor inlines,
 used as a component in mixes
 -->
 <xs:group
 name="xhtml.InlNoAnchor.class">
 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>
 <xs:group
 ref="xhtml.InlPhras.class"/>
 <xs:group
 ref="xhtml.InlPres.class"/>
 <xs:group
 ref="xhtml.I18n.class"/>
 <xs:group
 ref="xhtml.InlSpecial.class"/>
 <xs:group
 ref="xhtml.InlForm.class"/>
 <xs:group
 ref="xhtml.Ruby.class"/>
 <xs:group
 ref="xhtml.Inline.extra"/>
 </xs:choice>
 </xs:group>
 <!--
 InlNoAnchor.mix includes all non-anchor inlines
 -->
 <xs:group
 name="xhtml.InlNoAnchor.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.InlNoAnchor.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <!--
 Inline.mix includes all inline elements, including Misc.class
 -->
 <xs:group
 name="xhtml.Inline.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.Inline.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <!--
 InlNoRuby.mix includes all of inline.mix elements
 except ruby
 -->
 <xs:group
 name="xhtml.InlNoRuby.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.InlNoRuby.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <!--
 In the HTML 4 DTD, heading and list elements were included
 in the block group. The Heading.class and
 List.class groups must now be included explicitly
 on element declarations where desired.
 -->
 <xs:group
 name="xhtml.Heading.class">
 <xs:choice>
 <xs:element name="h1"
 type="xhtml.h1.type"/>
 <xs:element name="h2"
 type="xhtml.h2.type"/>
 <xs:element name="h3"
 type="xhtml.h3.type"/>
 <xs:element name="h4"
 type="xhtml.h4.type"/>
 <xs:element name="h5"
 type="xhtml.h5.type"/>
 <xs:element name="h6"
 type="xhtml.h6.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.List.class">
 <xs:choice>
 <xs:element name="ul"
 type="xhtml.ul.type"/>
 <xs:element name="ol"
 type="xhtml.ol.type"/>
 <xs:element name="dl"
 type="xhtml.dl.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Table.class">
 <xs:choice>
 <xs:element name="table"
 type="xhtml.table.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Form.class">
 <xs:choice>
 <xs:element name="form"
 type="xhtml.form.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Fieldset.class">
 <xs:choice>
 <xs:element name="fieldset"
 type="xhtml.fieldset.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.BlkStruct.class">
 <xs:choice>
 <xs:element name="p"
 type="xhtml.p.type"/>
 <xs:element name="div"
 type="xhtml.div.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.BlkPhras.class">
 <xs:choice>
 <xs:element name="pre"
 type="xhtml.pre.type"/>
 <xs:element name="blockquote"
 type="xhtml.blockquote.type"/>
 <xs:element name="address"
 type="xhtml.address.type"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.BlkPres.class">
 <xs:sequence>
 <xs:element name="hr"
 type="xhtml.hr.type"/>
 </xs:sequence>
 </xs:group>
 <xs:group
 name="xhtml.BlkSpecial.class">
 <xs:choice>
 <xs:group
 ref="xhtml.Table.class"/>
 <xs:group
 ref="xhtml.Form.class"/>
 <xs:group
 ref="xhtml.Fieldset.class"/>
 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Block.extra">
 <xs:sequence/>
 </xs:group>
 <!--
 Block.class includes all block elements,
 used as an component in mixes
 -->
 <xs:group
 name="xhtml.Block.class">
 <xs:choice>
 <xs:group
 ref="xhtml.BlkStruct.class"/>
 <xs:group
 ref="xhtml.BlkPhras.class"/>
 <xs:group
 ref="xhtml.BlkPres.class"/>
 <xs:group
 ref="xhtml.BlkSpecial.class"/>
 <xs:group
 ref="xhtml.Block.extra"/>
 </xs:choice>
 </xs:group>
 <!--
 Block.mix includes all block elements plus %Misc.class;
 -->
 <xs:group
 name="xhtml.Block.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.Heading.class"/>
 <xs:group
 ref="xhtml.List.class"/>
 <xs:group
 ref="xhtml.Block.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <!--
 All Content Elements
 Flow.mix includes all text content, block and inline
 Note that the "any" element included here allows us
 to add data from any other namespace, a necessity
 for compound document creation.
 Note however that it is not possible to add
 to any head level element without further
 modification. To add RDF metadata to the head
 of a document, modify the structure module.
 -->
 <xs:group
 name="xhtml.Flow.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.Heading.class"/>
 <xs:group
 ref="xhtml.List.class"/>
 <xs:group
 ref="xhtml.Block.class"/>
 <xs:group
 ref="xhtml.Inline.class"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <!--
 BlkNoForm.mix includes all non-form block elements,
 plus Misc.class
 -->
 <xs:group
 name="xhtml.BlkNoForm.mix">
 <xs:choice>
 <xs:group
 ref="xhtml.Heading.class"/>
 <xs:group
 ref="xhtml.List.class"/>
 <xs:group
 ref="xhtml.BlkStruct.class"/>
 <xs:group
 ref="xhtml.BlkPhras.class"/>
 <xs:group
 ref="xhtml.BlkPres.class"/>
 <xs:group
 ref="xhtml.Table.class"/>
 <xs:group
 ref="xhtml.Block.extra"/>
 <xs:group
 ref="xhtml.Misc.class"/>
 </xs:choice>
 </xs:group>
 <xs:element name="html"
 type="xhtml.html.type"/>
</xs:schema>

A.3 XHTML+RDFa Schema Modules

You can download this version of this file from SCHEMA/xhtml-rdfa-modules-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-modules-2.xsd.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/" >
 <xs:import namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd" />
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>
 <xs:annotation>
 <xs:documentation>
 This schema includes all modules for XHTML1.1 Document Type.
 $Id: Overview.html,v 1.2 2013-08-15 08:11:45 ivan Exp $
 </xs:documentation>
 <xs:documentation source="xhtml-copyright-1.xsd"/>
 </xs:annotation>
 <xs:annotation>
 <xs:documentation>
 This schema includes all modules (and redefinitions)
 for XHTML1.1 Document Type.
 XHTML1.1 Document Type includes the following Modules

 XHTML Core modules (Required for XHTML Family Conformance)
 + text
 + hypertext
 + lists
 + structure

 Other XHTML modules
 + Edit
 + Bdo
 + Presentational
 + Link
 + Meta
 + Base
 + Scripting
 + Style
 + Image
 + Applet
 + Object
 + Param (Applet/Object modules require Param Module)
 + Tables
 + Target
 + Forms
 + Client side image maps
 + Server side image maps

 </xs:documentation>
 </xs:annotation>
 <xs:include schemaLocation="xhtml-framework-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Schema Framework Component Modules:
 + notations
 + datatypes
 + common attributes
 + character entities
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_commonatts"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-text-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Text module

 The Text module includes declarations for all core
 text container elements and their attributes.

 + block phrasal
 + block structural
 + inline phrasal
 + inline structural

 Elements defined here:
 * address, blockquote, pre, h1, h2, h3, h4, h5, h6
 * div, p
 * abbr, acronym, cite, code, dfn, em, kbd, q, samp, strong, var
 * br, span
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/abstract_modules.html#s_textmodule"/>
 </xs:annotation>
 </xs:include>

 <xs:include schemaLocation="xhtml-list-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Lists module

 Elements defined here:
 * dt, dd, dl, ol, ul, li
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/abstract_modules.html#s_listmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-struct-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Structural module

 Elements defined here:
 * title, head, body, html
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/abstract_modules.html#s_structuremodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.version.attrib">
 <xs:annotation>
 <xs:documentation>
 Redefinition by the XHTML11 Markup (for value of version attr)
 </xs:documentation>
 </xs:annotation>
 <xs:attribute name="version" type="xh11d:CDATA" fixed="XHTML+RDFa 1.1"/>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.body.attlist">
 <xs:attributeGroup ref="xhtml.body.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Body Attlist
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.body.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by XHTML Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.head.attlist">
 <xs:attributeGroup ref="xhtml.I18n.attrib"/>
 <xs:attributeGroup ref="xhtml.id"/>
 <xs:attributeGroup ref="xhtml.class"/>
 <xs:attributeGroup ref="xhtml.title"/>
 <xs:attributeGroup ref="xhtml.Common.extra"/>
 </xs:attributeGroup>
		<xs:attributeGroup name="xhtml.title.attlist">
		 <xs:attributeGroup ref="xhtml.title.attlist"/>
		 <xs:attributeGroup ref="xhtml.class"/>
		 <xs:attributeGroup ref="xhtml.title"/>
		 <xs:attributeGroup ref="xhtml.Common.extra"/>
		</xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-edit-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Edit module

 Elements defined here:
 * ins, del
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_editmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-bdo-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Bidirectional element module

 Elements defined here:
 * bdo
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_bdomodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-pres-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Presentational module

 Elements defined here:
 * hr, b, big, i, small,sub, sup, tt
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_presentationmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-base-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Base module

 Elements defined here:
 * base
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_basemodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.base.attlist">
 <xs:annotation>
 <xs:documentation>
 Changes to XHTML base Attlist
 </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup ref="xhtml.base.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Base Attributes (declared in Base Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.base.target.attlist">
 <xs:annotation>
 <xs:documentation>
 XHTML Target Module - Attribute additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-script-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Scripting module

 Elements defined here:
 * script, noscript
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_scriptmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-style-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Style module

 Elements defined here:
 * style
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_stylemodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-inlstyle-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Style attribute module

 Attribute defined here:
 * style
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_styleattributemodule"/>
 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-image-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Image module

 Elements defined here:
 * img
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_imagemodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.img.attlist">
 <xs:attributeGroup ref="xhtml.img.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Image Attributes (in Image Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.img.csim.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.img.ssimap.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Server Side Image Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:redefine schemaLocation="xhtml-csismap-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Client-side mage maps module

 Elements defined here:
 * area, map
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_imapmodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.area.attlist">
 <xs:attributeGroup ref="xhtml.area.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Area Attributes (in CSI Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.area.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Events Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.area.target.attlist">
 <xs:annotation>
 <xs:documentation>
 Target Module - Area Attribute Additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-ssismap-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Server-side image maps module

 Attributes defined here:
 * ismap on img
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_servermapmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-object-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Object module

 Elements defined here:
 * object
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_objectmodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.object.attlist">
 <xs:attributeGroup ref="xhtml.object.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Object Attlist
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.object.csim.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-param-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Param module

 Elements defined here:
 * param
 </xs:documentation>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-table-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Tables module

 Elements defined here:
 * table, caption, thead, tfoot, tbody, colgroup, col, tr, th, td
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_tablemodule"/>
 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-form-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Forms module

 Elements defined here:
 * form, label, input, select, optgroup, option,
 * textarea, fieldset, legend, button
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_extformsmodule"/>
 </xs:annotation>
 <xs:attributeGroup name="xhtml.form.attlist">
 <xs:annotation>
 <xs:documentation>
 Changes to XHTML Form Attlist
 </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup ref="xhtml.form.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Form Attributes (declared in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.form.events.attlist">
 <xs:annotation>
 <xs:documentation>
 XHTML Events Module - Attribute additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.form.target.attlist">
 <xs:annotation>
 <xs:documentation>
 XHTML Target Module - Attribute additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.input.attlist">
 <xs:annotation>
 <xs:documentation>
 Changes to XHTML Form Input Element
 </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup ref="xhtml.input.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Input Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.input.csim.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.input.ssimap.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Server Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.input.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.label.attlist">
 <xs:attributeGroup ref="xhtml.label.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Label Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.label.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.select.attlist">
 <xs:attributeGroup ref="xhtml.select.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Select Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.select.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.textarea.attlist">
 <xs:attributeGroup ref="xhtml.textarea.attlist">
 <xs:annotation>
 <xs:documentation>
 Original TextArea Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.textarea.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.button.attlist">
 <xs:attributeGroup ref="xhtml.button.attlist">
 <xs:annotation>
 <xs:documentation>
 Original Button Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.button.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-ruby-basic-1.xsd">
 <xs:annotation>
 <xs:documentation>
 Ruby module

 Elements defined here:
 * ruby, rbc, rtc, rb, rt, rp

 Note that either Ruby or Basic Ruby should be used but not both
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-ruby-20010531/#simple-ruby1"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-events-1.xsd">
 <xs:annotation>
 <xs:documentation>
 XHTML Events Modules

 Attributes defined here:
 XHTML Event Types
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_intrinsiceventsmodule"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-metaAttributes-1.xsd">
 <xs:annotation>
 <xs:documentation>
 XHTML Metainformation Modules

 Attributes defined here:
 XHTML RDFa attribtues
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/rdfa-syntax"/>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-target-1.xsd">
 <xs:annotation>
 <xs:documentation>
 XHTML Target Attribute Module

 Attributes defined here:
 target
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_targetmodule"/>
 </xs:annotation>
 </xs:include>
</xs:schema>

A.4 XHTML+RDFa XML Schema Driver Module

You can download this version of this file from SCHEMA/xhtml-rdfa-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-2.xsd.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.w3.org/1999/xhtml"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/" xmlns="http://www.w3.org/1999/xhtml"
 elementFormDefault="qualified">
 <xs:annotation>
 <xs:documentation> This is the XML Schema driver for XHTML + RDFa Please use this namespace
 for XHTML elements: "http://www.w3.org/1999/xhtml" $Id: xhtml-rdfa-1.xsd,v 1.2
 2008/07/02 13:26:46 ahby Exp $ </xs:documentation>
 <xs:documentation source="xhtml-copyright-1.xsd"/>
 </xs:annotation>
 <xs:annotation>
 <xs:documentation> This is the Schema Driver file for XHTML + RDFa Document Type This schema
 + imports external schemas (xml.xsd) + refedines (and include)s schema modules for
 XHTML1.1 Document Type. + includes Schema for Named content model for the XHTML1.1
 Document Type XHTML1.1 Document Type includes the following Modules XHTML Core modules
 (Required for XHTML Family Conformance) + text + hypertext + lists + structure Other
 XHTML modules + Edit + Bdo + Presentational + Link + Meta + Base + Scripting + Style +
 Image + Applet + Object + Param (Applet/Object modules require Param Module) + Tables +
 Forms + Client side image maps + Server side image maps + Ruby </xs:documentation>
 </xs:annotation>
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd">
 <xs:annotation>
 <xs:documentation> This import brings in the XML namespace attributes The XML attributes
 are used by various modules. </xs:documentation>
 </xs:annotation>
 </xs:import>
 <xs:import namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd"/>
 <xs:include schemaLocation="xhtml-rdfa-model-2.xsd">
 <xs:annotation>
 <xs:documentation> Document Model module for the XHTML+RDFa Document Type. This schema
 file defines all named models used by XHTML Modularization Framework for XHTML+RDFa
 Document Type </xs:documentation>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-rdfa-modules-2.xsd">
 <xs:annotation>
 <xs:documentation> Schema that includes all modules (and redefinitions) for XHTML1.1
 Document Type. </xs:documentation>
 </xs:annotation>
 </xs:include>
 <!-- link, meta, and a need to be defined directly here -->
 <xs:attributeGroup name="xhtml.a.attlist">
 <xs:attributeGroup ref="xhtml.Common.attrib"/>
 <xs:attribute name="href" type="xh11d:URI"/>
 <xs:attribute name="charset" type="xh11d:Charset"/>
 <xs:attribute name="type" type="xh11d:ContentType"/>
 <xs:attribute name="hreflang" type="xh11d:LanguageCode"/>
 <xs:attribute name="accesskey" type="xh11d:Character"/>
 <xs:attribute name="tabindex" type="xh11d:Number"/>
 <xs:attributeGroup ref="xhtml.a.csim.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.a.events.attlist">
 <xs:annotation>
 <xs:documentation>
 Redefinition by XHTML Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.a.target.attlist">
 <xs:annotation>
 <xs:documentation>
 Target Module - A Attribute Additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:group name="xhtml.a.content">
 <xs:sequence>
 <xs:group ref="xhtml.InlNoAnchor.mix" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:group>
 <xs:complexType name="xhtml.a.type" mixed="true">
 <xs:group ref="xhtml.a.content"/>
 <xs:attributeGroup ref="xhtml.a.attlist"/>
 </xs:complexType>
 <xs:attributeGroup name="xhtml.link.attlist">
 <xs:attributeGroup ref="xhtml.Common.attrib"/>
 <xs:attribute name="charset" type="xh11d:Charset"/>
 <xs:attribute name="href" type="xh11d:URI"/>
 <xs:attribute name="hreflang" type="xh11d:LanguageCode"/>
 <xs:attribute name="type" type="xh11d:ContentType"/>
 <xs:attribute name="media" type="xh11d:MediaDesc"/>
 </xs:attributeGroup>
 <xs:group name="xhtml.link.content">
 <xs:sequence/>
 </xs:group>
 <xs:complexType name="xhtml.link.type">
 <xs:group ref="xhtml.link.content"/>
 <xs:attributeGroup ref="xhtml.link.attlist"/>
 </xs:complexType>
 <xs:attributeGroup name="xhtml.meta.attlist">
 <xs:attributeGroup ref="xhtml.I18n.attrib"/>
 <xs:attribute ref="xml:space"/>
 <xs:attribute name="http-equiv" type="xs:NMTOKEN"/>
 <xs:attribute name="name" type="xs:NMTOKEN"/>
 <xs:attribute name="content" type="xh11d:CDATA" use="required"/>
 <xs:attribute name="scheme" type="xh11d:CDATA"/>
 <xs:attribute name="about" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="datatype" type="xh11d:TERMorCURIEoAbsIRI"/>
 <xs:attribute name="typeof" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="prefix" type="xh11d:PREFIX"/>
 <xs:attribute name="property" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="rel" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="resource" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="rev" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="vocab" type="xs:anyURI"/>
 </xs:attributeGroup>
 <xs:group name="xhtml.meta.content">
 <xs:sequence/>
 </xs:group>
 <xs:complexType name="xhtml.meta.type">
 <xs:group ref="xhtml.meta.content"/>
 <xs:attributeGroup ref="xhtml.meta.attlist"/>
 </xs:complexType>
</xs:schema>

B. XHTML+RDFa Document Type Definition

This appendix includes an implementation of the
XHTML+RDFa 1.1 language as an XML DTD.
It is implemented by combining the XHTML 1.1 DTD
with the XHTML Metainformation Attribute Module.
This is done by using
a content model module, and then a driver module.
There are direct links to the various files for download purposes.
Please note that the files targeted by the "latest version" links may
change slowly over time. See the
W3C XHTML2 Working Group home page for more
information.

B.1 XHTML Metainformation Attributes Module

You can download this version of this file from DTD/xhtml-metaAttributes-2.mod. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-metaAttributes-2.mod.
<!-- .. -->
<!-- XHTML MetaAttributes Module ... -->
<!-- file: xhtml-metaAttributes-1.mod

 This is XHTML-RDFa, modules to annotate XHTML family documents.
 Copyright 2007-2008 W3C (MIT, ERCIM, Keio), All Rights Reserved.
 Revision: $Id: Overview.html,v 1.2 2013-08-15 08:11:45 ivan Exp $

 This DTD module is identified by the PUBLIC and SYSTEM identifiers:

 PUBLIC "-//W3C//ENTITIES XHTML MetaAttributes 1.0//EN"
 SYSTEM "http://www.w3.org/MarkUp/DTD/xhtml-metaAttributes-1.mod"

 Revisions:
 (none)
 ... -->

<!ENTITY % XHTML.global.attrs.prefixed "IGNORE" >

<!-- Placeholder Compact URI-related types -->
<!ENTITY % CURIE.datatype "CDATA" >
<!ENTITY % CURIEs.datatype "CDATA" >
<!ENTITY % CURIEorIRI.datatype "CDATA" >
<!ENTITY % CURIEorIRIs.datatype "CDATA" >
<!ENTITY % IRI.datatype "CDATA" >
<!ENTITY % IRIs.datatype "CDATA" >
<!ENTITY % PREFIX.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRI.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRIs.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsIRI.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsIRIs.datatype "CDATA" >

<!-- Common Attributes

 This module declares a collection of meta-information related
 attributes.

 %NS.decl.attrib; is declared in the XHTML Qname module.

	 This file also includes declarations of "global" versions of the
 attributes. The global versions of the attributes are for use on
 elements in other namespaces.
-->

<!ENTITY % about.attrib
 "about %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.about.attrib
 "%XHTML.prefix;:about %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"
>
]]>

<!ENTITY % typeof.attrib
 "typeof %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.typeof.attrib
 "%XHTML.prefix;:typeof %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
]]>

<!ENTITY % property.attrib
 "property %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.property.attrib
 "%XHTML.prefix;:property %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
]]>

<!ENTITY % resource.attrib
 "resource %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.resource.attrib
 "%XHTML.prefix;:resource %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"
>
]]>

<!ENTITY % content.attrib
 "content CDATA #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.content.attrib
 "%XHTML.prefix;:content CDATA #IMPLIED"
>
]]>

<!ENTITY % datatype.attrib
 "datatype %TERMorCURIEorAbsIRI.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.datatype.attrib
 "%XHTML.prefix;:datatype %TERMorCURIEorAbsIRI.datatype; #IMPLIED"
>
]]>

<!ENTITY % inlist.attrib
 "inlist CDATA #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.inlist.attrib
 "%XHTML.prefix;:inlist CDATA #IMPLIED"
>
]]>

<!ENTITY % rel.attrib
 "rel %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.rel.attrib
 "%XHTML.prefix;:rel %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
]]>

<!ENTITY % rev.attrib
 "rev %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.rev.attrib
 "%XHTML.prefix;:rev %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"
>
]]>

<!ENTITY % prefix.attrib
 "prefix %PREFIX.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.prefix.attrib
 "%XHTML.prefix;:prefix %PREFIX.datatype; #IMPLIED"
>
]]>

<!ENTITY % vocab.attrib
 "vocab %IRI.datatype; #IMPLIED"
>

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.vocab.attrib
 "%XHTML.prefix;:vocab %IRI.datatype; #IMPLIED"
>
]]>

<!ENTITY % Metainformation.extra.attrib "" >

<!ENTITY % Metainformation.attrib
 "%about.attrib;
 %content.attrib;
 %datatype.attrib;
	 %inlist.attrib;
 %typeof.attrib;
 %prefix.attrib;
 %property.attrib;
 %rel.attrib;
 %resource.attrib;
 %rev.attrib;
 %vocab.attrib;
 %Metainformation.extra.attrib;"
>

<!ENTITY % XHTML.global.metainformation.extra.attrib "" >

<![%XHTML.global.attrs.prefixed;[

<!ENTITY % XHTML.global.metainformation.attrib
 "%XHTML.global.about.attrib;
 %XHTML.global.content.attrib;
 %XHTML.global.datatype.attrib;
 %XHTML.global.inlist.attrib;
 %XHTML.global.typeof.attrib;
 %XHTML.global.prefix.attrib;
 %XHTML.global.property.attrib;
 %XHTML.global.rel.attrib;
 %XHTML.global.resource.attrib;
 %XHTML.global.rev.attrib;
 %XHTML.global.vocab.attrib;
 %XHTML.global.metainformation.extra.attrib;"
>
]]>

<!ENTITY % XHTML.global.metainformation.attrib "" >

<!-- end of xhtml-metaAttributes-1.mod -->

B.2 XHTML+RDFa Content Model Module

You can download this version of this file from DTD/xhtml-rdfa-model-2.mod. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-rdfa-model-2.mod.
<!-- ... -->
<!-- XHTML+RDFa Document Model Module -->
<!-- file: xhtml-rdfa-model-2.mod

 This is XHTML+RDFa.
 Copyright 1998-2010 W3C (MIT, ERCIM, Keio), All Rights Reserved.
 Revision: $Id: Overview.html,v 1.2 2013-08-15 08:11:45 ivan Exp $ SMI

 This DTD module is identified by the PUBLIC and SYSTEM identifiers:

 PUBLIC "-//W3C//ENTITIES XHTML+RDFa Document Model 1.1//EN"
 SYSTEM "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-model-2.mod"

 Revisions:
 (none)
 ... -->

<!-- XHTML+RDFa Document Model

 This module describes the groupings of elements that make up
 common content models for XHTML elements.

 XHTML has three basic content models:

 %Inline.mix; character-level elements
 %Block.mix; block-like elements, eg., paragraphs and lists
 %Flow.mix; any block or inline elements

 Any parameter entities declared in this module may be used
 to create element content models, but the above three are
 considered 'global' (insofar as that term applies here).

 The reserved word '#PCDATA' (indicating a text string) is now
 included explicitly with each element declaration that is
 declared as mixed content, as XML requires that this token
 occur first in a content model specification.
-->
<!-- Extending the Model

 While in some cases this module may need to be rewritten to
 accommodate changes to the document model, minor extensions
 may be accomplished by redeclaring any of the three *.extra;
 parameter entities to contain extension element types as follows:

 %Misc.extra; whose parent may be any block or
 inline element.

 %Inline.extra; whose parent may be any inline element.

 %Block.extra; whose parent may be any block element.

 If used, these parameter entities must be an OR-separated
 list beginning with an OR separator ("|"), eg., "| a | b | c"

 All block and inline *.class parameter entities not part
 of the *struct.class classes begin with "| " to allow for
 exclusion from mixes.
-->

<!-- Optional Elements in head -->

<!ENTITY % HeadOpts.mix
 "(%script.qname; | %style.qname; | %meta.qname;
 | %link.qname; | %object.qname;)*"
>

<!-- Miscellaneous Elements -->

<!-- ins and del are used to denote editing changes
-->
<!ENTITY % Edit.class "| %ins.qname; | %del.qname;" >

<!-- script and noscript are used to contain scripts
 and alternative content
-->
<!ENTITY % Script.class "| %script.qname; | %noscript.qname;" >

<!ENTITY % Misc.extra "" >

<!-- These elements are neither block nor inline, and can
 essentially be used anywhere in the document body.
-->
<!ENTITY % Misc.class
 "%Edit.class;
 %Script.class;
 %Misc.extra;"
>

<!-- Inline Elements -->

<!ENTITY % InlStruct.class "%br.qname; | %span.qname;" >

<!ENTITY % InlPhras.class
 "| %em.qname; | %strong.qname; | %dfn.qname; | %code.qname;
 | %samp.qname; | %kbd.qname; | %var.qname; | %cite.qname;
 | %abbr.qname; | %acronym.qname; | %q.qname;" >

<!ENTITY % InlPres.class
 "| %tt.qname; | %i.qname; | %b.qname; | %big.qname;
 | %small.qname; | %sub.qname; | %sup.qname;" >

<!ENTITY % I18n.class "| %bdo.qname;" >

<!ENTITY % Anchor.class "| %a.qname;" >

<!ENTITY % InlSpecial.class
 "| %img.qname; | %map.qname;
 | %object.qname;" >

<!ENTITY % InlForm.class
 "| %input.qname; | %select.qname; | %textarea.qname;
 | %label.qname; | %button.qname;" >

<!ENTITY % Inline.extra "" >

<!ENTITY % Ruby.class "| %ruby.qname;" >

<!-- %Inline.class; includes all inline elements,
 used as a component in mixes
-->
<!ENTITY % Inline.class
 "%InlStruct.class;
 %InlPhras.class;
 %InlPres.class;
 %I18n.class;
 %Anchor.class;
 %InlSpecial.class;
 %InlForm.class;
 %Ruby.class;
 %Inline.extra;"
>

<!-- %InlNoRuby.class; includes all inline elements
 except ruby, used as a component in mixes
-->
<!ENTITY % InlNoRuby.class
 "%InlStruct.class;
 %InlPhras.class;
 %InlPres.class;
 %I18n.class;
 %Anchor.class;
 %InlSpecial.class;
 %InlForm.class;
 %Inline.extra;"
>

<!-- %NoRuby.content; includes all inlines except ruby
-->
<!ENTITY % NoRuby.content
 "(#PCDATA
 | %InlNoRuby.class;
 %Misc.class;)*"
>

<!-- %InlNoAnchor.class; includes all non-anchor inlines,
 used as a component in mixes
-->
<!ENTITY % InlNoAnchor.class
 "%InlStruct.class;
 %InlPhras.class;
 %InlPres.class;
 %I18n.class;
 %InlSpecial.class;
 %InlForm.class;
 %Ruby.class;
 %Inline.extra;"
>

<!-- %InlNoAnchor.mix; includes all non-anchor inlines
-->
<!ENTITY % InlNoAnchor.mix
 "%InlNoAnchor.class;
 %Misc.class;"
>

<!-- %Inline.mix; includes all inline elements, including %Misc.class;
-->
<!ENTITY % Inline.mix
 "%Inline.class;
 %Misc.class;"
>

<!-- Block Elements -->

<!-- In the HTML 4.0 DTD, heading and list elements were included
 in the %block; parameter entity. The %Heading.class; and
 %List.class; parameter entities must now be included explicitly
 on element declarations where desired.
-->

<!ENTITY % Heading.class
 "%h1.qname; | %h2.qname; | %h3.qname;
 | %h4.qname; | %h5.qname; | %h6.qname;" >

<!ENTITY % List.class "%ul.qname; | %ol.qname; | %dl.qname;" >

<!ENTITY % Table.class "| %table.qname;" >

<!ENTITY % Form.class "| %form.qname;" >

<!ENTITY % Fieldset.class "| %fieldset.qname;" >

<!ENTITY % BlkStruct.class "%p.qname; | %div.qname;" >

<!ENTITY % BlkPhras.class
 "| %pre.qname; | %blockquote.qname; | %address.qname;" >

<!ENTITY % BlkPres.class "| %hr.qname; " >

<!ENTITY % BlkSpecial.class
 "%Table.class;
 %Form.class;
 %Fieldset.class;"
>

<!ENTITY % Block.extra "" >

<!-- %Block.class; includes all block elements,
 used as an component in mixes
-->
<!ENTITY % Block.class
 "%BlkStruct.class;
 %BlkPhras.class;
 %BlkPres.class;
 %BlkSpecial.class;
 %Block.extra;"
>

<!-- %Block.mix; includes all block elements plus %Misc.class;
-->
<!ENTITY % Block.mix
 "%Heading.class;
 | %List.class;
 | %Block.class;
 %Misc.class;"
>

<!-- All Content Elements -->

<!-- %Flow.mix; includes all text content, block and inline
-->
<!ENTITY % Flow.mix
 "%Heading.class;
 | %List.class;
 | %Block.class;
 | %Inline.class;
 %Misc.class;"
>
<!-- end of xhtml-rdfa-model-2.mod -->

B.3 XHTML+RDFa Driver Module

You can download this version of this file from DTD/xhtml-rdfa-2.dtd. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd.
<!-- ... -->
<!-- XHTML 1.1 + RDFa DTD ... -->
<!-- file: xhtml-rdfa-2.dtd
-->

<!-- XHTML 1.1 + RDFa DTD

 This is an example markup language combining XHTML 1.1 and the RDFa
 modules.

 XHTML+RDFa
 Copyright 1998-2010 World Wide Web Consortium
 (Massachusetts Institute of Technology, European Research Consortium
 for Informatics and Mathematics, Keio University).
 All Rights Reserved.

 Permission to use, copy, modify and distribute the XHTML DTD and its
 accompanying documentation for any purpose and without fee is hereby
 granted in perpetuity, provided that the above copyright notice and
 this paragraph appear in all copies. The copyright holders make no
 representation about the suitability of the DTD for any purpose.

 It is provided "as is" without expressed or implied warranty.

-->
<!-- This is the driver file for version 1 of the XHTML + RDFa DTD.

 Please use this public identifier to identify it:

 "-//W3C//DTD XHTML+RDFa 1.1//EN"
-->
<!ENTITY % XHTML.version "XHTML+RDFa 1.1" >

<!-- Use this URI to identify the default namespace:

 "http://www.w3.org/1999/xhtml"

 See the Qualified Names module for information
 on the use of namespace prefixes in the DTD.

	 Note that XHTML namespace elements are not prefixed by default,
	 but the XHTML namespace prefix is defined as "xhtml" so that
	 other markup languages can extend this one and use the XHTML
	 prefixed global attributes if required.

-->
<!ENTITY % NS.prefixed "IGNORE" >
<!ENTITY % XHTML.prefix "xhtml" >

<!-- Be sure to include prefixed global attributes - we don't need
 them, but languages that extend XHTML 1.1 might.
-->
<!ENTITY % XHTML.global.attrs.prefixed "INCLUDE" >

<!-- Reserved for use with the XLink namespace:
-->
<!ENTITY % XLINK.xmlns "" >
<!ENTITY % XLINK.xmlns.attrib "" >

<!-- For example, if you are using XHTML 1.1 directly, use the public
 identifier in the DOCTYPE declaration, with the namespace declaration
 on the document element to identify the default namespace:

 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en">
 ...
 </html>

 Revisions:
 (none)
-->

<!-- reserved for future use with document profiles -->
<!ENTITY % XHTML.profile "" >

<!-- ensure XHTML Notations are disabled -->
<!ENTITY % xhtml-notations.module "IGNORE" >

<!-- Bidirectional Text features
 This feature-test entity is used to declare elements
 and attributes used for bidirectional text support.
-->
<!ENTITY % XHTML.bidi "INCLUDE" >

<!-- ::: -->

<!-- Pre-Framework Redeclaration placeholder -->
<!-- this serves as a location to insert markup declarations
 into the DTD prior to the framework declarations.
-->
<!ENTITY % xhtml-prefw-redecl.module "IGNORE" >
<!ENTITY % xhtml-prefw-redecl.mod "" >
<![%xhtml-prefw-redecl.module;[
%xhtml-prefw-redecl.mod;
<!-- end of xhtml-prefw-redecl.module -->]]>

<!-- we need the datatypes now -->
<!ENTITY % xhtml-datatypes.module "INCLUDE" >
<![%xhtml-datatypes.module;[
<!ENTITY % xhtml-datatypes.mod
 PUBLIC "-//W3C//ENTITIES XHTML Datatypes 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-datatypes-1.mod" >
%xhtml-datatypes.mod;]]>

<!-- bring in the RDFa attributes cause we need them in Common -->
<!ENTITY % xhtml-metaAttributes.module "INCLUDE" >
<![%xhtml-metaAttributes.module;[
<!ENTITY % xhtml-metaAttributes.mod
 PUBLIC "-//W3C//ENTITIES XHTML MetaAttributes 1.1//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-metaAttributes-2.mod" >
%xhtml-metaAttributes.mod;]]>

<!ENTITY % xhtml-events.module "INCLUDE" >

<!ENTITY % Common.extra.attrib
 "href %URI.datatype; #IMPLIED
 %Metainformation.attrib;"
>
<!-- adding the lang attribute into the I18N collection -->

<!ENTITY % lang.attrib
 "xml:lang %LanguageCode.datatype; #IMPLIED
 lang %LanguageCode.datatype; #IMPLIED"
>

<!-- Inline Style Module .. -->
<!ENTITY % xhtml-inlstyle.module "INCLUDE" >
<![%xhtml-inlstyle.module;[
<!ENTITY % xhtml-inlstyle.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Inline Style 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-inlstyle-1.mod" >
%xhtml-inlstyle.mod;]]>

<!-- declare Document Model module instantiated in framework
-->
<!ENTITY % xhtml-model.mod
 PUBLIC "-//W3C//ENTITIES XHTML+RDFa Document Model 1.1//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-model-2.mod" >

<!-- Modular Framework Module (required) -->
<!ENTITY % xhtml-framework.module "INCLUDE" >
<![%xhtml-framework.module;[
<!ENTITY % xhtml-framework.mod
 PUBLIC "-//W3C//ENTITIES XHTML Modular Framework 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-framework-1.mod" >
%xhtml-framework.mod;]]>

<!-- Post-Framework Redeclaration placeholder -->
<!-- this serves as a location to insert markup declarations
 into the DTD following the framework declarations.
-->
<!ENTITY % xhtml-postfw-redecl.module "IGNORE" >
<!ENTITY % xhtml-postfw-redecl.mod "">
<![%xhtml-postfw-redecl.module;[
%xhtml-postfw-redecl.mod;
<!-- end of xhtml-postfw-redecl.module -->]]>

<!-- Text Module (Required) -->
<!ENTITY % xhtml-text.module "INCLUDE" >
<![%xhtml-text.module;[
<!ENTITY % xhtml-text.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Text 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-text-1.mod" >
%xhtml-text.mod;]]>

<!-- Hypertext Module (required) -->
<!ENTITY % a.attlist "IGNORE" >
<!ENTITY % xhtml-hypertext.module "INCLUDE" >
<![%xhtml-hypertext.module;[
<!ENTITY % xhtml-hypertext.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Hypertext 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-hypertext-1.mod" >
%xhtml-hypertext.mod;]]>
<!ATTLIST %a.qname;
 %Common.attrib;
 charset %Charset.datatype; #IMPLIED
 type %ContentType.datatype; #IMPLIED
 hreflang %LanguageCode.datatype; #IMPLIED
 accesskey %Character.datatype; #IMPLIED
 tabindex %Number.datatype; #IMPLIED
>

<!-- Lists Module (required) -->
<!ENTITY % xhtml-list.module "INCLUDE" >
<![%xhtml-list.module;[
<!ENTITY % xhtml-list.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Lists 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-list-1.mod" >
%xhtml-list.mod;]]>

<!-- ::: -->

<!-- Edit Module .. -->
<!ENTITY % xhtml-edit.module "INCLUDE" >
<![%xhtml-edit.module;[
<!ENTITY % xhtml-edit.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Editing Elements 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-edit-1.mod" >
%xhtml-edit.mod;]]>

<!-- BIDI Override Module -->
<!ENTITY % xhtml-bdo.module "%XHTML.bidi;" >
<![%xhtml-bdo.module;[
<!ENTITY % xhtml-bdo.mod
 PUBLIC "-//W3C//ELEMENTS XHTML BIDI Override Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-bdo-1.mod" >
%xhtml-bdo.mod;]]>

<!-- Ruby Module .. -->
<!ENTITY % Ruby.common.attlists "INCLUDE" >
<!ENTITY % Ruby.common.attrib "%Common.attrib;" >
<!ENTITY % xhtml-ruby.module "INCLUDE" >
<![%xhtml-ruby.module;[
<!ENTITY % xhtml-ruby.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Ruby 1.0//EN"
 "http://www.w3.org/TR/ruby/xhtml-ruby-1.mod" >
%xhtml-ruby.mod;]]>

<!-- Presentation Module .. -->
<!ENTITY % xhtml-pres.module "INCLUDE" >
<![%xhtml-pres.module;[
<!ENTITY % xhtml-pres.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Presentation 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-pres-1.mod" >
%xhtml-pres.mod;]]>

<!ENTITY % link.attlist "IGNORE" >
<!-- Link Element Module .. -->
<!ENTITY % xhtml-link.module "INCLUDE" >
<![%xhtml-link.module;[
<!ENTITY % xhtml-link.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Link Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-link-1.mod" >
%xhtml-link.mod;]]>

<!ATTLIST %link.qname;
 %Common.attrib;
 charset %Charset.datatype; #IMPLIED
 hreflang %LanguageCode.datatype; #IMPLIED
 type %ContentType.datatype; #IMPLIED
 media %MediaDesc.datatype; #IMPLIED
>

<!-- Document Metainformation Module -->
<!ENTITY % meta.attlist "IGNORE" >
<!ENTITY % xhtml-meta.module "INCLUDE" >
<![%xhtml-meta.module;[
<!ENTITY % xhtml-meta.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Metainformation 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-meta-1.mod" >
%xhtml-meta.mod;]]>
<!ATTLIST %meta.qname;
	 %Common.attrib;
 http-equiv NMTOKEN #IMPLIED
 name NMTOKEN #IMPLIED
 scheme CDATA #IMPLIED
>

<!-- Base Element Module .. -->
<!ENTITY % xhtml-base.module "INCLUDE" >
<![%xhtml-base.module;[
<!ENTITY % xhtml-base.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Base Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-base-1.mod" >
%xhtml-base.mod;]]>

<!-- Scripting Module ... -->
<!ENTITY % script.attlist "IGNORE" >
<!ENTITY % xhtml-script.module "INCLUDE" >
<![%xhtml-script.module;[
<!ENTITY % xhtml-script.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Scripting 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-script-1.mod" >
%xhtml-script.mod;]]>

<!ATTLIST %script.qname;
 %XHTML.xmlns.attrib;
	 %id.attrib;
 %Metainformation.attrib;
 href %URI.datatype; #IMPLIED
 xml:space (preserve) #FIXED 'preserve'
 charset %Charset.datatype; #IMPLIED
 type %ContentType.datatype; #REQUIRED
 src %URI.datatype; #IMPLIED
 defer (defer) #IMPLIED
>

<!-- Style Sheets Module ... -->
<!ENTITY % style.attlist "IGNORE" >
<!ENTITY % xhtml-style.module "INCLUDE" >
<![%xhtml-style.module;[
<!ENTITY % xhtml-style.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Style Sheets 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-style-1.mod" >
%xhtml-style.mod;]]>
<!ATTLIST %style.qname;
 %XHTML.xmlns.attrib;
 %id.attrib;
 %title.attrib;
 %I18n.attrib;
 %Metainformation.attrib;
 href %URI.datatype; #IMPLIED
 xml:space (preserve) #FIXED 'preserve'
 type %ContentType.datatype; #REQUIRED
 media %MediaDesc.datatype; #IMPLIED
>

<!-- Image Module ... -->
<!ENTITY % xhtml-image.module "INCLUDE" >
<![%xhtml-image.module;[
<!ENTITY % xhtml-image.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Images 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-image-1.mod" >
%xhtml-image.mod;]]>

<!-- Client-side Image Map Module -->
<!ENTITY % area.attlist "IGNORE" >

<!ENTITY % xhtml-csismap.module "INCLUDE" >
<![%xhtml-csismap.module;[
<!ENTITY % xhtml-csismap.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Client-side Image Maps 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-csismap-1.mod" >
%xhtml-csismap.mod;]]>

<!ATTLIST %area.qname;
 %Common.attrib;
 shape %Shape.datatype; 'rect'
 coords %Coords.datatype; #IMPLIED
 nohref (nohref) #IMPLIED
 alt %Text.datatype; #REQUIRED
 tabindex %Number.datatype; #IMPLIED
 accesskey %Character.datatype; #IMPLIED
>

<!-- Server-side Image Map Module -->
<!ENTITY % xhtml-ssismap.module "INCLUDE" >
<![%xhtml-ssismap.module;[
<!ENTITY % xhtml-ssismap.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Server-side Image Maps 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-ssismap-1.mod" >
%xhtml-ssismap.mod;]]>

<!-- Param Element Module -->
<!ENTITY % param.attlist "IGNORE" >
<!ENTITY % xhtml-param.module "INCLUDE" >
<![%xhtml-param.module;[
<!ENTITY % xhtml-param.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Param Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-param-1.mod" >
%xhtml-param.mod;]]>

<!ATTLIST %param.qname;
 %XHTML.xmlns.attrib;
 %id.attrib;
 %Metainformation.attrib;
 href %URI.datatype; #IMPLIED
 name CDATA #REQUIRED
 value CDATA #IMPLIED
 valuetype (data | ref | object) 'data'
 type %ContentType.datatype; #IMPLIED
>
<!-- Embedded Object Module -->
<!ENTITY % xhtml-object.module "INCLUDE" >
<![%xhtml-object.module;[
<!ENTITY % xhtml-object.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Embedded Object 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-object-1.mod" >
%xhtml-object.mod;]]>

<!-- Tables Module ... -->
<!ENTITY % xhtml-table.module "INCLUDE" >
<![%xhtml-table.module;[
<!ENTITY % xhtml-table.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Tables 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-table-1.mod" >
%xhtml-table.mod;]]>

<!-- Forms Module ... -->
<!ENTITY % xhtml-form.module "INCLUDE" >
<![%xhtml-form.module;[
<!ENTITY % xhtml-form.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Forms 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-form-1.mod" >
%xhtml-form.mod;]]>

<!-- Target Attribute Module -->
<!ENTITY % xhtml-target.module "INCLUDE" >
<![%xhtml-target.module;[
<!ENTITY % xhtml-target.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Target 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-target-1.mod" >
%xhtml-target.mod;]]>

<!-- Legacy Markup ... -->
<!ENTITY % xhtml-legacy.module "IGNORE" >
<![%xhtml-legacy.module;[
<!ENTITY % xhtml-legacy.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Legacy Markup 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-legacy-1.mod" >
%xhtml-legacy.mod;]]>

<!-- Document Structure Module (required) -->
<!ENTITY % html.attlist "IGNORE" >
<!ENTITY % head.attlist "IGNORE" >
<!ENTITY % title.attlist "IGNORE" >
<!ENTITY % xhtml-struct.module "INCLUDE" >
<![%xhtml-struct.module;[
<!ENTITY % xhtml-struct.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Document Structure 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-struct-1.mod" >
%xhtml-struct.mod;]]>
<!ENTITY % XHTML.version.attrib
 "version %FPI.datatype; #FIXED '%XHTML.version;'"
>
<!ATTLIST %html.qname;
	 %Common.attrib;
 %XSI.schemaLocation.attrib;
 %XHTML.version.attrib;
>
<!ATTLIST %head.qname;
	 %Common.attrib;
>
<!ATTLIST %title.qname;
 %Common.attrib;
>

<!-- end of XHTML-RDFa DTD .. -->
<!-- ... -->

B.4 SGML Open Catalog Entry for XHTML+RDFa

This section contains the SGML Open Catalog-format definition
[SGML-CATALOG] of the public identifiers
for XHTML+RDFa 1.1.

You can download this version of this file from DTD/xhtml-rdfa.cat. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-rdfa.cat.
-- .. --
-- File catalog .. --

-- XHTML+RDFa Catalog Data File

 Revision: $Revision: 1.2 $

 See "Entity Management", SGML Open Technical Resolution 9401 for detailed
 information on supplying and using catalog data. This document is available
 from OASIS at URL:

 <http://www.oasis-open.org/html/tr9401.html>
--

-- .. --
-- SGML declaration associated with XHTML --

OVERRIDE YES

SGMLDECL "xml1.dcl"

-- :: --

-- XHTML+RDFa modules .. --

PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN" "xhtml-rdfa-2.dtd"

PUBLIC "-//W3C//ENTITIES XHTML+RDFa Document Model 1.1//EN" "xhtml-rdfa-model-2.mod"

PUBLIC "-//W3C//ENTITIES XHTML MetaAttributes 1.1//EN" "xhtml-metaAttributes-2.mod"

-- End of catalog data ... --
-- .. --

C. Deployment Advice
This section is non-normative.

Documents written using the markup language defined in
this specification can be validated using the
DTD defined in Appendix B. If a document author wants
to facilitate such validation, they may include the following
declaration at the top of their document:

Example 2
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd">

The XML Namespace document associated with the
XHTML Family of markup languages uses the
mechanism for transforming XHTML+RDFa documents into
RDF as defined by [GRDDL].
Authors who want to be certain their documents are
transformable by all [GRDDL] processors may
also include a profile attribute on the
head element that includes a
reference to the RDFa Initial Context IRI
http://www.w3.org/2011/rdfa-context/xhtml-rdfa-1.1.

D. Change History
This section is non-normative.

2010-02-25: First version of the split-out XHTML specialization.

E. Acknowledgments
This section is non-normative.

At the time of publication, the members of the
RDF Web Applications Working Group were:

 	Stéphane Corlosquet, MIND Center for Interdisciplinary Informatics

 	Ivan Herman, W3C

 	Gregg Kellogg (Invited Expert)

 	Niklas Lindström (Invited Expert)

 	Shane McCarron, Applied Testing and Technology, Inc. (Invited Expert)

 	Steven Pemberton, Centre for Mathematics and Computer Science (CWI)

 	Manu Sporny, Digital Bazaar (Chair, Invited Expert)

F. References
F.1 Normative references
	[HTML401]
	Dave Raggett; Arnaud Le Hors; Ian Jacobs. HTML 4.01 Specification. 24 December 1999. W3C Recommendation. URL: http://www.w3.org/TR/html401

	[RDFA-CORE]
	Shane McCarron et al. RDFa Core 1.1 - Second Edition: Syntax and processing rules for embedding RDF through attributes. 22 August 2013. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-core/

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC3236]
	P. Stark; M. Baker. The 'application/xhtml+xml' Media Type (RFC 3236). January 2002. RFC. URL: http://www.rfc-editor.org/rfc/rfc3236.txt

	[RUBY]
	Marcin Sawicki; Michel Suignard; Masayasu Ishikawa; Martin Dürst; Tex Texin et al. Ruby Annotation. 31 May 2001. W3C Recommendation. URL: http://www.w3.org/TR/ruby/

	[XHTML-MODULARIZATION11-2e]
	Shane McCarron. XHTML™ Modularization 1.1 Second Edition. 29 July 2010. W3C Recommendation. URL: http://www.w3.org/TR/2010/REC-xhtml-modularization-20100729

	[XHTML11-2e]
	Murray Altheim; Shane McCarron. XHTML™ 1.1 - Module-based XHTML - Second Edition. 23 November 2010. W3C Recommendation. URL: http://www.w3.org/TR/xhtml11/

	[XML-NAMES11]
	Tim Bray; Dave Hollander; Andrew Layman; Richard Tobin et al. Namespaces in XML 1.1 (Second Edition). 16 August 2006. W3C Recommendation. URL: http://www.w3.org/TR/xml-names11/

	[XMLSCHEMA11-2]
	David Peterson; Sandy Gao; Ashok Malhotra; Michael Sperberg-McQueen; Henry Thompson; Paul V. Biron et al. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. 5 April 2012. W3C Recommendation. URL: http://www.w3.org/TR/xmlschema11-2/

F.2 Informative references
	[GRDDL]
	Dan Connolly. Gleaning Resource Descriptions from Dialects of Languages (GRDDL). 11 September 2007. W3C Recommendation. URL: http://www.w3.org/TR/grddl/

	[RDFA-SYNTAX]
	Ben Adida; Mark Birbeck; Shane McCarron; Steven Pemberton et al. RDFa in XHTML: Syntax and Processing. 14 October 2008. W3C Recommendation. URL: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014

	[SGML-CATALOG]
	Paul Grosso. Entity Management: OASIS Technical Resolution 9401:1997 (Amendment 2 to TR 9401) 10 september 1007. Entity Management Subcommittee, SGML Open. URL: https://www.oasis-open.org/html/a401.htm

	[XHTML-MEDIA-TYPES]
	Shane McCarron. XHTML Media Types - Second Edition. 16 January 2009. W3C Note. URL: http://www.w3.org/TR/xhtml-media-types

 [image: W3C]

 RDF 1.1 JSON Alternate Serialization (RDF/JSON)

 W3C Working Group Note 07 November 2013

 	This version:

 	http://www.w3.org/TR/2013/NOTE-rdf-json-20131107/

 	Latest published version:

 	http://www.w3.org/TR/rdf-json/

 	Editors:

 	Ian Davis, Talis

	Thomas Steiner, Google Inc.

	Arnaud J Le Hors, IBM

 Copyright ©
 2011-2013

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang),

 All Rights Reserved.

 W3C liability,
 trademark and

 document use

 rules apply.

Abstract

 The Resource Description Framework (RDF) is a framework for
 representing information in the Web.

 This document defines a textual syntax for RDF called RDF/JSON that
 allows an RDF graph to be completely written in a form compatible
 with the JavaScript Object Notation (JSON) [RFC4627] and alternative
 to the one recommended in JSON-LD [JSON-LD].

 The syntax defined in this document should not be used unless there is
 a specific reason to do so. Use of JSON-LD is
 recommended.

Status of This Document

 This section describes the status of this document at the time of its publication. Other
 documents may supersede this document. A list of current W3C publications and the latest revision
 of this technical report can be found in the W3C technical reports
 index at http://www.w3.org/TR/.

 Important Note: The RDF Working
 Group has decided not to push this document through the W3C
 Recommendation Track. You should therefore not expect to see this
 document eventually become a W3C Recommendation.

 This document was published as a Working Group Note to provide those
 who are using it and/or have an interest in it with a stable reference.

 The RDF Working Group decided to put JSON-LD on the
 Recommendation track. Therefore, unless you have a specific reason to use
 the syntax defined in this document instead of JSON-LD, you are
 encouraged to use JSON-LD.

 This document was published by the RDF Working Group as a Working Group Note.

 If you wish to make comments regarding this document, please send them to
 public-rdf-comments@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 Publication as a Working Group Note does not imply endorsement by the W3C Membership.
 This is a draft document and may be updated, replaced or obsoleted by other documents at
 any time. It is inappropriate to cite this document as other than work in progress.

 This document was produced by a group operating under the

 5 February 2004 W3C Patent Policy.

 W3C maintains a public list of any patent disclosures

 made in connection with the deliverables of the group; that page also includes instructions for
 disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains
 Essential Claim(s) must disclose the
 information in accordance with section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction
	2. Conformance
	3. Overview of RDF/JSON
	4. Serialization of RDF as JSON
	5. Examples
	6. Acknowledgments
	A. Internet Media Type, File Extension and Macintosh File Type
	B. References	B.1 Normative references
	B.2 Informative references

 1. Introduction

 This document defines RDF/JSON, a concrete syntax for RDF, as
 defined in the RDF Concepts and Abstract Syntax W3C Recommendation
 [RDF11-CONCEPTS],
 in JavaScript Object Notation (JSON) [RFC4627].

 The syntax defined in this document is an alternative
 to the one recommended in JSON-LD [JSON-LD]. It should not be
 used unless there is a specific reason to do
 so. Use of JSON-LD is recommended.

2. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
 and notes in this specification are non-normative. Everything else in this specification is
 normative.

 The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY,
 and OPTIONAL in this specification are to be interpreted as described in [RFC2119].

 3. Overview of RDF/JSON
This section is non-normative.

 An RDF Graph consists of a set of RDF triples, each triple consisting
 of a subject, a predicate and an object (formally defined in [RDF11-CONCEPTS]).
 An RDF/JSON document serializes such a set of RDF triples as a series of nested
 data structures.

 A conforming RDF/JSON document consists of a single JSON object called
 the root object. Each unique subject in the set of triples is represented as a key
 in the root object. No key may appear more than once in the root object.

 The value of each root object key is a further JSON object whose
 keys are the URIs of the predicates occuring in triples with the
 given subject. These keys are known as predicate keys.
 No predicate key may appear more than once within a single object.

 The value of each predicate key is an array of JSON objects representing
 the object of each serialized triple.

 In general, a triple (subject S, predicate P, object O) is
 serialized in the following structure:

 { "S" : { "P" : [O] } }

 The object of the triple O is represented as a further JSON
 object with the following keys:

 	type

 	one of 'uri', 'literal' or 'bnode' (required)

 	value

 	the URI of the object, its lexical value or a blank node label depending on whether the object is a uri, literal or bnode

 	lang

 	the language of a literal value (optional but if supplied it must not be empty)

 	datatype

 	the datatype URI of the literal value (optional)

 Blank node subjects are named using a string conforming to the nodeID production in Turtle. For example: _:A1

 The 'lang' and 'datatype' keys should only be used if the value of the 'type' key is "literal".

 All keywords defined in this document are case sensitive, and
 must be lowercase.

 4. Serialization of RDF as JSON

 Given a set of RDF Triples an RDF/JSON document may be constructed using the following algorithm:

 	Start a JSON object (called the root object)

 	Group all the triples by subject

 	For each unique subject:

 	Create a JSON object for the subject (called the subject object)

 	Group all triples having the current subject by predicate

 	For each unique predicate:

 	Create a JSON array (called the value array)

 	Select all triples having the current subject and current predicate

 	For each triple:

 	Create a JSON object (called the value object)

 	Add the following key/value pairs to the value object:

 	If the object of the triple is an RDF URI Reference
 U add a key called "type" with a value being the string "uri". Add a key
 called "value" with the value being U.

 	If the object of the triple is an RDF Literal S
 add a key called "type" with a value being the string "literal". Add a key
 called "value" with the value being the lexical form of S and:
				If the object of the triple is an RDF Literal with language L, add a key called "lang" with the
 value being L.

 	If the object of the triple is an RDF Typed Literal with datatype URI D, add a key called "datatype" with the
 value being D.

			

	If the object of the triple is a Blank Node with label I
 add a key called "type" with a value being the string "bnode". Add a key
 called "value" with the value being the string formed by concatenting an underscore (U+005F) followed by a colon (U+003A) followed by I.

 	Push the value object onto the end of the value array.

	Add a key/value pair to the subject object with the key being the predicate URI and the value being the value array.

 	Add a key/value pair to the root object with value being the subject object created in the previous step and the key being one of the following:

 	If the subject of the triple is an RDF URI Reference U the key is U.

 	If the subject of the triple is a Blank Node with label I
 the key is the string formed by concatenting an underscore (U+005F) followed by a colon (U+003A) followed by I.

 5. Examples
This section is non-normative.

 An example of a single triple with a literal object having a language of "en"

 Example 1
{
 "http://example.org/about" : {
 "http://purl.org/dc/terms/title" : [{ "value" : "Anna's Homepage",
 "type" : "literal",
 "lang" : "en" }]
 }
}

 This is equivalent to the following N-Triples [N-TRIPLES]:

 Example 2
<http://example.org/about> <http://purl.org/dc/terms/title> "Anna's Homepage"@en .

 An example of two triples that share the same subject and predicate
 but have differing objects:

 Example 3
{
 "http://example.org/about" : {
 "http://purl.org/dc/terms/title" : [{ "value" : "Anna's Homepage",
 "type" : "literal",
 "lang" : "en" },
 { "value" : "Annas hjemmeside",
 "type" : "literal",
 "lang" : "da" }]
 }
}

 This is equivalent to the following N-Triples:

 Example 4
<http://example.org/about> <http://purl.org/dc/terms/title> "Anna's Homepage"@en .
<http://example.org/about> <http://purl.org/dc/terms/title> "Annas hjemmeside"@da .

 An example of a triple with a datatyped literal object:

 Example 5
{
 "http://example.org/about" : {
 "http://purl.org/dc/terms/title" : [{ "value" : "<p xmlns=\"http://www.w3.org/1999/xhtml\">Anna's Homepage>/p>",
 "type" : "literal",
 "datatype" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral" }]
 }
}

 This is equivalent to the following N-Triples:

 Example 6
<http://example.org/about> <http://purl.org/dc/terms/title> "<p xmlns=\"http://www.w3.org/1999/xhtml\">Anna's Homepage>/p>"^^<http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral> .

 An example of triples with a common blank node:

 Example 7
{
 "http://example.org/about" : {
 "http://purl.org/dc/terms/creator" : [{ "value" : "_:anna",
 "type" : "bnode" }] ,
 "_:anna" : {
 "http://xmlns.com/foaf/0.1/name" : [{ "value" : "Anna",
 "type" : "literal" }]
 }
}

 This is equivalent to the following N-Triples:

 Example 8
<http://example.org/about> <http://purl.org/dc/terms/creator> _:anna .
_:anna <http://xmlns.com/foaf/0.1/name> "Anna" .

 An example of a triple with a URI object:

 Example 9
{
 "_:anna" : {
 "http://xmlns.com/foaf/0.1/homepage" : [{ "value" : "http://example.org/anna",
 "type" : "uri" }]
 }
}

 This is equivalent to the following N-Triples:

 Example 10
_:anna <http://xmlns.com/foaf/0.1/homepage> <http://example.org/anna> .

 An example of triples with common subjects:

 Example 11
{
 "_:anna" : {
 "http://xmlns.com/foaf/0.1/name" : [{ "value" : "Anna",
 "type" : "literal" }],
 "http://xmlns.com/foaf/0.1/homepage" : [{ "value" : "http://example.org/anna",
 "type" : "uri" }]
 }
}

 This is equivalent to the following N-Triples:

 Example 12
_:anna <http://xmlns.com/foaf/0.1/name> "Anna" .
_:anna <http://xmlns.com/foaf/0.1/homepage> <http://example.org/anna> .

 An empty RDF graph is serialized as a JSON object with zero keys.

 Example 13
{ }

 6. Acknowledgments
This section is non-normative.

 This document is based on original work from Talis [TALIS-RDF-JSON] and has benefited from the review of the RDF WG, especially Andy Seaborne and Pierre-Antoine Champin.

 A. Internet Media Type, File Extension and Macintosh File Type

 The suggested media type for RDF/JSON is "application/rdf+json".

 It is suggested that RDF/JSON files have the extension ".rj" (all lowercase) on all platforms.

 JSON is encoded in Unicode, with a default encoding of UTF-8. See RFC627, section 3 "Encoding".

B. References
B.1 Normative references
	[N-TRIPLES]
	Gavin Carothers, Editor. RDF 1.1 N-Triples. 5 November 2013. W3C Candidate Recommendation (work in progress). URL: http://www.w3.org/TR/2013/CR-n-triples-20131105/. The latest edition is available at http://www.w3.org/TR/n-triples/

	[RDF11-CONCEPTS]
	Richard Cyganiak, David Wood, Markus Lanthaler, Editors. RDF 1.1 Concepts and Abstract Syntax. 5 November 2013. W3C Candidate Recommendation (work in progress). URL: http://www.w3.org/TR/2013/CR-rdf11-concepts-20131105/. The latest edition is available at http://www.w3.org/TR/rdf11-concepts/

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC4627]
	D. Crockford. The application/json Media Type for JavaScript Object Notation (JSON) (RFC 4627). July 2006. RFC. URL: http://www.ietf.org/rfc/rfc4627.txt

B.2 Informative references
	[JSON-LD]
	Manu Sporny, Gregg Kellogg, Markus Lanthaler, Editors. JSON-LD 1.0. 5 November 2013. W3C Proposed Recommendation. URL: http://www.w3.org/TR/2014/REC-json-ld-20140116/. The latest edition is available at http://www.w3.org/TR/json-ld/

	[TALIS-RDF-JSON]
	Talis. RDF JSON. URL: http://docs.api.talis.com/platform-api/output-types/rdf-json

 [image: W3C]

 RDF 1.1 XML Syntax

 W3C Recommendation 25 February 2014

 	This version:

 	http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/

 	Latest published version:

 	http://www.w3.org/TR/rdf-syntax-grammar/

 	Test suite:

 	http://www.w3.org/TR/2014/NOTE-rdf11-testcases-20140225/

 	Previous version:

 	http://www.w3.org/TR/2014/PER-rdf-syntax-grammar-20140109/

 	Editors:

 	Fabien Gandon, INRIA

	Guus Schreiber, VU University Amsterdam

 	Previous Editors:

 	

 Dave Beckett

 Please check the errata for any errors or issues
 reported since publication.

 This document is also available in this non-normative format:

 diff w.r.t. 2004 Recommendation

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2004-2014

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang),

 All Rights Reserved.

 W3C liability,
 trademark and

 document use

 rules apply.

 Abstract

 This document defines an XML
 syntax for RDF called RDF/XML in terms of
 Namespaces in XML, the XML Information Set
 and XML Base.

 Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

 This document is an edited version of the 2004 RDF XML Syntax
 Specification Recommendation. The purpose of this revision is
 to make this
 document available as part of the RDF 1.1 document set. Changes are
 limited to revised references, terminology updates, and adaptations to
 the introduction.
 The technical content of the document is unchanged, except for
 the fact that the datatype XMLLiiteral is marked as
 non-normative in RDF 1.1. The (non-normative) algorithm for
 parsing XMLLiteral
 (Sec. 7.2.17)
 has been updated to be in line with
 the current state of XML technology. Details of the changes
 are listed in the Changes
 section. Since the edits to this document do not invalidate
 previous implementations the Director decided no new implementation report was required.

 This document was published by the RDF Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdf-comments@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 This document has been reviewed by W3C Members, by software developers, and by other W3C
 groups and interested parties, and is endorsed by the Director as a W3C Recommendation.
 It is a stable document and may be used as reference material or cited from another
 document. W3C's role in making the Recommendation is to draw attention to the
 specification and to promote its widespread deployment. This enhances the functionality
 and interoperability of the Web.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction
	2. An XML Syntax for RDF	2.1 Introduction
	2.2 Node Elements and Property Elements
	2.3 Multiple Property Elements
	2.4 Empty Property Elements
	2.5 Property Attributes
	2.6 Completing the Document: Document Element and XML Declaration
	2.7 Languages: xml:lang
	2.8 XML Literals: rdf:parseType="Literal"
	2.9 Typed Literals: rdf:datatype
	2.10 Identifying Blank Nodes: rdf:nodeID
	2.11 Omitting Blank Nodes: rdf:parseType="Resource"
	2.12 Omitting Nodes: Property Attributes on an empty Property Element
	2.13 Typed Node Elements
	2.14 Abbreviating URIs: rdf:ID and xml:base
	2.15 Container Membership Property Elements: rdf:li and rdf:_n
	2.16 Collections: rdf:parseType="Collection"
	2.17 Reifying Statements: rdf:ID

	3. Terminology
	4. RDF MIME Type, File Extension and Macintosh File Type
	5. Global Issues	5.1 The RDF Namespace and Vocabulary
	5.2 Identifiers
	5.3 Resolving IRIs
	5.4 Constraints
	5.5 Conformance

	6. Syntax Data Model	6.1 Events	6.1.1 Root Event
	6.1.2 Element Event
	6.1.3 End Element Event
	6.1.4 Attribute Event
	6.1.5 Text Event
	6.1.6 IRI Event
	6.1.7 Blank Node Identifier Event
	6.1.8 Plain Literal Event
	6.1.9 Typed Literal Event

	6.2 Information Set Mapping
	6.3 Grammar Notation	6.3.1 Grammar General Notation
	6.3.2 Grammar Event Matching Notation
	6.3.3 Grammar Action Notation

	7. RDF/XML Grammar	7.1 Grammar summary
	7.2 Grammar Productions	7.2.1 Grammar start
	7.2.2 Production coreSyntaxTerms
	7.2.3 Production syntaxTerms
	7.2.4 Production oldTerms
	7.2.5 Production nodeElementURIs
	7.2.6 Production propertyElementURIs
	7.2.7 Production propertyAttributeURIs
	7.2.8 Production doc
	7.2.9 Production RDF
	7.2.10 Production nodeElementList
	7.2.11 Production nodeElement
	7.2.12 Production ws
	7.2.13 Production propertyEltList
	7.2.14 Production propertyElt
	7.2.15 Production resourcePropertyElt
	7.2.16 Production literalPropertyElt
	7.2.17 Production parseTypeLiteralPropertyElt
	7.2.18 Production parseTypeResourcePropertyElt
	7.2.19 Production parseTypeCollectionPropertyElt
	7.2.20 Production parseTypeOtherPropertyElt
	7.2.21 Production emptyPropertyElt
	7.2.22 Production idAttr
	7.2.23 Production nodeIdAttr
	7.2.24 Production aboutAttr
	7.2.25 Production propertyAttr
	7.2.26 Production resourceAttr
	7.2.27 Production datatypeAttr
	7.2.28 Production parseLiteral
	7.2.29 Production parseResource
	7.2.30 Production parseCollection
	7.2.31 Production parseOther
	7.2.32 Production IRI
	7.2.33 Production literal
	7.2.34 Production rdf-id

	7.3 Reification Rules
	7.4 List Expansion Rules

	8. Serializing an RDF Graph to RDF/XML
	9. Using RDF/XML with SVG
	A. Acknowledgments
	B. Changes since 2004 Recommendation
	C. Syntax Schemas	C.1 RELAX NG Compact Schema

	D. References	D.1 Normative references
	D.2 Informative references

1. Introduction

 This document defines the
 XML [XML10] syntax for RDF graphs.

 This document revises the original RDF/XML grammar [RDFMS]
 in terms of XML Information Set [XML-INFOSET] information items which moves
 away from the rather low-level details of XML, such as particular
 forms of empty elements. This allows the grammar to be more
 precisely recorded and the mapping from the XML syntax to the RDF
 Graph more clearly shown. The mapping to the RDF graph is done by
 emitting statements in the N-Triples [N-TRIPLES] format.

 This document is part of the suite of RDF 1.1
 documents. Other documents in this suite are:

 	A document describing the basic concepts underlying RDF, as
 well as abstract syntax ("RDF Concepts and Abstract Syntax")
 [RDF11-CONCEPTS]

 	A document describing the formal model-theoretic semantics
 of RDF ("RDF Semantics") [RDF11-MT]

 	Specifications of concrete syntaxes for RDF:

	 	Turtle [TURTLE] and TriG [TRIG]

	 	JSON-LD [JSON-LD] (JSON based)

	 	RDFa [RDFA-PRIMER] (for HTML embedding)

	 	N-Triples and N-Quads (line-based exchange formats)

	

 	A document describing RDF Schema [RDF11-SCHEMA], which
 provides a data-modeling vocabulary for RDF data.

 For a longer introduction to the RDF/XML syntax with a historical
 perspective, see "RDF: Understanding the Striped RDF/XML
 Syntax" [STRIPEDRDF].

2. An XML Syntax for RDF

 This section introduces the RDF/XML syntax, describes how it
 encodes RDF graphs and explains this with examples. If there is any
 conflict between this informal description and the formal description
 of the syntax and grammar in sections
 6 Syntax Data Model and
 7 RDF/XML Grammar, the
 latter two sections take precedence.

 2.1 Introduction

 The RDF Concepts and Abstract Syntax document [RDF11-CONCEPTS]
 defines the RDF Graph data model and the
 RDF Graph abstract syntax.
 Along with the RDF Semantics [RDF11-MT]
 this provides an abstract syntax with a formal semantics for it.
 The RDF graph has nodes
 and labeled directed arcs
 that link pairs of nodes and this is represented as a set of
 RDF triples
 where each triple contains a
 subject node, predicate and object node.
 Nodes are IRIs, literals, or blank nodes.
 Blank nodes may be given
 a document-local identifier called a
 blank node identifier.
 Predicates are IRIs
 and can be interpreted as either a relationship between the two
 nodes or as defining an attribute value (object node) for some
 subject node.

 In order to encode the graph in XML, the nodes and predicates have to be
 represented in XML terms — element names, attribute names, element contents
 and attribute values.
 RDF/XML uses XML
 QNames
 as defined in Namespaces in XML [XML-NAMES] to represent IRIs.
 All QNames have a namespace
 name which is an IRI
 and a short
 local name.
 In addition, QNames can either have a short
 prefix
 or be declared with the default namespace declaration and have none (but
 still have a namespace name)

 The IRI represented by a QName is determined by appending the
 local name
 part of the QName after the
 namespace
 name (IRI) part of the QName.
 This is used to shorten the IRI
 of all predicates and some nodes.
 IRIs identifying
 subject and object nodes can also be stored as XML attribute values.
 RDF literals
 which can only be object nodes,
 become either XML element text content or XML attribute values.

 A graph can be considered a collection of paths of the form node,
 predicate arc, node, predicate arc, node, predicate arc, ... node
 which cover the entire graph. In RDF/XML these turn into sequences of
 elements inside elements which alternate between elements for nodes
 and predicate arcs. This has been called a series of node/arc
 stripes. The node at the start of the sequence turns into the
 outermost element, the next predicate arc turns into a child element,
 and so on. The stripes generally start at the top of an RDF/XML
 document and always begin with nodes.

 Several RDF/XML examples are given in the following sections
 building up to complete RDF/XML documents. Example 7
 is the first complete RDF/XML document.

 2.2 Node Elements and Property Elements

 [image: Graph for RDF/XML Example]
 Fig. 1 Graph for RDF/XML Example (SVG version)

 An RDF graph is given in Figure 1
 where the nodes are represented as ovals and contain their
 IRIs where they have them, all the predicate arcs are labeled with
 IRIs and string literals nodes have been written in rectangles.

 If we follow one node, predicate arc ... , node path through the
 graph shown in Figure 2:

 [image: One Path Through the Graph]
 Fig. 2 One Path Through the Graph (SVG version)

 The left hand side of the Figure 2
 graph corresponds to the node/predicate arc stripes:

 	Node with IRI http://www.w3.org/TR/rdf-syntax-grammar

 	Predicate Arc labeled with IRI http://example.org/terms/editor

 	Node with no IRI

 	Predicate Arc labeled with IRI http://example.org/terms/homePage

 	Node with IRI http://purl.org/net/dajobe/

 In RDF/XML, the sequence of 5 nodes and predicate arcs on
 the left hand side of Figure 2 corresponds to
 the usage of five XML elements of two types, for the graph nodes and
 predicate arcs. These are conventionally called node elements and
 property elements respectively. In the striping shown in

 Example 1, rdf:Description is the
 node element (used three times for the three nodes) and
 ex:editor and ex:homePage are the two
 property elements.

Example 1
Striped RDF/XML (nodes and predicate arcs)
	
<rdf:Description>
 <ex:editor>
 <rdf:Description>
 <ex:homePage>
 <rdf:Description>
 </rdf:Description>
 </ex:homePage>
 </rdf:Description>
 </ex:editor>
</rdf:Description>

 The Figure 2 graph consists of some nodes
 that are
 IRIs

 (and others that are not) and this can be added
 to the RDF/XML using the rdf:about attribute on node
 elements to give the result in Example 2:

Example 2
Node Elements with IRIs added
	
<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
 <ex:editor>
 <rdf:Description>
 <ex:homePage>
 <rdf:Description rdf:about="http://purl.org/net/dajobe/">
 </rdf:Description>
 </ex:homePage>
 </rdf:Description>
 </ex:editor>
</rdf:Description>

 Adding the other two paths through the Figure 1
 graph to the RDF/XML in
 Example 2
 gives the result in Example 3
 (this example fails to show that the blank node is
 shared between the two paths, see
 2.10):

Example 3
Complete description of all graph paths

<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
 <ex:editor>
 <rdf:Description>
 <ex:homePage>
 <rdf:Description rdf:about="http://purl.org/net/dajobe/">
 </rdf:Description>
 </ex:homePage>
 </rdf:Description>
 </ex:editor>
</rdf:Description>

<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
 <ex:editor>
 <rdf:Description>
 <ex:fullName>Dave Beckett</ex:fullName>
 </rdf:Description>
 </ex:editor>
</rdf:Description>

<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
 <dc:title>RDF 1.1 XML Syntax</dc:title>
</rdf:Description>

 2.3 Multiple Property Elements

 There are several abbreviations that can be used to make common
 uses easier to write down. In particular, it is common that a
 subject node in the RDF graph has multiple outgoing predicate arcs. RDF/XML
 provides an abbreviation for the corresponding syntax when a node
 element about a resource has multiple property elements. This can be
 abbreviated by using multiple child property elements inside the node
 element describing the subject node.

 Taking Example 3, there are
 two node elements that can take multiple property elements.
 The subject node with IRI
 http://www.w3.org/TR/rdf-syntax-grammar
 has property elements ex:editor and ex:title

 and the node element for the blank node can take ex:homePage
 and ex:fullName. This abbreviation
 gives the result shown in Example 4
 (this example does show that there is a single blank node):

Example 4
Using multiple property elements on a node element
	
<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
 <ex:editor>
 <rdf:Description>
 <ex:homePage>
 <rdf:Description rdf:about="http://purl.org/net/dajobe/">
 </rdf:Description>
 </ex:homePage>
 <ex:fullName>Dave Beckett</ex:fullName>
 </rdf:Description>
 </ex:editor>
 <dc:title>RDF 1.1 XML Syntax</dc:title>
</rdf:Description>

 2.4 Empty Property Elements

 When a predicate arc in an RDF graph points to an object node which has no
 further predicate arcs, which appears in RDF/XML as an empty node element
 <rdf:Description rdf:about="...">
 </rdf:Description>
 (or <rdf:Description rdf:about="..." />)
 this form can be shortened. This is done by using the
 IRI of the object node as the value of an XML attribute rdf:resource
 on the containing property element and making the property element empty.

 In this example, the property element ex:homePage
 contains an empty node element with the
 IRI
 http://purl.org/net/dajobe/. This can be replaced with
 the empty property element form giving the result shown in
 Example 5:

Example 5
Empty property elements
	
<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
 <ex:editor>
 <rdf:Description>
 <ex:homePage rdf:resource="http://purl.org/net/dajobe/"/>
 <ex:fullName>Dave Beckett</ex:fullName>
 </rdf:Description>
 </ex:editor>
 <dc:title>RDF 1.1 XML Syntax</dc:title>
</rdf:Description>

 2.5 Property Attributes

 When a property element's content is string literal,
 it may be possible to use it as an XML attribute on the
 containing node element.
 This can be done for multiple properties on the same node element
 only if the property element name is not repeated
 (required by XML — attribute names are unique on an XML element)
 and any in-scope xml:lang on the
 property element's string literal (if any) are the same (see
 Section 2.7)
 This abbreviation is known as a Property Attribute
 and can be applied to any node element.

 This abbreviation can also be used when the property element is
 rdf:type and it has an rdf:resource attribute
 the value of which is interpreted as a
 IRI object node.

 In Example 5:,
 there are two property elements with string literal content,
 the dc:title and ex:fullName
 property elements. These can be replaced with property attributes
 giving the result shown in Example 6:

Example 6
Replacing property elements with string literal content into property attributes
	
<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"
 dc:title="RDF 1.1 XML Syntax">
 <ex:editor>
 <rdf:Description ex:fullName="Dave Beckett">
 <ex:homePage rdf:resource="http://purl.org/net/dajobe/"/>
 </rdf:Description>
 </ex:editor>
</rdf:Description>

 2.6 Completing the Document: Document Element and XML Declaration

 To create a complete RDF/XML document, the serialization of the
 graph into XML is usually contained inside an rdf:RDF
 XML element which becomes the top-level XML document element.
 Conventionally the rdf:RDF element is also used to
 declare the XML namespaces that are used, although that is not
 required. When there is only one top-level node element inside
 rdf:RDF, the rdf:RDF can be omitted
 although any XML namespaces must still be declared.

 The XML specification also permits an XML declaration at
 the top of the document with the XML version and possibly the XML
 content encoding. This is optional but recommended.

 Completing the RDF/XML could be done for any of the correct
 complete graph examples from
 Example 4 onwards but taking the smallest
 Example 6 and adding the final components,
 gives a complete RDF/XML representation of the original
 Figure 1 graph
 in Example 7:

Example 7
Complete RDF/XML description of Figure 1 graph
(example07.rdf, output example07.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ex="http://example.org/stuff/1.0/">

 <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"
 dc:title="RDF1.1 XML Syntax">
 <ex:editor>
 <rdf:Description ex:fullName="Dave Beckett">
 <ex:homePage rdf:resource="http://purl.org/net/dajobe/" />
 </rdf:Description>
 </ex:editor>
 </rdf:Description>

</rdf:RDF>

 It is possible to omit rdf:RDF in
 Example 7 above since there is only one
 rdf:Description inside rdf:RDF but this
 is not shown here.

 2.7 Languages: xml:lang

 RDF/XML permits the use of the xml:lang attribute as defined by
 2.12 Language Identification
 of XML 1.0 [XML10]
 to allow the identification of content language.
 The xml:lang attribute can be used on any node element or property element
 to indicate that the included content is in the given language.
 Typed literals
 which includes XML literals
 are not affected by this attribute.
 The most specific in-scope language present
 (if any) is applied to property element string literal content or
 property attribute values. The xml:lang="" form
 indicates the absence of a language identifier.

 Some examples of marking content languages for RDF properties are shown in
 Example 8:

Example 8
Complete example of xml:lang
(example08.rdf, output example08.nt)

<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">

 <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
 <dc:title>RDF 1.1 XML Syntax</dc:title>
 <dc:title xml:lang="en">RDF 1.1 XML Syntax</dc:title>
 <dc:title xml:lang="en-US">RDF 1.1 XML Syntax</dc:title>
 </rdf:Description>

 <rdf:Description rdf:about="http://example.org/buecher/baum" xml:lang="de">
 <dc:title>Der Baum</dc:title>
 <dc:description>Das Buch ist außergewöhnlich</dc:description>
 <dc:title xml:lang="en">The Tree</dc:title>
 </rdf:Description>

</rdf:RDF>

 2.8 XML Literals: rdf:parseType="Literal"
This section is non-normative.

 RDF allows XML literals [RDF11-CONCEPTS]
 to be given as the object node of a predicate.
 These are written in RDF/XML as content of a property element (not
 a property attribute) and indicated using the
 rdf:parseType="Literal" attribute on the containing
 property element.

 An example of writing an XML literal is given in
 Example 9 where
 there is a single RDF triple with the subject node
 IRI
 http://example.org/item01, the predicate
 IRI
 http://example.org/stuff/1.0/prop (from
 ex:prop) and the object node with XML literal
 content beginning a:Box.

Example 9
Complete example of rdf:parseType="Literal"
(example09.rdf, output example09.nt)
	
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/stuff/1.0/">

 <rdf:Description rdf:about="http://example.org/item01">
 <ex:prop rdf:parseType="Literal" xmlns:a="http://example.org/a#">
 <a:Box required="true">
 <a:widget size="10" />
 <a:grommit id="23" />
 </a:Box>
 </ex:prop>
 </rdf:Description>

</rdf:RDF>

 2.9 Typed Literals: rdf:datatype

 RDF allows typed literals
 to be given as the object node of a predicate. Typed literals consist of a literal
 string and a datatype
 IRI. These are written in RDF/XML using
 the same syntax for literal string nodes in the property element form
 (not property attribute) but with an additional
 rdf:datatype="datatypeURI"
 attribute on the property element. Any
 IRI can be used in the attribute.

 An example of an RDF typed
 literal
 is given in Example 10 where
 there is a single RDF triple with the subject node
 IRI
 http://example.org/item01, the predicate
 IRI
 http://example.org/stuff/1.0/size (from
 ex:size) and the object node with the
 typed literal
 ("123", http://www.w3.org/2001/XMLSchema#int)
 to be interpreted as an
 XML Schema [XMLSCHEMA-2] datatype int.

Example 10
Complete example of rdf:datatype
(example10.rdf, output example10.nt)
	
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/stuff/1.0/">

 <rdf:Description rdf:about="http://example.org/item01">
 <ex:size rdf:datatype="http://www.w3.org/2001/XMLSchema#int">123</ex:size>
 </rdf:Description>

</rdf:RDF>

 2.10 Identifying Blank Nodes: rdf:nodeID

 Blank nodes in the RDF graph are distinct but have no
 IRI identifier.
 It is sometimes required that the same graph blank node is referred to in the
 RDF/XML in multiple places, such as at the subject and object
 of several RDF triples. In this case, a blank node identifier
 can be given to the blank node for identifying it
 in the document. Blank node identifiers in RDF/XML are scoped to the
 containing XML Information Set
 document information item.
 A blank node identifier is used
 on a node element to replace
 rdf:about="IRI"
 or on a property element to replace
 rdf:resource="IRI"

 with rdf:nodeID="blank node identifier"
 in both cases.

 Taking Example 7 and explicitly giving
 a blank node identifier of abc to the blank node in it
 gives the result shown in Example 11.
 The second rdf:Description property element is
 about the blank node.

Example 11
Complete RDF/XML description of graph using rdf:nodeID identifying the blank node
(example11.rdf, output example11.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ex="http://example.org/stuff/1.0/">

 <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"
 dc:title="RDF 1.1 XML Syntax">
 <ex:editor rdf:nodeID="abc"/>
 </rdf:Description>

 <rdf:Description rdf:nodeID="abc" ex:fullName="Dave Beckett">
 <ex:homePage rdf:resource="http://purl.org/net/dajobe/"/>
 </rdf:Description>

</rdf:RDF>

 2.11 Omitting Blank Nodes: rdf:parseType="Resource"

 Blank nodes (not IRI nodes) in RDF graphs can be written
 in a form that allows the
 <rdf:Description>
 </rdf:Description> pair to be omitted.
 The omission is done by putting an
 rdf:parseType="Resource"
 attribute on the containing property element
 that turns the property element into a property-and-node element,
 which can itself have both property elements and property attributes.
 Property attributes and the rdf:nodeID attribute
 are not permitted on property-and-node elements.

 Taking the earlier Example 7,
 the contents of the ex:editor property element
 could be alternatively done in this fashion to give
 the form shown in Example 12:

Example 12
Complete example using rdf:parseType="Resource"
(example12.rdf, output: example12.nt)
	
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ex="http://example.org/stuff/1.0/">
 <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"
 dc:title="RDF 1.1 XML Syntax">
 <ex:editor rdf:parseType="Resource">
 <ex:fullName>Dave Beckett</ex:fullName>
 <ex:homePage rdf:resource="http://purl.org/net/dajobe/"/>
 </ex:editor>
 </rdf:Description>
</rdf:RDF>

 2.12 Omitting Nodes: Property Attributes on an empty Property Element

 If all of the property elements on a blank node element have
 string literal values with the same in-scope xml:lang
 value (if present) and each of these property elements appears at
 most once and there is at most one rdf:type property
 element with a IRI object node, these can be abbreviated by
 moving them to be property attributes on the containing property
 element which is made an empty element.

 Taking the earlier Example 5,
 the ex:editor property element contains a
 blank node element with two property elements

 ex:fullname and ex:homePage.
 ex:homePage is not suitable here since it
 does not have a string literal value, so it is being
 ignored for the purposes of this example.
 The abbreviated form removes the ex:fullName property element
 and adds a new property attribute ex:fullName with the
 string literal value of the deleted property element
 to the ex:editor property element.
 The blank node element becomes implicit in the now empty

 ex:editor property element. The result is shown in
 Example 13.

Example 13
Complete example of property attributes on an empty property element
(example13.rdf, output example13.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ex="http://example.org/stuff/1.0/">

 <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"
 dc:title="RDF 1.1 XML Syntax">
 <ex:editor ex:fullName="Dave Beckett" />
 <!-- Note the ex:homePage property has been ignored for this example -->
 </rdf:Description>

</rdf:RDF>

 2.13 Typed Node Elements

 It is common for RDF graphs to have rdf:type predicates
 from subject nodes. These are conventionally called typed
 nodes in the graph, or typed node elements in the
 RDF/XML. RDF/XML allows this triple to be expressed more concisely.
 by replacing the rdf:Description node element name with
 the namespaced-element corresponding to the

 IRI of the value of
 the type relationship. There may, of course, be multiple rdf:type
 predicates but only one can be used in this way, the others must remain as
 property elements or property attributes.

 The typed node elements are commonly used in RDF/XML with the built-in
 classes in the RDF vocabulary:
 rdf:Seq, rdf:Bag, rdf:Alt,

 rdf:Statement, rdf:Property and
 rdf:List.

 For example, the RDF/XML in Example 14
 could be written as shown in Example 15.

Example 14
Complete example with rdf:type
(example14.rdf, output example14.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ex="http://example.org/stuff/1.0/">

 <rdf:Description rdf:about="http://example.org/thing">
 <rdf:type rdf:resource="http://example.org/stuff/1.0/Document"/>
 <dc:title>A marvelous thing</dc:title>
 </rdf:Description>
</rdf:RDF>

Example 15
Complete example using a typed node element to replace an rdf:type
(example15.rdf, output example15.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:ex="http://example.org/stuff/1.0/">

 <ex:Document rdf:about="http://example.org/thing">
 <dc:title>A marvelous thing</dc:title>
 </ex:Document>

</rdf:RDF>

 2.14 Abbreviating URIs: rdf:ID and xml:base

 RDF/XML allows further abbreviating IRIs in XML attributes in two
 ways. The XML Infoset provides a base URI attribute xml:base
 that sets the base URI for resolving relative IRIs, otherwise
 the base URI is that of the document. The base URI applies to
 all RDF/XML attributes that deal with IRIs which are rdf:about,
 rdf:resource, rdf:ID
 and rdf:datatype.

 The rdf:ID attribute on a node element (not property
 element, that has another meaning) can be used instead of
 rdf:about and gives a relative IRI equivalent to #
 concatenated with the rdf:ID attribute value. So for
 example if rdf:ID="name", that would be equivalent
 to rdf:about="#name". rdf:ID provides an additional
 check since the same name can only appear once in the
 scope of an xml:base value (or document, if none is given),
 so is useful for defining a set of distinct,
 related terms relative to the same IRI.

 Both forms require a base URI to be known, either from an in-scope
 xml:base or from the URI of the RDF/XML document.

 Example 16 shows abbreviating the node
 IRI of http://example.org/here/#snack using an
 xml:base of http://example.org/here/ and
 an rdf:ID on the rdf:Description node element.
 The object node of the ex:prop predicate is an
 absolute IRI

 resolved from the rdf:resource XML attribute value
 using the in-scope base URI to give the
 IRI http://example.org/here/fruit/apple.

Example 16
Complete example using rdf:ID and xml:base for shortening URIs
(example16.rdf, output example16.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/stuff/1.0/"
 xml:base="http://example.org/here/">

 <rdf:Description rdf:ID="snack">
 <ex:prop rdf:resource="fruit/apple"/>
 </rdf:Description>

</rdf:RDF>

 2.15 Container Membership Property Elements: rdf:li and rdf:_n

 RDF has a set of container membership properties
 and corresponding property elements that are mostly used with
 instances of the
 rdf:Seq, rdf:Bag and rdf:Alt

 classes which may be written as typed node elements. The list properties are
 rdf:_1, rdf:_2 etc. and can be written
 as property elements or property attributes as shown in
 Example 17. There is an rdf:li
 special property element that is equivalent to
 rdf:_1, rdf:_2 in order,
 explained in detail in section 7.4.
 The mapping to the container membership properties is
 always done in the order that the rdf:li special
 property elements appear in XML — the document order is significant.
 The equivalent RDF/XML to Example 17 written
 in this form is shown in Example 18.

Example 17
Complex example using RDF list properties
(example17.rdf, output example17.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <rdf:Seq rdf:about="http://example.org/favourite-fruit">
 <rdf:_1 rdf:resource="http://example.org/banana"/>
 <rdf:_2 rdf:resource="http://example.org/apple"/>
 <rdf:_3 rdf:resource="http://example.org/pear"/>
 </rdf:Seq>

</rdf:RDF>

Example 18
Complete example using rdf:li property element for list properties
(example18.rdf, output example18.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <rdf:Seq rdf:about="http://example.org/favourite-fruit">
 <rdf:li rdf:resource="http://example.org/banana"/>
 <rdf:li rdf:resource="http://example.org/apple"/>
 <rdf:li rdf:resource="http://example.org/pear"/>
 </rdf:Seq>

</rdf:RDF>

 2.16 Collections: rdf:parseType="Collection"

 RDF/XML allows an rdf:parseType="Collection"

 attribute on a property element to let it contain multiple node
 elements. These contained node elements give the set of subject
 nodes of the collection. This syntax form corresponds to a set of
 triples connecting the collection of subject nodes, the exact triples
 generated are described in detail in
 Section 7.2.19 Production parseTypeCollectionPropertyElt.
 The collection construction is always done in the order that the node
 elements appear in the XML document. Whether the order of the
 collection of nodes is significant is an application issue and not
 defined here.

 Example 19 shows a collection of three
 nodes elements at the end of the ex:hasFruit
 property element using this form.

Example 19
Complete example of a RDF collection of nodes using rdf:parseType="Collection"
(example19.rdf, output example19.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/stuff/1.0/">

 <rdf:Description rdf:about="http://example.org/basket">
 <ex:hasFruit rdf:parseType="Collection">
 <rdf:Description rdf:about="http://example.org/banana"/>
 <rdf:Description rdf:about="http://example.org/apple"/>
 <rdf:Description rdf:about="http://example.org/pear"/>
 </ex:hasFruit>
 </rdf:Description>

</rdf:RDF>

 2.17 Reifying Statements: rdf:ID

 The rdf:ID attribute can be used on a property
 element to reify the triple that it generates (See
 section 7.3 Reification Rules for the
 full details).
 The identifier for the triple should be constructed as a
 IRI
 made from the relative IRI
 # concatenated with the rdf:ID attribute
 value, resolved against the in-scope base URI. So for example if

 rdf:ID="triple", that would be equivalent to the IRI
 formed from relative IRI #triple against the base URI.
 Each (rdf:ID attribute value, base URI)
 pair has to be unique in an RDF/XML document,
 see constraint-id.

 Example 20 shows a rdf:ID
 being used to reify a triple made from the ex:prop
 property element giving the reified triple the
 IRI http://example.org/triples/#triple1.

Example 20
Complete example of rdf:ID reifying a property element
(example20.rdf, output example20.nt)

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/stuff/1.0/"
 xml:base="http://example.org/triples/">
 <rdf:Description rdf:about="http://example.org/">
 <ex:prop rdf:ID="triple1">blah</ex:prop>
 </rdf:Description>

</rdf:RDF>

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in
 RFC 2119 [RFC2119].

 All use of string without further qualification refers to
 a Unicode [UNICODE] character string;
 a sequence of characters represented by a code point in
 Unicode.
	

4. RDF MIME Type, File Extension and Macintosh File Type

 The Internet media type / MIME type for RDF/XML is
 application/rdf+xml —
 RFC 3023 [RFC3023], section 8.18.

 Note
(Informative):
 For the state of the MIME type registration, consult
 IANA MIME Media Types [IANA-MEDIA-TYPES]

 It is recommended that RDF/XML files have the extension
 ".rdf" (all lowercase) on all platforms.

 It is recommended that RDF/XML files stored on Macintosh HFS file
 systems be given a file type of "rdf "
 (all lowercase, with a space character as the fourth letter).

5. Global Issues

 5.1 The RDF Namespace and Vocabulary

 The RDF namespace IRI (or namespace name) is
 http://www.w3.org/1999/02/22-rdf-syntax-ns#
 and is typically used in XML with the prefix rdf
 although other prefix strings may be used.
 The RDF Vocabulary
 is identified by this namespace name and consists of the following names only:

 	Syntax names — not concepts

 	

 RDF Description ID about parseType resource li nodeID datatype

 	Class names

 	

 Seq Bag Alt Statement Property XMLLiteral List

 	Property names

 	

 subject predicate object type value first rest _n

 where n is a decimal integer greater than zero with no leading zeros.

 	Resource names

 	

 nil

 Any other names are not defined and SHOULD generate a warning when
 encountered, but should otherwise behave normally.

 Within RDF/XML documents it is not permitted to use XML namespaces
 whose namespace name is the
 ·RDF namespace IRI·

 concatenated with additional characters.

 Throughout this document the terminology rdf:name
 will be used to indicate name is from the RDF vocabulary
 and it has a IRI of the concatenation of the
 ·RDF namespace IRI· and name.
 For example, rdf:type has the IRI
 http://www.w3.org/1999/02/22-rdf-syntax-ns#type

 5.2 Identifiers

 The RDF Concepts document [RDF11-CONCEPTS]
 defines the three types of RDF data that can act as node
 and/or predicate:

 	IRI

 	
	IRIs can act as node (both subject and object) and as
 predicate.

	
 IRIs
 can be either:

 	given as XML attribute values interpreted as relative
 IRIs that are resolved against the in-scope base URI
 as described in section 5.3
 to give absolute IRIs

 	transformed from XML namespace-qualified element and attribute names
 (QNames)

 	transformed from rdf:ID attribute values.

 Within RDF/XML, XML QNames are transformed into
 IRIs
 by appending the XML local name to the namespace name (IRI).
 For example, if the XML namespace prefix foo has
 namespace name (IRI)

 http://example.org/somewhere/ then the QName
 foo:bar would correspond to the IRI
 http://example.org/somewhere/bar. Note that this
 restricts which
 IRIs can be made and the same IRI can be given in multiple ways.

 The rdf:ID values
 are transformed into
 IRIs
 by appending the attribute value to the result of appending
 "#" to the in-scope base URI which is defined in
 Section 5.3 Resolving IRIs

 	Literal

 	
	Literals can only act as object nodes.

	
 Literals
	always have a datatype. Language-tagged strings get
 the datatype rdf:langString. When there is no
 language tag or datatype specified the literal is assumed to have the datatype
 xsd:string.

 	Blank Node

 	
	Blank nodes can act as subject node and as object node.

	
	Blank nodes
	have distinct identity in the RDF graph.
 When the graph is written in a syntax such as RDF/XML, these
 blank nodes may need graph-local identifiers and a syntax
 in order to preserve this distinction. These local identifiers are called
 blank node identifiers
 and are used in RDF/XML as values of the rdf:nodeID attribute
 with the syntax given in Production nodeIdAttr.
 Blank node identifiers in RDF/XML are scoped to the XML Information Set
 document information item.

 If no blank node identifier is given explicitly as an
 rdf:nodeID attribute value then one will need to be
 generated (using generated-blank-node-id, see section 6.3.3).
 Such generated blank node
 identifiers must not clash with any blank node identifiers derived
 from rdf:nodeID attribute values. This can be
 implemented by any method that preserves the distinct identity of all
 the blank nodes in the graph, that is, the same blank node identifier
 is not given for different blank nodes. One possible method would be
 to add a constant prefix to all the rdf:nodeID attribute
 values and ensure no generated blank node identifiers ever used that
 prefix. Another would be to map all rdf:nodeID attribute
 values to new generated blank node identifiers and perform that mapping
 on all such values in the RDF/XML document.

 5.3 Resolving IRIs

 RDF/XML supports
 XML Base [XMLBASE]
 which defines a
 ·base-uri·
 accessor for each ·root event· and
 ·element event·.
 Relative IRIs are resolved into
 IRIs
 according to the algorithm specified in [XMLBASE] (and RFC 2396).
 These specifications do not specify an algorithm for resolving a
 fragment identifier alone, such as #foo, or the empty
 string "" into an
 IRI. In RDF/XML, a fragment identifier
 is transformed into an IRI
 by appending the fragment identifier to the in-scope base URI. The
 empty string is transformed
 into an IRI by substituting the in-scope base URI.

 Note
Test:
 indicated by:

	test001.rdf and
 test001.nt
	

 test004.rdf and
 test004.nt
	

 test008.rdf and
 test008.nt

 An empty same document reference ""
 resolves against the URI part of the base URI; any fragment part
 is ignored. See
 Uniform Resource Identifiers (URI) [RFC3986].

 Note
Test:
 Indicated by
 test013.rdf and
 test013.nt

 Note
Implementation Note (Informative):
 When using a hierarchical base
 URI that has no path component (/), it must be added before using as a
 base URI for resolving.

 Note
Test:
 Indicated by
 test011.rdf and
 test011.nt

 5.4 Constraints

 	constraint-id

 	Each application of production idAttr
 matches an attribute. The pair formed by the
 ·string-value·
 accessor of the matched attribute and the
 ·base-uri·
 accessor of the matched attribute is unique within a single RDF/XML
 document.

 The syntax of the names must match the
 rdf-id production.

 Note
Test:
 Indicated by
 test014.rdf and
 test014.nt

 5.5 Conformance

 	Definition:

 	An RDF Document is a serialization of an
 RDF Graph
 into a concrete syntax.

 	Definition:

 	An RDF/XML Document is an
 RDF Document written in the
 XML syntax for RDF as defined in this document.

 	Conformance:

 	An RDF/XML Document is a
 conforming RDF/XML document
 if it adheres to the specification defined in this document.

6. Syntax Data Model

 This document specifies the syntax of RDF/XML as a grammar on an
 alphabet of symbols. The symbols are called events in the
 style of the XPATH
 Information Set Mapping.
 A sequence of events is normally derived from an XML document, in
 which case they are in document order as defined below in
 Section 6.2 Information Set Mapping.
 The sequence these events form are intended to be similar to the sequence
 of events produced by the [SAX] XML API from
 the same XML document. Sequences of events may be checked against
 the grammar to determine whether they are or are not syntactically
 well-formed RDF/XML.

 The grammar productions may include actions which fire when the
 production is recognized. Taken together these actions define a
 transformation from any syntactically well-formed RDF/XML sequence of
 events into an RDF graph represented in the N-Triples [N-TRIPLES]
 language.

 The model given here illustrates one way to create a representation of
 an RDF Graph
 from an RDF/XML document. It does not mandate any implementation
 method — any other method that results in a representation of the same
 RDF Graph may be used.

 In particular:

 	This specification permits any
 	representation of an RDF graph;
 in particular, it does not require the use of N-Triples [N-TRIPLES].

 	This specification does not require the use of
 [XPATH] or [SAX]

 	This specification places no constraints on the order in which
 software transforming RDF/XML into a representation of a graph,
 constructs the representation of the graph.

 	Software transforming RDF/XML into a representation of a graph
 MAY eliminate duplicate predicate arcs.

 The syntax does not support non-well-formed XML documents, nor
 documents that otherwise do not have an XML Information Set; for
 example, that do not conform to
 Namespaces in XML [XML-NAMES].

 The Infoset requires support for
 XML Base [XMLBASE].
 RDF/XML uses the information item property [base URI], discussed in
 section 5.3

 This specification requires an
 XML Information Set [XML-INFOSET]
 which supports at least the following information items and
 properties for RDF/XML:

 	document information item

 	[document element], [children], [base URI]

 	element information item

 	[local name], [namespace name], [children], [attributes], [parent], [base URI]

 	attribute information item

 	[local name], [namespace name], [normalized value]

 	character information item

 	[character code]

 There is no mapping of the following items to data model events:

 	processing instruction information item

 	unexpanded entity reference information item

 	comment information item

 	document type declaration information item

 	unparsed entity information item

 	notation information item

 	namespace information item

 Other information items and properties have no mapping to
 syntax data model events.

 Element information items with reserved XML Names
 (See Name
 in XML 1.0)
 are not mapped to data model element events. These are all those
 with property [prefix] beginning with xml (case
 independent comparison) and all those with [prefix] property
 having no value and which have [local name] beginning with
 xml (case independent comparison).

 All information items contained inside XML elements matching the
 parseTypeLiteralPropertyElt
 production form
 XML literals
 and do not follow this mapping. See
 parseTypeLiteralPropertyElt
 for further information.

 This section is intended to satisfy the requirements for
 Conformance
 in the [XML-INFOSET] specification.
 It specifies the information items and properties that are needed
 to implement this specification.

 6.1 Events

 There are nine types of event defined in the following subsections.
 Most events are constructed from an Infoset information item (except
 for IRI,
 blank node,
 plain literal and
 typed literal). The effect
 of an event constructor is to create a new event with a unique identity,
 distinct from all other events. Events have accessor operations on them
 and most have the string-value accessor that may be a static value
 or computed.

 6.1.1 Root Event

 Constructed from a
 document information item
 and takes the following accessors and values.

 	document-element

 	Set to the value of document information item property [document-element].

 	children

 	Set to the value of document information item property [children].

 	base-uri

 	Set to the value of document information item property [base URI].

 	language

 	Set to the empty string.

 6.1.2 Element Event

 Constructed from an
 element information item
 and takes the following accessors and values:

 	local-name

 	Set to the value of element information item property [local name].

 	namespace-name

 	Set to the value of element information item property [namespace name].

 	children

 	Set to the value of element information item property [children].

 	parent

 	Set to the value of element information item property [parent].

		
 	base-uri

 	Set to the value of element information item property [base URI].

 	attributes

 	Made from the value of element information item
 property [attributes] which is a set of attribute
 information items.

 If this set contains an attribute information item xml:lang (
 [namespace name] property with the value
 "http://www.w3.org/XML/1998/namespace" and
 [local name] property value "lang")
 it is removed from the set of attribute information items and the
 ·language· accessor is set to the
 [normalized-value] property of the attribute information item.

 All remaining reserved XML Names
 (see Name
 in XML 1.0)
 are now removed from the set. These are, all
 attribute information items in the set with property [prefix]
 beginning with xml (case independent
 comparison) and all attribute information items with [prefix]
 property having no value and which have [local name] beginning with
 xml (case independent comparison) are removed.
 Note that the [base URI] accessor is computed by XML Base before any
 xml:base attribute information item is deleted.

 The remaining set of attribute information items are then used
 to construct a new set of
 Attribute Events
 which is assigned as the value of this accessor.

 	URI

 	Set to the string value of the concatenation of the
 value of the namespace-name accessor and the value of the
 local-name accessor.

 	URI-string-value

 	
 The value is the concatenation of the following in this order "<",
 the escaped value of the
 ·URI·
 accessor and ">".

 The escaping of the
 ·URI·
 accessor uses the N-Triples escapes for
 IRIs [[N_TRIPLES]].

 	li-counter

 	Set to the integer value 1.

 	language

 	Set from the
 ·attributes·
 as described above.
 If no value is given from the attributes, the value is set to the value of
 the language accessor on the parent event (either a
 Root Event or an
 Element Event), which may be the empty string.

 	subject

 	Has no initial value. Takes a value that is an
 Identifier event.
 This accessor is used on elements that deal with one node in the RDF graph,
 this generally being the subject of a statement.

 6.1.3 End Element Event

 Has no accessors. Marks the end of the containing element in
 the sequence.

 6.1.4 Attribute Event

 Constructed from an
 attribute information item
 and takes the following accessors and values:

 	local-name

 	Set to the value of attribute information item property [local name].

 	namespace-name

 	Set to the value of attribute information item property [namespace name].

 	string-value

 	Set to the value of the attribute information item
 property [normalized value] as specified by [XML10] (if an attribute whose normalized
 value is a zero-length string, then the string-value is also
 a zero-length string).

 	URI

 	If ·namespace-name· is present,
 set to a string value of the concatenation of the value of the
 ·namespace-name· accessor
 and the value of the
 ·local-name· accessor.
 Otherwise if ·local-name· is
 ID, about, resource,
 parseType or type, set to a string
 value of the concatenation of the
 ·RDF namespace IRI·
 and the value of the ·local-name· accessor. Other non-namespaced
 ·local-name· accessor values are
 forbidden.

 The support for a limited set of non-namespaced names is
 REQUIRED and intended to allow RDF/XML documents specified in
 [RDFMS] to remain valid; new documents
 SHOULD NOT use these unqualified attributes and applications MAY
 choose to warn when the unqualified form is seen in a document.

 The construction of IRIs from XML attributes can generate the same
 IRIs from different XML attributes. This can cause ambiguity in the
 grammar when matching attribute events (such as when
 rdf:about and about XML attributes are
 both present). Documents that have this are illegal.

 	URI-string-value

 	
 The value is the concatenation of the following in this order "<",
 the escaped value of the
 ·URI·
 accessor and ">".

 The escaping of the
 ·URI·
 accessor uses the N-Triples escapes for
 IRIs [N-TRIPLES].

 6.1.5 Text Event

 Constructed from a sequence of one or more consecutive
 character information items.
 Has the single accessor:

 	string-value

 	Set to the value of the string made from concatenating the
 [character
 code] property of each of the character information
 items.

 6.1.6 IRI Event

 An event for a IRIs which has the following accessors:

 	identifier

 	Takes a string value used as an IRI.

 	string-value

 	The value is the concatenation of "<", the escaped
 value of the ·identifier· accessor and ">"

 The escaping of the ·identifier· accessor value
 uses the N-Triples escapes for IRIs [N-TRIPLES].

 These events are constructed by giving a value for the
 ·identifier· accessor.

 For further information on identifiers in the RDF graph, see
 section 5.2.

 6.1.7 Blank Node Identifier Event

 An event for a
 blank node identifier
 which has the following accessors:

 	identifier

 	Takes a string value.

 	string-value

 	The value is a function of the value of the
 ·identifier· accessor.
 The value begins with "_:" and the entire value MUST match the
 N-Triples
 BLANK_NODE_LABELD production.
 The function MUST preserve distinct blank node identity as
 discussed in in section 5.2
 Identifiers.

 These events are constructed by giving a value for the
 ·identifier· accessor.

 For further information on identifiers in the RDF graph, see
 section 5.2.

 6.1.8 Plain Literal Event

	Note
RDF/XML plain literals are in RDF 1.1 treated as
	syntactic sugar for a literal with datatype
	xsd:string (in case no language tag is present)
	or as a literal with datatype rdf:langString (in
	case a language tag is present). The mapping to N-Triples as
	defined in this subsection is not affected by this change.

	
 An event for a plain
 literal which can have the following accessors:

 	literal-value

 	Takes a string value.

 	literal-language

 	Takes a string value used as a language tag in an RDF plain literal.

 	string-value

 	The value is calculated from the other accessors as follows.

 If ·literal-language· is the empty string
 then the value is the concatenation of """ (1 double quote),
 the escaped value of the
 ·literal-value· accessor
 and """ (1 double quote).

 Otherwise the value is the concatenation of """ (1 double quote),
 the escaped value of the
 ·literal-value· accessor
 ""@" (1 double quote and a '@'),
 and the value of the
 ·literal-language· accessor.

 The escaping of the ·literal-value· accessor value uses the N-Triples
 escapes for strings as described in [N-TRIPLES]
 for escaping certain characters such as ".

 These events are constructed by giving values for the
 ·literal-value· and
 ·literal-language· accessors.

 Note

	Interoperability Note (Informative):
 Literals beginning with a Unicode combining character are
 allowed however they may cause interoperability problems.
 See [CHARMOD] for further information.

 6.1.9 Typed Literal Event

 An event for a typed literal which can have the following accessors:

 	literal-value

 	Takes a string value.

 	literal-datatype

 	Takes a string value used as an IRI.

 	string-value

 	The value is the concatenation of the following in this order
 """ (1 double quote),
 the escaped value of the
 ·literal-value· accessor,
 """ (1 double quote), "^^<",
 the escaped value of the
 ·literal-datatype· accessor
 and ">".

 The escaping of the ·literal-value· accessor value
 uses the N-Triples
 escapes for strings [N-TRIPLES]
 for escaping certain characters such as ".
 The escaping of the ·literal-datatype· accessor value
 must use the N-Triples escapes for IRI [N-TRIPLES].

 These events are constructed by giving values for the
 ·literal-value·
 and ·literal-datatype· accessors.

 Note

	Interoperability Note (Informative):
 Literals beginning with a Unicode combining character are
 allowed however they may cause interoperability problems.
 See [CHARMOD] for further information.

 Note

	Implementation Note (Informative):
 In XML Schema (part 1) [XMLSCHEMA-1],
 white
	space normalization
 occurs during validation according to the value of the whiteSpace
 facet. The syntax mapping used in this document occurs after this,
 so the whiteSpace facet formally has no further effect.

 6.2 Information Set Mapping

 To transform the Infoset into the sequence of events
 in document order, each
 information item is transformed as described above to generate a
 tree of events with accessors and values. Each element event is
 then replaced as described below to turn the tree of events
 into a sequence in document order.

 	The original element event

 	The value of the
 children
 accessor recursively transformed, a possibly empty ordered list of events.

 	An end element event

 6.3 Grammar Notation

 The following notation is used to describe matching the sequence
 of data model events as given in Section 6
 and the actions to perform for the matches.
 The RDF/XML grammar is defined in terms of mapping from these matched
 data model events to triples, using notation of the form:

 number event-type event-content

 action...

 N-Triples

 where the event-content is an expression matching

 event-types (as defined in Section 6.1),
 using notation given in the following sections.
 The number is used for reference purposes.
 The grammar action may include generating
 new triples to the graph, written in N-Triples [N-TRIPLES]
 format.

 The following sections describe the general notation used and that
 for event matching and actions.

 6.3.1 Grammar General Notation

 	Notation
 	Meaning

 	event.accessor

 	The value of an event accessor.

 	rdf:X
 	A URI as defined in section 5.1.

 	"ABC"
 	A string of characters A, B, C in order.

 6.3.2 Grammar Event Matching Notation

 	Notation
 	Meaning

 	A == B
 	Event accessor A matches expression B.

 	A != B
 	A is not equal to B.

 	A | B | ...
 	The A, B, ... terms are alternatives.

 	A - B
 	The terms in A excluding all the terms in B.

 	anyURI.
 	Any URI.

 	anyString.

 	Any string.

 	list(item1, item2, ...); list()
 	An ordered list of events. An empty list.

 	set(item1, item2, ...); set()
 	An unordered set of events. An empty set.

 	*

 	Zero or more of preceding term.

 	?
 	Zero or one of preceding term.

 	+
 	One or more of preceding term.

 	root(acc1 == value1,

 acc2 == value2, ...)
 	Match a Root Event with accessors.

 	start-element(acc1 == value1,

 acc2 == value2, ...)

 children

 end-element()

 	Match a sequence of
 Element Event with accessors,
 a possibly empty list of events as element content and an
 End Element Event.

 	attribute(acc1 == value1,

 acc2 == value2, ...)
 	Match an Attribute Event
 with accessors.

 	text()
 	Match a Text Event.

 6.3.3 Grammar Action Notation

 	Notation
 	Meaning

 	A := B
 	Assigns A the value B.

 	concat(A, B, ..)

 	A string created by concatenating the terms in order.

 	resolve(e, s)
 	A string created by interpreting string s as a relative IRI to the
 ·base-uri· accessor of 6.1.2 Element Event e

 as defined in Section 5.3 Resolving URIs.
 The resulting string represents an
 IRI.

 	generated-blank-node-id()
 	A string value for a new distinct generated
 blank node identifier
 as defined in section 5.2 Identifiers.

 	event.accessor := value
 	Sets an event accessor to the given value.

 	uri(identifier := value)
 	Create a new URI Reference Event.

 	bnodeid(identifier := value)
 	Create a new Blank Node Identifier Event. See also section 5.2 Identifiers.

 	literal(literal-value := string,

 literal-language := language, ...)
 	Create a new Plain Literal Event.

 	typed-literal(literal-value := string, ...)
 	Create a new Typed Literal Event.

7. RDF/XML Grammar

 7.1 Grammar summary

 	7.2.2 coreSyntaxTerms 	rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype

 	7.2.3 syntaxTerms 	coreSyntaxTerms | rdf:Description | rdf:li

 	7.2.4 oldTerms 	rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID

 	7.2.5 nodeElementURIs 	anyURI - (coreSyntaxTerms | rdf:li | oldTerms)

 	7.2.6 propertyElementURIs 	anyURI - (coreSyntaxTerms | rdf:Description | oldTerms)

 	7.2.7 propertyAttributeURIs 	anyURI - (coreSyntaxTerms | rdf:Description | rdf:li | oldTerms)

 	7.2.8 doc 	root(document-element == RDF,
 children == list(RDF))

 	7.2.9 RDF 	start-element(URI == rdf:RDF,
 attributes == set())

 nodeElementList

 end-element()

 	7.2.10 nodeElementList 	ws* (nodeElement ws*)*

 	7.2.11 nodeElement 	start-element(URI == nodeElementURIs

 attributes == set((idAttr | nodeIdAttr | aboutAttr)?, propertyAttr*))

 propertyEltList

 end-element()

 	7.2.12 ws 	A
 text event matching white
 space defined by XML [XML10] definition White Space

 Rule [3] S
 in section
 Common Syntactic Constructs

 	7.2.13 propertyEltList 	ws* (propertyElt ws*) *

 	7.2.14 propertyElt 	resourcePropertyElt |
 literalPropertyElt |
 parseTypeLiteralPropertyElt |
 parseTypeResourcePropertyElt |

 parseTypeCollectionPropertyElt |
 parseTypeOtherPropertyElt |
 emptyPropertyElt

 	7.2.15 resourcePropertyElt 	start-element(URI == propertyElementURIs),

 attributes == set(idAttr?))

 ws* nodeElement ws*

 end-element()

 	7.2.16 literalPropertyElt 	start-element(URI == propertyElementURIs),
 attributes == set(idAttr?, datatypeAttr?))

 text()

 end-element()

 	7.2.17 parseTypeLiteralPropertyElt 	start-element(URI == propertyElementURIs),

 attributes == set(idAttr?, parseLiteral))

 literal

 end-element()

 	7.2.18 parseTypeResourcePropertyElt 	start-element(URI == propertyElementURIs),

 attributes == set(idAttr?, parseResource))

 propertyEltList

 end-element()

 	7.2.19 parseTypeCollectionPropertyElt 	start-element(URI == propertyElementURIs),

 attributes == set(idAttr?, parseCollection))

 nodeElementList

 end-element()

 	7.2.20 parseTypeOtherPropertyElt 	start-element(URI == propertyElementURIs),

 attributes == set(idAttr?, parseOther))

 propertyEltList

 end-element()

 	7.2.21 emptyPropertyElt 	start-element(URI == propertyElementURIs),

 attributes == set(idAttr?, (resourceAttr | nodeIdAttr | datatypeAttr)?, propertyAttr*))

 end-element()

 	7.2.22 idAttr 	attribute(URI == rdf:ID,
 string-value == rdf-id)

 	7.2.23 nodeIdAttr 	attribute(URI == rdf:nodeID,
 string-value == rdf-id)

 	7.2.24 aboutAttr 	attribute(URI == rdf:about,
 string-value == URI-reference)

 	7.2.25 propertyAttr 	attribute(URI == propertyAttributeURIs,
 string-value == anyString)

 	7.2.26 resourceAttr 	attribute(URI == rdf:resource,
 string-value == URI-reference)

 	7.2.27 datatypeAttr 	attribute(URI == rdf:datatype,
 string-value == URI-reference)

 	7.2.28 parseLiteral 	attribute(URI == rdf:parseType,
 string-value == "Literal")

 	7.2.29 parseResource 	attribute(URI == rdf:parseType,
 string-value == "Resource")

 	7.2.30 parseCollection 	attribute(URI == rdf:parseType,
 string-value == "Collection")

 	7.2.31 parseOther 	attribute(URI == rdf:parseType,

 string-value == anyString - ("Resource" | "Literal" | "Collection"))

 	7.2.32 URI-reference 	An IRI.

 	7.2.33 literal 	Any XML element content
 that is allowed according to
 [XML10] definition Content of Elements
 Rule [43]
 content.
 in section
 3.1 Start-Tags, End-Tags, and Empty-Element Tags

 	7.2.34 rdf-id 	An attribute ·string-value·
 matching any legal [XML-NAMES] token
 NCName

 7.2 Grammar Productions

 7.2.1 Grammar start

 If the RDF/XML is a standalone XML document
 (identified by presentation as an
 application/rdf+xml RDF MIME type object,
 or by some other means) then the grammar may start with
 production doc or
 production nodeElement.

 If the content is known to be RDF/XML by context, such as when
 RDF/XML is embedded inside other XML content, then the grammar
 can either start
 at Element Event
 RDF
 (only when an element is legal at that point in the XML)
 or at production nodeElementList
 (only when element content is legal, since this is a list of elements).
 For such embedded RDF/XML, the
 ·base-uri·
 value on the outermost element must be initialized from the containing
 XML since no
 Root Event will be available.
 Note that if such embedding occurs, the grammar may be entered
 several times but no state is expected to be preserved.

 7.2.2 Production coreSyntaxTerms

 rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype

 A subset of the syntax terms from the RDF vocabulary in
 section 5.1
 which are used in RDF/XML.

 7.2.3 Production syntaxTerms

 coreSyntaxTerms | rdf:Description | rdf:li

 All the syntax terms from the RDF vocabulary in
 section 5.1
 which are used in RDF/XML.

 7.2.4 Production oldTerms

 rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID

 These are the names from the RDF vocabulary
 that have been withdrawn from the language. See the resolutions of
 Issue rdfms-aboutEach-on-object,
 Issue rdfms-abouteachprefix and
 Last Call Issue timbl-01
 for further information.

 Note
Error Test:
 Indicated by
 error001.rdf and
 error002.rdf

 7.2.5 Production nodeElementURIs

 anyURI - (coreSyntaxTerms | rdf:li | oldTerms)

 The IRIs that are allowed on node elements.

 7.2.6 Production propertyElementURIs

 anyURI - (coreSyntaxTerms | rdf:Description | oldTerms)

 The URIs that are allowed on property elements.

 7.2.7 Production propertyAttributeURIs

 anyURI - (coreSyntaxTerms | rdf:Description | rdf:li | oldTerms)

 The IRIs that are allowed on property attributes.

 7.2.8 Production doc

 root(document-element == RDF,

 children == list(RDF))

 7.2.9 Production RDF

 start-element(URI == rdf:RDF,

 attributes == set())

 nodeElementList

 end-element()

 7.2.10 Production nodeElementList

 ws* (nodeElement ws*)*

 7.2.11 Production nodeElement

 start-element(URI == nodeElementURIs

 attributes == set((idAttr | nodeIdAttr | aboutAttr)?, propertyAttr*))

 propertyEltList

 end-element()

 For node element e, the processing of some of the attributes
 has to be done before other work such as dealing with children events
 or other attributes. These can be processed in any order:

 	If there is an attribute a with
 a.URI == rdf:ID, then

 e.subject := uri(identifier := resolve(e, concat("#", a.string-value))).

 	If there is an attribute a with
 a.URI == rdf:nodeID, then

 e.subject := bnodeid(identifier:=a.string-value).

 	If there is an attribute a with

 a.URI == rdf:about then
 e.subject := uri(identifier := resolve(e, a.string-value)).

 If e.subject is empty,
 then e.subject := bnodeid(identifier := generated-blank-node-id()).

 The following can then be performed in any order:

 	 If e.URI !=
 rdf:Description
 then the following statement is added to the graph:

 e.subject.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> e.URI-string-value .

 	 If there is an attribute a
 in propertyAttr with
 a.URI == rdf:type
 then

 u:=uri(identifier:=resolve(e, a.string-value))
 and the following triple is added to the graph:

 e.subject.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> u.string-value .

 	 For each attribute a matching
 propertyAttr (and not rdf:type),
 the Unicode string
 a.string-value

 SHOULD be in Normal Form C [NFC],
 o := literal(literal-value := a.string-value, literal-language := e.language)
 and the following statement is added to the graph:

 e.subject.string-value a.URI-string-value o.string-value .

 	 Handle the
 propertyEltList children events
 in document order.

 7.2.12 Production ws

 A text event matching white space
 defined by [XML10] definition White Space
 Rule [3] S
 in section
 Common Syntactic Constructs

 7.2.13 Production propertyEltList

 ws* (propertyElt ws*) *

 7.2.14 Production propertyElt

 resourcePropertyElt |
 literalPropertyElt |
 parseTypeLiteralPropertyElt |
 parseTypeResourcePropertyElt |
 parseTypeCollectionPropertyElt |

 parseTypeOtherPropertyElt |
 emptyPropertyElt

 If element e has
 e.URI =
 rdf:li then apply the list expansion rules on element e.parent in

 section 7.4
 to give a new URI u and
 e.URI := u.

 The action of this production must be done before the
 actions of any sub-matches (resourcePropertyElt ... emptyPropertyElt).
 Alternatively the result must be equivalent to as if it this action
 was performed first, such as performing as the first
 action of all of the sub-matches.

 7.2.15 Production resourcePropertyElt

 start-element(URI == propertyElementURIs),

 attributes == set(idAttr?))

 ws* nodeElement ws*

 end-element()

 For element e, and the single contained nodeElement
 n, first n must be processed using production

 nodeElement.
 Then the following statement is added to the graph:

 e.parent.subject.string-value e.URI-string-value n.subject.string-value .

 If the rdf:ID attribute a is given, the above
 statement is reified with
 i := uri(identifier := resolve(e, concat("#", a.string-value)))
 using the reification rules in

 section 7.3
 and e.subject := i

 7.2.16 Production literalPropertyElt

 start-element(URI == propertyElementURIs),

 attributes == set(idAttr?, datatypeAttr?))

 text()

 end-element()

 Note that the empty literal case is defined in production
 emptyPropertyElt.

 For element e, and the text event t.
 The Unicode string t.string-value SHOULD be
 in Normal Form C [NFC].
 If the rdf:datatype attribute d is given
 then o := typed-literal(literal-value := t.string-value, literal-datatype := d.string-value)
 otherwise

 o := literal(literal-value := t.string-value, literal-language := e.language)
 and the following statement is added to the graph:

 e.parent.subject.string-value e.URI-string-value o.string-value .

 If the rdf:ID attribute a is given, the above
 statement is reified with
 i := uri(identifier := resolve(e, concat("#", a.string-value)))
 using the reification rules in

 section 7.3
 and e.subject := i.

 7.2.17 Production parseTypeLiteralPropertyElt
This section is non-normative.

 start-element(URI == propertyElementURIs),

 attributes == set(idAttr?, parseLiteral))

 literal

 end-element()

 For element e and the literal l
 that is the rdf:parseType="Literal" content.
 l is not transformed by the syntax data model mapping into events
 (as noted in section 6 Syntax Data Model)
 but remains an XML Infoset of XML Information items.

 l is transformed into the lexical form of an
 XML literal
 in the RDF graph x (a Unicode string)
 by the following algorithm. This does not mandate any implementation
 method — any other method that gives the same result may be used.

	

		Use l to construct an XPath
 sequence [XPATH-DATAMODEL-30].

 	Apply http://www.w3.org/TR/xpath-functions-30/#func-serialize [XPATH-FUNCTIONS-30]
	to this sequence to give an xsd:string x.

 	The Unicode string x is used as the lexical form of l

 	This Unicode string x SHOULD be in NFC Normal Form C [NFC]

 Then o := typed-literal(literal-value := x, literal-datatype := http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral)
 and the following statement is added to the graph:

 e.parent.subject.string-value e.URI-string-value o.string-value .

 Note
Test:
 Empty literal case indicated by
 test009.rdf
 and
 test009.nt

 If the rdf:ID attribute a is given, the above
 statement is reified with

 i := uri(identifier := resolve(e, concat("#", a.string-value)))
 using the reification rules in
 section 7.3
 and e.subject := i.

 7.2.18 Production parseTypeResourcePropertyElt

 start-element(URI == propertyElementURIs),

 attributes == set(idAttr?, parseResource))

 propertyEltList

 end-element()

 For element e with possibly empty element content c.

 n := bnodeid(identifier := generated-blank-node-id()).

 Add the following statement to the graph:

 e.parent.subject.string-value e.URI-string-value n.string-value .

 Note
Test:
 Indicated by
 test004.rdf
 and
 test004.nt

 If the rdf:ID attribute a is given, the
 statement above is reified with

 i := uri(identifier := resolve(e, concat("#", a.string-value)))
 using the reification rules in
 section 7.3
 and e.subject := i.

 If the element content c is not empty, then use event
 n to create a new sequence of events as follows:

 start-element(URI := rdf:Description,

 subject := n,

 attributes := set())

 c

 end-element()

 Then
 process the resulting sequence using production

 nodeElement.

 7.2.19 Production parseTypeCollectionPropertyElt

 start-element(URI == propertyElementURIs),

 attributes == set(idAttr?, parseCollection))

 nodeElementList

 end-element()

 For element event e with possibly empty

 nodeElementList l. Set
 s:=list().

 For each element event f in l,
 n := bnodeid(identifier := generated-blank-node-id()) and append n to

 s to give a sequence of events.

 If s is not empty, n is the first event identifier in
 s and the following statement is added to the graph:

 e.parent.subject.string-value e.URI-string-value n.string-value .

 otherwise the following statement is added to the graph:

 e.parent.subject.string-value e.URI-string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#nil> .

 If the rdf:ID attribute a is given,
 either of the the above statements is reified with
 i := uri(identifier := resolve(e, concat("#", a.string-value)))
 using the reification rules in

 section 7.3.

 If s is empty, no further work is performed.

 For each event n in s and the
 corresponding element event f in l, the following
 statement is added to the graph:

 n.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#first> f.string-value .

 For each consecutive and overlapping pair of events
 (n, o) in s, the following statement is
 added to the graph:

 n.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#rest> o.string-value .

 If s is not empty, n is the last event identifier
 in s, the following statement is added to the graph:

 n.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#rest> <http://www.w3.org/1999/02/22-rdf-syntax-ns#nil> .

 7.2.20 Production parseTypeOtherPropertyElt

 start-element(URI == propertyElementURIs),

 attributes == set(idAttr?, parseOther))

 propertyEltList

 end-element()

 All rdf:parseType attribute values other than the strings
 "Resource", "Literal" or "Collection" are treated as if the value was
 "Literal". This production matches and acts as if production
 parseTypeLiteralPropertyElt
 was matched.
 No extra triples are generated for other rdf:parseType values.

 7.2.21 Production emptyPropertyElt

 start-element(URI == propertyElementURIs),

 attributes == set(idAttr?, (resourceAttr | nodeIdAttr | datatypeAttr)?, propertyAttr*))

 end-element()

 	
 If there are no attributes or only the
 optional rdf:ID attribute i
 then o := literal(literal-value:="", literal-language := e.language)
 and the following statement is added to the graph:

 e.parent.subject.string-value e.URI-string-value o.string-value .

 and then if i is given, the above statement is reified with
 uri(identifier := resolve(e, concat("#", i.string-value)))
 using the reification rules in
 section 7.3.

 Note
Test:
 Indicated by
 test002.rdf
 and
 test002.nt

	
 Note
Test:
 Indicated by
 test005.rdf
 and
 test005.nt

 	

 Otherwise

 	If rdf:resource attribute i is present, then
 r := uri(identifier := resolve(e, i.string-value))

 	If rdf:nodeID attribute i is present, then
 r := bnodeid(identifier := i.string-value)

 	If neither,
 r := bnodeid(identifier := generated-blank-node-id())

 The following are done in any order:

 	For all propertyAttr
 attributes a (in any order)

 	If a.URI == rdf:type

 then u:=uri(identifier:=resolve(e, a.string-value))
 and the following triple is added to the graph:

 r.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> u.string-value .

 	Otherwise Unicode string
 a.string-value
 SHOULD be in Normal Form C [NFC],
 o := literal(literal-value := a.string-value, literal-language := e.language)
 and the following statement is added to the graph:

 r.string-value a.URI-string-value o.string-value .

 Note
Test:
 Indicated by
 test013.rdf
 and
 test013.nt

 Note
Test:
 Indicated by
 test014.rdf
 and
 test014.nt

 	Add the following statement to the graph:

 e.parent.subject.string-value e.URI-string-value r.string-value .

 and then if rdf:ID attribute i is given, the above statement is
 reified with
 uri(identifier := resolve(e, concat("#", i.string-value)))
 using the reification rules in
 section 7.3.

 7.2.22 Production idAttr

 attribute(URI == rdf:ID,

 string-value == rdf-id)

 Constraint:: constraint-id
 applies to the values of rdf:ID attributes

 7.2.23 Production nodeIdAttr

 attribute(URI == rdf:nodeID,

 string-value == rdf-id)

 7.2.24 Production aboutAttr

 attribute(URI == rdf:about,

 string-value == URI-reference)

 7.2.25 Production propertyAttr

 attribute(URI == propertyAttributeURIs,

 string-value == anyString)

 7.2.26 Production resourceAttr

 attribute(URI == rdf:resource,

 string-value == URI-reference)

 7.2.27 Production datatypeAttr

 attribute(URI == rdf:datatype,

 string-value == URI-reference)

 7.2.28 Production parseLiteral

 attribute(URI == rdf:parseType,

 string-value == "Literal")

 7.2.29 Production parseResource

 attribute(URI == rdf:parseType,

 string-value == "Resource")

 7.2.30 Production parseCollection

 attribute(URI == rdf:parseType,

 string-value == "Collection")

 7.2.31 Production parseOther

 attribute(URI == rdf:parseType,

 string-value == anyString - ("Resource" | "Literal" | "Collection"))

 7.2.32 Production IRI

 An IRI.

 7.2.33 Production literal

 Any XML element content that is allowed according to
 XML definition Content of Elements
 Rule [43]
 content.
 in section
 3.1 Start-Tags, End-Tags, and Empty-Element Tags

 The string-value for the resulting event is discussed in
 section 7.2.17.

 7.2.34 Production rdf-id

 An attribute ·string-value·
 matching any legal
 [XML-NAMES] token
 NCName

 7.3 Reification Rules

 For the given IRI event r and
 the statement with terms s, p and o

 corresponding to the N-Triples:

 s p o .

 add the following statements to the graph:

 r.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> s .

 r.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> p .

 r.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> o .

 r.string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> .

 7.4 List Expansion Rules

 For the given element e, create a new IRI u :=
 concat("http://www.w3.org/1999/02/22-rdf-syntax-ns#_",

 e.li-counter),
 increment the
 e.li-counter
 property by 1 and return u.

8. Serializing an RDF Graph to RDF/XML

 There are some RDF Graphs as defined in
 [RDF11-CONCEPTS]that cannot be serialized in RDF/XML. These are those that:

 	Use property names that cannot be turned into XML namespace-qualified names.

 	An XML namespace-qualified name
 (QName)
 has restrictions on the legal characters such that not all property URIs
 can be expressed as these names.
 It is recommended that implementors of RDF serializers, in order to
 break a URI into a namespace name and a local name, split it after
 the last XML non-NCName
 character, ensuring that the first character of the name is a
 Letter or '_'.
 If the URI ends in a
 non-NCName
 character then throw a "this graph cannot be serialized in RDF/XML"
 exception or error.

 	Use inappropriate reserved names as properties

 	For example, a property with the same URI as any of the
 syntaxTerms production.

	 	Use the rdf:HTML datatype

	 	This datatype as introduced in RDF 1.1
	 [RDF11-CONCEPTS].

 Note
Implementation Note (Informative):
 When an RDF graph is serialized to RDF/XML and has an XML Schema
 Datatype (XSD), it SHOULD be written in a form that does not require
 whitespace processing. XSD support is NOT required by RDF or RDF/XML
 so this is optional.

9. Using RDF/XML with SVG
This section is non-normative.

 There is a standardized approach for associating RDF compatible
 metadata with SVG — the metadata element which was explicitly
 designed for this purpose as defined in
 Section 21 Metadata

 of the
 Scalable
 Vector Graphics (SVG) 1.0 Specification
 [SVG10]
 and
 Section 21 Metadata
 of the
 Scalable
 Vector Graphics (SVG) 1.1 Specification
 [SVG11].

 This document contains two example graphs in SVG with such
 embedded RDF/XML inside the metadata element:
 figure 1

 and
 figure 2.

A. Acknowledgments
This section is non-normative.

 Gavin Carothers provided the RDF 1.1 update for the Production
 parseTypeLiteralPropertyElt. Ivan Herman provided valuable
 comments and reworked Figs 1 and 2.

	
 This specification is a product of extended deliberations by the
 members of the RDFcore Working Group and the RDF and RDF Schema Working Group.

		
 The following people provided valuable contributions to the document:

 	Dan Brickley, W3C/ILRT

 	Jeremy Carroll, HP Labs, Bristol

 	Graham Klyne, Nine by Nine

 	Bijan Parsia, MIND Lab at University of Maryland at College Park

 This document is a product of extended deliberations by the RDF
 Core working group, whose members have included: Art Barstow (W3C)
 Dave Beckett (ILRT), Dan Brickley (W3C/ILRT), Dan Connolly (W3C),
 Jeremy Carroll (Hewlett Packard), Ron Daniel (Interwoven Inc), Bill
 dehOra (InterX), Jos De Roo (AGFA), Jan Grant (ILRT), Graham Klyne
 (Clearswift and Nine by Nine), Frank Manola (MITRE Corporation),
 Brian McBride (Hewlett Packard), Eric Miller (W3C), Stephen
 Petschulat (IBM), Patrick Stickler (Nokia), Aaron Swartz (HWG), Mike
 Dean (BBN Technologies / Verizon), R. V. Guha (Alpiri Inc), Pat Hayes
 (IHMC), Sergey Melnik (Stanford University), Martyn Horner (Profium
 Ltd).

 This specification also draws upon an earlier RDF Model and Syntax
 document edited by Ora Lassilla and Ralph Swick, and RDF Schema
 edited by Dan Brickley and R. V. Guha. RDF and RDF Schema Working
 group members who contributed to this earlier work are:
 Nick Arnett (Verity), Tim Berners-Lee (W3C), Tim Bray (Textuality),
 Dan Brickley (ILRT / University of Bristol), Walter Chang (Adobe),
 Sailesh Chutani (Oracle), Dan Connolly (W3C), Ron Daniel
 (DATAFUSION), Charles Frankston (Microsoft), Patrick Gannon
 (CommerceNet), RV Guha (Epinions, previously of Netscape
 Communications), Tom Hill (Apple Computer), Arthur van Hoff
 (Marimba), Renato Iannella (DSTC), Sandeep Jain (Oracle), Kevin
 Jones, (InterMind), Emiko Kezuka (Digital Vision Laboratories), Joe
 Lapp (webMethods Inc.), Ora Lassila (Nokia Research Center), Andrew
 Layman (Microsoft), Ralph LeVan (OCLC), John McCarthy (Lawrence
 Berkeley National Laboratory), Chris McConnell (Microsoft), Murray
 Maloney (Grif), Michael Mealling (Network Solutions), Norbert Mikula
 (DataChannel), Eric Miller (OCLC), Jim Miller (W3C, emeritus), Frank
 Olken (Lawrence Berkeley National Laboratory), Jean Paoli
 (Microsoft), Sri Raghavan (Digital/Compaq), Lisa Rein (webMethods
 Inc.), Paul Resnick (University of Michigan), Bill Roberts
 (KnowledgeCite), Tsuyoshi Sakata (Digital Vision Laboratories), Bob
 Schloss (IBM), Leon Shklar (Pencom Web Works), David Singer (IBM),
 Wei (William) Song (SISU), Neel Sundaresan (IBM), Ralph Swick (W3C),
 Naohiko Uramoto (IBM), Charles Wicksteed (Reuters Ltd.), Misha Wolf
 (Reuters Ltd.), Lauren Wood (SoftQuad).

B. Changes since 2004 Recommendation
This section is non-normative.

 Changes for RDF 1.1 Recommendation

	 	No changes.

	

	Changes for RDF 1.1 Proposed Edited Recommendation:

	
	 	Conversion to ReSpec.

	 	RDF 2004 errata handling:
	
	 	Replaced hard-coded reference to XML and Unicode versions
	 (background info)

	 	Corrected the resolve action with the signature resolve(e, s)
	 (background info)

	 	Added parent accessor to element events
	 (background info)

	 	Allow datatyped empty literals
	 (background info)

	 	Removed ID and datatype exclusion on literal property
	 (background info)

	

	 	Adapted and shortened introduction to reflect RDF 1.1

	 	Updated references to RDF 1.1 documents

	 	Replaced "(RDF) URI reference" with "IRI"

	 	Removed Section on embedding RDF/XML into HTML

	 	Removed "Specification" from the title to bring it in
	 line with other RDF 1.1 document titles

	 	Updated references to other documents

	 	Changed links in Sec. 2 examples from relative URI to
	absolute URI; same for RELAX schema in Appendix.

	 	Added note to section on plain-literal event

	 	Updated link to QName definition in XML-NAMES

	 	Added diff with 2004 Recommendation

	 	Sections concerning rdf:XMLLiteral
	 (Sec. 2.8
	 and Sec. 7.2.17)
	 marked as non-normative.

	 	Adapted Production
	parseTypeLiteralPropertyElt to cater for the non-normative
	status of rdf:XMLLiteral.

	 	Improved version of Figs. 1 and 2 (with same
	content)

		Removed old changes section

		Informative notes at start of Sec. 5.1 removed, as these
	have become irrelevant.

		Added new datatype rdf:HTML to the list of things that
	cannot be serialized in RDF/XML.

		Replaced the link to 2004 N-Triples nodeID production to
	the RDF 1.1 N-Triples BLANK_NODE_LABEL
	production.

	

C. Syntax Schemas
This section is non-normative.

 This appendix contains XML schemas for validating RDF/XML forms.
 These are example schemas for information only and are not part of
 this specification.

 C.1 RELAX NG Compact Schema
This section is non-normative.

 This is an example
 schema in
 RELAX NG Compact (for ease of reading)
 for RDF/XML. Applications can also use the
 RELAX NG XML version.
 These formats are described in
 RELAX NG [RELAXNG]
 and RELAX NG Compact [RELAXNG-COMPACT].

 Note

 The RNGC schema has been updated to attempt to match the grammar but
 this has not been checked or used to validate RDF/XML.

 #
 # RELAX NG Compact Schema for RDF/XML Syntax
 #
 # This schema is for information only and NON-NORMATIVE
 #
 # It is based on one originally written by James Clark in
 # http://lists.w3.org/Archives/Public/www-rdf-comments/2001JulSep/0248.html
 # and updated with later changes.
 #

 namespace local = ""
 namespace rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 datatypes xsd = "http://www.w3.org/2001/XMLSchema-datatypes"

 start = doc

 # I cannot seem to do this in RNGC so they are expanded in-line

 # coreSyntaxTerms = rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype
 # syntaxTerms = coreSyntaxTerms | rdf:Description | rdf:li
 # oldTerms = rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID
 # nodeElementURIs = * - (coreSyntaxTerms | rdf:li | oldTerms)
 # propertyElementURIs = * - (coreSyntaxTerms | rdf:Description | oldTerms)
 # propertyAttributeURIs = * - (coreSyntaxTerms | rdf:Description | rdf:li | oldTerms)

 # Also needed to allow rdf:li on all property element productions
 # since we can't capture the rdf:li rewriting to rdf_<n> in relaxng

 # Need to add these explicitly
 xmllang = attribute xml:lang { text }
 xmlbase = attribute xml:base { text }
 # and to forbid every other xml:* attribute, element

 doc =
 RDF | nodeElement

 RDF =
 element rdf:RDF {
 xmllang?, xmlbase?, nodeElementList
 }

 nodeElementList =
 nodeElement*

 # Should be something like:
 # ws* , (nodeElement , ws*)*
 # but RELAXNG does this by default, ignoring whitespace separating tags.

 nodeElement =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype | rdf:li |
 rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID) {
 (idAttr | nodeIdAttr | aboutAttr)?, xmllang?, xmlbase?, propertyAttr*, propertyEltList
 }

 # It is not possible to say "and not things
 # beginning with _ in the rdf: namespace" in RELAX NG.

 ws =
 " "

 # Not used in this RELAX NG schema; but should be any legal XML
 # whitespace defined by http://www.w3.org/TR/2000/REC-xml-20001006#NT-S

 propertyEltList =
 propertyElt*

 # Should be something like:
 # ws* , (propertyElt , ws*)*
 # but RELAXNG does this by default, ignoring whitespace separating tags.

 propertyElt =
 resourcePropertyElt |
 literalPropertyElt |
 parseTypeLiteralPropertyElt |
 parseTypeResourcePropertyElt |
 parseTypeCollectionPropertyElt |
 parseTypeOtherPropertyElt |
 emptyPropertyElt

 resourcePropertyElt =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype |
 rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 idAttr?, xmllang?, xmlbase?, nodeElement
 }

 literalPropertyElt =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype |
 rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 idAttr? , datatypeAttr?, xmllang?, xmlbase?, text
 }

 parseTypeLiteralPropertyElt =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype |
 rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 idAttr?, parseLiteral, xmllang?, xmlbase?, literal
 }

 parseTypeResourcePropertyElt =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype |
 rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 idAttr?, parseResource, xmllang?, xmlbase?, propertyEltList
 }

 parseTypeCollectionPropertyElt =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype |
 rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 idAttr?, xmllang?, xmlbase?, parseCollection, nodeElementList
 }

 parseTypeOtherPropertyElt =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype |
 rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 idAttr?, xmllang?, xmlbase?, parseOther, any
 }

 emptyPropertyElt =
 element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype |
 rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 idAttr?, (resourceAttr | nodeIdAttr | datatypeAttr)?, xmllang?, xmlbase?, propertyAttr*
 }

 idAttr =
 attribute rdf:ID {
 IDsymbol
 }

 nodeIdAttr =
 attribute rdf:nodeID {
 IDsymbol
 }

 aboutAttr =
 attribute rdf:about {
 URI-reference
 }

 propertyAttr =
 attribute * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType |
 rdf:resource | rdf:nodeID | rdf:datatype | rdf:li |
 rdf:Description | rdf:aboutEach |
 rdf:aboutEachPrefix | rdf:bagID |
 xml:*) {
 string
 }

 resourceAttr =
 attribute rdf:resource {
 URI-reference
 }

 datatypeAttr =
 attribute rdf:datatype {
 URI-reference
 }

 parseLiteral =
 attribute rdf:parseType {
 "Literal"
 }

 parseResource =
 attribute rdf:parseType {
 "Resource"
 }

 parseCollection =
 attribute rdf:parseType {
 "Collection"
 }

 parseOther =
 attribute rdf:parseType {
 text
 }

 URI-reference =
 string

 literal =
 any

 IDsymbol =
 xsd:NMTOKEN

 any =
 mixed { element * { attribute * { text }*, any }* }

D. References
D.1 Normative references
	[JSON-LD]
	Manu Sporny, Gregg Kellogg, Markus Lanthaler, Editors. JSON-LD 1.0. 16 January 2014. W3C Recommendation. URL: http://www.w3.org/TR/json-ld/

	[N-TRIPLES]
	Gavin Carothers, Andy Seabourne. RDF 1.1 N-Triples. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-n-triples-20140225/. The latest edition is available at http://www.w3.org/TR/n-triples/

	[RDF11-CONCEPTS]
	Richard Cyganiak, David Wood, Markus Lanthaler. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-concepts/

	[RDF11-MT]
	Patrick J. Hayes, Peter F. Patel-Schneider. RDF 1.1 Semantics. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-mt/

	[RDF11-SCHEMA]
	Dan Brickley, R. V. Guha. RDF Schema 1.1. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf-schema-20140225/. The latest published version is available at http://www.w3.org/TR/rdf-schema/.

	[RDFA-PRIMER]
	Ivan Herman; Ben Adida; Manu Sporny; Mark Birbeck. RDFa 1.1 Primer - Second Edition. 22 August 2013. W3C Note. URL: http://www.w3.org/TR/rdfa-primer/

	[RFC3023]
	M. Murata; S. St.Laurent; D. Kohn. XML Media Types (RFC 3023). January 2001. RFC. URL: http://www.ietf.org/rfc/rfc3023.txt

	[TRIG]
	Gavin Carothers, Andy Seaborne. TriG: RDF Dataset Language. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-trig-20140225/. The latest edition is available at http://www.w3.org/TR/trig/

	[TURTLE]
	Eric Prud'hommeaux, Gavin Carothers. RDF 1.1 Turtle: Terse RDF Triple Language. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-turtle-20140225/. The latest edition is available at http://www.w3.org/TR/turtle/

	[XML-INFOSET]
	John Cowan; Richard Tobin. XML Information Set (Second Edition). 4 February 2004. W3C Recommendation. URL: http://www.w3.org/TR/xml-infoset

	[XML-NAMES]
	Tim Bray; Dave Hollander; Andrew Layman; Richard Tobin; Henry Thompson et al. Namespaces in XML 1.0 (Third Edition). 8 December 2009. W3C Recommendation. URL: http://www.w3.org/TR/xml-names

	[XML10]
	Tim Bray; Jean Paoli; Michael Sperberg-McQueen; Eve Maler; François Yergeau et al. Extensible Markup Language (XML) 1.0 (Fifth Edition). 26 November 2008. W3C Recommendation. URL: http://www.w3.org/TR/xml

	[XMLSCHEMA-2]
	Paul V. Biron; Ashok Malhotra. XML Schema Part 2: Datatypes Second Edition. 28 October 2004. W3C Recommendation. URL: http://www.w3.org/TR/xmlschema-2/

D.2 Informative references
	[CHARMOD]
	Martin Dürst; François Yergeau; Richard Ishida; Misha Wolf; Tex Texin et al. Character Model for the World Wide Web 1.0: Fundamentals. 15 February 2005. W3C Recommendation. URL: http://www.w3.org/TR/charmod/

	[IANA-MEDIA-TYPES]
	MIME Media Types. The Internet Assigned Numbers Authority (IANA). The registration for application/rdf+xml is archived at http://www.w3.org/2001/sw/RDFCore/mediatype-registration.

	[NFC]
	M. Davis, Ken Whistler. TR15, Unicode Normalization Forms.. 17 September 2010, URL: http://www.unicode.org/reports/tr15/

	[RDFMS]
	Ora Lassila; Ralph R. Swick. Resource Description Framework (RDF) Model and Syntax Specification. 22 February 1999. W3C Recommendation. URL: http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

	[RELAXNG]
	James Clark and Murata Makoto, editors. RELAX NG Specification. OASIS Committee Specification, 3 December 2001. Latest version: http://www.oasis-open.org/committees/relax-ng/spec.html.

	[RELAXNG-COMPACT]
	James Clark, editor. RELAX NG Compact Syntax. OASIS Committee Specification, 21 November 2002. URI: http://www.oasis-open.org/committees/relax-ng/compact-20021121.html.

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC3986]
	T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax (RFC 3986). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3986.txt

	[SAX]
	D. Megginson, et al. SAX: The Simple API for XML. May 1998. URL: http://www.megginson.com/downloads/SAX/

	[STRIPEDRDF]
	D. Brickley. RDF: Understanding the Striped RDF/XML Syntax. W3C, 2001. URI: http://www.w3.org/2001/10/stripes/.

	[SVG10]
	Jon Ferraiolo. Scalable Vector Graphics (SVG) 1.0 Specification. 4 September 2001. W3C Recommendation. URL: http://www.w3.org/TR/SVG/

	[SVG11]
	Erik Dahlström; Patrick Dengler; Anthony Grasso; Chris Lilley; Cameron McCormack; Doug Schepers; Jonathan Watt; Jon Ferraiolo; Jun Fujisawa; Dean Jackson et al. Scalable Vector Graphics (SVG) 1.1 (Second Edition). 16 August 2011. W3C Recommendation. URL: http://www.w3.org/TR/SVG11/

	[UNICODE]
	The Unicode Standard. URL: http://www.unicode.org/versions/latest/

	[XMLBASE]
	Jonathan Marsh; Richard Tobin. XML Base (Second Edition). 28 January 2009. W3C Recommendation. URL: http://www.w3.org/TR/xmlbase/

	[XMLSCHEMA-1]
	Henry Thompson; David Beech; Murray Maloney; Noah Mendelsohn et al. XML Schema Part 1: Structures Second Edition. 28 October 2004. W3C Recommendation. URL: http://www.w3.org/TR/xmlschema-1/

	[XPATH]
	James Clark; Steven DeRose. XML Path Language (XPath) Version 1.0. 16 November 1999. W3C Recommendation. URL: http://www.w3.org/TR/xpath

	[XPATH-DATAMODEL-30]
	Norman Walsh; Anders Berglund; John Snelson. XQuery and XPath Data Model 3.0. 22 October 2013. W3C Proposed Recommendation. URL: http://www.w3.org/TR/xpath-datamodel-30/

	[XPATH-FUNCTIONS-30]
	Michael Kay. XPath and XQuery Functions and Operators 3.0. 22 October 2013. W3C Proposed Recommendation. URL: http://www.w3.org/TR/xpath-functions-30/

rdf-syntax-grammar/figure2.png
hitp:/Awww.example.org/terms/editors. hitp://purl.org/dlelements/. hitle

hitpAvirw.example.orgterms/omePage hitp:/Aww.example.org/terms/fullName

StyleSheets/TR/logo-REC.png
UONEPUBWIWOIY DEA

rdfa-primer/diagrams/license.png
Alice’s Blog

@crealive

commons

e ribution 3.0 Unported (CC BY 3.
e loaman indor Atribution 3.0 Unported (CC BY 3.0

 Crealive Commons License:

<https/icreativecommons. org/nsiicense>

<http:fiexample.com/alicelposts/a2> <http:/icreativecommons.org/licenses/by/3.0/>

StyleSheets/TR/logo-PR.png
UORBPUALIIODRY pasodo.d DEAA

json-ld/linked-data-graph.png
JSON-LD document

default graph: <no name>

hitpschema org/name

Dteschema orginame)
. (ntip:/iexample.comipeople/alice
o

http:/ischema.orglknows

@p Jlexample.com/people/bob

named graph named graph
http://example.com/graphs/1 http://example.com/graphs/n

rdfa-primer/diagrams/patterns.png
<Nt example comialicelpostsiouble_wih_bob> <hitpiexampie.comalicalposisfjims-concert>

dctite aciite

decreator decrestor

caense
cstconse
s dccrated
' 1 was at Jim's concert the v
T Trousie it B 20118-10° Aea’ s oo om0z s’
[r— csatnbutonName
<http:creativecommons.org/icensesibyi3.0f> \ <http:icreativecommons.orgficensesiby3.Oi> \

*€2011 Ao Bipemsuick” *2011 Alce Bipomswick”

rdfa-lite/rdfa-lite-diff.xhtml

[image: W3C]

RDFa
Lite
1.1

W3C

Recommendation
07
June

2012

		
This
version:

		

http://www.w3.org/TR/2012/REC-rdfa-lite-20120607/

		
Latest
published
version:

		

http://www.w3.org/TR/rdfa-lite/

		
Previous
version:

		

http://www.w3.org/TR/2012/PR-rdfa-lite-20120508/

		
Editor:

		

Manu
Sporny
,

Digital
Bazaar,
Inc.

Please
refer
to
the

errata

for
this
document,
which
may
include
some
normative
corrections.

This
document
is
also
available
in
these

non-normative
formats:

Diff
from
Proposed
Recommendation
,

PostScript
version
,
and

PDF

version
.

The
English
version
of
this
specification
is
the
only
normative
version.
Non-normative

translations

may
also
be
available.

Copyright

©
2012

W3C

®

(

MIT

,

ERCIM

,

Keio

),
All
Rights
Reserved.

W3C

liability
,

trademark

and

document
use

rules
apply.

Abstract

RDFa
Lite
is
a
minimal
subset
of
RDFa,
the
Resource
Description
Framework
in
attributes,
consisting
of
a
few
attributes
that
may
be
used
to
express
machine-readable
data
in
Web
documents
like
HTML,
SVG,
and
XML.
While
it
is
not
a
complete
solution
for
advanced
data
markup
tasks,
it
does
work
for
most
day-to-day
needs
and
can
be
learned
by
most
Web
authors
in
a
day.

Status
of
This
Document

This
section
describes
the
status
of
this
document
at
the
time
of
its
publication.
Other
documents
may
supersede
this
document.
A
list
of
current

W3C

publications
and
the
latest
revision
of
this
technical
report
can
be
found
in
the

W3C

technical
reports
index

at
http://www.w3.org/TR/.

This
document
has
been
reviewed
by

W3C

Members,
by
software
developers,
and
by
other

W3C

groups
and
interested
parties,
and
is
endorsed
by
the
Director
as
a

W3C

Recommendation.
It
is
a
stable
document
and
may
be
used
as
reference
material
or
cited
from
another
document.

W3C

's
role
in
making
the
Recommendation
is
to
draw
attention
to
the
specification
and
to
promote
its
widespread
deployment.
This
enhances
the
functionality
and
interoperability
of
the
Web.

This
document

is
the
culmination
of
a
series
of
discussions
between
the
World
Wide
Web
Consortium,
including
the
RDF
Web
Applications
Working
Group,
the
Vocabularies
Community
Group,
the
HTML
Working
Group,
and
the
sponsors
of
the

schema.org

initiative,
including
Google,
Yahoo!,
Microsoft,

and
Yandex.
It
has
recieved
review
from
representatives
in
these
organizations
and
enjoys
consensus
at
this
point
in
time.
There

were
no

changes
made

during
the
Proposed
Recommendation
period.

The

implementation
report

used
by
the
director
to
transition
to
Recommendation
has
been
made
available.

This
document
was
published
by
the

W3C

RDF
Web
Applications
Working
Group

as
a
Recommendation.
If
you
wish
to
make
comments
regarding
this
document,
please
send
them
to

public-rdfa@w3.org

(

subscribe
,

archives

).
All
feedback
is
welcome.

This
document
was
produced
by
a
group
operating
under
the

5
February
2004

W3C

Patent
Policy
.

W3C

maintains
a

public
list
of
any
patent
disclosures

made
in
connection
with
the
deliverables
of
the
group;
that
page
also
includes
instructions
for
disclosing
a
patent.
An
individual
who
has
actual
knowledge
of
a
patent
which
the
individual
believes
contains

Essential
Claim(s)

must
disclose
the
information
in
accordance
with

section
6
of
the

W3C

Patent
Policy
.

Table
of
Contents

		

1.

Introduction

		

2.

The
Attributes

		

2.1

vocab,
typeof,
and
property

		

2.2

resource

		

2.3

prefix

		

3.

Conformance

		

3.1

Document
Conformance

		

A.

References

		

A.1

Normative
references

		

A.2

Informative
references

1.

Introduction

This
section
is
non-normative.

The
full
RDFa
syntax
[

RDFA-CORE

]
provides
a
number
of
basic
and
advanced
features
that
enable
authors
to
express
fairly
complex
structured
data,
such
as
relationships
among
people,
places,
and
events
in
an
HTML
or
XML
document.
Some
of
these
advanced
features
may
make
it
difficult
for
authors,
who
may
not
be
experts
in
structured
data,
to
use
RDFa.
This
lighter
version
of
RDFa
is
a
gentler
introduction
to
the
world
of
structured
data,
intended
for
authors
that
want
to
express
fairly
simple
data
in
their
web
pages.
The
goal
is
to
provide
a
minimal
subset
that
is
easy
to
learn
and
will
work
for
80%
of
authors
doing
simple
data
markup.

2.

The
Attributes

This
section
is
non-normative.

RDFa
Lite
consists
of
five
simple
attributes;

vocab
,

typeof
,

property
,

resource
,
and

prefix
.
RDFa
1.1
Lite
is
completely
upwards
compatible
with
the
full
set
of
RDFa
1.1
attributes.
This
means
that
if
an
author
finds
that
RDFa
Lite
isn't
powerful
enough,
transitioning
to
the
full
version
of
RDFa
is
just
a
matter
of
adding
the
more
powerful
RDFa
attributes
into
the
existing
RDFa
Lite
markup.

2.1

vocab,
typeof,
and
property

RDFa,
like
Microformats
[

MICROFORMATS

]
and
Microdata
[

MICRODATA

],
enables
us
to
talk
about

things

on
the
Web
such
that
a
machine
can
understand
what
we
are
saying.
Typically
when
we
talk
about
a
thing,
we
use
a
particular

vocabulary

to
talk
about
it.
So,
if
you
wanted
to
talk
about
People,
the
vocabulary
that
you
would
use
would
specify
terms
like

name

and

telephone
number
.
When
we
want
to
mark
up
things
on
the
Web,
we
need
to
do
something
very
similar,
which
is
specify
which
vocabulary
that
we
are
going
to
be
using.
Here
is
a
simple
example
that
specifies
a
vocabulary
that
we
intend
to
use
to
markup
things
in
the
paragraph:

 <p vocab="http://schema.org/">
 My name is Manu Sporny and you can give me a ring via 1-800-555-0199.
</p>

In
this
example
we
have
specified
that
we
are
going
to
be
using
the

vocabulary

that
can
be
found
at

http://schema.org/
.
This
is
a
vocabulary
that
has
been
released
by
major
search
engine
companies
to
talk
about
common
things
on
the
Web
that
Search
Engines
care
about
–
things
like
People,
Places,
Reviews,
Recipes,
and
Events.
Once
we
have
specified
the
vocabulary,
we
need
to
specify
the

type
of

the
thing
that
we're
talking
about.
In
this
particular
case
we
are
talking
about
a
Person,
which
can
be
marked
up
like
so:

 <p vocab="http://schema.org/" typeof="Person">
 My name is Manu Sporny and you can give me a ring via 1-800-555-0199.
</p>

Now
all
we
need
to
do
is
specify
which

properties

of
that
person
we
want
to
point
out
to
the
search
engine.
In
the
following
example,
we
mark
up
the
person's
name,
phone
number
and
web
page.
Both
text
and
URLs
can
be
marked
up
with
RDFa
Lite.
In
the
following
example,
pay
particular
attention
to
the
types
of
data
that
are
being
pointed
out
to
the
search
engine,
which
are
highlighted
in
blue:

 <p vocab="http://schema.org/" typeof="Person">
 My name is
 Manu Sporny
 and you can give me a ring via
 1-800-555-0199
 or visit
 my homepage.
</p>

Now,
when
somebody
types
in
“phone
number
for
Manu
Sporny”
into
a
search
engine,
the
search
engine
can
more
reliably
answer
the
question
directly,
or
point
the
person
searching
to
a
more
relevant
Web
page.

2.2

resource

If
you
want
Web
authors
to
be
able
to
talk

about

each
thing
on
your
page,
you
need
to
create
an
identifier
for
each
of
these
things.
Just
like
we
create
identifiers
for
parts
of
a
page
using
the

id

attribute
in
HTML,
you
can
create
identifiers
for
things
described
on
a
page
using
the

resource

attribute:

 <p vocab="http://schema.org/" resource="#manu" typeof="Person">
 My name is
 Manu Sporny
 and you can give me a ring via
 1-800-555-0199.

</p>

If
we
assume
that
the
markup
above
can
be
found
at

http://example.org/people
,
then
the
identifier
for
the
thing
is
the
address,
plus
the
value
in
the

resource

attribute.
Therefore,
the
identifier
for
the
thing
on
the
page
would
be:

http://example.org/people#manu
.
This
identifier
is
also
useful
if
you
want
to
talk
about
that
same
thing
on
another
Web
page.
By
identifying
all
things
on
the
Web
using
a
unique
Uniform
Resource
Locator
(URL),
we
can
start
building
a
Web
of
things.
Companies
building
software
for
the
Web
can
use
this
Web
of
things
to
answer
complex
questions
like:
"What
is
Manu
Sporny's
phone
number
and
what
does
he
look
like?".

2.3

prefix

In
some
cases,
a
vocabulary
may
not
have
all
of
the
terms
an
author
needs
when
describing
their

thing
.
The
last
feature
in
RDFa
1.1
Lite
that
some
authors
might
need
is
the
ability
to
specify
more
than
one
vocabulary.
For
example,
if
we
are
describing
a
Person
and
we
need
to
specify
that
they
have
a
favorite
animal,
we
could
do
something
like
the
following:

 <p vocab="http://schema.org/" prefix="ov: http://open.vocab.org/terms/" resource="#manu" typeof="Person">
 My name is
 Manu Sporny
 and you can give me a ring via
 1-800-555-0199.

 My favorite animal is the Liger.
</p>

The
example
assigns
a
short-hand
prefix
to
the
Open
Vocabulary
(

ov

)
and
uses
that
prefix
to
specify
the

preferredAnimal

vocabulary
term.
Since
schema.org
doesn't
have
a
clear
way
of
expressing
a
favorite
animal,
the
author
instead
depends
on
this
alternate
vocabulary
to
get
the
job
done.

RDFa
1.1
Lite
also
pre-defines
a
number
of

useful
and
popular
prefixes
,
such
as

dc
,

foaf
,
and

schema
.
This
ensures
that
even
if
authors
forget
to
declare
the
popular
prefixes,
that
their
structured
data
will
continue
to
work.
A
full
list
of
pre-declared
prefixes
can
be
found
in
the

initial
context
document
for
RDFa
1.1
.

If
you
would
like
to
learn
more
about
what
is
possible
with
RDFa
Lite,
including
an
introduction
to
the
data
model,
please
read
the
section
on
RDFa
Lite
in
the
RDFa
Primer
[

RDFA-PRIMER

].

3.

Conformance

As
well
as
sections
marked
as
non-normative,
all
authoring
guidelines,
diagrams,
examples,
and
notes
in
this
specification
are
non-normative.
Everything
else
in
this
specification
is
normative.

The
key
words

must
,

must
not
,

required
,

should
,

should
not
,

recommended
,

may
,
and

optional

in
this
specification
are
to
be
interpreted
as
described
in
[

RFC2119

].

3.1

Document
Conformance

In
order
for
a
document
to
be
labeled
as
a
conforming

RDFa
Lite
1.1
document
:

		
It

must

only
require
the
facilities
described
as
mandatory
in
its
Host
Language.

		
It

must
not

use
any
additional
RDFa
attributes
other
than

vocab
,

typeof
,

property
,

resource
,
and

prefix

;
it
may
also
use

href

and

src
,
when
the
Host
Language
authorizes
the
usage
of
those
attributes.
However,
even
if
authorized
by
the
Host
Language,
the
usage
of

rel

and

rev

should

be
restricted
to
non-RDFa
usage
patterns,
as
defined
by
the
Host
Language.

		
All
RDFa
attributes

should

be
used
in
a
way
that
is
conformant
with
[

RDFA-CORE

].

		
In
XML-based
languages,
a
document

may

still
be
labeled
as
a
conforming
RDFa
Lite
1.1
document
as
long
as
the
usage
of
the

xmlns

attribute
is
not
used
to
declare
CURIE
prefixes.

If
additional
non-RDFa
Lite
attributes
are
used
from
the
RDFa
Core
1.1
specification,
the
document

must

be
referred
to
as
a
conforming

RDFa
1.1
document
.
All
conforming
RDFa
Lite
1.1
documents

may

be
referred
to
as
conforming
RDFa
1.1
documents.

A.

References

A.1

Normative
references

		
[RDFA-CORE]

		
Shane
McCarron;
et
al.

RDFa
Core
1.1:
Syntax
and
processing
rules
for
embedding
RDF
through
attributes.

7
June

2012.
W3C
Recommendation.
URL:

http://www.w3.org/TR/2012/REC-rdfa-core-20120607/

		
[RFC2119]

		
S.
Bradner.

Key
words
for
use
in
RFCs
to
Indicate
Requirement
Levels.

March
1997.
Internet
RFC
2119.
URL:

http://www.ietf.org/rfc/rfc2119.txt

A.2

Informative
references

		
[MICRODATA]

		
Ian
Hickson.

Microdata

2011.
W3C
Working
Draft.
URL:

http://www.w3.org/TR/microdata/

		
[MICROFORMATS]

		
Tantek
Çelik;
et.
al.

Microformats

2011.
The
Microformats
Community.
URL:

http://microformats.org/about

		
[RDFA-PRIMER]

		
Ben
Adida,
Ivan
Herman,
Manu
Sporny.

RDFa
Primer.

07
June
2012.

W3C
Note.

URL:

http://www.w3.org/TR/2012/NOTE-rdfa-primer-20120607

rdf-syntax-grammar/figure1.png
hitpww.examplo.orgherms/editors hitp/purlorg/dclelements. hitle

hitp:/Avwvexample.org/terms/homePage hitp:/Aww.example.org/terms/fullName

rdfa-primer/diagrams/blog-screenshot.png
2) (0] 0} Brssio e e o) as @ @

e (o G Dl w7 W sskaion TR M= Wvaces e

B + =
Al Blog

The trouble with Bob

el s ceanane o,

Pron: 4417 S 135

30's Barbecus

nav.xhtml

 Table of Contents

 		
 Cover

 		
 Table of Contents

 		
 Simple Line Syntaxes

 		
 RDF 1.1 N-Triples

 		
 Introduction

 		
 N-Triples Language

 		
 Changes from RDF Test Cases format

 		
 A Canonical form of N-Triples

 		
 Conformance

 		
 Media Type and Content Encoding

 		
 Grammar

 		
 Parsing

 		
 Acknowledgements

 		
 Change log

 		
 N-Triples Internet Media Type, File Extension and Macintosh File Type

 		
 References

 		
 RDF 1.1 N-Quads

 		
 Introduction

 		
 N-Quads Language

 		
 Conformance

 		
 Grammar

 		
 Parsing

 		
 Acknowledgements

 		
 Change Log

 		
 N-Quads Internet Media Type, File Extension and Macintosh File Type

 		
 References

 		
 Terse Syntaxes

 		
 RDF 1.1 Turtle

 		
 Introduction

 		
 Turtle Language

 		
 Examples

 		
 Turtle compared to SPARQL

 		
 Conformance

 		
 Turtle Grammar

 		
 Parsing

 		
 Embedding Turtle in HTML documents

 		
 Internet Media Type, File Extension and Macintosh File Type

 		
 Acknowledgements

 		
 Change Log

 		
 References

 		
 RDF 1.1 TriG

 		
 Introduction

 		
 TriG Language

 		
 Conformance

 		
 TriG Grammar

 		
 Parsing

 		
 Acknowledgements

 		
 Differences from Previous TriG

 		
 Media Type Registration

 		
 Changes since the last publication of this document

 		
 References

 		
 JSON for Linking Data (JSON-LD)

 		
 JSON-LD 1.0

 		
 Introduction

 		
 Design Goals and Rationale

 		
 Terminology

 		
 Conformance

 		
 Basic Concepts

 		
 Advanced Concepts

 		
 Data Model

 		
 JSON-LD Grammar

 		
 Relationship to RDF

 		
 Relationship to Other Linked Data Formats

 		
 IANA Considerations

 		
 Acknowledgements

 		
 References

 		
 JSON-LD 1.0 Processing Algorithms and API

 		
 Introduction

 		
 Features

 		
 Conformance

 		
 General Terminology

 		
 Algorithm Terms

 		
 Context Processing Algorithms

 		
 Expansion Algorithms

 		
 Compaction Algorithms

 		
 Flattening Algorithms

 		
 RDF Serialization/Deserialization Algorithms

 		
 The Application Programming Interface

 		
 Acknowledgements

 		
 References

 		
 RDF in Attributes (RDFa)

 		
 RDFa 1.1 Primer

 		
 Introduction

 		
 Using RDFa

 		
 You Said Something about RDF?

 		
 RDFa Tools

 		
 Acknowledgments

 		
 References

 		
 RDFa 1.1 Core

 		
 Motivation

 		
 Syntax Overview

 		
 RDF Terminology

 		
 Conformance

 		
 Attributes and Syntax

 		
 CURIE Syntax Definition

 		
 Processing Model

 		
 RDFa Processing in detail

 		
 RDFa Initial Contexts

 		
 RDFa Vocabulary Expansion

 		
 CURIE Datatypes

 		
 The RDFa Vocabulary

 		
 Changes

 		
 Acknowledgments

 		
 References

 		
 RDFa Lite 1.1

 		
 Introduction

 		
 The Attributes

 		
 Conformance

 		
 References

 		
 HTML+RDFa 1.1

 		
 Introduction

 		
 Conformance

 		
 Extensions to RDFa Core 1.1

 		
 Extensions to the HTML5 Syntax

 		
 Backwards Compatibility

 		
 About this Document

 		
 References

 		
 XHTML+RDFa 1.1

 		
 Introduction

 		
 Conformance

 		
 Additional RDFa Processing Rules

 		
 XHTML+RDFa 1.1 Definition

 		
 Metainformation Attributes Module

 		
 XHTML+RDFa XML Schema

 		
 XHTML+RDFa Document Type Definition

 		
 Deployment Advice

 		
 Change History

 		
 Acknowledgments

 		
 References

 		
 RDF 1.1 JSON Alternate Serialization (RDF/JSON) (Note)

 		
 Introduction

 		
 Conformance

 		
 Overview of RDF/JSON

 		
 Serialization of RDF as JSON

 		
 Examples

 		
 Acknowledgments

 		
 Internet Media Type, File Extension and Macintosh File Type

 		
 References

 		
 RDF 1.1 XML Syntax

 		
 Introduction

 		
 An XML Syntax for RDF

 		
 Terminology

 		
 RDF MIME Type, File Extension and Macintosh File Type

 		
 Global Issues

 		
 Syntax Data Model

 		
 RDF/XML Grammar

 		
 Serializing an RDF Graph to RDF/XML

 		
 Using RDF/XML with SVG

 		
 Acknowledgments

 		
 Changes since 2004 Recommendation

 		
 Syntax Schemas

 		
 References

 		Begin reading

 		Table of Contents

StyleSheets/TR/logo-WG-Note.png
10N dnous) SUPlOAA DEAM

rdfa-primer/diagrams/blog-with-foaf-with-URI.png
<hitpexampie.comalicalposisirouble _with_bob>

deiite

v .

“The Troubie with Bob"
<htiplexample comialicelfme> TYPE () foatPerson

foatphone

p— \o

<tel+1.617-655.7332>
foatname.

<maito:aice@example.com>

“Alco Bipemsuick’

xhtml-rdfa/xhtml-rdfa-diff.xhtml

[image: W3C]

XHTML+RDFa
1.1
-
Second
Edition

Support
for
RDFa
via
XHTML
Modularization

W3C

Recommendation

22
August

2013

		
This
version:

		

http://www.w3.org/TR/2013/REC-xhtml-rdfa-20130822/

		
Latest
published
version:

		

http://www.w3.org/TR/xhtml-rdfa/

		
Previous
version:

		

http://www.w3.org/TR/2012/REC-xhtml-rdfa-20120607/

		
Latest
recommendation:

		

http://www.w3.org/TR/2012/REC-xhtml-rdfa-20120607/

		
Editor:

		

Shane
McCarron
,

Applied
Testing
and
Technology,
Inc.
,

shane@aptest.com

Please
refer
to
the

errata

for
this
document,
which
may
include
some
normative
corrections.

This
document
is
also
available
in
these
non-normative
formats:

XHTML+RDFa
,

Diff
from
Previous
Recommendation
,

Postscript
version
,
and

PDF
version

The
English
version
of
this
specification
is
the
only
normative
version.
Non-normative

translations

may
also
be
available.

Copyright

©
2007-2013

W3C

®

(

MIT

,

ERCIM

,

Keio
,

Beihang

),
All
Rights
Reserved.

W3C

liability
,

trademark

and

document
use

rules
apply.

Abstract

RDFa
Core
1.1
[

RDFA-CORE

]
defines
attributes
and
syntax
for
embedding
semantic
markup
in
Host
Languages.
This
document
defines
one
such
Host
Language.
This
language
is
a
superset
of
XHTML
1.1
[

XHTML11-2e

],
integrating
the
attributes
as
defined
in
RDFa
Core
1.1.
This
document
is
intended
for
authors
who
want
to
create
XHTML
Family
documents
that
embed
rich
semantic
markup.

Status
of
This
Document

This
section
describes
the
status
of
this
document
at
the
time
of
its
publication.
Other
documents
may
supersede
this
document.
A
list
of
current

W3C

publications
and
the
latest
revision
of
this
technical
report
can
be
found
in
the

W3C

technical
reports
index

at
http://www.w3.org/TR/.

This
document
has
been
reviewed
by

W3C

Members,
by
software
developers,
and
by
other

W3C

groups
and
interested
parties,
and
is
endorsed
by
the
Director
as
a

W3C

Recommendation.
It
is
a
stable
document
and
may
be
used
as
reference
material
or
cited
from
another
document.

W3C

's
role
in
making
the
Recommendation
is
to
draw
attention
to
the
specification
and
to
promote
its
widespread
deployment.
This
enhances
the
functionality
and
interoperability
of
the
Web.

This
version

represents
minor
editorial
changes
and
changes
to
references.
No
other
changes
were
made
from

the
original
version

of
the
Recommendation.

This
is
a
revision
of
Sections
8
and
9
and
Appendix
A
of
RDFa
Syntax
1.0
[

RDFA-SYNTAX

].
This
document
supersedes
those
sections
of
the

previous
Recommendation
.
There
are
a
number
of
substantive
differences
between
this
version
and
its
predecessor,
including:

		
Inheritance
of
basic
processing
rules
from
[

RDFA-CORE

].

		
The
inclusion
of
an
implementation
of
the
markup
language
using
XML
Schema.

		
The
addition
of

@lang

to
be
consistent
with
recent
changes
in
[

XHTML11-2e

].

		
Removal
of
the
collection
of
TERMs
from
this
document
-
instead
deferring
the
definitions
in
an
RDFa
Initial
Context
document.

A

sample
test
harness

is
available.
This
set
of
tests
is
not
intended
to
be
exhaustive.
Users
may
find
the
tests
to
be
useful
examples
of
RDFa
usage.

The

implementation
report

used
by
the
director
to
transition
to
Recommendation
has
been
made
available.
There
have
been
no
formal
objections
to
the
publication
of
this
document.

This
document
was
published
by
the

RDF
Web
Applications
Working
Group

as
a
Recommendation.
If
you
wish
to
make
comments
regarding
this
document,
please
send
them
to

public-rdfa@w3.org

(

subscribe
,

archives

).
All
comments
are
welcome.

This
document
was
produced
by
a
group
operating
under
the

5
February
2004

W3C

Patent
Policy
.

W3C

maintains
a

public
list
of
any
patent
disclosures

made
in
connection
with
the
deliverables
of
the
group;
that
page
also
includes
instructions
for
disclosing
a
patent.
An
individual
who
has
actual
knowledge
of
a
patent
which
the
individual
believes
contains

Essential
Claim(s)

must
disclose
the
information
in
accordance
with

section
6
of
the

W3C

Patent
Policy
.

Table
of
Contents

		

1.

Introduction

		

2.

Conformance

		

2.1

Document
Conformance

		

2.2

User
Agent
Conformance

		

3.

Additional
RDFa
Processing
Rules

		

4.

XHTML+RDFa
1.1
Definition

		

5.

Metainformation
Attributes
Module

		

5.1

Metainformation
Attributes
Collection

		

5.2

XHTML
RDFa
Initial
Context

		

A.

XHTML+RDFa
XML
Schema

		

A.1

XHTML
Metainformation
Attributes
Module

		

A.2

XHTML+RDFa
Schema
Content
Model
Module

		

A.3

XHTML+RDFa
Schema
Modules

		

A.4

XHTML+RDFa
XML
Schema
Driver
Module

		

B.

XHTML+RDFa
Document
Type
Definition

		

B.1

XHTML
Metainformation
Attributes
Module

		

B.2

XHTML+RDFa
Content
Model
Module

		

B.3

XHTML+RDFa
Driver
Module

		

B.4

SGML
Open
Catalog
Entry
for
XHTML+RDFa

		

C.

Deployment
Advice

		

D.

Change
History

		

E.

Acknowledgments

		

F.

References

		

F.1

Normative
references

		

F.2

Informative
references

1.

Introduction

XHTML+RDFa
1.1
is
an
XHTML
Family
markup
language.
It
extends
the
XHTML
1.1
markup
language
with
the
attributes
defined
in
RDFa
Core
1.1.
The
document
also
defines
an
XHTML
Modularization-compatible
[

XHTML-MODULARIZATION11-2e

]
module
for
the
RDFa
Core
attributes
in
both
XML
DTD
and
XML
Schema
formats.

2.

Conformance

As
well
as
sections
marked
as
non-normative,
all
authoring
guidelines,
diagrams,
examples,
and
notes
in
this
specification
are
non-normative.
Everything
else
in
this
specification
is
normative.

The
key
words

MUST
,

MUST
NOT
,

REQUIRED
,

SHOULD
,

SHOULD
NOT
,

RECOMMENDED
,

MAY
,
and

OPTIONAL

in
this
specification
are
to
be
interpreted
as
described
in
[

RFC2119

].

2.1

Document
Conformance

A
strictly
conforming
XHTML+RDFa
document
is
a
document
that
requires
only
the
facilities
described
as
mandatory
in
this
specification.
Such
a
document
satisfies
the
following
criteria:

		

The
document

MUST

conform
to
the
constraints
expressed
in
the
schemas
in

Appendix A

-
XHTML+RDFa
XML
Schema

and

Appendix B

-
XHTML+RDFa
Document
Type
Definition
.

		

The
local
part
of
the
root
element
of
the
document

MUST

be

html
.

		

The
start
tag
of
the
root
element
of
the
document

MUST

explicitly
contain
a
default
namespace
declaration
for
the
XHTML
namespace
[

XML-NAMES11

].
The
namespace
URI
for
XHTML
is
defined
to
be

http://www.w3.org/1999/xhtml
.

The
start
tag

MAY

also
contain
the
declaration
of
the
XML
Schema
Instance
Namespace
and
an
XML
Schema
Instance

schemaLocation

attribute
[

XMLSCHEMA11-2

].
Such
an
attribute
would
associate
the
XHTML
namespace

http://www.w3.org/1999/xhtml

with
the
XML
Schema
at
the
URI

http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-2.xsd
.

		
There

MAY

Be
a

@version

attribute
on
the

html

element
with
the
value
"XHTML+RDFa
1.1".

Example 1: Example of an XHTML+RDFa 1.1 document
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"
 version="XHTML+RDFa 1.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/1999/xhtml
 http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-2.xsd"
 lang="en"
 xml:lang="en">

 <head>
 <title>Virtual Library</title>
 </head>
 <body>
 <p>Moved to example.org.</p>

 </body>
</html>

Note
that
in
this
example,
the
XML
declaration
is
included.
An
XML
declaration
like
the
one
above
is
not
required
in
all
XML
documents.
XHTML
document
authors

SHOULD

use
XML
declarations
in
all
their
documents.
XHTML
document
authors

MUST

use
an
XML
declaration
when
the
character
encoding
of
the
document
is
other
than
the
default
UTF-8
or
UTF-16
and
no
encoding
is
specified
by
a
higher-level
protocol.

XHTML+RDFa
documents

SHOULD

be
labeled
with
the
Internet
Media
Type
"application/xhtml+xml"

as
defined
in
[

RFC3236

].
For
further
information
on
using
media
types
with
XHTML
Family
markup
languages,
see
the
informative
note
[

XHTML-MEDIA-TYPES

].

2.2

User
Agent
Conformance

A
conforming
user
agent

MUST

support
all
of
the
features
required
in
this
specification.
A
conforming
user
agent
must
also
support
the
User
Agent
conformance
requirements
as
defined
in
XHTML
Modularization
[

XHTML-MODULARIZATION11-2e

]
section
on
"XHTML

Family
User
Agent
Conformance".

3.

Additional
RDFa
Processing
Rules

Documents
conforming
to
the
rules
in
this
specification
are
processed
according
to
[

RDFA-CORE

]
with
the
following
extensions:

		
The
default
vocabulary
IRI
is
undefined.

		
XHTML+RDFa
uses
an
additional
initial
context
by
default,

http://www.w3.org/2011/rdfa-context/xhtml-rdfa-1.1
,
which
must
be
applied
after
the
initial
context
for
[

RDFA-CORE

]
(

http://www.w3.org/2011/rdfa-context/rdfa-1.1

).

		
The

base

can
be
set
using
the

base

element
as
defined
in
[

XHTML-MODULARIZATION11-2e

].

		
The

current
language

can
be
set
using
either
the

@lang

or

@xml:lang

attributes.

		
In
section
7.5,
processing
step
5,
if
no
IRI
is
provided
by
a
resource
attribute
(e.g.,

@about
,

@href
,

@resource
,
or

@src

),
then
first
check
to
see
if
the
element
is
the

head

or

body

element.
If
it
is,
then
act
as
if
the

new
subject

is
set
to
the

parent
object
.

		
In
section
7.5,
processing
step
6,
if
no
IRI
is
provided
by
a
resource
attribute
(e.g.,

@about
,

@href
,

@resource
,
or

@src

),
then
first
check
to
see
if
the
element
is
the

head

or

body

element.
If
it
is,
then
act
as
if
the

new
subject

is
set
to
the

parent
object
.

When
an
XHTML+RDFa
document
uses

@version

on
the

html

element,
a
conforming
RDFa
Processor

MUST

examine
the
value
of
this
attribute.
If
the
value
matches
that
of
a
defined
version
of
XHTML+RDFa,
then
the
processing
rules
for
that
version

MUST

be
used.
If
the
value
does
not
match
a
defined
version,
or
there
is
no

@version

attribute,
then
the
processing
rules
for
the
most
recent
version
of
XHTML+RDFa
must
be
used.

4.

XHTML+RDFa
1.1
Definition

The
XHTML+RDFa
1.1
document
type
is
a
fully
functional
document
type
with
rich
semantics.
It
is
a
superset
of
[

XHTML11-2e

].

The
XHTML+RDFa
1.1
document
type
is
made
up
of
the
following
XHTML
modules.
The
elements,
attributes,
and
content
models
associated
with
these
modules
are
defined
in
"XHTML
Modularization"

[

XHTML-MODULARIZATION11-2e

].
The
elements
are
listed
here
for
information
purposes,
but
the
definitions
in
XHTML
Modularization
should
be
considered
authoritative.

		
Structure
Module

		

body,
head,
html,
title
.

		
Text
Module

		

abbr,
acronym,
address,
blockquote,
br,
cite,
code,
dfn,
div,
em,
h1,
h2,
h3,
h4,
h5,
h6,
kbd,
p,
pre,
q,
samp,
span,
strong,
var

		
Hypertext
Module

		

a
.

@href

is
available
on
all
elements.

		
List
Module

		

dl,
dt,
dd,
ol,
ul,
li

		
Object
Module

		

object,
param

		
Presentation
Module

		

b,
big,
hr,
i,
small,
sub,
sup,
tt

		
Edit
Module

		

del,
ins

		
Bidirectional
Text
Module

		

bdo

		
Forms
Module

		

button,
fieldset,
form,
input,
label,
legend,
select,
optgroup,
option,
textarea

		
Table
Module

		

caption,
col,
colgroup,
table,
tbody,
td,
tfoot,
th,
thead,
tr

		
Image
Module

		

img

		
Client-side
Image
Map
Module

		

area,
map

		
Server-side
Image
Map
Module

		
Attribute

ismap

on

img

		
Intrinsic
Events
Module

		
Events
attributes

		
Metainformation
Module

		

meta

		
Scripting
Module

		

noscript,
script

		
Stylesheet
Module

		

style

element

		
Style
Attribute
Module

Deprecated

		

@style

		
Target
Module

		

@target

		
Link
Module

		

link

		
Base
Module

		

base

		

Metainformation
Attributes
Module

		

@about
,

@content
,

@datatype
,

@typeof
,

@prefix
,

@property
,

@rel
,

@resource
,

@rev
,

@vocab

are
available
on
all
elements.

		
Ruby
Annotation
Module
from
[

RUBY

]

		

ruby,
rbc,
rtc,
rb,
rt,
rp

This
specification
also
adds
the

lang

attribute
to
the
I18N
attribute
collection
as
defined
in
[

XHTML-MODULARIZATION11-2e

].
The

lang

attribute
is
defined
in
[

HTML401

].
When
this
attribute
and
the

xml:lang

attribute
are
specified
on
the
same
element,
the

xml:lang

attribute
takes
precedence.
When
both

lang

and

xml:lang

are
specified
on
the
same
element,
they

MUST

have
the
same
value.

There
are
no
additional
definitions
required
by
this
document
type.
An
implementation
of
this
document
type
as
an
XML
Schema
is
defined
in

Appendix
A
,
and
as
an
XML
DTD
is
defined
in

Appendix
B
.

5.

Metainformation
Attributes
Module

The
Metainformation
Attributes
Module
defines
the

Metainformation

attribute
collection
in
the
format
required
by
[

XHTML-MODULARIZATION11-2e

].
This
collection
allows
elements
to
be
annotated
with
metadata
throughout
an
XHTML
Family
document.
When
this
module
is
included
in
a
markup
language,
this
collection
is
added
to
the

Common

attribute
collection
as
defined
in
[

XHTML-MODULARIZATION11-2e

].

5.1

Metainformation
Attributes
Collection

The
following
attributes
are
included
in
the
attribute
collection,
and
take
values
in
the
associated
datatype:

Metainformation
Attribute
Collection

		
Attributes

		
Notes

		

about

(

SafeCURIEorCURIEorIRI

)

		

		

content

(

CDATA

)

		

		

datatype

(

TERMorCURIEorAbsIRI

)

		
If
not
specified,
then
the
default
value
is

string

as
defined
in
[

XMLSCHEMA11-2

].

		

prefix

(
NCName
':
'
IRI
)+

		

		

property

(

TERMorCURIEorAbsIRIs

)

		

		

rel

(

TERMorCURIEorAbsIRIs

)

		

		

resource

(

SafeCURIEorCURIEorIRI

)

		

		

rev

(

TERMorCURIEorAbsIRIs

)

		

		

typeof

(

TERMorCURIEorAbsIRIs

)

		

		

vocab

(

IRI

)

		
An
IRI
that
defines
the
prefix
to
use
when
a
CURIE
is
specified
with
no
prefix
and
no
colon.

An
implementation
of
this
module
in
XML
Schema
can
be
found
in

Appendix
A

and
in
XML
DTD
in

Appendix
B
.

5.2

XHTML
RDFa
Initial
Context

This
section
is
non-normative.

This
specification
defines
an
RDFa
Initial
Context.
It
is
available
at

http://www.w3.org/2011/rdfa-context/xhtml-rdfa-1.1
.

A.

XHTML+RDFa
XML
Schema

This
appendix
is

normative
.

This
appendix
includes
an
implementation
of
the
XHTML+RDFa
1.1
language
using
XML
Schema.
It
is
implemented
by
combining
the
XHTML
1.1
Schema
with
the
XHTML
Metainformation
Attribute
Module.
This
is
done
by
using
a
content
model
module,
and
then
a
driver
module.
There
are
direct
links
to
the
various
files
for
download
purposes.
Please
note
that
the
files
targeted
by
the
"latest
version"

links
may
change
slowly
over
time.
See
the

W3C

XHTML2

Working
Group

home
page
for
more
information.

A.1

XHTML
Metainformation
Attributes
Module

You can download this version of this file from SCHEMA/xhtml-metaAttributes-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-metaAttributes-2.xsd.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/"
 elementFormDefault="qualified"

>
 <xs:import namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd" />

 <xs:annotation>
 <xs:documentation>
 This is the XML Schema Metainformation Attributes module for XHTML
 $Id: xhtml-rdfa-diff.html,v 1.1 2013-08-15 07:45:48 ivan Exp $

 </xs:documentation>
 <xs:documentation source="xhtml-rdfa-copyright-1.xsd"/>

 </xs:annotation>
 <xs:annotation>
 <xs:documentation>
 XHTML Metainformation Attributes
 </xs:documentation>
 </xs:annotation>
 <xs:attribute name="about" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="content" type="xh11d:CDATA"/>
 <xs:attribute name="datatype" type="xh11d:TERMorCURIEoAbsIRI"/>
 <xs:attribute name="inlist" type="xh11d:CDATA"/>
 <xs:attribute name="typeof" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="prefix" type="xh11d:PREFIX"/>
 <xs:attribute name="property" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="rel" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="resource" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="rev" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="vocab" type="xs:anyURI"/>

 <xs:attributeGroup name="xhtml.metaAttributes.attrib">
 <xs:attribute name="about"/>
 <xs:attribute name="content"/>
 <xs:attribute name="datatype"/>
 <xs:attribute name="inlist"/>
 <xs:attribute name="typeof"/>
 <xs:attribute name="prefix"/>
 <xs:attribute name="property"/>
 <xs:attribute name="rel"/>
 <xs:attribute name="resource"/>
 <xs:attribute name="rev"/>
 <xs:attribute name="vocab"/>

 </xs:attributeGroup>
</xs:schema>

A.2

XHTML+RDFa
Schema
Content
Model
Module

You can download this version of this file from SCHEMA/xhtml-rdfa-model-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-model-2.xsd.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/"
 elementFormDefault="qualified" >

 <xs:import
 namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd"/>

 <xs:annotation>
 <xs:documentation>
 This is the XML Schema module of common content models for XHTML11

 $Id: xhtml-rdfa-diff.html,v 1.1 2013-08-15 07:45:48 ivan Exp $

 </xs:documentation>
 <xs:documentation source="xhtml-copyright-1.xsd"/>

 </xs:annotation>
 <xs:annotation>
 <xs:documentation>
 XHTML Document Model
 This module describes the groupings of elements/attributes
 that make up common content models for XHTML elements.
 XHTML has following basic content models:
 xhtml.Inline.mix; character-level elements
 xhtml.Block.mix; block-like elements, e.g., paragraphs and lists
 xhtml.Flow.mix; any block or inline elements
 xhtml.HeadOpts.mix; Head Elements
 xhtml.InlinePre.mix; Special class for pre content model
 xhtml.InlineNoAnchor.mix; Content model for Anchor

 Any groups declared in this module may be used to create
 element content models, but the above are considered 'global'
 (insofar as that term applies here). XHTML has the
 following Attribute Groups
 xhtml.Core.extra.attrib
 xhtml.I18n.extra.attrib
 xhtml.Common.extra

 The above attribute Groups are considered Global
 </xs:documentation>
 </xs:annotation>
 <xs:include schemaLocation="xhtml-metaAttributes-2.xsd">

 <xs:annotation>
 <xs:documentation>
 XHTML Metainformation Modules
 Attributes defined here:
 XHTML RDFa attribtues
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/rdfa-syntax"/>

 </xs:annotation>
 </xs:include>
 <xs:attributeGroup
 name="xhtml.I18n.extra.attrib">

 <xs:annotation>
 <xs:documentation> Extended I18n attribute </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup
 ref="xhtml.dir.attrib">

 <xs:annotation>
 <xs:documentation>
 "dir" Attribute from Bi Directional Text (bdo) Module

 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Common.extra">

 <xs:annotation>
 <xs:documentation> Extended Common Attributes </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup
 ref="xhtml.style.attrib">

 <xs:annotation>
 <xs:documentation>
 "style" attribute from Inline Style Module

 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 	<xs:attributeGroup ref="xhtml.Events.attrib">

			<xs:annotation>
				<xs:documentation>
				Attributes from Events Module
				</xs:documentation>
			</xs:annotation>
		</xs:attributeGroup>
 	<xs:attributeGroup ref="xhtml.metaAttributes.attrib">

			<xs:annotation>
				<xs:documentation>
				Attributes from Metainformation Module
				</xs:documentation>
			</xs:annotation>
		</xs:attributeGroup>
	</xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Core.extra.attrib">

 <xs:annotation>
 <xs:documentation> Extend Core Attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Global.core.extra.attrib">

 <xs:annotation>
 <xs:documentation> Extended Global Core Attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Global.I18n.extra.attrib">

 <xs:annotation>
 <xs:documentation> Extended Global I18n attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup
 name="xhtml.Global.Common.extra">

 <xs:annotation>
 <xs:documentation> Extended Global Common Attributes </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:group
 name="xhtml.Head.extra">

 <xs:sequence/>
 </xs:group>
 <xs:group
 name="xhtml.HeadOpts.mix">

 <xs:choice>
 <xs:element name="script"
 type="xhtml.script.type"/>
 <xs:element name="style"
 type="xhtml.style.type"/>
 <xs:element name="meta"
 type="xhtml.meta.type"/>
 <xs:element name="link"
 type="xhtml.link.type"/>
 <xs:element name="object"
 type="xhtml.object.type"/>

 <xs:group
 ref="xhtml.Head.extra"/>

 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.head.content">

 <xs:sequence>
 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>

 <xs:choice>
 <xs:sequence>
 <xs:element name="title"
 minOccurs="1"
 maxOccurs="1"
 type="xhtml.title.type"/>

 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>

 <xs:sequence
 minOccurs="0">
 <xs:element name="base"
 type="xhtml.base.type"/>

 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:sequence>
 <xs:sequence>
 <xs:element name="base"
 type="xhtml.base.type"
 minOccurs="1"
 maxOccurs="1"/>

 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="title"
 minOccurs="1"
 maxOccurs="1"
 type="xhtml.title.type"/>

 <xs:group
 ref="xhtml.HeadOpts.mix"
 minOccurs="0"
 maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:choice>
 </xs:sequence>
 </xs:group>
 <!--
 ins and del are used to denote editing changes
 -->
 <xs:group
 name="xhtml.Edit.class">

 <xs:choice>
 <xs:element name="ins"
 type="xhtml.edit.type"/>
 <xs:element name="del"
 type="xhtml.edit.type"/>

 </xs:choice>
 </xs:group>
 <!--
 script and noscript are used to contain scripts
 and alternative content
 -->
 <xs:group
 name="xhtml.Script.class">

 <xs:choice>
 <xs:element name="script"
 type="xhtml.script.type"/>
 <xs:element name="noscript"
 type="xhtml.noscript.type"/>

 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Misc.extra">

 <xs:sequence/>
 </xs:group>
 <!--
 These elements are neither block nor inline, and can
 essentially be used anywhere in the document body.
 -->
 <xs:group
 name="xhtml.Misc.class">

 <xs:choice>
 <xs:group
 ref="xhtml.Edit.class"/>

 <xs:group
 ref="xhtml.Script.class"/>

 <xs:group
 ref="xhtml.Misc.extra"/>

 </xs:choice>
 </xs:group>
 <!-- Inline Elements -->
 <xs:group
 name="xhtml.InlStruct.class">

 <xs:choice>
 <xs:element name="br"
 type="xhtml.br.type"/>
 <xs:element name="span"
 type="xhtml.span.type"/>

 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.InlPhras.class">

 <xs:choice>
 <xs:element name="em"
 type="xhtml.em.type"/>
 <xs:element name="strong"
 type="xhtml.strong.type"/>
 <xs:element name="dfn"
 type="xhtml.dfn.type"/>
 <xs:element name="code"
 type="xhtml.code.type"/>
 <xs:element name="samp"
 type="xhtml.samp.type"/>
 <xs:element name="kbd"
 type="xhtml.kbd.type"/>
 <xs:element name="var"
 type="xhtml.var.type"/>
 <xs:element name="cite"
 type="xhtml.cite.type"/>
 <xs:element name="abbr"
 type="xhtml.abbr.type"/>
 <xs:element name="acronym"
 type="xhtml.acronym.type"/>
 <xs:element name="q"
 type="xhtml.q.type"/>

 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.InlPres.class">

 <xs:choice>
 <xs:element name="tt"
 type="xhtml.InlPres.type"/>
 <xs:element name="i"
 type="xhtml.InlPres.type"/>
 <xs:element name="b"
 type="xhtml.InlPres.type"/>
 <xs:element name="big"
 type="xhtml.InlPres.type"/>
 <xs:element name="small"
 type="xhtml.InlPres.type"/>
 <xs:element name="sub"
 type="xhtml.InlPres.type"/>
 <xs:element name="sup"
 type="xhtml.InlPres.type"/>

 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.I18n.class">

 <xs:sequence>
 <xs:element name="bdo"
 type="xhtml.bdo.type"/>

 </xs:sequence>
 </xs:group>
 <xs:group
 name="xhtml.Anchor.class">

 <xs:sequence>
 <xs:element name="a"
 type="xhtml.a.type"/>

 </xs:sequence>
 </xs:group>
 <xs:group
 name="xhtml.InlSpecial.class">

 <xs:choice>
 <xs:element name="img"
 type="xhtml.img.type"/>
 <xs:element name="map"
 type="xhtml.map.type"/>
 <xs:element name="object"
 type="xhtml.object.type"/>

 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.InlForm.class">

 <xs:choice>
 <xs:element name="input"
 type="xhtml.input.type"/>
 <xs:element name="select"
 type="xhtml.select.type"/>
 <xs:element name="textarea"
 type="xhtml.textarea.type"/>
 <xs:element name="label"
 type="xhtml.label.type"/>
 <xs:element name="button"
 type="xhtml.button.type"/>

 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Inline.extra">

 <xs:sequence/>
 </xs:group>
 <xs:group
 name="xhtml.Ruby.class">

 <xs:sequence>
 <xs:element name="ruby"
 type="xhtml.ruby.type"/>

 </xs:sequence>
 </xs:group>
 <!--
 Inline.class includes all inline elements,
 used as a component in mixes
 -->
 <xs:group
 name="xhtml.Inline.class">

 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>

 <xs:group
 ref="xhtml.InlPhras.class"/>

 <xs:group
 ref="xhtml.InlPres.class"/>

 <xs:group
 ref="xhtml.I18n.class"/>

 <xs:group
 ref="xhtml.Anchor.class"/>

 <xs:group
 ref="xhtml.InlSpecial.class"/>

 <xs:group
 ref="xhtml.InlForm.class"/>

 <xs:group
 ref="xhtml.Ruby.class"/>

 <xs:group
 ref="xhtml.Inline.extra"/>

 </xs:choice>
 </xs:group>
 <!--
 InlNoRuby.class includes all inline elements
 except ruby
 -->
 <xs:group
 name="xhtml.InlNoRuby.class">

 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>

 <xs:group
 ref="xhtml.InlPhras.class"/>

 <xs:group
 ref="xhtml.InlPres.class"/>

 <xs:group
 ref="xhtml.I18n.class"/>

 <xs:group
 ref="xhtml.Anchor.class"/>

 <xs:group
 ref="xhtml.InlSpecial.class"/>

 <xs:group
 ref="xhtml.InlForm.class"/>

 <xs:group
 ref="xhtml.Inline.extra"/>

 </xs:choice>
 </xs:group>
 <!--
 InlinePre.mix
 Used as a component in pre model
 -->
 <xs:group
 name="xhtml.InlinePre.mix">

 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>

 <xs:group
 ref="xhtml.InlPhras.class"/>
 <xs:element name="tt"
 type="xhtml.InlPres.type"/>
 <xs:element name="i"
 type="xhtml.InlPres.type"/>
 <xs:element name="b"
 type="xhtml.InlPres.type"/>

 <xs:group
 ref="xhtml.I18n.class"/>

 <xs:group
 ref="xhtml.Anchor.class"/>

 <xs:group
 ref="xhtml.Misc.class"/>
 <xs:element name="map"
 type="xhtml.map.type"/>

 <xs:group
 ref="xhtml.Inline.extra"/>

 </xs:choice>
 </xs:group>
 <!--
 InlNoAnchor.class includes all non-anchor inlines,
 used as a component in mixes
 -->
 <xs:group
 name="xhtml.InlNoAnchor.class">

 <xs:choice>
 <xs:group
 ref="xhtml.InlStruct.class"/>

 <xs:group
 ref="xhtml.InlPhras.class"/>

 <xs:group
 ref="xhtml.InlPres.class"/>

 <xs:group
 ref="xhtml.I18n.class"/>

 <xs:group
 ref="xhtml.InlSpecial.class"/>

 <xs:group
 ref="xhtml.InlForm.class"/>

 <xs:group
 ref="xhtml.Ruby.class"/>

 <xs:group
 ref="xhtml.Inline.extra"/>

 </xs:choice>
 </xs:group>
 <!--
 InlNoAnchor.mix includes all non-anchor inlines
 -->
 <xs:group
 name="xhtml.InlNoAnchor.mix">

 <xs:choice>
 <xs:group
 ref="xhtml.InlNoAnchor.class"/>

 <xs:group
 ref="xhtml.Misc.class"/>

 </xs:choice>
 </xs:group>
 <!--
 Inline.mix includes all inline elements, including Misc.class
 -->
 <xs:group
 name="xhtml.Inline.mix">

 <xs:choice>
 <xs:group
 ref="xhtml.Inline.class"/>

 <xs:group
 ref="xhtml.Misc.class"/>

 </xs:choice>
 </xs:group>
 <!--
 InlNoRuby.mix includes all of inline.mix elements
 except ruby
 -->
 <xs:group
 name="xhtml.InlNoRuby.mix">

 <xs:choice>
 <xs:group
 ref="xhtml.InlNoRuby.class"/>

 <xs:group
 ref="xhtml.Misc.class"/>

 </xs:choice>
 </xs:group>
 <!--
 In the HTML 4 DTD, heading and list elements were included
 in the block group. The Heading.class and
 List.class groups must now be included explicitly
 on element declarations where desired.
 -->
 <xs:group
 name="xhtml.Heading.class">

 <xs:choice>
 <xs:element name="h1"
 type="xhtml.h1.type"/>
 <xs:element name="h2"
 type="xhtml.h2.type"/>
 <xs:element name="h3"
 type="xhtml.h3.type"/>
 <xs:element name="h4"
 type="xhtml.h4.type"/>
 <xs:element name="h5"
 type="xhtml.h5.type"/>
 <xs:element name="h6"
 type="xhtml.h6.type"/>

 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.List.class">

 <xs:choice>
 <xs:element name="ul"
 type="xhtml.ul.type"/>
 <xs:element name="ol"
 type="xhtml.ol.type"/>
 <xs:element name="dl"
 type="xhtml.dl.type"/>

 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Table.class">

 <xs:choice>
 <xs:element name="table"
 type="xhtml.table.type"/>

 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Form.class">

 <xs:choice>
 <xs:element name="form"
 type="xhtml.form.type"/>

 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Fieldset.class">

 <xs:choice>
 <xs:element name="fieldset"
 type="xhtml.fieldset.type"/>

 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.BlkStruct.class">

 <xs:choice>
 <xs:element name="p"
 type="xhtml.p.type"/>
 <xs:element name="div"
 type="xhtml.div.type"/>

 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.BlkPhras.class">

 <xs:choice>
 <xs:element name="pre"
 type="xhtml.pre.type"/>
 <xs:element name="blockquote"
 type="xhtml.blockquote.type"/>
 <xs:element name="address"
 type="xhtml.address.type"/>

 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.BlkPres.class">

 <xs:sequence>
 <xs:element name="hr"
 type="xhtml.hr.type"/>

 </xs:sequence>
 </xs:group>
 <xs:group
 name="xhtml.BlkSpecial.class">

 <xs:choice>
 <xs:group
 ref="xhtml.Table.class"/>

 <xs:group
 ref="xhtml.Form.class"/>

 <xs:group
 ref="xhtml.Fieldset.class"/>

 </xs:choice>
 </xs:group>
 <xs:group
 name="xhtml.Block.extra">

 <xs:sequence/>
 </xs:group>
 <!--
 Block.class includes all block elements,
 used as an component in mixes
 -->
 <xs:group
 name="xhtml.Block.class">

 <xs:choice>
 <xs:group
 ref="xhtml.BlkStruct.class"/>

 <xs:group
 ref="xhtml.BlkPhras.class"/>

 <xs:group
 ref="xhtml.BlkPres.class"/>

 <xs:group
 ref="xhtml.BlkSpecial.class"/>

 <xs:group
 ref="xhtml.Block.extra"/>

 </xs:choice>
 </xs:group>
 <!--
 Block.mix includes all block elements plus %Misc.class;
 -->
 <xs:group
 name="xhtml.Block.mix">

 <xs:choice>
 <xs:group
 ref="xhtml.Heading.class"/>

 <xs:group
 ref="xhtml.List.class"/>

 <xs:group
 ref="xhtml.Block.class"/>

 <xs:group
 ref="xhtml.Misc.class"/>

 </xs:choice>
 </xs:group>
 <!--
 All Content Elements
 Flow.mix includes all text content, block and inline
 Note that the "any" element included here allows us

 to add data from any other namespace, a necessity
 for compound document creation.
 Note however that it is not possible to add
 to any head level element without further
 modification. To add RDF metadata to the head
 of a document, modify the structure module.
 -->
 <xs:group
 name="xhtml.Flow.mix">

 <xs:choice>
 <xs:group
 ref="xhtml.Heading.class"/>

 <xs:group
 ref="xhtml.List.class"/>

 <xs:group
 ref="xhtml.Block.class"/>

 <xs:group
 ref="xhtml.Inline.class"/>

 <xs:group
 ref="xhtml.Misc.class"/>

 </xs:choice>
 </xs:group>
 <!--
 BlkNoForm.mix includes all non-form block elements,
 plus Misc.class
 -->
 <xs:group
 name="xhtml.BlkNoForm.mix">

 <xs:choice>
 <xs:group
 ref="xhtml.Heading.class"/>

 <xs:group
 ref="xhtml.List.class"/>

 <xs:group
 ref="xhtml.BlkStruct.class"/>

 <xs:group
 ref="xhtml.BlkPhras.class"/>

 <xs:group
 ref="xhtml.BlkPres.class"/>

 <xs:group
 ref="xhtml.Table.class"/>

 <xs:group
 ref="xhtml.Block.extra"/>

 <xs:group
 ref="xhtml.Misc.class"/>

 </xs:choice>
 </xs:group>
 <xs:element name="html"
 type="xhtml.html.type"/>

</xs:schema>

A.3

XHTML+RDFa
Schema
Modules

You can download this version of this file from SCHEMA/xhtml-rdfa-modules-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-modules-2.xsd.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/" >
 <xs:import namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd" />
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>

 <xs:annotation>
 <xs:documentation>
 This schema includes all modules for XHTML1.1 Document Type.
 $Id: xhtml-rdfa-diff.html,v 1.1 2013-08-15 07:45:48 ivan Exp $

 </xs:documentation>
 <xs:documentation source="xhtml-copyright-1.xsd"/>

 </xs:annotation>
 <xs:annotation>
 <xs:documentation>
 This schema includes all modules (and redefinitions)
 for XHTML1.1 Document Type.
 XHTML1.1 Document Type includes the following Modules
 XHTML Core modules (Required for XHTML Family Conformance)
 + text
 + hypertext
 + lists
 + structure
 Other XHTML modules
 + Edit
 + Bdo
 + Presentational
 + Link
 + Meta
 + Base
 + Scripting
 + Style
 + Image
 + Applet
 + Object
 + Param (Applet/Object modules require Param Module)
 + Tables
 + Target
 + Forms
 + Client side image maps
 + Server side image maps
 </xs:documentation>
 </xs:annotation>
 <xs:include schemaLocation="xhtml-framework-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Schema Framework Component Modules:
 + notations
 + datatypes
 + common attributes
 + character entities
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_commonatts"/>

 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-text-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Text module
 The Text module includes declarations for all core
 text container elements and their attributes.
 + block phrasal
 + block structural
 + inline phrasal
 + inline structural
 Elements defined here:
 * address, blockquote, pre, h1, h2, h3, h4, h5, h6
 * div, p
 * abbr, acronym, cite, code, dfn, em, kbd, q, samp, strong, var
 * br, span
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/abstract_modules.html#s_textmodule"/>

 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-list-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Lists module
 Elements defined here:
 * dt, dd, dl, ol, ul, li
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/abstract_modules.html#s_listmodule"/>

 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-struct-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Structural module
 Elements defined here:
 * title, head, body, html
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/abstract_modules.html#s_structuremodule"/>

 </xs:annotation>
 <xs:attributeGroup name="xhtml.version.attrib">

 <xs:annotation>
 <xs:documentation>
 Redefinition by the XHTML11 Markup (for value of version attr)
 </xs:documentation>
 </xs:annotation>
 <xs:attribute name="version" type="xh11d:CDATA" fixed="XHTML+RDFa 1.1"/>

 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.body.attlist">
 <xs:attributeGroup ref="xhtml.body.attlist">

 <xs:annotation>
 <xs:documentation>
 Original Body Attlist
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.body.events.attlist">

 <xs:annotation>
 <xs:documentation>
 Redefinition by XHTML Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.head.attlist">
 <xs:attributeGroup ref="xhtml.I18n.attrib"/>
 <xs:attributeGroup ref="xhtml.id"/>
 <xs:attributeGroup ref="xhtml.class"/>
 <xs:attributeGroup ref="xhtml.title"/>
 <xs:attributeGroup ref="xhtml.Common.extra"/>

 </xs:attributeGroup>
		<xs:attributeGroup name="xhtml.title.attlist">
		 <xs:attributeGroup ref="xhtml.title.attlist"/>
		 <xs:attributeGroup ref="xhtml.class"/>
		 <xs:attributeGroup ref="xhtml.title"/>
		 <xs:attributeGroup ref="xhtml.Common.extra"/>

		</xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-edit-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Edit module
 Elements defined here:
 * ins, del
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_editmodule"/>

 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-bdo-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Bidirectional element module
 Elements defined here:
 * bdo
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_bdomodule"/>

 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-pres-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Presentational module
 Elements defined here:
 * hr, b, big, i, small,sub, sup, tt
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_presentationmodule"/>

 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-base-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Base module
 Elements defined here:
 * base
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_basemodule"/>

 </xs:annotation>
 <xs:attributeGroup name="xhtml.base.attlist">

 <xs:annotation>
 <xs:documentation>
 Changes to XHTML base Attlist
 </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup ref="xhtml.base.attlist">

 <xs:annotation>
 <xs:documentation>
 Original Base Attributes (declared in Base Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.base.target.attlist">

 <xs:annotation>
 <xs:documentation>
 XHTML Target Module - Attribute additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-script-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Scripting module
 Elements defined here:
 * script, noscript
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_scriptmodule"/>

 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-style-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Style module
 Elements defined here:
 * style
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_stylemodule"/>

 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-inlstyle-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Style attribute module
 Attribute defined here:
 * style
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_styleattributemodule"/>

 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-image-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Image module
 Elements defined here:
 * img
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_imagemodule"/>

 </xs:annotation>
 <xs:attributeGroup name="xhtml.img.attlist">
 <xs:attributeGroup ref="xhtml.img.attlist">

 <xs:annotation>
 <xs:documentation>
 Original Image Attributes (in Image Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.img.csim.attlist">

 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.img.ssimap.attlist">

 <xs:annotation>
 <xs:documentation>
 Redefinition by Server Side Image Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:redefine schemaLocation="xhtml-csismap-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Client-side mage maps module
 Elements defined here:
 * area, map
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_imapmodule"/>

 </xs:annotation>
 <xs:attributeGroup name="xhtml.area.attlist">
 <xs:attributeGroup ref="xhtml.area.attlist">

 <xs:annotation>
 <xs:documentation>
 Original Area Attributes (in CSI Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.area.events.attlist">

 <xs:annotation>
 <xs:documentation>
 Redefinition by Events Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.area.target.attlist">

 <xs:annotation>
 <xs:documentation>
 Target Module - Area Attribute Additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-ssismap-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Server-side image maps module
 Attributes defined here:
 * ismap on img
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_servermapmodule"/>

 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-object-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Object module
 Elements defined here:
 * object
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_objectmodule"/>

 </xs:annotation>
 <xs:attributeGroup name="xhtml.object.attlist">
 <xs:attributeGroup ref="xhtml.object.attlist">

 <xs:annotation>
 <xs:documentation>
 Original Object Attlist
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.object.csim.attlist">

 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-param-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Param module
 Elements defined here:
 * param
 </xs:documentation>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-table-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Tables module
 Elements defined here:
 * table, caption, thead, tfoot, tbody, colgroup, col, tr, th, td
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_tablemodule"/>

 </xs:annotation>
 </xs:include>
 <xs:redefine schemaLocation="xhtml-form-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Forms module
 Elements defined here:
 * form, label, input, select, optgroup, option,
 * textarea, fieldset, legend, button
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_extformsmodule"/>

 </xs:annotation>
 <xs:attributeGroup name="xhtml.form.attlist">

 <xs:annotation>
 <xs:documentation>
 Changes to XHTML Form Attlist
 </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup ref="xhtml.form.attlist">

 <xs:annotation>
 <xs:documentation>
 Original Form Attributes (declared in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.form.events.attlist">

 <xs:annotation>
 <xs:documentation>
 XHTML Events Module - Attribute additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.form.target.attlist">

 <xs:annotation>
 <xs:documentation>
 XHTML Target Module - Attribute additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.input.attlist">

 <xs:annotation>
 <xs:documentation>
 Changes to XHTML Form Input Element
 </xs:documentation>
 </xs:annotation>
 <xs:attributeGroup ref="xhtml.input.attlist">

 <xs:annotation>
 <xs:documentation>
 Original Input Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.input.csim.attlist">

 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.input.ssimap.attlist">

 <xs:annotation>
 <xs:documentation>
 Redefinition by Server Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.input.events.attlist">

 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.label.attlist">
 <xs:attributeGroup ref="xhtml.label.attlist">

 <xs:annotation>
 <xs:documentation>
 Original Label Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.label.events.attlist">

 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.select.attlist">
 <xs:attributeGroup ref="xhtml.select.attlist">

 <xs:annotation>
 <xs:documentation>
 Original Select Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.select.events.attlist">

 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.textarea.attlist">
 <xs:attributeGroup ref="xhtml.textarea.attlist">

 <xs:annotation>
 <xs:documentation>
 Original TextArea Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.textarea.events.attlist">

 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:attributeGroup name="xhtml.button.attlist">
 <xs:attributeGroup ref="xhtml.button.attlist">

 <xs:annotation>
 <xs:documentation>
 Original Button Attributes (in Forms Module)
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.button.events.attlist">

 <xs:annotation>
 <xs:documentation>
 Redefinition by Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 </xs:redefine>
 <xs:include schemaLocation="xhtml-ruby-basic-1.xsd">

 <xs:annotation>
 <xs:documentation>
 Ruby module
 Elements defined here:
 * ruby, rbc, rtc, rb, rt, rp
 Note that either Ruby or Basic Ruby should be used but not both
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/2001/REC-ruby-20010531/#simple-ruby1"/>

 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-events-1.xsd">

 <xs:annotation>
 <xs:documentation>
 XHTML Events Modules
 Attributes defined here:
 XHTML Event Types
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_intrinsiceventsmodule"/>

 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-metaAttributes-1.xsd">

 <xs:annotation>
 <xs:documentation>
 XHTML Metainformation Modules

 Attributes defined here:
 XHTML RDFa attribtues
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/rdfa-syntax"/>

 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-target-1.xsd">

 <xs:annotation>
 <xs:documentation>
 XHTML Target Attribute Module
 Attributes defined here:
 target
 </xs:documentation>
 <xs:documentation source="http://www.w3.org/TR/xhtml-modularization/abstract_modules.html#s_targetmodule"/>

 </xs:annotation>
 </xs:include>
</xs:schema>

A.4

XHTML+RDFa
XML
Schema
Driver
Module

You can download this version of this file from SCHEMA/xhtml-rdfa-2.xsd. The latest version is available at http://www.w3.org/MarkUp/SCHEMA/xhtml-rdfa-2.xsd.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.w3.org/1999/xhtml"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/" xmlns="http://www.w3.org/1999/xhtml"
 elementFormDefault="qualified">

 <xs:annotation>
 <xs:documentation> This is the XML Schema driver for XHTML + RDFa Please use this namespace
 for XHTML elements: "http://www.w3.org/1999/xhtml" $Id: xhtml-rdfa-1.xsd,v 1.2

 2008/07/02 13:26:46 ahby Exp $ </xs:documentation>
 <xs:documentation source="xhtml-copyright-1.xsd"/>

 </xs:annotation>
 <xs:annotation>
 <xs:documentation> This is the Schema Driver file for XHTML + RDFa Document Type This schema
 + imports external schemas (xml.xsd) + refedines (and include)s schema modules for
 XHTML1.1 Document Type. + includes Schema for Named content model for the XHTML1.1
 Document Type XHTML1.1 Document Type includes the following Modules XHTML Core modules
 (Required for XHTML Family Conformance) + text + hypertext + lists + structure Other
 XHTML modules + Edit + Bdo + Presentational + Link + Meta + Base + Scripting + Style +
 Image + Applet + Object + Param (Applet/Object modules require Param Module) + Tables +
 Forms + Client side image maps + Server side image maps + Ruby </xs:documentation>
 </xs:annotation>
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd">

 <xs:annotation>
 <xs:documentation> This import brings in the XML namespace attributes The XML attributes
 are used by various modules. </xs:documentation>
 </xs:annotation>
 </xs:import>
 <xs:import namespace="http://www.w3.org/1999/xhtml/datatypes/"
 schemaLocation="xhtml-datatypes-1.xsd"/>
 <xs:include schemaLocation="xhtml-rdfa-model-2.xsd">

 <xs:annotation>
 <xs:documentation> Document Model module for the XHTML+RDFa Document Type. This schema
 file defines all named models used by XHTML Modularization Framework for XHTML+RDFa
 Document Type </xs:documentation>
 </xs:annotation>
 </xs:include>
 <xs:include schemaLocation="xhtml-rdfa-modules-2.xsd">

 <xs:annotation>
 <xs:documentation> Schema that includes all modules (and redefinitions) for XHTML1.1
 Document Type. </xs:documentation>
 </xs:annotation>
 </xs:include>
 <!-- link, meta, and a need to be defined directly here -->
 <xs:attributeGroup name="xhtml.a.attlist">
 <xs:attributeGroup ref="xhtml.Common.attrib"/>
 <xs:attribute name="href" type="xh11d:URI"/>
 <xs:attribute name="charset" type="xh11d:Charset"/>
 <xs:attribute name="type" type="xh11d:ContentType"/>
 <xs:attribute name="hreflang" type="xh11d:LanguageCode"/>
 <xs:attribute name="accesskey" type="xh11d:Character"/>
 <xs:attribute name="tabindex" type="xh11d:Number"/>
 <xs:attributeGroup ref="xhtml.a.csim.attlist">

 <xs:annotation>
 <xs:documentation>
 Redefinition by Client Side Image Map Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.a.events.attlist">

 <xs:annotation>
 <xs:documentation>
 Redefinition by XHTML Event Attribute Module
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 <xs:attributeGroup ref="xhtml.a.target.attlist">

 <xs:annotation>
 <xs:documentation>
 Target Module - A Attribute Additions
 </xs:documentation>
 </xs:annotation>
 </xs:attributeGroup>
 </xs:attributeGroup>
 <xs:group name="xhtml.a.content">

 <xs:sequence>
 <xs:group ref="xhtml.InlNoAnchor.mix" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:group>
 <xs:complexType name="xhtml.a.type" mixed="true">
 <xs:group ref="xhtml.a.content"/>
 <xs:attributeGroup ref="xhtml.a.attlist"/>

 </xs:complexType>
 <xs:attributeGroup name="xhtml.link.attlist">
 <xs:attributeGroup ref="xhtml.Common.attrib"/>
 <xs:attribute name="charset" type="xh11d:Charset"/>
 <xs:attribute name="href" type="xh11d:URI"/>
 <xs:attribute name="hreflang" type="xh11d:LanguageCode"/>
 <xs:attribute name="type" type="xh11d:ContentType"/>
 <xs:attribute name="media" type="xh11d:MediaDesc"/>

 </xs:attributeGroup>
 <xs:group name="xhtml.link.content">

 <xs:sequence/>
 </xs:group>
 <xs:complexType name="xhtml.link.type">
 <xs:group ref="xhtml.link.content"/>
 <xs:attributeGroup ref="xhtml.link.attlist"/>

 </xs:complexType>
 <xs:attributeGroup name="xhtml.meta.attlist">
 <xs:attributeGroup ref="xhtml.I18n.attrib"/>
 <xs:attribute ref="xml:space"/>
 <xs:attribute name="http-equiv" type="xs:NMTOKEN"/>
 <xs:attribute name="name" type="xs:NMTOKEN"/>
 <xs:attribute name="content" type="xh11d:CDATA" use="required"/>
 <xs:attribute name="scheme" type="xh11d:CDATA"/>
 <xs:attribute name="about" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="datatype" type="xh11d:TERMorCURIEoAbsIRI"/>
 <xs:attribute name="typeof" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="prefix" type="xh11d:PREFIX"/>
 <xs:attribute name="property" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="rel" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="resource" type="xh11d:SafeCURIEorCURIEorIRI"/>
 <xs:attribute name="rev" type="xh11d:TERMorCURIEoAbsIRIs"/>
 <xs:attribute name="vocab" type="xs:anyURI"/>

 </xs:attributeGroup>
 <xs:group name="xhtml.meta.content">

 <xs:sequence/>
 </xs:group>
 <xs:complexType name="xhtml.meta.type">
 <xs:group ref="xhtml.meta.content"/>
 <xs:attributeGroup ref="xhtml.meta.attlist"/>

 </xs:complexType>
</xs:schema>

B.

XHTML+RDFa
Document
Type
Definition

This
appendix
includes
an
implementation
of
the
XHTML+RDFa
1.1
language
as
an
XML
DTD.
It
is
implemented
by
combining
the
XHTML
1.1
DTD
with
the
XHTML
Metainformation
Attribute
Module.
This
is
done
by
using
a
content
model
module,
and
then
a
driver
module.
There
are
direct
links
to
the
various
files
for
download
purposes.
Please
note
that
the
files
targeted
by
the
"latest
version"

links
may
change
slowly
over
time.
See
the

W3C

XHTML2

Working
Group

home
page
for
more
information.

B.1

XHTML
Metainformation
Attributes
Module

You can download this version of this file from DTD/xhtml-metaAttributes-2.mod. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-metaAttributes-2.mod.

<!-- .. -->
<!-- XHTML MetaAttributes Module ... -->
<!-- file: xhtml-metaAttributes-1.mod
 This is XHTML-RDFa, modules to annotate XHTML family documents.
 Copyright 2007-2008 W3C (MIT, ERCIM, Keio), All Rights Reserved.
 Revision: $Id: xhtml-rdfa-diff.html,v 1.1 2013-08-15 07:45:48 ivan Exp $

 This DTD module is identified by the PUBLIC and SYSTEM identifiers:
 PUBLIC "-//W3C//ENTITIES XHTML MetaAttributes 1.0//EN"
 SYSTEM "http://www.w3.org/MarkUp/DTD/xhtml-metaAttributes-1.mod"

 Revisions:
 (none)
 ... -->
<!ENTITY % XHTML.global.attrs.prefixed "IGNORE" >

<!-- Placeholder Compact URI-related types -->
<!ENTITY % CURIE.datatype "CDATA" >
<!ENTITY % CURIEs.datatype "CDATA" >
<!ENTITY % CURIEorIRI.datatype "CDATA" >
<!ENTITY % CURIEorIRIs.datatype "CDATA" >
<!ENTITY % IRI.datatype "CDATA" >
<!ENTITY % IRIs.datatype "CDATA" >
<!ENTITY % PREFIX.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRI.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRIs.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsIRI.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsIRIs.datatype "CDATA" >

<!-- Common Attributes
 This module declares a collection of meta-information related
 attributes.
 %NS.decl.attrib; is declared in the XHTML Qname module.
	 This file also includes declarations of "global" versions of the

 attributes. The global versions of the attributes are for use on
 elements in other namespaces.
-->
<!ENTITY % about.attrib
 "about %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"

>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.about.attrib
 "%XHTML.prefix;:about %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"

>
]]>
<!ENTITY % typeof.attrib
 "typeof %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"

>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.typeof.attrib
 "%XHTML.prefix;:typeof %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"

>
]]>
<!ENTITY % property.attrib
 "property %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"

>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.property.attrib
 "%XHTML.prefix;:property %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"

>
]]>
<!ENTITY % resource.attrib
 "resource %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"

>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.resource.attrib
 "%XHTML.prefix;:resource %SafeCURIEorCURIEorIRI.datatype; #IMPLIED"

>
]]>
<!ENTITY % content.attrib
 "content CDATA #IMPLIED"

>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.content.attrib
 "%XHTML.prefix;:content CDATA #IMPLIED"

>
]]>
<!ENTITY % datatype.attrib
 "datatype %TERMorCURIEorAbsIRI.datatype; #IMPLIED"

>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.datatype.attrib
 "%XHTML.prefix;:datatype %TERMorCURIEorAbsIRI.datatype; #IMPLIED"

>
]]>
<!ENTITY % inlist.attrib
 "inlist CDATA #IMPLIED"

>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.inlist.attrib
 "%XHTML.prefix;:inlist CDATA #IMPLIED"

>
]]>
<!ENTITY % rel.attrib
 "rel %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"

>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.rel.attrib
 "%XHTML.prefix;:rel %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"

>
]]>
<!ENTITY % rev.attrib
 "rev %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"

>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.rev.attrib
 "%XHTML.prefix;:rev %TERMorCURIEorAbsIRIs.datatype; #IMPLIED"

>
]]>
<!ENTITY % prefix.attrib
 "prefix %PREFIX.datatype; #IMPLIED"

>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.prefix.attrib
 "%XHTML.prefix;:prefix %PREFIX.datatype; #IMPLIED"

>
]]>
<!ENTITY % vocab.attrib
 "vocab %IRI.datatype; #IMPLIED"

>
<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.vocab.attrib
 "%XHTML.prefix;:vocab %IRI.datatype; #IMPLIED"

>
]]>
<!ENTITY % Metainformation.extra.attrib "" >

<!ENTITY % Metainformation.attrib
 "%about.attrib;

 %content.attrib;
 %datatype.attrib;
	 %inlist.attrib;
 %typeof.attrib;
 %prefix.attrib;
 %property.attrib;
 %rel.attrib;
 %resource.attrib;
 %rev.attrib;
 %vocab.attrib;
 %Metainformation.extra.attrib;"

>
<!ENTITY % XHTML.global.metainformation.extra.attrib "" >

<![%XHTML.global.attrs.prefixed;[
<!ENTITY % XHTML.global.metainformation.attrib
 "%XHTML.global.about.attrib;

 %XHTML.global.content.attrib;
 %XHTML.global.datatype.attrib;
 %XHTML.global.inlist.attrib;
 %XHTML.global.typeof.attrib;
 %XHTML.global.prefix.attrib;
 %XHTML.global.property.attrib;
 %XHTML.global.rel.attrib;
 %XHTML.global.resource.attrib;
 %XHTML.global.rev.attrib;
 %XHTML.global.vocab.attrib;
 %XHTML.global.metainformation.extra.attrib;"

>
]]>
<!ENTITY % XHTML.global.metainformation.attrib "" >

<!-- end of xhtml-metaAttributes-1.mod -->

B.2

XHTML+RDFa
Content
Model
Module

You can download this version of this file from DTD/xhtml-rdfa-model-2.mod. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-rdfa-model-2.mod.

<!-- ... -->
<!-- XHTML+RDFa Document Model Module -->
<!-- file: xhtml-rdfa-model-2.mod
 This is XHTML+RDFa.
 Copyright 1998-2010 W3C (MIT, ERCIM, Keio), All Rights Reserved.
 Revision: $Id: xhtml-rdfa-diff.html,v 1.1 2013-08-15 07:45:48 ivan Exp $ SMI

 This DTD module is identified by the PUBLIC and SYSTEM identifiers:
 PUBLIC "-//W3C//ENTITIES XHTML+RDFa Document Model 1.1//EN"
 SYSTEM "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-model-2.mod"

 Revisions:
 (none)
 ... -->
<!-- XHTML+RDFa Document Model
 This module describes the groupings of elements that make up
 common content models for XHTML elements.
 XHTML has three basic content models:
 %Inline.mix; character-level elements
 %Block.mix; block-like elements, eg., paragraphs and lists
 %Flow.mix; any block or inline elements
 Any parameter entities declared in this module may be used
 to create element content models, but the above three are
 considered 'global' (insofar as that term applies here).
 The reserved word '#PCDATA' (indicating a text string) is now
 included explicitly with each element declaration that is
 declared as mixed content, as XML requires that this token
 occur first in a content model specification.
-->
<!-- Extending the Model
 While in some cases this module may need to be rewritten to
 accommodate changes to the document model, minor extensions
 may be accomplished by redeclaring any of the three *.extra;
 parameter entities to contain extension element types as follows:
 %Misc.extra; whose parent may be any block or
 inline element.
 %Inline.extra; whose parent may be any inline element.
 %Block.extra; whose parent may be any block element.
 If used, these parameter entities must be an OR-separated
 list beginning with an OR separator ("|"), eg., "| a | b | c"

 All block and inline *.class parameter entities not part
 of the *struct.class classes begin with "| " to allow for

 exclusion from mixes.
-->
<!-- Optional Elements in head -->
<!ENTITY % HeadOpts.mix
 "(%script.qname; | %style.qname; | %meta.qname;
 | %link.qname; | %object.qname;)*"

>
<!-- Miscellaneous Elements -->
<!-- ins and del are used to denote editing changes
-->
<!ENTITY % Edit.class "| %ins.qname; | %del.qname;" >

<!-- script and noscript are used to contain scripts
 and alternative content
-->
<!ENTITY % Script.class "| %script.qname; | %noscript.qname;" >

<!ENTITY % Misc.extra "" >

<!-- These elements are neither block nor inline, and can
 essentially be used anywhere in the document body.
-->
<!ENTITY % Misc.class
 "%Edit.class;

 %Script.class;
 %Misc.extra;"

>
<!-- Inline Elements -->
<!ENTITY % InlStruct.class "%br.qname; | %span.qname;" >

<!ENTITY % InlPhras.class
 "| %em.qname; | %strong.qname; | %dfn.qname; | %code.qname;

 | %samp.qname; | %kbd.qname; | %var.qname; | %cite.qname;
 | %abbr.qname; | %acronym.qname; | %q.qname;" >

<!ENTITY % InlPres.class
 "| %tt.qname; | %i.qname; | %b.qname; | %big.qname;
 | %small.qname; | %sub.qname; | %sup.qname;" >

<!ENTITY % I18n.class "| %bdo.qname;" >

<!ENTITY % Anchor.class "| %a.qname;" >

<!ENTITY % InlSpecial.class
 "| %img.qname; | %map.qname;
 | %object.qname;" >

<!ENTITY % InlForm.class
 "| %input.qname; | %select.qname; | %textarea.qname;
 | %label.qname; | %button.qname;" >

<!ENTITY % Inline.extra "" >

<!ENTITY % Ruby.class "| %ruby.qname;" >

<!-- %Inline.class; includes all inline elements,
 used as a component in mixes
-->
<!ENTITY % Inline.class
 "%InlStruct.class;

 %InlPhras.class;
 %InlPres.class;
 %I18n.class;
 %Anchor.class;
 %InlSpecial.class;
 %InlForm.class;
 %Ruby.class;
 %Inline.extra;"

>
<!-- %InlNoRuby.class; includes all inline elements
 except ruby, used as a component in mixes
-->
<!ENTITY % InlNoRuby.class
 "%InlStruct.class;

 %InlPhras.class;
 %InlPres.class;
 %I18n.class;
 %Anchor.class;
 %InlSpecial.class;
 %InlForm.class;
 %Inline.extra;"

>
<!-- %NoRuby.content; includes all inlines except ruby
-->
<!ENTITY % NoRuby.content
 "(#PCDATA

 | %InlNoRuby.class;
 %Misc.class;)*"

>
<!-- %InlNoAnchor.class; includes all non-anchor inlines,
 used as a component in mixes
-->
<!ENTITY % InlNoAnchor.class
 "%InlStruct.class;

 %InlPhras.class;
 %InlPres.class;
 %I18n.class;
 %InlSpecial.class;
 %InlForm.class;
 %Ruby.class;
 %Inline.extra;"

>
<!-- %InlNoAnchor.mix; includes all non-anchor inlines
-->
<!ENTITY % InlNoAnchor.mix
 "%InlNoAnchor.class;
 %Misc.class;"

>
<!-- %Inline.mix; includes all inline elements, including %Misc.class;
-->
<!ENTITY % Inline.mix
 "%Inline.class;
 %Misc.class;"

>
<!-- Block Elements -->
<!-- In the HTML 4.0 DTD, heading and list elements were included
 in the %block; parameter entity. The %Heading.class; and
 %List.class; parameter entities must now be included explicitly
 on element declarations where desired.
-->
<!ENTITY % Heading.class
 "%h1.qname; | %h2.qname; | %h3.qname;
 | %h4.qname; | %h5.qname; | %h6.qname;" >

<!ENTITY % List.class "%ul.qname; | %ol.qname; | %dl.qname;" >

<!ENTITY % Table.class "| %table.qname;" >

<!ENTITY % Form.class "| %form.qname;" >

<!ENTITY % Fieldset.class "| %fieldset.qname;" >

<!ENTITY % BlkStruct.class "%p.qname; | %div.qname;" >

<!ENTITY % BlkPhras.class
 "| %pre.qname; | %blockquote.qname; | %address.qname;" >

<!ENTITY % BlkPres.class "| %hr.qname; " >

<!ENTITY % BlkSpecial.class
 "%Table.class;

 %Form.class;
 %Fieldset.class;"

>
<!ENTITY % Block.extra "" >

<!-- %Block.class; includes all block elements,
 used as an component in mixes
-->
<!ENTITY % Block.class
 "%BlkStruct.class;

 %BlkPhras.class;
 %BlkPres.class;
 %BlkSpecial.class;
 %Block.extra;"

>
<!-- %Block.mix; includes all block elements plus %Misc.class;
-->
<!ENTITY % Block.mix
 "%Heading.class;

 | %List.class;
 | %Block.class;
 %Misc.class;"

>
<!-- All Content Elements -->
<!-- %Flow.mix; includes all text content, block and inline
-->
<!ENTITY % Flow.mix
 "%Heading.class;

 | %List.class;
 | %Block.class;
 | %Inline.class;
 %Misc.class;"

>
<!-- end of xhtml-rdfa-model-2.mod -->

B.3

XHTML+RDFa
Driver
Module

You can download this version of this file from DTD/xhtml-rdfa-2.dtd. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd.

<!-- ... -->
<!-- XHTML 1.1 + RDFa DTD ... -->
<!-- file: xhtml-rdfa-2.dtd
-->
<!-- XHTML 1.1 + RDFa DTD
 This is an example markup language combining XHTML 1.1 and the RDFa
 modules.
 XHTML+RDFa
 Copyright 1998-2010 World Wide Web Consortium
 (Massachusetts Institute of Technology, European Research Consortium
 for Informatics and Mathematics, Keio University).
 All Rights Reserved.
 Permission to use, copy, modify and distribute the XHTML DTD and its
 accompanying documentation for any purpose and without fee is hereby
 granted in perpetuity, provided that the above copyright notice and
 this paragraph appear in all copies. The copyright holders make no
 representation about the suitability of the DTD for any purpose.
 It is provided "as is" without expressed or implied warranty.

-->
<!-- This is the driver file for version 1 of the XHTML + RDFa DTD.
 Please use this public identifier to identify it:
 "-//W3C//DTD XHTML+RDFa 1.1//EN"

-->
<!ENTITY % XHTML.version "XHTML+RDFa 1.1" >

<!-- Use this URI to identify the default namespace:
 "http://www.w3.org/1999/xhtml"

 See the Qualified Names module for information
 on the use of namespace prefixes in the DTD.
	 Note that XHTML namespace elements are not prefixed by default,
	 but the XHTML namespace prefix is defined as "xhtml" so that

	 other markup languages can extend this one and use the XHTML
	 prefixed global attributes if required.
-->
<!ENTITY % NS.prefixed "IGNORE" >
<!ENTITY % XHTML.prefix "xhtml" >

<!-- Be sure to include prefixed global attributes - we don't need
 them, but languages that extend XHTML 1.1 might.
-->
<!ENTITY % XHTML.global.attrs.prefixed "INCLUDE" >

<!-- Reserved for use with the XLink namespace:
-->
<!ENTITY % XLINK.xmlns "" >
<!ENTITY % XLINK.xmlns.attrib "" >

<!-- For example, if you are using XHTML 1.1 directly, use the public
 identifier in the DOCTYPE declaration, with the namespace declaration
 on the document element to identify the default namespace:
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml"
 xml:lang="en">

 ...
 </html>
 Revisions:
 (none)
-->
<!-- reserved for future use with document profiles -->
<!ENTITY % XHTML.profile "" >

<!-- ensure XHTML Notations are disabled -->
<!ENTITY % xhtml-notations.module "IGNORE" >

<!-- Bidirectional Text features
 This feature-test entity is used to declare elements
 and attributes used for bidirectional text support.
-->
<!ENTITY % XHTML.bidi "INCLUDE" >

<!-- ::: -->
<!-- Pre-Framework Redeclaration placeholder -->
<!-- this serves as a location to insert markup declarations
 into the DTD prior to the framework declarations.
-->
<!ENTITY % xhtml-prefw-redecl.module "IGNORE" >
<!ENTITY % xhtml-prefw-redecl.mod "" >

<![%xhtml-prefw-redecl.module;[
%xhtml-prefw-redecl.mod;
<!-- end of xhtml-prefw-redecl.module -->]]>
<!-- we need the datatypes now -->
<!ENTITY % xhtml-datatypes.module "INCLUDE" >

<![%xhtml-datatypes.module;[
<!ENTITY % xhtml-datatypes.mod
 PUBLIC "-//W3C//ENTITIES XHTML Datatypes 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-datatypes-1.mod" >

%xhtml-datatypes.mod;]]>
<!-- bring in the RDFa attributes cause we need them in Common -->
<!ENTITY % xhtml-metaAttributes.module "INCLUDE" >

<![%xhtml-metaAttributes.module;[
<!ENTITY % xhtml-metaAttributes.mod
 PUBLIC "-//W3C//ENTITIES XHTML MetaAttributes 1.1//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-metaAttributes-2.mod" >

%xhtml-metaAttributes.mod;]]>
<!ENTITY % xhtml-events.module "INCLUDE" >

<!ENTITY % Common.extra.attrib
 "href %URI.datatype; #IMPLIED
 %Metainformation.attrib;"

>
<!-- adding the lang attribute into the I18N collection -->
<!ENTITY % lang.attrib
 "xml:lang %LanguageCode.datatype; #IMPLIED
 lang %LanguageCode.datatype; #IMPLIED"

>
<!-- Inline Style Module .. -->
<!ENTITY % xhtml-inlstyle.module "INCLUDE" >

<![%xhtml-inlstyle.module;[
<!ENTITY % xhtml-inlstyle.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Inline Style 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-inlstyle-1.mod" >

%xhtml-inlstyle.mod;]]>
<!-- declare Document Model module instantiated in framework
-->
<!ENTITY % xhtml-model.mod
 PUBLIC "-//W3C//ENTITIES XHTML+RDFa Document Model 1.1//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-model-2.mod" >

<!-- Modular Framework Module (required) -->
<!ENTITY % xhtml-framework.module "INCLUDE" >

<![%xhtml-framework.module;[
<!ENTITY % xhtml-framework.mod
 PUBLIC "-//W3C//ENTITIES XHTML Modular Framework 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-framework-1.mod" >

%xhtml-framework.mod;]]>
<!-- Post-Framework Redeclaration placeholder -->
<!-- this serves as a location to insert markup declarations
 into the DTD following the framework declarations.
-->
<!ENTITY % xhtml-postfw-redecl.module "IGNORE" >
<!ENTITY % xhtml-postfw-redecl.mod "">

<![%xhtml-postfw-redecl.module;[
%xhtml-postfw-redecl.mod;
<!-- end of xhtml-postfw-redecl.module -->]]>
<!-- Text Module (Required) -->
<!ENTITY % xhtml-text.module "INCLUDE" >

<![%xhtml-text.module;[
<!ENTITY % xhtml-text.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Text 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-text-1.mod" >

%xhtml-text.mod;]]>
<!-- Hypertext Module (required) -->
<!ENTITY % a.attlist "IGNORE" >
<!ENTITY % xhtml-hypertext.module "INCLUDE" >

<![%xhtml-hypertext.module;[
<!ENTITY % xhtml-hypertext.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Hypertext 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-hypertext-1.mod" >

%xhtml-hypertext.mod;]]>
<!ATTLIST %a.qname;
 %Common.attrib;
 charset %Charset.datatype; #IMPLIED
 type %ContentType.datatype; #IMPLIED
 hreflang %LanguageCode.datatype; #IMPLIED
 accesskey %Character.datatype; #IMPLIED
 tabindex %Number.datatype; #IMPLIED
>
<!-- Lists Module (required) -->
<!ENTITY % xhtml-list.module "INCLUDE" >

<![%xhtml-list.module;[
<!ENTITY % xhtml-list.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Lists 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-list-1.mod" >

%xhtml-list.mod;]]>
<!-- ::: -->
<!-- Edit Module .. -->
<!ENTITY % xhtml-edit.module "INCLUDE" >

<![%xhtml-edit.module;[
<!ENTITY % xhtml-edit.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Editing Elements 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-edit-1.mod" >

%xhtml-edit.mod;]]>
<!-- BIDI Override Module -->
<!ENTITY % xhtml-bdo.module "%XHTML.bidi;" >

<![%xhtml-bdo.module;[
<!ENTITY % xhtml-bdo.mod
 PUBLIC "-//W3C//ELEMENTS XHTML BIDI Override Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-bdo-1.mod" >

%xhtml-bdo.mod;]]>
<!-- Ruby Module .. -->
<!ENTITY % Ruby.common.attlists "INCLUDE" >
<!ENTITY % Ruby.common.attrib "%Common.attrib;" >
<!ENTITY % xhtml-ruby.module "INCLUDE" >

<![%xhtml-ruby.module;[
<!ENTITY % xhtml-ruby.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Ruby 1.0//EN"
 "http://www.w3.org/TR/ruby/xhtml-ruby-1.mod" >

%xhtml-ruby.mod;]]>
<!-- Presentation Module .. -->
<!ENTITY % xhtml-pres.module "INCLUDE" >

<![%xhtml-pres.module;[
<!ENTITY % xhtml-pres.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Presentation 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-pres-1.mod" >

%xhtml-pres.mod;]]>
<!ENTITY % link.attlist "IGNORE" >

<!-- Link Element Module .. -->
<!ENTITY % xhtml-link.module "INCLUDE" >

<![%xhtml-link.module;[
<!ENTITY % xhtml-link.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Link Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-link-1.mod" >

%xhtml-link.mod;]]>
<!ATTLIST %link.qname;
 %Common.attrib;
 charset %Charset.datatype; #IMPLIED
 hreflang %LanguageCode.datatype; #IMPLIED
 type %ContentType.datatype; #IMPLIED
 media %MediaDesc.datatype; #IMPLIED
>
<!-- Document Metainformation Module -->
<!ENTITY % meta.attlist "IGNORE" >
<!ENTITY % xhtml-meta.module "INCLUDE" >

<![%xhtml-meta.module;[
<!ENTITY % xhtml-meta.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Metainformation 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-meta-1.mod" >

%xhtml-meta.mod;]]>
<!ATTLIST %meta.qname;
	 %Common.attrib;
 http-equiv NMTOKEN #IMPLIED
 name NMTOKEN #IMPLIED
 scheme CDATA #IMPLIED
>
<!-- Base Element Module .. -->
<!ENTITY % xhtml-base.module "INCLUDE" >

<![%xhtml-base.module;[
<!ENTITY % xhtml-base.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Base Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-base-1.mod" >

%xhtml-base.mod;]]>
<!-- Scripting Module ... -->
<!ENTITY % script.attlist "IGNORE" >
<!ENTITY % xhtml-script.module "INCLUDE" >

<![%xhtml-script.module;[
<!ENTITY % xhtml-script.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Scripting 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-script-1.mod" >

%xhtml-script.mod;]]>
<!ATTLIST %script.qname;
 %XHTML.xmlns.attrib;
	 %id.attrib;
 %Metainformation.attrib;
 href %URI.datatype; #IMPLIED
 xml:space (preserve) #FIXED 'preserve'
 charset %Charset.datatype; #IMPLIED
 type %ContentType.datatype; #REQUIRED
 src %URI.datatype; #IMPLIED
 defer (defer) #IMPLIED
>
<!-- Style Sheets Module ... -->
<!ENTITY % style.attlist "IGNORE" >
<!ENTITY % xhtml-style.module "INCLUDE" >

<![%xhtml-style.module;[
<!ENTITY % xhtml-style.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Style Sheets 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-style-1.mod" >

%xhtml-style.mod;]]>
<!ATTLIST %style.qname;
 %XHTML.xmlns.attrib;
 %id.attrib;
 %title.attrib;
 %I18n.attrib;
 %Metainformation.attrib;
 href %URI.datatype; #IMPLIED
 xml:space (preserve) #FIXED 'preserve'
 type %ContentType.datatype; #REQUIRED
 media %MediaDesc.datatype; #IMPLIED
>
<!-- Image Module ... -->
<!ENTITY % xhtml-image.module "INCLUDE" >

<![%xhtml-image.module;[
<!ENTITY % xhtml-image.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Images 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-image-1.mod" >

%xhtml-image.mod;]]>
<!-- Client-side Image Map Module -->
<!ENTITY % area.attlist "IGNORE" >

<!ENTITY % xhtml-csismap.module "INCLUDE" >

<![%xhtml-csismap.module;[
<!ENTITY % xhtml-csismap.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Client-side Image Maps 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-csismap-1.mod" >

%xhtml-csismap.mod;]]>
<!ATTLIST %area.qname;
 %Common.attrib;
 shape %Shape.datatype; 'rect'
 coords %Coords.datatype; #IMPLIED
 nohref (nohref) #IMPLIED
 alt %Text.datatype; #REQUIRED
 tabindex %Number.datatype; #IMPLIED
 accesskey %Character.datatype; #IMPLIED
>
<!-- Server-side Image Map Module -->
<!ENTITY % xhtml-ssismap.module "INCLUDE" >

<![%xhtml-ssismap.module;[
<!ENTITY % xhtml-ssismap.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Server-side Image Maps 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-ssismap-1.mod" >

%xhtml-ssismap.mod;]]>
<!-- Param Element Module -->
<!ENTITY % param.attlist "IGNORE" >
<!ENTITY % xhtml-param.module "INCLUDE" >

<![%xhtml-param.module;[
<!ENTITY % xhtml-param.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Param Element 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-param-1.mod" >

%xhtml-param.mod;]]>
<!ATTLIST %param.qname;
 %XHTML.xmlns.attrib;
 %id.attrib;
 %Metainformation.attrib;
 href %URI.datatype; #IMPLIED
 name CDATA #REQUIRED
 value CDATA #IMPLIED
 valuetype (data | ref | object) 'data'
 type %ContentType.datatype; #IMPLIED
>
<!-- Embedded Object Module -->
<!ENTITY % xhtml-object.module "INCLUDE" >

<![%xhtml-object.module;[
<!ENTITY % xhtml-object.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Embedded Object 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-object-1.mod" >

%xhtml-object.mod;]]>
<!-- Tables Module ... -->
<!ENTITY % xhtml-table.module "INCLUDE" >

<![%xhtml-table.module;[
<!ENTITY % xhtml-table.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Tables 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-table-1.mod" >

%xhtml-table.mod;]]>
<!-- Forms Module ... -->
<!ENTITY % xhtml-form.module "INCLUDE" >

<![%xhtml-form.module;[
<!ENTITY % xhtml-form.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Forms 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-form-1.mod" >

%xhtml-form.mod;]]>
<!-- Target Attribute Module -->
<!ENTITY % xhtml-target.module "INCLUDE" >

<![%xhtml-target.module;[
<!ENTITY % xhtml-target.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Target 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-target-1.mod" >

%xhtml-target.mod;]]>
<!-- Legacy Markup ... -->
<!ENTITY % xhtml-legacy.module "IGNORE" >

<![%xhtml-legacy.module;[
<!ENTITY % xhtml-legacy.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Legacy Markup 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-legacy-1.mod" >

%xhtml-legacy.mod;]]>
<!-- Document Structure Module (required) -->
<!ENTITY % html.attlist "IGNORE" >
<!ENTITY % head.attlist "IGNORE" >
<!ENTITY % title.attlist "IGNORE" >
<!ENTITY % xhtml-struct.module "INCLUDE" >

<![%xhtml-struct.module;[
<!ENTITY % xhtml-struct.mod
 PUBLIC "-//W3C//ELEMENTS XHTML Document Structure 1.0//EN"
 "http://www.w3.org/MarkUp/DTD/xhtml-struct-1.mod" >

%xhtml-struct.mod;]]>
<!ENTITY % XHTML.version.attrib
 "version %FPI.datatype; #FIXED '%XHTML.version;'"

>
<!ATTLIST %html.qname;
	 %Common.attrib;
 %XSI.schemaLocation.attrib;
 %XHTML.version.attrib;
>
<!ATTLIST %head.qname;
	 %Common.attrib;
>
<!ATTLIST %title.qname;
 %Common.attrib;
>
<!-- end of XHTML-RDFa DTD .. -->
<!-- ... -->

B.4

SGML
Open
Catalog
Entry
for
XHTML+RDFa

This
section
contains
the
SGML
Open
Catalog-format
definition
[

SGML-CATALOG

]
of
the
public
identifiers
for
XHTML+RDFa
1.1.

You can download this version of this file from DTD/xhtml-rdfa.cat. The latest version is available at http://www.w3.org/MarkUp/DTD/xhtml-rdfa.cat.

-- .. --
-- File catalog .. --
-- XHTML+RDFa Catalog Data File
 Revision: $Revision: 1.1 $

 See "Entity Management", SGML Open Technical Resolution 9401 for detailed

 information on supplying and using catalog data. This document is available
 from OASIS at URL:
 <http://www.oasis-open.org/html/tr9401.html>
--
-- .. --
-- SGML declaration associated with XHTML --
OVERRIDE YES
SGMLDECL "xml1.dcl"

-- :: --
-- XHTML+RDFa modules .. --
PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN" "xhtml-rdfa-2.dtd"

PUBLIC "-//W3C//ENTITIES XHTML+RDFa Document Model 1.1//EN" "xhtml-rdfa-model-2.mod"

PUBLIC "-//W3C//ENTITIES XHTML MetaAttributes 1.1//EN" "xhtml-metaAttributes-2.mod"

-- End of catalog data ... --
-- .. --

C.

Deployment
Advice

This
section
is
non-normative.

Documents
written
using
the
markup
language
defined
in
this
specification
can
be
validated
using
the
DTD
defined
in

Appendix
B
.
If
a
document
author
wants
to
facilitate
such
validation,
they
may
include
the
following
declaration
at
the
top
of
their
document:

Example 2
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN"
"http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd">

The
XML
Namespace
document
associated
with
the
XHTML
Family
of
markup
languages
uses
the
mechanism
for
transforming
XHTML+RDFa
documents
into
RDF
as
defined
by
[

GRDDL

].
Authors
who
want
to
be
certain
their
documents
are
transformable
by
all
[

GRDDL

]
processors
may
also
include
a

profile

attribute
on
the

head

element
that
includes
a
reference
to
the
RDFa
Initial
Context
IRI

http://www.w3.org/2011/rdfa-context/xhtml-rdfa-1.1
.

D.

Change
History

This
section
is
non-normative.

2010-02-25:
First
version
of
the
split-out
XHTML
specialization.

E.

Acknowledgments

This
section
is
non-normative.

At
the
time
of
publication,
the
members
of
the
RDF
Web
Applications
Working
Group
were:

		
Stéphane
Corlosquet,
MIND
Center
for
Interdisciplinary
Informatics

		
Ivan
Herman,

W3C

		
Gregg
Kellogg
(Invited
Expert)

		
Niklas
Lindström
(Invited
Expert)

		
Shane
McCarron,
Applied
Testing
and
Technology,
Inc.
(Invited
Expert)

		
Steven
Pemberton,
Centre
for
Mathematics
and
Computer
Science
(CWI)

		
Manu
Sporny,
Digital
Bazaar
(Chair,
Invited
Expert)

F.

References

F.1

Normative
references

		
[HTML401]

		
Dave

Raggett;
Arnaud
Le
Hors;
Ian
Jacobs.

HTML
4.01
Specification

.
24
December
1999.
W3C
Recommendation.
URL:

http://www.w3.org/TR/html401

		
[RDFA-CORE]

		
Shane
McCarron
et
al.

RDFa
Core
1.1
-
Second
Edition:
Syntax
and
processing
rules
for
embedding
RDF
through
attributes
.
22
August

2013.
W3C
Recommendation.
URL:

http://www.w3.org/TR/rdfa-core/

		
[RFC2119]

		
S.
Bradner.

Key
words
for
use
in
RFCs
to
Indicate
Requirement
Levels.

March
1997.
Internet
RFC
2119.
URL:

http://www.ietf.org/rfc/rfc2119.txt

		
[RFC3236]

		
P.
Stark;
M.
Baker.

The
'application/xhtml+xml'
Media
Type
(RFC
3236)

.
January
2002.
RFC.
URL:

http://www.rfc-editor.org/rfc/rfc3236.txt

		
[RUBY]

		
Marcin
Sawicki;
Michel
Suignard;

Masayasu
Ishikawa;
Martin
Dürst;
Tex
Texin

et
al.

Ruby
Annotation

.
31
May
2001.
W3C
Recommendation.
URL:

http://www.w3.org/TR/ruby/

		
[XHTML-MODULARIZATION11-2e]

		
Shane
McCarron.

XHTML™
Modularization
1.1
Second
Edition

.
29
July
2010.
W3C
Recommendation.
URL:

http://www.w3.org/TR/2010/REC-xhtml-modularization-20100729

		
[XHTML11-2e]

		
Murray
Altheim;
Shane
McCarron.

XHTML™
1.1
-
Module-based
XHTML
-
Second
Edition

.
23
November
2010.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xhtml11/

		
[XML-NAMES11]

		
Tim
Bray;
Dave
Hollander;

Andrew
Layman;
Richard
Tobin

et
al.

Namespaces
in
XML
1.1
(Second
Edition)

.
16
August
2006.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xml-names11/

		
[XMLSCHEMA11-2]

		
David
Peterson;
Sandy
Gao;
Ashok
Malhotra;
Michael
Sperberg-McQueen;

Henry
Thompson;
Paul
V.
Biron

et
al.

W3C
XML
Schema
Definition
Language
(XSD)
1.1
Part
2:
Datatypes

.
5
April
2012.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xmlschema11-2/

F.2

Informative
references

		
[GRDDL]

		
Dan
Connolly.

Gleaning
Resource
Descriptions
from
Dialects
of
Languages
(GRDDL)

.
11
September
2007.
W3C
Recommendation.
URL:

http://www.w3.org/TR/grddl/

		
[RDFA-SYNTAX]

		
Ben
Adida;
Mark
Birbeck;
Shane
McCarron;
Steven
Pemberton

et
al.

RDFa
in
XHTML:
Syntax
and
Processing
.
14
October
2008.
W3C
Recommendation.
URL:

http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014

		
[SGML-CATALOG]

		
Paul
Grosso.

Entity
Management:
OASIS
Technical
Resolution
9401:1997
(Amendment
2
to
TR
9401)

10
september
1007.
Entity
Management
Subcommittee,
SGML
Open.
URL:

https://www.oasis-open.org/html/a401.htm

		
[XHTML-MEDIA-TYPES]

		
Shane
McCarron.

XHTML
Media
Types
-
Second
Edition

.
16
January
2009.
W3C
Note.
URL:

http://www.w3.org/TR/xhtml-media-types

rdf-syntax-grammar/diff.xhtml
delete: <?xml version="1.0" encoding="utf-8"?> delete: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> delete: <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> insert: <!DOCTYPE html> insert: <html lang="en" typeof="bibo:Document w3p:REC" about="" property="dcterms:language" content="en" prefix="bibo: http://purl.org/ontology/bibo/ w3p: http://www.w3.org/2001/02pd/rec54#" xmlns="http://www.w3.org/1999/xhtml"> delete: <meta name="rcsid" content="$Id: diff.html,v 1.1 2014-02-18 12:45:25 ivan Exp $"/> insert: <meta content="text/html; charset=utf-8" http-equiv="Content-Type" /> RDF/XML RDF 1.1 XML Syntax Specification (Revised) delete: <link rel="stylesheet" type="text/css" href="http://www.w3.org/StyleSheets/TR/W3C-REC" /> insert: <style> insert: <style> insert: <style> insert: <link rel="stylesheet" href="https://www.w3.org/StyleSheets/TR/W3C-REC" />
 delete: <body> delete: <div class="head"> insert: <body class="h-entry" role="document" id="respecDocument"> insert: <div class="head" role="contentinfo" id="respecHeader"> insert: <p> delete: <img height="48"
width="72" alt="W3C" src="http://www.w3.org/Icons/w3c_home" /> delete: delete: <h1 id="title"> RDF/XML insert: [image: W3C] insert: insert: </p>

 insert: <h1 property="dcterms:title" id="title" class="title p-name"> RDF 1.1 XML Syntax Specification (Revised)

 delete: <h2 id="doctype"> insert: <h2 content="2014-02-24T23:00:00.000Z" datatype="xsd:dateTime" property="dcterms:issued" id="w3c-recommendation-25-february-2014"> insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> Recommendation 10 insert: <time datetime="2014-02-25" class="dt-published"> 25 February 2004 2014 insert: </time>

 		 This version:

 		 delete: http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/ delete: delete:
 insert: http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/ insert:

 		 Latest published version:

 		 http://www.w3.org/TR/rdf-syntax-grammar/ delete:
 insert: </dd>

 insert: <dt> 		 Test suite: insert: </dt>

 insert: <dd> 		 insert: http://www.w3.org/TR/2014/NOTE-rdf11-testcases-20140225/ insert:

 		 Previous version:

 		 delete: http://www.w3.org/TR/2003/PR-rdf-syntax-grammar-20031215/ delete: delete:
 insert: http://www.w3.org/TR/2014/PER-rdf-syntax-grammar-20140109/ insert:

 		 Editor: Editors: insert: </dt>

 insert: <dd inlist="" rel="bibo:editor" class="p-author h-card vcard"> 		 insert: insert: Fabien Gandon insert: , insert: INRIA insert: insert: insert: </dd>

 insert: <dd inlist="" rel="bibo:editor" class="p-author h-card vcard"> 		 insert: insert: Guus Schreiber insert: , insert: VU University Amsterdam insert: insert: insert: </dd>

 insert: <dt> 		 Previous Editors:

 		 delete: Dave Beckett delete: (University of Bristol) delete: </dd> delete: <dt> Series editor: delete: </dt> delete: <dd> delete: Brian McBride delete: (Hewlett Packard Labs)

 Please refer to the delete: check the insert: errata for any errors or issues reported since publication. insert: </p>

 insert: <p> This document is also available in this document, which non-normative format: insert: diff w.r.t. 2004 Recommendation insert: insert: </p>

 insert: <p> The English version of this specification is the only normative version. Non-normative insert: translations insert: may include some normative corrections. delete: </p> delete: <p> See also delete: translations delete: . be available.

 Copyright © 2004 Â© 2004-2014 delete: <acronym title="World Wide Web Consortium"> insert: <abbr title="World Wide Web Consortium"> W3C delete: </acronym> insert: </abbr> ® Â® (delete: <acronym title="Massachusetts Institute of Technology"> insert: <abbr title="Massachusetts Institute of Technology"> MIT delete: </acronym> insert: </abbr> , delete: delete: <acronym title="European Research Consortium for Informatics and Mathematics"> insert: insert: <abbr title="European Research Consortium for Informatics and Mathematics"> ERCIM delete: </acronym> insert: </abbr> , Keio insert: , insert: Beihang), All Rights Reserved. insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> liability , trademark , and document use and delete: software licensing delete: rules apply.

 delete: <hr title="Separator for header" /> insert: <hr />

 delete: <h2 class="nonum"> delete: insert: <section id="abstract" class="introductory" property="dcterms:abstract" datatype="" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_abstract"> Abstract delete:

 delete: <p> The Resource Description Framework (delete: <abbr title="Resource Description Framework"> RDF delete: </abbr>) is a general-purpose language for representing information in the Web. delete: </p> This document defines an delete: XML delete: syntax for RDF called RDF/XML in terms of delete: Namespaces in XML delete: , the delete: XML, the XML Information Set delete: and delete: and XML Base delete: . The delete: formal grammar delete: for the syntax is annotated with actions generating triples of the delete: RDF graph delete: as defined in delete: RDF Concepts and Abstract Syntax delete: . The triples are written using the delete: N-Triples delete: RDF graph serializing format which enables more precise recording of the mapping in a machine processable form. The mappings are recorded as tests cases, gathered and published in delete: RDF Test Cases delete: . delete: </p> delete: <div class="status"> delete: <h2 class="nonum"> delete: Base. insert: </p>

 insert: </section> insert: <section class="introductory" id="sotd" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_sotd"> Status of this This Document delete:

 delete: <p> This document has been reviewed by W3C Members and other interested parties, and it has been endorsed by the Director as a delete: W3C Recommendation delete: . W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web. delete: </p> delete: <p> This is one document in a delete: set of six delete: (delete: Primer delete: , delete: Concepts delete: , delete: Syntax delete: , delete: Semantics delete: , delete: Vocabulary delete: , and delete: Test Cases delete:) intended to jointly replace the original Resource Description Framework specifications, delete: RDF Model and Syntax (1999 Recommendation) delete: and delete: RDF Schema (2000 Candidate Recommendation) delete: . It has been developed by the delete: RDF Core Working Group delete: as part of the delete: W3C Semantic Web Activity delete: (delete: Activity Statement delete: , delete: Group Charter delete:) for publication on 10 February 2004. delete: </p> delete: <p> Changes to this document since the delete: <a
href="http://www.w3.org/TR/2003/PR-rdf-syntax-grammar-20031215/"
shape="rect"> Proposed Recommendation Working Draft delete: are detailed in the delete: change log delete: . delete: </p> delete: <p> The public is invited to send comments to delete: www-rdf-comments@w3.org delete: (delete: archive delete:) and to participate in general discussion of related technology on delete: <a
href="mailto:www-rdf-interest@w3.org"
shape="rect"> www-rdf-interest@w3.org delete: (delete: <a
href="http://lists.w3.org/Archives/Public/www-rdf-interest/"
shape="rect"> archive delete:). delete: </p> delete: <p> A list of delete: implementations delete: is available. delete: </p> delete: <p> The W3C maintains a list of delete: <a href="http://www.w3.org/2001/sw/RDFCore/ipr-statements"
rel="disclosure"> any patent disclosures related to this work delete: . delete: </p> This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> publications and the latest revision of this technical report can be found in the insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> technical reports index at http://www.w3.org/TR/.

 delete: </div> delete: <hr /> delete: <div class="toc"> delete: <h2 class="nonum"> delete: insert: <p> This document is an edited version of the 2004 RDF XML Syntax Specification Recommendation. The purpose of this revision is to make this document available as part of the RDF 1.1 document set. Changes are limited to revised references, terminology updates, and adaptations to the introduction. The technical content of the document is unchanged, except for the fact that the datatype XMLLiiteral is marked as non-normative in RDF 1.1. The (non-normative) algorithm for parsing XMLLiteral (insert: Sec. 7.2.17 insert:) has been updated to be in line with the current state of XML technology. Details of the changes are listed in the insert: Changes insert: section. Since the edits to this document do not invalidate previous implementations the Director decided no new implementation report was required. insert: </p>

 insert: <p> This document was published by the insert: RDF Working Group insert: as a Recommendation. If you wish to make comments regarding this document, please send them to insert: public-rdf-comments@w3.org insert: (insert: subscribe insert: , insert: archives insert:). All comments are welcome. insert: </p>

 insert: <p> This document has been reviewed by insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> Members, by software developers, and by other insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> groups and interested parties, and is endorsed by the Director as a insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> Recommendation. It is a stable document and may be used as reference material or cited from another document. insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> 's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web. insert: </p>

 insert: <p> This document was produced by a group operating under the insert: 5 February 2004 insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> Patent Policy insert: . insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> maintains a insert: public list of any patent disclosures insert: made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains insert: Essential Claim(s) insert: must disclose the information in accordance with insert: section 6 of the insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> Patent Policy insert: . insert: </p>

 insert: </section> insert: <section id="toc"> insert: <h2 class="introductory" aria-level="1" role="heading" id="h2_toc"> Table of Contents delete:

 delete: <p class="toc"> 1 delete: insert: <ul class="toc" role="directory" id="respecContents"> insert: <li class="tocline"> 		 insert: insert: 1. insert: Introduction delete:
 2 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 2. insert: An XML Syntax for RDF delete:
 2.1 delete: insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: 2.1 insert: Introduction delete:
 2.2 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.2 insert: Node Elements and Property Elements delete:
 2.3 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.3 insert: Multiple Property Elements delete:
 2.4 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.4 insert: Empty Property Elements delete:
 2.5 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.5 insert: Property Attributes delete:
 2.6 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.6 insert: Completing the Document: Document Element and XML Declaration delete:
 2.7 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.7 insert: Languages: xml:lang delete:
 2.8 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.8 insert: XML Literals: rdf:parseType="Literal" delete: </code> delete: delete:
 2.9 delete: rdf:parseType="Literal" insert: </code> insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.9 insert: Typed Literals: rdf:datatype delete:
 2.10 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.10 insert: Identifying Blank Nodes: rdf:nodeID delete:
 2.11 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.11 insert: Omitting Blank Nodes: rdf:parseType="Resource" delete: </code> delete: delete:
 2.12 delete: rdf:parseType="Resource" insert: </code> insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.12 insert: Omitting Nodes: Property Attributes on an empty Property Element delete:
 2.13 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.13 insert: Typed Node Elements delete:
 2.14 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.14 insert: Abbreviating URI References: URIs: rdf:ID and xml:base delete:
 2.15 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.15 insert: Container Membership Property Elements: rdf:li and rdf:_ n delete:
 2.16 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.16 insert: Collections: rdf:parseType="Collection" delete: </code> delete: delete:
 2.17 delete: rdf:parseType="Collection" insert: </code> insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.17 insert: Reifying Statements: rdf:ID delete:
 3 delete: insert:

 insert:

 insert:

 insert: <li class="tocline"> 		 insert: insert: 3. insert: Terminology delete:
 4 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 4. insert: RDF MIME Type, File Extension and Macintosh File Type delete:
 5 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 5. insert: Global Issues delete:
 5.1 delete: insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: 5.1 insert: The RDF Namespace and Vocabulary delete:
 5.2 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 5.2 insert: Identifiers delete:
 5.3 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 5.3 insert: Resolving URIs delete: delete:
 5.4 delete: IRIs insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 5.4 insert: Constraints delete:
 5.5 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 5.5 insert: Conformance delete:
 6 delete: insert:

 insert:

 insert:

 insert: <li class="tocline"> 		 insert: insert: 6. insert: Syntax Data Model delete:
 6.1 delete: insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: 6.1 insert: Events delete:
 6.2 delete: insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: 6.1.1 insert: Root Event insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 6.1.2 insert: Element Event insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 6.1.3 insert: End Element Event insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 6.1.4 insert: Attribute Event insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 6.1.5 insert: Text Event insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 6.1.6 insert: IRI Event insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 6.1.7 insert: Blank Node Identifier Event insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 6.1.8 insert: Plain Literal Event insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 6.1.9 insert: Typed Literal Event insert: insert:

 insert:

 insert:

 insert: <li class="tocline"> 		 insert: insert: 6.2 insert: Information Set Mapping delete:
 6.3 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 6.3 insert: Grammar Notation delete:
 7 delete: insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: 6.3.1 insert: Grammar General Notation insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 6.3.2 insert: Grammar Event Matching Notation insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 6.3.3 insert: Grammar Action Notation insert: insert:

 insert:

 insert:

 insert:

 insert:

 insert: <li class="tocline"> 		 insert: insert: 7. insert: RDF/XML Grammar delete:
 7.1 delete: insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: 7.1 insert: Grammar Summary delete: delete:
 7.2 delete: summary insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2 insert: Grammar Productions delete:
 7.3 delete: insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: 7.2.1 insert: Grammar start insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.2 insert: Production coreSyntaxTerms insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.3 insert: Production syntaxTerms insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.4 insert: Production oldTerms insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.5 insert: Production nodeElementURIs insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.6 insert: Production propertyElementURIs insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.7 insert: Production propertyAttributeURIs insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.8 insert: Production doc insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.9 insert: Production RDF insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.10 insert: Production nodeElementList insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.11 insert: Production nodeElement insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.12 insert: Production ws insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.13 insert: Production propertyEltList insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.14 insert: Production propertyElt insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.15 insert: Production resourcePropertyElt insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.16 insert: Production literalPropertyElt insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.17 insert: Production parseTypeLiteralPropertyElt insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.18 insert: Production parseTypeResourcePropertyElt insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.19 insert: Production parseTypeCollectionPropertyElt insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.20 insert: Production parseTypeOtherPropertyElt insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.21 insert: Production emptyPropertyElt insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.22 insert: Production idAttr insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.23 insert: Production nodeIdAttr insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.24 insert: Production aboutAttr insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.25 insert: Production propertyAttr insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.26 insert: Production resourceAttr insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.27 insert: Production datatypeAttr insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.28 insert: Production parseLiteral insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.29 insert: Production parseResource insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.30 insert: Production parseCollection insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.31 insert: Production parseOther insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.32 insert: Production IRI insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.33 insert: Production literal insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.2.34 insert: Production rdf-id insert: insert:

 insert:

 insert:

 insert: <li class="tocline"> 		 insert: insert: 7.3 insert: Reification Rules delete:
 7.4 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 7.4 insert: List Expansion Rules delete:
 8 delete: insert:

 insert:

 insert:

 insert: <li class="tocline"> 		 insert: insert: 8. insert: Serializing an RDF Graph to RDF/XML delete:
 9 delete: Using RDF/XML with HTML and XHTML delete: delete:
 10 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 9. insert: Using RDF/XML with SVG delete:
 11 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: A. insert: Acknowledgments delete:
 12 delete: References delete: delete: </p> delete: <h3> delete: Appendices delete: delete: </h3> delete: <p class="toc"> A delete: insert:

 insert: <li class="tocline"> 		 insert: insert: B. insert: Changes since 2004 Recommendation insert: insert:

 insert: <li class="tocline"> 		 insert: insert: C. insert: Syntax Schemas (Informative) delete:
 A.1 delete: RELAX NG insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: C.1 insert: RELAXÂ NG Compact Syntax Schema (Informative) delete:
 B delete: Revisions since Working Draft 10 October 2003 delete: (Informative) delete:
 delete: </p> delete: </div> delete: <hr /> delete: <h2> delete: 1 insert:

 insert:

 insert:

 insert: <li class="tocline"> 		 insert: insert: D. insert: References insert: insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: D.1 insert: Normative references insert: insert:

 insert: <li class="tocline"> 		 insert: insert: D.2 insert: Informative references insert: insert:

 insert:

 insert:

 insert:

 insert: </section> insert: <section id="section-Introduction" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_section-Introduction"> insert: 1. insert: Introduction delete: delete: delete:

 This document defines the delete: XML delete: delete: [XML] delete: [insert: <cite> insert: XML10 insert: insert: </cite>] syntax for RDF graphs which was originally defined in the delete: RDF Model & Syntax delete: delete: [RDF-MS] delete: W3C Recommendation. Subsequent implementations of this syntax and comparison of the resulting RDF graphs have shown that there was ambiguity — implementations generated different graphs and certain syntax forms were not widely implemented. graphs.

 This document revises the delete: original RDF/XML grammar delete: [insert: <cite> insert: RDFMS insert: insert: </cite>] in terms of delete: XML Information Set delete: delete: [INFOSET] delete: [insert: <cite> insert: XML-INFOSET insert: insert: </cite>] information items which moves away from the rather low-level details of XML, such as particular forms of empty elements. This allows the grammar to be more precisely recorded and the mapping from the XML syntax to the RDF Graph more clearly shown. The mapping to the RDF graph is done by emitting statements in the form defined N-Triples [insert: <cite> insert: N-TRIPLES insert: insert: </cite>] format. insert: </p>

 insert: <p> This document is part of the suite of RDF 1.1 documents. Other documents in the delete: N-Triples delete: section of delete: RDF Test Cases delete: delete: [RDF-TESTS] delete: which creates an RDF graph, that has semantics defined by delete: RDF Semantics delete: delete: [RDF-SEMANTICS] delete: . delete: </p> delete: <p> The complete specification of RDF consists of a number of documents: this suite are:

 		 delete: RDF Primer delete: delete: [RDF-PRIMER] delete: A document describing the basic concepts underlying RDF, as well as abstract syntax ("RDF Concepts and Abstract Syntax") [insert: <cite> insert: RDF11-CONCEPTS insert: insert: </cite>]

 		 delete: A document describing the formal model-theoretic semantics of RDF Concepts and Abstract Syntax delete: delete: [RDF-CONCEPTS] delete: ("RDF Semantics") [insert: <cite> insert: RDF11-MT insert: insert: </cite>]

 		 delete: RDF Semantics delete: delete: [RDF-SEMANTICS] delete: Specifications of concrete syntaxes for RDF: insert: insert: 		 Turtle [insert: <cite> insert: TURTLE insert: insert: </cite>] and TriG [insert: <cite> insert: TRIG insert: insert: </cite>]

 		 RDF/XML Syntax (this document) JSON-LD [insert: <cite> insert: JSON-LD insert: insert: </cite>] (JSON based)

 		 delete: RDF Vocabulary Description Language 1.0: RDFa [insert: <cite> insert: RDFA-PRIMER insert: insert: </cite>] (for HTML embedding) insert:

 insert: 		 N-Triples and N-Quads (line-based exchange formats) insert:

 insert:

 insert:

 insert: 		 A document describing RDF Schema delete: delete: [RDF-VOCABULARY] delete: delete: delete: delete: [insert: <cite> insert: RDF11-SCHEMA insert: insert: </cite>], which provides a data-modeling vocabulary for RDF Test Cases delete: delete: [RDF-TESTS] delete: data.

 For a longer introduction to the RDF/XML syntax with a historical perspective, see delete: RDF: "RDF: Understanding the Striped RDF/XML Syntax delete: delete: [STRIPEDRDF] delete: . delete: </p> delete: <h2> delete: 2 Syntax" [insert: <cite> insert: STRIPEDRDF insert: insert: </cite>]. insert: </p>

 insert: </section> insert: <section id="section-Syntax" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_section-Syntax"> insert: 2. insert: An XML Syntax for RDF delete:

 This section introduces the RDF/XML syntax, describes how it encodes RDF graphs and explains this with examples. If there is any conflict between this informal description and the formal description of the syntax and grammar in sections 6 Syntax Data Model and 7 RDF/XML Grammar , the latter two sections take precedence.

 delete: <h3> delete: insert: <section id="section-Syntax-intro" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-intro"> insert: 2.1 insert: Introduction delete:

 The delete: RDF Concepts and Abstract Syntax delete: delete: [RDF-CONCEPTS] delete: document [insert: <cite> insert: RDF11-CONCEPTS insert: insert: </cite>] defines the delete: RDF Graph data model delete: (Section 3.1) and the delete: and the RDF Graph abstract syntax delete: (Section 6). syntax. Along with the delete: RDF Semantics delete: delete: [RDF-SEMANTICS] delete: [insert: <cite> insert: RDF11-MT insert: insert: </cite>] this provides an abstract syntax with a formal semantics for it. The RDF graph has delete: insert: nodes delete: insert: and labeled directed arcs that link pairs of nodes and this is represented as a set of delete: RDF triples delete: where each triple contains a subject node , predicate and object node . Nodes are delete: RDF URI references delete: , delete: RDF literals delete: IRIs, literals, or are delete: blank nodes delete: . nodes. Blank nodes may be given a document-local, non- delete: RDF URI references delete: document-local identifier called a delete: blank node identifier delete: . identifier. Predicates are delete: RDF URI references delete: IRIs and can be interpreted as either a relationship between the two nodes or as defining an attribute value (object node) for some subject node.

 In order to encode the graph in XML, the nodes and predicates have to be represented in XML terms — â€” element names, attribute names, element contents and attribute values. RDF/XML uses XML QNames as defined in delete: Namespaces in XML delete: delete: [XML-NS] delete: [insert: <cite> insert: XML-NAMES insert: insert: </cite>] to represent delete: RDF URI references delete: . IRIs. All QNames have a namespace name which is a URI reference an IRI and a short local name . In addition, QNames can either have a short prefix or be declared with the default namespace declaration and have none (but still have a namespace name)

 The delete: RDF URI reference delete: IRI represented by a QName is determined by appending the local name part of the QName after the namespace name (URI reference) (IRI) part of the QName. This is used to shorten the delete: RDF URI references delete: IRI of all predicates and some nodes. delete: RDF URI references delete: IRIs identifying subject and object nodes can also be stored as XML attribute values. delete: RDF literals delete: , which can only be object nodes, become either XML element text content or XML attribute values.

 A graph can be considered a collection of paths of the form node, predicate arc, node, predicate arc, node, predicate arc, ... node which cover the entire graph. In RDF/XML these turn into sequences of elements inside elements which alternate between elements for nodes and predicate arcs. This has been called a series of node/arc stripes. The node at the start of the sequence turns into the outermost element, the next predicate arc turns into a child element, and so on. The stripes generally start at the top of an RDF/XML document and always begin with nodes.

 Several RDF/XML examples are given in the following sections building up to complete RDF/XML documents. Example 7 is the first complete RDF/XML document.

 delete: <h3> delete: insert: </section> insert: <section id="section-Syntax-node-property-elements" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-node-property-elements"> insert: 2.2 insert: Node Elements and Property Elements delete:

 delete: <div class="figure"> delete: delete:
 delete: Figure 1: insert: <figure id="figure1"> insert: [image: Graph for RDF/XML Example] insert: <figcaption> Fig. insert: 1 insert: insert: Graph for RDF/XML Example delete: (SVG version) delete: </div> insert: insert: </figcaption> insert: </figure> An RDF graph is given in delete: insert: Figure 1 where the nodes are represented as ovals and contain their delete: RDF URI references delete: IRIs where they have them, all the predicate arcs are labeled with delete: RDF URI references delete: and delete: plain literal delete: IRIs and string literals nodes have been written in rectangles.

 If we follow one node, predicate arc ... , node path through the graph shown in delete: insert: Figure 2 :

 delete: <div class="figure"> delete: delete:
 delete: Figure 2: insert: <figure id="figure2"> insert: [image: One Path Through the Graph] insert: <figcaption> Fig. insert: 2 insert: insert: One Path Through the Graph delete: (SVG version) delete: </div> insert: insert: </figcaption> insert: </figure> The left hand side of the delete: insert: Figure 2 graph corresponds to the node/predicate arc stripes:

 		 Node with delete: RDF URI reference delete: IRI http://www.w3.org/TR/rdf-syntax-grammar

 		 Predicate Arc labeled with delete: RDF URI reference delete: IRI http://example.org/terms/editor

 		 Node with no delete: RDF URI reference delete: IRI

 		 Predicate Arc labeled with delete: RDF URI reference delete: IRI http://example.org/terms/homePage

 		 Node with delete: RDF URI reference delete: IRI http://purl.org/net/dajobe/

 In RDF/XML, the sequence of 5 nodes and predicate arcs on the left hand side of delete: insert: Figure 2 corresponds to the usage of five XML elements of two types, for the graph nodes and predicate arcs. These are conventionally called node elements and property elements respectively. In the striping shown in Example 1 , rdf:Description is the node element (used three times for the three nodes) and ex:editor and ex:homePage are the two property elements.

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 1: 1 insert: insert: </div>
 insert: <pre id="example1" class="example"> insert: Striped RDF/XML (delete: nodes delete: and delete: (nodes and predicate arcs delete:) delete: arcs) insert: insert: <code> <rdf:Description> insert: </code> <ex:editor> insert: <code> <rdf:Description> insert: </code> <ex:homePage> insert: <code> <rdf:Description> insert: </code> insert: <code> </rdf:Description> insert: </code> </ex:homePage> insert: <code> </rdf:Description> insert: </code> </ex:editor> insert: <code> </rdf:Description> insert: </code> insert: </pre>

 delete: <div class="exampleInner"> delete: <div class="preExample"> delete: <code> delete: <rdf:Description> delete: delete:
 delete: <ex:editor> delete: delete:
 delete: <rdf:Description> delete: delete:
 delete: <ex:homePage> delete: delete:
 delete: <rdf:Description> delete: delete:
 delete: </rdf:Description> delete: delete:
 delete: </ex:homePage> delete: delete:
 delete: </rdf:Description> delete: delete:
 delete: </ex:editor> delete: delete:
 delete: </rdf:Description> delete: delete:
 delete: </code> delete: </div> delete: </div> delete: </div> The delete: insert: Figure 2 graph consists of some nodes that are delete: RDF URI references delete: IRIs (and others that are not) and this can be added to the RDF/XML using the rdf:about attribute on node elements to give the result in Example 2 :

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 2: 2 insert: insert: </div>
 insert: <pre id="example2" class="example"> insert: Node Elements with RDF URI references IRIs added delete: delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"> rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"> <ex:editor> <rdf:Description> <ex:homePage> <rdf:Description rdf:about="http://purl.org/net/dajobe/"> rdf:about="http://purl.org/net/dajobe/"> </rdf:Description> </ex:homePage> </rdf:Description> </ex:editor> </rdf:Description>

 delete: </div> Adding the other two paths through the delete: insert: Figure 1 graph to the RDF/XML in Example 2 gives the result in Example 3 (this example fails to show that the blank node is shared between the two paths, see 2.10):

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 3: 3 insert: insert: </div>
 insert: <pre id="example3" class="example"> insert: Complete description of all graph paths delete: delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"> rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"> <ex:editor> <rdf:Description> <ex:homePage> <rdf:Description rdf:about="http://purl.org/net/dajobe/"> rdf:about="http://purl.org/net/dajobe/"> </rdf:Description> </ex:homePage> </rdf:Description> </ex:editor> </rdf:Description> <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"> rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"> <ex:editor> <rdf:Description> <ex:fullName>Dave Beckett</ex:fullName> </rdf:Description> </ex:editor> </rdf:Description> <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"> <dc:title>RDF/XML Syntax Specification (Revised)</dc:title> rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"> <dc:title>RDF 1.1 XML Syntax</dc:title> </rdf:Description>

 delete: </div> delete: <h3> delete: insert: </section> insert: <section id="section-Syntax-multiple-property-elements" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-multiple-property-elements"> insert: 2.3 insert: Multiple Property Elements delete:

 There are several abbreviations that can be used to make common uses easier to write down. In particular, it is common that a subject node in the RDF graph has multiple outgoing predicate arcs. RDF/XML provides an abbreviation for the corresponding syntax when a node element about a resource has multiple property elements. This can be abbreviated by using multiple child property elements inside the node element describing the subject node.

 Taking Example 3 , there are two node elements that can take multiple property elements. The subject node with URI reference IRI http://www.w3.org/TR/rdf-syntax-grammar has property elements ex:editor and ex:title and the node element for the blank node can take ex:homePage and ex:fullName . This abbreviation gives the result shown in Example 4 (this example does show that there is a single blank node):

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 4: 4 insert: insert: </div>
 insert: <pre id="example4" class="example"> insert: Using multiple property elements on a node element delete: delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"> rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"> <ex:editor> <rdf:Description> <ex:homePage> <rdf:Description rdf:about="http://purl.org/net/dajobe/"> rdf:about="http://purl.org/net/dajobe/"> </rdf:Description> </ex:homePage> <ex:fullName>Dave Beckett</ex:fullName> </rdf:Description> </ex:editor> <dc:title>RDF/XML Syntax Specification (Revised)</dc:title> <dc:title>RDF 1.1 XML Syntax</dc:title> </rdf:Description>

 delete: </div> delete: <h3> delete: insert: </section> insert: <section id="section-Syntax-empty-property-elements" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-empty-property-elements"> insert: 2.4 insert: Empty Property Elements delete:

 When a predicate arc in an RDF graph points to an object node which has no further predicate arcs, which appears in RDF/XML as an empty node element <rdf:Description rdf:about="..."> rdf:about="..."> </rdf:Description> (or <rdf:Description rdf:about="..." rdf:about="..." />) this form can be shortened. This is done by using the delete: RDF URI reference delete: IRI of the object node as the value of an XML attribute rdf:resource on the containing property element and making the property element empty.

 In this example, the property element ex:homePage contains an empty node element with the delete: RDF URI reference delete: IRI http://purl.org/net/dajobe/ . This can be replaced with the empty property element form giving the result shown in Example 5 :

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 5: 5 insert: insert: </div>
 insert: <pre id="example5" class="example"> insert: Empty property elements delete: delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"> rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"> <ex:editor> <rdf:Description> <ex:homePage rdf:resource="http://purl.org/net/dajobe/"/> rdf:resource="http://purl.org/net/dajobe/"/> <ex:fullName>Dave Beckett</ex:fullName> </rdf:Description> </ex:editor> <dc:title>RDF/XML Syntax Specification (Revised)</dc:title> <dc:title>RDF 1.1 XML Syntax</dc:title> </rdf:Description>

 delete: </div> delete: <h3> delete: insert: </section> insert: <section id="section-Syntax-property-attributes" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-property-attributes"> insert: 2.5 insert: Property Attributes delete:

 When a property element's content is string literal, it may be possible to use it as an XML attribute on the containing node element. This can be done for multiple properties on the same node element only if the property element name is not repeated (required by XML — â€” attribute names are unique on an XML element) and any in-scope xml:lang on the property element's string literal (if any) are the same (see Section 2.7) This abbreviation is known as a Property Attribute and can be applied to any node element.

 This abbreviation can also be used when the property element is rdf:type and it has an rdf:resource attribute the value of which is interpreted as a delete: RDF URI reference delete: IRI object node.

 In Example 5 :, there are two property elements with string literal content, the dc:title and ex:fullName property elements. These can be replaced with property attributes giving the result shown in Example 6 :

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 6: 6 insert: insert: </div>
 insert: <pre id="example6" class="example"> insert: Replacing property elements with string literal content into property attributes delete: delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar" dc:title="RDF/XML Syntax Specification (Revised)"> rdf:about="http://www.w3.org/TR/rdf-syntax-grammar" dc:title="RDF 1.1 XML Syntax"> <ex:editor> <rdf:Description ex:fullName="Dave Beckett"> ex:fullName="Dave Beckett"> <ex:homePage rdf:resource="http://purl.org/net/dajobe/"/> rdf:resource="http://purl.org/net/dajobe/"/> </rdf:Description> </ex:editor> </rdf:Description>

 delete: </div> delete: <h3> delete: insert: </section> insert: <section id="section-Syntax-complete-document" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-complete-document"> insert: 2.6 insert: Completing the Document: Document Element and XML Declaration delete:

 To create a complete RDF/XML document, the serialization of the graph into XML is usually contained inside an rdf:RDF XML element which becomes the top-level XML document element. Conventionally the rdf:RDF element is also used to declare the XML namespaces that are used, although that is not required. When there is only one top-level node element inside rdf:RDF , the rdf:RDF can be omitted although any XML namespaces must still be declared.

 The XML specification also permits an XML declaration at the top of the document with the XML version and possibly the XML content encoding. This is optional but recommended.

 Completing the RDF/XML could be done for any of the correct complete graph examples from Example 4 onwards but taking the smallest Example 6 and adding the final components, gives a complete RDF/XML representation of the original delete: insert: Figure 1 graph in Example 7 :

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 7: 7 insert: insert: </div>
 insert: <pre id="example7" class="example"> insert: Complete RDF/XML description of Figure 1 graph delete: (delete: insert: example07.rdf , output delete: insert: example07.nt) delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <?xml version="1.0"?> version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:ex="http://example.org/stuff/1.0/"> xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:ex="http://example.org/stuff/1.0/"> <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar" dc:title="RDF/XML Syntax Specification (Revised)"> rdf:about="http://www.w3.org/TR/rdf-syntax-grammar" dc:title="RDF1.1 XML Syntax"> <ex:editor> <rdf:Description ex:fullName="Dave Beckett"> ex:fullName="Dave Beckett"> <ex:homePage rdf:resource="http://purl.org/net/dajobe/" rdf:resource="http://purl.org/net/dajobe/" /> </rdf:Description> </ex:editor> </rdf:Description> </rdf:RDF>

 delete: </div> It is possible to omit rdf:RDF in Example 7 above since there is only one rdf:Description inside rdf:RDF but this is not shown here.

 delete: <h3> delete: insert: </section> insert: <section id="section-Syntax-languages" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-languages"> insert: 2.7 insert: Languages: xml:lang delete:

 RDF/XML permits the use of the xml:lang attribute as defined by 2.12 Language Identification of delete: XML 1.0 delete: delete: [XML] delete: [insert: <cite> insert: XML10 insert: insert: </cite>] to allow the identification of content language. The xml:lang attribute can be used on any node element or property element to indicate that the included content is in the given language. Typed literals which includes XML literals are not affected by this attribute. The most specific in-scope language present (if any) is applied to property element string literal content or property attribute values. The xml:lang="" xml:lang="" form indicates the absence of a language identifier.

 Some examples of marking content languages for RDF properties are shown in Example 8 :

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 8: 8 insert: insert: </div>
 insert: <pre id="example8" class="example"> insert: Complete example of xml:lang delete: (delete: insert: example08.rdf , output delete: insert: example08.nt) delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <?xml version="1.0" encoding="utf-8"?> version="1.0" encoding="utf-8"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/"> xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/"> <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"> <dc:title>RDF/XML Syntax Specification (Revised)</dc:title> rdf:about="http://www.w3.org/TR/rdf-syntax-grammar"> <dc:title>RDF 1.1 XML Syntax</dc:title> <dc:title xml:lang="en">RDF/XML Syntax Specification (Revised)</dc:title> xml:lang="en">RDF 1.1 XML Syntax</dc:title> <dc:title xml:lang="en-US">RDF/XML Syntax Specification (Revised)</dc:title> xml:lang="en-US">RDF 1.1 XML Syntax</dc:title> </rdf:Description> <rdf:Description rdf:about="http://example.org/buecher/baum" xml:lang="de"> rdf:about="http://example.org/buecher/baum" xml:lang="de"> <dc:title>Der Baum</dc:title> <dc:description>Das Buch ist auÃŸergewÃ¶hnlich</dc:description> <dc:title xml:lang="en">The xml:lang="en">The Tree</dc:title> </rdf:Description> </rdf:RDF>

 delete: </div> delete: <h3> delete: insert: </section> insert: <section class="informative" id="section-Syntax-XML-literals" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-XML-literals"> insert: 2.8 insert: XML Literals: rdf:parseType="Literal" delete: </code> delete: rdf:parseType="Literal" insert: </code>

 insert: <p> insert: This section is non-normative. insert: insert: </p>

 RDF allows delete: XML literals delete: (delete: [RDF-CONCEPTS] delete: Section 5, delete: <cite> XML Content within an RDF graph delete: </cite>) [RDF11-CONCEPTS] to be given as the object node of a predicate. These are written in RDF/XML as content of a property element (not a property attribute) and indicated using the rdf:parseType="Literal" rdf:parseType="Literal" attribute on the containing property element.

 An example of writing an XML literal is given in Example 9 where there is a single RDF triple with the subject node delete: RDF URI reference delete: IRI http://example.org/item01 , the predicate delete: RDF URI reference delete: IRI http://example.org/stuff/1.0/prop (from ex:prop) and the object node with XML literal content beginning a:Box .

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 9: 9 insert: insert: </div>
 insert: <pre id="example9" class="example"> insert: Complete example of rdf:parseType="Literal" delete: </code> delete: rdf:parseType="Literal" insert: </code> (delete: insert: example09.rdf , output delete: insert: example09.nt) delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <?xml version="1.0"?> version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:ex="http://example.org/stuff/1.0/"> xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:ex="http://example.org/stuff/1.0/"> <rdf:Description rdf:about="http://example.org/item01"> rdf:about="http://example.org/item01"> <ex:prop rdf:parseType="Literal" xmlns:a="http://example.org/a#"><a:Box required="true"> rdf:parseType="Literal" xmlns:a="http://example.org/a#"> <a:Box required="true"> <a:widget size="10" size="10" /> <a:grommit id="23" /></a:Box> id="23" /> </a:Box> </ex:prop> </rdf:Description> </rdf:RDF>

 delete: </div> delete: <h3> delete: insert: </section> insert: <section id="section-Syntax-datatyped-literals" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-datatyped-literals"> insert: 2.9 insert: Typed Literals: rdf:datatype delete:

 RDF allows delete: typed literals delete: to be given as the object node of a predicate. Typed literals consist of a literal string and a datatype delete: RDF URI reference delete: . IRI. These are written in RDF/XML using the same syntax for literal string nodes in the property element form (not property attribute) but with an additional rdf:datatype=" rdf:datatype=" datatypeURI " " attribute on the property element. Any delete: RDF URI reference delete: IRI can be used in the attribute.

 An example of an RDF delete: typed literal delete: is given in Example 10 where there is a single RDF triple with the subject node delete: RDF URI reference delete: IRI http://example.org/item01 , the predicate delete: RDF URI reference delete: IRI http://example.org/stuff/1.0/size (from ex:size) and the object node with the delete: typed literal delete: ("123", ("123", http://www.w3.org/2001/XMLSchema#int) to be interpreted as an delete: W3C XML Schema delete: delete: [XML-SCHEMA2] delete: [insert: <cite> insert: XMLSCHEMA-2 insert: insert: </cite>] datatype int. delete: </p> delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <code> int insert: </code> . insert: </p>

 insert: <div class="example"> insert: <div class="example-title"> insert: Example 10: 10 insert: insert: </div>
 insert: <pre id="example10" class="example"> insert: Complete example of rdf:datatype delete: (delete: insert: example10.rdf , output delete: insert: example10.nt) delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <?xml version="1.0"?> version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:ex="http://example.org/stuff/1.0/"> xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:ex="http://example.org/stuff/1.0/"> <rdf:Description rdf:about="http://example.org/item01"> rdf:about="http://example.org/item01"> <ex:size rdf:datatype="http://www.w3.org/2001/XMLSchema#int">123</ex:size> rdf:datatype="http://www.w3.org/2001/XMLSchema#int">123</ex:size> </rdf:Description> </rdf:RDF>

 delete: </div> delete: <h3> delete: insert: </section> insert: <section id="section-Syntax-blank-nodes" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-blank-nodes"> insert: 2.10 insert: Identifying Blank Nodes: rdf:nodeID delete:

 delete: Blank nodes delete: in the RDF graph are distinct but have no delete: RDF URI reference delete: IRI identifier. It is sometimes required that the same graph delete: blank node delete: is referred to in the RDF/XML in multiple places, such as at the subject and object of several RDF triples. In this case, a delete: delete: blank node identifier delete: delete: can be given to the delete: blank node delete: for identifying it in the document. Blank node identifiers in RDF/XML are scoped to the containing XML Information Set document information item . A delete: blank node identifier delete: is used on a node element to replace rdf:about=" delete: </code> delete: RDF URI reference delete: delete: <code> " rdf:about=" insert: </code> insert: IRI insert: insert: <code> " or on a property element to replace rdf:resource=" delete: </code> delete: RDF URI reference delete: delete: <code> " rdf:resource=" insert: </code> insert: IRI insert: insert: <code> " with rdf:nodeID=" delete: </code> delete: delete: rdf:nodeID=" insert: </code> insert: blank node identifier delete: delete: delete: <code> " insert: insert: <code> " in both cases.

 Taking Example 7 and explicitly giving a delete: blank node identifier delete: of abc to the blank node in it gives the result shown in Example 11 . The second rdf:Description property element is about the blank node.

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 11: 11 insert: insert: </div>
 insert: <pre id="example11" class="example"> insert: Complete RDF/XML description of graph using rdf:nodeID identifying the blank node delete: (delete: insert: example11.rdf , output delete: insert: example11.nt) delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <?xml version="1.0"?> version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:ex="http://example.org/stuff/1.0/"> xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:ex="http://example.org/stuff/1.0/"> <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar" dc:title="RDF/XML Syntax Specification (Revised)"> rdf:about="http://www.w3.org/TR/rdf-syntax-grammar" dc:title="RDF 1.1 XML Syntax"> <ex:editor rdf:nodeID="abc"/> rdf:nodeID="abc"/> </rdf:Description> <rdf:Description rdf:nodeID="abc" ex:fullName="Dave Beckett"> rdf:nodeID="abc" ex:fullName="Dave Beckett"> <ex:homePage rdf:resource="http://purl.org/net/dajobe/"/> rdf:resource="http://purl.org/net/dajobe/"/> </rdf:Description> </rdf:RDF>

 delete: </div> delete: <h3> delete: insert: </section> insert: <section id="section-Syntax-parsetype-resource" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-parsetype-resource"> insert: 2.11 insert: Omitting Blank Nodes: rdf:parseType="Resource" delete: </code> delete: rdf:parseType="Resource" insert: </code>

 delete: Blank nodes delete: (not delete: RDF URI reference delete: IRI nodes) in RDF graphs can be written in a form that allows the <rdf:Description> </rdf:Description> pair to be omitted. The omission is done by putting an rdf:parseType="Resource" rdf:parseType="Resource" attribute on the containing property element that turns the property element into a property-and-node element, which can itself have both property elements and property attributes. Property attributes and the rdf:nodeID attribute are not permitted on property-and-node elements.

 Taking the earlier Example 7 , the contents of the ex:editor property element could be alternatively done in this fashion to give the form shown in Example 12 :

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 12: 12 insert: insert: </div>
 insert: <pre id="example12" class="example"> insert: Complete example using rdf:parseType="Resource" delete: </code> delete: rdf:parseType="Resource" insert: </code> (delete: insert: example12.rdf output delete: , output: insert: example12.nt) delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <?xml version="1.0"?> version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:ex="http://example.org/stuff/1.0/"> xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:ex="http://example.org/stuff/1.0/"> <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar" dc:title="RDF/XML Syntax Specification (Revised)"> rdf:about="http://www.w3.org/TR/rdf-syntax-grammar" dc:title="RDF 1.1 XML Syntax"> <ex:editor rdf:parseType="Resource"> rdf:parseType="Resource"> <ex:fullName>Dave Beckett</ex:fullName> <ex:homePage rdf:resource="http://purl.org/net/dajobe/"/> rdf:resource="http://purl.org/net/dajobe/"/> </ex:editor> </rdf:Description> </rdf:RDF>

 delete: </div> delete: <h3> delete: insert: </section> insert: <section id="section-Syntax-property-attributes-on-property-element" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-property-attributes-on-property-element"> insert: 2.12 insert: Omitting Nodes: Property Attributes on an empty Property Element delete:

 If all of the property elements on a blank node element have string literal values with the same in-scope xml:lang value (if present) and each of these property elements appears at most once and there is at most one rdf:type property element with a delete: RDF URI reference delete: IRI object node, these can be abbreviated by moving them to be property attributes on the containing property element which is made an empty element.

 Taking the earlier Example 5 , the ex:editor property element contains a blank node element with two property elements ex:fullname and ex:homePage . ex:homePage is not suitable here since it does not have a string literal value, so it is being ignored for the purposes of this example. The abbreviated form removes the ex:fullName property element and adds a new property attribute ex:fullName with the string literal value of the deleted property element to the ex:editor property element. The blank node element becomes implicit in the now empty ex:editor property element. The result is shown in Example 13 .

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 13: 13 insert: insert: </div>
 insert: <pre id="example13" class="example"> insert: Complete example of property attributes on an empty property element delete: (delete: insert: example13.rdf , output delete: insert: example13.nt) delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <?xml version="1.0"?> version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:ex="http://example.org/stuff/1.0/"> xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:ex="http://example.org/stuff/1.0/"> <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar" dc:title="RDF/XML Syntax Specification (Revised)"> rdf:about="http://www.w3.org/TR/rdf-syntax-grammar" dc:title="RDF 1.1 XML Syntax"> <ex:editor ex:fullName="Dave Beckett" ex:fullName="Dave Beckett" /> <!-- Note the ex:homePage property has been ignored for this example --> </rdf:Description> </rdf:RDF>

 delete: </div> delete: <h3> delete: insert: </section> insert: <section id="section-Syntax-typed-nodes" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-typed-nodes"> insert: 2.13 insert: Typed Node Elements delete:

 It is common for RDF graphs to have rdf:type predicates from subject nodes. These are conventionally called typed nodes in the graph, or typed node elements in the RDF/XML. RDF/XML allows this triple to be expressed more concisely. by replacing the rdf:Description node element name with the namespaced-element corresponding to the delete: RDF URI reference delete: IRI of the value of the type relationship. There may, of course, be multiple rdf:type predicates but only one can be used in this way, the others must remain as property elements or property attributes.

 The typed node elements are commonly used in RDF/XML with the built-in classes in the RDF vocabulary : rdf:Seq , rdf:Bag , rdf:Alt , rdf:Statement , rdf:Property and rdf:List .

 For example, the RDF/XML in Example 14 could be written as shown in Example 15 .

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 14: 14 insert: insert: </div>
 insert: <pre id="example14" class="example"> insert: Complete example with rdf:type delete: (delete: insert: example14.rdf , output delete: insert: example14.nt) delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <?xml version="1.0"?> version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:ex="http://example.org/stuff/1.0/"> xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:ex="http://example.org/stuff/1.0/"> <rdf:Description rdf:about="http://example.org/thing"> rdf:about="http://example.org/thing"> <rdf:type rdf:resource="http://example.org/stuff/1.0/Document"/> rdf:resource="http://example.org/stuff/1.0/Document"/> <dc:title>A marvelous thing</dc:title> </rdf:Description> </rdf:RDF>

 insert: <div class="example"> insert: <div class="example-title"> insert: Example 15 insert:
 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: Example 15: insert: <pre id="example15" class="example"> insert: Complete example using a typed node element to replace an rdf:type delete: (delete: insert: example15.rdf , output delete: insert: example15.nt) delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <?xml version="1.0"?> version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:ex="http://example.org/stuff/1.0/"> xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:ex="http://example.org/stuff/1.0/"> <ex:Document rdf:about="http://example.org/thing"> rdf:about="http://example.org/thing"> <dc:title>A marvelous thing</dc:title> </ex:Document> </rdf:RDF>

 delete: </div> delete: <h3> delete: insert: </section> insert: <section id="section-Syntax-ID-xml-base" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-ID-xml-base"> insert: 2.14 insert: Abbreviating URIs: rdf:ID and xml:base delete:

 RDF/XML allows further abbreviating delete: RDF URI references delete: IRIs in XML attributes in two ways. The XML Infoset provides a base URI attribute xml:base that sets the base URI for resolving relative delete: RDF URI references delete: , IRIs, otherwise the base URI is that of the document. The base URI applies to all RDF/XML attributes that deal with delete: RDF URI references delete: IRIs which are rdf:about , rdf:resource , rdf:ID and rdf:datatype .

 The rdf:ID attribute on a node element (not property element, that has another meaning) can be used instead of rdf:about and gives a relative delete: RDF URI reference delete: IRI equivalent to # concatenated with the rdf:ID attribute value. So for example if rdf:ID="name" rdf:ID="name" , that would be equivalent to rdf:about="#name" rdf:about="#name" . rdf:ID provides an additional check since the same name can only appear once in the scope of an xml:base value (or document, if none is given), so is useful for defining a set of distinct, related terms relative to the same delete: RDF URI reference delete: . IRI.

 Both forms require a base URI to be known, either from an in-scope xml:base or from the URI of the RDF/XML document.

 Example 16 shows abbreviating the node delete: RDF URI reference delete: IRI of http://example.org/here/#snack using an xml:base of http://example.org/here/ and an rdf:ID on the rdf:Description node element. The object node of the ex:prop predicate is an absolute delete: RDF URI reference delete: IRI resolved from the rdf:resource XML attribute value using the in-scope base URI to give the delete: RDF URI reference delete: IRI http://example.org/here/fruit/apple .

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 16: 16 insert: insert: </div>
 insert: <pre id="example16" class="example"> insert: Complete example using rdf:ID and xml:base for shortening URIs delete: (delete: insert: example16.rdf , output delete: insert: example16.nt) delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <?xml version="1.0"?> version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:ex="http://example.org/stuff/1.0/" xml:base="http://example.org/here/"> xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:ex="http://example.org/stuff/1.0/" xml:base="http://example.org/here/"> <rdf:Description rdf:ID="snack"> rdf:ID="snack"> <ex:prop rdf:resource="fruit/apple"/> rdf:resource="fruit/apple"/> </rdf:Description> </rdf:RDF>

 delete: </div> delete: <h3> delete: insert: </section> insert: <section id="section-Syntax-list-elements" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-list-elements"> insert: 2.15 insert: Container Membership Property Elements: rdf:li and rdf:_ n delete:

 RDF has a set of container membership properties and corresponding property elements that are mostly used with instances of the rdf:Seq , rdf:Bag and rdf:Alt classes which may be written as typed node elements. The list properties are rdf:_1 , rdf:_2 etc. and can be written as property elements or property attributes as shown in Example 17 . There is an rdf:li special property element that is equivalent to rdf:_1 , rdf:_2 in order, explained in detail in section 7.4 . The mapping to the container membership properties is always done in the order that the rdf:li special property elements appear in XML — â€” the document order is significant. The equivalent RDF/XML to Example 17 written in this form is shown in Example 18 .

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 17: 17 insert: insert: </div>
 insert: <pre id="example17" class="example"> insert: Complex example using RDF list properties delete: (delete: insert: example17.rdf , output delete: insert: example17.nt) delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <?xml version="1.0"?> version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Seq rdf:about="http://example.org/favourite-fruit"> rdf:about="http://example.org/favourite-fruit"> <rdf:_1 rdf:resource="http://example.org/banana"/> rdf:resource="http://example.org/banana"/> <rdf:_2 rdf:resource="http://example.org/apple"/> rdf:resource="http://example.org/apple"/> <rdf:_3 rdf:resource="http://example.org/pear"/> rdf:resource="http://example.org/pear"/> </rdf:Seq> </rdf:RDF>

 insert: <div class="example"> insert: <div class="example-title"> insert: Example 18 insert:
 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: Example 18: insert: <pre id="example18" class="example"> insert: Complete example using rdf:li property element for list properties delete: (delete: insert: example18.rdf , output delete: insert: example18.nt) delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <?xml version="1.0"?> version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Seq rdf:about="http://example.org/favourite-fruit"> rdf:about="http://example.org/favourite-fruit"> <rdf:li rdf:resource="http://example.org/banana"/> rdf:resource="http://example.org/banana"/> <rdf:li rdf:resource="http://example.org/apple"/> rdf:resource="http://example.org/apple"/> <rdf:li rdf:resource="http://example.org/pear"/> rdf:resource="http://example.org/pear"/> </rdf:Seq> </rdf:RDF>

 delete: </div> delete: <h3> delete: insert: </section> insert: <section id="section-Syntax-parsetype-Collection" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-parsetype-Collection"> insert: 2.16 insert: Collections: rdf:parseType="Collection" delete: </code> delete: rdf:parseType="Collection" insert: </code>

 RDF/XML allows an rdf:parseType="Collection" rdf:parseType="Collection" attribute on a property element to let it contain multiple node elements. These contained node elements give the set of subject nodes of the collection. This syntax form corresponds to a set of triples connecting the collection of subject nodes, the exact triples generated are described in detail in Section 7.2.19 Production parseTypeCollectionPropertyElt . The collection construction is always done in the order that the node elements appear in the XML document. Whether the order of the collection of nodes is significant is an application issue and not defined here.

 Example 19 shows a collection of three nodes elements at the end of the ex:hasFruit property element using this form.

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 19: 19 insert: insert: </div>
 insert: <pre id="example19" class="example"> insert: Complete example of a RDF collection of nodes using rdf:parseType="Collection" delete: </code> delete: rdf:parseType="Collection" insert: </code> (delete: insert: example19.rdf , output delete: insert: example19.nt) delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <?xml version="1.0"?> version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:ex="http://example.org/stuff/1.0/"> xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:ex="http://example.org/stuff/1.0/"> <rdf:Description rdf:about="http://example.org/basket"> rdf:about="http://example.org/basket"> <ex:hasFruit rdf:parseType="Collection"> rdf:parseType="Collection"> <rdf:Description rdf:about="http://example.org/banana"/> rdf:about="http://example.org/banana"/> <rdf:Description rdf:about="http://example.org/apple"/> rdf:about="http://example.org/apple"/> <rdf:Description rdf:about="http://example.org/pear"/> rdf:about="http://example.org/pear"/> </ex:hasFruit> </rdf:Description> </rdf:RDF>

 delete: </div> delete: <h3> delete: insert: </section> insert: <section id="section-Syntax-reifying" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Syntax-reifying"> insert: 2.17 insert: Reifying Statements: rdf:ID delete:

 The rdf:ID attribute can be used on a property element to reify the triple that it generates (See section 7.3 Reification Rules for the full details). The identifier for the triple should be constructed as a delete: RDF URI reference delete: IRI made from the relative URI reference IRI # concatenated with the rdf:ID attribute value, resolved against the in-scope base URI. So for example if rdf:ID="triple" rdf:ID="triple" , that would be equivalent to the delete: RDF URI reference delete: IRI formed from relative URI reference IRI #triple against the base URI. Each (rdf:ID attribute value, base URI) pair has to be unique in an RDF/XML document, see constraint-id .

 Example 20 shows a rdf:ID being used to reify a triple made from the ex:prop property element giving the reified triple the delete: RDF URI reference delete: IRI http://example.org/triples/#triple1 .

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: insert: <div class="example"> insert: <div class="example-title"> insert: Example 20: 20 insert: insert: </div>
 insert: <pre id="example20" class="example"> insert: Complete example of rdf:ID reifying a property element delete: (delete: insert: example20.rdf , output delete: insert: example20.nt) delete: </div> delete: <div class="exampleInner"> delete: <pre> insert: <?xml version="1.0"?> version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:ex="http://example.org/stuff/1.0/" xml:base="http://example.org/triples/"> xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:ex="http://example.org/stuff/1.0/" xml:base="http://example.org/triples/"> <rdf:Description rdf:about="http://example.org/"> rdf:about="http://example.org/"> <ex:prop rdf:ID="triple1">blah</ex:prop> rdf:ID="triple1">blah</ex:prop> </rdf:Description> </rdf:RDF>

 delete: </div> delete: <h2> delete: 3 insert: </section> insert: </section> insert: <section id="section-Terminology" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_section-Terminology"> insert: 3. insert: Terminology delete:

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" " insert: <em class="rfc2119" title="MUST"> MUST insert: ", " insert: <em class="rfc2119" title="MUST NOT"> MUST NOT insert: ", " insert: <em class="rfc2119" title="REQUIRED"> REQUIRED insert: ", " insert: <em class="rfc2119" title="SHALL"> SHALL insert: ", " insert: <em class="rfc2119" title="SHALL
 NOT"> SHALL NOT insert: ", " insert: <em class="rfc2119" title="SHOULD"> SHOULD insert: ", " insert: <em class="rfc2119" title="SHOULD NOT"> SHOULD NOT insert: ", " insert: <em class="rfc2119" title="RECOMMENDED"> RECOMMENDED insert: ", " insert: <em class="rfc2119" title="MAY"> MAY insert: ", and " insert: <em class="rfc2119" title="OPTIONAL"> OPTIONAL insert: " in this document are to be interpreted as described in delete: RFC 2119 delete: delete: [KEYWORDS] delete: . [insert: <cite> insert: RFC2119 insert: insert: </cite>].

 All use of string without further qualification refers to a Unicode delete: [UNICODE] delete: [insert: <cite> insert: UNICODE insert: insert: </cite>] character string; a sequence of characters represented by a code point in Unicode. (Such as defined in delete: [CHARMOD] delete: in section delete: 3.4 Strings delete:). delete: </p> delete: <h2> delete: 4 insert: </p>

 insert: </section> insert: <section id="section-MIME-Type" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_section-MIME-Type"> insert: 4. insert: RDF MIME Type, File Extension and Macintosh File Type delete:

 The Internet media type / MIME type for RDF/XML is " application/rdf+xml " — see delete: â€” RFC 3023 delete: delete: [RFC-3023] delete: [insert: <cite> insert: RFC3023 insert: insert: </cite>], section 8.18.

 delete: <p> insert: <div class="note-title" aria-level="2" role="heading" id="h_note_1"> insert: Note insert: insert: </div>
 insert: <p class=""> Registration Note (Informative): For the state of the MIME type registration, consult delete: IANA MIME Media Types delete: delete: [IANA-MEDIA-TYPES] delete: [insert: <cite> insert: IANA-MEDIA-TYPES insert: insert: </cite>]

 It is recommended that RDF/XML files have the extension ".rdf" ".rdf" (all lowercase) on all platforms.

 It is recommended that RDF/XML files stored on Macintosh HFS file systems be given a file type of "rdf " "rdfÂ " (all lowercase, with a space character as the fourth letter).

 delete: <h2> delete: 5 insert: </section> insert: <section id="section-Global" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_section-Global"> insert: 5. insert: Global Issues delete:

 delete: <h3> delete: insert: <section id="section-Namespace" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Namespace"> insert: 5.1 insert: The RDF Namespace and Vocabulary delete:

 delete: <div class="note"> delete: <p> delete: Note (Informative): delete: insert: <p> The names delete: <code> aboutEach delete: </code> and delete: <code> aboutEachPrefix delete: </code> were removed from the language and the RDF vocabulary by the RDF Core Working Group. See the resolution of issues delete: rdfms-abouteach delete: and delete: rdfms-abouteachprefix delete: for further information. delete: </p> delete: </div> delete: <div class="note"> delete: <p> delete: Note (Informative): delete: The names delete: <code> List delete: </code> , delete: <code> first delete: </code> , delete: <code> rest delete: </code> and delete: <code> nil delete: </code> were added for issue delete: rdfms-seq-representation delete: . The names delete: <code> XMLLiteral delete: </code> and delete: <code> datatype delete: </code> were added to support RDF datatyping. The name delete: <code> nodeID delete: </code> was added for issue delete: rdfms-syntax-incomplete delete: . See the delete: RDF Core Issues List delete: for further information. delete: </p> delete: </div> delete: <p> The delete: delete: insert: <dfn id="rdf-ns-uri"> RDF namespace URI reference delete: delete: IRI insert: </dfn> (or namespace name) is http://www.w3.org/1999/02/22-rdf-syntax-ns# and is typically used in XML with the prefix rdf although other prefix strings may be used. The delete: delete: insert: <dfn id="rdf-vocabulary"> RDF Vocabulary delete: delete: insert: </dfn> is identified by this namespace name and consists of the following names only:

 		 Syntax names — â€” not concepts

 		 RDF Description ID about parseType resource li nodeID datatype

 		 Class names

 		 Seq Bag Alt Statement Property XMLLiteral List

 		 Property names

 		 subject predicate object type value first rest _ n
 where n is a decimal integer greater than zero with no leading zeros.

 		 Resource names

 		 nil

 Any other names are not defined and insert: <em class="rfc2119" title="SHOULD"> SHOULD insert: generate a warning when encountered, but should otherwise behave normally.

 Within RDF/XML documents it is not permitted to use XML namespaces whose namespace name is the delete: insert: Â· RDF namespace URI reference IRI Â· concatenated with additional characters.

 Throughout this document the terminology rdf: name will be used to indicate name is from the RDF vocabulary and it has a delete: RDF URI reference delete: IRI of the concatenation of the delete: insert: Â· RDF namespace URI reference IRI Â· and name . For example, rdf:type has the delete: RDF URI reference delete: IRI http://www.w3.org/1999/02/22-rdf-syntax-ns#type

 delete: <h3> delete: insert: </section> insert: <section id="section-Identifiers" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Identifiers"> insert: 5.2 insert: Identifiers delete:

 The delete: RDF Graph delete: (delete: RDF Concepts and Abstract Syntax delete: Section 3) document [insert: <cite> insert: RDF11-CONCEPTS insert: insert: </cite>] defines the three types of nodes and one type of RDF data that can act as node and/or predicate:

 		 delete: RDF URI reference delete: nodes and predicates IRI

 		 delete: RDF URI references delete: (delete: RDF Concepts and Abstract Syntax delete: Section 3.1) IRIs can act as node (both subject and object) and as predicate. insert: </p>

 insert: <p> insert: IRIs insert: can be either:

 		 given as XML attribute values interpreted as relative URI references IRIs that are resolved against the in-scope base URI as described in section 5.3 to give absolute delete: RDF URI references delete: IRIs

 		 transformed from XML namespace-qualified element and attribute names (QNames)

 		 transformed from rdf:ID attribute values.

 Within RDF/XML, XML QNames are transformed into delete: RDF URI references delete: IRIs by appending the XML local name to the namespace name (URI reference). (IRI). For example, if the XML namespace prefix foo has namespace name (URI reference) (IRI) http://example.org/somewhere/ then the QName foo:bar would correspond to the RDF URI reference IRI http://example.org/somewhere/bar . Note that this restricts which delete: RDF URI references delete: IRIs can be made and the same URI IRI can be given in multiple ways.

 The rdf:ID values are transformed into delete: RDF URI references delete: IRIs by appending the attribute value to the result of appending "#" "#" to the in-scope base URI which is defined in Section 5.3 Resolving URIs IRIs

 		 Literal nodes (always object nodes)

 		 delete: RDF literals delete: (delete: RDF Concepts and Abstract Syntax delete: 6.5) are either delete: plain literals delete: (ibid), Literals can only act as object nodes. insert: </p>

 insert: <p> insert: Literals insert: always have a datatype. Language-tagged strings get the datatype insert: <code> rdf:langString insert: </code> . When there is no language tag or delete: typed literals delete: (ibid). The latter includes delete: XML literals delete: (ibid section 5, delete: <cite> XML Content within an RDF graph delete: </cite>). datatype specified the literal is assumed to have the datatype insert: <code> xsd:string insert: </code> .

 		 Blank Node Identifiers

 		 delete: Blank nodes can act as subject node and as object node. insert: </p>

 insert: <p> insert: Blank nodes have distinct identity in the RDF graph. When the graph is written in a syntax such as RDF/XML, these blank nodes may need graph-local identifiers and a syntax in order to preserve this distinction. These local identifiers are called delete: blank node identifiers delete: and are used in RDF/XML as values of the rdf:nodeID attribute with the syntax given in Production nodeIdAttr . Blank node identifiers in RDF/XML are scoped to the XML Information Set document information item .

 If no blank node identifier is given explicitly as an rdf:nodeID attribute value then one will need to be generated (using generated-blank-node-id, see section 6.3.3). Such generated blank node identifiers must not clash with any blank node identifiers derived from rdf:nodeID attribute values. This can be implemented by any method that preserves the distinct identity of all the blank nodes in the graph, that is, the same blank node identifier is not given for different blank nodes. One possible method would be to add a constant prefix to all the rdf:nodeID attribute values and ensure no generated blank node identifiers ever used that prefix. Another would be to map all rdf:nodeID attribute values to new generated blank node identifiers and perform that mapping on all such values in the RDF/XML document.

 delete: <h3> delete: insert: </section> insert: <section id="section-baseURIs" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-baseURIs"> insert: 5.3 insert: Resolving URIs delete: IRIs

 RDF/XML supports delete: XML Base delete: delete: [XML-BASE] delete: [insert: <cite> insert: XMLBASE insert: insert: </cite>] which defines a delete: insert: Â· base-uri Â· accessor for each Â· root event Â· and Â· element event Â· . Relative URI references IRIs are resolved into delete: RDF URI references delete: IRIs according to the algorithm specified in delete: XML Base delete: delete: [XML-BASE] delete: [insert: <cite> insert: XMLBASE insert: insert: </cite>] (and RFC 2396). These specifications do not specify an algorithm for resolving a fragment identifier alone, such as #foo , or the empty string "" "" into an delete: RDF URI reference delete: . IRI. In RDF/XML, a fragment identifier is transformed into a delete: RDF URI reference delete: an IRI by appending the fragment identifier to the in-scope base URI. The empty string is transformed into an delete: RDF URI reference delete: IRI by substituting the in-scope base URI.

 delete: <p> insert: <div class="note-title" aria-level="3" role="heading" id="h_note_2"> insert: Note insert: insert: </div>
 insert: <p class=""> insert: Test: insert: indicated by: insert:

 insert: test001.rdf insert: and insert: test001.nt insert: insert:

 insert: test004.rdf insert: and insert: test004.nt insert: insert:

 insert: test008.rdf insert: and insert: test008.nt insert: insert:

 insert: test013.rdf insert: and insert: test013.nt insert: insert:

 insert: test016.rdf insert: and insert: test016.nt insert: insert: </p>

 insert: </div>
 insert: <p> An empty same document reference "" resolves against the URI part of the base URI; any fragment part is ignored. See Uniform Resource Identifiers (URI) [insert: <cite> insert: RFC3986 insert: insert: </cite>]. insert: </p>

 insert: <div class="note"> insert: <div class="note-title" aria-level="3" role="heading" id="h_note_3"> insert: Note insert: insert: </div>
 insert: <p class=""> Test: Indicated by delete: test001.rdf delete: and delete: test001.nt insert: test013.rdf insert: and insert: test013.nt

 delete: <p> delete: Test: delete: Indicated by delete: test004.rdf delete: and delete: test004.nt delete: delete: </p> insert: <div class="note-title" aria-level="3" role="heading" id="h_note_4"> insert: Note insert:
 delete: <div class="note"> delete: <p> delete: Test: delete: Indicated by delete: test008.rdf delete: and delete: test008.nt delete: delete: </p> delete: </div> delete: <div class="note"> delete: <p> delete: Test: delete: Indicated by delete: test013.rdf delete: and delete: test013.nt delete: delete: </p> delete: </div> delete: <div class="note"> delete: <p> delete: Test: delete: Indicated by delete: test016.rdf delete: and delete: test016.nt delete: delete: </p> delete: </div> delete: <p> An empty same document reference "" resolves against the URI part of the base URI; any fragment part is ignored. See delete: Uniform Resource Identifiers (URI) delete: delete: [URIS] delete: section 4.2 delete: </p> delete: <div class="note"> delete: <p> delete: Test: delete: Indicated by delete: test013.rdf delete: and delete: test013.nt delete: delete: </p> delete: </div> delete: <div class="note"> delete: <p> insert: <p class=""> Implementation Note (Informative): When using a hierarchical base URI that has no path component (/), it must be added before using as a base URI for resolving.

 delete: <p> insert: <div class="note-title" aria-level="3" role="heading" id="h_note_5"> insert: Note insert: insert: </div>
 insert: <p class=""> Test: Indicated by delete: insert: test011.rdf and delete: insert: test011.nt

 delete: <h3> delete: insert: </section> insert: <section id="section-constraints" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-constraints"> insert: 5.4 insert: Constraints delete:

 		 delete: delete: insert: <dfn id="constraint-id"> constraint-id delete: delete: delete:
 insert: </dfn>

 		 Each application of production idAttr matches an attribute. The pair formed by the delete: insert: Â· string-value Â· accessor of the matched attribute and the delete: insert: Â· base-uri Â· accessor of the matched attribute is unique within a single RDF/XML document.

 The syntax of the names must match the rdf-id production .

 delete: <p> insert: <div class="note-title" aria-level="3" role="heading" id="h_note_6"> insert: Note insert: insert: </div>
 insert: <p class=""> Test: Indicated by delete: insert: test014.rdf and delete: insert: test014.nt

 delete: <h3> delete: insert: </section> insert: <section id="section-conformance" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-conformance"> insert: 5.5 insert: Conformance delete:

 		 Definition: delete:

 		 An delete: delete: insert: <dfn id="dfn-rdf-document"> RDF Document delete: delete: insert: </dfn> is a serialization of an RDF Graph into a concrete syntax.

 		 Definition:

 		 An delete: delete: insert: <dfn id="dfn-rdf-xml-document"> RDF/XML Document delete: delete: insert: </dfn> is an delete: insert: RDF Document written in the recommended XML transfer syntax for RDF as defined in this document.

 		 Conformance:

 		 An delete: insert: RDF/XML Document is a delete: delete: insert: <dfn id="dfn-conforming-document"> conforming RDF/XML document delete: delete: insert: </dfn> if it adheres to the specification defined in this document.

 delete: <h2> delete: 6 insert: </section> insert: </section> insert: <section id="section-Data-Model" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_section-Data-Model"> insert: 6. insert: Syntax Data Model delete:

 insert: <div> This document specifies the syntax of RDF/XML as a grammar on an alphabet of symbols. The symbols are called events in the style of the delete: [XPATH] delete: XPATH Â Information Set Mapping . A sequence of events is normally derived from an XML document, in which case they are in document order as defined below in Section 6.2 Information Set Mapping . The sequence these events form are intended to be similar to the sequence of events produced by the delete: [SAX2] delete: [insert: <cite> insert: SAX insert: insert: </cite>] XML API from the same XML document. Sequences of events may be checked against the grammar to determine whether they are or are not syntactically well-formed RDF/XML.

 The grammar productions may include actions which fire when the production is recognized. Taken together these actions define a transformation from any syntactically well-formed RDF/XML sequence of events into an RDF graph represented in the delete: N-Triples delete: [insert: <cite> insert: N-TRIPLES insert: insert: </cite>] language.

 The model given here illustrates one way to create a representation of an delete: RDF Graph delete: from an RDF/XML document. It does not mandate any implementation method — â€” any other method that results in a representation of the same delete: RDF Graph delete: may be used.

 In particular:

 		 This specification permits any delete: representation delete: of an RDF graph (see delete: [RDF-CONCEPTS] delete:); graph; in particular, it does not require the use of delete: N-Triples delete: . [insert: <cite> insert: N-TRIPLES insert: insert: </cite>].

 		 This specification does not require the use of delete: [XPATH] delete: [insert: <cite> insert: XPATH insert: insert: </cite>] or delete: [SAX2] delete: [insert: <cite> insert: SAX insert: insert: </cite>]

 		 This specification places no constraints on the order in which software transforming RDF/XML into a representation of a graph, constructs the representation of the graph.

 		 Software transforming RDF/XML into a representation of a graph insert: <em class="rfc2119" title="MAY"> MAY insert: eliminate duplicate predicate arcs.

 The syntax does not support non-well-formed XML documents, nor documents that otherwise do not have an XML Information Set; for example, that do not conform to delete: Namespaces in XML delete: delete: [XML-NS] delete: . [insert: <cite> insert: XML-NAMES insert: insert: </cite>].

 The Infoset requires support for delete: XML Base delete: delete: [XML-BASE] delete: . [insert: <cite> insert: XMLBASE insert: insert: </cite>]. RDF/XML uses the information item property [base URI], discussed in section 5.3

 This specification requires an XML Information Set delete: [INFOSET] delete: [insert: <cite> insert: XML-INFOSET insert: insert: </cite>] which supports at least the following information items and properties for RDF/XML:

 		 document information item

 		 [document element], [children], [base URI]

 		 element information item

 		 [local name], [namespace name], [children], [attributes], [parent], [base URI]

 		 attribute information item

 		 [local name], [namespace name], [normalized value]

 		 character information item

 		 [character code]

 There is no mapping of the following items to data model events:

 delete: <dl> delete: <dt> insert: insert: 		 processing instruction information item delete: </dt> delete: <dt> insert:

 insert: 		 unexpanded entity reference information item delete: </dt> delete: <dt> insert:

 insert: 		 comment information item delete: </dt> delete: <dt> insert:

 insert: 		 document type declaration information item delete: </dt> delete: <dt> insert:

 insert: 		 unparsed entity information item delete: </dt> delete: <dt> insert:

 insert: 		 notation information item delete: </dt> delete: <dt> insert:

 insert: 		 namespace information item delete: </dt> delete: </dl> insert:

 insert:

 Other information items and properties have no mapping to syntax data model events.

 Element information items with reserved XML Names (See Name in XML 1.0) are not mapped to data model element events. These are all those with property [prefix] beginning with xml (case independent comparison) and all those with [prefix] property having no value and which have [local name] beginning with xml (case independent comparison).

 All information items contained inside XML elements matching the parseTypeLiteralPropertyElt production form delete: XML literals delete: and do not follow this mapping. See parseTypeLiteralPropertyElt for further information.

 This section is intended to satisfy the requirements for Conformance in the delete: [INFOSET] delete: [insert: <cite> insert: XML-INFOSET insert: insert: </cite>] specification. It specifies the information items and properties that are needed to implement this specification.

 delete: <h3> delete: insert: </div>
 insert: <section id="section-Nodes" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Nodes"> insert: 6.1 insert: Events delete:

 There are nine types of event defined in the following subsections. Most events are constructed from an Infoset information item (except for URI reference IRI , blank node , plain literal and typed literal). The effect of an event constructor is to create a new event with a unique identity, distinct from all other events. Events have accessor operations on them and most have the string-value accessor that may be a static value or computed.

 delete: <h3> delete: insert: <section id="section-root-node" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_section-root-node"> insert: 6.1.1 insert: Root Event delete: delete: </h3> insert: </h4>

 Constructed from a document information item and takes the following accessors and values.

 delete: <dt> delete: delete: insert: <dt id="eventterm-root-document-element"> 		 document-element delete: delete: delete:

 		 Set to the value of document information item property [document-element].

 delete: <dt> delete: delete: insert: <dt id="eventterm-root-children"> 		 children delete: delete: delete:

 		 Set to the value of document information item property [children].

 delete: <dt> delete: delete: insert: <dt id="eventterm-root-base-uri"> 		 base-uri delete: delete: delete:

 		 Set to the value of document information item property [base URI].

 delete: <dt> delete: delete: insert: <dt id="eventterm-root-language"> 		 language delete: delete: delete:

 		 Set to the empty string.

 delete: <h3> delete: insert: </section> insert: <section id="section-element-node" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_section-element-node"> insert: 6.1.2 insert: Element Event delete: delete: </h3> insert: </h4>

 Constructed from an element information item and takes the following accessors and values:

 delete: <dt> delete: delete: insert: <dt id="eventterm-element-local-name"> 		 local-name delete: delete: delete:

 		 Set to the value of element information item property [local name].

 delete: <dt> delete: delete: insert: <dt id="eventterm-element-namespace-name"> 		 namespace-name delete: delete: delete:

 		 Set to the value of element information item property [namespace name].

 delete: <dt> delete: delete: insert: <dt id="eventterm-element-children"> 		 children delete: delete: delete:

 		 Set to the value of element information item property [children].

 delete: <dt> delete: delete: insert: <dt id="eventterm-element-parent"> 		 parent insert: </dt>

 insert: <dd> 		 Set to the value of element information item property [parent]. insert: </dd>

 insert: <dt id="eventterm-element-base-uri"> 		 base-uri delete: delete: delete:

 		 Set to the value of element information item property [base URI].

 delete: <dt> delete: delete: insert: <dt id="eventterm-element-attributes"> 		 attributes delete: delete: delete:

 		 Made from the value of element information item property [attributes] which is a set of attribute information items.

 If this set contains an attribute information item xml:lang ([namespace name] property with the value "http://www.w3.org/XML/1998/namespace" "http://www.w3.org/XML/1998/namespace" and [local name] property value "lang") "lang") it is removed from the set of attribute information items and the delete: insert: Â· language Â· accessor is set to the [normalized-value] property of the attribute information item.

 All remaining reserved XML Names (See (see Name in XML 1.0) are now removed from the set. These are, all attribute information items in the set with property [prefix] beginning with xml (case independent comparison) and all attribute information items with [prefix] property having no value and which have [local name] beginning with xml (case independent comparison) are removed. Note that the [base URI] accessor is computed by XML Base before any xml:base attribute information item is deleted.

 The remaining set of attribute information items are then used to construct a new set of Attribute Events which is assigned as the value of this accessor.

 delete: <dt> delete: delete: insert: <dt id="eventterm-element-URI"> 		 URI delete: delete: delete:

 		 Set to the string value of the concatenation of the value of the namespace-name accessor and the value of the local-name accessor.

 delete: <dt> delete: delete: insert: <dt id="eventterm-element-URI-string-value"> 		 URI-string-value delete: delete: delete:

 		 The value is the concatenation of the following in this order "<", "<", the escaped value of the delete: insert: Â· URI Â· accessor and ">". ">".

 The escaping of the delete: insert: Â· URI Â· accessor uses the N-Triples escapes for URI references as described in 3.3 URI References. IRIs [[N_TRIPLES]].

 delete: <dt> delete: delete: insert: <dt id="eventterm-element-liCounter"> 		 li-counter delete: delete: delete:

 		 Set to the integer value 1.

 delete: <dt> delete: delete: insert: <dt id="eventterm-element-language"> 		 language delete: delete: delete:

 		 Set from the delete: insert: Â· attributes Â· as described above. If no value is given from the attributes, the value is set to the value of the language accessor on the parent event (either a Root Event or an Element Event), which may be the empty string.

 delete: <dt> delete: delete: insert: <dt id="eventterm-element-subject"> 		 subject delete: delete: delete:

 		 Has no initial value. Takes a value that is an Identifier event. This accessor is used on elements that deal with one node in the RDF graph, this generally being the subject of a statement.

 delete: <h3> delete: insert: </section> insert: <section id="section-end-element-node" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_section-end-element-node"> insert: 6.1.3 insert: End Element Event delete: delete: </h3> insert: </h4>

 Has no accessors. Marks the end of the containing element in the sequence.

 delete: <h3> delete: insert: </section> insert: <section id="section-attribute-node" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_section-attribute-node"> insert: 6.1.4 insert: Attribute Event delete: delete: </h3> insert: </h4>

 Constructed from an attribute information item and takes the following accessors and values:

 delete: <dt> delete: delete: insert: <dt id="eventterm-attribute-local-name"> 		 local-name delete: delete: delete:

 		 Set to the value of attribute information item property [local name].

 delete: <dt> delete: delete: insert: <dt id="eventterm-attribute-namespace-name"> 		 namespace-name delete: delete: delete:

 		 Set to the value of attribute information item property [namespace name].

 delete: <dt> delete: delete: insert: <dt id="eventterm-attribute-string-value"> 		 string-value delete: delete: delete:

 		 Set to the value of the attribute information item property [normalized value] as specified by delete: [XML] delete: [insert: <cite> insert: XML10 insert: insert: </cite>] (if an attribute whose normalized value is a zero-length string, then the string-value is also a zero-length string).

 delete: <dt> delete: delete: insert: <dt id="eventterm-attribute-URI"> 		 URI delete: delete: delete:

 		 If delete: insert: Â· namespace-name Â· is present, set to a string value of the concatenation of the value of the delete: insert: Â· namespace-name Â· accessor and the value of the delete: insert: Â· local-name Â· accessor. Otherwise if delete: insert: Â· local-name Â· is ID , about , resource , parseType or type , set to a string value of the concatenation of the delete: insert: Â· RDF namespace URI reference IRI Â· and the value of the delete: insert: Â· local-name Â· accessor. Other non-namespaced delete: insert: Â· local-name Â· accessor values are forbidden.

 The support for a limited set of non-namespaced names is insert: <em class="rfc2119" title="REQUIRED"> REQUIRED insert: and intended to allow RDF/XML documents specified in delete: [RDF-MS] delete: [insert: <cite> insert: RDFMS insert: insert: </cite>] to remain valid; new documents insert: <em class="rfc2119" title="SHOULD NOT"> SHOULD NOT insert: use these unqualified attributes and applications insert: <em class="rfc2119" title="MAY"> MAY insert: choose to warn when the unqualified form is seen in a document.

 The construction of delete: RDF URI references delete: IRIs from XML attributes can generate the same delete: RDF URI references delete: IRIs from different XML attributes. This can cause ambiguity in the grammar when matching attribute events (such as when rdf:about and about XML attributes are both present). Documents that have this are illegal.

 delete: <dt> delete: delete: insert: <dt id="eventterm-attribute-URI-string-value"> 		 URI-string-value delete: delete: delete:

 		 The value is the concatenation of the following in this order "<", "<", the escaped value of the delete: insert: Â· URI Â· accessor and ">". ">".

 The escaping of the delete: insert: Â· URI Â· accessor uses the N-Triples escapes for URI references as described in 3.3 URI References. IRIs [insert: <cite> insert: N-TRIPLES insert: insert: </cite>].

 delete: <h3> delete: insert: </section> insert: <section id="section-text-node" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_section-text-node"> insert: 6.1.5 insert: Text Event delete: delete: </h3> insert: </h4>

 Constructed from a sequence of one or more consecutive character information items . Has the single accessor:

 delete: <dt> delete: delete: insert: <dt id="eventterm-text-string-value"> 		 string-value delete: delete: delete:

 		 Set to the value of the string made from concatenating the [character code] property of each of the character information items.

 delete: <h3> delete: insert: </section> insert: <section id="section-identifier-node" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_section-identifier-node"> insert: 6.1.6 URI Reference insert: IRI Event delete: delete: </h3> delete: <p> delete: delete: insert: </h4>

 insert: <p id="eventterm-identifier-identifier-type"> An event for a delete: RDF URI references delete: IRIs which has the following accessors:

 delete: <dt> delete: delete: insert: <dt id="eventterm-identifier-identifier"> 		 identifier delete: delete: delete:

 		 Takes a string value used as an delete: RDF URI reference delete: . IRI.

 delete: <dt> delete: delete: insert: <dt id="eventterm-identifier-string-value"> 		 string-value delete: delete: delete:

 		 The value is the concatenation of "<", "<", the escaped value of the delete: insert: Â· identifier Â· accessor and ">" ">"

 The escaping of the delete: insert: Â· identifier Â· accessor value uses the delete: N-Triples delete: escapes for URI references as described in delete: 3.3 URI References delete: . IRIs [insert: <cite> insert: N-TRIPLES insert: insert: </cite>].

 These events are constructed by giving a value for the delete: insert: Â· identifier Â· accessor.

 For further information on identifiers in the RDF graph, see section 5.2 .

 delete: <h3> delete: insert: </section> insert: <section id="section-blank-nodeid-event" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_section-blank-nodeid-event"> insert: 6.1.7 insert: Blank Node Identifier Event delete: delete: </h3> insert: </h4>

 An event for a delete: blank node identifier delete: which has the following accessors:

 delete: <dt> delete: delete: insert: <dt id="eventterm-blanknodeid-identifier"> 		 identifier delete: delete: delete:

 		 Takes a string value.

 delete: <dt> delete: delete: insert: <dt id="eventterm-blanknodeid-string-value"> 		 string-value delete: delete: delete:

 		 The value is a function of the value of the delete: insert: Â· identifier Â· accessor. The value begins with "_:" "_:" and the entire value insert: <em class="rfc2119" title="MUST"> MUST insert: match the delete: N-Triples delete: delete: nodeID insert: BLANK_NODE_LABELD production. The function insert: <em class="rfc2119" title="MUST"> MUST insert: preserve distinct blank node identity as discussed in in section 5.2 Identifiers .

 These events are constructed by giving a value for the delete: insert: Â· identifier Â· accessor.

 For further information on identifiers in the RDF graph, see section 5.2 .

 delete: <h3> delete: insert: </section> insert: <section id="section-literal-node" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_section-literal-node"> insert: 6.1.8 insert: Plain Literal Event delete: delete: </h3> insert: </h4>

 insert: <div class="note"> insert: <div class="note-title" aria-level="4" role="heading" id="h_note_7"> insert: Note insert: insert: </div>
 insert: <p class=""> RDF/XML plain literals are in RDF 1.1 treated as syntactic sugar for a literal with datatype insert: <code> xsd:string insert: </code> (in case no language tag is present) or as a literal with datatype insert: <code> rdf:langString insert: </code> (in case a language tag is present). The mapping to N-Triples as defined in this subsection is not affected by this change. insert: </p>

 insert: </div>
 An event for a delete: plain literal delete: which can have the following accessors:

 delete: <dt> delete: delete: insert: <dt id="eventterm-literal-literal-value"> 		 literal-value delete: delete: delete:

 		 Takes a string value.

 delete: <dt> delete: delete: insert: <dt id="eventterm-literal-literal-language"> 		 literal-language delete: delete: delete:

 		 Takes a string value used as a delete: language tag delete: in an RDF plain literal.

 delete: <dt> delete: delete: insert: <dt id="eventterm-literal-string-value"> 		 string-value delete: delete: delete:

 		 The value is calculated from the other accessors as follows.

 If delete: insert: Â· literal-language Â· is the empty string then the value is the concatenation of """ """ (1 double quote), the escaped value of the delete: insert: Â· literal-value Â· accessor and """ """ (1 double quote).

 Otherwise the value is the concatenation of """ """ (1 double quote), the escaped value of the delete: insert: Â· literal-value Â· accessor ""@" ""@" (1 double quote and a '@'), and the value of the delete: insert: Â· literal-language Â· accessor.

 The escaping of the delete: insert: Â· literal-value Â· accessor value uses the delete: N-Triples delete: escapes for strings as described in delete: 3.2 Strings delete: [insert: <cite> insert: N-TRIPLES insert: insert: </cite>] for escaping certain characters such as ".

 These events are constructed by giving values for the delete: insert: Â· literal-value Â· and delete: insert: Â· literal-language Â· accessors.

 delete: <p> insert: <div class="note-title" aria-level="4" role="heading" id="h_note_8"> insert: Note insert: insert: </div>
 insert: <p id="literal-comb-char-note1" class=""> Interoperability Note (Informative): delete: delete: Literals beginning with a Unicode combining character are allowed however they may cause interoperability problems. See delete: [CHARMOD] delete: [insert: <cite> insert: CHARMOD insert: insert: </cite>] for further information.

 delete: <h3> delete: delete: delete: insert: </section> insert: <section id="section-typed-literal-node" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_section-typed-literal-node"> insert: 6.1.9 insert: Typed Literal Event delete: delete: </h3> insert: </h4>

 An event for a delete: typed literal delete: which can have the following accessors:

 delete: <dt> delete: delete: delete: delete: insert: <dt id="eventterm-typedliteral-literal-value"> 		 literal-value delete: delete: delete:

 		 Takes a string value.

 delete: <dt> delete: delete: delete: delete: insert: <dt id="eventterm-typedliteral-literal-datatype"> 		 literal-datatype delete: delete: delete:

 		 Takes a string value used as an delete: RDF URI reference delete: . IRI.

 delete: <dt> delete: delete: delete: delete: insert: <dt id="eventterm-typedliteral-string-value"> 		 string-value delete: delete: delete:

 		 The value is the concatenation of the following in this order """ """ (1 double quote), the escaped value of the delete: insert: Â· literal-value Â· accessor, """ """ (1 double quote), "^^<", "^^<", the escaped value of the delete: insert: Â· literal-datatype Â· accessor and ">". ">".

 The escaping of the delete: insert: Â· literal-value Â· accessor value uses the delete: N-Triples delete: escapes for strings as described in delete: 3.2 Strings delete: [insert: <cite> insert: N-TRIPLES insert: insert: </cite>] for escaping certain characters such as ". The escaping of the delete: insert: Â· literal-datatype Â· accessor value must use the delete: N-Triples delete: escapes for URI references as described in delete: 3.3 URI References delete: . IRI [insert: <cite> insert: N-TRIPLES insert: insert: </cite>].

 These events are constructed by giving values for the delete: insert: Â· literal-value Â· and delete: insert: Â· literal-datatype Â· accessors.

 delete: <p> insert: <div class="note-title" aria-level="4" role="heading" id="h_note_9"> insert: Note insert: insert: </div>
 insert: <p class="" id="literal-comb-char-note2"> Interoperability Note (Informative): delete: delete: Literals beginning with a Unicode combining character are allowed however they may cause interoperability problems. See delete: [CHARMOD] delete: [insert: <cite> insert: CHARMOD insert: insert: </cite>] for further information.

 delete: <p> insert: <div class="note-title" aria-level="4" role="heading" id="h_note_10"> insert: Note insert: insert: </div>
 insert: <p id="literal-white-space-normalization-note" class=""> Implementation Note (Informative): delete: delete: In delete: XML Schema (part 1) delete: delete: [XML-SCHEMA1] delete: , [insert: <cite> insert: XMLSCHEMA-1 insert: insert: </cite>], white space normalization occurs during validation according to the value of the whiteSpace facet. The syntax mapping used in this document occurs after this, so the whiteSpace facet formally has no further effect.

 delete: <h3> delete: delete: delete: insert: </section> insert: </section> insert: <section id="section-Infoset-Mapping" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 id="section-Infoset-Conformance" aria-level="2" role="heading"> insert: 6.2 insert: Information Set Mapping delete:

 To transform the Infoset into the sequence of events in document order , each information item is transformed as described above to generate a tree of events with accessors and values. Each element event is then replaced as described below to turn the tree of events into a sequence in document order.

 		 The original element event

 		 The value of the children accessor recursively transformed, a possibly empty ordered list of events.

 		 An end element event

 delete: <h3> delete: delete: delete: insert: </section> insert: <section id="section-Infoset-Grammar-Notation" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 id="section-Notation-Forms" aria-level="2" role="heading"> insert: 6.3 insert: Grammar Notation delete:

 The following notation is used to describe matching the sequence of data model events as given in Section 6 and the actions to perform for the matches. The RDF/XML grammar is defined in terms of mapping from these matched data model events to triples, using notation of the form:

 number event-type event-content

 action ... delete: N-Triples delete:

 where the event-content is an expression matching event-types (as defined in Section 6.1), using notation given in the following sections. The number is used for reference purposes. The grammar action may include generating new triples to the graph, written in delete: N-Triples delete: [insert: <cite> insert: N-TRIPLES insert: insert: </cite>] format.

 The following sections describe the general notation used and that for event matching and actions.

 delete: <h4> delete: insert: <section id="section-Infoset-Grammar-General" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_section-Infoset-Grammar-General"> insert: 6.3.1 insert: Grammar General Notation delete:

 delete: <table border="1" summary="This table describes the general notation used the grammar."> delete: <caption> Grammar General Notation. delete: </caption> insert: <table> insert: <tbody>insert: </tbody> 		 Notation 		 Meaning

 		 event . accessor 		 The value of an event accessor.

 		 rdf: X 		 A URI as defined in section 5.1 .

 		 "ABC" "ABC" 		 A string of characters A, B, C in order.

 delete: <h4> delete: insert: </section> insert: <section id="section-Infoset-Grammar-Matching" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_section-Infoset-Grammar-Matching"> insert: 6.3.2 insert: Grammar Event Matching Notation delete:

 delete: <table border="1" summary="This table describes the event matching notation used in the following sections to match sequences of syntax data model events."> delete: <caption> Grammar Event Matching Notation. delete: </caption> insert: <table> insert: <tbody>insert: </tbody> 		 Notation 		 Meaning

 		 A == B 		 Event accessor A matches expression B.

 		 A != B 		 A is not equal to B.

 		 A | B | ... 		 The A, B, ... terms are alternatives.

 		 A - B 		 The terms in A excluding all the terms in B.

 		 delete: insert: <dfn id="anyURI"> anyURI delete: insert: </dfn> . 		 Any URI.

 		 delete: insert: <dfn id="anyString"> anyString delete: insert: </dfn> . 		 Any string.

 		 list(item1, item2, ...); list() 		 An ordered list of events. An empty list.

 		 set(item1, item2, ...); set() 		 An unordered set of events. An empty set.

 		 * 		 Zero or more of preceding term.

 		 ? 		 Zero or one of preceding term.

 		 + 		 One or more of preceding term.

 		 root(acc1 == value1,
 acc2 Â Â Â Â acc2 == value2, ...) 		 Match a Root Event with accessors.

 		 start-element(acc1 == value1,
 acc2 Â Â Â Â acc2 == value2, ...)
 children
 end-element() 		 Match a sequence of Element Event with accessors, a possibly empty list of events as element content and an End Element Event .

 		 attribute(acc1 == value1,
 acc2 Â Â Â Â acc2 == value2, ...) 		 Match an Attribute Event with accessors.

 		 text() 		 Match a Text Event .

 delete: <h4> delete: insert: </section> insert: <section id="section-Infoset-Grammar-Action" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_section-Infoset-Grammar-Action"> insert: 6.3.3 insert: Grammar Action Notation delete:

 delete: <table border="1" summary="This table describes the grammar actions notation used in the following sections to perform triple generation from syntax data model events."> delete: <caption> Grammar Action Notation. delete: </caption> insert: <table> insert: <tbody>insert: </tbody> 		 Notation 		 Meaning

 		 A := B 		 Assigns A the value B.

 		 concat(A, B, ..) 		 A string created by concatenating the terms in order.

 		 resolve(e , s) 		 A string created by interpreting string s as a relative URI reference IRI to the delete: insert: Â· base-uri Â· accessor of delete: insert: insert: 6.1.2 insert: insert: Element Event insert: e as defined in Section 5.3 Resolving URIs . The resulting string represents an delete: RDF URI reference delete: . IRI.

 		 generated-blank-node-id() 		 A string value for a new distinct generated delete: blank node identifier delete: as defined in section 5.2 Identifiers .

 		 event . accessor := value 		 Sets an event accessor to the given value.

 		 uri(identifier := value) 		 Create a new URI Reference Event .

 		 bnodeid(identifier := value) 		 Create a new Blank Node Identifier Event . See also section 5.2 Identifiers .

 		 literal(literal-value := string,
 literal-language Â Â Â Â literal-language := language, ...) 		 Create a new Plain Literal Event .

 		 typed-literal(literal-value := string, ...) 		 Create a new Typed Literal Event .

 delete: <h2> delete: 7 insert: </section> insert: </section> insert: </section> insert: <section id="section-Infoset-Grammar" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_section-Infoset-Grammar"> insert: 7. insert: RDF/XML Grammar delete:

 delete: <h3> delete: insert: <section id="section-grammar-summary" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-grammar-summary"> insert: 7.1 insert: Grammar summary delete:

 delete: <tr valign="top">insert: <tbody>insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>delete: <tr valign="top">insert: <tr>insert: </tbody> 		 7.2.2 coreSyntaxTerms 		 rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype

 		 7.2.3 syntaxTerms 		 coreSyntaxTerms | rdf:Description | rdf:li

 		 7.2.4 oldTerms 		 rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID

 		 7.2.5 nodeElementURIs 		 anyURI - (coreSyntaxTerms | rdf:li | oldTerms)

 		 7.2.6 propertyElementURIs 		 anyURI - (coreSyntaxTerms | rdf:Description | oldTerms)

 		 7.2.7 propertyAttributeURIs 		 anyURI - (coreSyntaxTerms | rdf:Description | rdf:li | oldTerms)

 		 7.2.8 doc 		 root(document-element == RDF , children == list(RDF))

 		 7.2.9 RDF 		 start-element(URI == rdf:RDF , attributes == set())
 nodeElementList
 end-element()

 		 7.2.10 nodeElementList 		 ws * (nodeElement ws *)*

 		 7.2.11 nodeElement 		 start-element(URI == nodeElementURIs
 Â Â Â Â attributes == set((idAttr | nodeIdAttr | aboutAttr Â)?,)?, propertyAttr *))
 propertyEltList
 end-element()

 		 7.2.12 ws 		 A text event matching white space defined by delete: [XML] delete: XML [insert: <cite> insert: XML10 insert: insert: </cite>] definition White Space Rule [3] S in section Common Syntactic Constructs

 		 7.2.13 propertyEltList 		 ws * (propertyElt ws *) *

 		 7.2.14 propertyElt 		 resourcePropertyElt | literalPropertyElt | parseTypeLiteralPropertyElt | parseTypeResourcePropertyElt | parseTypeCollectionPropertyElt | parseTypeOtherPropertyElt | emptyPropertyElt

 		 7.2.15 resourcePropertyElt 		 start-element(URI == propertyElementURIs), attributes == set(idAttr ?))
 ws * nodeElement ws *
 end-element()

 		 7.2.16 literalPropertyElt 		 start-element(URI == propertyElementURIs), attributes == set(idAttr ?, datatypeAttr ?))
 text()
 end-element()

 		 7.2.17 parseTypeLiteralPropertyElt 		 start-element(URI == propertyElementURIs), attributes == set(idAttr ?, parseLiteral))
 literal
 end-element()

 		 7.2.18 parseTypeResourcePropertyElt 		 start-element(URI == propertyElementURIs), attributes == set(idAttr ?, parseResource))
 propertyEltList
 end-element()

 		 7.2.19 parseTypeCollectionPropertyElt 		 start-element(URI == propertyElementURIs), attributes == set(idAttr ?, parseCollection))
 nodeElementList
 end-element()

 		 7.2.20 parseTypeOtherPropertyElt 		 start-element(URI == propertyElementURIs), attributes == set(idAttr ?, parseOther))
 propertyEltList
 end-element()

 		 7.2.21 emptyPropertyElt 		 start-element(URI == propertyElementURIs), attributes == set(idAttr ?, (resourceAttr | nodeIdAttr | insert: datatypeAttr insert:)?, propertyAttr *))
 end-element()

 		 7.2.22 idAttr 		 attribute(URI == rdf:ID , string-value == rdf-id)

 		 7.2.23 nodeIdAttr 		 attribute(URI == rdf:nodeID , string-value == rdf-id)

 		 7.2.24 aboutAttr 		 attribute(URI == rdf:about , string-value == URI-reference)

 		 7.2.25 propertyAttr 		 attribute(URI == propertyAttributeURIs , string-value == anyString)

 		 7.2.26 resourceAttr 		 attribute(URI == rdf:resource , string-value == URI-reference)

 		 7.2.27 datatypeAttr 		 attribute(URI == rdf:datatype , string-value == URI-reference)

 		 7.2.28 parseLiteral 		 attribute(URI == rdf:parseType , string-value == "Literal") "Literal")

 		 7.2.29 parseResource 		 attribute(URI == rdf:parseType , string-value == "Resource") "Resource")

 		 7.2.30 parseCollection 		 attribute(URI == rdf:parseType , string-value == "Collection") "Collection")

 		 7.2.31 parseOther 		 attribute(URI == rdf:parseType , delete: insert: string-value == anyString - ("Resource" ("Resource" | "Literal" "Literal" | "Collection") "Collection"))

 		 7.2.32 URI-reference 		 An delete: RDF URI reference delete: . IRI.

 		 7.2.33 literal 		 Any XML element content that is allowed according to delete: [XML] delete: [insert: <cite> insert: XML10 insert: insert: </cite>] definition Content of Elements Rule [43] content . in section 3.1 Start-Tags, End-Tags, and Empty-Element Tags

 		 7.2.34 rdf-id 		 An attribute delete: insert: Â· string-value Â· matching any legal delete: [XML-NS] delete: [insert: <cite> insert: XML-NAMES insert: insert: </cite>] token NCName

 delete: <h3> delete: insert: </section> insert: <section id="section-grammar-productions" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-grammar-productions"> insert: 7.2 insert: Grammar Productions delete:

 delete: <h4> delete: insert: <section id="start" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_start"> insert: 7.2.1 insert: Grammar start delete:

 If the RDF/XML is a standalone XML document (identified by presentation as an application/rdf+xml RDF MIME type object, or by some other means) then the grammar may start with production doc or production nodeElement .

 If the content is known to be RDF/XML by context, such as when RDF/XML is embedded inside other XML content, then the grammar can either start at Element Event Â RDF (only when an element is legal at that point in the XML) or at production nodeElementList (only when element content is legal, since this is a list of elements). For such embedded RDF/XML, the delete: insert: Â· base-uri Â· value on the outermost element must be initialized from the containing XML since no Root Event Â will be available. Note that if such embedding occurs, the grammar may be entered several times but no state is expected to be preserved.

 delete: <h4> delete: insert: </section> insert: <section id="coreSyntaxTerms" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_coreSyntaxTerms"> insert: 7.2.2 insert: Production coreSyntaxTerms delete:

 rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype

 A subset of the syntax terms from the RDF vocabulary in section 5.1 which are used in RDF/XML.

 delete: <h4> delete: insert: </section> insert: <section id="syntaxTerms" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_syntaxTerms"> insert: 7.2.3 insert: Production syntaxTerms delete:

 coreSyntaxTerms | rdf:Description | rdf:li

 All the syntax terms from the RDF vocabulary in section 5.1 which are used in RDF/XML.

 delete: <h4> delete: delete: delete: delete: delete: insert: </section> insert: <section id="oldTerms" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 id="section-Bag-Expand" aria-level="3" role="heading"> insert: 7.2.4 insert: Production oldTerms delete:

 rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID

 These are the names from the RDF vocabulary that have been withdrawn from the language. See the resolutions of Issue rdfms-aboutEach-on-object , Issue rdfms-abouteachprefix and Last Call Issue timbl-01 for further information.

 delete: <p> insert: <div class="note-title" aria-level="4" role="heading" id="h_note_11"> insert: Note insert: insert: </div>
 insert: <p class=""> Error Test: Indicated by delete: insert: error001.rdf and delete: insert: error002.rdf

 delete: <h4> delete: insert: </section> insert: <section id="nodeElementURIs" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_nodeElementURIs"> insert: 7.2.5 insert: Production nodeElementURIs delete:

 anyURI - (coreSyntaxTerms | rdf:li | oldTerms)

 The delete: RDF URI references delete: IRIs that are allowed on node elements.

 delete: <h4> delete: insert: </section> insert: <section id="propertyElementURIs" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_propertyElementURIs"> insert: 7.2.6 insert: Production propertyElementURIs delete:

 anyURI - (coreSyntaxTerms | rdf:Description | oldTerms)

 The URIs that are allowed on property elements.

 delete: <h4> delete: insert: </section> insert: <section id="propertyAttributeURIs" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_propertyAttributeURIs"> insert: 7.2.7 insert: Production propertyAttributeURIs delete:

 anyURI - (coreSyntaxTerms | rdf:Description | rdf:li | oldTerms)

 The delete: RDF URI references delete: IRIs that are allowed on property attributes.

 delete: <h4> delete: insert: </section> insert: <section id="doc" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_doc"> insert: 7.2.8 insert: Production doc delete:

 root(document-element == RDF ,
 Â Â Â Â children == list(RDF))

 delete: <h4> delete: insert: </section> insert: <section id="RDF" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_RDF"> insert: 7.2.9 insert: Production RDF delete:

 start-element(URI == rdf:RDF ,
 Â Â Â Â attributes == set())
 nodeElementList
 end-element()

 delete: <h4> delete: insert: </section> insert: <section id="nodeElementList" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_nodeElementList"> insert: 7.2.10 insert: Production nodeElementList delete:

 ws * (nodeElement ws *)*

 delete: <h4> delete: delete: delete: delete: delete: insert: </section> insert: <section id="nodeElement" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 id="typedNode" aria-level="3" role="heading"> insert: 7.2.11 insert: Production nodeElement delete:

 start-element(URI == nodeElementURIs
 Â Â Â Â attributes == set((idAttr | nodeIdAttr | aboutAttr Â)?,)?, propertyAttr *))
 propertyEltList
 end-element()

 For node element e , the processing of some of the attributes has to be done before other work such as dealing with children events or other attributes. These can be processed in any order:

 		 If there is an attribute a with a . URI == rdf:ID , then e . subject := uri(identifier := resolve(e , concat("#", concat("#", a . string-value))).

 		 If there is an attribute a with a . URI == rdf:nodeID , then e . subject := bnodeid(identifier := a . string-value).

 		 If there is an attribute a with a . URI == rdf:about then e . subject := uri(identifier := resolve(e , a . string-value)).

 If e . subject is empty, then e . subject := bnodeid(identifier := generated-blank-node-id()).

 The following can then be performed in any order:

 delete: delete: delete: insert: <li id="nodeElementStatement1"> 		 If e . URI != rdf:Description then the following statement is added to the graph: e . subject . string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> e . URI-string-value .

 delete: delete: delete: insert: <li id="nodeElementStatement2"> 		 If there is an attribute a in propertyAttr with a . URI == rdf:type then u :=uri(identifier:=resolve(e insert: , insert: a . string-value)) and the following tiple triple is added to the graph: e . subject . string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> u . string-value .

 delete: delete: delete: insert: <li id="nodeElementStatement3"> 		 For each attribute a matching propertyAttr (and not rdf:type), the Unicode string a . string-value insert: <em class="rfc2119" title="SHOULD"> SHOULD insert: be in Normal Form C delete: [NFC] delete: , [insert: <cite> insert: NFC insert: insert: </cite>], o := literal(literal-value := a . string-value , literal-language := e . language) and the following statement is added to the graph: e . subject . string-value a . URI-string-value o . string-value .

 delete: delete: delete: insert: <li id="nodeElementStatement4"> 		 Handle the propertyEltList children events in document order.

 delete: <h4> delete: insert: </section> insert: <section id="ws" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ws"> insert: 7.2.12 insert: Production ws delete:

 A text event matching white space defined by delete: [XML] delete: [insert: <cite> insert: XML10 insert: insert: </cite>] definition White Space Rule [3] S in section Common Syntactic Constructs

 delete: <h4> delete: insert: </section> insert: <section id="propertyEltList" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_propertyEltList"> insert: 7.2.13 insert: Production propertyEltList delete:

 ws * (propertyElt ws *) *

 delete: <h4> delete: insert: </section> insert: <section id="propertyElt" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_propertyElt"> insert: 7.2.14 insert: Production propertyElt delete:

 resourcePropertyElt | literalPropertyElt | parseTypeLiteralPropertyElt | parseTypeResourcePropertyElt | parseTypeCollectionPropertyElt | parseTypeOtherPropertyElt | emptyPropertyElt

 If element e has e . URI = rdf:li then apply the list expansion rules on element e .parent in section 7.4 to give a new URI u and e . URI := u .

 The action of this production must be done before the actions of any sub-matches (delete: insert: resourcePropertyElt ... emptyPropertyElt). Alternatively the result must be equivalent to as if it this action was performed first, such as performing as the first action of all of the sub-matches.

 delete: <h4> delete: insert: </section> insert: <section id="resourcePropertyElt" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_resourcePropertyElt"> insert: 7.2.15 insert: Production resourcePropertyElt delete:

 start-element(URI == propertyElementURIs),
 Â Â Â Â attributes == set(idAttr ?))
 ws * nodeElement ws *
 end-element()

 For element e , and the single contained nodeElement n , first n must be processed using production nodeElement . Then the following statement is added to the graph:

 Â Â e .parent. subject . string-value e . URI-string-value n . subject . string-value .

 If the rdf:ID attribute a is given, the above statement is reified with i := uri(identifier := resolve(e , concat("#", concat("#", a . string-value))) using the reification rules in section 7.3 and e . subject := i

 delete: <h4> delete: insert: </section> insert: <section id="literalPropertyElt" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_literalPropertyElt"> insert: 7.2.16 insert: Production literalPropertyElt delete:

 start-element(URI == propertyElementURIs),
 Â Â Â Â attributes == set(idAttr ?, datatypeAttr ?))
 text()
 end-element()

 Note that the empty literal case is defined in production emptyPropertyElt .

 For element e , and the text event t . The Unicode string t . string-value insert: <em class="rfc2119" title="SHOULD"> SHOULD insert: be in Normal Form C delete: [NFC] delete: . [insert: <cite> insert: NFC insert: insert: </cite>]. If the rdf:datatype attribute d is given then o := typed-literal(literal-value := t . string-value , literal-datatype := d . string-value) otherwise o := literal(literal-value := t . string-value , literal-language := e . language) and the following statement is added to the graph:

 e .parent. subject . string-value e . URI-string-value o . string-value .

 If the rdf:ID attribute a is given, the above statement is reified with i := uri(identifier := resolve(e , concat("#", concat("#", a . string-value))) using the reification rules in section 7.3 and e . subject := i .

 delete: <h4> delete: insert: </section> insert: <section class="informative" id="parseTypeLiteralPropertyElt" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_parseTypeLiteralPropertyElt"> insert: 7.2.17 insert: Production parseTypeLiteralPropertyElt delete:

 insert: <p> insert: This section is non-normative. insert: insert: </p>

 start-element(URI == propertyElementURIs),
 Â Â Â Â attributes == set(idAttr ?, parseLiteral))
 literal
 end-element()

 For element e and the literal l that is the rdf:parseType="Literal" rdf:parseType="Literal" content. l is not transformed by the syntax data model mapping into events (as noted in section 6 Syntax Data Model) but remains an XML Infoset of XML Information items.

 l is transformed into the lexical form of an delete: insert: XML literal in the RDF graph x (a Unicode string) by the following algorithm. This does not mandate any implementation method — â€” any other method that gives the same result may be used.

 		 Use l to construct an insert: XPath delete: [XPATH] delete: delete: node-set delete: (a delete: document subset delete:) sequence insert: [insert: <cite> insert: XPATH-DATAMODEL-30 insert: insert: </cite>].

 		 Apply delete: Exclusive XML Canonicalization insert: http://www.w3.org/TR/xpath-functions-30/#func-serialize [delete: XML-XC14N delete:]) with comments and with empty delete: InclusiveNamespaces PrefixList delete: insert: <cite> insert: XPATH-FUNCTIONS-30 insert: insert: </cite>] to this node-set sequence to give a sequence of octets delete: s delete: delete: delete: This sequence of octets delete: s delete: can be considered to be a UTF-8 encoding of some Unicode string an xsd:string x (sequence of Unicode characters) .

 		 The Unicode string x is used as the lexical form of l

 		 This Unicode string x insert: <em class="rfc2119" title="SHOULD"> SHOULD insert: be in NFC Normal Form C delete: [NFC] delete: [insert: <cite> insert: NFC insert: insert: </cite>]

 Then o := typed-literal(literal-value := x , literal-datatype := http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral) and the following statement is added to the graph:

 e .parent. subject . string-value e . URI-string-value o . string-value .

 delete: <p> insert: <div class="note-title" aria-level="4" role="heading" id="h_note_12"> insert: Note insert: insert: </div>
 insert: <p class=""> Test: Empty literal case indicated by delete: insert: test009.rdf and delete: insert: test009.nt

 If the rdf:ID attribute a is given, the above statement is reified with i := uri(identifier := resolve(e , concat("#", concat("#", a . string-value))) using the reification rules in section 7.3 and e . subject := i .

 delete: <h4> delete: insert: </section> insert: <section id="parseTypeResourcePropertyElt" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_parseTypeResourcePropertyElt"> insert: 7.2.18 insert: Production parseTypeResourcePropertyElt delete:

 start-element(URI == propertyElementURIs),
 Â Â Â Â attributes == set(idAttr ?, parseResource))
 propertyEltList
 end-element()

 For element e with possibly empty element content c .

 n := bnodeid(identifier := generated-blank-node-id()).

 Add the following statement to the graph:

 e .parent. subject . string-value e . URI-string-value n . string-value .

 delete: <p> insert: <div class="note-title" aria-level="4" role="heading" id="h_note_13"> insert: Note insert: insert: </div>
 insert: <p class=""> Test: Indicated by delete: insert: test004.rdf and delete: insert: test004.nt

 If the rdf:ID attribute a is given, the statement above is reified with i := uri(identifier := resolve(e , concat("#", concat("#", a . string-value))) using the reification rules in section 7.3 and e . subject := i .

 If the element content c is not empty, then use event n to create a new sequence of events as follows:

 start-element(URI := rdf:Description ,
 Â Â Â Â subject := n ,
 Â Â Â Â attributes := set())
 c
 end-element()

 Then process the resulting sequence using production nodeElement .

 delete: <h4> delete: insert: </section> insert: <section id="parseTypeCollectionPropertyElt" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_parseTypeCollectionPropertyElt"> insert: 7.2.19 insert: Production parseTypeCollectionPropertyElt delete:

 start-element(URI == propertyElementURIs),
 Â Â Â Â attributes == set(idAttr ?, parseCollection))
 nodeElementList
 end-element()

 For element event e with possibly empty nodeElementList l . Set s :=list().

 For each element event f in l , n := bnodeid(identifier := generated-blank-node-id()) and append n to s to give a sequence of events.

 If s is not empty, n is the first event identifier in s and the following statement is added to the graph:

 e .parent. subject . string-value e . URI-string-value n . string-value .

 otherwise the following statement is added to the graph:

 e .parent. subject . string-value e . URI-string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#nil> .

 If the rdf:ID attribute a is given, either of the the above statements is reified with i := uri(identifier := resolve(e , concat("#", concat("#", a . string-value))) using the reification rules in section 7.3 .

 If s is empty, no further work is performed.

 For each event n in s and the corresponding element event f in l , the following statement is added to the graph:

 n . string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#first> f . string-value .

 For each consecutive and overlapping pair of events (n , o) in s , the following statement is added to the graph:

 n . string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#rest> o . string-value .

 If s is not empty, n is the last event identifier in s , the following statement is added to the graph:

 n . string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#rest> <http://www.w3.org/1999/02/22-rdf-syntax-ns#nil> .

 delete: <h4> delete: insert: </section> insert: <section id="parseTypeOtherPropertyElt" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_parseTypeOtherPropertyElt"> insert: 7.2.20 insert: Production parseTypeOtherPropertyElt delete:

 start-element(URI == propertyElementURIs),
 Â Â Â Â attributes == set(idAttr ?, parseOther))
 propertyEltList
 end-element()

 All rdf:parseType attribute values other than the strings "Resource", "Literal" "Resource", "Literal" or "Collection" "Collection" are treated as if the value was "Literal". "Literal". This production matches and acts as if production parseTypeLiteralPropertyElt was matched. No extra triples are generated for other rdf:parseType values.

 delete: <h4> delete: insert: </section> insert: <section id="emptyPropertyElt" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_emptyPropertyElt"> insert: 7.2.21 insert: Production emptyPropertyElt delete:

 start-element(URI == propertyElementURIs),
 Â Â Â Â attributes == set(idAttr ?, (resourceAttr | nodeIdAttr insert: | insert: datatypeAttr)?, propertyAttr *))
 end-element()

 		 If there are no attributes or only the optional rdf:ID attribute i then o := literal(literal-value :="", :="", literal-language := e . language) and the following statement is added to the graph:

 e .parent. subject . string-value e . URI-string-value o . string-value .

 and then if i is given, the above statement is reified with uri(identifier := resolve(e , concat("#", concat("#", i . string-value))) using the reification rules in section 7.3 .

 delete: <p> insert: <div class="note-title" aria-level="4" role="heading" id="h_note_14"> insert: Note insert: insert: </div>
 insert: <p class=""> Test: Indicated by delete: insert: test002.rdf and delete: insert: test002.nt

 delete: <p> insert: <div class="note-title" aria-level="4" role="heading" id="h_note_15"> insert: Note insert: insert: </div>
 insert: <p class=""> Test: Indicated by delete: insert: test005.rdf and delete: insert: test005.nt

 		 Otherwise

 		 If rdf:resource attribute i is present, then r := uri(identifier := resolve(e , i . string-value))

 		 If rdf:nodeID attribute i is present, then r := bnodeid(identifier := i . string-value)

 		 If neither, r := bnodeid(identifier := generated-blank-node-id())

 The following are done in any order:

 		 For all propertyAttr attributes a (in any order)

 		 If a . URI == rdf:type then u :=uri(identifier:=resolve(e insert: , insert: a . string-value)) and the following triple is added to the graph:

 r . string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> u . string-value .

 		 Otherwise Unicode string a . string-value insert: <em class="rfc2119" title="SHOULD"> SHOULD insert: be in Normal Form C delete: [NFC] delete: , [insert: <cite> insert: NFC insert: insert: </cite>], o := literal(literal-value := a . string-value , literal-language := e . language) and the following statement is added to the graph:

 r . string-value a . URI-string-value o . string-value .

 delete: <p> insert: <div class="note-title" aria-level="4" role="heading" id="h_note_16"> insert: Note insert: insert: </div>
 insert: <p class=""> Test: Indicated by delete: insert: test013.rdf and delete: insert: test013.nt

 delete: <p> insert: <div class="note-title" aria-level="4" role="heading" id="h_note_17"> insert: Note insert: insert: </div>
 insert: <p class=""> Test: Indicated by delete: insert: test014.rdf and delete: insert: test014.nt

 		 Add the following statement to the graph:

 e .parent. subject . string-value e . URI-string-value r . string-value .

 and then if rdf:ID attribute i is given, the above statement is reified with uri(identifier := resolve(e , concat("#", concat("#", i . string-value))) using the reification rules in section 7.3 .

 delete: <h4> delete: delete: delete: insert: </section> insert: <section id="idAttr" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 id="idAboutAttr" aria-level="3" role="heading"> insert: 7.2.22 insert: Production idAttr delete:

 attribute(URI == rdf:ID ,
 Â Â Â Â string-value == rdf-id)

 Constraint: : constraint-id applies to the values of rdf:ID attributes

 delete: <h4> delete: insert: </section> insert: <section id="nodeIdAttr" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_nodeIdAttr"> insert: 7.2.23 insert: Production nodeIdAttr delete:

 attribute(URI == rdf:nodeID ,
 Â Â Â Â string-value == rdf-id)

 delete: <h4> delete: insert: </section> insert: <section id="aboutAttr" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_aboutAttr"> insert: 7.2.24 insert: Production aboutAttr delete:

 attribute(URI == rdf:about ,
 Â Â Â Â string-value == URI-reference)

 delete: <h4> delete: delete: delete: delete: delete: insert: </section> insert: <section id="propertyAttr" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 id="propAttr" aria-level="3" role="heading"> insert: 7.2.25 insert: Production propertyAttr delete:

 attribute(URI == propertyAttributeURIs ,
 Â Â Â Â string-value == anyString)

 delete: <h4> delete: insert: </section> insert: <section id="resourceAttr" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_resourceAttr"> insert: 7.2.26 insert: Production resourceAttr delete:

 attribute(URI == rdf:resource ,
 Â Â Â Â string-value == URI-reference)

 delete: <h4> delete: insert: </section> insert: <section id="datatypeAttr" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_datatypeAttr"> insert: 7.2.27 insert: Production datatypeAttr delete:

 attribute(URI == rdf:datatype ,
 Â Â Â Â string-value == URI-reference)

 delete: <h4> delete: insert: </section> insert: <section id="parseLiteral" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_parseLiteral"> insert: 7.2.28 insert: Production parseLiteral delete:

 attribute(URI == rdf:parseType ,
 Â Â Â Â string-value == "Literal") "Literal")

 delete: <h4> delete: insert: </section> insert: <section id="parseResource" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_parseResource"> insert: 7.2.29 insert: Production parseResource delete:

 attribute(URI == rdf:parseType ,
 Â Â Â Â string-value == "Resource") "Resource")

 delete: <h4> delete: insert: </section> insert: <section id="parseCollection" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_parseCollection"> insert: 7.2.30 insert: Production parseCollection delete:

 attribute(URI == rdf:parseType ,
 Â Â Â Â string-value == "Collection") "Collection")

 delete: <h4> delete: insert: </section> insert: <section id="parseOther" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_parseOther"> insert: 7.2.31 insert: Production parseOther delete:

 attribute(URI == rdf:parseType ,
 delete: Â Â Â Â insert: string-value == anyString - ("Resource" ("Resource" | "Literal" "Literal" | "Collection") "Collection"))

 delete: <h4> delete: insert: </section> insert: <section id="URI-reference" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_URI-reference"> insert: 7.2.32 insert: Production URI-reference delete: IRI

 An delete: RDF URI reference delete: . IRI.

 delete: <h4> delete: insert: </section> insert: <section id="literal" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_literal"> insert: 7.2.33 insert: Production literal delete:

 Any XML element content that is allowed according to delete: [XML] delete: XML definition Content of Elements Rule [43] content . in section 3.1 Start-Tags, End-Tags, and Empty-Element Tags

 The string-value for the resulting event is discussed in delete: insert: section 7.2.17 .

 delete: <h4> delete: insert: </section> insert: <section id="rdf-id" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_rdf-id"> insert: 7.2.34 insert: Production rdf-id delete:

 An attribute delete: insert: Â· string-value Â· matching any legal delete: [XML-NS] delete: [insert: <cite> insert: XML-NAMES insert: insert: </cite>] token NCName

 delete: <h3> delete: insert: </section> insert: </section> insert: <section id="section-Reification" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-Reification"> insert: 7.3 insert: Reification Rules delete:

 For the given URI reference IRI event r and the statement with terms s , p and o corresponding to the N-Triples:

 s p o .

 add the following statements to the graph:

 r . string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#subject> s .
 r . string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate> p .
 r . string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#object> o .
 r . string-value <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement> .

 delete: <h3> delete: insert: </section> insert: <section id="section-List-Expand" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-List-Expand"> insert: 7.4 insert: List Expansion Rules delete:

 For the given element e , create a new delete: RDF URI reference delete: IRI u := concat("http://www.w3.org/1999/02/22-rdf-syntax-ns#_", concat("http://www.w3.org/1999/02/22-rdf-syntax-ns#_", e . li-counter), increment the e . li-counter property by 1 and return u .

 delete: <h2> delete: 8 insert: </section> insert: </section> insert: <section id="section-Serialising" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_section-Serialising"> insert: 8. insert: Serializing an RDF Graph to RDF/XML delete:

 There are some delete: RDF Graphs delete: as defined in delete: RDF Concepts and Abstract Syntax delete: that [insert: <cite> insert: RDF11-CONCEPTS insert: insert: </cite>]that cannot be serialized in RDF/XML. These are those that:

 		 Use property names that cannot be turned into XML namespace-qualified names.

 		 An XML namespace-qualified name (delete: insert: QName) has restrictions on the legal characters such that not all property URIs can be expressed as these names. It is recommended that implementors of RDF serializers, in order to break a URI into a namespace name and a local name, split it after the last XML non- NCName character, ensuring that the first character of the name is a Letter or '_'. If the URI ends in a non- NCName character then throw a "this "this graph cannot be serialized in RDF/XML" RDF/XML" exception or error.

 		 Use inappropriate reserved names as properties

 		 For example, a property with the same URI as any of the syntaxTerms production.

 insert: <dt> 		 Use the insert: <code> rdf:HTML insert: </code> datatype insert: </dt>

 insert: <dd> 		 This datatype as introduced in RDF 1.1 [insert: <cite> insert: RDF11-CONCEPTS insert: insert: </cite>]. insert: </dd>

 delete: <p> insert: <div class="note-title" aria-level="2" role="heading" id="h_note_18"> insert: Note insert: insert: </div>
 insert: <p class=""> Implementation Note (Informative): When an RDF graph is serialized to RDF/XML and has an XML Schema Datatype (XSD), it insert: <em class="rfc2119" title="SHOULD"> SHOULD insert: be written in a form that does not require whitespace processing. XSD support is NOT required by RDF or RDF/XML so this is optional.

 delete: <h2> delete: 9 Using RDF/XML with HTML and XHTML delete: delete: </h2> delete: <p> If RDF/XML is embedded inside HTML or XHTML this can add many new elements and attributes, many of which will not be in the appropriate DTD. This embedding causes validation against the DTD to fail. The obvious solution of changing or extending the DTD is not practical for most uses. This problem has been analyzed extensively by Sean B. Palmer in delete: RDF in HTML: Approaches delete: delete: [RDF-IN-XHTML] delete: and it concludes that there is no single embedding method that satisfies all applications and remains simple. delete: </p> delete: <p> The recommended approach is to not embed RDF/XML in HTML/XHTML but rather to use delete: <code> <link> delete: </code> element in the delete: <code> <head> delete: </code> element of the HTML/HTML to point at a separate RDF/XML document. This approach has been used for several years by the delete: Dublin Core Metadata Initiative (DCMI) delete: on its Web site. delete: </p> delete: <p> To use this technique, the delete: <code> <link> delete: </code> element delete: <code> href delete: </code> should point at the URI of the RDF/XML content and the delete: <code> type delete: </code> attribute should be used with the value of delete: <code> "application/rdf+xml" delete: </code> , the proposed MIME type for RDF/XML, see delete: Section 4 delete: delete: </p> delete: <p> The value of the delete: <code> rel delete: </code> attribute may also be set to indicate the relationship; this is an application dependent value. The DCMI has used and recommended delete: <code> rel="meta" delete: </code> when linking in delete: RFC 2731 — Encoding Dublin Core Metadata in HTML delete: delete: [RFC-2731] delete: however delete: <code> rel="alternate" delete: </code> may also be appropriate. See delete: HTML 4.01 link types delete: , delete: XHTML Modularization — LinkTypes delete: and delete: XHTML 2.0 — LinkTypes delete: for further information on the values that may be appropriate for the different versions of HTML. delete: </p> delete: <p> delete: Example 21 delete: shows using this method with the delete: <code> link delete: </code> tag inside an XHTML document to link to an external RDF/XML document. delete: </p> delete: <div class="exampleOuter"> delete: <div class="figure"> delete: Example 21: Using delete: <code> link delete: </code> in XHTML with an external RDF/XML document delete: (delete: example21.html delete: linking to delete: example21.rdf delete:) delete: </div> delete: <div class="exampleInner"> delete: <pre> <?xml version="1.0" encoding="utf-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <title>My document</title> <meta http-equiv="Content-type" content='text/html; charset="utf-8"' /> <link rel="alternate" type="application/rdf+xml" title="RDF Version" href="example21.rdf" /> </head> <body> <h1>My document</h1> </body> </html> delete: </pre> delete: </div> delete: </div> delete: <h2 class="nonum"> delete: delete: 10 insert: </section> insert: <section class="informative" id="section-rdf-in-SVG" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_section-rdf-in-SVG"> insert: 9. insert: Using RDF/XML with SVG (Informative)

 insert: <p> insert: This section is non-normative. insert: insert: </p>

 There is a standardized approach for associating RDF compatible metadata with SVG — â€” the metadata element which was explicitly designed for this purpose as defined in Section 21 Metadata of the Scalable Vector Graphics (SVG) 1.0 Specification delete: [SVG] delete: [insert: <cite> insert: SVG10 insert: insert: </cite>] and Section 21 Metadata of the Scalable Vector Graphics (SVG) 1.1 Specification delete: [SVG11] delete: . [insert: <cite> insert: SVG11 insert: insert: </cite>].

 This document contains two example graphs in SVG with such embedded RDF/XML inside the metadata element: figure 1 and figure 2 .

 delete: <h2 class="nonum"> delete: delete: 11 insert: </section> insert: <section class="appendix informative" id="section-Acknowledgments" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_section-Acknowledgments"> insert: A. insert: Acknowledgments (Informative)

 insert: <p> insert: This section is non-normative. insert: insert: </p>

 insert: <p> Gavin Carothers provided the RDF 1.1 update for the insert: Production parseTypeLiteralPropertyElt insert: . Ivan Herman provided valuable comments and reworked Figs 1 and 2. insert: </p>

 insert: <p> This specification is a product of extended deliberations by the members of the RDFcore Working Group and the RDF and RDF Schema Working Group. insert: </p>

 The following people provided valuable contributions to the document:

 		 Dan Brickley, W3C/ILRT insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> /ILRT

 		 Jeremy Carroll, HP Labs, Bristol

 		 Graham Klyne, Nine by Nine

 		 Bijan Parsia, MIND Lab at University of Maryland at College Park

 This document is a product of extended deliberations by the RDF Core working group, whose members have included: Art Barstow (W3C) (insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr>) Dave Beckett (ILRT), Dan Brickley (W3C/ILRT), (insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> /ILRT), Dan Connolly (W3C), (insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr>), Jeremy Carroll (Hewlett Packard), Ron Daniel (Interwoven Inc), Bill dehOra (InterX), Jos De Roo (AGFA), Jan Grant (ILRT), Graham Klyne (Clearswift and Nine by Nine), Frank Manola (MITRE Corporation), Brian McBride (Hewlett Packard), Eric Miller (W3C), (insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr>), Stephen Petschulat (IBM), Patrick Stickler (Nokia), Aaron Swartz (HWG), Mike Dean (BBN Technologies / Verizon), R. V. Guha (Alpiri Inc), Pat Hayes (IHMC), Sergey Melnik (Stanford University), Martyn Horner (Profium Ltd).

 This specification also draws upon an earlier RDF Model and Syntax document edited by Ora Lassilla and Ralph Swick, and RDF Schema edited by Dan Brickley and R. V. Guha. RDF and RDF Schema Working group members who contributed to this earlier work are: Nick Arnett (Verity), Tim Berners-Lee (W3C), (insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr>), Tim Bray (Textuality), Dan Brickley (ILRT / University of Bristol), Walter Chang (Adobe), Sailesh Chutani (Oracle), Dan Connolly (W3C), (insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr>), Ron Daniel (DATAFUSION), Charles Frankston (Microsoft), Patrick Gannon (CommerceNet), RV Guha (Epinions, previously of Netscape Communications), Tom Hill (Apple Computer), Arthur van Hoff (Marimba), Renato Iannella (DSTC), Sandeep Jain (Oracle), Kevin Jones, (InterMind), Emiko Kezuka (Digital Vision Laboratories), Joe Lapp (webMethods Inc.), Ora Lassila (Nokia Research Center), Andrew Layman (Microsoft), Ralph LeVan (OCLC), John McCarthy (Lawrence Berkeley National Laboratory), Chris McConnell (Microsoft), Murray Maloney (Grif), Michael Mealling (Network Solutions), Norbert Mikula (DataChannel), Eric Miller (OCLC), Jim Miller (W3C, (insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> , emeritus), Frank Olken (Lawrence Berkeley National Laboratory), Jean Paoli (Microsoft), Sri Raghavan (Digital/Compaq), Lisa Rein (webMethods Inc.), Paul Resnick (University of Michigan), Bill Roberts (KnowledgeCite), Tsuyoshi Sakata (Digital Vision Laboratories), Bob Schloss (IBM), Leon Shklar (Pencom Web Works), David Singer (IBM), Wei (William) Song (SISU), Neel Sundaresan (IBM), Ralph Swick (W3C), (insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr>), Naohiko Uramoto (IBM), Charles Wicksteed (Reuters Ltd.), Misha Wolf (Reuters Ltd.), Lauren Wood (SoftQuad).

 delete: <h2 class="nonum"> delete: delete: 12 References insert: </section> insert: <section class="appendix informative" id="changes-rdf11" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_changes-rdf11"> insert: B. insert: Changes since 2004 Recommendation

 delete: <h3> delete: delete: Normative References delete: </h3> delete: <dl> delete: <dt> delete: [RDF-MS] delete: delete: </dt> delete: <dd> delete: <cite> delete: Resource Description Framework (RDF) Model and Syntax Specification delete: delete: </cite> , O. Lassila and R. Swick, Editors. World Wide Web Consortium. 22 February 1999. insert: <p> insert: This section is non-normative. insert: insert: </p>

 insert: <p> Changes for RDF 1.1 Recommendation insert: </p>

 insert: insert: 		 No changes. insert:

 insert:

 insert: <p> Changes for RDF 1.1 Proposed Edited Recommendation: insert: </p>

 insert: insert: 		 Conversion to ReSpec. insert:

 insert: 		 RDF 2004 errata handling: insert: insert: 		 Replaced hard-coded reference to XML and Unicode versions (insert: background info insert:) insert:

 insert: 		 Corrected the resolve action with the signature resolve(e, s) (insert: background info insert:) insert:

 insert: 		 Added parent accessor to element events (insert: background info insert:) insert:

 insert: 		 Allow datatyped empty literals (insert: background info insert:) insert:

 insert: 		 Removed ID and datatype exclusion on literal property (insert: background info insert:) insert:

 insert:

 insert:

 insert: 		 Adapted and shortened introduction to reflect RDF 1.1 insert:

 insert: 		 Updated references to RDF 1.1 documents insert:

 insert: 		 Replaced "(RDF) URI reference" with "IRI" insert:

 insert: 		 Removed Section on embedding RDF/XML into HTML insert:

 insert: 		 Removed "Specification" from the title to bring it in line with other RDF 1.1 document titles insert:

 insert: 		 Updated references to other documents insert:

 insert: 		 Changed links in Sec. 2 examples from relative URI to absolute URI; same for RELAX schema in Appendix. insert:

 insert: 		 Added note to section on plain-literal event insert:

 insert: 		 Updated link to QName definition in XML-NAMES insert:

 insert: 		 Added diff with 2004 Recommendation insert:

 insert: 		 Sections concerning insert: <code> rdf:XMLLiteral insert: </code> (insert: Sec. 2.8 insert: and insert: Sec. 7.2.17 insert:) marked as non-normative. insert:

 insert: 		 Adapted insert: Production parseTypeLiteralPropertyElt insert: to cater for the non-normative status of insert: <code> rdf:XMLLiteral insert: </code> . insert:

 insert: 		 Improved version is http://www.w3.org/TR/1999/REC-rdf-syntax-19990222. The delete: latest version of of Figs. 1 and 2 (with same content) insert:

 insert: 		 Removed old changes section insert:

 insert: 		 Informative notes at start of Sec. 5.1 removed, as these have become irrelevant. insert:

 insert: 		 Added new datatype insert: <code> rdf:HTML insert: </code> to the list of things that cannot be serialized in RDF/XML. insert:

 insert: 		 Replaced the link to 2004 N-Triples insert: <code> nodeID insert: </code> production to the RDF M&S delete: is available at http://www.w3.org/TR/REC-rdf-syntax. delete: </dd> delete: <dt> delete: [XML] delete: delete: </dt> delete: <dd> delete: <cite> delete: Extensible Markup Language (XML) 1.0, Second Edition delete: delete: </cite> , T. Bray, J. Paoli, C.M. Sperberg-McQueen and E. Maler, Editors. World Wide Web Consortium. 6 October 2000. This version is http://www.w3.org/TR/2000/REC-xml-20001006. delete: latest version of XML delete: is available at http://www.w3.org/TR/REC-xml. delete: </dd> delete: <dt> delete: [XML-NS] delete: delete: </dt> delete: <dd> delete: <cite> delete: Namespaces in XML delete: delete: </cite> , T. Bray, D. Hollander and A. Layman, Editors. World Wide Web Consortium. 14 January 1999. This version is http://www.w3.org/TR/1999/REC-xml-names-19990114. The delete: latest version of Namespaces in XML delete: is available at http://www.w3.org/TR/REC-xml-names. delete: </dd> delete: <dt> delete: [INFOSET] delete: delete: </dt> delete: <dd> delete: <cite> delete: XML Information Set delete: delete: </cite> , J. Cowan and R. Tobin, Editors. World Wide Web Consortium. 24 October 2001. This version is http://www.w3.org/TR/2001/REC-xml-infoset-20011024. The delete: latest version of XML Information set delete: is available at http://www.w3.org/TR/xml-infoset. delete: </dd> delete: <dt> delete: [URIS] delete: delete: </dt> delete: <dd> delete: <cite> delete: RFC 2396 — Uniform Resource Identifiers (URI): Generic Syntax delete: delete: </cite> , T. Berners-Lee, R. Fielding and L. Masinter, IETF, August 1998. This document is http://www.isi.edu/in-notes/rfc2396.txt. delete: </dd> delete: <dt> delete: <a id="ref-rdf-concepts"
 name="ref-rdf-concepts"> delete: [RDF-CONCEPTS] delete: </dt> delete: <dd> delete: <cite> delete: Resource Description Framework (RDF): Concepts and Abstract Syntax delete: delete: </cite> , Klyne G., Carroll J. (Editors), W3C Recommendation, 10 February 2004. delete: This version delete: is http://www.w3.org/TR/2004/REC-rdf-primer-20040210/. The delete: latest version delete: is http://www.w3.org/TR/rdf-concepts/. delete: </dd> delete: <dt> delete: <a id="ref-rdf-tests"
 name="ref-rdf-tests"> delete: [RDF-TESTS] delete: </dt> delete: <dd> delete: <cite> delete: RDF Test Cases delete: delete: </cite> , Grant J., Beckett D. (Editors), W3C Recommendation, 10 February 2004. delete: This version delete: is http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/. The delete: latest version delete: is http://www.w3.org/TR/rdf-testcases/. delete: </dd> delete: <dt> delete: [KEYWORDS] delete: delete: </dt> delete: <dd> delete: <cite> delete: RFC 2119 — Key words for use in RFCs to Indicate Requirement Levels delete: delete: </cite> , S. Bradner, IETF. March 1997. This document is http://www.ietf.org/rfc/rfc2119.txt. delete: </dd> delete: <dt> delete: [RFC-3023] delete: delete: </dt> delete: <dd> delete: <cite> delete: RFC 3023 — XML Media Types delete: delete: </cite> , M. Murata, S. St.Laurent, D.Kohn, IETF. January 2001. This document is http://www.ietf.org/rfc/rfc3023.txt. delete: </dd> delete: <dt> delete: [IANA-MEDIA-TYPES] delete: delete: </dt> delete: <dd> delete: <cite> delete: MIME Media Types delete: delete: </cite> , The Internet Assigned Numbers Authority (IANA). This document is http://www.iana.org/assignments/media-types/ . The delete: registration for delete: <code> application/rdf+xml delete: </code> delete: is archived at http://www.w3.org/2001/sw/RDFCore/mediatype-registration . delete: </dd> delete: <dt> delete: [XML-BASE] delete: delete: </dt> delete: <dd> delete: <cite> delete: XML Base delete: delete: </cite> , J. Marsh, Editor, W3C Recommendation. World Wide Web Consortium, 27 June 2001. This version of XML Base is http://www.w3.org/TR/2001/REC-xmlbase-20010627. The delete: latest version of XML Base delete: is at http://www.w3.org/TR/xmlbase. delete: </dd> delete: <dt> delete: [XML-XC14N] delete: delete: </dt> delete: <dd> delete: <cite> delete: Exclusive XML Canonicalization Version 1.0 delete: delete: </cite> , J. Boyer, D.E. Eastlake 3rd, J. Reagle, Authors/Editors. W3C Recommendation. World Wide Web Consortium, 18 July 2002. This version of Exclusive XML Canonicalization is http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718. The delete: latest version of Canonical XML delete: is at http://www.w3.org/TR/xml-exc-c14n. delete: </dd> delete: <dt> delete: [UNICODE] delete: delete: </dt> delete: <dd> delete: <cite> The Unicode Standard, Version 3 delete: </cite> , The Unicode Consortium, Addison-Wesley, 2000. ISBN 0-201-61633-5, as updated from time to time by the publication of new versions. (See delete: http://www.unicode.org/unicode/standard/versions/ delete: for the latest version and additional information on versions of the standard and of the Unicode Character Database). delete: </dd> delete: <dt> delete: [NFC] delete: delete: </dt> delete: <dd> delete: delete: <cite> Unicode Normalization Forms, delete: </cite> delete: Unicode Standard Annex #15, Mark Davis, Martin DÃ¼rst. (See delete: http://www.unicode.org/unicode/reports/tr15/ delete: for the latest version). delete: </dd> delete: </dl> delete: <h3> delete: delete: Informational References delete: </h3> delete: <dl> delete: <dt> delete: [CHARMOD] delete: delete: </dt> delete: <dd> delete: <cite> delete: Character Model for the World Wide Web 1.0 delete: delete: </cite> , M. DÃ¼rst, F. Yergeau, R. Ishida, M. Wolf, A. Freytag, T Texin, Editors, World Wide Web Consortium Working Draft, work in progress, 20 February 2002. This version of the Character Model is http://www.w3.org/TR/2002/WD-charmod-20020220. The delete: latest version of the Character Model delete: is at http://www.w3.org/TR/charmod. delete: </dd> delete: <dt> delete: <a id="ref-rdf-semantics"
 name="ref-rdf-semantics"> delete: [RDF-SEMANTICS] delete: </dt> delete: <dd> delete: <cite> delete: RDF Semantics delete: delete: </cite> , Hayes P. (Editor), W3C Recommendation, 10 February 2004. delete: <a href =
"http://www.w3.org/TR/2004/REC-rdf-mt-20040210/"> This version delete: is http://www.w3.org/TR/2004/REC-rdf-mt-20040210/. The delete: latest version delete: is http://www.w3.org/TR/rdf-mt/. delete: </dd> delete: <dt> delete: [RDF-PRIMER] delete: delete: </dt> delete: <dd> delete: <cite> delete: RDF Primer delete: delete: </cite> , F. Manola, E. Miller, Editors, W3C Recommendation, 10 February 2004. delete: This version delete: is http://www.w3.org/TR/2004/REC-rdf-primer-20040210/. The delete: latest version delete: is at http://www.w3.org/TR/rdf-primer/. delete: </dd> delete: <dt> delete: <a id="ref-rdf-vocabulary"
 name="ref-rdf-vocabulary"> delete: [RDF-VOCABULARY] delete: </dt> delete: <dd> delete: <cite> delete: RDF Vocabulary Description Language 1.0: RDF Schema delete: delete: </cite> , Brickley D., Guha R.V. (Editors), W3C Recommendation, 10 February 2004. delete: This version delete: is http://www.w3.org/TR/2004/REC-rdf-schema-20040210/. The delete: latest version delete: is http://www.w3.org/TR/rdf-schema/. delete: </dd> delete: <dt> delete: [STRIPEDRDF] delete: delete: </dt> delete: <dd> delete: <cite> delete: RDF: Understanding the Striped RDF/XML Syntax delete: delete: </cite> , D. Brickley, W3C, 2001. This document is http://www.w3.org/2001/10/stripes/. delete: </dd> delete: <dt> delete: [SVG] delete: delete: </dt> delete: <dd> delete: <cite> delete: Scalable Vector Graphics (SVG) 1.0 Specification delete: delete: </cite> , J. Ferraiolo (editor), 4 September 2001, W3C Recommendation. This version of SVG is http://www.w3.org/TR/2001/REC-SVG-20010904. The delete: latest version of SVG delete: is at http://www.w3.org/TR/SVG. delete: </dd> delete: <dt> delete: [SVG11] delete: delete: </dt> delete: <dd> delete: <cite> delete: Scalable Vector Graphics (SVG) 1.1 Specification delete: delete: </cite> , J. Ferraiolo, J. FUJISAWA, D. Jackson (editors), 14 January 2003, W3C Recommendation. This version of SVG is http://www.w3.org/TR/2003/REC-SVG11-20030114/. The delete: latest version of SVG delete: is at http://www.w3.org/TR/SVG11. delete: </dd> delete: <dt> delete: [XPATH] delete: delete: </dt> delete: <dd> delete: <cite> delete: XML Path Language (XPath) Version 1.0 delete: delete: </cite> , J. Clark and S. DeRose, Editors. World Wide Web Consortium, 16 November 1999. This version of XPath is http://www.w3.org/TR/1999/REC-xpath-19991116. The delete: latest version of XPath delete: is at http://www.w3.org/TR/xpath. delete: </dd> delete: <dt> delete: [SAX2] delete: delete: </dt> delete: <dd> delete: <cite> delete: SAX Simple API for XML, version 2 delete: delete: </cite> , D. Megginson, SourceForge, 5 May 2000. This document is http://sax.sourceforge.net/. delete: </dd> delete: <dt> delete: [UNPARSING] delete: delete: </dt> delete: <dd> delete: <cite> delete: Unparsing RDF/XML delete: delete: </cite> , J. J. Carroll, HP Labs Technical Report, HPL-2001-294, 2001. This document is available at http://www.hpl.hp.com/techreports/2001/HPL-2001-294.html. delete: </dd> delete: <dt> delete: [RELAXNG] delete: delete: </dt> delete: <dd> delete: <cite> delete: RELAX NG Specification delete: delete: </cite> , James Clark and MURATA Makoto, Editors, OASIS Committee Specification, 3 December 2001. This version of RELAX NG is http://www.oasis-open.org/committees/relax-ng/spec-20011203.html. The delete: latest version of the RELAX NG Specification delete: is at http://www.oasis-open.org/committees/relax-ng/spec.html. delete: </dd> delete: <dt> delete: [RELAXNG-COMPACT] delete: delete: </dt> delete: <dd> delete: <cite> delete: RELAX NG Compact Syntax delete: delete: </cite> , James Clark, Editor. OASIS Committee Specification, 21 November 2002. This document is http://www.oasis-open.org/committees/relax-ng/compact-20021121.html. delete: </dd> delete: <dt> delete: [RDF-IN-XHTML] delete: delete: </dt> delete: <dd> delete: <cite> delete: RDF in HTML: Approaches delete: delete: </cite> , Sean B. Palmer, 2002 delete: </dd> delete: <dt> delete: [RFC-2731] delete: delete: </dt> delete: <dd> delete: <cite> delete: RFC 2731 — Encoding Dublin Core Metadata in HTML delete: delete: </cite> , John Kunze, DCMI, December 1999. delete: </dd> delete: <dt> delete: delete: [XML-SCHEMA1] delete: </dt> delete: <dd> delete: <cite> delete: XML Schema Part 1: Structures delete: delete: </cite> , H.S. Thompson, D. Beech, M. Maloney, N. Mendelsohn, Editors, World Wide Web Consortium Recommendation, 2 May 2001. This version of XML Schema Part 1: Structures is http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/. The delete: latest version of XML Schema Part 1: Structures delete: is at http://www.w3.org/TR/xmlschema-1. delete: </dd> delete: <dt> delete: delete: [XML-SCHEMA2] delete: </dt> delete: <dd> delete: <cite> delete: XML Schema Part 2: Datatypes delete: delete: </cite> , P.V. Biron, A. Malhotra, Editors, World Wide Web Consortium Recommendation, 2 May 2001. This version of XML Schema Part 2: Datatypes is http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/. The delete: latest version of XML Schema Part 2: Datatypes delete: is at http://www.w3.org/TR/xmlschema-2. delete: </dd> delete: </dl> delete: <hr /> delete: <h2> delete: delete: A N-Triples insert: <code> BLANK_NODE_LABEL insert: </code> production. insert:

 insert:

 insert: </section> insert: <section class="appendix informative" id="section-Schemas" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_section-Schemas"> insert: C. insert: Syntax Schemas (Informative)

 insert: <p> insert: This section is non-normative. insert: insert: </p>

 This appendix contains XML schemas for validating RDF/XML forms. These are example schemas for information only and are not part of this specification.

 delete: <h3> delete: delete: A.1 RELAX NG insert: <section class="informative" id="section-RELAXNG-Schema" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_section-RELAXNG-Schema"> insert: C.1 insert: RELAXÂ NG Compact Schema (Informative)

 insert: This section is non-normative. insert: insert: </p>

 insert: <p> This is an insert: example schema in RELAX NG RELAXÂ NG Compact insert: (for ease of reading) for RDF/XML. Applications can also use the delete: RELAX NG insert: RELAXÂ NG XML version . These formats are described in delete: RELAX NG delete: (delete: [RELAXNG] delete:) and delete: RELAX NG RELAXÂ NG [insert: <cite> insert: RELAXNG insert: insert: </cite>] and RELAXÂ NG Compact delete: (delete: [RELAXNG-COMPACT] delete:). [insert: <cite> insert: RELAXNG-COMPACT insert: insert: </cite>].

 delete: <p> delete: Note: delete: insert: <div class="note-title" aria-level="3" role="heading" id="h_note_19"> insert: Note insert: insert: </div>
 insert: <p class=""> The RNGC schema has been updated to attempt to match the grammar but this has not been checked or used to validate RDF/XML.

 delete: <div class="exampleOuter"> delete: <div class="figure"> delete: RELAX NG Compact Schema for RDF/XML delete: delete: </div> delete: <div class="exampleInner"> # # RELAX NG Compact Schema for RDF/XML Syntax # # This schema is for information only and NON-NORMATIVE # # It is based on one originally written by James Clark in # http://lists.w3.org/Archives/Public/www-rdf-comments/2001JulSep/0248.html # and updated with later changes. # namespace local = "" "" namespace rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#" "http://www.w3.org/1999/02/22-rdf-syntax-ns#" datatypes xsd = "http://www.w3.org/2001/XMLSchema-datatypes" "http://www.w3.org/2001/XMLSchema-datatypes" start = doc # I cannot seem to do this in RNGC so they are expanded in-line # coreSyntaxTerms = rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype # syntaxTerms = coreSyntaxTerms | rdf:Description | rdf:li # oldTerms = rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID # nodeElementURIs = * - (coreSyntaxTerms | rdf:li | oldTerms) # propertyElementURIs = * - (coreSyntaxTerms | rdf:Description | oldTerms) # propertyAttributeURIs = * - (coreSyntaxTerms | rdf:Description | rdf:li | oldTerms) # Also needed to allow rdf:li on all property element productions # since we can't capture the rdf:li rewriting to rdf_<n> in relaxng # Need to add these explicitly xmllang = attribute xml:lang { text } xmlbase = attribute xml:base { text } # and to forbid every other xml:* attribute, element doc = RDF | nodeElement RDF = element rdf:RDF { xmllang?, xmlbase?, nodeElementList } nodeElementList = nodeElement* # Should be something like: # ws* , (nodeElement , ws*)* # but RELAXNG does this by default, ignoring whitespace separating tags. nodeElement = element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype | rdf:li | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID) { (idAttr | nodeIdAttr | aboutAttr)?, xmllang?, xmlbase?, propertyAttr*, propertyEltList } # It is not possible to say "and "and not things # beginning with _ in the rdf: namespace" namespace" in RELAX NG. ws = " " " " # Not used in this RELAX NG schema; but should be any legal XML # whitespace defined by http://www.w3.org/TR/2000/REC-xml-20001006#NT-S propertyEltList = propertyElt* # Should be something like: # ws* , (propertyElt , ws*)* # but RELAXNG does this by default, ignoring whitespace separating tags. propertyElt = resourcePropertyElt | literalPropertyElt | parseTypeLiteralPropertyElt | parseTypeResourcePropertyElt | parseTypeCollectionPropertyElt | parseTypeOtherPropertyElt | emptyPropertyElt resourcePropertyElt = element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype | rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID | xml:*) { idAttr?, xmllang?, xmlbase?, nodeElement } literalPropertyElt = element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype | rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID | xml:*) { (idAttr | datatypeAttr)?, idAttr? , datatypeAttr?, xmllang?, xmlbase?, text } parseTypeLiteralPropertyElt = element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype | rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID | xml:*) { idAttr?, parseLiteral, xmllang?, xmlbase?, literal } parseTypeResourcePropertyElt = element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype | rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID | xml:*) { idAttr?, parseResource, xmllang?, xmlbase?, propertyEltList } parseTypeCollectionPropertyElt = element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype | rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID | xml:*) { idAttr?, xmllang?, xmlbase?, parseCollection, nodeElementList } parseTypeOtherPropertyElt = element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype | rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID | xml:*) { idAttr?, xmllang?, xmlbase?, parseOther, any } emptyPropertyElt = element * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype | rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID | xml:*) { idAttr?, (resourceAttr | nodeIdAttr)?, nodeIdAttr | datatypeAttr)?, xmllang?, xmlbase?, propertyAttr* } idAttr = attribute rdf:ID { IDsymbol } nodeIdAttr = attribute rdf:nodeID { IDsymbol } aboutAttr = attribute rdf:about { URI-reference } propertyAttr = attribute * - (local:* | rdf:RDF | rdf:ID | rdf:about | rdf:parseType | rdf:resource | rdf:nodeID | rdf:datatype | rdf:li | rdf:Description | rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID | xml:*) { string } resourceAttr = attribute rdf:resource { URI-reference } datatypeAttr = attribute rdf:datatype { URI-reference } parseLiteral = attribute rdf:parseType { "Literal" "Literal" } parseResource = attribute rdf:parseType { "Resource" "Resource" } parseCollection = attribute rdf:parseType { "Collection" "Collection" } parseOther = attribute rdf:parseType { text } URI-reference = string literal = any IDsymbol = xsd:NMTOKEN any = mixed { element * { attribute * { text }*, any }* }

 delete: </div> delete: </div> delete: <h2> delete: delete: delete: B Revisions since Draft 10 insert: </section> insert: </section> insert: <section class="appendix" id="references" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_references"> insert: D. insert: References insert: </h2>

 insert: <section id="normative-references" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_normative-references"> insert: D.1 insert: Normative references insert: </h3>

 insert: <dl class="bibliography" about=""> insert: <dt id="bib-JSON-LD"> 		 [JSON-LD] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Manu Sporny, Gregg Kellogg, Markus Lanthaler, Editors. insert: <cite> insert: JSON-LD 1.0 insert: insert: </cite> . 16 January 2014. W3C Recommendation. URL: insert: http://www.w3.org/TR/json-ld/ insert: insert: </dd>

 insert: <dt id="bib-N-TRIPLES"> 		 [N-TRIPLES] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Gavin Carothers, Andy Seabourne. insert: <cite> insert: RDF 1.1 N-Triples insert: insert: </cite> . W3C Recommendation, 25 February 2014. URL: insert: http://www.w3.org/TR/2014/REC-n-triples-20140225/ insert: . The latest edition is available at insert: http://www.w3.org/TR/n-triples/ insert: insert: </dd>

 insert: <dt id="bib-RDF11-CONCEPTS"> 		 [RDF11-CONCEPTS] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Richard Cyganiak, David Wood, Markus Lanthaler. insert: <cite> insert: RDF 1.1 Concepts and Abstract Syntax. insert: insert: </cite> W3C Recommendation, 25 February 2014. URL: insert: http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/ insert: . The latest edition is available at insert: http://www.w3.org/TR/rdf11-concepts/ insert: insert: </dd>

 insert: <dt id="bib-RDF11-MT"> 		 [RDF11-MT] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Patrick J. Hayes, Peter F. Patel-Schneider. insert: <cite> insert: RDF 1.1 Semantics. insert: insert: </cite> W3C Recommendation, 25 February 2014. URL: insert: http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/ insert: . The latest edition is available at insert: http://www.w3.org/TR/rdf11-mt/ insert: insert: </dd>

 insert: <dt id="bib-RDF11-SCHEMA"> 		 [RDF11-SCHEMA] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Dan Brickley, R. V. Guha. insert: <cite> insert: RDF Schema 1.1 insert: insert: </cite> . W3C Recommendation, 25 February 2014. URL: insert: http://www.w3.org/TR/2014/REC-rdf-schema-20140225/ insert: . The latest published version is available at insert: http://www.w3.org/TR/rdf-schema/ insert: . insert: </dd>

 insert: <dt id="bib-RDFA-PRIMER"> 		 [RDFA-PRIMER] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Ivan Herman; Ben Adida; Manu Sporny; Mark Birbeck. insert: insert: <cite> RDFa 1.1 Primer - Second Edition insert: </cite> insert: . 22 August 2013. W3C Note. URL: insert: http://www.w3.org/TR/rdfa-primer/ insert: insert: </dd>

 insert: <dt id="bib-RFC3023"> 		 [RFC3023] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 M. Murata; S. St.Laurent; D. Kohn. insert: insert: <cite> XML Media Types (RFC 3023) insert: </cite> insert: . January 2001. RFC. URL: insert: http://www.ietf.org/rfc/rfc3023.txt insert: insert: </dd>

 insert: <dt id="bib-TRIG"> 		 [TRIG] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Gavin Carothers, Andy Seaborne. insert: <cite> insert: TriG: RDF Dataset Language insert: insert: </cite> . W3C Recommendation, 25 February 2014. URL: insert: http://www.w3.org/TR/2014/REC-trig-20140225/ insert: . The latest edition is available at insert: http://www.w3.org/TR/trig/ insert: insert: </dd>

 insert: <dt id="bib-TURTLE"> 		 [TURTLE] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Eric Prud'hommeaux, Gavin Carothers. insert: <cite> insert: RDF 1.1 Turtle: Terse RDF Triple Language. insert: insert: </cite> W3C Recommendation, 25 February 2014. URL: insert: http://www.w3.org/TR/2014/REC-turtle-20140225/ insert: . The latest edition is available at insert: http://www.w3.org/TR/turtle/ insert: insert: </dd>

 insert: <dt id="bib-XML-INFOSET"> 		 [XML-INFOSET] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 John Cowan; Richard Tobin. insert: insert: <cite> XML Information Set (Second Edition) insert: </cite> insert: . 4 February 2004. W3C Recommendation. URL: insert: http://www.w3.org/TR/xml-infoset insert: insert: </dd>

 insert: <dt id="bib-XML-NAMES"> 		 [XML-NAMES] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Tim Bray; Dave Hollander; Andrew Layman; Richard Tobin; Henry Thompson et al. insert: insert: <cite> Namespaces in XML 1.0 (Third Edition) insert: </cite> insert: . 8 December 2009. W3C Recommendation. URL: insert: http://www.w3.org/TR/xml-names insert: insert: </dd>

 insert: <dt id="bib-XML10"> 		 [XML10] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Tim Bray; Jean Paoli; Michael Sperberg-McQueen; Eve Maler; FranÃ§ois Yergeau et al. insert: insert: <cite> Extensible Markup Language (XML) 1.0 (Fifth Edition) insert: </cite> insert: . 26 November 2008. W3C Recommendation. URL: insert: http://www.w3.org/TR/xml insert: insert: </dd>

 insert: <dt id="bib-XMLSCHEMA-2"> 		 [XMLSCHEMA-2] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Paul V. Biron; Ashok Malhotra. insert: insert: <cite> XML Schema Part 2: Datatypes Second Edition insert: </cite> insert: . 28 October 2003 (Informative) delete: delete: </h2> delete: <p> Changes since delete: 10 October 2003 delete: second last call working draft delete: </p> delete: <p> These are are divided into non-editorial and editorial. The non-editorial changes also list consquential editorial changes. Editorial changes are those which do not result in any change in the meaning of an RDF document or the behaviour of an RDF application. delete: </p> delete: <h3> delete: Appendix B.1: Non-Editorial Revisions delete: delete: </h3> delete: <p> None delete: </p> delete: <h3> delete: Appendix B.2: Editorial Revisions delete: delete: </h3> delete: <dl> delete: <dt> German Translation delete: </dt> delete: <dd> Fix the German in delete: Example 8 delete: in section delete: 2.7 delete: after the delete: comment by Benjamin Nowack delete: delete: </dd> delete: <dt> No property attributes on rdf:parseType="Resource" delete: </dt> delete: <dd> delete: 2.5 delete: Update to reflect the syntax definition that property attributes cannot be used with delete: <code> rdf:parseType="Resource" delete: </code> as pointed out by delete: comment by Sabadello 2003-10-30 delete: delete: </dd> delete: <dt> URI Encoding delete: </dt> delete: <dd> delete: 6.1.6 delete: , delete: 6.1.8 delete: , delete: 6.1.9 delete: after delete: proposal by Jeremy Carroll delete: delete:
 delete: 6.1.2 delete: , delete: 6.1.4 delete: Added element/attribute URI-string-value accessors delete:
 delete: 7.2.11 delete: , delete: 7.2.21 delete: Added use of new uri event for the delete: <code> rdf:type delete: </code> cases delete:
 delete: 7.2.11 delete: (<e.URI> and <a.URI>), delete: 7.2.15 delete: (<e.URI>) delete: 7.2.16 delete: (<e.URI>) delete: 7.2.17 delete: (<e.URI>) delete: 7.2.18 delete: (<e.URI>) delete: 7.2.19 delete: (<e.URI> twice) delete: 7.2.21 delete: (<e.URI> twice, <a.URI> once) changed from X.URI to X.URI-string-value (anywhere "<"..">" appeared in the grammar action without a hardcoded URI reference) delete:
 delete: 7.2.32 delete: Replace action wording with "An RDF URI reference" delete:
 All changed as outlined in delete: proposal 2003-10-06 delete: after delete: comment by Patel-Schneider 2003-10-29 2004. W3C Recommendation. URL: insert: http://www.w3.org/TR/xmlschema-2/

 delete: <h3> delete: Appendix B.3: Issues requiring no document revisions delete: insert: </section> insert: <section id="informative-references" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_informative-references"> insert: D.2 insert: Informative references

 delete: <p> None delete: </p> delete: <p> delete: delete: delete: delete: delete: delete: delete: </p> delete: <hr /> delete: <div class="metadata"> delete: <p> delete: delete: delete: delete: </p> delete: </div> insert: <dl class="bibliography" about=""> insert: <dt id="bib-CHARMOD"> 		 [CHARMOD] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 Martin DÃ¼rst; FranÃ§ois Yergeau; Richard Ishida; Misha Wolf; Tex Texin et al. insert: insert: <cite> Character Model for the World Wide Web 1.0: Fundamentals insert: </cite> insert: . 15 February 2005. W3C Recommendation. URL: insert: http://www.w3.org/TR/charmod/ insert: insert: </dd>

 insert: <dt id="bib-IANA-MEDIA-TYPES"> 		 [IANA-MEDIA-TYPES] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 insert: <cite> insert: MIME Media Types insert: insert: </cite> . The Internet Assigned Numbers Authority (IANA). The registration for application/rdf+xml is archived at insert: http://www.w3.org/2001/sw/RDFCore/mediatype-registration insert: . insert: </dd>

 insert: <dt id="bib-NFC"> 		 [NFC] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 M. Davis, Ken Whistler. insert: insert: <cite> TR15, Unicode Normalization Forms. insert: </cite> insert: . 17 September 2010, URL: insert: http://www.unicode.org/reports/tr15/ insert: insert: </dd>

 insert: <dt id="bib-RDFMS"> 		 [RDFMS] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 Ora Lassila; Ralph R. Swick. insert: <cite> insert: Resource Description Framework (RDF) Model and Syntax Specification insert: insert: </cite> . 22 February 1999. W3C Recommendation. URL: insert: http://www.w3.org/TR/1999/REC-rdf-syntax-19990222 insert: . insert: </dd>

 insert: <dt id="bib-RELAXNG"> 		 [RELAXNG] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 James Clark and Murata Makoto, editors. insert: <cite> insert: RELAX NG Specification insert: insert: </cite> . OASIS Committee Specification, 3 December 2001. Latest version: insert: http://www.oasis-open.org/committees/relax-ng/spec.html insert: . insert: </dd>

 insert: <dt id="bib-RELAXNG-COMPACT"> 		 [RELAXNG-COMPACT] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 James Clark, editor. insert: <cite> insert: RELAX NG Compact Syntax insert: insert: </cite> . OASIS Committee Specification, 21 November 2002. URI: insert: http://www.oasis-open.org/committees/relax-ng/compact-20021121.html insert: . insert: </dd>

 insert: <dt id="bib-RFC2119"> 		 [RFC2119] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 S. Bradner. insert: insert: <cite> Key words for use in RFCs to Indicate Requirement Levels. insert: </cite> insert: March 1997. Internet RFC 2119. URL: insert: http://www.ietf.org/rfc/rfc2119.txt insert: insert: </dd>

 insert: <dt id="bib-RFC3986"> 		 [RFC3986] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 T. Berners-Lee; R. Fielding; L. Masinter. insert: insert: <cite> Uniform Resource Identifier (URI): Generic Syntax (RFC 3986) insert: </cite> insert: . January 2005. RFC. URL: insert: http://www.ietf.org/rfc/rfc3986.txt insert: insert: </dd>

 insert: <dt id="bib-SAX"> 		 [SAX] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 D. Megginson, et al. insert: insert: <cite> SAX: The Simple API for XML insert: </cite> insert: . May 1998. URL: insert: http://www.megginson.com/downloads/SAX/ insert: insert: </dd>

 insert: <dt id="bib-STRIPEDRDF"> 		 [STRIPEDRDF] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 D. Brickley. insert: <cite> insert: RDF: Understanding the Striped RDF/XML Syntax insert: . W3C, 2001. URI: insert: http://www.w3.org/2001/10/stripes/ insert: . insert: </cite> insert: </dd>

 insert: <dt id="bib-SVG10"> 		 [SVG10] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 Jon Ferraiolo. insert: insert: <cite> Scalable Vector Graphics (SVG) 1.0 Specification insert: </cite> insert: . 4 September 2001. W3C Recommendation. URL: insert: http://www.w3.org/TR/SVG/ insert: insert: </dd>

 insert: <dt id="bib-SVG11"> 		 [SVG11] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 Erik DahlstrÃ¶m; Patrick Dengler; Anthony Grasso; Chris Lilley; Cameron McCormack; Doug Schepers; Jonathan Watt; Jon Ferraiolo; Jun Fujisawa; Dean Jackson et al. insert: insert: <cite> Scalable Vector Graphics (SVG) 1.1 (Second Edition) insert: </cite> insert: . 16 August 2011. W3C Recommendation. URL: insert: http://www.w3.org/TR/SVG11/ insert: insert: </dd>

 insert: <dt id="bib-UNICODE"> 		 [UNICODE] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 insert: insert: <cite> The Unicode Standard insert: </cite> insert: . URL: insert: http://www.unicode.org/versions/latest/ insert: insert: </dd>

 insert: <dt id="bib-XMLBASE"> 		 [XMLBASE] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 Jonathan Marsh; Richard Tobin. insert: insert: <cite> XML Base (Second Edition) insert: </cite> insert: . 28 January 2009. W3C Recommendation. URL: insert: http://www.w3.org/TR/xmlbase/ insert: insert: </dd>

 insert: <dt id="bib-XMLSCHEMA-1"> 		 [XMLSCHEMA-1] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 Henry Thompson; David Beech; Murray Maloney; Noah Mendelsohn et al. insert: insert: <cite> XML Schema Part 1: Structures Second Edition insert: </cite> insert: . 28 October 2004. W3C Recommendation. URL: insert: http://www.w3.org/TR/xmlschema-1/ insert: insert: </dd>

 insert: <dt id="bib-XPATH"> 		 [XPATH] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 James Clark; Steven DeRose. insert: insert: <cite> XML Path Language (XPath) Version 1.0 insert: </cite> insert: . 16 November 1999. W3C Recommendation. URL: insert: http://www.w3.org/TR/xpath insert: insert: </dd>

 insert: <dt id="bib-XPATH-DATAMODEL-30"> 		 [XPATH-DATAMODEL-30] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 Norman Walsh; Anders Berglund; John Snelson. insert: insert: <cite> XQuery and XPath Data Model 3.0 insert: </cite> insert: . 22 October 2013. W3C Proposed Recommendation. URL: insert: http://www.w3.org/TR/xpath-datamodel-30/ insert: insert: </dd>

 insert: <dt id="bib-XPATH-FUNCTIONS-30"> 		 [XPATH-FUNCTIONS-30] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 Michael Kay. insert: insert: <cite> XPath and XQuery Functions and Operators 3.0 insert: </cite> insert: . 22 October 2013. W3C Proposed Recommendation. URL: insert: http://www.w3.org/TR/xpath-functions-30/ insert: insert: </dd>

 insert: </dl>

 insert: </section> insert: </section>

rdfa-primer/diagrams/title-and-author.png
<http:lexample.com/alice/postsftrouble_with_bob>

<http:fipur orgldcermsile>

<http:ipurl orgldcfterms/created>

N\

“The Trouble with Bob" 2011-09-10"

StyleSheets/TR/logo-CR.png
UONEPUSWWIODY EPIPUED) DEAA

rdfa-primer/diagrams/blog-with-foaf.png
<hitpexampie.comalicalposisirouble _with_bob>

deiite

v .

“The Troubie with Bob"
_blanknode TYPE () foafPerson

foatphone

p— \o

<tel+1.617-655.7332>
foatname.

<maito:aice@example.com>

“Alco Bipemsuick’

json-ld-api/diff-20131105.xhtml

[image: W3C]

JSON-LD
1.0
Processing
Algorithms
and
API

W3C

Proposed

Recommendation
05
November
2013

16
January
2014

		
This
version:

		
http://www.w3.org/TR/2013/PR-json-ld-api-20131105/

http://www.w3.org/TR/2014/REC-json-ld-api-20140116/

		
Latest
published
version:

		

http://www.w3.org/TR/json-ld-api/

		
Latest
editor's
draft:
http://dvcs.w3.org/hg/json-ld/raw-file/default/spec/latest/json-ld-api/index.html

Test
suite:

		

http://www.w3.org/2013/json-ld-tests/

		
Previous
version:

		
http://www.w3.org/TR/2013/CR-json-ld-api-20130910/

http://www.w3.org/TR/2013/PR-json-ld-api-20131105/

		
Editors:

		

Markus
Lanthaler
,

Graz
University
of
Technology

		

Gregg
Kellogg
,

Kellogg
Associates

		

Manu
Sporny
,

Digital
Bazaar

		
Authors:

		

Dave
Longley
,

Digital
Bazaar

		

Gregg
Kellogg
,

Kellogg
Associates

		

Markus
Lanthaler
,

Graz
University
of
Technology

		

Manu
Sporny
,

Digital
Bazaar

Please
refer
to
the

errata

for
this
document,
which
may
include
some
normative
corrections.

This
document
is
also
available
in
this
non-normative
format:

diff
to
previous
version

The
English
version
of
this
specification
is
the
only
normative
version.
Non-normative

translations

may
also
be
available.

Copyright

©
2010-2013

2010-2014

W3C

®

(

MIT

,

ERCIM

,

Keio
,

Beihang

),
All
Rights
Reserved.

W3C

liability
,

trademark

and

document
use

rules
apply.

Abstract

This
specification
defines
a
set
of
algorithms
for
programmatic
transformations
of
JSON-LD
documents.
Restructuring
data
according
to
the
defined
transformations
often
dramatically
simplifies
its
usage.
Furthermore,
this
document
proposes
an
Application
Programming
Interface
(API)
for
developers
implementing
the
specified
algorithms.

Status
of
This
Document

This
section
describes
the
status
of
this
document
at
the
time
of
its
publication.
Other
documents
may
supersede
this
document.
A
list
of
current

W3C

publications
and
the
latest
revision
of
this
technical
report
can
be
found
in
the

W3C

technical
reports
index

at
http://www.w3.org/TR/.

This
document
has
been
under
development
for
over
31
months

reviewed
by

W3C

Members,
by
software
developers,
and
by
other

W3C

groups
and
interested
parties,
and
is
endorsed
by
the
Director
as
a

W3C

Recommendation.
It
is
a
stable
document
and
may
be
used
as
reference
material
or
cited
from
another
document.

W3C

's
role

in
making
the
Recommendation
is
to
draw
attention
to
the
specification
and
to
promote
its
widespread
deployment.
This
enhances
the
functionality
and
interoperability
of
the
Web.

This
specification
has
been
developed
by

the
JSON
for
Linking
Data
Community
Group.
The
document

Group
before
it

has
been
transferred
to
the
RDF
Working
Group
for
review,
improvement,
and
publication
along
the
Recommendation
track.
The
specification
has
undergone
significant
development,
review,
and

document
contains
small
editorial

changes
arising
from
comments
received

during
the
course
of

Proposed
Recommendation
review;
see

the
last
31
months.

diff-marked
version

for
details.

There
are
several
independent
interoperable
implementations
of
this
specification.
There
is
a
fairly
complete
test
suite
[
JSON-LD-TESTS
]
and
a
live
JSON-LD
editor

An

implementation
report

that
is
capable

as

of
demonstrating
the
features
described
in
this
document.
While
there
will
be
continuous
development
on
implementations,
the
test
suite,
and
the
live
editor,
they
are
believed
to
be
mature
enough
to
be
integrated
into
a
non-production
system
at
this
point
in
time.
There

October 2013

is
an
expectation
that
they
could
be
used
in
a
production
system
within
the
next
two
months.

available.

Changes
since
the
10 September 2013
Candidate
Recommendation
:
Fixed
a
bug
that
relabeled
blank
node
identifiers
used
with
reverse
properties
inconsistently
when
creating
a
node
map
.
Made
the
API
non-normative
given
that
Promises
are
still
not
properly
specified.

This
document
was
published
by
the

RDF
Working
Group

as
a
Proposed
Recommendation.
This
document
is
intended
to
become
a
W3C

Recommendation.
The
W3C
Membership
and
other
interested
parties
are
invited

If
you
wish

to
review
the
document
and
send

make

comments
regarding
this
document,
please
send
them

to

public-rdf-comments@w3.org

(

subscribe
,

archives

)
through
05
December
2013.
Advisory
Committee
Representatives
should
consult
their
WBS
questionnaires
.
Note
that
substantive
technical

).
All

comments
were
expected
during
the
Last
Call
review
period
that
ended
06
June
2013.
Publication
as
a
Proposed
Recommendation
does
not
imply
endorsement
by
the
W3C
Membership.
This
is
a
draft
document
and
may
be
updated,
replaced
or
obsoleted
by
other
documents
at
any
time.
It
is
inappropriate
to
cite
this
document
as
other
than
work
in
progress.

are
welcome.

This
document
was
produced
by
a
group
operating
under
the

5
February
2004

W3C

Patent
Policy
.

W3C

maintains
a

public
list
of
any
patent
disclosures

made
in
connection
with
the
deliverables
of
the
group;
that
page
also
includes
instructions
for
disclosing
a
patent.
An
individual
who
has
actual
knowledge
of
a
patent
which
the
individual
believes
contains

Essential
Claim(s)

must
disclose
the
information
in
accordance
with

section
6
of
the

W3C

Patent
Policy
.

Table
of
Contents

		

1.

Introduction

		

2.

Features

		

2.1

Expansion

		

2.2

Compaction

		

2.3

Flattening

		

2.4

RDF
Serialization/Deserialization

		

3.

Conformance

		

4.

General
Terminology

		

5.

Algorithm
Terms

		

6.

Context
Processing
Algorithms

		

6.1

Context
Processing
Algorithm

		

6.2

Create
Term
Definition

		

6.3

IRI

Expansion

		

7.

Expansion
Algorithms

		

7.1

Expansion
Algorithm

		

7.2

Value
Expansion

		

8.

Compaction
Algorithms

		

8.1

Compaction
Algorithm

		

8.2

Inverse
Context
Creation

		

8.3

IRI

Compaction

		

8.4

Term
Selection

		

8.5

Value
Compaction

		

9.

Flattening
Algorithms

		

9.1

Flattening
Algorithm

		

9.2

Node
Map
Generation

		

9.3

Generate
Blank
Node
Identifier

		

10.

RDF
Serialization/Deserialization
Algorithms

		

10.1

Deserialize
JSON-LD
to
RDF
algorithm

		

10.2

Object
to
RDF
Conversion

		

10.3

List
to
RDF
Conversion

		

10.4

Serialize
RDF
as
JSON-LD
Algorithm

		

10.5

RDF
to
Object
Conversion

		

10.6

Data
Round
Tripping

		

11.

The
Application
Programming
Interface

		

11.1

The

JsonLdProcessor

Interface

		

11.2

The

JsonLdOptions

Type

		

11.3

Remote
Document
and
Context
Retrieval

		

11.4

Error
Handling

		

A.

Acknowledgements

		

B.

References

		

B.1

Normative
references

		

B.2

Informative
references

1.

Introduction

This
section
is
non-normative.

This
document
is
a
detailed
specification
of
the
JSON-LD
processing
algorithms.
The
document
is
primarily
intended
for
the
following
audiences:

		
Software
developers
who
want
to
implement
the
algorithms
to
transform
JSON-LD
documents.

		
Web
authors
and
developers
who
want
a
very
detailed
view
of
how
a

JSON-LD
Processor

operates.

		
Developers
who
want
an
overview
of
the
proposed
JSON-LD
API.

To
understand
the
basics
in
this
specification
you
must
first
be
familiar
with
JSON,
which
is
detailed
in
[

RFC4627

].
You
must
also
understand
the
JSON-LD
syntax
defined
in
[

JSON-LD

],
which
is
the
base
syntax
used
by
all
of
the
algorithms
in
this
document.
To
understand
the
API
and
how
it
is
intended
to
operate
in
a
programming
environment,
it
is
useful
to
have
working
knowledge
of
the
JavaScript
programming
language
[

ECMA-262

]
and
WebIDL
[

WEBIDL

].
To
understand
how
JSON-LD
maps
to
RDF,
it
is
helpful
to
be
familiar
with
the
basic
RDF
concepts
[

RDF11-CONCEPTS

].

2.

Features

This
section
is
non-normative.

The
JSON-LD
Syntax
specification
[

JSON-LD

]
defines
a
syntax
to
express
Linked
Data
in
JSON.
Because
there
is
more
than
one
way
to
express
Linked
Data
using
this
syntax,
it
is
often
useful
to
be
able
to
transform
JSON-LD
documents
so
that
they
may
be
more
easily
consumed
by
specific
applications.

JSON-LD
uses

contexts

to
allow
Linked
Data
to
be
expressed
in
a
way
that
is
specifically
tailored
to
a
particular
person
or
application.
By
providing
a

context
,
JSON
data
can
be
expressed
in
a
way
that
is
a
natural
fit
for
a
particular
person
or
application
whilst
also
indicating
how
the
data
should
be
understood
at
a
global
scale.
In
order
for
people
or
applications
to
share
data
that
was
created
using
a

context

that
is
different
from
their
own,
a
JSON-LD
processor
must
be
able
to
transform
a
document
from
one

context

to
another.
Instead
of
requiring
JSON-LD
processors
to
write
specific
code
for
every
imaginable

context

switching
scenario,
it
is
much
easier
to
specify
a
single
algorithm
that
can
remove
any

context
.
Similarly,
another
algorithm
can
be
specified
to
subsequently
apply
any

context
.
These
two
algorithms
represent
the
most
basic
transformations
of
JSON-LD
documents.
They
are
referred
to
as

expansion

and

compaction
,
respectively.

There
are
four
major
types
of
transformation
that
are
discussed
in
this
document:
expansion,
compaction,
flattening,
and
RDF
serialization/deserialization.

2.1

Expansion

This
section
is
non-normative.

The
algorithm
that
removes

context

is
called

expansion
.
Before
performing
any
other
transformations
on
a
JSON-LD
document,
it
is
easiest
to
remove
any

context

from
it
and
to
make
data
structures
more
regular.

To
get
an
idea
of
how
context
and
data
structuring
affects
the
same
data,
here
is
an
example
of
JSON-LD
that
uses
only

terms

and
is
fairly
compact:

 {

Example
1
:
Sample
JSON-LD
document

{

 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/"
}

The
next
input
example
uses
one

IRI

to
express
a
property
and
an

array

to
encapsulate
another,
but
leaves
the
rest
of
the
information
untouched.

 {

Example
2
:
Sample
JSON-LD
document
using
an
IRI
instead
of
a
term
to
express
a
property

{

 "@context": {
 "website": "http://xmlns.com/foaf/0.1/homepage"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": "Markus Lanthaler",
 "website": { "@id": "http://www.markus-lanthaler.com/" }
}

Note
that
both
inputs
are
valid
JSON-LD
and
both
represent
the
same
information.
The
difference
is
in
their

context

information
and
in
the
data
structures
used.
A
JSON-LD
processor
can
remove

context

and
ensure
that
the
data
is
more
regular
by
employing

expansion
.

Expansion

has
two
important
goals:
removing
any
contextual
information
from
the
document,
and
ensuring
all
values
are
represented
in
a
regular
form.
These
goals
are
accomplished
by
expanding
all
properties
to

absolute
IRIs

and
by
expressing
all
values
in

arrays

in

expanded
form
.

Expanded
form

is
the
most
verbose
and
regular
way
of
expressing
of
values
in
JSON-LD;
all
contextual
information
from
the
document
is
instead
stored
locally
with
each
value.
Running
the

Expansion
algorithm

(

expand

operation)
against
the
above
examples
results
in
the
following
output:

 [

Example
3
:
Expanded
sample
document

[

 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://www.markus-lanthaler.com/" }
]
 }
]

Note
that
in
the
output
above
all

context

definitions
have
been
removed,
all

terms

and

compact
IRIs

have
been
expanded
to
absolute

IRIs
,
and
all

JSON-LD
values

are
expressed
in

arrays

in

expanded
form
.
While
the
output
is
more
verbose
and
difficult
for
a
human
to
read,
it
establishes
a
baseline
that
makes
JSON-LD
processing
easier
because
of
its
very
regular
structure.

2.2

Compaction

This
section
is
non-normative.

While

expansion

removes

context

from
a
given
input,

compaction's

primary
function
is
to
perform
the
opposite
operation:
to
express
a
given
input
according
to
a
particular

context
.

Compaction

applies
a

context

that
specifically
tailors
the
way
information
is
expressed
for
a
particular
person
or
application.
This
simplifies
applications
that
consume
JSON
or
JSON-LD
by
expressing
the
data
in
application-specific
terms,
and
it
makes
the
data
easier
to
read
by
humans.

Compaction

uses
a
developer-supplied

context

to
shorten

IRIs

to

terms

or

compact
IRIs

and

JSON-LD
values

expressed
in

expanded
form

to
simple
values
such
as

strings

or

numbers
.

For
example,
assume
the
following
expanded
JSON-LD
input
document:

 [

Example
4
:
Expanded
sample
document

[

 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://www.markus-lanthaler.com/" }
]
 }
]

Additionally,
assume
the
following
developer-supplied
JSON-LD

context
:

 {

Example
5
:
JSON-LD
context

{

 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 }
}

Running
the

Compaction
Algorithm

(

compact

operation)
given
the
context
supplied
above
against
the
JSON-LD
input
document
provided
above
would
result
in
the
following
output:

 {

Example
6
:
Compacted
sample
document

{

 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/"
}

Note
that
all

IRIs

have
been
compacted
to

terms

as
specified
in
the

context
,
which
has
been
injected
into
the
output.
While
compacted
output
is
useful
to
humans,
it
is
also
used
to
generate
structures
that
are
easy
to
program
against.
Compaction
enables
developers
to
map
any
expanded
document
into
an
application-specific
compacted
document.
While
the
context
provided
above
mapped

http://xmlns.com/foaf/0.1/name

to

name
,
it
could
also
have
been
mapped
to
any
other
term
provided
by
the
developer.

2.3

Flattening

This
section
is
non-normative.

While
expansion
ensures
that
a
document
is
in
a
uniform
structure,
flattening
goes
a
step
further
to
ensure
that
the
shape
of
the
data
is
deterministic.
In
expanded
documents,
the
properties
of
a
single

node

may
be
spread
across
a
number
of
different

JSON
objects
.
By
flattening
a
document,
all
properties
of
a

node

are
collected
in
a
single

JSON
object

and
all

blank
nodes

are
labeled
with
a

blank
node
identifier
.
This
may
drastically
simplify
the
code
required
to
process
JSON-LD
data
in
certain
applications.

For
example,
assume
the
following
JSON-LD
input
document:

 {

Example
7
:
Sample
JSON-LD
document

{

 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": [
 {
 "name": "Dave Longley"
 }
]
}

Running
the

Flattening
algorithm

(

flatten

operation)
with
a
context
set
to

null

to
prevent
compaction
returns
the
following
document:

 [

Example
8
:
Flattened
sample
document
in
expanded
form

[

 {
 "@id": "_:t0",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Dave Longley" }
]
 },
 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/knows": [
 { "@id": "_:t0" }
]
 }
]

Note
how
in
the
output
above
all
properties
of
a

node

are
collected
in
a
single

JSON
object

and
how
the

blank
node

representing
"Dave
Longley"
has
been
assigned
the

blank
node
identifier

_:t0
.

To
make
it
easier
for
humans
to
read
or
for
certain
applications
to
process
it,
a
flattened
document
can
be
compacted
by
passing
a
context.
Using
the
same
context
as
the
input
document,
the
flattened
and
compacted
document
looks
as
follows:

 {

Example
9
:
Flattened
and
compacted
sample
document

{

 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@graph": [
 {
 "@id": "_:t0",
 "name": "Dave Longley"
 },
 {
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": { "@id": "_:t0" }
 }
]
}

Please
note
that
the
result
of
flattening
and
compacting
a
document
is
always
a

JSON
object

which
contains
an

@graph

member
that
represents
the

default
graph
.

2.4

RDF
Serialization/Deserialization

This
section
is
non-normative.

JSON-LD
can
be
used
to
serialize
RDF
data
as
described
in
[

RDF11-CONCEPTS

].
This
ensures
that
data
can
be
round-tripped
to
and
from
any
RDF
syntax
without
any
loss
in
fidelity.

For
example,
assume
the
following
RDF
input
serialized
in
Turtle
[

TURTLE

]:

 <http://me.markus-lanthaler.com/> <http://xmlns.com/foaf/0.1/name> "Markus Lanthaler" .
<http://me.markus-lanthaler.com/>
<http://xmlns.com/foaf/0.1/homepage>
<http://www.markus-lanthaler.com/>
.

Example
10
:
Sample
Turtle
document

<http://me.markus-lanthaler.com/> <http://xmlns.com/foaf/0.1/name> "Markus Lanthaler" .
<http://me.markus-lanthaler.com/> <http://xmlns.com/foaf/0.1/homepage> <http://www.markus-lanthaler.com/> .

Using
the

Serialize
RDF
as
JSON-LD
algorithm

a
developer
could
transform
this
document
into
expanded
JSON-LD:

 [

Example
11
:
Sample
Turtle
document
converted
to
JSON-LD

[

 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://www.markus-lanthaler.com/" }
]
 }
]

Note
that
the
output
above
could
easily
be
compacted
using
the
technique
outlined
in
the
previous
section.
It
is
also
possible
to
deserialize
the
JSON-LD
document
back
to
RDF
using
the

Deserialize
JSON-LD
to
RDF
algorithm
.

3.

Conformance

All
examples
and
notes
as
well
as
sections
marked
as
non-normative
in
this
specification
are
non-normative.
Everything
else
in
this
specification
is
normative.

The
keywords

MUST
,

MUST
NOT
,

REQUIRED
,

SHOULD
,

SHOULD
NOT
,

RECOMMENDED
,

MAY
,
and

OPTIONAL

in
this
specification
are
to
be
interpreted
as
described
in
[

RFC2119

].

There
are
two
classes
of
products
that
can
claim
conformance
to
this
specification:

JSON-LD
Processors
,
and

RDF
Serializers/Deserializers
.

A
conforming

JSON-LD
Processor

is
a
system
which
can
perform
the

Expansion
,

Compaction
,
and

Flattening

operations
defined
in
this
specification.

JSON-LD
Processors

MUST
NOT

attempt
to
correct
malformed

IRIs

or
language
tags;
however,
they

MAY

issue
validation
warnings.
IRIs
are
not
modified
other
than
conversion
between

relative

and

absolute
IRIs
.

A
conforming

RDF
Serializer/Deserializer

is
a
system
that
can

deserialize
JSON-LD
to
RDF

and

serialize
RDF
as
JSON-LD

as
defined
in
this
specification.

The
algorithms
in
this
specification
are
generally
written
with
more
concern
for
clarity
than
efficiency.
Thus,

JSON-LD
Processors

may
implement
the
algorithms
given
in
this
specification
in
any
way
desired,
so
long
as
the
end
result
is
indistinguishable
from
the
result
that
would
be
obtained
by
the
specification's
algorithms.

Note

Implementers
can
partially
check
their
level
of
conformance
to
this
specification
by
successfully
passing
the
test
cases
of
the
JSON-LD
test
suite
[

JSON-LD-TESTS

].
Note,
however,
that
passing
all
the
tests
in
the
test
suite
does
not
imply
complete
conformance
to
this
specification.
It
only
implies
that
the
implementation
conforms
to
aspects
tested
by
the
test
suite.

4.

General
Terminology

This
document
uses
the
following
terms
as
defined
in
JSON
[

RFC4627

].
Refer
to
the

JSON
Grammar

section
in
[

RFC4627

]
for
formal
definitions.

		

JSON
object

		
An
object
structure
is
represented
as
a
pair
of
curly
brackets
surrounding
zero
or
more
key-value
pairs.
A
key
is
a

string
.
A
single
colon
comes
after
each
key,
separating
the
key
from
the
value.
A
single
comma
separates
a
value
from
a
following
key.
In
contrast
to
JSON,
in
JSON-LD
the
keys
in
an
object
must
be
unique.

		

array

		
An
array
structure
is
represented
as
square
brackets
surrounding
zero
or
more
values.
Values
are
separated
by
commas.
In
JSON,
an
array
is
an

ordered

sequence
of
zero
or
more
values.
While
JSON-LD
uses
the
same
array
representation
as
JSON,
the
collection
is

unordered

by
default.
While
order
is
preserved
in
regular
JSON
arrays,
it
is
not
in
regular
JSON-LD
arrays
unless
specifically
defined
(see
"

Sets
and
Lists

in
the
JSON-LD
specification
[

JSON-LD

]).

		

string

		
A
string
is
a
sequence
of
zero
or
more
Unicode
characters,
wrapped
in
double
quotes,
using
backslash
escapes
(if
necessary).
A
character
is
represented
as
a
single
character
string.

		

number

		
A
number
is
similar
to
that
used
in
most
programming
languages,
except
that
the
octal
and
hexadecimal
formats
are
not
used
and
that
leading
zeros
are
not
allowed.

		

true

and

false

		
Values
that
are
used
to
express
one
of
two
possible
boolean
states.

		

null

		
The

null

value.
A
key-value
pair
in
the

@context

where
the
value,
or
the

@id

of
the
value,
is

null

explicitly
decouples
a
term's
association
with
an

IRI
.
A
key-value
pair
in
the
body
of
a
JSON-LD
document
whose
value
is

null

has
the
same
meaning
as
if
the
key-value
pair
was
not
defined.
If

@value
,

@list
,
or

@set

is
set
to

null

in
expanded
form,
then
the
entire

JSON
object

is
ignored.

Furthermore,
the
following
terminology
is
used
throughout
this
document:

		

keyword

		
A
JSON
key
that
is
specific
to
JSON-LD,
specified
in
the
section

Syntax
Tokens
and
Keywords

of
the
JSON-LD
specification
[

JSON-LD

].

		

context

		
A
set
of
rules
for
interpreting
a
JSON-LD
document
as
specified
in
the
section

The
Context

of
the
JSON-LD
specification
[

JSON-LD

].

		

JSON-LD
document

		
A

JSON-LD
document

is
a
serialization
of
a
collection
of

graphs

and
comprises
exactly
one

default
graph

and
zero
or
more

named
graphs
.

		

named
graph

		
A
named
graph
is
a
pair
consisting
of
an

IRI

or

blank
node

(the

graph
name

)
and
a

graph
.

		

default
graph

		
The
default
graph
is
the
only
graph
in
a
JSON-LD
document
which
has
no

graph
name
.

		

Graph

		
A
labeled
directed
graph,
i.e.,
a
set
of

nodes

connected
by

edges
,
as
specified
in
the

Data
Model

section
of
the
JSON-LD
specification
[

JSON-LD

].

		

edge

		
Every

edge

has
a
direction
associated
with
it
and
is
labeled
with
an

IRI

or
a

blank
node
identifier
.
Within
the
JSON-LD
syntax
these
edge
labels
are
called

properties
.
Whenever
possible,
an

edge

should
be
labeled
with
an

IRI

.

		

node

		
Every

node

is
an

IRI

,
a

blank
node
,
a

JSON-LD
value
,
or
a

list
.

		

IRI

		
An

IRI

(Internationalized
Resource
Identifier)
is
a
string
that
conforms
to
the
syntax
defined
in
[

RFC3987

].

		

absolute

IRI

		
An
absolute

IRI

is
defined
in
[

RFC3987

]
containing
a

scheme

along
with
a

path

and
optional

query

and
fragment
segments.

		

relative

IRI

		
A
relative

IRI

is
an

IRI

that
is
relative
to
some
other

absolute

IRI

.

		

blank
node

		
A

node

in
a

graph

that
is
neither
an

IRI

,
nor
a

JSON-LD
value
,
nor
a

list
.

		

blank
node
identifier

		
A
blank
node
identifier
is
a
string
that
can
be
used
as
an
identifier
for
a

blank
node

within
the
scope
of
a
JSON-LD
document.
Blank
node
identifiers
begin
with

_:
.

		

JSON-LD
value

		
A

JSON-LD
value

is
a

string
,
a

number
,

true

or

false
,
a

typed
value
,
or
a

language-tagged
string
.

		

typed
value

		
A

typed
value

consists
of
a
value,
which
is
a
string,
and
a
type,
which
is
an

IRI

.

		

language-tagged
string

		
A

language-tagged
string

consists
of
a
string
and
a
non-empty
language
tag
as
defined
by
[

BCP47

].
The
language
tag
must
be
well-formed
according
to

section
2.2.9
Classes
of
Conformance

of
[

BCP47

],
and
is
normalized
to
lowercase.

		

list

		
A

list

is
an
ordered
sequence
of

IRIs
,

blank
nodes
,
and

JSON-LD
values
.

5.

Algorithm
Terms

		

active
graph

		
The
name
of
the
currently
active
graph
that
the
processor
should
use
when
processing.

		

active
subject

		
The
currently
active
subject
that
the
processor
should
use
when
processing.

		

active
property

		
The
currently
active

property

or

keyword

that
the
processor
should
use
when
processing.

		

active
context

		
A
context
that
is
used
to
resolve

terms

while
the
processing
algorithm
is
running.

		

local
context

		
A
context
that
is
specified
within
a

JSON
object
,
specified
via
the

@context

keyword
.

		

JSON-LD
input

		
The
JSON-LD
data
structure
that
is
provided
as
input
to
the
algorithm.

		

term

		
A

term

is
a
short
word
defined
in
a
context
that
may
be
expanded
to
an

IRI

		

compact

IRI

		
A
compact

IRI

has
the
form
of

prefix
:

suffix

and
is
used
as
a
way
of
expressing
an

IRI

without
needing
to
define
separate

term

definitions
for
each

IRI

contained
within
a
common
vocabulary
identified
by

prefix
.

		

node
object

		
A

node
object

represents
zero
or
more
properties
of
a

node

in
the

graph

serialized
by
the
JSON-LD
document.
A

JSON
object

is
a

node
object

if
it
exists
outside
of
the
JSON-LD

context

and:

		
it
does
not
contain
the

@value
,

@list
,
or

@set

keywords,
or

		
it
is
not
the
top-most

JSON
object

in
the
JSON-LD
document
consisting
of
no
other
members
than

@graph

and

@context
.

		

value
object

		
A

value
object

is
a

JSON
object

that
has
an

@value

member.

		

list
object

		
A

list
object

is
a

JSON
object

that
has
an

@list

member.

		

set
object

		
A

set
object

is
a

JSON
object

that
has
an

@set

member.

		

scalar

		
A
scalar
is
either
a
JSON

string
,

number
,

true
,
or

false
.

		

RDF
subject

		
A

subject

as
specified
by
[

RDF11-CONCEPTS

].

		

RDF
predicate

		
A

predicate

as
specified
by
[

RDF11-CONCEPTS

].

		

RDF
object

		
An

object

as
specified
by
[

RDF11-CONCEPTS

].

		

RDF
triple

		
A

triple

as
specified
by
[

RDF11-CONCEPTS

].

		

RDF
dataset

		
A

dataset

as
specified
by
[

RDF11-CONCEPTS

]
representing
a
collection
of

RDF
graphs
.

6.

Context
Processing
Algorithms

6.1

Context
Processing
Algorithm

When
processing
a
JSON-LD
data
structure,
each
processing
rule
is
applied
using
information
provided
by
the

active
context
.
This
section
describes
how
to
produce
an

active
context
.

The

active
context

contains
the
active

term
definitions

which
specify
how
properties
and
values
have
to
be
interpreted
as
well
as
the
current

base

IRI

,
the

vocabulary
mapping

and
the

default
language
.
Each

term
definition

consists
of
an

IRI

mapping
,
a
boolean
flag

reverse
property
,
an
optional

type
mapping

or

language
mapping
,
and
an
optional

container
mapping
.
A

term
definition

can
not
only
be
used
to
map
a

term

to
an

IRI
,
but
also
to
map
a

term

to
a

keyword
,
in
which
case
it
is
referred
to
as
a

keyword
alias
.

When
processing,
the

active
context

is
initialized
without
any

term
definitions
,

vocabulary
mapping
,
or

default
language
.
If
a

local
context

is
encountered
during
processing,
a
new

active
context

is
created
by
cloning
the
existing

active
context
.
Then
the
information
from
the

local
context

is
merged
into
the
new

active
context
.
Given
that

local
contexts

may
contain
references
to
remote
contexts,
this
includes
their
retrieval.

Overview

This
section
is
non-normative.

First
we
prepare
a
new

active
context

result

by
cloning
the
current

active
context
.
Then
we
normalize
the
form
of
the
passed

local
context

to
an

array
.

Local
contexts

may
be
in
the
form
of
a

JSON
object
,
a

string
,
or
an

array

containing
a
combination
of
the
two.
Finally
we
process
each

context

contained
in
the

local
context

array

as
follows.

If

context

is
a

string
,
it
represents
a
reference
to
a
remote
context.
We
dereference
the
remote
context
and
replace

context

with
the
value
of
the

@context

key
of
the
top-level
object
in
the
retrieved
JSON-LD
document.
If
there's
no
such
key,
an
invalid
remote
context
has
been
detected.
Otherwise,
we
process

context

by
recursively
using
this
algorithm
ensuring
that
there
is
no
cyclical
reference.

If

context

is
a

JSON
object
,
we
first
update
the

base

IRI

,
the

vocabulary
mapping
,
and
the

default
language

by
processing
three
specific
keywords:

@base
,

@vocab
,
and

@language
.
These
are
handled
before
any
other
keys
in
the

local
context

because
they
affect
how
the
other
keys
are
processed.
Please
note
that

@base

is
ignored
when
processing
remote
contexts.

Then,
for
every
other
key
in

local
context
,
we
update
the

term
definition

in

result
.
Since

term
definitions

in
a

local
context

may
themselves
contain

terms

or

compact
IRIs
,
we
may
need
to
recurse.
When
doing
so,
we
must
ensure
that
there
is
no
cyclical
dependency,
which
is
an
error.
After
we
have
processed
any

term
definition

dependencies,
we
update
the
current

term
definition
,
which
may
be
a

keyword
alias
.

Finally,
we
return

result

as
the
new

active
context
.

Algorithm

This
algorithm
specifies
how
a
new

active
context

is
updated
with
a

local
context
.
The
algorithm
takes
three
input
variables:
an

active
context
,
a

local
context
,
and
an

array

remote
contexts

which
is
used
to
detect
cyclical
context
inclusions.
If

remote
contexts

is
not
passed,
it
is
initialized
to
an
empty

array
.

		
Initialize

result

to
the
result
of
cloning

active
context
.

		
If

local
context

is
not
an

array
,
set
it
to
an

array

containing
only

local
context
.

		
For
each
item

context

in

local
context
:

		
If

context

is

null
,
set

result

to
a
newly-initialized

active
context

and
continue
with
the
next

context
.
The

base

IRI

of
the

active
context

is
set
to
the

IRI

of
the
currently
being
processed
document
(which
might
be
different
from
the
currently
being
processed
context),
if
available;
otherwise
to

null
.
If
set,
the

base

option
of
a
JSON-LD
API
Implementation
overrides
the

base

IRI

.

		
If

context

is
a

string
,

		
Set

context

to
the
result
of
resolving

value

against
the
base

IRI

which
is
established
as
specified
in

section
5.1
Establishing
a
Base
URI

of
[

RFC3986

].
Only
the
basic
algorithm
in

section
5.2

of
[

RFC3986

]
is
used;
neither

Syntax-Based
Normalization

nor

Scheme-Based
Normalization

are
performed.
Characters
additionally
allowed
in

IRI

references
are
treated
in
the
same
way
that
unreserved
characters
are
treated
in
URI
references,
per

section
6.5

of
[

RFC3987

].

		
If

context

is
in
the

remote
contexts

array,
a

recursive
context
inclusion

error
has
been
detected
and
processing
is
aborted;
otherwise,
add

context

to

remote
contexts
.

		
Dereference

context
.
If

context

cannot
be
dereferenced,
a

loading
remote
context
failed

error
has
been
detected
and
processing
is
aborted.
If
the
dereferenced
document
has
no
top-level

JSON
object

with
an

@context

member,
an

invalid
remote
context

has
been
detected
and
processing
is
aborted;
otherwise,
set

context

to
the
value
of
that
member.

		
Set

result

to
the
result
of
recursively
calling
this
algorithm,
passing

result

for

active
context
,

context

for

local
context
,
and

remote
contexts
.

		
Continue
with
the
next

context
.

		
If

context

is
not
a

JSON
object
,
an

invalid
local
context

error
has
been
detected
and
processing
is
aborted.

		
If

context

has
an

@base

key
and

remote
contexts

is
empty,
i.e.,
the
currently
being
processed
context
is
not
a
remote
context:

		
Initialize

value

to
the
value
associated
with
the

@base

key.

		
If

value

is

null
,
remove
the

base

IRI

of

result
.

		
Otherwise,
if

value

is
an

absolute

IRI

,
the

base

IRI

of

result

is
set
to

value
.

		
Otherwise,
if

value

is
a

relative

IRI

and
the

base

IRI

of

result

is
not

null
,
set
the

base

IRI

of

result

to
the
result
of
resolving

value

against
the
current

base

IRI

of

result
.

		
Otherwise,
an

invalid
base

IRI

error
has
been
detected
and
processing
is
aborted.

		
If

context

has
an

@vocab

key:

		
Initialize

value

to
the
value
associated
with
the

@vocab

key.

		
If

value

is

null
,
remove
any

vocabulary
mapping

from

result
.

		
Otherwise,
if

value

is
an

absolute

IRI

or

blank
node
identifier
,
the

vocabulary
mapping

of

result

is
set
to

value
.
If
it
is
not
an

absolute

IRI

or

blank
node
identifier
,
an

invalid
vocab
mapping

error
has
been
detected
and
processing
is
aborted.

		
If

context

has
an

@language

key:

		
Initialize

value

to
the
value
associated
with
the

@language

key.

		
If

value

is

null
,
remove
any

default
language

from

result
.

		
Otherwise,
if

value

is

string
,
the

default
language

of

result

is
set
to
lowercased

value
.
If
it
is
not
a

string
,
an

invalid
default
language

error
has
been
detected
and
processing
is
aborted.

		
Create
a

JSON
object

defined

to
use
to
keep
track
of
whether
or
not
a

term

has
already
been
defined
or
currently
being
defined
during
recursion.

		
For
each

key

-

value

pair
in

context

where

key

is
not

@base
,

@vocab
,
or

@language
,
invoke
the

Create
Term
Definition
algorithm
,
passing

result

for

active
context
,

context

for

local
context
,

key
,
and

defined
.

		
Return

result
.

6.2

Create
Term
Definition

This
algorithm
is
called
from
the

Context
Processing
algorithm

to
create
a

term
definition

in
the

active
context

for
a

term

being
processed
in
a

local
context
.

Overview

This
section
is
non-normative.

Term
definitions

are
created
by
parsing
the
information
in
the
given

local
context

for
the
given

term
.
If
the
given

term

is
a

compact

IRI

,
it
may
omit
an

IRI

mapping

by
depending
on
its

prefix

having
its
own

term
definition
.
If
the

prefix

is
a
key
in
the

local
context
,
then
its

term
definition

must
first
be
created,
through
recursion,
before
continuing.
Because
a

term
definition

can
depend
on
other

term
definitions
,
a
mechanism
must
be
used
to
detect
cyclical
dependencies.
The
solution
employed
here
uses
a
map,

defined
,
that
keeps
track
of
whether
or
not
a

term

has
been
defined
or
is
currently
in
the
process
of
being
defined.
This
map
is
checked
before
any
recursion
is
attempted.

After
all
dependencies
for
a

term

have
been
defined,
the
rest
of
the
information
in
the

local
context

for
the
given

term

is
taken
into
account,
creating
the
appropriate

IRI

mapping
,

container
mapping
,
and

type
mapping

or

language
mapping

for
the

term
.

Algorithm

The
algorithm
has
four
required
inputs
which
are:
an

active
context
,
a

local
context
,
a

term
,
and
a
map

defined
.

		
If

defined

contains
the
key

term

and
the
associated
value
is

true

(indicating
that
the

term
definition

has
already
been
created),
return.
Otherwise,
if
the
value
is

false
,
a

cyclic

IRI

mapping

error
has
been
detected
and
processing
is
aborted.

		
Set
the
value
associated
with

defined

's

term

key
to

false
.
This
indicates
that
the

term
definition

is
now
being
created
but
is
not
yet
complete.

		
Since

keywords

cannot
be
overridden,

term

must
not
be
a

keyword
.
Otherwise,
a

keyword
redefinition

error
has
been
detected
and
processing
is
aborted.

		
Remove
any
existing

term
definition

for

term

in

active
context
.

		
Initialize

value

to
a
copy
of
the
value
associated
with
the
key

term

in

local
context
.

		
If

value

is

null

or

value

is
a

JSON
object

containing
the
key-value
pair

@id

-

null
,
set
the

term
definition

in

active
context

to

null
,
set
the
value
associated
with

defined

's
key

term

to

true
,
and
return.

		
Otherwise,
if

value

is
a

string
,
convert
it
to
a

JSON
object

consisting
of
a
single
member
whose
key
is

@id

and
whose
value
is

value
.

		
Otherwise,

value

must
be
a

JSON
object
,
if
not,
an

invalid
term
definition

error
has
been
detected
and
processing
is
aborted.

		
Create
a
new

term
definition
,

definition
.

		
If

value

contains
the
key

@type
:

		
Initialize

type

to
the
value
associated
with
the

@type

key,
which
must
be
a

string
.
Otherwise,
an

invalid
type
mapping

error
has
been
detected
and
processing
is
aborted.

		
Set

type

to
the
result
of
using
the

IRI

Expansion
algorithm
,
passing

active
context
,

type

for

value
,

true

for

vocab
,

false

for

document
relative
,

local
context
,
and

defined
.
If
the
expanded

type

is
neither

@id
,
nor

@vocab
,
nor
an

absolute

IRI

,
an

invalid
type
mapping

error
has
been
detected
and
processing
is
aborted.

		
Set
the

type
mapping

for

definition

to

type
.

		
If

value

contains
the
key

@reverse
:

		
If

value

contains
an

@id
,
member,
an

invalid
reverse
property

error
has
been
detected
and
processing
is
aborted.

		
If
the
value
associated
with
the

@reverse

key
is
not
a

string
,
an

invalid

IRI

mapping

error
has
been
detected
and
processing
is
aborted.

		
Otherwise,
set
the

IRI

mapping

of

definition

to
the
result
of
using
the

IRI

Expansion
algorithm
,
passing

active
context
,
the
value
associated
with
the

@reverse

key
for

value
,

true

for

vocab
,

false

for

document
relative
,

local
context
,
and

defined
.
If
the
result
is
neither
an

absolute

IRI

nor
a

blank
node
identifier
,
i.e.,
it
contains
no
colon
(
:

),
an

invalid

IRI

mapping

error
has
been
detected
and
processing
is
aborted.

		
If

value

contains
an

@container

member,
set
the

container
mapping

of

definition

to
its
value;
if
its
value
is
neither

@set
,
nor

@index
,
nor

null
,
an

invalid
reverse
property

error
has
been
detected
(reverse
properties
only
support
set-
and
index-containers)
and
processing
is
aborted.

		
Set
the

reverse
property

flag
of

definition

to

true
.

		
Set
the

term
definition

of

term

in

active
context

to

definition

and
the
value
associated
with

defined

's
key

term

to

true

and
return.

		
Set
the

reverse
property

flag
of

definition

to

false
.

		
If

value

contains
the
key

@id

and
its
value
does
not
equal

term
:

		
If
the
value
associated
with
the

@id

key
is
not
a

string
,
an

invalid

IRI

mapping

error
has
been
detected
and
processing
is
aborted.

		
Otherwise,
set
the

IRI

mapping

of

definition

to
the
result
of
using
the

IRI

Expansion
algorithm
,
passing

active
context
,
the
value
associated
with
the

@id

key
for

value
,

true

for

vocab
,

false

for

document
relative
,

local
context
,
and

defined
.
If
the
resulting

IRI

mapping

is
neither
a

keyword
,
nor
an

absolute

IRI

,
nor
a

blank
node
identifier
,
an

invalid

IRI

mapping

error
has
been
detected
and
processing
is
aborted;
if
it
equals

@context
,
an

invalid
keyword
alias

error
has
been
detected
and
processing
is
aborted.

		
Otherwise
if
the

term

contains
a
colon
(
:

):

		
If

term

is
a

compact

IRI

with
a

prefix

that
is
a
key
in

local
context

a
dependency
has
been
found.
Use
this
algorithm
recursively
passing

active
context
,

local
context
,
the

prefix

as

term
,
and

defined
.

		
If

term

's

prefix

has
a

term
definition

in

active
context
,
set
the

IRI

mapping

of

definition

to
the
result
of
concatenating
the
value
associated
with
the

prefix

's

IRI

mapping

and
the

term

's

suffix
.

		
Otherwise,

term

is
an

absolute

IRI

or

blank
node
identifier
.
Set
the

IRI

mapping

of

definition

to

term
.

		
Otherwise,
if

active
context

has
a

vocabulary
mapping
,
the

IRI

mapping

of

definition

is
set
to
the
result
of
concatenating
the
value
associated
with
the

vocabulary
mapping

and

term
.
If
it
does
not
have
a

vocabulary
mapping
,
an

invalid

IRI

mapping

error
been
detected
and
processing
is
aborted.

		
If

value

contains
the
key

@container
:

		
Initialize

container

to
the
value
associated
with
the

@container

key,
which
must
be
either

@list
,

@set
,

@index
,
or

@language
.
Otherwise,
an

invalid
container
mapping

error
has
been
detected
and
processing
is
aborted.

		
Set
the

container
mapping

of

definition

to

container
.

		
If

value

contains
the
key

@language

and
does
not
contain
the
key

@type
:

		
Initialize

language

to
the
value
associated
with
the

@language

key,
which
must
be
either

null

or
a

string
.
Otherwise,
an

invalid
language
mapping

error
has
been
detected
and
processing
is
aborted.

		
If

language

is
a

string

set
it
to
lowercased

language
.
Set
the

language
mapping

of

definition

to

language
.

		
Set
the

term
definition

of

term

in

active
context

to

definition

and
set
the
value
associated
with

defined

's
key

term

to

true
.

6.3

IRI

Expansion

In
JSON-LD
documents,
some
keys
and
values
may
represent

IRIs
.
This
section
defines
an
algorithm
for
transforming
a

string

that
represents
an

IRI

into
an

absolute

IRI

or

blank
node
identifier
.
It
also
covers
transforming

keyword
aliases

into

keywords
.

IRI

expansion
may
occur
during
context
processing
or
during
any
of
the
other
JSON-LD
algorithms.
If

IRI

expansion
occurs
during
context
processing,
then
the

local
context

and
its
related

defined

map
from
the

Context
Processing
algorithm

are
passed
to
this
algorithm.
This
allows
for

term
definition

dependencies
to
be
processed
via
the

Create
Term
Definition
algorithm
.

Overview

This
section
is
non-normative.

In
order
to
expand

value

to
an

absolute

IRI

,
we
must
first
determine
if
it
is

null
,
a

term
,
a

keyword
alias
,
or
some
form
of

IRI

.
Based
on
what
we
find,
we
handle
the
specific
kind
of
expansion;
for
example,
we
expand
a

keyword
alias

to
a

keyword

and
a

term

to
an

absolute

IRI

according
to
its

IRI

mapping

in
the

active
context
.
While
inspecting

value

we
may
also
find
that
we
need
to
create

term
definition

dependencies
because
we're
running
this
algorithm
during
context
processing.
We
can
tell
whether
or
not
we're
running
during
context
processing
by
checking

local
context

against

null
.
We
know
we
need
to
create
a

term
definition

in
the

active
context

when

value

is
a
key
in
the

local
context

and
the

defined

map
does
not
have
a
key
for

value

with
an
associated
value
of

true
.
The

defined

map
is
used
during

Context
Processing

to
keep
track
of
which

terms

have
already
been
defined
or
are
in
the
process
of
being
defined.
We
create
a

term
definition

by
using
the

Create
Term
Definition
algorithm
.

Algorithm

The
algorithm
takes
two
required
and
four
optional
input
variables.
The
required
inputs
are
an

active
context

and
a

value

to
be
expanded.
The
optional
inputs
are
two
flags,

document
relative

and

vocab
,
that
specifying
whether

value

can
be
interpreted
as
a

relative

IRI

against
the
document's
base

IRI

or
the

active
context's

vocabulary
mapping
,
respectively,
and
a

local
context

and
a
map

defined

to
be
used
when
this
algorithm
is
used
during

Context
Processing
.
If
not
passed,
the
two
flags
are
set
to

false

and

local
context

and

defined

are
initialized
to

null
.

		
If

value

is
a

keyword

or

null
,
return

value

as
is.

		
If

local
context

is
not

null
,
it
contains
a
key
that
equals

value
,
and
the
value
associated
with
the
key
that
equals

value

in

defined

is
not

true
,
invoke
the

Create
Term
Definition
algorithm
,
passing

active
context
,

local
context
,

value

as

term
,
and

defined
.
This
will
ensure
that
a

term
definition

is
created
for

value

in

active
context

during

Context
Processing
.

		
If

vocab

is

true

and
the

active
context

has
a

term
definition

for

value
,
return
the
associated

IRI

mapping
.

		
If

value

contains
a
colon
(
:

),
it
is
either
an

absolute

IRI

,
a

compact

IRI

,
or
a

blank
node
identifier
:

		
Split

value

into
a

prefix

and

suffix

at
the
first
occurrence
of
a
colon
(
:

).

		
If

prefix

is
underscore
(

_

)
or

suffix

begins
with
double-forward-slash
(

//

),
return

value

as
it
is
already
an

absolute

IRI

or
a

blank
node
identifier
.

		
If

local
context

is
not

null
,
it
contains
a
key
that
equals

prefix
,
and
the
value
associated
with
the
key
that
equals

prefix

in

defined

is
not

true
,
invoke
the

Create
Term
Definition
algorithm
,
passing

active
context
,

local
context
,

prefix

as

term
,
and

defined
.
This
will
ensure
that
a

term
definition

is
created
for

prefix

in

active
context

during

Context
Processing
.

		
If

active
context

contains
a

term
definition

for

prefix
,
return
the
result
of
concatenating
the

IRI

mapping

associated
with

prefix

and

suffix
.

		
Return

value

as
it
is
already
an

absolute

IRI

.

		
If

vocab

is

true
,
and

active
context

has
a

vocabulary
mapping
,
return
the
result
of
concatenating
the

vocabulary
mapping

with

value
.

		
Otherwise,
if

document
relative

is

true
,
set

value

to
the
result
of
resolving

value

against
the

base

IRI

.
Only
the
basic
algorithm
in

section
5.2

of
[

RFC3986

]
is
used;
neither

Syntax-Based
Normalization

nor

Scheme-Based
Normalization

are
performed.
Characters
additionally
allowed
in

IRI

references
are
treated
in
the
same
way
that
unreserved
characters
are
treated
in
URI
references,
per

section
6.5

of
[

RFC3987

].

		
Return

value

as
is.

7.

Expansion
Algorithms

7.1

Expansion
Algorithm

This
algorithm
expands
a
JSON-LD
document,
such
that
all

context

definitions
are
removed,
all

terms

and

compact
IRIs

are
expanded
to

absolute
IRIs
,

blank
node
identifiers
,
or

keywords

and
all

JSON-LD
values

are
expressed
in

arrays

in

expanded
form
.

Overview

This
section
is
non-normative.

Starting
with
its
root

element
,
we
can
process
the
JSON-LD
document
recursively,
until
we
have
a
fully

expanded

result
.
When

expanding

an

element
,
we
can
treat
each
one
differently
according
to
its
type,
in
order
to
break
down
the
problem:

		
If
the

element

is

null
,
there
is
nothing
to
expand.

		
Otherwise,
if

element

is
a

scalar
,
we
expand
it
according
to
the

Value
Expansion
algorithm
.

		
Otherwise,
if
the

element

is
an

array
,
then
we
expand
each
of
its
items
recursively
and
return
them
in
a
new

array
.

		
Otherwise,

element

is
a

JSON
object
.
We
expand
each
of
its
keys,
adding
them
to
our

result
,
and
then
we
expand
each
value
for
each
key
recursively.
Some
of
the
keys
will
be

terms

or

compact
IRIs

and
others
will
be

keywords

or
simply
ignored
because
they
do
not
have
definitions
in
the

context
.
Any

IRIs

will
be
expanded
using
the

IRI

Expansion
algorithm
.

Finally,
after
ensuring

result

is
in
an

array
,
we
return

result
.

Algorithm

The
algorithm
takes
three
input
variables:
an

active
context
,
an

active
property
,
and
an

element

to
be
expanded.
To
begin,
the

active
property

is
set
to

null
,
and

element

is
set
to
the

JSON-LD
input
.

		
If

element

is

null
,
return

null
.

		
If

element

is
a

scalar
,

		
If

active
property

is

null

or

@graph
,
drop
the
free-floating

scalar

by
returning

null
.

		
Return
the
result
of
the

Value
Expansion
algorithm
,
passing
the

active
context
,

active
property
,
and

element

as

value
.

		
If

element

is
an

array
,

		
Initialize
an
empty
array,

result
.

		
For
each

item

in

element
:

		
Initialize

expanded
item

to
the
result
of
using
this
algorithm
recursively,
passing

active
context
,

active
property
,
and

item

as

element
.

		
If
the

active
property

is

@list

or
its

container
mapping

is
set
to

@list
,
the

expanded
item

must
not
be
an

array

or
a

list
object
,
otherwise
a

list
of
lists

error
has
been
detected
and
processing
is
aborted.

		
If

expanded
item

is
an

array
,
append
each
of
its
items
to

result
.
Otherwise,
if

expanded
item

is
not
null,
append
it
to

result
.

		
Return

result
.

		
Otherwise

element

is
a

JSON
object
.

		
If

element

contains
the
key

@context
,
set

active
context

to
the
result
of
the

Context
Processing
algorithm
,
passing

active
context

and
the
value
of
the

@context

key
as

local
context
.

		
Initialize
an
empty

JSON
object
,

result
.

		
For
each

key

and

value

in

element
,
ordered
lexicographically
by

key
:

		
If

key

is

@context
,
continue
to
the
next

key
.

		
Set

expanded
property

to
the
result
of
using
the

IRI

Expansion
algorithm
,
passing

active
context
,

key

for

value
,
and

true

for

vocab
.

		
If

expanded
property

is

null

or
it
neither
contains
a
colon
(
:

)
nor
it
is
a

keyword
,
drop

key

by
continuing
to
the
next

key
.

		
If

expanded
property

is
a

keyword
:

		
If

active
property

equals

@reverse
,
an

invalid
reverse
property
map

error
has
been
detected
and
processing
is
aborted.

		
If

result

has
already
an

expanded
property

member,
an

colliding
keywords

error
has
been
detected
and
processing
is
aborted.

		
If

expanded
property

is

@id

and

value

is
not
a

string
,
an

invalid
@id
value

error
has
been
detected
and
processing
is
aborted.
Otherwise,
set

expanded
value

to
the
result
of
using
the

IRI

Expansion
algorithm
,
passing

active
context
,

value
,
and

true

for

document
relative
.

		
If

expanded
property

is

@type

and

value

is
neither
a

string

nor
an

array

of

strings
,
an

invalid
type
value

error
has
been
detected
and
processing
is
aborted.
Otherwise,
set

expanded
value

to
the
result
of
using
the

IRI

Expansion
algorithm
,
passing

active
context
,

true

for

vocab
,
and

true

for

document
relative

to
expand
the

value

or
each
of
its
items.

		
If

expanded
property

is

@graph
,
set

expanded
value

to
the
result
of
using
this
algorithm
recursively
passing

active
context
,

@graph

for

active
property
,
and

value

for

element
.

		
If

expanded
property

is

@value

and

value

is
not
a

scalar

or

null
,
an

invalid
value
object
value

error
has
been
detected
and
processing
is
aborted.
Otherwise,
set

expanded
value

to

value
.
If

expanded
value

is

null
,
set
the

@value

member
of

result

to

null

and
continue
with
the
next

key

from

element
.
Null
values
need
to
be
preserved
in
this
case
as
the
meaning
of
an

@type

member
depends
on
the
existence
of
an

@value

member.

		
If

expanded
property

is

@language

and

value

is
not
a

string
,
an

invalid
language-tagged
string

error
has
been
detected
and
processing
is
aborted.
Otherwise,
set

expanded
value

to
lowercased

value
.

		
If

expanded
property

is

@index

and

value

is
not
a

string
,
an

invalid
@index
value

error
has
been
detected
and
processing
is
aborted.
Otherwise,
set

expanded
value

to

value
.

		
If

expanded
property

is

@list
:

		
If

active
property

is

null

or

@graph
,
continue
with
the
next

key

from

element

to
remove
the
free-floating
list.

		
Otherwise,
initialize

expanded
value

to
the
result
of
using
this
algorithm
recursively
passing

active
context
,

active
property
,
and

value

for

element
.

		
If

expanded
value

is
a

list
object
,
a

list
of
lists

error
has
been
detected
and
processing
is
aborted.

		
If

expanded
property

is

@set
,
set

expanded
value

to
the
result
of
using
this
algorithm
recursively,
passing

active
context
,

active
property
,
and

value

for

element
.

		
If

expanded
property

is

@reverse

and

value

is
not
a

JSON
object
,
an

invalid
@reverse
value

error
has
been
detected
and
processing
is
aborted.
Otherwise

		
Initialize

expanded
value

to
the
result
of
using
this
algorithm
recursively,
passing

active
context
,

@reverse

as

active
property
,
and

value

as

element
.

		
If

expanded
value

contains
an

@reverse

member,
i.e.,
properties
that
are
reversed
twice,
execute
for
each
of
its

property

and

item

the
following
steps:

		
If

result

does
not
have
a

property

member,
create
one
and
set
its
value
to
an
empty

array
.

		
Append

item

to
the
value
of
the

property

member
of

result
.

		
If

expanded
value

contains
members
other
than

@reverse
:

		
If

result

does
not
have
an

@reverse

member,
create
one
and
set
its
value
to
an
empty

JSON
object
.

		
Reference
the
value
of
the

@reverse

member
in

result

using
the
variable

reverse
map
.

		
For
each

property

and

items

in

expanded
value

other
than

@reverse
:

		
For
each

item

in

items
:

		
If

item

is
a

value
object

or

list
object
,
an

invalid
reverse
property
value

has
been
detected
and
processing
is
aborted.

		
If

reverse
map

has
no

property

member,
create
one
and
initialize
its
value
to
an
empty

array
.

		
Append

item

to
the
value
of
the

property

member
in

reverse
map
.

		
Continue
with
the
next

key

from

element
.

		
Unless

expanded
value

is

null
,
set
the

expanded
property

member
of

result

to

expanded
value
.

		
Continue
with
the
next

key

from

element
.

		
Otherwise,
if

key

's

container
mapping

in

active
context

is

@language

and

value

is
a

JSON
object

then

value

is
expanded
from
a

language
map

as
follows:

		
Initialize

expanded
value

to
an
empty

array
.

		
For
each
key-value
pair

language

-

language
value

in

value
,
ordered
lexicographically
by

language
:

		
If

language
value

is
not
an

array

set
it
to
an

array

containing
only

language
value
.

		
For
each

item

in

language
value
:

		

item

must
be
a

string
,
otherwise
an

invalid
language
map
value

error
has
been
detected
and
processing
is
aborted.

		
Append
a

JSON
object

to

expanded
value

that
consists
of
two
key-value
pairs:
(

@value

-

item

)
and
(

@language

-lowercased

language

).

		
Otherwise,
if

key

's

container
mapping

in

active
context

is

@index

and

value

is
a

JSON
object

then

value

is
expanded
from
an
index
map
as
follows:

		
Initialize

expanded
value

to
an
empty

array
.

		
For
each
key-value
pair

index

-

index
value

in

value
,
ordered
lexicographically
by

index
:

		
If

index
value

is
not
an

array

set
it
to
an

array

containing
only

index
value
.

		
Initialize

index
value

to
the
result
of
using
this
algorithm
recursively,
passing

active
context
,

key

as

active
property
,
and

index
value

as

element
.

		
For
each

item

in

index
value
:

		
If

item

does
not
have
the
key

@index
,
add
the
key-value
pair
(

@index

-

index

)
to

item
.

		
Append

item

to

expanded
value
.

		
Otherwise,
initialize

expanded
value

to
the
result
of
using
this
algorithm
recursively,
passing

active
context
,

key

for

active
property
,
and

value

for

element
.

		
If

expanded
value

is

null
,
ignore

key

by
continuing
to
the
next

key

from

element
.

		
If
the

container
mapping

associated
to

key

in

active
context

is

@list

and

expanded
value

is
not
already
a

list
object
,
convert

expanded
value

to
a

list
object

by
first
setting
it
to
an

array

containing
only

expanded
value

if
it
is
not
already
an

array
,
and
then
by
setting
it
to
a

JSON
object

containing
the
key-value
pair

@list

-

expanded
value
.

		
Otherwise,
if
the

term
definition

associated
to

key

indicates
that
it
is
a

reverse
property

		
If

result

has
no

@reverse

member,
create
one
and
initialize
its
value
to
an
empty

JSON
object
.

		
Reference
the
value
of
the

@reverse

member
in

result

using
the
variable

reverse
map
.

		
If

expanded
value

is
not
an

array
,
set
it
to
an

array

containing

expanded
value
.

		
For
each

item

in

expanded
value

		
If

item

is
a

value
object

or

list
object
,
an

invalid
reverse
property
value

has
been
detected
and
processing
is
aborted.

		
If

reverse
map

has
no

expanded
property

member,
create
one
and
initialize
its
value
to
an
empty

array
.

		
Append

item

to
the
value
of
the

expanded
property

member
of

reverse
map
.

		
Otherwise,
if

key

is
not
a

reverse
property
:

		
If

result

does
not
have
an

expanded
property

member,
create
one
and
initialize
its
value
to
an
empty

array
.

		
Append

expanded
value

to
value
of
the

expanded
property

member
of

result
.

		
If

result

contains
the
key

@value
:

		
The

result

must
not
contain
any
keys
other
than

@value
,

@language
,

@type
,
and

@index
.
It
must
not
contain
both
the

@language

key
and
the

@type

key.
Otherwise,
an

invalid
value
object

error
has
been
detected
and
processing
is
aborted.

		
If
the
value
of

result

's

@value

key
is

null
,
then
set

result

to

null
.

		
Otherwise,
if
the
value
of

result

's

@value

member
is
not
a

string

and

result

contains
the
key

@language
,
an

invalid
language-tagged
value

error
has
been
detected
(only

strings

can
be
language-tagged)
and
processing
is
aborted.

		
Otherwise,
if
the

result

has
a

an

@type

member
and
its
value
is
not
an

IRI

,
an

invalid
typed
value

error
has
been
detected
and
processing
is
aborted.

		
Otherwise,
if

result

contains
the
key

@type

and
its
associated
value
is
not
an

array
,
set
it
to
an

array

containing
only
the
associated
value.

		
Otherwise,
if

result

contains
the
key

@set

or

@list
:

		
The

result

must
contain
at
most
one
other
key
and
that
key
must
be

@index
.
Otherwise,
an

invalid
set
or
list
object

error
has
been
detected
and
processing
is
aborted.

		
If

result

contains
the
key

@set
,
then
set

result

to
the
key's
associated
value.

		
If

result

contains
only
the
key

@language
,
set

result

to

null
.

		
If

active
property

is

null

or

@graph
,
drop
free-floating
values
as
follows:

		
If

result

is
an
empty

JSON
object

or
contains
the
keys

@value

or

@list
,
set

result

to

null
.

		
Otherwise,
if

result

is
a

JSON
object

whose
only
key
is

@id
,
set

result

to

null
.

		
Return

result
.

If,
after
the
above
algorithm
is
run,
the
result
is
a

JSON
object

that
contains
only
an

@graph

key,
set
the
result
to
the
value
of

@graph

's
value.
Otherwise,
if
the
result
is

null
,
set
it
to
an
empty

array
.
Finally,
if
the
result
is
not
an

array
,
then
set
the
result
to
an

array

containing
only
the
result.

7.2

Value
Expansion

Some
values
in
JSON-LD
can
be
expressed
in
a

compact
form
.
These
values
are
required
to
be

expanded

at
times
when
processing
JSON-LD
documents.
A
value
is
said
to
be
in

expanded
form

after
the
application
of
this
algorithm.

Overview

This
section
is
non-normative.

If

active
property

has
a

type
mapping

in
the

active
context

set
to

@id

or

@vocab
,
a

JSON
object

with
a
single
member

@id

whose
value
is
the
result
of
using
the

IRI

Expansion
algorithm

on

value

is
returned.

Otherwise,
the
result
will
be
a

JSON
object

containing
an

@value

member
whose
value
is
the
passed

value
.
Additionally,
an

@type

member
will
be
included
if
there
is
a

type
mapping

associated
with
the

active
property

or
an

@language

member
if

value

is
a

string

and
there
is

language
mapping

associated
with
the

active
property
.

Algorithm

The
algorithm
takes
three
required
inputs:
an

active
context
,
an

active
property
,
and
a

value

to
expand.

		
If
the

active
property

has
a

type
mapping

in

active
context

that
is

@id
,
return
a
new

JSON
object

containing
a
single
key-value
pair
where
the
key
is

@id

and
the
value
is
the
result
of
using
the

IRI

Expansion
algorithm
,
passing

active
context
,

value
,
and

true

for

document
relative
.

		
If

active
property

has
a

type
mapping

in

active
context

that
is

@vocab
,
return
a
new

JSON
object

containing
a
single
key-value
pair
where
the
key
is

@id

and
the
value
is
the
result
of
using
the

IRI

Expansion
algorithm
,
passing

active
context
,

value
,

true

for

vocab
,
and

true

for

document
relative
.

		
Otherwise,
initialize

result

to
a

JSON
object

with
an

@value

member
whose
value
is
set
to

value
.

		
If

active
property

has
a

type
mapping

in

active
context
,
add
an

@type

member
to

result

and
set
its
value
to
the
value
associated
with
the

type
mapping
.

		
Otherwise,
if

value

is
a

string
:

		
If
a

language
mapping

is
associated
with

active
property

in

active
context
,
add
an

@language

to

result

and
set
its
value
to
the
language
code
associated
with
the

language
mapping

;
unless
the

language
mapping

is
set
to

null

in
which
case
no
member
is
added.

		
Otherwise,
if
the

active
context

has
a

default
language
,
add
an

@language

to

result

and
set
its
value
to
the

default
language
.

		
Return

result
.

8.

Compaction
Algorithms

8.1

Compaction
Algorithm

This
algorithm
compacts
a
JSON-LD
document,
such
that
the
given

context

is
applied.
This
must
result
in
shortening
any
applicable

IRIs

to

terms

or

compact
IRIs
,
any
applicable

keywords

to

keyword
aliases
,
and
any
applicable

JSON-LD
values

expressed
in

expanded
form

to
simple
values
such
as

strings

or

numbers
.

Overview

This
section
is
non-normative.

Starting
with
its
root

element
,
we
can
process
the
JSON-LD
document
recursively,
until
we
have
a
fully

compacted

result
.
When

compacting

an

element
,
we
can
treat
each
one
differently
according
to
its
type,
in
order
to
break
down
the
problem:

		
If
the

element

is
a

scalar
,
it
is
already
in

compacted
form
,
so
we
simply
return
it.

		
If
the

element

is
an

array
,
we
compact
each
of
its
items
recursively
and
return
them
in
a
new

array
.

		
Otherwise

element

is
a

JSON
object
.
The
value
of
each
key
in
element
is
compacted
recursively.
Some
of
the
keys
will
be
compacted,
using
the

IRI

Compaction
algorithm
,
to

terms

or

compact
IRIs

and
others
will
be
compacted
from

keywords

to

keyword
aliases

or
simply
left
unchanged
because
they
do
not
have
definitions
in
the

context
.
Values
will
be
converted
to

compacted
form

via
the

Value
Compaction
algorithm
.
Some
data
will
be
reshaped
based
on

container
mappings

specified
in
the
context
such
as

@index

or

@language

maps.

The
final
output
is
a

JSON
object

with
a

an

@context

key,
if
a
non-empty

context

was
given,
where
the

JSON
object

is
either

result

or
a
wrapper
for
it
where

result

appears
as
the
value
of
an
(aliased)

@graph

key
because

result

contained
two
or
more
items
in
an

array
.

Algorithm

The
algorithm
takes
five
required
input
variables:
an

active
context
,
an

inverse
context
,
an

active
property
,
an

element

to
be
compacted,
and
a
flag

compactArrays

.
To
begin,
the

active
context

is
set
to
the
result
of
performing

Context
Processing

on
the
passed

context
,
the

inverse
context

is
set
to
the
result
of
performing
the

Inverse
Context
Creation
algorithm

on

active
context
,
the

active
property

is
set
to

null
,

element

is
set
to
the
result
of
performing
the

Expansion
algorithm

on
the

JSON-LD
input
,
and,
if
not
passed,

compactArrays

is
set
to

true
.

		
If

element

is
a

scalar
,
it
is
already
in
its
most
compact
form,
so
simply
return

element
.

		
If

element

is
an

array
:

		
Initialize

result

to
an
empty

array
.

		
For
each

item

in

element
:

		
Initialize

compacted
item

to
the
result
of
using
this
algorithm
recursively,
passing

active
context
,

inverse
context
,

active
property
,
and

item

for

element
.

		
If

compacted
item

is
not

null
,
then
append
it
to

result
.

		
If

result

contains
only
one
item
(it
has
a
length
of

1

),

active
property

has
no

container
mapping

in

active
context
,
and

compactArrays

is

true
,
set

result

to
its
only
item.

		
Return

result
.

		
Otherwise

element

is
a

JSON
object
.

		
If

element

has
an

@value

or

@id

member
and
the
result
of
using
the

Value
Compaction
algorithm
,
passing

active
context
,

inverse
context
,

active
property
,and

element

as

value

is
a

scalar
,
return
that
result.

		
Initialize

inside
reverse

to

true

if

active
property

equals

@reverse
,
otherwise
to

false
.

		
Initialize

result

to
an
empty

JSON
object
.

		
For
each
key

expanded
property

and
value

expanded
value

in

element
,
ordered
lexicographically
by

expanded
property
:

		
If

expanded
property

is

@id

or

@type
:

		
If

expanded
value

is
a

string
,
then
initialize

compacted
value

to
the
result
of
using
the

IRI

Compaction
algorithm
,
passing

active
context
,

inverse
context
,

expanded
value

for

iri
,
and

true

for

vocab

if

expanded
property

is

@type
,

false

otherwise.

		
Otherwise,

expanded
value

must
be
a

@type

array
:

		
Initialize

compacted
value

to
an
empty

array
.

		
For
each
item

expanded
type

in

expanded
value
,
append
the
result
of
of
using
the

IRI

Compaction
algorithm
,
passing

active
context
,

inverse
context
,

expanded
type

for

iri
,
and

true

for

vocab
,
to

compacted
value
.

		
If

compacted
value

contains
only
one
item
(it
has
a
length
of

1

),
then
set

compacted
value

to
its
only
item.

		
Initialize

alias

to
the
result
of
using
the

IRI

Compaction
algorithm
,
passing

active
context
,

inverse
context
,

expanded
property

for

iri
,
and

true

for

vocab
.

		
Add
a
member

alias

to

result

whose
value
is
set
to

compacted
value

and
continue
to
the
next

expanded
property
.

		
If

expanded
property

is

@reverse
:

		
Initialize

compacted
value

to
the
result
of
using
this
algorithm
recursively,
passing

active
context
,

inverse
context
,

@reverse

for

active
property
,
and

expanded
value

for

element
.

		
For
each

property

and

value

in

compacted
value
:

		
If
the

term
definition

for

property

in
the

active
context

indicates
that

property

is
a

reverse
property

		
If
the

term
definition

for

property

in
the

active
context

has
a

container
mapping

of

@set

or

compactArrays

is

false
,
and

value

is
not
an

array
,
set

value

to
a
new

array

containing
only

value
.

		
If

property

is
not
a
member
of

result
,
add
one
and
set
its
value
to

value
.

		
Otherwise,
if
the
value
of
the

property

member
of

result

is
not
an

array
,
set
it
to
a
new

array

containing
only
the
value.
Then
append

value

to
its
value
if

value

is
not
an

array
,
otherwise
append
each
of
its
items.

		
Remove
the

property

member
from

compacted
value
.

		
If

compacted
value

has
some
remaining
members,
i.e.,
it
is
not
an
empty

JSON
object
:

		
Initialize

alias

to
the
result
of
using
the

IRI

Compaction
algorithm
,
passing

active
context
,

inverse
context
,

@reverse

for

iri
,
and

true

for

vocab
.

		
Set
the
value
of
the

alias

member
of

result

to

compacted
value
.

		
Continue
with
the
next

expanded
property

from

element
.

		
If

expanded
property

is

@index

and

active
property

has
a

container
mapping

in

active
context

that
is

@index
,
then
the
compacted
result
will
be
inside
of
an

@index

container,
drop
the

@index

property
by
continuing
to
the
next

expanded
property
.

		
Otherwise,
if

expanded
property

is

@index
,

@value
,
or

@language
:

		
Initialize

alias

to
the
result
of
using
the

IRI

Compaction
algorithm
,
passing

active
context
,

inverse
context
,

expanded
property

for

iri
,
and

true

for

vocab
.

		
Add
a
member

alias

to

result

whose
value
is
set
to

expanded
value

and
continue
with
the
next

expanded
property
.

		
If

expanded
value

is
an
empty

array
:

		
Initialize

item
active
property

to
the
result
of
using
the

IRI

Compaction
algorithm
,
passing

active
context
,

inverse
context
,

expanded
property

for

iri
,

expanded
value

for

value
,

true

for

vocab
,
and

inside
reverse
.

		
If

result

does
not
have
the
key
that
equals

item
active
property
,
set
this
key's
value
in

result

to
an
empty

array
.
Otherwise,
if
the
key's
value
is
not
an

array
,
then
set
it
to
one
containing
only
the
value.

		
At
this
point,

expanded
value

must
be
an

array

due
to
the

Expansion
algorithm
.
For
each
item

expanded
item

in

expanded
value
:

		
Initialize

item
active
property

to
the
result
of
using
the

IRI

Compaction
algorithm
,
passing

active
context
,

inverse
context
,

expanded
property

for

iri
,

expanded
item

for

value
,

true

for

vocab
,
and

inside
reverse
.

		
Initialize

container

to

null
.
If
there
is
a

container
mapping

for

item
active
property

in

active
context
,
set

container

to
its
value.

		
Initialize

compacted
item

to
the
result
of
using
this
algorithm
recursively,
passing

active
context
,

inverse
context
,

item
active
property

for

active
property
,

expanded
item

for

element

if
it
does
not
contain
the
key

@list
,
otherwise
pass
the
key's
associated
value
for

element
.

		
If

expanded
item

is
a

list
object
:

		
If

compacted
item

is
not
an

array
,
then
set
it
to
an

array

containing
only

compacted
item
.

		
If

container

is
not

@list
:

		
Convert

compacted
item

to
a

list
object

by
setting
it
to
a

JSON
object

containing
key-value
pair
where
the
key
is
the
result
of
the

IRI

Compaction
algorithm
,
passing

active
context
,

inverse
context
,

@list

for

iri
,
and

compacted
item

for

value
.

		
If

expanded
item

contains
the
key

@index
,
then
add
a
key-value
pair
to

compacted
item

where
the
key
is
the
result
of
the

IRI

Compaction
algorithm
,
passing

active
context
,

inverse
context
,

@index

as

iri
,
and
the
value
associated
with
the

@index

key
in

expanded
item

as

value
.

		
Otherwise,

item
active
property

must
not
be
a
key
in

result

because
there
cannot
be
two

list
objects

associated
with
an

active
property

that
has
a

container
mapping

;
a

compaction
to
list
of
lists

error
has
been
detected
and
processing
is
aborted.

		
If

container

is

@language

or

@index
:

		
If

item
active
property

is
not
a
key
in

result
,
initialize
it
to
an
empty

JSON
object
.
Initialize

map
object

to
the
value
of

item
active
property

in

result
.

		
If

container

is

@language

and

compacted
item

contains
the
key

@value
,
then
set

compacted
item

to
the
value
associated
with
its

@value

key.

		
Initialize

map
key

to
the
value
associated
with
with
the
key
that
equals

container

in

expanded
item
.

		
If

map
key

is
not
a
key
in

map
object
,
then
set
this
key's
value
in

map
object

to

compacted
item
.
Otherwise,
if
the
value
is
not
an

array
,
then
set
it
to
one
containing
only
the
value
and
then
append

compacted
item

to
it.

		
Otherwise,

		
If

compactArrays

is

false
,

container

is

@set

or

@list
,
or

expanded
property

is

@list

or

@graph

and

compacted
item

is
not
an

array
,
set
it
to
a
new

array

containing
only

compacted
item
.

		
If

item
active
property

is
not
a
key
in

result

then
add
the
key-value
pair,
(

item
active
property

-

compacted
item

),
to

result
.

		
Otherwise,
if
the
value
associated
with
the
key
that
equals

item
active
property

in

result

is
not
an

array
,
set
it
to
a
new

array

containing
only
the
value.
Then
append

compacted
item

to
the
value
if

compacted
item

is
not
an

array
,
otherwise,
concatenate
it.

		
Return

result
.

If,
after
the
algorithm
outlined
above
is
run,
the
result

result

is
an

array
,
replace
it
with
a
new

JSON
object

with
a
single
member
whose
key
is
the
result
of
using
the

IRI

Compaction
algorithm
,
passing

active
context
,

inverse
context
,
and

@graph

as

iri

and
whose
value
is
the

array

result
.
Finally,
if
a
non-empty

context

has
been
passed,
add
an

@context

member
to

result

and
set
its
value
to
the
passed

context
.

8.2

Inverse
Context
Creation

When
there
is
more
than
one

term

that
could
be
chosen
to
compact
an

IRI

,
it
has
to
be
ensured
that
the

term

selection
is
both
deterministic
and
represents
the
most
context-appropriate
choice
whilst
taking
into
consideration
algorithmic
complexity.

In
order
to
make

term

selections,
the
concept
of
an

inverse
context

is
introduced.
An

inverse
context

is
essentially
a
reverse
lookup
table
that
maps

container
mappings
,

type
mappings
,
and

language
mappings

to
a
simple

term

for
a
given

active
context
.
A

inverse
context

only
needs
to
be
generated
for
an

active
context

if
it
is
being
used
for

compaction
.

To
make
use
of
an

inverse
context
,
a
list
of
preferred

container
mappings

and
the

type
mapping

or

language
mapping

are
gathered
for
a
particular
value
associated
with
an

IRI

.
These
parameters
are
then
fed
to
the

Term
Selection
algorithm
,
which
will
find
the

term

that
most
appropriately
matches
the
value's
mappings.

Overview

This
section
is
non-normative.

To
create
an

inverse
context

for
a
given

active
context
,
each

term

in
the

active
context

is
visited,
ordered
by
length,
shortest
first
(ties
are
broken
by
choosing
the
lexicographically
least

term

).
For
each

term
,
an
entry
is
added
to
the

inverse
context

for
each
possible
combination
of

container
mapping

and

type
mapping

or

language
mapping

that
would
legally
match
the

term
.
Illegal
matches
include
differences
between
a
value's

type
mapping

or

language
mapping

and
that
of
the

term
.
If
a

term

has
no

container
mapping
,

type
mapping
,
or

language
mapping

(or
some
combination
of
these),
then
it
will
have
an
entry
in
the

inverse
context

using
the
special
key

@none
.
This
allows
the

Term
Selection
algorithm

to
fall
back
to
choosing
more
generic

terms

when
a
more
specifically-matching

term

is
not
available
for
a
particular

IRI

and
value
combination.

Algorithm

The
algorithm
takes
one
required
input:
the

active
context

that
the

inverse
context

is
being
created
for.

		
Initialize

result

to
an
empty

JSON
object
.

		
Initialize

default
language

to

@none
.
If
the

active
context

has
a

default
language
,
set

default
language

to
it.

		
For
each
key

term

and
value

term
definition

in
the

active
context
,
ordered
by
shortest

term

first
(breaking
ties
by
choosing
the
lexicographically
least

term

):

		
If
the

term
definition

is

null
,

term

cannot
be
selected
during

compaction
,
so
continue
to
the
next

term
.

		
Initialize

container

to

@none
.
If
there
is
a

container
mapping

in

term
definition
,
set

container

to
its
associated
value.

		
Initialize

iri

to
the
value
of
the

IRI

mapping

for
the

term
definition
.

		
If

iri

is
not
a
key
in

result
,
add
a
key-value
pair
where
the
key
is

iri

and
the
value
is
an
empty

JSON
object

to

result
.

		
Reference
the
value
associated
with
the

iri

member
in

result

using
the
variable

container
map
.

		
If

container
map

has
no

container

member,
create
one
and
set
its
value
to
a
new

JSON
object

with
two
members.
The
first
member
is

@language

and
its
value
is
a
new
empty

JSON
object
,
the
second
member
is

@type

and
its
value
is
a
new
empty

JSON
object
.

		
Reference
the
value
associated
with
the

container

member
in

container
map

using
the
variable

type/language
map
.

		
If
the

term
definition

indicates
that
the

term

represents
a

reverse
property
:

		
Reference
the
value
associated
with
the

@type

member
in

type/language
map

using
the
variable

type
map
.

		
If

type
map

does
not
have
a

an

@reverse

member,
create
one
and
set
its
value
to
the

term

being
processed.

		
Otherwise,
if

term
definition

has
a

type
mapping
:

		
Reference
the
value
associated
with
the

@type

member
in

type/language
map

using
the
variable

type
map
.

		
If

type
map

does
not
have
a
member
corresponding
to
the

type
mapping

in

term
definition
,
create
one
and
set
its
value
to
the

term

being
processed.

		
Otherwise,
if

term
definition

has
a

language
mapping

(might
be

null

):

		
Reference
the
value
associated
with
the

@language

member
in

type/language
map

using
the
variable

language
map
.

		
If
the

language
mapping

equals

null
,
set

language

to

@null

;
otherwise
set
it
to
the
language
code
in

language
mapping
.

		
If

language
map

does
not
have
a

language

member,
create
one
and
set
its
value
to
the

term

being
processed.

		
Otherwise:

		
Reference
the
value
associated
with
the

@language

member
in

type/language
map

using
the
variable

language
map
.

		
If

language
map

does
not
have
a

default
language

member,
create
one
and
set
its
value
to
the

term

being
processed.

		
If

language
map

does
not
have
a

an

@none

member,
create
one
and
set
its
value
to
the

term

being
processed.

		
Reference
the
value
associated
with
the

@type

member
in

type/language
map

using
the
variable

type
map
.

		
If

type
map

does
not
have
a

an

@none

member,
create
one
and
set
its
value
to
the

term

being
processed.

		
Return

result
.

8.3

IRI

Compaction

This
algorithm
compacts
an

IRI

to
a

term

or

compact

IRI

,
or
a

keyword

to
a

keyword
alias
.
A
value
that
is
associated
with
the

IRI

may
be
passed
in
order
to
assist
in
selecting
the
most
context-appropriate

term
.

Overview

This
section
is
non-normative.

If
the
passed

IRI

is

null
,
we
simply
return

null
.
Otherwise,
we
first
try
to
find
a

term

that
the

IRI

or

keyword

can
be
compacted
to
if
it
is
relative
to

active
context's

vocabulary
mapping
.
In
order
to
select
the
most
appropriate

term
,
we
may
have
to
collect
information
about
the
passed

value
.
This
information
includes
which

container
mappings

would
be
preferred
for
expressing
the

value
,
and
what
its

type
mapping

or

language
mapping

is.
For

JSON-LD
lists
,
the

type
mapping

or

language
mapping

will
be
chosen
based
on
the
most
specific
values
that
work
for
all
items
in
the
list.
Once
this
information
is
gathered,
it
is
passed
to
the

Term
Selection
algorithm
,
which
will
return
the
most
appropriate

term

to
use.

If
no

term

was
found
that
could
be
used
to
compact
the

IRI

,
an
attempt
is
made
to
compact
the

IRI

using
the

active
context's

vocabulary
mapping
,
if
there
is
one.
If
the

IRI

could
not
be
compacted,
an
attempt
is
made
to
find
a

compact

IRI

.
If
there
is
no
appropriate

compact

IRI

,
the

IRI

is
transformed
to
a

relative

IRI

using
the
document's

base

IRI

.
Finally,
if
the

IRI

or

keyword

still
could
not
be
compacted,
it
is
returned
as
is.

Algorithm

This
algorithm
takes
three
required
inputs
and
three
optional
inputs.
The
required
inputs
are
an

active
context
,
an

inverse
context
,
and
the

iri

to
be
compacted.
The
optional
inputs
are
a

value

associated
with
the

iri
,
a

vocab

flag
which
specifies
whether
the
passed

iri

should
be
compacted
using
the

active
context's

vocabulary
mapping
,
and
a

reverse

flag
which
specifies
whether
a

reverse
property

is
being
compacted.
If
not
passed,

value

is
set
to

null

and

vocab

and

reverse

are
both
set
to

false
.

		
If

iri

is

null
,
return

null
.

		
If

vocab

is

true

and

iri

is
a
key
in

inverse
context
:

		
Initialize

default
language

to

active
context's

default
language
,
if
it
has
one,
otherwise
to

@none
.

		
Initialize

containers

to
an
empty

array
.
This

array

will
be
used
to
keep
track
of
an
ordered
list
of
preferred

container
mappings

for
a

term
,
based
on
what
is
compatible
with

value
.

		
Initialize

type/language

to

@language
,
and

type/language
value

to

@null
.
These
two
variables
will
keep
track
of
the
preferred

type
mapping

or

language
mapping

for
a

term
,
based
on
what
is
compatible
with

value
.

		
If

value

is
a

JSON
object

that
contains
the
key

@index
,
then
append
the
value

@index

to

containers
.

		
If

reverse

is

true
,
set

type/language

to

@type
,

type/language
value

to

@reverse
,
and
append

@set

to

containers
.

		
Otherwise,
if

value

is
a

list
object
,
then
set

type/language

and

type/language
value

to
the
most
specific
values
that
work
for
all
items
in
the
list
as
follows:

		
If

@index

is
a
not
key
in

value
,
then
append

@list

to

containers
.

		
Initialize

list

to
the

array

associated
with
the
key

@list

in

value
.

		
Initialize

common
type

and

common
language

to

null
.
If

list

is
empty,
set

common
language

to

default
language
.

		
For
each

item

in

list
:

		
Initialize

item
language

to

@none

and

item
type

to

@none
.

		
If

item

contains
the
key

@value
:

		
If

item

contains
the
key

@language
,
then
set

item
language

to
its
associated
value.

		
Otherwise,
if

item

contains
the
key

@type
,
set

item
type

to
its
associated
value.

		
Otherwise,
set

item
language

to

@null
.

		
Otherwise,
set

item
type

to

@id
.

		
If

common
language

is

null
,
set
it
to

item
language
.

		
Otherwise,
if

item
language

does
not
equal

common
language

and

item

contains
the
key

@value
,
then
set

common
language

to

@none

because
list
items
have
conflicting
languages.

		
If

common
type

is

null
,
set
it
to

item
type
.

		
Otherwise,
if

item
type

does
not
equal

common
type
,
then
set

common
type

to

@none

because
list
items
have
conflicting
types.

		
If

common
language

is

@none

and

common
type

is

@none
,
then
stop
processing
items
in
the
list
because
it
has
been
detected
that
there
is
no
common
language
or
type
amongst
the
items.

		
If

common
language

is

null
,
set
it
to

@none
.

		
If

common
type

is

null
,
set
it
to

@none
.

		
If

common
type

is
not

@none

then
set

type/language

to

@type

and

type/language
value

to

common
type
.

		
Otherwise,
set

type/language
value

to

common
language
.

		
Otherwise:

		
If

value

is
a

value
object
:

		
If

value

contains
the
key

@language

and
does
not
contain
the
key

@index
,
then
set

type/language
value

to
its
associated
value
and
append

@language

to

containers
.

		
Otherwise,
if

value

contains
the
key

@type
,
then
set

type/language
value

to
its
associated
value
and
set

type/language

to

@type
.

		
Otherwise,
set

type/language

to

@type

and
set

type/language
value

to

@id
.

		
Append

@set

to

containers
.

		
Append

@none

to

containers
.
This
represents
the
non-existence
of
a

container
mapping
,
and
it
will
be
the
last

container
mapping

value
to
be
checked
as
it
is
the
most
generic.

		
If

type/language
value

is

null
,
set
it
to

@null
.
This
is
the
key
under
which

null

values
are
stored
in
the

inverse
context

entry
.

		
Initialize

preferred
values

to
an
empty

array
.
This

array

will
indicate,
in
order,
the
preferred
values
for
a

term's

type
mapping

or

language
mapping
.

		
If

type/language
value

is

@reverse
,
append

@reverse

to

preferred
values
.

		
If

type/language
value

is

@id

or

@reverse

and

value

has
an

@id

member:

		
If
the
result
of
using
the

IRI

compaction
algorithm
,
passing

active
context
,

inverse
context
,
the
value
associated
with
the

@id

key
in

value

for

iri
,

true

for

vocab
,
and

true

for

document
relative

has
a

term
definition

in
the

active
context

with
an

IRI

mapping

that
equals
the
value
associated
with
the

@id

key
in

value
,
then
append

@vocab
,

@id
,
and

@none
,
in
that
order,
to

preferred
values
.

		
Otherwise,
append

@id
,

@vocab
,
and

@none
,
in
that
order,
to

preferred
values
.

		
Otherwise,
append

type/language
value

and

@none
,
in
that
order,
to

preferred
values
.

		
Initialize

term

to
the
result
of
the

Term
Selection
algorithm
,
passing

inverse
context
,

iri
,

containers
,

type/language
,
and

preferred
values
.

		
If

term

is
not

null
,
return

term
.

		
At
this
point,
there
is
no
simple

term

that

iri

can
be
compacted
to.
If

vocab

is

true

and

active
context

has
a

vocabulary
mapping
:

		
If

iri

begins
with
the

vocabulary
mapping's

value
but
is
longer,
then
initialize

suffix

to
the
substring
of

iri

that
does
not
match.
If

suffix

does
not
have
a

term
definition

in

active
context
,
then
return

suffix
.

		
The

iri

could
not
be
compacted
using
the

active
context's

vocabulary
mapping
.
Try
to
create
a

compact

IRI

,
starting
by
initializing

compact

IRI

to

null
.
This
variable
will
be
used
to
tore
the
created

compact

IRI

,
if
any.

		
For
each
key

term

and
value

term
definition

in
the

active
context
:

		
If
the

term

contains
a
colon
(
:

),
then
continue
to
the
next

term

because

terms

with
colons
can't
be
used
as

prefixes
.

		
If
the

term
definition

is

null
,
its

IRI

mapping

equals

iri
,
or
its

IRI

mapping

is
not
a
substring
at
the
beginning
of

iri
,
the

term

cannot
be
used
as
a

prefix

because
it
is
not
a
partial
match
with

iri
.
Continue
with
the
next

term
.

		
Initialize

candidate

by
concatenating

term
,
a
colon
(
:

),
and
the
substring
of

iri

that
follows
after
the
value
of
the

term
definition's

IRI

mapping
.

		
If
either

compact

IRI

is

null

or

candidate

is
shorter
or
the
same
length
but
lexicographically
less
than

compact

IRI

and

candidate

does
not
have
a

term
definition

in

active
context

or
if
the

term
definition

has
an

IRI

mapping

that
equals

iri

and

value

is

null
,
set

compact

IRI

to

candidate
.

		
If

compact

IRI

is
not

null
,
return

compact

IRI

.

		
If

vocab

is

false

then
transform

iri

to
a

relative

IRI

using
the
document's
base

IRI

.

		
Finally,
return

iri

as
is.

8.4

Term
Selection

This
algorithm,
invoked
via
the

IRI

Compaction
algorithm
,
makes
use
of
an

active
context's

inverse
context

to
find
the

term

that
is
best
used
to

compact

an

IRI

.
Other
information
about
a
value
associated
with
the

IRI

is
given,
including
which

container
mappings

and
which

type
mapping

or

language
mapping

would
be
best
used
to
express
the
value.

Overview

This
section
is
non-normative.

The

inverse
context's

entry
for
the

IRI

will
be
first
searched
according
to
the
preferred

container
mappings
,
in
the
order
that
they
are
given.
Amongst

terms

with
a
matching

container
mapping
,
preference
will
be
given
to
those
with
a
matching

type
mapping

or

language
mapping
,
over
those
without
a

type
mapping

or

language
mapping
.
If
there
is
no

term

with
a
matching

container
mapping

then
the

term

without
a

container
mapping

that
matches
the
given

type
mapping

or

language
mapping

is
selected.
If
there
is
still
no
selected

term
,
then
a

term

with
no

type
mapping

or

language
mapping

will
be
selected
if
available.
No

term

will
be
selected
that
has
a
conflicting

type
mapping

or

language
mapping
.
Ties
between

terms

that
have
the
same
mappings
are
resolved
by
first
choosing
the
shortest
terms,
and
then
by
choosing
the
lexicographically
least
term.
Note
that
these
ties
are
resolved
automatically
because
they
were
previously
resolved
when
the

Inverse
Context
Creation
algorithm

was
used
to
create
the

inverse
context
.

Algorithm

This
algorithm
has
five
required
inputs.
They
are:
an

inverse
context
,
a

keyword

or

IRI

iri
,
an

array

containers

that
represents
an
ordered
list
of
preferred

container
mappings
,
a

string

type/language

that
indicates
whether
to
look
for
a

term

with
a
matching

type
mapping

or

language
mapping
,
and
an

array

representing
an
ordered
list
of

preferred
values

for
the

type
mapping

or

language
mapping

to
look
for.

		
Initialize

container
map

to
the
value
associated
with

iri

in
the

inverse
context
.

		
For
each
item

container

in

containers
:

		
If

container

is
not
a
key
in

container
map
,
then
there
is
no

term

with
a
matching

container
mapping

for
it,
so
continue
to
the
next

container
.

		
Initialize

type/language
map

to
the
value
associated
with
the

container

member
in

container
map
.

		
Initialize

value
map

to
the
value
associated
with

type/language

member
in

type/language
map
.

		
For
each

item

in

preferred
values
:

		
If

item

is
not
a
key
in

value
map
,
then
there
is
no

term

with
a
matching

type
mapping

or

language
mapping
,
so
continue
to
the
next

item
.

		
Otherwise,
a
matching
term
has
been
found,
return
the
value
associated
with
the

item

member
in

value
map
.

		
No
matching
term
has
been
found.
Return

null
.

8.5

Value
Compaction

Expansion

transforms
all
values
into

expanded
form

in
JSON-LD.
This
algorithm
performs
the
opposite
operation,
transforming
a
value
into

compacted
form
.
This
algorithm
compacts
a
value
according
to
the

term
definition

in
the
given

active
context

that
is
associated
with
the
value's
associated

active
property
.

Overview

This
section
is
non-normative.

The

value

to
compact
has
either
an

@id

or
an

@value

member.

For
the
former
case,
if
the

type
mapping

of

active
property

is
set
to

@id

or

@vocab

and

value

consists
of
only
an

@id

member
and,
if
the

container
mapping

of

active
property

is
set
to

@index
,
an

@index

member,

value

can
be
compacted
to
a

string

by
returning
the
result
of
using
the

IRI

Compaction
algorithm

to
compact
the
value
associated
with
the

@id

member.
Otherwise,

value

cannot
be
compacted
and
is
returned
as
is.

For
the
latter
case,
it
might
be
possible
to
compact

value

just
into
the
value
associated
with
the

@value

member.
This
can
be
done
if
the

active
property

has
a
matching

type
mapping

or

language
mapping

and
there
is
either
no

@index

member
or
the

container
mapping

of

active
property

is
set
to

@index
.
It
can
also
be
done
if

@value

is
the
only
member
in

value

(apart
an

@index

member
in
case
the

container
mapping

of

active
property

is
set
to

@index

)
and
either
its
associated
value
is
not
a

string
,
there
is
no

default
language
,
or
there
is
an
explicit

null

language
mapping

for
the

active
property
.

Algorithm

This
algorithm
has
four
required
inputs:
an

active
context
,
an

inverse
context
,
an

active
property
,
and
a

value

to
be
compacted.

		
Initialize

number
members

to
the
number
of
members

value

contains.

		
If

value

has
an

@index

member
and
the

container
mapping

associated
to

active
property

is
set
to

@index
,
decrease

number
members

by

1
.

		
If

number
members

is
greater
than

2
,
return

value

as
it
cannot
be
compacted.

		
If

value

has
an

@id

member:

		
If

number
members

is

1

and
the

type
mapping

of

active
property

is
set
to

@id
,
return
the
result
of
using
the

IRI

compaction
algorithm
,
passing

active
context
,

inverse
context
,
and
the
value
of
the

@id

member
for

iri
.

		
Otherwise,
if

number
members

is

1

and
the

type
mapping

of

active
property

is
set
to

@vocab
,
return
the
result
of
using
the

IRI

compaction
algorithm
,
passing

active
context
,

inverse
context
,
the
value
of
the

@id

member
for

iri
,
and

true

for

vocab
.

		
Otherwise,
return

value

as
is.

		
Otherwise,
if

value

has
an

@type

member
whose
value
matches
the

type
mapping

of

active
property
,
return
the
value
associated
with
the

@value

member
of

value
.

		
Otherwise,
if

value

has
an

@language

member
whose
value
matches
the

language
mapping

of

active
property
,
return
the
value
associated
with
the

@value

member
of

value
.

		
Otherwise,
if

number
members

equals

1

and
either
the
value
of
the

@value

member
is
not
a

string
,
or
the

active
context

has
no

default
language
,
or
the

language
mapping

of

active
property

is
set
to

null
,,
return
the
value
associated
with
the

@value

member.

		
Otherwise,
return

value

as
is.

9.

Flattening
Algorithms

9.1

Flattening
Algorithm

This
algorithm
flattens
an
expanded
JSON-LD
document
by
collecting
all
properties
of
a

node

in
a
single

JSON
object

and
labeling
all

blank
nodes

with

blank
node
identifiers
.
This
resulting
uniform
shape
of
the
document,
may
drastically
simplify
the
code
required
to
process
JSON-LD
data
in
certain
applications.

Overview

This
section
is
non-normative.

First,
a

node
map

is
generated
using
the

Node
Map
Generation
algorithm

which
collects
all
properties
of
a

node

in
a
single

JSON
object
.
In
the
next
step,
the

node
map

is
converted
to
a
JSON-LD
document
in

flattened
document
form
.
Finally,
if
a

context

has
been
passed,
the
flattened
document
is
compacted
using
the

Compaction
algorithm

before
being
returned.

Algorithm

The
algorithm
takes
two
input
variables,
an

element

to
flatten
and
an
optional

context

used
to
compact
the
flattened
document.
If
not
passed,

context

is
set
to

null
.

This
algorithm
generates
new

blank
node
identifiers

and
relabels
existing

blank
node
identifiers
.
The
used

Generate
Blank
Node
Identifier
algorithm

keeps
an

identifier
map

and
a

counter

to
ensure
consistent
relabeling
and
avoid
collisions.
Thus,
before
this
algorithm
is
run,
the

identifier
map

is
reset
and
the

counter

is
initialized
to

0
.

		
Initialize

node
map

to
a

JSON
object

consisting
of
a
single
member
whose
key
is

@default

and
whose
value
is
an
empty

JSON
object
.

		
Perform
the

Node
Map
Generation
algorithm
,
passing

element

and

node
map
.

		
Initialize

default
graph

to
the
value
of
the

@default

member
of

node
map
,
which
is
a

JSON
object

representing
the

default
graph
.

		
For
each
key-value
pair

graph
name

-

graph

in

node
map

where

graph
name

is
not

@default
,
perform
the
following
steps:

		
If

default
graph

does
not
have
a

graph
name

member,
create
one
and
initialize
its
value
to
a

JSON
object

consisting
of
an

@id

member
whose
value
is
set
to

graph
name
.

		
Reference
the
value
associated
with
the

graph
name

member
in

default
graph

using
the
variable

entry
.

		
Add
an

@graph

member
to

entry

and
set
it
to
an
empty

array
.

		
For
each

id

-

node

pair
in

graph

ordered
by

id
,
add

node

to
the

@graph

member
of

entry
,
unless
the
only
member
of

node

is

@id
.

		
Initialize
an
empty

array

flattened
.

		
For
each

id

-

node

pair
in

default
graph

ordered
by

id
,
add

node

to

flattened
,
unless
the
only
member
of

node

is

@id
.

		
If

context

is

null
,
return

flattened
.

		
Otherwise,
return
the
result
of
compacting

flattened

according
the

Compaction
algorithm

passing

context

ensuring
that
the
compaction
result
has
only
the

@graph

keyword
(or
its
alias)
at
the
top-level
other
than

@context
,
even
if
the
context
is
empty
or
if
there
is
only
one
element
to
put
in
the

@graph

array
.
This
ensures
that
the
returned
document
has
a
deterministic
structure.

9.2

Node
Map
Generation

This
algorithm
creates
a

JSON
object

node
map

holding
an
indexed
representation
of
the

graphs

and

nodes

represented
in
the
passed
expanded
document.
All

nodes

that
are
not
uniquely
identified
by
an

IRI

get
assigned
a
(new)

blank
node
identifier
.
The
resulting

node
map

will
have
a
member
for
every
graph
in
the
document
whose
value
is
another
object
with
a
member
for
every

node

represented
in
the
document.
The
default
graph
is
stored
under
the

@default

member,
all
other
graphs
are
stored
under
their

graph
name
.

Overview

This
section
is
non-normative.

The
algorithm
recursively
runs
over
an
expanded
JSON-LD
document
to
collect
all

properties

of
a

node

in
a
single

JSON
object
.
The
algorithm
constructs
a

JSON
object

node
map

whose
keys
represent
the

graph
names

used
in
the
document
(the

default
graph

is
stored
under
the
key

@default

)
and
whose
associated
values
are

JSON
objects

which
index
the

nodes

in
the

graph
.
If
a

property's

value
is
a

node
object
,
it
is
replaced
by
a

node
object

consisting
of
only
an

@id

member.
If
a

node
object

has
no

@id

member
or
it
is
identified
by
a

blank
node
identifier
,
a
new

blank
node
identifier

is
generated.
This
relabeling
of

blank
node
identifiers

is
also
done
for

properties

and
values
of

@type
.

Algorithm

The
algorithm
takes
as
input
an
expanded
JSON-LD
document

element

and
a
reference
to
a

JSON
object

node
map
.
Furthermore
it
has
the
optional
parameters

active
graph

(which
defaults
to

@default

),
an

active
subject
,

active
property
,
and
a
reference
to
a

JSON
object

list
.
If
not
passed,

active
subject
,

active
property
,
and

list

are
set
to

null
.

		
If

element

is
an
array,
process
each

item

in

element

as
follows
and
then
return:

		
Run
this
algorithm
recursively
by
passing

item

for

element
,

node
map
,

active
graph
,

active
subject
,

active
property
,
and

list
.

		
Otherwise

element

is
a

JSON
object
.
Reference
the

JSON
object

which
is
the
value
of
the

active
graph

member
of

node
map

using
the
variable

graph
.
If
the

active
subject

is

null
,
set

node

to

null

otherwise
reference
the

active
subject

member
of

graph

using
the
variable

node
.

		
If

element

has
an

@type

member,
perform
for
each

item

the
following
steps:

		
If

item

is
a

blank
node
identifier
,
replace
it
with
a
newly

generated
blank
node
identifier

passing

item

for

identifier
.

		
If

element

has
an

@value

member,
perform
the
following
steps:

		
If

list

is

null
:

		
If

node

does
not
have
an

active
property

member,
create
one
and
initialize
its
value
to
an

array

containing

element
.

		
Otherwise,
compare

element

against
every
item
in
the

array

associated
with
the

active
property

member
of

node
.
If
there
is
no
item
equivalent
to

element
,
append

element

to
the

array
.
Two

JSON
objects

are
considered
equal
if
they
have
equivalent
key-value
pairs.

		
Otherwise,
append

element

to
the

@list

member
of

list
.

		
Otherwise,
if

element

has
an

@list

member,
perform
the
following
steps:

		
Initialize
a
new

JSON
object

result

consisting
of
a
single
member

@list

whose
value
is
initialized
to
an
empty

array
.

		
Recursively
call
this
algorithm
passing
the
value
of

element's

@list

member
for

element
,

active
graph
,

active
subject
,

active
property
,
and

result

for

list
.

		
Append

result

to
the
value
of
the

active
property

member
of

node
.

		
Otherwise

element

is
a

node
object
,
perform
the
following
steps:

		
If

element

has
an

@id

member,
set

id

to
its
value
and
remove
the
member
from

element
.
If

id

is
a

blank
node
identifier
,
replace
it
with
a
newly

generated
blank
node
identifier

passing

id

for

identifier
.

		
Otherwise,
set

id

to
the
result
of
the

Generate
Blank
Node
Identifier
algorithm

passing

null

for

identifier
.

		
If

graph

does
not
contain
a
member

id
,
create
one
and
initialize
its
value
to
a

JSON
object

consisting
of
a
single
member

@id

whose
value
is

id
.

		
Reference
the
value
of
the

id

member
of

graph

using
the
variable

node
.

		
If

active
subject

is
a

JSON
object
,
a
reverse
property
relationship
is
being
processed.
Perform
the
following
steps:

		
If

node

does
not
have
an

active
property

member,
create
one
and
initialize
its
value
to
an

array

containing

active
subject
.

		
Otherwise,
compare

active
subject

against
every
item
in
the

array

associated
with
the

active
property

member
of

node
.
If
there
is
no
item
equivalent
to

active
subject
,
append

active
subject

to
the

array
.
Two

JSON
objects

are
considered
equal
if
they
have
equivalent
key-value
pairs.

		
Otherwise,
if

active
property

is
not

null
,
perform
the
following
steps:

		
Create
a
new

JSON
object

reference

consisting
of
a
single
member

@id

whose
value
is

id
.

		
If

list

is

null
:

		
If

node

does
not
have
an

active
property

member,
create
one
and
initialize
its
value
to
an

array

containing

reference
.

		
Otherwise,
compare

reference

against
every
item
in
the

array

associated
with
the

active
property

member
of

node
.
If
there
is
no
item
equivalent
to

reference
,
append

reference

to
the

array
.
Two

JSON
objects

are
considered
equal
if
they
have
equivalent
key-value
pairs.

		
Otherwise,
append

element

to
the

@list

member
of

list
.

		
If

element

has
an

@type

key,
append
each
item
of
its
associated

array

to
the

array

associated
with
the

@type

key
of

node

unless
it
is
already
in
that

array
.
Finally
remove
the

@type

member
from

element
.

		
If

element

has
an

@index

member,
set
the

@index

member
of

node

to
its
value.
If

node

has
already
an

@index

member
with
a
different
value,
a

conflicting
indexes

error
has
been
detected
and
processing
is
aborted.
Otherwise,
continue
by
removing
the

@index

member
from

element
.

		
If

element

has
an

@reverse

member:

		
Create
a

JSON
object

referenced
node

with
a
single
member

@id

whose
value
is

id
.

		
Set

reverse
map

to
the
value
of
the

@reverse

member
of

element
.

		
For
each
key-value
pair

property

-

values

in

reverse
map
:

		
For
each

value

of

values
:

		
Recursively
invoke
this
algorithm
passing

value

for

element
,

node
map
,

active
graph
,

referenced
node

for

active
subject
,
and

property

for

active
property
.
Passing
a

JSON
object

for

active
subject

indicates
to
the
algorithm
that
a
reverse
property
relationship
is
being
processed.

		
Remove
the

@reverse

member
from

element
.

		
If

element

has
an

@graph

member,
recursively
invoke
this
algorithm
passing
the
value
of
the

@graph

member
for

element
,

node
map
,
and

id

for

active
graph

before
removing
the

@graph

member
from

element
.

		
Finally,
for
each
key-value
pair

property

-

value

in

element

ordered
by

property

perform
the
following
steps:

		
If

property

is
a

blank
node
identifier
,
replace
it
with
a
newly

generated
blank
node
identifier

passing

property

for

identifier
.

		
If

node

does
not
have
a

property

member,
create
one
and
initialize
its
value
to
an
empty

array
.

		
Recursively
invoke
this
algorithm
passing

value

for

element
,

node
map
,

active
graph
,

id

for

active
subject
,
and

property

for

active
property
.

9.3

Generate
Blank
Node
Identifier

This
algorithm
is
used
to
generate
new

blank
node
identifiers

or
to
relabel
an
existing

blank
node
identifier

to
avoid
collision
by
the
introduction
of
new
ones.

Overview

This
section
is
non-normative.

The
simplest
case
is
if
there
exists
already
a

blank
node
identifier

in
the

identifier
map

for
the
passed

identifier
,
in
which
case
it
is
simply
returned.
Otherwise,
a
new

blank
node
identifier

is
generated
by
concatenating
the
string

_:b

and
the

counter
.
If
the
passed

identifier

is
not

null
,
an
entry
is
created
in
the

identifier
map

associating
the

identifier

with
the

blank
node
identifier
.
Finally,
the

counter

is
increased
by
one
and
the
new

blank
node
identifier

is
returned.

Algorithm

The
algorithm
takes
a
single
input
variable

identifier

which
may
be

null
.
Between
its
executions,
the
algorithm
needs
to
keep
an

identifier
map

to
relabel
existing

blank
node
identifiers

consistently
and
a

counter

to
generate
new

blank
node
identifiers
.
The

counter

is
initialized
to

0

by
default.

		
If

identifier

is
not

null

and
has
an
entry
in
the

identifier
map
,
return
the
mapped
identifier.

		
Otherwise,
generate
a
new

blank
node
identifier

by
concatenating
the
string

_:b

and

counter
.

		
Increment

counter

by

1
.

		
If

identifier

is
not

null
,
create
a
new
entry
for

identifier

in

identifier
map

and
set
its
value
to
the
new

blank
node
identifier
.

		
Return
the
new

blank
node
identifier
.

10.

RDF
Serialization/Deserialization
Algorithms

This
section
describes
algorithms
to
deserialize
a
JSON-LD
document
to
an

RDF
dataset

and
vice
versa.
The
algorithms
are
designed
for
in-memory
implementations
with
random
access
to

JSON
object

elements.

Throughout
this
section,
the
following
vocabulary

prefixes

are
used
in

compact
IRIs
:

		
Prefix

		

IRI

		
rdf

		
http://www.w3.org/1999/02/22-rdf-syntax-ns#

		
rdfs

		
http://www.w3.org/2000/01/rdf-schema#

		
xsd

		
http://www.w3.org/2001/XMLSchema#

10.1

Deserialize
JSON-LD
to
RDF
algorithm

This
algorithm
deserializes
a
JSON-LD
document
to
an

RDF
dataset
.
Please
note
that
RDF
does
not
allow
a

blank
node

to
be
used
as
a

property
,
while
JSON-LD
does.
Therefore,
by
default
RDF
triples
that
would
have
contained
blank
nodes
as
properties
are
discarded
when
interpreting
JSON-LD
as
RDF.

Overview

This
section
is
non-normative.

The
JSON-LD
document
is
expanded
and
converted
to
a

node
map

using
the

Node
Map
Generation
algorithm
.
This
allows
each
graph
represented
within
the
document
to
be
extracted
and
flattened,
making
it
easier
to
process
each

node
object
.
Each
graph
from
the

node
map

is
processed
to
extract

RDF
triples
,
to
which
any
(non-default)
graph
name
is
applied
to
create
an

RDF
dataset
.
Each

node
object

in
the

node
map

has
an

@id

member
which
corresponds
to
the

RDF
subject
,
the
other
members
represent

RDF
predicates
.
Each
member
value
is
either
an

IRI

or

blank
node
identifier

or
can
be
transformed
to
an

RDF
literal

to
generate
an

RDF
triple
.

Lists

are
transformed
into
an

RDF
Collection

using
the

List
to
RDF
Conversion
algorithm.

Algorithm

The
algorithm
takes
a
JSON-LD
document

element

and
returns
an

RDF
dataset
.
Unless
the

produce
generalized
RDF

flag
is
set
to

true
,

RDF
triples

containing
a

blank
node

predicate

are
excluded
from
output.

This
algorithm
generates
new

blank
node
identifiers

and
relabels
existing

blank
node
identifiers
.
The
used

Generate
Blank
Node
Identifier
algorithm

keeps
an

identifier
map

and
a

counter

to
ensure
consistent
relabeling
and
avoid
collisions.
Thus,
before
this
algorithm
is
run,
the

identifier
map

is
reset
and
the

counter

is
initialized
to

0
.

		
Expand

element

according
to
the

Expansion
algorithm
.

		
Generate
a

node
map

according
to
the

Node
Map
Generation
algorithm
.

		
Initialize
an
empty

RDF
dataset

dataset
.

		
For
each

graph
name

and

graph

in

node
map

ordered
by

graph
name
:

		
If

graph
name

is
a

relative

IRI

,
continue
with
the
next

graph
name

-

graph

pair.

		
Initialize

triples

as
an
empty

array
.

		
For
each

subject

and

node

in

graph

ordered
by

subject
:

		
If

subject

is
a

relative

IRI

,
continue
with
the
next

subject

-

node

pair.

		
For
each

property

and

values

in

node

ordered
by

property
:

		
If

property

is

@type
,
then
for
each

type

in

values
,
append
a

triple

composed
of

subject
,

rdf:type
,
and

type

to

triples
.

		
Otherwise,
if

property

is
a

keyword

continue
with
the
next

property

-

values

pair.

		
Otherwise,
if

property

is
a

blank
node
identifier

and
the

produce
generalized
RDF

flag
is
not

true
,
continue
with
the
next

property

-

values

pair.

		
Otherwise,
if

property

is
a

relative

IRI

,
continue
with
the
next

property

-

values

pair.

		
Otherwise,

property

is
an

absolute

IRI

or

blank
node
identifier
.
For
each

item

in

values
:

		
If

item

is
a

list
object
,
initialize

list
triples

as
an
empty

array

and

list
head

to
the
result
of
the

List
Conversion
algorithm
,
passing
the
value
associated
with
the

@list

key
from

item

and

list
triples
.
Append
first
a

triple

composed
of

subject
,

property
,
and

list
head

to

triples

and
finally
append
all

triples

from

list
triples

to

triples
.

		
Otherwise,

item

is
a

value
object

or
a

node
object
.
Append
a

triple

composed
of

subject
,

property
,
and
the
result
of
using
the

Object
to
RDF
Conversion
algorithm

passing

item

to

triples
,
unless
the
result
is

null
,
indicating
a

relative

IRI

that
has
to
be
ignored.

		
If

graph
name

is

@default
,
add

triples

to
the

default
graph

in

dataset
.

		
Otherwise,
create
a

named
graph

in

dataset

composed
of

graph
name

and
add

triples
.

		
Return

dataset
.

10.2

Object
to
RDF
Conversion

This
algorithm
takes
a

node
object

or

value
object

and
transforms
it
into
an

RDF
resource

to
be
used
as
the

object

of
an

RDF
triple
.
If
a

node
object

containing
a

relative

IRI

is
passed
to
the
algorithm,

null

is
returned
which
then
causes
the
resulting

RDF
triple

to
be
ignored.

Overview

This
section
is
non-normative.

Value
objects

are
transformed
to

RDF
literals

as
described
in

section
10.6
Data
Round
Tripping

whereas

node
objects

are
transformed
to

IRIs
,

blank
node
identifiers
,
or

null
.

Algorithm

The
algorithm
takes
as
its
sole
argument

item

which
must
be
either
a

value
object

or

node
object
.

		
If

item

is
a

node
object

and
the
value
of
its

@id

member
is
a

relative

IRI

,
return

null
.

		
If

item

is
a

node
object
,
return
the

IRI

or

blank
node
identifier

associated
with
its

@id

member.

		
Otherwise,

item

is
a

value
object
.
Initialize

value

to
the
value
associated
with
the

@value

member
in

item
.

		
Initialize

datatype

to
the
value
associated
with
the

@type

member
of

item

or

null

if

item

does
not
have
such
a
member.

		
If

value

is

true

or

false
,
set

value

to
the

string

true

or

false

which
is
the

canonical
lexical
form

as
described
in

section
10.6
Data
Round
Tripping

If

datatype

is

null
,
set
it
to

xsd:boolean
.

		
Otherwise,
if

value

is
a

number

with
a
non-zero
fractional
part
(the
result
of
a
modulo‑1
operation)
or

value

is
a

number

and

datatype

equals

xsd:double
,
convert

value

to
a

string

in

canonical
lexical
form

of
an

xsd:double

as
defined
in
[

XMLSCHEMA11-2

]
and
described
in

section
10.6
Data
Round
Tripping
.
If

datatype

is

null
,
set
it
to

xsd:double
.

		
Otherwise,
if

value

is
a

number

with
no
non-zero
fractional
part
(the
result
of
a
modulo‑1
operation)
or

value

is
a

number

and

datatype

equals

xsd:integer
,
convert

value

to
a

string

in

canonical
lexical
form

of
an

xsd:integer

as
defined
in
[

XMLSCHEMA11-2

]
and
described
in

section
10.6
Data
Round
Tripping
.
If

datatype

is

null
,
set
it
to

xsd:integer
.

		
Otherwise,
if

datatype

is

null
,
set
it
to

xsd:string

or

rdf:langString
,
depending
on
if
item
has
an

@language

member.

		
Initialize

literal

as
an

RDF
literal

using

value

and

datatype
.
If

item

has
an

@language

member,
add
the
value
associated
with
the

@language

key
as
the
language
tag
of

literal
.

		
Return

literal
.

10.3

List
to
RDF
Conversion

List
Conversion
is
the
process
of
taking
a

list
object

and
transforming
it
into
an

RDF
Collection

as
defined
in
RDF
Semantics
[

RDF-MT

RDF11-MT

].

Overview

This
section
is
non-normative.

For
each
element
of
the

list

a
new

blank
node
identifier

is
allocated
which
is
used
to
generate

rdf:first

and

rdf:rest

triples
.
The
algorithm
returns
the
list
head,
which
is
either
the
first
allocated

blank
node
identifier

or

rdf:nil

if
the

list

is
empty.
If
a
list
element
represents
a

relative

IRI

,
the
corresponding

rdf:first

triple
is
omitted.

Algorithm

The
algorithm
takes
two
inputs:
an

array

list

and
an
empty

array

list
triples

used
for
returning
the
generated

triples
.

		
If

list

is
empty,
return

rdf:nil
.

		
Otherwise,
create
an

array

bnodes

composed
of
a

newly
generated
blank
node
identifier

for
each
entry
in

list
.

		
Initialize
an
empty

array

list
triples
.

		
For
each
pair
of

subject

from

bnodes

and

item

from

list
:

		
Initialize

object

to
the
result
of
using
the

Object
to
RDF
Conversion
algorithm

passing

item

to

list
triples
.

		
Unless

object

is

null
,
append
a

triple

composed
of

subject
,

rdf:first
,
and

object
.

		
Set

rest

as
the
next
entry
in

bnodes
,
or
if
that
does
not
exist,

rdf:nil
.
Append
a

triple

composed
of

subject
,

rdf:rest
,
and

rest

to

list
triples
.

		
Return
the
first

blank
node

from

bnodes

or

rdf:nil

if

bnodes

is
empty.

10.4

Serialize
RDF
as
JSON-LD
Algorithm

This
algorithm
serializes
an

RDF
dataset

consisting
of
a

default
graph

and
zero
or
more

named
graphs

into
a
JSON-LD
document.

Overview

This
section
is
non-normative.

Iterate
through
each
graph
in
the
dataset,
converting
each

RDF
Collection

into
a

list

and
generating
a
JSON-LD
document
in
expanded
form
for
all

RDF
literals
,

IRIs

and

blank
node
identifiers
.
If
the

use
native
types

flag
is
set
to

true
,

RDF
literals

with
a

datatype

IRI

that
equals

xsd:integer

or

xsd:double

are
converted
to
a

JSON
numbers

and

RDF
literals

with
a

datatype

IRI

that
equals

xsd:boolean

are
converted
to

true

or

false

based
on
their

lexical
form

as
described
in

section
10.6
Data
Round
Tripping
.
Unless
the

use

rdf:type

flag
is
set
to
true,

rdf:type

predicates
will
be
serialized
as

@type

as
long
as
the
associated
object
is
either
an

IRI

or

blank
node
identifier
.

Algorithm

The
algorithm
takes
one
required
and
two
optional
inputs:
an

RDF
dataset

and
the
two
flags

use
native
types

and

use

rdf:type

that
both
default
to

false
.

		
Initialize

default
graph

to
an
empty

JSON
object
.

		
Initialize

graph
map

to
a

JSON
object

consisting
of
a
single
member

@default

whose
value
references

default
graph
.

		
For
each

graph

in

RDF
dataset
:

		
If

graph

is
the

default
graph
,
set

name

to

@default
,
otherwise
to
the

graph
name

associated
with

graph
.

		
If

graph
map

has
no

name

member,
create
one
and
set
its
value
to
an
empty

JSON
object
.

		
If

graph

is
not
the

default
graph

and

default
graph

does
not
have
a

name

member,
create
such
a
member
and
initialize
its
value
to
a
new

JSON
object

with
a
single
member

@id

whose
value
is

name
.

		
Reference
the
value
of
the

name

member
in

graph
map

using
the
variable

node
map
.

		
For
each

RDF
triple

in

graph

consisting
of

subject
,

predicate
,
and

object
:

		
If

node
map

does
not
have
a

subject

member,
create
one
and
initialize
its
value
to
a
new

JSON
object

consisting
of
a
single
member

@id

whose
value
is
set
to

subject
.

		
Reference
the
value
of
the

subject

member
in

node
map

using
the
variable

node
.

		
If

object

is
an

IRI

or

blank
node
identifier
,
and

node
map

does
not
have
an

object

member,
create
one
and
initialize
its
value
to
a
new

JSON
object

consisting
of
a
single
member

@id

whose
value
is
set
to

object
.

		
If

predicate

equals

rdf:type
,
the

use

rdf:type

flag
is
not

true
,
and

object

is
an

IRI

or

blank
node
identifier
,
append

object

to
the
value
of
the

@type

member
of

node

;
unless
such
an
item
already
exists.
If
no
such
member
exists,
create
one
and
initialize
it
to
an

array

whose
only
item
is

object
.
Finally,
continue
to
the
next

RDF
triple
.

		
Set

value

to
the
result
of
using
the

RDF
to
Object
Conversion
algorithm
,
passing

object

and

use
native
types
.

		
If

node

does
not
have
an

predicate

member,
create
one
and
initialize
its
value
to
an
empty

array
.

		
If
there
is
no
item
equivalent
to

value

in
the

array

associated
with
the

predicate

member
of

node
,
append
a
reference
to

value

to
the

array
.
Two
JSON
objects
are
considered
equal
if
they
have
equivalent
key-value
pairs.

		
If

object

is
a

blank
node
identifier

or

IRI

,
it
might
represent
the
list
node:

		
If
the

object

member
of

node
map

has
no

usages

member,
create
one
and
initialize
it
to
an
empty

array
.

		
Reference
the

usages

member
of
the

object

member
of

node
map

using
the
variable

usages
.

		
Append
a
new

JSON
object

consisting
of
three
members,

node
,

property
,
and

value

to
the

usages

array
.
The

node

member
is
set
to
a
reference
to

node
,

property

to

predicate
,
and

value

to
a
reference
to

value
.

		
For
each

name

and

graph
object

in

graph
map
:

		
If

graph
object

has
no

rdf:nil

member,
continue
with
the
next

name

-

graph
object

pair
as
the
graph
does
not
contain
any
lists
that
need
to
be
converted.

		
Initialize

nil

to
the
value
of
the

rdf:nil

member
of

graph
object
.

		
For
each
item

usage

in
the

usages

member
of

nil
,
perform
the
following
steps:

		
Initialize

node

to
the
value
of
the
value
of
the

node

member
of

usage
,

property

to
the
value
of
the

property

member
of

usage
,
and

head

to
the
value
of
the

value

member
of

usage
.

		
Initialize
two
empty

arrays

list

and

list
nodes
.

		
While

property

equals

rdf:rest
,
the
value
associated
to
the

usages

member
of

node

has
exactly
1
entry,

node

has
a

rdf:first

and

rdf:rest

property,
both
of
which
have
as
value
an

array

consisting
of
a
single
element,
and

node

has
no
other
members
apart
from
an
optional

@type

member
whose
value
is
an
array
with
a
single
item
equal
to

rdf:List
,

node

represents
a
well-formed
list
node.
Perform
the
following
steps
to
traverse
the
list
backwards
towards
its
head:

		
Append
the
only
item
of

rdf:first

member
of

node

to
the

list

array
.

		
Append
the
value
of
the

@id

member
of

node

to
the

list
nodes

array
.

		
Initialize

node
usage

to
the
only
item
of
the

usages

member
of

node
.

		
Set

node

to
the
value
of
the

node

member
of

node
usage
,

property

to
the
value
of
the

property

member
of

node
usage
,
and

head

to
the
value
of
the

value

member
of

node
usage
.

		
If
the

@id

member
of

node

is
an

IRI

instead
of
a

blank
node
identifier
,
exit
the
while
loop.

		
If

property

equals

rdf:first
,
i.e.,
the
detected
list
is
nested
inside
another
list

		
and
the
value
of
the

@id

of

node

equals

rdf:nil
,
i.e.,
the
detected
list
is
empty,
continue
with
the
next

usage

item.
The

rdf:nil

node
cannot
be
converted
to
a

list
object

as
it
would
result
in
a
list
of
lists,
which
isn't
supported.

		
Otherwise,
the
list
consists
of
at
least
one
item.
We
preserve
the
head
node
and
transform
the
rest
of
the
linked
list
to
a

list
object
.

		
Set

head
id

to
the
value
of
the

@id

member
of

head
.

		
Set

head

to
the
value
of
the

head
id

member
of

graph
object

so
that
all
it's
properties
can
be
accessed.

		
Then,
set

head

to
the
only
item
in
the
value
of
the

rdf:rest

member
of

head
.

		
Finally,
remove
the
last
item
of
the

list

array

and
the
last
item
of
the

list
nodes

array
.

		
Remove
the

@id

member
from

head
.

		
Reverse
the
order
of
the

list

array
.

		
Add
a

an

@list

member
to

head

and
initialize
its
value
to
the

list

array
.

		
For
each
item

node
id

in

list
nodes
,
remove
the

node
id

member
from

graph
object
.

		
Initialize
an
empty

array

result
.

		
For
each

subject

and

node

in

default
graph

ordered
by

subject
:

		
If

graph
map

has
a

subject

member:

		
Add
a

an

@graph

member
to

node

and
initialize
its
value
to
an
empty

array
.

		
For
each
key-value
pair

s

-

n

in
the

subject

member
of

graph
map

ordered
by

s
,
append

n

to
the

@graph

member
of

node

after
removing
its

usages

member,
unless
the
only
remaining
member
of

n

is

@id
.

		
Append

node

to

result

after
removing
its

usages

member,
unless
the
only
remaining
member
of

node

is

@id
.

		
Return

result
.

10.5

RDF
to
Object
Conversion

This
algorithm
transforms
an
RDF
literal
to
a
JSON-LD

value
object

and
a
RDF
blank
node
or

IRI

to
an
JSON-LD

node
object
.

Overview

This
section
is
non-normative.

RDF
literals

are
transformed
to

value
objects

whereas

IRIs

and

blank
node
identifiers

are
transformed
to

node
objects
.
If
the

use
native
types

flag
is
set
to

true
,

RDF
literals

with
a

datatype

IRI

that
equals

xsd:integer

or

xsd:double

are
converted
to
a

JSON
numbers

and

RDF
literals

with
a

datatype

IRI

that
equals

xsd:boolean

are
converted
to

true

or

false

based
on
their

lexical
form

as
described
in

section
10.6
Data
Round
Tripping
.

Algorithm

This
algorithm
takes
two
required
inputs:
a

value

to
be
converted
to
a

JSON
object

and
a
flag

use
native
types
.

		
If

value

is
an

IRI

or
a

blank
node
identifier
,
return
a
new

JSON
object

consisting
of
a
single
member

@id

whose
value
is
set
to

value
.

		
Otherwise

value

is
an

RDF
literal
:

		
Initialize
a
new
empty

JSON
object

result.

		
Initialize

converted
value

to

value
.

		
Initialize

type

to

null

		
If

use
native
types

is

true

		
If
the

datatype

IRI

of

value

equals

xsd:string
,
set

converted
value

to
the

lexical
form

of

value
.

		
Otherwise,
if
the

datatype

IRI

of

value

equals

xsd:boolean
,
set

converted
value

to

true

if
the

lexical
form

of

value

matches

true
,
or

false

if
it
matches

false
.
If
it
matches
neither,
set

type

to

xsd:boolean
.

		
Otherwise,
if
the

datatype

IRI

of

value

equals

xsd:integer

or

xsd:double

and
its

lexical
form

is
a
valid

xsd:integer

or

xsd:double

according
[

XMLSCHEMA11-2

],
set

converted
value

to
the
result
of
converting
the

lexical
form

to
a
JSON

number
.

		
Otherwise,
if

value

is
a

language-tagged
string

add
a
member

@language

to

result

and
set
its
value
to
the

language
tag

of

value
.

		
Otherwise,
set

type

to
the

datatype

IRI

of

value
,
unless
it
equals

xsd:string

which
is
ignored.

		
Add
a
member

@value

to

result

whose
value
is
set
to

converted
value
.

		
If

type

is
not

null
,
add
a
member

@type

to

result

whose
value
is
set
to

type
.

		
Return

result
.

10.6

Data
Round
Tripping

When

deserializing
JSON-LD
to
RDF

JSON-native

numbers

are
automatically
type-coerced
to

xsd:integer

or

xsd:double

depending
on
whether
the

number

has
a
non-zero
fractional
part
or
not
(the
result
of
a
modulo‑1
operation),
the
boolean
values

true

and

false

are
coerced
to

xsd:boolean
,
and

strings

are
coerced
to

xsd:string
.
The
numeric
or
boolean
values
themselves
are
converted
to

canonical
lexical
form
,
i.e.,
a
deterministic
string
representation
as
defined
in
[

XMLSCHEMA11-2

].

The

canonical
lexical
form

of
an

integer
,
i.e.,
a

number

with
no
non-zero
fractional
part
or
a

number

coerced
to

xsd:integer
,
is
a
finite-length
sequence
of
decimal
digits
(

0-9

)
with
an
optional
leading
minus
sign;
leading
zeros
are
prohibited.
In
JavaScript,
implementers
can
use
the
following
snippet
of
code
to
convert
an
integer
to

canonical
lexical
form
:

Example
12
:
Sample
integer
serialization
implementation
in
JavaScript

(value).toFixed(0).toString()

The

canonical
lexical
form

of
a

double
,
i.e.,
a

number

with
a
non-zero
fractional
part
or
a

number

coerced
to

xsd:double
,
consists
of
a
mantissa
followed
by
the
character

E
,
followed
by
an
exponent.
The
mantissa
is
a
decimal
number
and
the
exponent
is
an
integer.
Leading
zeros
and
a
preceding
plus
sign
(

+

)
are
prohibited
in
the
exponent.
If
the
exponent
is
zero,
it
is
indicated
by

E0
.
For
the
mantissa,
the
preceding
optional
plus
sign
is
prohibited
and
the
decimal
point
is
required.
Leading
and
trailing
zeros
are
prohibited
subject
to
the
following:
number
representations
must
be
normalized
such
that
there
is
a
single
digit
which
is
non-zero
to
the
left
of
the
decimal
point
and
at
least
a
single
digit
to
the
right
of
the
decimal
point
unless
the
value
being
represented
is
zero.
The
canonical
representation
for
zero
is

0.0E0
.

xsd:double

's
value
space
is
defined
by
the
IEEE
double-precision
64-bit
floating
point
type
[

IEEE-754-1985

IEEE-754-2008

]
whereas
the
value
space
of
JSON

numbers

is
not
specified;
when
deserializing
JSON-LD
to
RDF
the
mantissa
is
rounded
to
15 digits

15 digits

after
the
decimal
point.
In
JavaScript,
implementers
can
use
the
following
snippet
of
code
to
convert
a
double
to

canonical
lexical
form
:

Example
13
:
Sample
floating
point
number
serialization
implementation
in
JavaScript

(value).toExponential(15).replace(/(\d)0*e\+?/,'$1E')

The

canonical
lexical
form

of
the

boolean

values

true

and

false

are
the
strings

true

and

false
.

When
JSON-native

numbers

are
deserialized
to
RDF,
lossless
data
round-tripping
cannot
be
guaranteed,
as
rounding
errors
might
occur.
When

serializing
RDF
as
JSON-LD
,
similar
rounding
errors
might
occur.
Furthermore,
the
datatype
or
the
lexical
representation
might
be
lost.
An

xsd:double

with
a
value
of

2.0

will,
e.g.,
result
in
an

xsd:integer

with
a
value
of

2

in

canonical
lexical
form

when
converted
from
RDF
to
JSON-LD
and
back
to
RDF.
It
is
important
to
highlight
that
in
practice
it
might
be
impossible
to
losslessly
convert
an

xsd:integer

to
a

number

because
its
value
space
is
not
limited.
While
the
JSON
specification
[

RFC4627

]
does
not
limit
the
value
space
of

numbers

either,
concrete
implementations
typically
do
have
a
limited
value
space.

To
ensure
lossless
round-tripping
the

Serialize
RDF
as
JSON-LD
algorithm

specifies
a

use
native
types

flag
which
controls
whether

RDF
literals

with
a

datatype

IRI

equal
to

xsd:integer
,

xsd:double
,
or

xsd:boolean

are
converted
to
their
JSON-native
counterparts.
If
the

use
native
types

flag
is
set
to

false
,
all
literals
remain
in
their
original
string
representation.

Some
JSON
serializers,
such
as
PHP's
native
implementation
in
some
versions,
backslash-escape
the
forward
slash
character.
For
example,
the
value

http://example.com/

would
be
serialized
as

http:\/\/example.com\/
.
This
is
problematic
as
other
JSON
parsers
might
not
understand
those
escaping
characters.
There
is
no
need
to
backslash-escape
forward
slashes
in
JSON-LD.
To
aid
interoperability
between
JSON-LD
processors,
forward
slashes

MUST
NOT

be
backslash-escaped.

11.

The
Application
Programming
Interface

This
section
is
non-normative.

This
API
provides
a
clean
mechanism
that
enables
developers
to
convert
JSON-LD
data
into
a
variety
of
output
formats
that
are
often
easier
to
work
with.

The
JSON-LD
API
uses

Promises

to
represent
the
result
of
the
various
asynchronous
operations.

Promises

are
temporarily
being
drafted
on

GitHub

[

PROMISES

]
but
are
expected
to
be
standardized
as
part
of
ECMAScript 6.

ECMAScript 6.

11.1

The

JsonLdProcessor

Interface

This
section
is
non-normative.

The

JsonLdProcessor

interface
is
the
high-level
programming
structure
that
developers
use
to
access
the
JSON-LD
transformation
methods.

It
is
important
to
highlight
that
implementations
do
not
modify
the
input
parameters.
If
an
error
is
detected,
the
Promise
is
rejected
passing
a

JsonLdError

with
the
corresponding
error

code

and
processing
is
stopped.

If
the

documentLoader

option
is
specified,
it
is
used
to
dereference
remote
documents
and
contexts.
The

documentUrl

in
the
returned

RemoteDocument

is
used
as

base

IRI

and
the

contextUrl

is
used
instead
of
looking
at
the
HTTP
Link
Header
directly.
For
the
sake
of
simplicity,
none
of
the
algorithms
in
this
document
mention
this
directly.

]

[Constructor]
interface JsonLdProcessor {
};

 Promise compact (any input, JsonLdContext context, optional JsonLdOptions options);
 Promise expand (any input, optional JsonLdOptions options);
 Promise flatten (any input, optional JsonLdContext? context, optional JsonLdOptions options);
};

Methods

This
section
is
non-normative.

		

compact

		

Compacts

the
given

input

using
the

context

according
to
the
steps
in
the

Compaction
algorithm
:

		
Create
a
new

Promise

promise

and
return
it.
The
following
steps
are
then
executed
asynchronously.

		
If
the
passed

input

is
a

DOMString

representing
the

IRI

of
a
remote
document,
dereference
it.
If
the
retrieved
document's
content
type
is
neither

application/json
,
nor

application/ld+json
,
nor
any
other
media
type
using
a

+json

suffix
as
defined
in
[

RFC6839

]
or
if
the
document
cannot
be
parsed
as
JSON,
reject
the

promise

passing
an

loading
document
failed

error.

		
Initialize
a
new
empty

active
context
.
The

base

IRI

of
the

active
context

is
set
to
the

IRI

of
the
currently
being
processed
document,
if
available;
otherwise
to

null
.
If
set,
the

base

option
overrides
the

base

IRI

.

		
If
an

expandContext

has
been
passed,
update
the

active
context

using
the

Context
Processing
algorithm
,
passing
the

expandContext

as

local
context
.
If

expandContext

is
a

JSON
object

having
a

an

@context

member,
pass
that
member's
value
instead.

		
If
the

input

has
been
retrieved,
the
response
has
an
HTTP
Link
Header
[

RFC5988

]
using
the

http://www.w3.org/ns/json-ld#context

link
relation
and
a
content
type
of

application/json

or
any
media
type
with
a

+json

suffix
as
defined
in
[

RFC6839

]
except

application/ld+json
,
update
the

active
context

using
the

Context
Processing
algorithm
,
passing
the
context
referenced
in
the
HTTP
Link
Header
as

local
context
.
The
HTTP
Link
Header
is
ignored
for
documents
served
as

application/ld+json

If
multiple
HTTP
Link
Headers
using
the

http://www.w3.org/ns/json-ld#context

link
relation
are
found,
the

promise

is
rejected
with
a

JsonLdError

whose
code
is
set
to

multiple
context
link
headers

and
processing
is
terminated.

		
Set

expanded

to
the
result
of
using
the

Expansion
algorithm
,
passing
the

active
context

and

input

as

element
.

		
If

context

is
a

JSON
object

having
a

an

@context

member,
set

context

to
that
member's
value.

		
Set

compacted

to
the
result
of
using
the

Compaction
algorithm
,
passing

context
,

expanded

as

element
,
and
if
passed,
the

compactArrays

flag
in

options
.

		
Fulfill
the

promise

passing

compacted
.

		
Parameter

		
Type

		
Nullable

		
Optional

		
Description

		
input

		

any

		
✘

		
✘

		
The
JSON-LD
object
or
array
of
JSON-LD
objects
to
perform
the
compaction
upon
or
an

IRI

referencing
the
JSON-LD
document
to
compact.

		
context

		

JsonLdContext

		
✘

		
✘

		
The
context
to
use
when
compacting
the

input

;
it
can
be
specified
by
using
a

JSON
object
,
an

IRI

,
or
an
array
consisting
of

JSON
object

s
and

IRI

s.

		
options

		

JsonLdOptions

		
✘

		
✔

		
A
set
of
options
to
configure
the
algorithms.
This
allows,
e.g.,
to
set
the
input
document's
base

IRI

.

Return
type:

Promise

		

expand

		

Expands

the
given

input

according
to
the
steps
in
the

Expansion
algorithm
:

		
Create
a
new

Promise

promise

and
return
it.
The
following
steps
are
then
executed
asynchronously.

		
If
the
passed

input

is
a

DOMString

representing
the

IRI

of
a
remote
document,
dereference
it.
If
the
retrieved
document's
content
type
is
neither

application/json
,
nor

application/ld+json
,
nor
any
other
media
type
using
a

+json

suffix
as
defined
in
[

RFC6839

],
reject
the

promise

passing
an

loading
document
failed

error.

		
Initialize
a
new
empty

active
context
.
The

base

IRI

of
the

active
context

is
set
to
the

IRI

of
the
currently
being
processed
document,
if
available;
otherwise
to

null
.
If
set,
the

base

option
overrides
the

base

IRI

.

		
If
an

expandContext

has
been
passed,
update
the

active
context

using
the

Context
Processing
algorithm
,
passing
the

expandContext

as

local
context
.
If

expandContext

is
a

JSON
object

having
a

an

@context

member,
pass
that
member's
value
instead.

		
If
the

input

has
been
retrieved,
the
response
has
an
HTTP
Link
Header
[

RFC5988

]
using
the

http://www.w3.org/ns/json-ld#context

link
relation
and
a
content
type
of

application/json

or
any
media
type
with
a

+json

suffix
as
defined
in
[

RFC6839

]
except

application/ld+json
,
update
the

active
context

using
the

Context
Processing
algorithm
,
passing
the
context
referenced
in
the
HTTP
Link
Header
as

local
context
.
The
HTTP
Link
Header
is
ignored
for
documents
served
as

application/ld+json

If
multiple
HTTP
Link
Headers
using
the

http://www.w3.org/ns/json-ld#context

link
relation
are
found,
the

promise

is
rejected
with
a

JsonLdError

whose
code
is
set
to

multiple
context
link
headers

and
processing
is
terminated.

		
Set

expanded

to
the
result
of
using
the

Expansion
algorithm
,
passing
the

active
context

and

input

as

element
.

		
Fulfill
the

promise

passing

expanded
.

		
Parameter

		
Type

		
Nullable

		
Optional

		
Description

		
input

		

any

		
✘

		
✘

		
The
JSON-LD
object
or
array
of
JSON-LD
objects
to
perform
the
expansion
upon
or
an

IRI

referencing
the
JSON-LD
document
to
expand.

		
options

		

JsonLdOptions

		
✘

		
✔

		
A
set
of
options
to
configure
the
used
algorithms
such.
This
allows,
e.g.,
to
set
the
input
document's
base

IRI

.

Return
type:

Promise

		

flatten

		

Flattens

the
given

input

and

compacts

it
using
the
passed

context

according
to
the
steps
in
the

Flattening
algorithm
:

		
Create
a
new

Promise

promise

and
return
it.
The
following
steps
are
then
executed
asynchronously.

		
If
the
passed

input

is
a

DOMString

representing
the

IRI

of
a
remote
document,
dereference
it.
If
the
retrieved
document's
content
type
is
neither

application/json
,
nor

application/ld+json
,
nor
any
other
media
type
using
a

+json

suffix
as
defined
in
[

RFC6839

],
reject
the

promise

passing
an

loading
document
failed

error.

		
Initialize
a
new
empty

active
context
.
The

base

IRI

of
the

active
context

is
set
to
the

IRI

of
the
currently
being
processed
document,
if
available;
otherwise
to

null
.
If
set,
the

base

option
overrides
the

base

IRI

.

		
If
an

expandContext

has
been
passed,
update
the

active
context

using
the

Context
Processing
algorithm
,
passing
the

expandContext

as

local
context
.
If

expandContext

is
a

JSON
object

having
a

an

@context

member,
pass
that
member's
value
instead.

		
If
the

input

has
been
retrieved,
the
response
has
an
HTTP
Link
Header
[

RFC5988

]
using
the

http://www.w3.org/ns/json-ld#context

link
relation
and
a
content
type
of

application/json

or
any
media
type
with
a

+json

suffix
as
defined
in
[

RFC6839

]
except

application/ld+json
,
update
the

active
context

using
the

Context
Processing
algorithm
,
passing
the
context
referenced
in
the
HTTP
Link
Header
as

local
context
.
The
HTTP
Link
Header
is
ignored
for
documents
served
as

application/ld+json

If
multiple
HTTP
Link
Headers
using
the

http://www.w3.org/ns/json-ld#context

link
relation
are
found,
the

promise

is
rejected
with
a

JsonLdError

whose
code
is
set
to

multiple
context
link
headers

and
processing
is
terminated.

		
Set

expanded

to
the
result
of
using
the

Expansion
algorithm
,
passing
the

active
context

and

input

as

element
.

		
If

context

is
a

JSON
object

having
a

an

@context

member,
set

context

to
that
member's
value.

		
Initialize
an
empty

identifier
map

and
a

counter

(set
to

0

)
to
be
used
by
the

Generate
Blank
Node
Identifier
algorithm
.

		
Set

flattened

to
the
result
of
using
the

Flattening
algorithm
,
passing

expanded

as

element
,

context
,
and
if
passed,
the

compactArrays

flag
in

options

(which
is
internally
passed
to
the

Compaction
algorithm

).

		
Fulfill
the

promise

passing

flattened
.

		
Parameter

		
Type

		
Nullable

		
Optional

		
Description

		
input

		

any

		
✘

		
✘

		
The
JSON-LD
object
or
array
of
JSON-LD
objects
or
an

IRI

referencing
the
JSON-LD
document
to
flatten.

		
context

		

JsonLdContext

		
✔

		
✔

		
The
context
to
use
when
compacting
the
flattened

input

;
it
can
be
specified
by
using
a

JSON
object
,
an

IRI

,
or
an
array
consisting
of

JSON
object

s
and

IRI

s.
If
not
passed
or

null

is
passed,
the
result
will
not
be
compacted
but
kept
in
expanded
form.

		
options

		

JsonLdOptions

		
✘

		
✔

		
A
set
of
options
to
configure
the
used
algorithms
such.
This
allows,
e.g.,
to
set
the
input
document's
base

IRI

.

Return
type:

Promise

typedef
(
object
or
DOMString
or
(object
or
DOMString[])
)
JsonLdContext
;

typedef (object or DOMString or (object or DOMString[])) JsonLdContext;

The

JsonLdContext

type
is
used
to
refer
to
a
value
that
that
may
be
a

JSON
object
,
a

string

representing
an

IRI

,
or
an
array
of

JSON
objects

and

strings
.

11.2

The

JsonLdOptions

Type

This
section
is
non-normative.

The

JsonLdOptions

type
is
used
to
pass
various
options
to
the

JsonLdProcessor

methods.

 {

dictionary JsonLdOptions {
 DOMString? base;
 boolean compactArrays = true;
 LoadDocumentCallback documentLoader = null;
 (object? or DOMString) expandContext = null;
 DOMString processingMode = "json-ld-1.0";
};

};

Dictionary

JsonLdOptions

Members

This
section
is
non-normative.

		

base

of
type

DOMString

,
nullable

		
The
base

IRI

to
use
when
expanding
or
compacting
the
document.
If
set,
this
overrides
the
input
document's

IRI
.

		

compactArrays

of
type

boolean

,
defaulting
to

true

		
If
set
to

true
,
the
JSON-LD
processor
replaces
arrays
with
just
one
element
with
that
element
during
compaction.
If
set
to

false
,
all
arrays
will
remain
arrays
even
if
they
have
just
one
element.

		

documentLoader

of
type

LoadDocumentCallback

,
defaulting
to

null

		
The
callback
of
the
loader
to
be
used
to
retrieve
remote
documents
and
contexts.
If
specified,
it
is
used
to
retrieve
remote
documents
and
contexts;
otherwise,
if
not
specified,
the
processor's
built-in
loader
is
used.

		

expandContext

of
type

(object?
or
DOMString)

,
defaulting
to

null

		
A
context
that
is
used
to
initialize
the
active
context
when
expanding
a
document.

		

processingMode

of
type

DOMString

,
defaulting
to

"json-ld-1.0"

		
If
set
to

json-ld-1.0
,
the
implementation
has
to
produce
exactly
the
same
results
as
the
algorithms
defined
in
this
specification.
If
set
to
another
value,
the
JSON-LD
processor
is
allowed
to
extend
or
modify
the
algorithms
defined
in
this
specification
to
enable
application-specific
optimizations.
The
definition
of
such
optimizations
is
beyond
the
scope
of
this
specification
and
thus
not
defined.
Consequently,
different
implementations
may
implement
different
optimizations.
Developers
must
not
define
modes
beginning
with

json-ld

as
they
are
reserved
for
future
versions
of
this
specification.

11.3

Remote
Document
and
Context
Retrieval

This
section
is
non-normative.

Users
of
an
API
implementation
can
utilize
a
callback
to
control
how
remote
documents
and
contexts
are
retrieved.
This
section
details
the
parameters
of
that
callback
and
the
data
structure
used
to
return
the
retrieved
context.

LoadDocumentCallback

This
section
is
non-normative.

The

LoadDocumentCallback

defines
a
callback
that
custom
document
loaders
have
to
implement
to
be
used
to
retrieve
remote
documents
and
contexts.

callback
LoadDocumentCallback
=
Promise
(
DOMString
url
);

callback LoadDocumentCallback = Promise (DOMString url);

Callback

LoadDocumentCallback

Parameters

This
section
is
non-normative.

		

url

of
type

DOMString

		
The
URL
of
the
remote
document
or
context
to
load.

All
errors
result
in
the

Promise

being
rejected
with
a

JsonLdError

whose
code
is
set
to

loading
document
failed

or

multiple
context
link
headers

as
described
in
the
next
section.

RemoteDocument

This
section
is
non-normative.

The

RemoteDocument

type
is
used
by
a

LoadDocumentCallback

to
return
information
about
a
remote
document
or
context.

 {

dictionary RemoteDocument {
 DOMString contextUrl = null;
 DOMString documentUrl;
 any document;
};

};

Dictionary

RemoteDocument

Members

This
section
is
non-normative.

		

contextUrl

of
type

DOMString

,
defaulting
to

null

		
If
available,
the
value
of
the
HTTP
Link
Header
[

RFC5988

]
using
the

http://www.w3.org/ns/json-ld#context

link
relation
in
the
response.
If
the
response's
content
type
is

application/ld+json
,
the
HTTP
Link
Header
is
ignored.
If
multiple
HTTP
Link
Headers
using
the

http://www.w3.org/ns/json-ld#context

link
relation
are
found,
the

Promise

of
the

LoadDocumentCallback

is
rejected
with
a

JsonLdError

whose
code
is
set
to

multiple
context
link
headers

.

		

document

of
type

any

		
The
retrieved
document.
This
can
either
be
the
raw
payload
or
the
already
parsed
document.

		

documentUrl

of
type

DOMString

		
The
final
URL
of
the
loaded
document.
This
is
important
to
handle
HTTP
redirects
properly.

11.4

Error
Handling

This
section
is
non-normative.

This
section
describes
the
datatype
definitions
used
within
the
JSON-LD
API
for
error
handling.

JsonLdError

This
section
is
non-normative.

The

JsonLdError

type
is
used
to
report
processing
errors.

 {

dictionary JsonLdError {
 JsonLdErrorCode code;
 DOMString? message = null;
};

};

Dictionary

JsonLdError

Members

This
section
is
non-normative.

		

code

of
type

JsonLdErrorCode

		
a
string
representing
the
particular
error
type,
as
described
in
the
various
algorithms
in
this
document.

		

message

of
type

DOMString

,
nullable,
defaulting
to

null

		
an
optional
error
message
containing
additional
debugging
information.
The
specific
contents
of
error
messages
are
outside
the
scope
of
this
specification.

JsonLdErrorCode

This
section
is
non-normative.

The

JsonLdErrorCode

represents
the
collection
of
valid
JSON-LD
error
codes.

 {

enum JsonLdErrorCode {
 "loading document failed",
 "list of lists",
 "invalid @index value",
 "conflicting indexes",
 "invalid @id value",
 "invalid local context",
 "multiple context link headers",
 "loading remote context failed",
 "invalid remote context",
 "recursive context inclusion",
 "invalid base IRI",
 "invalid vocab mapping",
 "invalid default language",
 "keyword redefinition",
 "invalid term definition",
 "invalid reverse property",
 "invalid IRI mapping",
 "cyclic IRI mapping",
 "invalid keyword alias",
 "invalid type mapping",
 "invalid language mapping",
 "colliding keywords",
 "invalid container mapping",
 "invalid type value",
 "invalid value object",
 "invalid value object value",
 "invalid language-tagged string",
 "invalid language-tagged value",
 "invalid typed value",
 "invalid set or list object",
 "invalid language map value",
 "compaction to list of lists",
 "invalid reverse property map",
 "invalid @reverse value",
 "invalid reverse property value"
};

};

		
Enumeration
description

		

loading
document
failed

		
The
document
could
not
be
loaded
or
parsed
as
JSON.

		

list
of
lists

		
A
list
of
lists
was
detected.
List
of
lists
are
not
supported
in
this
version
of
JSON-LD
due
to
the
algorithmic
complexity.

		

invalid
@index
value

		
An

@index

member
was
encountered
whose
value
was
not
a

string
.

		

conflicting
indexes

		
Multiple
conflicting
indexes
have
been
found
for
the
same
node.

		

invalid
@id
value

		
An

@id

member
was
encountered
whose
value
was
not
a

string
.

		

invalid
local
context

		
In
invalid

local
context

was
detected.

		

multiple
context
link
headers

		
Multiple
HTTP
Link
Headers
[

RFC5988

]
using
the

http://www.w3.org/ns/json-ld#context

link
relation
have
been
detected.

		

loading
remote
context
failed

		
There
was
a
problem
encountered
loading
a
remote
context.

		

invalid
remote
context

		
No
valid
context
document
has
been
found
for
a
referenced,
remote
context.

		

recursive
context
inclusion

		
A
cycle
in
remote
context
inclusions
has
been
detected.

		

invalid
base
IRI

		
An
invalid

base

IRI

has
been
detected,
i.e.,
it
is
neither
an

absolute

IRI

nor

null
.

		

invalid
vocab
mapping

		
An
invalid

vocabulary
mapping

has
been
detected,
i.e.,
it
is
neither
an

absolute

IRI

nor

null
.

		

invalid
default
language

		
The
value
of
the

default
language

is
not
a

string

or

null

and
thus
invalid.

		

keyword
redefinition

		
A

keyword

redefinition
has
been
detected.

		

invalid
term
definition

		
An
invalid

term
definition

has
been
detected.

		

invalid
reverse
property

		
An
invalid
reverse
property
definition
has
been
detected.

		

invalid
IRI
mapping

		
A

local
context

contains
a

term

that
has
an
invalid
or
missing

IRI

mapping
.

		

cyclic
IRI
mapping

		
A
cycle
in

IRI

mappings

has
been
detected.

		

invalid
keyword
alias

		
An
invalid

keyword

alias
definition
has
been
encountered.

		

invalid
type
mapping

		
An

@type

member
in
a

term
definition

was
encountered
whose
value
could
not
be
expanded
to
an

absolute

IRI

.

		

invalid
language
mapping

		
An

@language

member
in
a

term
definition

was
encountered
whose
value
was
neither
a

string

nor

null

and
thus
invalid.

		

colliding
keywords

		
Two
properties
which
expand
to
the
same
keyword
have
been
detected.
This
might
occur
if
a

keyword

and
an
alias
thereof
are
used
at
the
same
time.

		

invalid
container
mapping

		
An

@container

member
was
encountered
whose
value
was
not
one
of
the
following

strings
:

@list
,

@set
,
or

@index
.

		

invalid
type
value

		
An
invalid
value
for
an

@type

member
has
been
detected,
i.e.,
the
value
was
neither
a

string

nor
an

array

of

strings
.

		

invalid
value
object

		
A

value
object

with
disallowed
members
has
been
detected.

		

invalid
value
object
value

		
An
invalid
value
for
the

@value

member
of
a

value
object

has
been
detected,
i.e.,
it
is
neither
a

scalar

nor

null
.

		

invalid
language-tagged
string

		
A

language-tagged
string

with
an
invalid
language
value
was
detected.

		

invalid
language-tagged
value

		
A

number
,

true
,
or

false

with
an
associated
language
tag
was
detected.

		

invalid
typed
value

		
A

typed
value

with
an
invalid
type
was
detected.

		

invalid
set
or
list
object

		
A

set
object

or

list
object

with
disallowed
members
has
been
detected.

		

invalid
language
map
value

		
An
invalid
value
in
a

language
map

has
been
detected.
It
has
to
be
a

string

or
an

array

of

strings
.

		

compaction
to
list
of
lists

		
The
compacted
document
contains
a
list
of
lists
as
multiple
lists
have
been
compacted
to
the
same
term.

		

invalid
reverse
property
map

		
An
invalid
reverse
property
map
has
been
detected.
No

keywords

apart
from

@context

are
allowed
in
reverse
property
maps.

		

invalid
@reverse
value

		
An
invalid
value
for
an

@reverse

member
has
been
detected,
i.e.,
the
value
was
not
a

JSON
object
.

		

invalid
reverse
property
value

		
An
invalid
value
for
a
reverse
property
has
been
detected.
The
value
of
an
inverse
property
must
be
a

node
object
.

A.

Acknowledgements

This
section
is
non-normative.

A
large
amount
of
thanks
goes
out
to
the
JSON-LD
Community
Group
participants
who
worked
through
many
of
the
technical
issues
on
the
mailing
list
and
the
weekly
telecons
-
of
special
mention
are
Niklas
Lindström,
François
Daoust,
Lin
Clark,
and
Zdenko
'Denny'
Vrandečić.
The
editors
would
like
to
thank
Mark
Birbeck,
who
provided
a
great
deal
of
the
initial
push
behind
the
JSON-LD
work
via
his
work
on
RDFj.
The
work
of
Dave
Lehn
and
Mike
Johnson
are
appreciated
for
reviewing,
and
performing
several
implementations
of
the
specification.
Ian
Davis
is
thanked
for
his
work
on
RDF/JSON.
Thanks
also
to
Nathan
Rixham,
Bradley
P.
Allen,
Kingsley
Idehen,
Glenn
McDonald,
Alexandre
Passant,
Danny
Ayers,
Ted
Thibodeau
Jr.,
Olivier
Grisel,
Josh
Mandel,
Eric
Prud'hommeaux,
David
Wood,
Guus
Schreiber,
Pat
Hayes,
Sandro
Hawke,
and
Richard
Cyganiak
for
their
input
on
the
specification.

B.

References

B.1

Normative
references

[IEEE-754-1985]

		
[IEEE-754-2008]

		
IEEE.

IEEE
754-2008

Standard
for
Binary

Floating-Point
Arithmetic.

Arithmetic
.
URL:
http://standards.ieee.org/reading/ieee/std_public/description/busarch/754-1985_desc.html

http://standards.ieee.org/findstds/standard/754-2008.html

		
[JSON-LD]

		
Manu
Sporny,
Gregg
Kellogg,
Markus
Lanthaler,
Editors.

JSON-LD
1.0
.
5
November
2013.

.
16
January
2014.

W3C
Proposed

Recommendation.
URL:
http://www.w3.org/TR/2013/PR-json-ld-20131105/
.
The
latest
edition
is
available
at

http://www.w3.org/TR/json-ld/

[RDF-MT]

		
[RDF11-MT]

		
Patrick
Hayes.

J.
Hayes,
Peter
F.
Patel-Schneider,
Editors.

RDF
1.1

Semantics

.
10
February
2004.

.
9
January
2014.

W3C
Recommendation.

Proposed
Recommendation
(work
in
progress).

URL:
http://www.w3.org/TR/rdf-mt/

http://www.w3.org/TR/2014/PR-rdf11-mt-20140109/
.
The
latest
edition
is
available
at

http://www.w3.org/TR/rdf11-mt/

		
[RFC2119]

		
S.
Bradner.

Key
words
for
use
in
RFCs
to
Indicate
Requirement
Levels.

March
1997.
Internet
RFC
2119.
URL:

http://www.ietf.org/rfc/rfc2119.txt

		
[RFC3986]

		
T.
Berners-Lee;
R.
Fielding;
L.
Masinter.

Uniform
Resource
Identifier
(URI):
Generic
Syntax
(RFC
3986)

.
January
2005.
RFC.
URL:

http://www.ietf.org/rfc/rfc3986.txt

		
[RFC3987]

		
M.
Dürst;
M.
Suignard.

Internationalized
Resource
Identifiers
(IRIs)

.
January
2005.
RFC.
URL:

http://www.ietf.org/rfc/rfc3987.txt

		
[RFC4627]

		
D.
Crockford.

The
application/json
Media
Type
for
JavaScript
Object
Notation
(JSON)
(RFC
4627)

.
July
2006.
RFC.
URL:

http://www.ietf.org/rfc/rfc4627.txt

		
[RFC5988]

		
M.
Nottingham.

Web
Linking
.

.
October
2010.
Internet
RFC
5988.
URL:

http://www.ietf.org/rfc/rfc5988.txt

		
[XMLSCHEMA11-2]

		
David
Peterson;
Sandy
Gao;
Ashok
Malhotra;
Michael
Sperberg-McQueen;
Henry
Thompson;
Paul
V.
Biron
et
al.

W3C
XML
Schema
Definition
Language
(XSD)
1.1
Part
2:
Datatypes

.
5
April
2012.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xmlschema11-2/

B.2

Informative
references

		
[BCP47]

		
A.
Phillips;
M.
Davis.

Tags
for
Identifying
Languages

.
September
2009.
IETF
Best
Current
Practice.
URL:

http://tools.ietf.org/html/bcp47

		
[ECMA-262]

		

ECMAScript
Language
Specification,
Edition
5.1

.
June
2011.
URL:

http://www.ecma-international.org/publications/standards/Ecma-262.htm

		
[JSON-LD-TESTS]

		

JSON-LD
1.0
Test
Suite

.
W3C
Test
Suite.
URL:

http://www.w3.org/2013/json-ld-tests/

		
[PROMISES]

		
Domenic
Denicola.

Promise
Objects
.
October
2013.

.
January
2014

(work
in
progress).
URL:

http://www.w3.org/2013/10/json-ld-api/snapshot-promises-draft
.
The
latest
draft
is
available
at

https://github.com/domenic/promises-unwrapping

		
[RDF11-CONCEPTS]

		
Richard
Cyganiak,
David
Wood,
Markus
Lanthaler,
Editors.

RDF
1.1
Concepts
and
Abstract
Syntax.

Syntax

5
November
2013.

.
9
January
2014.

W3C
Candidate

Proposed

Recommendation
(work
in
progress).
URL:
http://www.w3.org/TR/2013/CR-rdf11-concepts-20131105/

http://www.w3.org/TR/2014/PR-rdf11-concepts-20140109/

.
The
latest
edition
is
available
at

http://www.w3.org/TR/rdf11-concepts/

		
[RFC6839]

		
Tony
Hansen,
Alexey
Melnikov.

Additional
Media
Type
Structured
Syntax
Suffixes
.

January
2013.
Internet
RFC
6839.
URL:

http://www.ietf.org/rfc/rfc6839.txt

		
[TURTLE]

		
Eric
Prud'hommeaux,
Gavin
Carothers,
Editors.

RDF
1.1

Turtle:
Terse
RDF
Triple
Language.

Language

19
February
2013.

.
9
January
2014.

W3C
Candidate

Proposed

Recommendation
(work
in
progress).
URL:
http://www.w3.org/TR/2013/CR-turtle-20130219/

http://www.w3.org/TR/2014/PR-turtle-20140109/

.
The
latest
edition
is
available
at

http://www.w3.org/TR/turtle/

		
[WEBIDL]

		
Cameron
McCormack,
Editor.

Web
IDL.

IDL

.
19
April
2012.
W3C
Candidate
Recommendation
(work
in
progress).
URL:

http://www.w3.org/TR/2012/CR-WebIDL-20120419/
.
The
latest
edition
is
available
at

http://www.w3.org/TR/WebIDL/

rdfa-primer/diagrams/type.png
_tlanknodet

witpe ————»() foatPerson

rdfa-primer/diagrams/multiple-blog-entries.png
<hto:lexample.comlalice/posts/irouble_with_bob> <htp:lexample. comvalicelpostsjos_barbecue>

it rgictomsnie> Er—
<http:lpur org/dcfterms/creator> / <http:ipur org/dchermscreator>
<http:/fpurl ovg/dc/l&ms/cm!e&

<hipipur. org/udwnﬂs/malsd>

“The Trouiie with Bob™ “2011-08-10" “Alis” “Joa's s:m» “201wa r “Eve"

rdfa-primer/diagrams/presentation-vs-semantics.png
Headline
Subheadline
ltalics

ot ottt ot et ot ettt -

ot ottt ot et o ettt -
ot ot o e ot e ot 0ot
ot ot et ot e ot et sttt

Lokt Lz Loss
Lo

Title
Author
Publication Date

ariceconant aic contert ricta contnt
Srics canant arie conten rtcle contnt
Srice conent arioe conten rtela content
o conont aric conten il contont
riceconntaric contert it contont

oot Tag2 Tagd
Copuriat Lcense

rdfa-primer/diagrams/social-network.png
_blanknodet

TIPE 0 foatPorson

foatphons

T

foatknows

foafknows. foatmaitox <ol +1-617-555-7332>
 smeioases tname \b
o LR ——
rae
oz e
/ pae “Alice Birpemswick
= <
e o
7 trenmen ot i
e e e
oo
-
e
tren
trane

/" tatromepsss

“Many" \b

<ntpiiexamgle comimanu>

StyleSheets/TR/logo-CG-Note.png

rdfa-primer/diagrams/blog-with-two-creators.png
<hitpfexample comalice/posts/irouble_with_bob>

TYPE —————»() schemaBlogPosing

docreator schemaarticieBody

dctite
schemarceator

“The Trouble with Bob “The troudle with Bob i that e
<hitpjexample.con/alcstme> takes much beter photos than

1do”

Icons/w3c_main.png

rdfa-core/rdfa-core-diff.xhtml

[image: W3C]

RDFa
Core
1.1
-
Second
Edition

Syntax
and
processing
rules
for
embedding
RDF
through
attributes

W3C

Recommendation

22
August

2013

		
This
version:

		

http://www.w3.org/TR/2013/REC-rdfa-core-20130822/

		
Latest
published
version:

		

http://www.w3.org/TR/rdfa-core/

		
Previous
version:

		

http://www.w3.org/TR/2012/REC-rdfa-core-20120607/

		
Latest
recommendation:

		

http://www.w3.org/TR/2012/REC-rdfa-core-20120607/

		
Editors:

		

Ben
Adida
,
Creative
Commons,

ben@adida.net

		

Mark
Birbeck
,
webBackplane,

mark.birbeck@webBackplane.com

		

Shane
McCarron
,
Applied
Testing
and
Technology,
Inc.,

shane@aptest.com

		

Ivan
Herman
,

W3C
,

ivan@w3.org

Please
refer
to
the

errata

for
this
document,
which
may
include
some
normative
corrections.

This
document
is
also
available
in
these
non-normative
formats:

Diff
from
Previous
Recommendation
,

PostScript
version
,
and

PDF
version

The
English
version
of
this
specification
is
the
only
normative
version.
Non-normative

translations

may
also
be
available.

Copyright

©
2007-2013

W3C

®

(

MIT

,

ERCIM

,

Keio
,

Beihang

),
All
Rights
Reserved.

W3C

liability
,

trademark

and

document
use

rules
apply.

Abstract

The
current
Web
is
primarily
made
up
of
an
enormous
number
of
documents
that
have
been
created
using
HTML.
These
documents
contain
significant
amounts
of
structured
data,
which
is
largely
unavailable
to
tools
and
applications.
When
publishers
can
express
this
data
more
completely,
and
when
tools
can
read
it,
a
new
world
of
user
functionality
becomes
available,
letting
users
transfer
structured
data
between
applications
and
web
sites,
and
allowing
browsing
applications
to
improve
the
user
experience:
an
event
on
a
web
page
can
be
directly
imported
into
a
user's
desktop
calendar;
a
license
on
a
document
can
be
detected
so
that
users
can
be
informed
of
their
rights
automatically;
a
photo's
creator,
camera
setting
information,
resolution,
location
and
topic
can
be
published
as
easily
as
the
original
photo
itself,
enabling
structured
search
and
sharing.

RDFa
Core
is
a
specification
for
attributes
to
express
structured
data
in
any
markup
language.
The
embedded
data
already
available
in
the
markup
language
(e.g.,
HTML)
can
often
be
reused
by
the
RDFa
markup,
so
that
publishers
don't
need
to
repeat
significant
data
in
the
document
content.
The
underlying
abstract
representation
is
RDF
[

RDF-PRIMER

],
which
lets
publishers
build
their
own
vocabulary,
extend
others,
and
evolve
their
vocabulary
with
maximal
interoperability
over
time.
The
expressed
structure
is
closely
tied
to
the
data,
so
that
rendered
data
can
be
copied
and
pasted
along
with
its
relevant
structure.

The
rules
for
interpreting
the
data
are
generic,
so
that
there
is
no
need
for
different
rules
for
different
formats;
this
allows
authors
and
publishers
of
data
to
define
their
own
formats
without
having
to
update
software,
register
formats
via
a
central
authority,
or
worry
that
two
formats
may
interfere
with
each
other.

RDFa
shares
some
of
the
same
goals
with
microformats
[

MICROFORMATS

].
Whereas
microformats
specify
both
a
syntax
for
embedding
structured
data
into
HTML
documents
and
a
vocabulary
of
specific
terms
for
each
microformat,
RDFa
specifies
only
a
syntax
and
relies
on
independent
specification
of
terms
(often
called
vocabularies
or
taxonomies)
by
others.
RDFa
allows
terms
from
multiple
independently-developed
vocabularies
to
be
freely
intermixed
and
is
designed
such
that
the
language
can
be
parsed
without
knowledge
of
the
specific
vocabulary
being
used.

This
document
is
a
detailed
syntax
specification
for
RDFa,
aimed
at:

		
those
looking
to
create
an
RDFa
Processor,
and
who
therefore
need
a
detailed
description
of
the
parsing
rules;

		
those
looking
to
integrate
RDFa
into
a
new
markup
language;

		
those
looking
to
recommend
the
use
of
RDFa
within
their
organization,
and
who
would
like
to
create
some
guidelines
for
their
users;

		
anyone
familiar
with
RDF,
and
who
wants
to
understand
more
about
what
is
happening
'under
the
hood',
when
an
RDFa
Processor
runs.

For
those
looking
for
an
introduction
to
the
use
of
RDFa
and
some
real-world
examples,
please
consult
the
[

RDFA-PRIMER

].

How
to
Read
this
Document

First,
if
you
are
not
familiar
with
either
RDFa

or

RDF,
and
simply
want
to
add
RDFa
to
your
documents,
then
you
may
find
the
RDFa
Primer
[

RDFA-PRIMER

]
to
be
a
better
introduction.

If
you
are
already
familiar
with
RDFa,
and
you
want
to
examine
the
processing
rules
—
perhaps
to
create
an
RDFa
Processor
—
then
you'll
find
the

Processing
Model

section
of
most
interest.
It
contains
an
overview
of
each
of
the
processing
steps,
followed
by
more
detailed
sections,
one
for
each
rule.

If
you
are
not
familiar
with
RDFa,
but
you

are

familiar
with
RDF,
then
you
might
find
reading
the

Syntax
Overview

useful,
before
looking
at
the

Processing
Model

since
it
gives
a
range
of
examples
of
markup
that
use
RDFa.
Seeing
some
examples
first
should
make
reading
the
processing
rules
easier.

If
you
are
not
familiar
with
RDF,
then
you
might
want
to
take
a
look
at
the
section
on

RDF
Terminology

before
trying
to
do
too
much
with
RDFa.
Although
RDFa
is
designed
to
be
easy
to
author
—
and
authors
don't
need
to
understand
RDF
to
use
it
—
anyone
writing
applications
that

consume

RDFa
will
need
to
understand
RDF.
There
is
a
lot
of
material
about
RDF
on
the
web,
and
a
growing
range
of
tools
that
support
RDFa.
This
document
only
contains
enough
background
on
RDF
to
make
the
goals
of
RDFa
more
clear.

Note

RDFa
is
a
way
of
expressing

RDF

-style
relationships
using
simple
attributes
in
existing
markup
languages
such
as
HTML.
RDF
is
fully
internationalized,
and
permits
the
use
of
Internationalized
Resource
Identifiers,
or
IRIs.
You
will
see
the
term
'IRI'
used
throughout
this
specification.
Even
if
you
are
not
familiar
with
the
term
IRI,
you
probably
have
seen
the
term
'URI'
or
'URL'.
IRIs
are
an
extension
of
URIs
that
permits
the
use
of
characters
outside
those
of
plain
ASCII.
RDF
allows
the
use
of
these
characters,
and
so
does
RDFa.
This
specification
has
been
careful
to
use
the
correct
term,
IRI,
to
make
it
clear
that
this
is
the
case.

Note

Even
though
this
specification
exclusively
references
IRIs,
it
is
possible
that
a
Host
Language
will
restrict
the
syntax
for
its
attributes
to
a
subset
of
IRIs
(e.g.,

@href

in
HTML5).
Regardless
of
validation
constraints
in
Host
Languages,
an
RDFa
Processor
is
capable
of
processing
IRIs.

Status
of
This
Document

This
section
describes
the
status
of
this
document
at
the
time
of
its
publication.
Other
documents
may
supersede
this
document.
A
list
of
current

W3C

publications
and
the
latest
revision
of
this
technical
report
can
be
found
in
the

W3C

technical
reports
index

at
http://www.w3.org/TR/.

This
document
has
been
reviewed
by

W3C

Members,
by
software
developers,
and
by
other

W3C

groups
and
interested
parties,
and
is
endorsed
by
the
Director
as
a

W3C

Recommendation.
It
is
a
stable
document
and
may
be
used
as
reference
material
or
cited
from
another
document.

W3C

's
role
in
making
the
Recommendation
is
to
draw
attention
to
the
specification
and
to
promote
its
widespread
deployment.
This
enhances
the
functionality
and
interoperability
of
the
Web.

This
version

reflects
changes
made
as
a
result
of
comments
received
since
the
Recommendation
was
first
published.
These
changes
are
mostly
editorial.
In
particular,
there
are
minor
editorial
changes
to
the
Processing
Sequence

section
7.5
.

This
is
a
revision
of
RDFa
Syntax
1.0
[

RDFA-SYNTAX

].
This
document
supersedes
the

previous
Recommendation
.
There
are
a
number
of
substantive
differences
between
this
version
and
its
predecessor,
including:

		
The
removal
of
the
specific
rules
for
XHTML
-
these
are
now
defined
in
XHTML+RDFa
[

XHTML-RDFA

].

		
An
expansion
of
the
datatypes
of
some
RDFa
attributes
so
that
they
can
contain
Terms,
CURIES,
or
Absolute
IRIs.

		
Host
languages
are
permitted
to
define
collections
of
default
terms,
default
prefix
mappings,
and
a
default
vocabulary.

		
The
ability
to
define
a
default
vocabulary
to
use
for
Terms
that
are
undefined.

		
Terms
are
required
to
be
compared
in
a
case-insensitive
manner.

		
A
richer
behavior
of
the
@property
attribute,
that
can
replace,
in
many
cases
the
@rel
attribute.

		
A
slightly
different
handling
of
@typeof,
making
it
better
adapted
to
practical
usage.

There
is
a
more
thorough
list
of
changes
in

Changes
.

A

sample
test
harness

is
available.
This
set
of
tests
is
not
intended
to
be
exhaustive.
Users
may
find
the
tests
to
be
useful
examples
of
RDFa
usage.

The

implementation
report

used
by
the
director
to
transition
to
Recommendation
has
been
made
available.
There
have
been
no
formal
objections
to
the
publication
of
this
document.

This
document
was
published
by
the

RDF
Web
Applications
Working
Group

as
a
Recommendation.
If
you
wish
to
make
comments
regarding
this
document,
please
send
them
to

public-rdfa@w3.org

(

subscribe
,

archives

).
All
comments
are
welcome.

This
document
was
produced
by
a
group
operating
under
the

5
February
2004

W3C

Patent
Policy
.

W3C

maintains
a

public
list
of
any
patent
disclosures

made
in
connection
with
the
deliverables
of
the
group;
that
page
also
includes
instructions
for
disclosing
a
patent.
An
individual
who
has
actual
knowledge
of
a
patent
which
the
individual
believes
contains

Essential
Claim(s)

must
disclose
the
information
in
accordance
with

section
6
of
the

W3C

Patent
Policy
.

Table
of
Contents

		

1.

Motivation

		

2.

Syntax
Overview

		

2.1

The
RDFa
Attributes

		

2.2

Examples

		

3.

RDF
Terminology

		

3.1

Statements

		

3.2

Triples

		

3.3

IRI
References

		

3.4

Plain
Literals

		

3.5

Typed
Literals

		

3.6

Turtle

		

3.7

Graphs

		

3.8

Compact
URI
Expressions

		

3.9

Markup
Fragments
and
RDFa

		

3.10

A
Description
of
RDFa
in
RDF
Terms

		

4.

Conformance

		

4.1

RDFa
Processor
Conformance

		

4.2

RDFa
Host
Language
Conformance

		

4.3

XML+RDFa
Document
Conformance

		

5.

Attributes
and
Syntax

		

5.1

Roles
of
attributes

		

5.2

White
space
within
attribute
values

		

6.

CURIE
Syntax
Definition

		

6.1

Why
CURIEs
and
not
QNames?

		

7.

Processing
Model

		

7.1

Overview

		

7.2

Evaluation
Context

		

7.3

Chaining

		

7.4

CURIE
and
IRI
Processing

		

7.4.1

Scoping
of
Prefix
Mappings

		

7.4.2

General
Use
of
CURIEs
in
Attributes

		

7.4.3

General
Use
of
Terms
in
Attributes

		

7.4.4

Use
of
CURIEs
in
Specific
Attributes

		

7.4.5

Referencing
Blank
Nodes

		

7.5

Sequence

		

7.6

Processor
Status

		

7.6.1

Accessing
the
Processor
Graph

		

7.6.2

Processor
Graph
Terms

		

7.7

Vocabulary
Expansion

		

8.

RDFa
Processing
in
detail

		

8.1

Changing
the
Evaluation
Context

		

8.1.1

Setting
the
current
subject

		

8.1.1.1

The
current
document

		

8.1.1.2

Using

@about

		

8.1.1.3

Typing
resources
with

@typeof

		

8.1.1.3.1

Chaining
with

@property

and

@typeof

		

8.1.1.4

Determining
the
subject
with
neither

@about

nor

@typeof

		

8.1.1.4.1

Inheriting
subject
from

@resource

		

8.1.1.4.2

Inheriting
an
anonymous
subject

		

8.2

Completing
incomplete
triples

		

8.3

Object
resolution

		

8.3.1

Object
resolution
for
the

@property

attribute

		

8.3.1.1

Plain
Literals

		

8.3.1.1.1

Language
Tags

		

8.3.1.2

Typed
Literals

		

8.3.1.3

XML
Literals

		

8.3.2

IRI
object
resolution

		

8.3.2.1

Using

@resource

to
set
the
object

		

8.3.2.2

Using

@href

or

@src

to
set
the
object

		

8.3.2.3

Incomplete
triples

		

8.4

List
Generation

		

9.

RDFa
Initial
Contexts

		

10.

RDFa
Vocabulary
Expansion

		

10.1

Details
of
the
RDFa
Vocabulary
Expansion

		

10.1.1

RDFa
Vocabulary
Entailment

		

10.2

Vocabulary
Expansion
Control
of
RDFa
Processors

		

10.2.1

Notes
to
RDFa
Vocabulary
Implementations
and
Publishing

		

A.

CURIE
Datatypes

		

A.1

XML
Schema
Definition

		

A.2

XML
DTD
Definition

		

B.

The
RDFa
Vocabulary

		

B.1

Term
and
Prefix
Assignments

		

B.2

Processor
Graph
Reporting

		

B.3

Term
for
vocabulary
expansion

		

C.

Changes

		

C.1

Major
differences
with
RDFa
Syntax
1.0

		

D.

Acknowledgments

		

E.

References

		

E.1

Normative
references

		

E.2

Informative
references

1.

Motivation

This
section
is
non-normative.

RDF/XML
[

RDF-SYNTAX

]
provides
sufficient
flexibility
to
represent
all
of
the
abstract
concepts
in
RDF.
However,
it
presents
a
number
of
challenges;
first
it
is
difficult
or
impossible
to
validate
documents
that
contain
RDF/XML
using
XML
Schemas
or
DTDs,
which
therefore
makes
it
difficult
to
import
RDF/XML
into
other
markup
languages.
Whilst
newer
schema
languages
such
as
RELAX
NG
[

RELAXNG-SCHEMA

]
do
provide
a
way
to
validate
documents
that
contain
arbitrary
RDF/XML,
it
will
be
a
while
before
they
gain
wide
support.

Second,
even
if
one
could
add
RDF/XML
directly
into
an
XML
dialect
like
XHTML,
there
would
be
significant
data
duplication
between
the
rendered
data
and
the
RDF/XML
structured
data.
It
would
be
far
better
to
add
RDF
to
a
document
without
repeating
the
document's
existing
data.
For
example,
an
XHTML
document
that
explicitly
renders
its
author's
name
in
the
text
—
perhaps
as
a
byline
on
a
news
site
—
should
not
need
to
repeat
this
name
for
the
RDF
expression
of
the
same
concept:
it
should
be
possible
to
supplement
the
existing
markup
in
such
a
way
that
it
can
also
be
interpreted
as
RDF.

Another
reason
for
aligning
the
rendered
data
with
the
structured
data
is
that
it
is
highly
beneficial
to
express
the
web
data's
structure
'in
context';
as
users
often
want
to
transfer
structured
data
from
one
application
to
another,
sometimes
to
or
from
a
non-web-based
application,
the
user
experience
can
be
enhanced.
For
example,
information
about
specific
rendered
data
could
be
presented
to
the
user
via
'right-clicks'
on
an
item
of
interest.
Moreover,
organizations
that
generate
a
lot
of
content
(e.g.,
news
outlets)
find
it
easier
to
embed
the
semantic
data
inline
than
to
maintain
it
separately.

In
the
past,
many
attributes
were
'hard-wired'
directly
into
the
markup
language
to
represent
specific
concepts.
For
example,
in
XHTML
1.1
[

XHTML11

]
and
HTML
[

HTML401

]
there
is

@cite

;
the
attribute
allows
an
author
to
add
information
to
a
document
which
is
used
to
indicate
the
origin
of
a
quote.

However,
these
'hard-wired'
attributes
make
it
difficult
to
define
a
generic
process
for
extracting
metadata
from
any
document
since
an
RDFa
Processor
would
need
to
know
about
each
of
the
special
attributes.
One
motivation
for
RDFa
has
been
to
devise
a
means
by
which
documents
can
be
augmented
with
metadata
in
a
general,
rather
than
hard-wired,
manner.
This
has
been
achieved
by
creating
a
fixed
set
of
attributes
and
parsing
rules,
but
allowing
those
attributes
to
contain
properties
from
any
of
a
number
of
the
growing
range
of
available
RDF
vocabularies.
In
most
cases
the

values

of
those
properties
are
the
information
that
is
already
in
an
author's
document.

RDFa
alleviates
the
pressure
on
markup
language
designers
to
anticipate
all
the
structural
requirements
users
of
their
language
might
have,
by
outlining
a
new
syntax
for
RDF
that
relies
only
on
attributes.
By
adhering
to
the
concepts
and
rules
in
this
specification,
language
designers
can
import
RDFa
into
their
environment
with
a
minimum
of
hassle
and
be
confident
that
semantic
data
will
be
extractable
from
their
documents
by
conforming
processors.

2.

Syntax
Overview

This
section
is
non-normative.

The
following
examples
are
intended
to
help
readers
who
are
not
familiar
with
RDFa
to
quickly
get
a
sense
of
how
it
works.
For
a
more
thorough
introduction,
please
read
the
RDFa
Primer
[

RDFA-PRIMER

].

In
RDF,
it
is
common
for
people
to
shorten
vocabulary
terms
via
abbreviated
IRIs
that
use
a
'prefix'
and
a
'reference'.
This
mechanism
is
explained
in
detail
in
the
section
titled

Compact
URI
Expressions
.
The
examples
throughout
this
document
assume
that
the
following
vocabulary

prefixes

have
been
defined:

		
bibo:

		
http://purl.org/ontology/bibo/

		
cc:

		
http://creativecommons.org/ns#

		
dbp:

		
http://dbpedia.org/property/

		
dbp-owl:

		
http://dbpedia.org/ontology/

		
dbr:

		
http://dbpedia.org/resource/

		
dc:

		
http://purl.org/dc/terms/

		
ex:

		
http://example.org/

		
foaf:

		
http://xmlns.com/foaf/0.1/

		
owl:

		
http://www.w3.org/2002/07/owl#

		
rdf:

		
http://www.w3.org/1999/02/22-rdf-syntax-ns#

		
rdfa:

		
http://www.w3.org/ns/rdfa#

		
rdfs:

		
http://www.w3.org/2000/01/rdf-schema#

		
xhv:

		
http://www.w3.org/1999/xhtml/vocab#

		
xsd:

		
http://www.w3.org/2001/XMLSchema#

Note

In
some
of
the
examples
below
we
have
used
IRIs
with
fragment
identifiers
that
are
local
to
the
document
containing
the
RDFa
fragment
identifiers
shown
(e.g.,
'

about="#me"

').
This
idiom,
which
is
also
used
in
RDF/XML
[

RDF-SYNTAX-GRAMMAR

]
and
other
RDF
serializations,
gives
a
simple
way
to
'mint'
new
IRIs
for
entities
described
by
RDFa
and
therefore
contributes
considerably
to
the
expressive
power
of
RDFa.
The
precise
meaning
of
IRIs
which
include
fragment
identifiers
when
they
appear
in
RDF
graphs
is
given
in
Section
7
of
[

RDF-SYNTAX

].
To
ensure
that
such
fragment
identifiers
can
be
interpreted
correctly,
media
type
registrations
for
markup
languages
that
incorporate
RDFa
should
directly
or
indirectly
reference
this
specification.

2.1

The
RDFa
Attributes

This
section
is
non-normative.

RDFa
makes
use
of
a
number
of
commonly
found
attributes,
as
well
as
providing
a
few
new
ones.
Attributes
that
already
exist
in
widely
deployed
languages
(e.g.,
HTML)
have
the
same
meaning
they
always
did,
although
their
syntax
has
been
slightly
modified
in
some
cases.
For
example,
in
(X)HTML
there
is
no
clear
way
to
add
new

@rel

values;
RDFa
sets
out
to
explicitly
solve
this
problem,
and
does
so
by
allowing
IRIs
as
values.
It
also
introduces
the
concepts
of

terms

and
'

compact
URI
expressions

'
—
referred
to
as
CURIEs
in
this
document
—
which
allow
a
full
IRI
value
to
be
expressed
succinctly.
For
a
complete
list
of
RDFa
attribute
names
and
syntax,
see

Attributes
and
Syntax
.

2.2

Examples

In
(X)HTML,
authors
can
include
metadata
and
relationships
concerning
the
current
document
by
using
the

meta

and

link

elements
(in
these
examples,
XHTML+RDFa
[

XHTML-RDFA

]
is
used).
For
example,
the
author
of
the
page
along
with
the
pages
preceding
and
following
the
current
page
can
be
expressed
using
the
link
and
meta
elements:

 Example 1
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Page 7</title>
 <meta name="author" content="Mark Birbeck" />
 <link rel="prev" href="page6.html" />
 <link rel="next" href="page8.html" />
 </head>
 <body>...</body>
</html>

RDFa
makes
use
of
this
concept,
enhancing
it
with
the
ability
to
make
use
of
other
vocabularies
by
using
full
IRIs:

 Example 2
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>My home-page</title>
 <meta property="http://purl.org/dc/terms/creator" content="Mark Birbeck" />
 <link rel="http://xmlns.com/foaf/0.1/topic" href="http://www.example.com/#us" />

 </head>
 <body>...</body>
</html>

Because
using
full
IRIs
like
those
above
can
be
cumbersome,
RDFa
also
permits
the
use
of

compact
URI
expressions

so
an
author
can
use
a
shorthand
to
reference
terms
in
multiple
vocabularies:

 Example 3
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="foaf: http://xmlns.com/foaf/0.1/
 dc: http://purl.org/dc/terms/"

 >
 <head>
 <title>My home-page</title>
 <meta property="dc:creator" content="Mark Birbeck" />
 <link rel="foaf:topic" href="http://www.example.com/#us" />

 </head>
 <body>...</body>
</html>

RDFa
supports
the
use
of

@rel

and

@rev

on
any
element.
This
is
even
more
useful
with
the
addition
of
support
for
different
vocabularies:

 Example 4
This document is licensed under the
<a prefix="cc: http://creativecommons.org/ns#"
 rel="cc:license"
 href="http://creativecommons.org/licenses/by-nc-nd/3.0/"

>Creative
Commons
By-NC-ND
License.

Not
only
can
IRIs
in
the
document
be
re-used
to
provide
metadata,
but
so
can
inline
text
when
used
with

@property
:

 Example 5
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="dc: http://purl.org/dc/terms/"

 >
 <head><title>My Home Page</title></head>
 <body>
 <h1 property="dc:title">My home-page</h1>

 <p>Last modified: 16 September 2015</p>
 </body>
</html>

If
some
displayed
text
is
different
from
the
actual
'value'
it
represents,
a
more
precise
value
can
be
added
using

@content
.
A
value
can
also
optionally
be
typed
using

@datatype
:

 Example 6
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="xsd: http://www.w3.org/2001/XMLSchema#
 dc: http://purl.org/dc/terms/"

 >
 <head><title>My Home Page</title></head>
 <body>
 <h1 property="dc:title">My home-page</h1>
 <p>Last modified: <span property="dc:modified"
 content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">16 September 2015.</p>

 </body>
</html>

RDFa
allows
the
document
to
contain
metadata
information
about
other
documents
and
resources:

 Example 7
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="bibo: http://purl.org/ontology/bibo/
 dc: http://purl.org/dc/terms/"

 >
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White's book
 '<span about="urn:ISBN:0091808189"
 property="dc:title">Canteen Cuisine'

 is well worth getting since although it's quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span
 about="urn:ISBN:1596913614"
 property="dc:description"
 >White's autobiography.
 </body>
</html>

In
many
cases
a
block
of
markup
will
contain
a
number
of
properties
that
relate
to
the
same
item.
It's
possible
with
RDFa
to
indicate
the
type
of
that
item
using

@typeof
:

 Example 8
<html
 xmlns="http://www.w3.org/1999/xhtml"
 prefix="bibo: http://purl.org/ontology/bibo/
 dc: http://purl.org/dc/terms/"

 >
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White's book
 '<span about="urn:ISBN:0091808189" typeof="bibo:Book"
 property="dc:title">Canteen Cuisine'

 is well worth getting since although it's quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span
 about="urn:ISBN:1596913614"
 typeof="bibo:Book"
 property="dc:description"

 >White's autobiography.
 </body>
</html>

When
dealing
with
small
amounts
of
markup,
it
is
sometimes
easier
to
use
full
IRIs,
rather
than
CURIEs.
The
previous
example
can
also
be
written
as
follows:

 Example 9
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Books by Marco Pierre White</title>
 </head>
 <body>
 I think White's book
 '<span
 about="urn:ISBN:0091808189"
 typeof="http://purl.org/ontology/bibo/Book"
 property="http://purl.org/dc/terms/title"
 >Canteen Cuisine'
 is well worth getting since although it's quite advanced stuff, he
 makes it pretty easy to follow. You might also like
 <span
 about="urn:ISBN:1596913614"
 typeof="http://purl.org/ontology/bibo/Book"
 property="http://purl.org/dc/terms/description"
 >White's autobiography.
 </body>
</html>

A
simple
way
of
defining
a
portion
of
a
document
using
terms
from
a
specific
vocabulary
is
to
use

@vocab

to
define
a
default
vocabulary
IRI.
For
example,
to
use
FOAF
terms:

 Example 10
<div vocab="http://xmlns.com/foaf/0.1/" about="#me">
 My name is John Doe and my blog is called
 Understanding Semantics.

</div>

The
example
above
will
produce
the
following
triples,
expressed
here
in

Turtle

syntax:

 Example 11
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<#me> foaf:name "John Doe" ;

foaf:homepage

<http://example.org/blog/>
.

In
simple
cases
the

@property

property
can
also
be
used
in
place
of

@rel
.
Indeed,
in
case
when
the
element
does
not
contain

@rel
,

@datatype
,
or

@content
,
but
there
is,
for
example,
a

@href
,
the
effect
of

@property

is
analogous
to
the
role
of

@rel
.
For
example,
the
previous
example
could
have
been
written:

 Example 12
<div vocab="http://xmlns.com/foaf/0.1/" about="#me">
 My name is John Doe and my blog is called
 Understanding Semantics.

</div>

3.

RDF
Terminology

This
section
is
non-normative.

The
previous
section
gave
examples
of
typical
markup
in
order
to
illustrate
the
structure
of
RDFa
markup.
RDFa
is
short
for
"RDF

in
Attributes".

In
order
to
author
RDFa
you
do
not
need
to
understand
RDF,
although
it
would
certainly
help.
However,
if
you
are
building
a
system
that
consumes
the
RDF
output
of
a
language
that
supports
RDFa
you
will
almost
certainly
need
to
understand
RDF.
This
section
introduces
the
basic
concepts
and
terminology
of
RDF.
For
a
more
thorough
explanation
of
RDF,
please
refer
to
the
RDF
Concepts
document
[

RDF-SYNTAX

]
and
the
RDF
Syntax
Document
[

RDF-SYNTAX

].

3.1

Statements

This
section
is
non-normative.

The
structured
data
that
RDFa
provides
access
to
is
a
collection
of

statements
.
A
statement
is
a
basic
unit
of
information
that
has
been
constructed
in
a
specific
format
to
make
it
easier
to
process.
In
turn,
by
breaking
large
sets
of
information
down
into
a
collection
of
statements,
even
very
complex
metadata
can
be
processed
using
simple
rules.

To
illustrate,
suppose
we
have
the
following
set
of
facts:

 Example 13
Albert was born on March 14, 1879, in the German Empire. There is a picture of him at
the
web
address,
http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

This
would
be
quite
difficult
for
a
machine
to
interpret,
and
it
is
certainly
not
in
a
format
that
could
be
passed
from
one
data
application
to
another.
However,
if
we
convert
the
information
to
a
set
of
statements
it
begins
to
be
more
manageable.
The
same
information
could
therefore
be
represented
by
the
following
shorter
'statements':

 Example 14
Albert was born on March 14, 1879.
Albert was born in the German Empire.
Albert has a picture at
http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

3.2

Triples

To
make
this
information
machine-processable,
RDF
defines
a
structure
for
these
statements.
A
statement
is
formally
called
a

triple

,
meaning
that
it
is
made
up
of
three
components.
The
first
is
the

subject

of
the
triple,
and
is
what
we
are
making
our
statement

about
.
In
all
of
these
examples
the
subject
is
'Albert'.

The
second
part
of
a
triple
is
the

property

of
the
subject
that
we
want
to
define.
In
the
examples
here,
the
properties
would
be
'was
born
on',
'was
born
in',
and
'has
a
picture
at'.
These
properties
are
typically
called

predicates

in
RDF.

The
final
part
of
a
triple
is
called
the

object
.
In
the
examples
here
the
three
objects
have
the
values
'March
14,
1879',
'the
German
Empire',
and
'http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg'.

Note

RDFa
supports
internationalized
characters
in
the
subject,
'predicate',
and
the
object.

3.3

IRI
References

Breaking
complex
information
into
manageable
units
helps
us
be
specific
about
our
data,
but
there
is
still
some
ambiguity.
For
example,
which
'Albert'
are
we
talking
about?
If
another
system
has
more
facts
about
'Albert',
how
could
we
know
whether
they
are
about
the
same
person,
and
so
add
them
to
the
list
of
things
we
know
about
that
person?
If
we
wanted
to
find
people
born
in
the
German
Empire,
how
could
we
know
that
the
predicate
'was
born
in'
has
the
same
purpose
as
the
predicate
'birthplace'
that
might
exist
in
some
other
system?
RDF
solves
this
problem
by
replacing
our
vague
terms
with

IRI
references
.

IRIs
are
most
commonly
used
to
identify
web
pages,
but
RDF
makes
use
of
them
as
a
way
to
provide
unique
identifiers
for
concepts.
For
example,
we
could
identify
the
subject
of
all
of
our
statements
(the
first
part
of
each
triple)
by
using
the
DBPedia
[

http://dbpedia.org

]
IRI
for
Albert
Einstein,
instead
of
the
ambiguous
string
'Albert':

 Example 15
<http://dbpedia.org/resource/Albert_Einstein>
 has the name
 Albert Einstein.
<http://dbpedia.org/resource/Albert_Einstein>
 was born on
 March 14, 1879.
<http://dbpedia.org/resource/Albert_Einstein>
 was born in
 the German Empire.
<http://dbpedia.org/resource/Albert_Einstein>
 has a picture at
http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg.

IRI
references
are
also
used
to
uniquely
identify
the
objects
in
metadata
statements
(the
third
part
of
each
triple).
The
picture
of
Einstein
is
already
an
IRI,
but
we
could
also
use
an
IRI
to
uniquely
identify
the
country
'German
Empire'.
At
the
same
time
we'll
indicate
that
the
name
and
date
of
birth
really
are
literals
(and
not
IRIs),
by
putting
quotes
around
them:

 Example 16
<http://dbpedia.org/resource/Albert_Einstein>
 has the name
 "Albert Einstein".
<http://dbpedia.org/resource/Albert_Einstein>
 was born on
 "March 14, 1879".
<http://dbpedia.org/resource/Albert_Einstein>
 was born in
 <http://dbpedia.org/resource/German_Empire>.
<http://dbpedia.org/resource/Albert_Einstein>
 has a picture at

<

http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg

>
.

IRI
references
are
also
used
to
ensure
that
predicates
are
unambiguous;
now
we
can
be
sure
that
'birthplace',
'place
of
birth',
'Lieu
de
naissance'
and
so
on,
all
mean
the
same
thing:

 Example 17
<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/name>
 "Albert Einstein".

<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/dateOfBirth>
 "March 14, 1879".

<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/birthPlace>
 <http://dbpedia.org/resource/German_Empire>.
<http://dbpedia.org/resource/Albert_Einstein>
 <http://xmlns.com/foaf/0.1/depiction>
<http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg>.

3.4

Plain
Literals

Although
IRI
resources
are
always
used
for
subjects
and
predicates,
the
object
part
of
a
triple
can
be
either
an
IRI
or
a

literal

.
In
the
example
triples,
Einstein's
name
is
represented
by
a

plain
literal

,
specifically
a
basic
string
with
no
type
or
language
information:

 Example 18
<http://dbpedia.org/resource/Albert_Einstein>
<http://xmlns.com/foaf/0.1/name>

"Albert
Einstein"

.

A
plain
literal
can
also
be
given
a
language
tag,
to
capture
plain
text
in
a
natural
language.
For
example,
Einstein's
birthplace
has
different
names
in
English
and
German:

 Example 19
<http://dbpedia.org/resource/German_Empire>
 rdfs:label "German Empire"@en;

rdfs:label
"Deutsches
Kaiserreich"@de

.

3.5

Typed
Literals

Some
literals,
such
as
dates
and
numbers,
have
very
specific
meanings,
so
RDF
provides
a
mechanism
for
indicating
the
type
of
a
literal.
A

typed
literal

is
indicated
by
attaching
an
IRI
to
the
end
of
a

plain
literal
,
and
this
IRI
indicates
the
literal's
datatype.
This
IRI
is
usually
based
on
datatypes
defined
in
the
XML
Schema
Datatypes
specification
[

XMLSCHEMA11-2

].
The
following
syntax
would
be
used
to
unambiguously
express
Einstein's
date
of
birth
as
a
literal
of
type

http://www.w3.org/2001/XMLSchema#date
:

 Example 20
<http://dbpedia.org/resource/Albert_Einstein>
 <http://dbpedia.org/property/dateOfBirth>
"1879-03-14"

^^<http://www.w3.org/2001/XMLSchema#date>
.

3.6

Turtle

RDF
itself
does
not
have
one
set
way
to
express
triples,
since
the
key
ideas
of
RDF
are
the
triple
and
the
use
of
IRIs,
and

not

any
particular
syntax.
However,
there
are
a
number
of
mechanisms
for
expressing
triples,
such
as
RDF/XML
[

RDF-SYNTAX-GRAMMAR

],
Turtle
[

TURTLE

],
and
of
course
RDFa.
Many
discussions
of
RDF
make
use
of
the

Turtle

syntax
to
explain
their
ideas,
since
it
is
quite
compact.
The
examples
we
have
just
seen
are
already
using
this
syntax,
and
we'll
continue
to
use
it
throughout
this
document
when
we
need
to
talk
about
the
RDF
that
could
be
generated
from
some
RDFa.
Turtle
allows
long
IRIs
to
be
abbreviated
by
using
an
IRI
mapping,
which
can
be
used
to
express
a
compact
IRI
expression
as
follows:

 Example 21
@prefix dbp: <http://dbpedia.org/property/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://dbpedia.org/resource/Albert_Einstein>
 foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein>

dbp:birthPlace

<http://dbpedia.org/resource/German_Empire>
.

Here
'dbp:'
has
been
mapped
to
the
IRI
for
DBPedia
and
'foaf:'
has
been
mapped
to
the
IRI
for
the
'Friend
of
a
Friend'
vocabulary.

Any
IRI
in
Turtle
could
be
abbreviated
in
this
way.
This
means
that
we
could
also
have
used
the
same
technique
to
abbreviate
the
identifier
for
Einstein,
as
well
as
the
datatype
indicator:

 Example 22
@prefix dbp: <http://dbpedia.org/property/> .
@prefix dbr: <http://dbpedia.org/resource/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
dbr:Albert_Einstein
 foaf:name "Albert Einstein";

 dbp:birthPlace dbr:German_Empire;
 dbp:dateOfBirth "1879-03-14"^^xsd:date;

 foaf:depiction <http://en.wikipedia.org/wiki/Image:Albert_Einstein_Head.jpg> .
dbr:German_Empire
 rdfs:label "German Empire"@en;

rdfs:label

"Deutsches
Kaiserreich"@de

.

When
writing
examples,
you
will
often
see
the
following
IRI
in
the
Turtle
representation:

Example
23

<>

This
indicates
the
'current
document',
i.e.,
the
document
being
processed.
In
the
end
there
will
always
be
a
full
IRI
based
on
the
document's
location,
but
this
abbreviation
serves
to
make
examples
more
compact.
Note
in
particular
that
the
whole
technique
of
abbreviation
is
merely
a
way
to
make
examples
more
compact,
and
the
actual
triples
generated
would
always
use
the
full
IRIs.

3.7

Graphs

A
collection
of
triples
is
called
a

graph
.
All
of
the
triples
that
are
defined
by
this
specification
are
contained
in
the

output
graph

by
an
RDFa
Processor.
For
more
information
on
graphs
and
other
RDF
concepts,
see
[

RDF-SYNTAX

].

3.8

Compact
URI
Expressions

In
order
to
allow
for
the
compact
expression
of
RDF
statements,
RDFa
allows
the
contraction
of
most

IRI
reference

s
into
a
form
called
a
'compact
URI
expression',
or

CURIE
.
A
detailed
discussion
of
this
mechanism
is
in
the
section

CURIE
and
IRI
Processing
.

Note
that
CURIEs
are
only
used
in
the
markup
and
Turtle
examples,
and
will
never
appear
in
the
generated

triple

s,
which
are
defined
by
RDF
to
use

IRI
reference

s.

3.9

Markup
Fragments
and
RDFa

A
growing
use
of
embedded
metadata
is
to
take
fragments
of
markup
and
move
them
from
one
document
to
another.
This
may
happen
through
the
use
of
tools,
such
as
drag-and-drop
in
a
browser,
or
through
snippets
of
code
provided
to
authors
for
inclusion
in
their
documents.
A
good
example
of
the
latter
is
the

licensing
fragment
provided
by
Creative
Commons
.

However,
those
involved
in
creating
fragments
(either
by
building
tools,
or
authoring
snippets),
should
be
aware
that
this
specification
does
not
say
how
fragments
are
processed.
Specifically,
the
processing
of
a
fragment
'outside'
of
a
complete
document
is
undefined
because
RDFa
processing
is
largely
about
context.
Future
versions
of
this
or
related
specifications
may
do
more
to
define
this
behavior.

Developers
of
tools
that
process
fragments,
or
authors
of
fragments
for
manual
inclusion,
should
also
bear
in
mind
what
will
happen
to
their
fragment
once
it
is
included
in
a
complete
document.
They
should
carefully
consider
the
amount
of
'context'
information
that
will
be
needed
in
order
to
ensure
a
correct
interpretation
of
their
fragment.

3.10

A
Description
of
RDFa
in
RDF
Terms

The
following
is
a
brief
description
of
RDFa
in
terms
of
the
RDF
terminology
introduced
here.
It
may
be
useful
to
readers
with
an
RDF
background:

An

RDF
graph

comprises

node

s
linked
by
relationships.
The
aim
of
RDFa
is
to
allow
a
single

RDF
graph

to
be
carried
in
various
types
of
document
markup.
The
basic
unit
of
an

RDF
graph

is
a

triple
,
in
which
a
subject

node

is
linked
to
an
object

node

via
a

predicate
.
The

subject

node

is
always
either
a

IRI
reference

or
a

blank
node
(or
bnode)
,
the

predicate

is

always

a

IRI
reference
,
and
the
object
of
a
statement
can
be
a

IRI
reference
,
a

literal
,
or
a

bnode
.

In
RDFa,
a
subject

IRI
reference

is
generally
indicated
using

@about

and
predicates
are
represented
using
one
of

@property
,

@rel
,
or

@rev
.
Objects
which
are

IRI
reference

s
are
represented
using

@resource
,

@src
,
or

@href
,
whilst
objects
that
are

literal

s
are
represented
either
with

@content

or
the
content
of
the
element
in
question
(with
an
optional
datatype
expressed
using

@datatype
,
and
an
optional
language
expressed
using
a
Host
Language-defined
mechanism
such
as

@xml:lang

).

4.

Conformance

As
well
as
sections
marked
as
non-normative,
all
authoring
guidelines,
diagrams,
examples,
and
notes
in
this
specification
are
non-normative.
Everything
else
in
this
specification
is
normative.

The
key
words

MUST
,

MUST
NOT
,

REQUIRED
,

SHOULD
,

SHOULD
NOT
,

RECOMMENDED
,

MAY
,
and

OPTIONAL

in
this
specification
are
to
be
interpreted
as
described
in
[

RFC2119

].

4.1

RDFa
Processor
Conformance

This
specification
uses
the
term

output
graph

to
mean
all
of
the
triples
asserted
by
a
document
according
to
the

Processing
Model

section.
A
conforming
RDFa
Processor

MUST

make
available
to
a
consuming
application
a
single

RDF
graph

containing
all
possible
triples
generated
by
using
the
rules
in
the

Processing
Model

section.
The
term

processor
graph

is
used
to
denote
the
collection
of
all
informational,
warning,
and
error
triples
that

MAY

be
generated
by
the
RDFa
Processor
to

report
its
status
.
The

output
graph

and
the

processor
graph

are
separate
graphs
and

MUST
NOT

be
stored
in
the
same
graph
by
the
RDFa
Processor.

A
conforming
RDFa
Processor

MAY

make
available
additional
triples
that
have
been
generated
using
rules
not
described
here,
but
these
triples

MUST
NOT

be
made
available
in
the

output
graph
.
(Whether
these
additional
triples
are
made
available
in
one
or
more
additional

RDF
graph

s
is
implementation-specific,
and
therefore
not
defined
here.)

A
conforming
RDFa
Processor

MUST

preserve
white
space
in
both

plain
literal

s
and

XML
literals
.
However,
it
may
be
the
case
that
the
architecture
in
which
a
processor
operates
has
made
changes
to
the
white
space
in
a
document
before
that
document
ever
reaches
the
RDFa
Processor
(e.g.,
[

XMLSCHEMA11-1

]
processors
are
permitted
to
'normalize'
white
space
in
attribute
values
-
see
section
3.1.4).
To
ensure
maximum
consistency
between
processing
environments,
authors

SHOULD

remove
any
unnecessary
white
space
in
their
plain
and
XML
Literal
content.

A
conforming
RDFa
Processor

MUST

examine
the
media
type
of
a
document
it
is
processing
to
determine
the
document's
Host
Language.
If
the
RDFa
Processor
is
unable
to
determine
the
media
type,
or
does
not
support
the
media
type,
the
RDFa
Processor

MUST

process
the
document
as
if
it
were
media
type

application/xml
.
See

XML+RDFa
Document
Conformance
.
A
Host
Language

MAY

specify
additional
announcement
mechanisms.

Note

A
conforming
RDFa
Processor

MAY

use
additional
mechanisms
(e.g.,
the
DOCTYPE,
a
file
extension,
the
root
element,
an
overriding
user-defined
parameter)
to
attempt
to
determine
the
Host
Language
if
the
media
type
is
unavailable.
These
mechanisms
are
unspecified.

4.2

RDFa
Host
Language
Conformance

Host
Languages
that
incorporate
RDFa
must
adhere
to
the
following:

		
All
of
the
facilities
required
in
this
specification

MUST

be
included
in
the
Host
Language.

		
The
required
attributes
defined
in
this
specification

MUST

be
included
in
the
content
model
of
the
Host
Language.

Note

For
the
avoidance
of
doubt,
there
is
no
requirement
that
attributes
such
as

@href

and

@src

are
used
in
a
conforming
Host
Language.
Nor
is
there
any
requirement
that
all
required
attributes
are
incorporated
into
the
content
model
of
all
elements.
The
working
group
recommends
that
Host
Language
designers
ensure
that
the
required
attributes
are
incorporated
into
the
content
model
of
elements
that
are
commonly
used
throughout
the
content
model
of
the
Host
Language.

		
If
the
Host
Language
uses
XML
Namespaces
[

XML-NAMES

],
the
attributes
in
this
specification

SHOULD

be
defined
in
'no
namespace'
(e.g.,
when
the
attributes
are
used
on
elements
in
the
Host
Language's
namespace,
they
can
be
used
with
no
qualifying
prefix:

<myml:myElement
property="license">

).
When
a
Host
Language
does
not
use
the
attributes
in
'no
namespace',
they

MUST

be
referenced
via
the
XHTML
Namespace
(

http://www.w3.org/1999/xhtml

).

		
If
the
Host
Language
has
its
own
definition
for
any
attribute
defined
in
this
specification,
that
definition

MUST

be
such
that
the
processing
required
by
this
specification
remains
possible
when
the
attribute
is
used
in
a
way
consistent
with
the
requirements
herein.

		
The
Host
Language

MAY

specify
an

initial
context

(e.g.,
IRI
mappings
and/or
a
definition
of
terms
or
a
default
vocabulary
IRI).
Such
an

initial
context

SHOULD

be
defined
using
the
conventions
defined
in

RDFa
Initial
Contexts
.

4.3

XML+RDFa
Document
Conformance

This
specification
does
not
define
a
stand-alone
document
type.
The
attributes
herein
are
intended
to
be
integrated
into
other
host
languages
(e.g.,
HTML+RDFa
or
XHTML+RDFa).
However,
this
specification

does

define
processing
rules
for
generic
XML
documents
-
that
is,
those
documents
delivered
as
media
types

text/xml

or

application/xml
.
Such
documents
must
meet
all
of
the
following
criteria:

		
The
document

MUST

be
well-formed
as
defined
in
[

XML10-4e

].

		
The
document

SHOULD

use
the
attributes
defined
in
this
specification
in
'no
namespace'
(e.g.,
when
the
attributes
are
used
on
elements
they
are
used
with
no
qualifying
prefix:

<myml:myElement
property="license">

).

Note

It
is
possible
that
an
XML
grammar
will
have
native
attributes
that
conflict
with
attributes
in
this
specification.
This
could
result
in
an
RDFa
processor
generating
unexpected
triples.

When
an
RDFa
Processor
processes
an
XML+RDFa
document,
it
does
so
via
the
following

initial
context
:

		
There
are
default
terms
(e.g.,

describedby
,

license
,
and

role

),
defined
in

http://www.w3.org/2011/rdfa-context/rdfa-1.1

.

		
There
are
default
prefix
mappings
(e.g.,

dc

),
defined
in

http://www.w3.org/2011/rdfa-context/rdfa-1.1

.

		
There
is
no
default
vocabulary
IRI.

		
The

base

can
be
set
using
the

@xml:base

attribute
as
defined
in
[

XML10-4e

].

		
The

current
language

can
be
set
using

@xml:lang

attribute.

5.

Attributes
and
Syntax

This
specification
defines
a
number
of
attributes
and
the
way
in
which
the
values
of
those
attributes
are
to
be
interpreted
when
generating
RDF
triples.
This
section
defines
the
attributes
and
the
syntax
of
their
values.

		

about

		
a

SafeCURIEorCURIEorIRI
,
used
for
stating
what
the
data
is
about
(a
'subject'
in
RDF
terminology);

		

content

		
a

CDATA

string,
for
supplying
machine-readable
content
for
a
literal
(a
'literal
object',
in
RDF
terminology);

		

datatype

		
a

TERMorCURIEorAbsIRI

representing
a
datatype,
to
express
the
datatype
of
a
literal;

		

href

(optional)

		
a
traditionally
navigable

IRI

for
expressing
the
partner
resource
of
a
relationship
(a
'resource
object',
in
RDF
terminology);

		

inlist

		
An
attribute
used
to
indicate
that
the
object
associated
with
a

rel

or

property

attribute
on
the
same
element
is
to
be
added
to
the
list
for
that
predicate.
The
value
of
this
attribute

MUST

be
ignored.
Presence
of
this
attribute
causes
a
list
to
be
created
if
it
does
not
already
exist.

		

prefix

		
a
white
space
separated
list
of
prefix-name
IRI
pairs
of
the
form

NCName

':'
'
'+
xsd:anyURI

		

property

		
a
white
space
separated
list
of

TERMorCURIEorAbsIRIs
,
used
for
expressing
relationships
between
a
subject
and
either
a
resource
object
if
given
or
some
literal
text
(also
a
'predicate');

		

rel

		
a
white
space
separated
list
of

TERMorCURIEorAbsIRIs
,
used
for
expressing
relationships
between
two
resources
('predicates'
in
RDF
terminology);

		

resource

		
a

SafeCURIEorCURIEorIRI

for
expressing
the
partner
resource
of
a
relationship
that
is
not
intended
to
be
navigable
(e.g.,
a
'clickable'
link)
(also
an
'object');

		

rev

		
a
white
space
separated
list
of

TERMorCURIEorAbsIRIs
,
used
for
expressing
reverse
relationships
between
two
resources
(also
'predicates');

		

src

(optional)

		
an

IRI

for
expressing
the
partner
resource
of
a
relationship
when
the
resource
is
embedded
(also
a
'resource
object');

		

typeof

		
a
white
space
separated
list
of

TERMorCURIEorAbsIRIs

that
indicate
the
RDF
type(s)
to
associate
with
a
subject;

		

vocab

		
an

IRI

that
defines
the
mapping
to
use
when
a

TERM

is
referenced
in
an
attribute
value.
See

General
Use
of
Terms
in
Attributes

and
the

section
on
Vocabulary
Expansion
.

Note

In
all
cases
it
is
possible
for
these
attributes
to
be
used
with
no
value
(e.g.,

@datatype

="")

or
with
a
value
that
evaluates
to
no
value
after
evaluation
using
the
rules
for

CURIE
and
IRI
Processing

(e.g.,

@datatype

="[noprefix:foobar]").

5.1

Roles
of
attributes

The
RDFa
attributes
play
different
roles
in
a
semantically
rich
document.
Briefly,
those
roles
are:

		
Syntax
attributes:

@prefix
,

@vocab
.

		
Subject
attributes:

@about
.

		
Predicate
attributes:

@property
,

@rel
,

@rev
.

		
Resource
attributes:

@resource
,

@href
,

@src
.

		
Literal
attributes:

@datatype
,

@content
,

@xml:lang

or

@lang
.

		
Macro
attributes:

@typeof
,

@inlist
.

5.2

White
space
within
attribute
values

Many
attributes
accept
a
white
space
separated
list
of
tokens.
This
specification
defines
white
space
as:

 whitespace ::= (#x20 | #x9 | #xD | #xA)+

When
attributes
accept
a
white
space
separated
list
of
tokens,
an
RDFa
Processor

MUST

ignore
any
leading
or
trailing
white
space.

Note

This
definition
is
consistent
with
the
definition
found
in
[

XML10

].

6.

CURIE
Syntax
Definition

Note

The
working
group
is
currently
examining
the
productions
for
CURIE
below
in
light
of
recent
comments
received
from
the
RDF
Working
Group
and
members
of
the
RDF
Web
Applications
Working
Group.
It
is
possible
that
there
will
be
minor
changes
to
the
production
rules
below
in
the
near
future,
and
that
these
changes
will
be
backward

incompatible
.
However,
any
such
incompatibility
will
be
limited
to
edge
cases.

The
key
component
of
RDF
is
the
IRI,
but
these
are
usually
long
and
unwieldy.
RDFa
therefore
supports
a
mechanism
by
which
IRIs
can
be
abbreviated,
called
'compact
URI
expressions'
or
simply,

CURIEs
.

When
expanded,
the
resulting
IRI

MUST

be
a
syntactically
valid
IRI
[

RFC3987

].
For
a
more
detailed
explanation
see

CURIE
and
IRI
Processing
.
The

lexical
space

of
a
CURIE
is
as
defined
in

curie

below.
The

value
space

is
the
set
of
IRIs.

A
CURIE
is
comprised
of
two
components,
a

prefix

and
a

reference

.
The
prefix
is
separated
from
the
reference
by
a
colon
(
:

).
In
general
use
it
is
possible
to
omit
the
prefix,
and
so
create
a
CURIE
that
makes
use
of
the
'default
prefix'
mapping;
in
RDFa
the
'default
prefix'
mapping
is

http://www.w3.org/1999/xhtml/vocab#
.
It's
also
possible
to
omit
both
the
prefix

and

the
colon,
and
so
create
a
CURIE
that
contains
just
a
reference
which
makes
use
of
the
'no
prefix'
mapping.
This
specification
does
not
define
a
'no
prefix'
mapping.
RDFa
Host
Languages

MUST
NOT

define
a
'no
prefix'
mapping.

Note

The
RDFa
'default
prefix'
should
not
be
confused
with
the
'default
namespace'
as
defined
in
[

XML-NAMES

].
An
RDFa
Processor

MUST
NOT

treat
an
XML-NAMES
'default
namespace'
declaration
as
if
it
were
setting
the
'default
prefix'.

The
general
syntax
of
a
CURIE
can
be
summarized
as
follows:

 prefix ::= NCName
reference ::= (ipath-absolute / ipath-rootless / ipath-empty)
 ["?" iquery] ["#" ifragment] (as defined in [[!RFC3987]])

curie ::= [[prefix] ':'] reference
safe_curie ::= '[' [[prefix] ':'] reference ']'

Note

The
production

safe_curie

is
not
required,
even
in
situations
where
an
attribute
value
is
permitted
to
be
a
CURIE
or
an
IRI:
An
IRI
that
uses
a
scheme
that
is
not
an
in-scope
mapping

cannot

be
confused
with
a
CURIE.
The
concept
of
a
safe_curie
is
retained
for
backward
compatibility.

Note

It
is
possible
to
define
a
CURIE
prefix
mapping
in
such
a
way
that
it
would
overshadow
a
defined
IRI
scheme.
For
example,
a
document
could
map
the
prefix
'mailto'
to
'http://www.example.com/addresses/'.
Then
a

@resource

that
contained
'mailto:user@example.com'
might
create
a
triple
with
the
object
'http://www.example.com/addresses/user@example.com'.
Moreover,
it
is
possible
though
unlikely,
that
schemes
will
be
introduced
in
the
future
that
will
conflict
with
prefix
mappings
defined
in
a
document
(e.g.,
the
newly
proposed
'widget'
scheme
[

WIDGETS-URI

]).
In
neither
case
would
this
RDFa
overshadowing
of
the
underlying
scheme
alter
the
way
other
consumers
of
the
IRI
treat
that
IRI.
It
could,
however,
mean
that
the
document
author's
intended
use
of
the
CURIE
is
mis-interpreted
by
another
consumer
as
an
IRI.
The
working
group
considers
this
risk
to
be
minimal.

In
normal
evaluation
of
CURIEs
the
following
context
information
would
need
to
be
provided:

		
a
set
of
mappings
from
prefixes
to
IRIs;

		
a
mapping
to
use
with
the
default
prefix
(for
example,
:p

);

		
a
mapping
to
use
when
there
is
no
prefix
(for
example,

p

);

		
a
mapping
to
use
with
the
'_'
prefix,
which
is
used
to
generate
unique
identifiers
(for
example,

_:p

).

In
RDFa
these
values
are
defined
as
follows:

		
the

set
of
mappings
from
prefixes
to
IRIs

is
provided
by
the
current
in-scope
prefix
declarations
of
the

current
element

during
parsing;

		
the

mapping
to
use
with
the
default
prefix

is
the
current
default
prefix
mapping;

		
the

mapping
to
use
when
there
is
no
prefix

is
not
defined;

		
the

mapping
to
use
with
the
'_'
prefix
,
is
not
explicitly
stated,
but
since
it
is
used
to
generate

bnode

s,
its
implementation
needs
to
be
compatible
with
the
RDF
definition
and
rules
in

Referencing
Blank
Nodes
.
A
document

SHOULD
NOT

define
a
mapping
for
the
'_'
prefix.
A
Conforming
RDFa
Processor

MUST

ignore
any
definition
of
a
mapping
for
the
'_'
prefix.

A
CURIE
is
a
representation
of
a
full
IRI.
The
rules
for
determining
that
IRI
are:

		
If
a
CURIE
consists
of
an
empty

prefix

and
a

reference
,
the
IRI
is
obtained
by
taking
the
current
default
prefix
mapping
and
concatenating
it
with
the

reference
.
If
there
is
no
current
default
prefix
mapping,
then
this
is
not
a
valid
CURIE
and

MUST

be
ignored.

		
Otherwise,
if
a
CURIE
consists
of
a
non-empty

prefix

and
a

reference
,
and
if
there
is
an
in-scope
mapping
for

prefix

(when
compared
case-insensitively),
then
the
IRI
is
created
by
using
that
mapping,
and
concatenating
it
with
the

reference
.

		
Finally,
if
there
is
no
in-scope
mapping
for

prefix
,
then
the
value
is
not
a
CURIE.

Note

See

General
Use
of
Terms
in
Attributes

for
the
way
items
with
no
colon
can
be
interpreted
in
some
datatypes
by
RDFa
Processors.

6.1

Why
CURIEs
and
not
QNames?

This
section
is
non-normative.

In
many
cases,
language
designers
have
attempted
to
use
QNames
for
an
extension
mechanism
[

XMLSCHEMA11-2

].
QNames
do
permit
independent
management
of
the
name
collection,
and

can

map
the
names
to
a
resource.
Unfortunately,
QNames
are
unsuitable
in
most
cases
because
1)
the
use
of
QName
as
identifiers
in
attribute
values
and
element
content
is
problematic
as
discussed
in
[

QNAMES

]
and
2)
the
syntax
of
QNames
is
overly
restrictive
and
does
not
allow
all
possible
IRIs
to
be
expressed.

A
specific
example
of
the
problem
this
causes
comes
from
attempting
to
define
the
name
collection
for
books.
In
a
QName,
the
part
after
the
colon
must
be
a
valid
element
name,
making
an
example
such
as
the
following

invalid
:

isbn:0321154991

This
is
not
a
valid
QName
simply
because
"0321154991"

is
not
a
valid
element
name.
Yet,
in
the
example
given,
we
don't
really
want
to
define
a
valid
element
name
anyway.
The
whole
reason
for
using
a
QName
was
to
reference
an
item
in
a
private
scope
-
that
of
ISBNs.
Moreover,
in
this
example,
we
want
the
names
within
that
scope
to
map
to
an
IRI
that
will
reveal
the
meaning
of
that
ISBN.
As
you
can
see,
the
definition
of
QNames
and
this
(relatively
common)
use
case
are
in
conflict
with
one
another.

This
specification
addresses
the
problem
by
defining
CURIEs.
Syntactically,
CURIEs
are
a
superset
of
QNames.

Note
that
this
specification
is
targeted
at
language
designers,
not
document
authors.
Any
language
designer
considering
the
use
of
QNames
as
a
way
to
represent
IRIs
or
unique
tokens
should
consider
instead
using
CURIEs:

		
CURIEs
are
designed
from
the
ground
up
to
be
used
in
attribute
values.
QNames
are
designed
for
unambiguously
naming
elements
and
attributes.

		
CURIEs
expand
to
IRIs,
and
any
IRI
can
be
represented
by
such
an
expansion.
QNames
are
treated
as
value
pairs,
but
even
if
those
pairs
are
combined
into
a
string,
only
a
subset
of
IRIs
can
be
represented.

		
CURIEs
can
be
used
in
non-XML
grammars,
and
can
even
be
used
in
XML
languages
that
do
not
support
XML
Namespaces.
QNames
are
limited
to
XML
Namespace-aware
XML
Applications.

7.

Processing
Model

This
section
looks
at
a
generic
set
of
processing
rules
for
creating
a
set
of
triples
that
represent
the
structured
data
present
in
an
RDFa
document.
Processing
need
not
follow
the
DOM
traversal
technique
outlined
here,
although
the
effect
of
following
some
other
manner
of
processing
must
be
the
same
as
if
the
processing
outlined
here
were
followed.
The
processing
model
is
explained
using
the
idea
of
DOM
traversal
which
makes
it
easier
to
describe
(particularly
in
relation
to
the

evaluation
context

).

Note
that
in
this
section,
explanations
about
the
processing
model
or
guidance
to
implementors
are
enclosed
in
sections
like
this.

7.1

Overview

Evaluating
a
document
for
RDFa
triples
is
carried
out
by
starting
at
the
document
object,
and
then
visiting
each
of
its
child
elements
in
turn,
in
document
order,
applying
processing
rules.
Processing
is
recursive
in
that
for
each
child
element
the
processor
also
visits
each
of

its

child
elements,
and
applies
the
same
processing
rules.

Note

In
some
environments
there
will
be
little
difference
between
starting
at
the
root
element
of
the
document,
and
starting
at
the
document
object
itself.
It
is
defined
this
way
because
in
some
environments
important
information
is
present
at
the
document
object
level
which
is
not
present
on
the
root
element.

As
processing
continues,
rules
are
applied
which
may
generate
triples,
and
may
also
change
the

evaluation
context

information
that
will
then
be
used
when
processing
descendant
elements.

Note

This
specification
does
not
say
anything
about
what
should
happen
to
the
triples
generated,
or
whether
more
triples
might
be
generated
during
processing
than
are
outlined
here.
However,
to
be
conforming,
an
RDFa
Processor

MUST

act
as
if
at
a
minimum
the
rules
in
this
section
are
applied,
and
a
single

RDF
graph

produced.
As
described
in
the

RDFa
Processor
Conformance

section,
any
additional
triples
generated

MUST
NOT

appear
in
the

output
graph
.
They

MAY

be
included
in
the

processor
graph
.

7.2

Evaluation
Context

During
processing,
each
rule
is
applied
using
information
provided
by
an

evaluation
context
.
An

initial
context

is
created
when
processing
begins.
That
context
has
the
following
members:

		
The

base
.
This
will
usually
be
the
IRI
of
the
document
being
processed,
but
it
could
be
some
other
IRI,
set
by
some
other
mechanism,
such
as
the
(X)HTML

base

element.
The
important
thing
is
that
it
establishes
an
IRI
against
which
relative
paths
can
be
resolved.

		
The

parent
subject
.
The
initial
value
will
be
the
same
as
the
initial
value
of

base
,
but
it
will
usually
change
during
the
course
of
processing.

		
The

parent
object
.
In
some
situations
the
object
of
a
statement
becomes
the
subject
of
any
nested
statements,
and
this
member
is
used
to
convey
this
value.
Note
that
this
value
may
be
a

bnode
,
since
in
some
situations
a
number
of
nested
statements
are
grouped
together
on
one

bnode
.
This
means
that
the

bnode

must
be
set
in
the
containing
statement
and
passed
down.

		
A
list
of
current,
in-scope

IRI
mappings
.

		
A
list
of

incomplete
triple

s.
A
triple
can
be
incomplete
when
no
object
resource
is
provided
alongside
a
predicate
that
requires
a
resource
(i.e.,

@rel

or

@rev

).
The
triples
can
be
completed
when
a
resource
becomes
available,
which
will
be
when
the
next
subject
is
specified
(part
of
the
process
called

chaining

).

		
A

list
mapping

that
associates
IRIs
with
lists.

		
The

language
.
Note
that
there
is
no
default
language.

		
The

term
mappings
,
a
list
of
terms
and
their
associated
IRIs.
This
specification
does
not
define
an
initial
list.
Host
Languages

MAY

define
an
initial
list.

		
The

default
vocabulary
,
a
value
to
use
as
the
prefix
IRI
when
a

term

unknown
to
the
RDFa
Processor
is
used.
This
specification
does
not
define
an
initial
setting
for
the
default
vocabulary.
Host
Languages

MAY

define
an
initial
setting.

During
the
course
of
processing,
new

evaluation
context

s
are
created
which
are
passed
to
each
child
element.
The
initial
rules
described
below
will
determine
the
values
of
the
items
in
the
context.
Then
the
core
rules
will
cause
new
triples
to
be
created
by
combining
information
provided
by
an
element
with
information
from
the

evaluation
context
.

During
the
course
of
processing
a
number
of
locally
scoped
values
are
needed,
as
follows:

		
An
initially
empty
list
of

IRI
mapping

s,
called
the

local
list
of
IRI
mappings
.

		
An
initially
empty

list
of
incomplete
triples
,
called
the

local
list
of
incomplete
triples
.

		
An
initially
empty

language

value.

		
A

skip
element

flag,
which
indicates
whether
the

current
element

can
safely
be
ignored
since
it
has
no
relevant
RDFa
attributes.
Note
that
descendant
elements
will
still
be
processed.

		
A

new
subject

value,
which
once
calculated
will
set
the

parent
subject

in
an

evaluation
context
,
as
well
as
being
used
to
complete
any

incomplete
triple

s,
as
described
in
the
next
section.

		
A
value
for
the

current
property
value
,
the
literal
to
use
when
creating
triples
that
have
a
literal
object,
or
IRI-s
in
the
absence
of

@rel

or

@rev
.

		
A
value
for
the

current
object
resource
,
the
resource
to
use
when
creating
triples
that
have
a
resource
object.

		
A
value
for
the

typed
resource
,
the
source
for
creating

rdf:type

relationships
to
types
specified
in

@typeof
.

		
The

local
term
mappings
,
a
list
of
terms
and
their
associated
IRIs.

		
The

local
list
mapping
,
mapping
IRIs
to
lists

		
A

local
default
vocabulary
,
an
IRI
to
use
as
a
prefix
mapping
when
a

term

is
used.

7.3

Chaining

Statement

chaining

is
an
RDFa
feature
that
allows
the
author
to
link
RDF
statements
together
while
avoiding
unnecessary
repetitive
markup.
For
example,
if
an
author
were
to
add
statements
as
children
of
an
object
that
was
a
resource,
these
statements
should
be
interpreted
as
being
about
that
resource:

 Example 24
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire

 </div>
</div>

In
this
example
we
can
see
that
an
object
resource
('German_Empire'),
has
become
the
subject
for
nested
statements.
This
markup
also
illustrates
the
basic
chaining
pattern
of
'A
has
a
B
has
a
C'
(i.e.,
Einstein
has
a
birth
place
of
the
German
Empire,
which
has
a
long
name
of
'the
German
Empire').

It's
also
possible
for
the
subject
of
nested
statements
to
provide
the
object
for

containing

statements
—
essentially
the
reverse
of
the
example
we
have
just
seen.
To
illustrate,
we'll
take
an
example
of
the
type
of
chaining
just
described,
and
show
how
it
could
be
marked
up
more
efficiently.
To
start,
we
mark
up
the
fact
that
Albert
Einstein
had,
at
some
point
in
his
life,
a
residence
both
in
the
German
Empire
and
in
Switzerland:

 Example 25
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp-owl:residence" resource="http://dbpedia.org/resource/German_Empire"></div>
 <div rel="dbp-owl:residence" resource="http://dbpedia.org/resource/Switzerland"></div>
</div>

Now,
we
show
the
same
information,
but
this
time
we
create
an

incomplete
triple

from
the
residence
part,
and
then
use
any
number
of
further
subjects
to
'complete'
that
triple,
as
follows:

 Example 26
<div about="http://dbpedia.org/resource/Albert_Einstein" rel="dbp-owl:residence">

</div>

In
this
example,
the

incomplete
triple

actually
gets
completed
twice,
once
for
the
German
Empire
and
once
for
Switzerland,
giving
exactly
the
same
information
as
we
had
in
the
earlier
example:

 Example 27
<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
<http://dbpedia.org/resource/Albert_Einstein>
dbp-owl:residence
<http://dbpedia.org/resource/Switzerland>
.

Chaining
can
sometimes
involve
elements
containing
relatively
minimal
markup,
for
example
showing
only
one
resource,
or
only
one
predicate.
Here
the

img

element
is
used
to
carry
a
picture
of
Einstein:

 Example 28
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="foaf:depiction">

 </div>
</div>

When
such
minimal
markup
is
used,
any
of
the
resource-related
attributes
could
act
as
a
subject
or
an
object
in
the
chaining:

 Example 29
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp-owl:residence">

 </div>
</div>

Note
that,
as
noted
above,
in
many
situations
the

@property

and

@rel

are
interchangeable.
This
is

not

true
for
chaining.
Taking
the
first
example,
if
that
example
was
used
as
follows:

 Example 30
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div property="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire

 </div>
</div>

The
subject
for
'the
German
Empire'
would
remain
Albert
Einstein
(and
that
would,
of
course,
be
an
error).
This
is
the
main
difference
between

@property

and

@rel
:
the
latter
induces
chaining,
whereas
the
former,
usually,
does
not.

7.4

CURIE
and
IRI
Processing

Since
RDFa
is
ultimately
a
means
for
transporting
RDF,
a
key
concept
is
the

resource

and
its
manifestation
as
an
IRI.
RDF
deals
with
complete
IRIs
(not
relative
paths);
when
converting
RDFa
to
triples,
any
relative
IRIs

MUST

be
resolved
relative
to
the
base
IRI,
using
the
algorithm
defined
in
section
6.5
of
RFC
3987
[

RFC3987

],

Reference
Resolution
.
The
values
of

RDFa
attributes

that
refer
to
IRIs
use
three
different
datatypes:

IRI
,

SafeCURIEorCURIEorIRI
,
or

TERMorCURIEorAbsIRI
.
All
these
attributes
are
mapped,
after
processing,
to
IRIs.
The
handling
of
these
attributes
is
as
follows:

		
IRI

		
The
content
is
an
IRI,
and
is
used
as
such.

		
SafeCURIEorCURIEorIRI

		

		
When
the
value
is
surrounded
by
square
brackets,
then
the
content
within
the
brackets
is
evaluated
as
a
CURIE
according
to
the

CURIE
Syntax
Definition
.
If
it
is
not
a
valid
CURIE,
the
value

MUST

be
ignored.

		
Otherwise,
the
value
is
evaluated
as
a
CURIE.
If
it
is
a
valid
CURIE,
the
resulting
IRI
is
used;
otherwise,
the
value
is
processed
as
an
IRI.

Note

A
consequence
of
this
is
that
when
the
value
of
an
attribute
of
this
datatype
is
the
empty
string
(e.g.,

@about

=""),

that
value
resolves
to
an
IRI.
An
IRI
of
""

is
a
relative
IRI
that
is
interpreted
as
being
the
same
as
the

base
.
In
other
words,
a
value
of
""

will
usually
resolve
to
the
IRI
of
the
current
document.

Note

A
related
consequence
of
this
is
that
when
the
value
of
an
attribute
of
this
datatype
is
an
empty
SafeCURIE
(e.g.,

@about

="[]"),

that
value
does
not
result
in
an
IRI
and
therefore
the
value
is
ignored.

		
TERMorCURIEorAbsIRI

		

		
If
the
value
is
a

term

then
it
is
evaluated
as
a
term
according
to

General
Use
of
Terms
in
Attributes
.
Note
that
this
step
may
mean
that
the
value
is
to
be
ignored.

		
If
the
value
is
a
valid
CURIE,
then
the
resulting
IRI
is
used.

		
If
the
value
is
an
absolute
IRI,
that
value
is
used.

		
Otherwise,
the
value
is
ignored.

Note
that
it
is
possible
for
all
values
in
an
attribute
to
be
ignored.
When
that
happens,
the
attribute

MUST

be
treated
as
if
it
were
empty.

For
example,
the
full
IRI
for
Albert
Einstein
on
DBPedia
is:

Example
31

http://dbpedia.org/resource/Albert_Einstein

This
can
be
shortened
by
authors
to
make
the
information
easier
to
manage,
using
a
CURIE.
The
first
step
is
for
the
author
to
create
a
prefix
mapping
that
links
a
prefix
to
some
leading
segment
of
the
IRI.
In
RDFa
these
mappings
are
expressed
using

@prefix
:

 Example 32
<div prefix="db: http://dbpedia.org/">
 ...
</div>

Once
the
prefix
has
been
established,
an
author
can
then
use
it
to
shorten
an
IRI
as
follows:

 Example 33
<div prefix="db: http://dbpedia.org/">
 <div about="db:resource/Albert_Einstein">

 ...
 </div>
</div>

The
author
is
free
to
split
the
IRI
at
any
point.
However,
since
a
common
use
of
CURIEs
is
to
make
available
libraries
of
terms
and
values,
the
prefix
will
usually
be
mapped
to
some
common
segment
that
provides
the
most
re-use,
often
provided
by
those
who
manage
the
library
of
terms.
For
example,
since
DBPedia
contains
an
enormous
list
of
resources,
it
is
more
efficient
to
create
a
prefix
mapping
that
uses
the
base
location
of
the
resources:

 Example 34
<div prefix="dbr: http://dbpedia.org/resource/">
 <div about="dbr:Albert_Einstein">

 ...
 </div>
 <div about="dbr:Baruch_Spinoza">

 ...
 </div>
</div>

Note
that
it
is
generally
considered
a
bad
idea
to
use
relative
paths
in
prefix
declarations.
Since
it
is
possible
that
an
author
may
ignore
this
guidance,
it
is
further
possible
that
the
IRI
obtained
from
a
CURIE
is
relative.
However,
since
all
IRIs
must
be
resolved
relative
to

base

before
being
used
to
create
triples,
the
use
of
relative
paths
should
not
have
any
effect
on
processing.

7.4.1

Scoping
of
Prefix
Mappings

CURIE
prefix
mappings
are
defined
on
the
current
element
and
its
descendants.
The
inner-most
mapping
for
a
given
prefix
takes
precedence.
For
example,
the
IRIs
expressed
by
the
following
two
CURIEs
are
different,
despite
the
common
prefix,
because
the
prefix
mappings
are
locally
scoped:

 Example 35
<div prefix="dbr: http://dbpedia.org/resource/">
 <div about="dbr:Albert_Einstein">

 ...
 </div>
</div>
<div prefix="dbr: http://someotherdb.org/resource/">
 <div about="dbr:Albert_Einstein">

 ...
 </div>
</div>

Note

In
general
it
is
a
bad
practice
to
redefine
prefix
mappings
within
a
document.
In
particular,
while
it
is
permitted,
mapping
a
prefix
to
different
values
at
different
places
within
a
document
could
lead
to
confusion.
The
working
group
recommends
that
document
authors
use
the
same
prefix
to
map
to
the
same
vocabulary
throughout
a
document.
Many
vocabularies
have
recommended
prefix
names.
The
working
group
recommends
that
these
names
are
used
whenever
possible.

7.4.2

General
Use
of
CURIEs
in
Attributes

There
are
a
number
of
ways
that
attributes
make
use
of
CURIEs,
and
they
need
to
be
dealt
with
differently.
These
are:

		
An
attribute
may
allow
one
or
more
values
that
are
a
mixture
of
TERMs,
CURIEs,
and
absolute
IRIs.

		
An
attribute
may
allow
one
or
more
values
that
are
a
mixture
of
CURIEs
and
IRIs.
In
this
case
any
value
that
is
not
a
CURIE,
as
outlined
in
section

CURIE
Syntax
Definition
,
will
be
processed
as
an
IRI.

		
If
the
value

is

surrounded
by
square
brackets,
then
the
content
within
the
brackets
is
always
evaluated
according
to
the
rules
in

CURIE
Syntax
Definition

-
and
if
that
content
is
not
a
CURIE,
then
the
content

MUST

be
ignored.

Note

An
empty
attribute
value
(e.g.,

typeof=''

)
is

still

a
CURIE,
and
is
processed
as
such.
The
rules
for
this
processing
are
defined
in

Sequence
.
Specifically,
however,
an
empty
attribute
value
is

never

treated
as
a
relative
IRI
by
this
specification.

An
example
of
an
attribute
that
can
contain
a
CURIEorIRI
is

@about
.
To
express
an
IRI
directly,
an
author
might
do
this:

 Example 36
<div about="http://dbpedia.org/resource/Albert_Einstein">
 ...
</div>

whilst
to
express
the
IRI
above
as
a
CURIE
an
author
would
do
this:

 Example 37
<div about="dbr:Albert_Einstein">
 ...
</div>

The
author
could
also
use
a
safe
CURIE,
as
follows:

 Example 38
<div about="[dbr:Albert_Einstein]">
 ...
</div>

Since
non-CURIE
values

MUST

be
ignored,
the
following
value
in

@about

would

not

set
a
new
subject,
since

@about

does
not
permit
the
use
of

TERM

s,
and
the
CURIE
has
no
prefix
separator.

 Example 39
<div about="[Albert_Einstein]">
 ...
</div>

However,
this
markup

would

set
a
subject,
since
it
is
not
a
CURIE,
but
a
valid
relative
IRI:

 Example 40
<div about="Albert_Einstein">
 ...
</div>

Note
that
several
RDFa
attributes
are
able
to
also
take

TERMS

as
their
value.
This
is
discussed
in
the
next
section.

7.4.3

General
Use
of
Terms
in
Attributes

Some
RDFa
attributes
have
a
datatype
that
permits
a

term

to
be
referenced.
RDFa
defines
the
syntax
of
a
term
as:

 term ::= NCNameStartChar termChar*
termChar ::= (NameChar - ':') | '/'

Note

For
the
avoidance
of
doubt,
this
production
means
a
'term'
in
RDFa
is
an
XML

NCName

that
also
permits
slash
as
a
non-leading
character.

When
an
RDFa
attribute
permits
the
use
of
a
term,
and
the
value
being
evaluated
matches
the
production
for
term
above,
it
is
transformed
to
an
IRI
using
the
following
logic:

		
If
there
is
a

local
default
vocabulary

the
IRI
is
obtained
by
concatenating
that
value
and
the

term
.

		
Otherwise,
check
if
the

term

matches
an
item
in
the
list
of

local
term
mappings
.
First
compare
against
the
list

case-sensitively
,
and
if
there
is
no
match
then
compare

case-insensitively
.
If
there
is
a
match,
use
the
associated
IRI.

		
Otherwise,
the

term

has
no
associated
IRI
and

MUST

be
ignored.

Note

A

local
default
vocabulary

can
be
defined
by
the
Host
Language
as
part
of
the

initial
context
,
and
can
be
overridden
on
the
current
element
and
its
children
using

@vocab
.

7.4.4

Use
of
CURIEs
in
Specific
Attributes

The
general
rules
discussed
in
the
previous
sections
apply
to
the
RDFa
attributes
in
the
following
ways:

		

@about

and

@resource

support
the
datatype

SafeCURIEorCURIEorIRI

-
allowing
a
SafeCURIE,
a
CURIE,
or
an
IRI.

		

@href

and

@src

are
as
defined
in
the
Host
Language
(e.g.,
XHTML),
and
support
only
an
IRI.

		

@vocab

supports
an
IRI.

		

@datatype

supports
the
datatype

TERMorCURIEorAbsIRI

-
allowing
a
single
Term,
CURIE,
or
Absolute
IRI.

		

@property
,

@typeof
,

@rel
,
and

@rev

support
the
datatype

TERMorCURIEorAbsIRIs

-
allowing
one
or
more
Terms,
CURIEs,
or
Absolute
IRIs.

Any
value
that
matches
a
defined
term

MUST

be
expanded
into
a
reference
to
the
corresponding
IRI.
For
example
in
the
following
examples:

 Example 41
<link rel="license" href="http://example.org/license.html" />
<link
rel="

xhv:license

"
href="http://example.org/license.html"

/>

would
each
generate
the
following
triple:

Example
42

<>
<http://www.w3.org/1999/xhtml/vocab#license>
<http://example.org/license.html>
.

7.4.5

Referencing
Blank
Nodes

In
RDFa,
it
is
possible
to
establish
relationships
using
various
types
of
resource
references,
including

bnode

s.
If
a
subject
or
object
is
defined
using
a
CURIE,
and
that
CURIE
explicitly
names
a

bnode
,
then
a
Conforming
Processor

MUST

create
the

bnode

when
it
is
encountered
during
parsing.
The
RDFa
Processor

MUST

also
ensure
that
no

bnode

created
automatically
(e.g.,
as
a
result
of

chaining

)
has
a
name
that
collides
with
a

bnode

that
is
defined
by
explicit
reference
in
a
CURIE.

Consider
the
following
example:

 Example 43
<link about="_:john" rel="foaf:mbox"
 href="mailto:john@example.org" />
<link about="_:sue" rel="foaf:mbox"
 href="mailto:sue@example.org" />
<link about="_:john" rel="foaf:knows"
resource="_:sue"

/>

In
the
above
fragment,
two

bnodes

are
explicitly
created
as
the
subject
of
triples.
Those

bnodes

are
then
referenced
to
demonstrate
the
relationship
between
the
parties.
After
processing,
the
following
triples
will
be
generated:

 Example 44
_:john foaf:mbox <mailto:john@example.org> .
_:sue foaf:mbox <mailto:sue@example.org> .
_:john
foaf:knows
_:sue
.

Note

RDFa
Processors
use,
internally,
implementation-dependent
identifiers
for
bnodes.
When
triples
are

retrieved
,
new
bnode
indentifiers
are
used,
which
usually
bear
no
relation
to
the
original
identifiers.
However,
implementations
do
ensure
that
these
generated
bnode
identifiers
are
consistent:
each
bnode
will
have
its
own
identifier,
all
references
to
a
particular
bnode
will
use
the
same
identifier,
and
different
bnodes
will
have
different
identifiers.

As
a
special
case,

_:

is
also
a
valid
reference
for

one

specific

bnode
.

7.5

Sequence

Processing
would
normally
begin
after
the
document
to
be
parsed
has
been
completely
loaded.
However,
there
is
no
requirement
for
this
to
be
the
case,
and
it
is
certainly
possible
to
use
a
stream-based
approach,
such
as
SAX
[

SAX

]
to
extract
the
RDFa
information.
However,
if
some
approach
other
than
the
DOM
traversal
technique
defined
here
is
used,
it
is
important
to
ensure
that
Host
Language-specific
processing
rules
are
applied
(e.g.,
XHTML+RDFa
[

XHTML-RDFA

]
indicates
the

base

element
can
be
used,
and

base

will
affect
the
interpretation
of
IRIs
in

meta

or

link

elements
even
if
those
elements
are
before
the

base

element
in
the
stream).

Note

In
this
section
the
term
'resource'
is
used
to
mean
'

IRI

or

bnode

'.
It
is
possible
that
this
term
will
be
replaced
with
some
other,
more
formal
term
after
consulting
with
other
groups.
Changing
this
term
will
in
no
way
change
this
processing
sequence.

At
the
beginning
of
processing,
an
initial

evaluation
context

is
created,
as
follows:

		
the

base

is
set
to
the
IRI
of
the
document
(or
another
value
specified
in
a
language
specific
manner
such
as
the
HTML

base

element);

		
the

parent
subject

is
set
to
the

base

value;

		
the

parent
object

is
set
to
null;

		
the

list
of
incomplete
triples

is
empty;

		
the

list
mapping

is
empty;

		
the

language

is
set
to
null.

		

the

list
of
IRI
mappings

is
empty
(or
a
list
defined
in
the

initial
context

of
the
Host
Language).

		

the

term
mappings

is
set
to
null
(or
a
list
defined
in
the

initial
context

of
the
Host
Language).

		

the

default
vocabulary

is
set
to
null
(or
an
IRI
defined
in
the

initial
context

of
the
Host
Language).

Processing
begins
by
applying
the
processing
rules
below
to
the
document
object,
in
the
context
of
this
initial

evaluation
context
.
All
elements
in
the
tree
are
also
processed
according
to
the
rules
described
below,
depth-first,
although
the

evaluation
context

used
for
each
set
of
rules
will
be
based
on
previous
rules
that
may
have
been
applied.

Note

This
specification
defines
processing
rules
for
optional
attributes
that
may
not
be
present
in
all
Host
Languages
(e.g.,

@href

).
If
these
attributes
are
not
supported
in
the
Host
Language,
then
the
corresponding
processing
rules
are
not
relevant
for
that
language.

The
processing
rules
are:

		
First,
the
local
values
are
initialized,
as
follows:

		
the

skip
element

flag
is
set
to
'false';

		

new
subject

is
set
to
null;

		

current
object
resource

is
set
to
null;

		

typed
resource

is
set
to
null;

		
the

local
list
of
IRI
mappings

is
set
to
the
list
of
IRI
mappings
from
the

evaluation
context

;

		
the

local
list
of
incomplete
triples

is
set
to
null;

		
the

list
mapping

is
set
to
(a
reference
of)
the
list
mapping
from
the

evaluation
context

;

		
the

current
language

value
is
set
to
the

language

value
from
the

evaluation
context
.

		
the

local
term
mappings

is
set
to
the

term
mappings

from
the

evaluation
context
.

		
the

local
default
vocabulary

is
set
to
the

default
vocabulary

from
the

evaluation
context
.

Note
that
some
of
the
local
variables
are
temporary
containers
for
values
that
will
be
passed
to
descendant
elements
via
an

evaluation
context
.
In
some
cases
the
containers
will
have
the
same
name,
so
to
make
it
clear
which
is
being
acted
upon
in
the
following
steps,
the
local
version
of
an
item
will
generally
be
referred
to
as
such.

Note
that
the

local
term
mappings

is
always
reset
to
a
global
value,
provided
by
the

initial
context
.
Future
versions
of
this
specification
may
introduce
a
mechanism
whereby
the

local
term
mappings

can
be
set
dynamically,
in
which
case
the

local
term
mappings

would
inherit
from
the
parent's
values.

		
Next
the

current
element

is
examined
for
any
change
to
the

default
vocabulary

via

@vocab
.
If

@vocab

is
present
and
contains
a
value,
the

local
default
vocabulary

is
updated
according
to
the
section
on

CURIE
and
IRI
Processing
.
If
the
value
is
empty,
then
the

local
default
vocabulary

MUST

be
reset
to
the
Host
Language
defined
default
(if
any).

The
value
of

@vocab

is
used
to
generate
a
triple
as
follows:

		
subject

		

base

		
predicate

		

http://www.w3.org/ns/rdfa#usesVocabulary

		
object

		
value
from

@vocab

A
Host
Language
is
not
required
to
define
a
default
vocabulary.
In
such
a
case,
setting

@vocab

to
the
empty
value
has
the
effect
of
setting
the

local
default
vocabulary

to
null.

		
Next,
the

current
element

is
examined
for

IRI
mapping

s
and
these
are
added
to
the

local
list
of
IRI
mappings
.
Note
that
an

IRI
mapping

will
simply
overwrite
any
current
mapping
in
the
list
that
has
the
same
name;

Mappings
are
defined
via

@prefix
.

Values
in
this
attribute
are
evaluated
from
beginning
to
end
(e.g.,
left
to
right
in
typical
documents).

For
backward
compatibility,
RDFa
Processors

SHOULD

also
permit
the
definition
of
mappings
via

@xmlns
.
In
this
case,
the
value
to
be
mapped
is
set
by
the
XML
namespace
prefix,
and
the
value
to
map
is
the
value
of
the
attribute
—
an
IRI.
(Note
that
prefix
mapping
via

@xmlns

is
deprecated,
and
may
be
removed
in
a
future
version
of
this
specification.)

When

xmlns

is
supported,
such
mappings

MUST

be
processed
before
processing
any
mappings
from

@prefix

on
the
same
element.

Regardless
of
how
the
mapping
is
declared,
the
value
to
be
mapped

MUST

be
converted
to
lower
case
,
and
the
IRI
is
not
processed
in
any
way;
in
particular
if
it
is
a
relative
path
it

MUST
NOT

be
resolved
against
the
current

base
.
Authors

SHOULD
NOT

use
relative
paths
as
the
IRI.

		

The

current
element

is
also
parsed
for
any
language
information,
and
if
present,

current
language

is
set
accordingly;

Host
Languages
that
incorporate
RDFa

MAY

provide
a
mechanism
for
specifying
the
natural
language
of
an
element
and
its
contents
(e.g.,
XML
provides
the
general-purpose
XML
attribute

@xml:lang

).

		
If
the

current
element

contains
no

@rel

or

@rev

attribute,
then
the
next
step
is
to
establish
a
value
for

new
subject
.
This
step
has
two
possible
alternatives.

		

If
the

current
element

contains
the

@property

attribute,
but
does

not

contain
either
the

@content

or

@datatype

attributes,
then

new
subject

is
set
to
the
resource
obtained
from
the
first
match
from
the
following
rule:

		
by
using
the
resource
from

@about
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
if
the
element
is
the
root
element
of
the
document,
then
act
as
if
there
is
an
empty

@about

present,
and
process
it
according
to
the
rule
for

@about
,
above;

		

otherwise
,
if

parent
object

is
present,

new
subject

is
set
to
the
value
of

parent
object
.

If

@typeof

is
present
then

typed
resource

is
set
to
the
resource
obtained
from
the
first
match
from
the
following
rules:

		
by
using
the
resource
from

@about
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
if
the
element
is
the
root
element
of
the
document,
then
act
as
if
there
is
an
empty

@about

present
and
process
it
according
to
the
previous
rule;

		

otherwise
,

		
by
using
the
resource
from

@resource
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the

IRI

from

@href
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the
IRI
from

@src
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
the
value
of

typed
resource

is
set
to
a
newly
created

bnode
.

		
The
value
of
the

current
object
resource

is
then
set
to
the
value
of

typed
resource
.

		

otherwise
:

		
If
the
element
contains
an

@about
,

@href
,

@src
,
or

@resource

attribute,

new
subject

is
set
to
the
resource
obtained
as
follows:

		
by
using
the
resource
from

@about
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the
resource
from

@resource
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the

IRI

from

@href
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the
IRI
from

@src
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing
.

		

otherwise
,
if
no
resource
is
provided
by
a
resource
attribute,
then
the
first
match
from
the
following
rules
will
apply:

		
if
the
element
is
the
root
element
of
the
document,
then
act
as
if
there
is
an
empty

@about

present,
and
process
it
according
to
the
rule
for

@about
,
above;

		

otherwise
,
if

@typeof

is
present,
then

new
subject

is
set
to
be
a
newly
created

bnode

;

		

otherwise
,
if

parent
object

is
present,

new
subject

is
set
to
the
value
of

parent
object
.
Additionally,
if

@property

is

not

present
then
the

skip
element

flag
is
set
to
'true'.

		

Finally,
if

@typeof

is
present,
set
the

typed
resource

to
the
value
of

new
subject
.

		
If
the

current
element

does

contain
a

@rel

or

@rev

attribute,
then
the
next
step
is
to
establish

both

a
value
for

new
subject

and
a
value
for

current
object
resource
:

new
subject

is
set
to
the
resource
obtained
from
the
first
match
from
the
following
rules:

		
by
using
the
resource
from

@about
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

if
the

@typeof

attribute
is
present,
set

typed
resource

to

new
subject
.

If
no
resource
is
provided
then
the
first
match
from
the
following
rules
will
apply:

		
if
the
element
is
the
root
element
of
the
document
then
act
as
if
there
is
an
empty

@about

present,
and
process
it
according
to
the
rule
for

@about
,
above;

		

otherwise
,
if

parent
object

is
present,

new
subject

is
set
to
that.

Then
the

current
object
resource

is
set
to
the
resource
obtained
from
the
first
match
from
the
following
rules:

		
by
using
the
resource
from

@resource
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the

IRI

from

@href
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the

IRI

from

@src
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
if

@typeof

is
present
and

@about

is
not,
use
a
newly
created

bnode
.

If

@typeof

is
present
and

@about

is
not,
set

typed
resource

to

current
object
resource
.

Note
that
final
value
of
the

current
object
resource

will
either
be
null
(from
initialization)
or
a
full
IRI
or

bnode
.

		

If
in
any
of
the
previous
steps
a

typed
resource

was
set
to
a
non-null
value,
it
is
now
used
to
provide
a
subject
for
type
values;

One
or
more
'types'
for
the

typed
resource

can
be
set
by
using

@typeof
.
If
present,
the
attribute
may
contain
one
or
more
IRIs,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing
,
each
of
which
is
used
to
generate
a
triple
as
follows:

		
subject

		

typed
resource

		
predicate

		
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

		
object

		
current
full
IRI
of
'type'
from

typed
resource

		
If
in
any
of
the
previous
steps
a

new
subject

was
set
to
a
non-null
value

different

from
the

parent
object

;

The

list
mapping

taken
from
the

evaluation
context

is
set
to
a
new,
empty
mapping.

		
If
in
any
of
the
previous
steps
a

current
object
resource

was
set
to
a
non-null
value,
it
is
now
used
to
generate
triples
and
add
entries
to
the

local
list
mapping
:

If
the
element
contains

both

the

@inlist

and
the

@rel

attributes
the

@rel

may
contain
one
or
more
resources,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

each
of
which
is
used
to
add
an
entry
to
the

list
mapping

as
follows:

		
if
the

local
list
mapping

does
not
contain
a
list
associated
with
the
IRI,
instantiate
a
new
list
and
add
to
local
list
mappings

		
add
the

current
object
resource

to
the
list
associated
with
the
resource
in
the

local
list
mapping

Predicates
for
the

current
object
resource

can
be
set
by
using
one
or
both
of
the

@rel

and
the

@rev

attributes
but,
in
case
of
the

@rel

attribute,
only
if
the

@inlist

is

not

present:

		
If
present,

@rel

may
contain
one
or
more
resources,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

each
of
which
is
used
to
generate
a
triple
as
follows:

		
subject

		

new
subject

		
predicate

		
full
IRI

		
object

		

current
object
resource

		
If
present,

@rev

may
contain
one
or
more
resources,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

each
of
which
is
used
to
generate
a
triple
as
follows:

		
subject

		

current
object
resource

		
predicate

		
full
IRI

		
object

		

new
subject

		
If
however

current
object
resource

was
set
to
null,
but
there
are
predicates
present,
then
they
must
be
stored
as

incomplete
triple

s,
pending
the
discovery
of
a
subject
that
can
be
used
as
the
object.
Also,

current
object
resource

should
be
set
to
a
newly
created

bnode

(so
that
the
incomplete
triples
have
a
subject
to
connect
to
if
they
are
ultimately
turned
into
triples);

Predicates
for

incomplete
triple

s
can
be
set
by
using
one
or
both
of
the

@rel

and

@rev

attributes:

		
If
present,

@rel

must
contain
one
or
more
resources,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

each
of
which
is
added
to
the

local
list
of
incomplete
triples

as
follows:

		
If
the
element
contains
the

@inlist

attribute,
then

		
if
the

local
list
mapping

does
not
contain
a
list
associated
with
the
IRI,
instantiate
a
new
list
and
add
to
local
list
mappings.

		
Add:

		
list

		
list
from

local
list
mapping

for
this
IRI

		
direction

		
none

		
Otherwise
add:

		

		
predicate

		
full
IRI

		
direction

		
forward

		
If
present,

@rev

must
contain
one
or
more
resources,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing
,
each
of
which
is
added
to
the

local
list
of
incomplete
triples

as
follows:

		
predicate

		
full
IRI

		
direction

		
reverse

		
The
next
step
of
the
iteration
is
to
establish
any

current
property
value

;

Predicates
for
the

current
property
value

can
be
set
by
using

@property
.
If
present,
one
or
more
resources
are
obtained
according
to
the
section
on

CURIE
and
IRI
Processing
,
and
then
the
actual
literal
value
is
obtained
as
follows:

		
as
a

typed
literal

if

@datatype

is
present,
does
not
have
an
empty
value
according
to
the
section
on

CURIE
and
IRI
Processing
,
and
is
not
set
to

XMLLiteral

in
the
vocabulary

http://www.w3.org/1999/02/22-rdf-syntax-ns#
.

The
actual
literal
is
either
the
value
of

@content

(if
present)

or

a
string
created
by
concatenating
the
value
of
all
descendant
text
nodes,
of
the

current
element

in
turn.
The
final
string
includes
the
datatype
IRI,
as
described
in
[

RDF-SYNTAX

],
which
will
have
been
obtained
according
to
the
section
on

CURIE
and
IRI
Processing
.

		

otherwise
,
as
a

plain
literal

if

@datatype

is
present
but
has
an
empty
value
according
to
the
section
on

CURIE
and
IRI
Processing
.

The
actual
literal
is
either
the
value
of

@content

(if
present)

or

a
string
created
by
concatenating
the
value
of
all
descendant
text
nodes,
of
the

current
element

in
turn.

		

otherwise
,
as
an

XML
literal

if

@datatype

is
present
and
is
set
to

XMLLiteral

in
the
vocabulary

http://www.w3.org/1999/02/22-rdf-syntax-ns#
.

The
value
of
the

XML
literal

is
a
string
created
by
serializing
to
text,
all
nodes
that
are
descendants
of
the

current
element
,
i.e.,
not
including
the
element
itself,
and
giving
it
a
datatype
of

XMLLiteral

in
the
vocabulary

http://www.w3.org/1999/02/22-rdf-syntax-ns#
.
The
format
of
the
resulting
serialized
content
is
as
defined
in
Exclusive
XML
Canonicalization
Version
1.0
[

XML-EXC-C14N

].

Note

In
order
to
maintain
maximum
portability
of
this
literal,
any
children
of
the
current
node
that
are
elements

MUST

have
the
current
XML
namespace
declarations
(if
any)
declared
on
the
serialized
element.
Since
the
child
element
node
could
also
declare
new
XML
namespaces,
the
RDFa
Processor

MUST

be
careful
to
merge
these
together
when
generating
the
serialized
element
definition.
For
avoidance
of
doubt,
any
re-declarations
on
the
child
node

MUST

take
precedence
over
declarations
that
were
active
on
the
current
node.

		

otherwise
,
as
a

plain
literal

using
the
value
of

@content

if

@content

is
present.

		

otherwise
,
if
the

@rel
,

@rev
,
and

@content

attributes
are

not

present,
as
a
resource
obtained
from
one
of
the
following:

		
by
using
the
resource
from

@resource
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the

IRI

from

@href
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing

;

		

otherwise
,
by
using
the

IRI

from

@src
,
if
present,
obtained
according
to
the
section
on

CURIE
and
IRI
Processing
.

		

otherwise
,
if

@typeof

is
present
and

@about

is
not,
the
value
of

typed
resource
.

		

otherwise

as
a

plain
literal
.

Additionally,
if
there
is
a
value
for

current
language

then
the
value
of
the

plain
literal

should
include
this
language
information,
as
described
in
[

RDF-SYNTAX

].
The
actual
literal
is
either
the
value
of

@content

(if
present)

or

a
string
created
by
concatenating
the
text
content
of
each
of
the
descendant
elements
of
the

current
element

in
document
order.

The

current
property
value

is
then
used
with
each
predicate
as
follows:

		
If
the
element
also
includes
the

@inlist

attribute,
the

current
property
value

is
added
to
the

local
list
mapping

as
follows:

		
if
the

local
list
mapping

does
not
contain
a
list
associated
with
the
predicate
IRI,
instantiate
a
new
list
and
add
to
local
list
mappings

		
add
the

current
property
value

to
the
list
associated
with
the
predicate
IRI
in
the

local
list
mapping

		
Otherwise
the

current
property
value

is
used
to
generate
a
triple
as
follows:

		
subject

		

new
subject

		
predicate

		
full
IRI

		
object

		

current
property
value

		
If
the

skip
element

flag
is
'false',

and

new
subject

was
set
to
a
non-null
value,
then
any

incomplete
triple

s

within
the
current
context

should
be
completed:

The

list
of
incomplete
triples

from
the
current

evaluation
context

(

not

the

local
list
of
incomplete
triples

)
will
contain
zero
or
more
predicate
IRIs.
This
list
is
iterated
over
and
each
of
the
predicates
is
used
with

parent
subject

and

new
subject

to
generate
a
triple
or
add
a
new
element
to
the

local
list
mapping
.
Note
that
at
each
level
there
are

two

lists
of

incomplete
triple

s;
one
for
the
current
processing
level
(which
is
passed
to
each
child
element
in
the
previous
step),
and
one
that
was
received
as
part
of
the

evaluation
context
.
It
is
the
latter
that
is
used
in
processing
during
this
step.

Note
that
each

incomplete
triple

has
a

direction

value
that
is
used
to
determine
what
will
become
the
subject,
and
what
will
become
the
object,
of
each
generated
triple:

		
If

direction

is
'none',
the

new
subject

is
added
to
the
list
from
the
iterated

incomplete
triple
.

		
If

direction

is
'forward'
then
the
following
triple
is
generated:

		
subject

		

parent
subject

		
predicate

		
the
predicate
from
the
iterated

incomplete
triple

		
object

		

new
subject

		
If

direction

is
'reverse'
then
this
is
the
triple
generated:

		
subject

		

new
subject

		
predicate

		
the
predicate
from
the
iterated

incomplete
triple

		
object

		

parent
subject

		
Next,
all
elements
that
are
children
of
the

current
element

are
processed
using
the
rules
described
here,
using
a
new

evaluation
context
,
initialized
as
follows:

		
If
the

skip
element

flag
is
'true'
then
the
new

evaluation
context

is
a
copy
of
the
current
context
that
was
passed
in
to
this
level
of
processing,
with
the

language

and

list
of
IRI
mappings

values
replaced
with
the
local
values;

		
Otherwise,
the
values
are:

		
the

base

is
set
to
the

base

value
of
the
current

evaluation
context

;

		
the

parent
subject

is
set
to
the
value
of

new
subject
,
if
non-null,

or

the
value
of
the

parent
subject

of
the
current

evaluation
context

;

		
the

parent
object

is
set
to
value
of

current
object
resource
,
if
non-null,

or

the
value
of

new
subject
,
if
non-null,

or

the
value
of
the

parent
subject

of
the
current

evaluation
context

;

		
the

list
of
IRI
mappings

is
set
to
the

local
list
of
IRI
mappings

;

		
the

list
of
incomplete
triples

is
set
to
the

local
list
of
incomplete
triples

;

		
the

list
mapping

is
set
to
the

local
list
mapping

;

		

language

is
set
to
the
value
of

current
language
.

		
the

default
vocabulary

is
set
to
the
value
of
the

local
default
vocabulary
.

		
Finally,
if
there
is
one
or
more
mapping
in
the

local
list
mapping
,
list
triples
are
generated
as
follows:

For
each
IRI
in
the

local
list
mapping
,
if
the
equivalent
list
does
not
exist
in
the

evaluation
context
,
indicating
that
the
list
was
originally
instantiated
on
the
current
element,
use
the
list
as
follows:

		
If
there
are
zero
items
in
the
list
associated
with
the
IRI,
generate
the
following
triple:

		
subject

		

current
subject

		
predicate

		
full
IRI
of
the

local
list
mapping

associated
with
this
list

		
object

		

http://www.w3.org/1999/02/22-rdf-syntax-ns#nil

		
Otherwise,

		
Create
a
new
‘bnode’
array
containing
newly
created

bnode

s,
one
for
each
item
in
the
list

		
For
each

bnode

-(

IRI

or
literal)
pair
from
the
list
the
following
triple
is
generated:

		
subject

		

bnode

		
predicate

		

http://www.w3.org/1999/02/22-rdf-syntax-ns#first

		
object

		
full
IRI
or
literal

		
For
each
item
in
the
‘bnode’
array
the
following
triple
is
generated:

		
subject

		

bnode

		
predicate

		

http://www.w3.org/1999/02/22-rdf-syntax-ns#rest

		
object

		
next
item
in
the
‘bnode’
array
or,
if
that
does
not
exist,

http://www.w3.org/1999/02/22-rdf-syntax-ns#nil

		
A
single
additional
triple
is
generated:

		
subject

		

current
subject

		
predicate

		
full
IRI
of
the

local
list
mapping

associated
with
this
list

		
object

		
first
item
of
the
‘bnode’
array

7.6

Processor
Status

The
processing
rules
covered
in
the
previous
section
are
designed
to
extract
as
many
triples
as
possible
from
a
document.
The
RDFa
Processor
is
designed
to
continue
processing,
even
in
the
event
of
errors.
For
example,
failing
to
resolve
a
prefix
mapping
or

term

would
result
in
the
RDFa
Processor
skipping
the
generation
of
a
triple
and
continuing
with
document
processing.
There
are
cases
where
knowing
each
RDFa
Processor
warning
or
error
would
be
beneficial
to
authors.
The

processor
graph

is
designed
as
the
mechanism
to
capture
all
informational,
warning,
and
error
messages
as
triples
from
the
RDFa
Processor.
These
status
triples
may
be
retrieved
and
used
to
aid
RDFa
authoring
or
automated
error
detection.

If
an
RDFa
Processor
supports
the
generation
of
a

processor
graph
,
then
it

MUST

generate
a
set
of
triples
when
the
following
processing
issues
occur:

		
An

rdfa:Error

MUST

be
generated
when
the
document
fails
to
be
fully
processed
as
a
result
of
non-conformant
Host
Language
markup.

		
A

rdfa:Warning

MUST

be
generated
when
a
CURIE
prefix
fails
to
be
resolved.

		
A

rdfa:Warning

MUST

be
generated
when
a
Term
fails
to
be
resolved.

Other
implementation-specific

rdfa:Info
,

rdfa:Warning
,
or

rdfa:Error

triples

MAY

be
generated
by
the
RDFa
Processor.

7.6.1

Accessing
the
Processor
Graph

Accessing
the

processor
graph

may
be
accomplished
in
a
variety
of
ways
and
is
dependent
on
the
type
of
RDFa
Processor
and
access
method
that
the
developer
is
utilizing.

SAX-based
processors
or
processors
that
utilize
function
or
method
callbacks
to
report
the
generation
of
triples
are
classified
as

event-based
RDFa
Processor

s.
For
Event-based
RDFa
Processors,
the
software

MUST

allow
the
developer
to
register
a
function
or
callback
that
is
called
when
a
triple
is
generated
for
the

processor
graph
.
The
callback

MAY

be
the
same
as
the
one
that
is
used
for
the

output
graph

as
long
as
it
can
be
determined
if
a
generated
triple
belongs
in
the

processor
graph

or
the

output
graph
.

A

whole-graph
RDFa
Processor

is
defined
as
any
RDFa
Processor
that
processes
the
entire
document
and
only
provides
the
developer
access
to
the
triples
after
processing
has
completed.
RDFa
Processors
that
typically
fall
into
this
category
express
their
output
via
a
single
call
using
RDF/XML,
N3,
TURTLE,
or
N-Triples
notation.
For
whole-graph
RDFa
Processors,
the
software

MUST

allow
the
developer
to
specify
if
they
would
like
to
retrieve
the

output
graph
,
the

processor
graph
,
or
both
graphs
as
a
single,
combined
graph
from
the
RDFa
Processor.

If
the
graph
preference
is
not
specified,
the

output
graph

MUST

be
returned.

A

web
service
RDFa
Processor

is
defined
as
any
RDFa
Processor
that
is
capable
of
processing
a
document
by
performing
an
HTTP
GET,
POST
or
similar
action
on
an
RDFa
Processor
IRI.
For
this
class
of
RDFa
Processor,
the
software

MUST

allow
the
caller
to
specify
if
they
would
like
to
retrieve
the

output
graph
,
the

processor
graph
,
or
both
graphs
as
a
single,
combined
graph
from
the
web
service.
The

rdfagraph

query
parameter

MUST

be
used
to
specify
the
value.
The
allowable
values
are

output
,

processor

or
both
values,
in
any
order,
separated
by
a
comma
character.

If
the
graph
preference
is
not
specified,
the

output
graph

MUST

be
returned.

7.6.2

Processor
Graph
Terms

To
ensure
interoperability,
a
core
hierarchy
of
classes
is
defined
for
the
content
of
the
processor
graph.
Separate
errors
or
warnings
are
resources
(typically
blank
nodes)
of
a
specific
type,
with
additional
properties
giving
more
details
on
the
error
condition
or
the
warning.
This
specification
defines
only
the
top
level
classes
and
the
ones
referring
to
the
error
and
warning
conditions
defined

explicitly

by
this
document.
Other,
implementation-specific
subclasses
may
be
defined
by
the
RDFa
Processor.

The
top
level
classes
are

rdfa:Error
,

rdfa:Warning
,
and

rdfa:Info
,
defined
as
part
of
the

RDFa
Vocabulary
.
Furthermore,
a
single
property
is
defined
on
those
classes,
namely

rdfa:context
,
that
provides
an
extra
context
for
the
error,
e.g.,
http
response,
an
XPath
information,
or
simply
the
IRI
to
the
RDFa
resource.
Usage
of
this
property
is
optional,
and
more
than
one
triple
can
be
used
with
this
predicate
on
the
same
subject.
Finally,
error
and
warning
instances

SHOULD

use
the

dc:description

and

dc:date

properties.

dc:description

should
provide
a
short,
human
readable
but
implementation
dependent
description
of
the
error.

dc:date

should
give
the
time
when
the
error
was
found
and
it
is
advised
to
be
as
precise
as
possible
to
allow
the
detection
of,
for
example,
possible
network
errors.

The
example
below
shows
the
triples
that
should
be
minimally
present
in
the
processor
graph
as
a
result
of
an
error
(the
content
of
the
literal
for
the

dc:description

predicate
is
implementation
dependent):

 Example 45
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dc: <http://purl.org/dc/terms/> .
[] a rdfa:DocumentError ;
 dc:description "The document could not be parsed due to parsing errors." ;

dc:date
"2010-06-30T13:40:23"^^xsd:dateTime

.

A
slightly
more
elaborate
example
makes
use
of
the

rdfa:context

property
to
provide
further
information,
using
external
vocabularies
to
represent
HTTP
headers
or
XPointer
information
(note
that
a
processor
may
not
have
these
information
in
all
cases,
i.e.,
these

rdfa:context

information
are
not
required):

 Example 46
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix ptr: <http://www.w3.org/2009/pointers#> .
@prefix ht: <http://www.w3.org/2006/http#> .

[] a rdfa:DocumentError ;
 dc:description "The document could not be parsed due to parsing errors." ;
 dc:date "2010-06-30T13:40:23"^^xsd:dateTime ;

 rdfa:context <http://www.example.org/doc> ;
 rdfa:context [
 a ptr:Pointer ;
 # Detailed xpointer/xpath information provided here to locate the error.
] ;
 rdfa:context [
 a ht:Response ;
 ht:responseCode <http://www.w3.org/2006/http#404>
 # The HTTP response headers on the request for the source file.
].

7.7

Vocabulary
Expansion

Processors

MAY

perform
vocabulary
expansion
by
utilizing
limited
RDFS
and
OWL
entailment
rules,
as
described
in

RDFa
Vocabulary
Expansion
.

8.

RDFa
Processing
in
detail

This
section
is
non-normative.

This
section
provides
an
in-depth
examination
of
the
processing
steps
described
in
the
previous
section.
It
also
includes
examples
which
may
help
clarify
some
of
the
steps
involved.

The
key
to
processing
is
that
a
triple
is
generated
whenever
a
predicate/object
combination
is
detected.
The
actual
triple
generated
will
include
a
subject
that
may
have
been
set
previously,
so
this
is
tracked
in
the
current

evaluation
context

and
is
called
the

parent
subject
.
Since
the
subject
will
default
to
the
current
document
if
it
hasn't
been
set
explicitly,
then
a
predicate/object
combination
is
always
enough
to
generate
one
or
more
triples.

The
attributes
for
setting
a
predicate
are

@rel
,

@rev

and

@property
,
whilst
the
attributes
for
setting
an
object
are

@resource
,

@href
,

@content
,
and

@src
.

@typeof

is
unique
in
that
it
sets

both

a
predicate
and
an
object
at
the
same
time
(and
also
a
subject
when
it
appears
in
the
absence
of
other
attributes
that
would
set
a
subject).
Inline
content
might
also
set
an
object,
if

@content

is
not
present,
but

@property

is
present.

Note

There
are
many
examples
in
this
section.
The
examples
are
all
written
using
XHTML+RDFa.
However,
the
explanations
are
relevant
regardless
of
the
Host
Language.

8.1

Changing
the
Evaluation
Context

This
section
is
non-normative.

8.1.1

Setting
the
current
subject

This
section
is
non-normative.

When
triples
are
created
they
will
always
be
in
relation
to
a
subject
resource
which
is
provided
either
by

new
subject

(if
there
are
rules
on
the
current
element
that
have
set
a
subject)
or

parent
subject
,
as
passed
in
via
the

evaluation
context
.
This
section
looks
at
the
specific
ways
in
which
these
values
are
set.
Note
that
it
doesn't
matter
how
the
subject
is
set,
so
in
this
section
we
use
the
idea
of
the

current
subject

which
may
be

either

new
subject

or

parent
subject
.

8.1.1.1

The
current
document

This
section
is
non-normative.

When
parsing
begins,
the

current
subject

will
be
the
IRI
of
the
document
being
parsed,
or
a
value
as
set
by
a
Host
Language-provided
mechanism
(e.g.,
the

base

element
in
(X)HTML).
This
means
that
by
default
any
metadata
found
in
the
document
will
concern
the
document
itself:

 Example 47
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Jo's Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dc:creator" content="Jo" />
 </head>
 <body>
 ...
 </body>
</html>

This
would
generate
the
following
triples:

 Example 48
<> foaf:primaryTopic <#bbq> .
<>
dc:creator
"Jo"

.

It
is
possible
for
the
data
to
appear
elsewhere
in
the
document:

 Example 49
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Jo's Blog</title>
 </head>
 <body>
 <h1>Jo's blog</h1>

 <p>
 Welcome to my blog.
 </p>
 </body>
</html>

which
would
still
generate
the
triple:

Example
50

<>
dc:creator
"Jo"

.

In
(X)HTML
the
value
of

base

may
change
the
initial
value
of

current
subject
:

 Example 51
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <base href="http://www.example.org/jo/blog" />
 <title>Jo's Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dc:creator" content="Jo" />

 </head>
 <body>
 ...
 </body>
</html>

An
RDFa
Processor
should
now
generate
the
following
triples,
regardless
of
the
IRI
from
which
the
document
is
served:

 Example 52
<http://www.example.org/jo/blog> foaf:primaryTopic <http://www.example.org//jo/blog#bbq> .
<http://www.example.org/jo/blog>
dc:creator
"Jo"

.

8.1.1.2

Using

@about

As
processing
progresses,
any

@about

attributes
will
change
the

current
subject
.
The
value
of

@about

is
an
IRI
or
a
CURIE.
If
it
is
a
relative
IRI
then
it
needs
to
be
resolved
against
the
current

base

value.
To
illustrate
how
this
affects
the
statements,
note
in
this
markup
how
the
properties
inside
the
(X)HTML

body

element
become
part
of
a
new
calendar
event
object,
rather
than
referring
to
the
document
as
they
do
in
the
head
of
the
document:

 Example 53
<html xmlns="http://www.w3.org/1999/xhtml"
 prefix="cal: http://www.w3.org/2002/12/cal/ical#">

 <head>
 <title>Jo's Friends and Family Blog</title>
 <link rel="foaf:primaryTopic" href="#bbq" />
 <meta property="dc:creator" content="Jo" />

 </head>
 <body>
 <p about="#bbq" typeof="cal:Vevent">

 I'm holding

 one last summer barbecue
 ,
 on
 <span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">

 September 16th at 4pm
 .
 </p>
 </body>
</html>

With
this
markup
an
RDFa
Processor
will
generate
the
following
triples:

 Example 54
<> foaf:primaryTopic <#bbq> .
<> dc:creator "Jo" .

<#bbq> rdf:type cal:Vevent .
<#bbq> cal:summary "one last summer barbecue" .

<#bbq>
cal:dtstart
"2015-09-16T16:00:00-05:00"^^xsd:dateTime

.

Other
kinds
of
resources
can
be
used
to
set
the

current
subject
,
not
just
references
to
web-pages.
Although
not
advised,
email
addresses
might
be
used
to
represent
a
person:

 Example 55
John knows
<a about="mailto:john@example.org"
 rel="foaf:knows" href="mailto:sue@example.org">Sue.

Sue knows
<a about="mailto:sue@example.org"
rel="foaf:knows"
href="mailto:jim@example.org">Jim.

This
should
generate
the
following
triples:

 Example 56
<mailto:john@example.org> foaf:knows <mailto:sue@example.org> .
<mailto:sue@example.org>
foaf:knows
<mailto:jim@example.org>
.

Similarly,
authors
may
make
statements
about
images:

 Example 57
<div about="photo1.jpg">
 this photo was taken by
 Mark Birbeck

</div>

which
should
generate
the
following
triple:

Example
58

<photo1.jpg>
dc:creator
"Mark
Birbeck"

.

8.1.1.3

Typing
resources
with

@typeof

@typeof

defines
typing
triples.

@typeof

works
differently
to
other
ways
of
setting
a
predicate
since
the
predicate
is
always

rdf:type
,
which
means
that
the
processor
only
requires
the
value
of
the
type.
The
question
is:
which
resource
gets
these
typing
information?

If
the
element
has
an

@about
,
which
creates
a
new
context
for
statements,
the
typing
relationships
are
defined
on
that
resource.
For
example,
the
following:

 Example 59
<div about="http://dbpedia.org/resource/Albert_Einstein" typeof="foaf:Person">
 Albert Einstein
 Albert

</div>

also
creates
the
triple:

Example
60

<http://dbpedia.org/resource/Albert_Einstein>
rdf:type
foaf:Person
.

The

@about

attribute
is
the
main
source
for
typing;
if
it
is
present
on
an
element,
it
determines
the
effect
of

@typeof

with
the
highest
priority.
If

@about

is

not

present,
but
the
element
is
used
only
to
define
possible
subject
resources
via,
e.g.,

@resource

(i.e.,
there
is

no

@rel
,

@rev
,
or

@property

present),
then
that
resource
is
used
for
the
typed
resource,
just
like

@about
.

If
an

@rel

is
present
(and
still
no

@about

)
then
the
explicit
object
of
the
triples
defined
by

@rel

is
typed.
For
example,
in
the
case
of:

 Example 61
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp:birthPlace"
 resource="http://dbpedia.org/resource/German_Empire"
 typeof="http://schema.org/Country">

 </div>
</div>

the
generated
triples
also
include:

Example
62

<http://dbpedia.org/resource/German_Empire>
rdf:type
<http://schema.org/Country>
.

Finally,

@typeof

also
has
the
additional
feature
of
creating
a
new
context
for
statements,

in
case
no
other
attributes
define
any
.
This
involves
generating
a
new

bnode

(see
below
for
more
about
bnodes).
For
example,
an
author
may
wish
to
create
markup
for
a
person
using
the
FOAF
vocabulary,
but
without
having
a
clear
identifier
for
the
item:

 Example 63
<div typeof="foaf:Person">
 Albert Einstein
 Albert

</div>

This
markup
would
cause
a

bnode

to
be
created
which
has
a
'type'
of

foaf:Person
,
as
well
as
name
and
given
name
properties:

 Example 64
_:a rdf:type foaf:Person .
_:a foaf:name "Albert Einstein" .

_:a
foaf:givenName
"Albert"

.

This
usage
of
“isolated”

@typeof

may
be
viewed
as
a
shorthand
for:

 Example 65
<div resource="_:a" typeof="foaf:Person">
 Albert Einstein
 Albert

</div>

Similarly,

 Example 66
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div rel="dbp:birthPlace" typeof="http://schema.org/Country">
 the German Empire

 </div>
</div>

generates:

 Example 67
<http://dbpedia.org/resource/Albert_Einstein"> dbp:birthPlace _:b .
_:b
dbp:conventionalLongName
"the

German
Empire"

.

A

bnode

is
simply
a
unique
identifier
that
is
only
available
to
the
processor,
not
to
any
external
software.
By
generating
values
internally,
the
processor
is
able
to
keep
track
of
properties
for

_:a

as
being
distinct
from

_:b
.
But
by
not
exposing
these
values
to
any
external
software,
it
is
possible
to
have
complete
control
over
the
identifier,
as
well
as
preventing
further
statements
being
made
about
the
item.

8.1.1.3.1

Chaining
with

@property

and

@typeof

This
section
is
non-normative.

As
emphasized
in
the

section
on
chaining
,
one
of
the
main
differences
between

@property

and

@rel

(or

@rev

)
is
that
the
former
does
not
induce
chaining.
The

only

exception
to
this
rule
is
when

@typeof

is
also
present
on
the
element.
In
that
case
the
effect
of

@property

is
identical
to

@rel
.
For
example,
the
previous
example
could
have
been
written
as:

 Example 68
<div about="http://dbpedia.org/resource/Albert_Einstein">
 <div property="dbp:birthPlace" typeof="http://schema.org/Country">
 the German Empire

 </div>
</div>

generating
the
same
triples
as
before.
Here
again,
a

@typeof

without
an

@about

or
a

@resource

can
be
regarded
as
a
shorthand
for
an
additional

@resource

attribute
referring
to
the
identifier
of
a
fresh

bnode
.

8.1.1.4

Determining
the
subject
with
neither

@about

nor

@typeof

As
described
in
the
previous
two
sections,

@about

will
always
take
precedence
and
mark
a
new
subject,
but
if
no

@about

value
is
available
then

@typeof

will
do
the
same
job,
although
using
an
implied
identifier,
i.e.,
a

bnode
.

But
if
neither

@about

or

@typeof

are
present,
there
are
a
number
of
ways
that
the
subject
could
be
arrived
at.
One
of
these
is
to
'inherit'
the
subject
from
the
containing
statement,
with
the
value
to
be
inherited
set
either
explicitly,
or
implicitly.

8.1.1.4.1

Inheriting
subject
from

@resource

The
most
usual
way
that
an
inherited
subject
might
get
set
would
be
when
the
parent
statement
has
an
object
that
is
a
resource.
Returning
to
the
earlier
example,
in
which
the
long
name
for
the
German_Empire
was
added,
the
following
markup
was
used:

 Example 69
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire

</div>

In
an
earlier
illustration
the
subject
and
object
for
the
German
Empire
were
connected
by
removing
the

@resource
,
relying
on
the

@about

to
set
the
object:

 Example 70
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace">
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire

 </div>
</div>

but
it
is
also
possible
for
authors
to
achieve
the
same
effect
by
removing
the

@about

and
leaving
the

@resource
:

 Example 71
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire

 </div>
</div>

In
this
situation,
all
statements
that
are
'contained'
by
the
object
resource
representing
the
German
Empire
(the
value
in

@resource

)
will
have
the
same
subject,
making
it
easy
for
authors
to
add
additional
statements:

 Example 72
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire">
 the German Empire

 </div>
</div>

Looking
at
the
triples
that
an
RDFa
Processor
would
generate,
we
can
see
that
we
actually
have
two
groups
of
statements;
the
first
group
is
set
to
refer
to
the

@about

that
contains
them:

 Example 73
<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .
<http://dbpedia.org/resource/Albert_Einstein> dbp:dateOfBirth "1879-03-14"^^xsd:date .

<http://dbpedia.org/resource/Albert_Einstein>
dbp:birthPlace
<http://dbpedia.org/resource/German_Empire>
.

while
the
second
group
refers
to
the

@resource

that
contains
them:

 Example 74
<http://dbpedia.org/resource/German_Empire>
 dbp:conventionalLongName "the German Empire" .

<http://dbpedia.org/resource/German_Empire>
dbp-owl:capital
<http://dbpedia.org/resource/Berlin>
.

Note
also
that
the
same
principle
described
here
applies
to

@src

and

@href
.

8.1.1.4.2

Inheriting
an
anonymous
subject

There
will
be
occasions
when
the
author
wants
to
connect
the
subject
and
object
as
shown
above,
but
is
not
concerned
to
name
the
resource
that
is
common
to
the
two
statements
(i.e.,
the
object
of
the
first
statement,
which
is
the
subject
of
the
second).
For
example,
to
indicate
that
Einstein
was
influenced
by
Spinoza
the
following
markup
could
well
be
used:

 Example 75
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 <div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14

 </div>
</div>

An
RDFa
Processor
will
generate
the
following
triples:

 Example 76
<http://dbpedia.org/resource/Baruch_Spinoza>
 dbp-owl:influenced <http://dbpedia.org/resource/Albert_Einstein> .
<http://dbpedia.org/resource/Albert_Einstein> foaf:name "Albert Einstein" .

<http://dbpedia.org/resource/Albert_Einstein>
dbp:dateOfBirth
"1879-03-14"^^xsd:date

.

However,
an
author
could
just
as
easily
say
that
Spinoza
influenced

something
by
the
name
of
Albert
Einstein,
that
was
born
on
March
14th,
1879
:

 Example 77
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 <div>
 Albert Einstein
 1879-03-14

 </div>
</div>

In
RDF
terms,
the
item
that
'represents'
Einstein
is

anonymous
,
since
it
has
no
IRI
to
identify
it.
However,
the
item
is
given
an
automatically
generated

bnode
,
and
it
is
onto
this
identifier
that
all
child
statements
are
attached:

An
RDFa
Processor
will
generate
the
following
triples:

 Example 78
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced _:a .
_:a foaf:name "Albert Einstein" .

_:a
dbp:dateOfBirth
"1879-03-14"^^xsd:date

.

Note
that
the

div

is
superfluous,
and
an
RDFa
Processor
will
create
the
intermediate
object
even
if
the
element
is
removed:

 Example 79
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 Albert Einstein
 1879-03-14

</div>

An
alternative
pattern
is
to

keep

the

div

and
move
the

@rel

onto
it:

 Example 80
<div about="http://dbpedia.org/resource/Baruch_Spinoza">
 <div rel="dbp-owl:influenced">
 Albert Einstein
 1879-03-14

 </div>
</div>

From
the
point
of
view
of
the
markup,
this
latter
layout
is
to
be
preferred,
since
it
draws
attention
to
the
'hanging
rel'.
But
from
the
point
of
view
of
an
RDFa
Processor,
all
of
these
permutations
need
to
be
supported.

8.2

Completing
incomplete
triples

When
a
new
subject
is
calculated,
it
is
also
used
to
complete
any
incomplete
triples
that
are
pending.
This
situation
arises
when
the
author
wants
to
'chain'
a
number
of
statements
together.
For
example,
an
author
could
have
a
statement
that
Albert
Einstein
was
born
in
the
German
Empire:

 Example 81
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />

</div>

and
then
a
further
statement
that
the
'long
name'
for
this
country
is

the
German
Empire
:

 Example 82
<span about="http://dbpedia.org/resource/German_Empire"
property="dbp:conventionalLongName">the

German
Empire

RDFa
allows
authors
to
insert
this
statement
as
a
self-contained
unit
into
other
contexts:

 Example 83
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace" resource="http://dbpedia.org/resource/German_Empire" />
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire

</div>

But
it
also
allows
authors
to
avoid
unnecessary
repetition
and
to
'normalize'
out
duplicate
identifiers,
in
this
case
the
one
for
the
German
Empire:

 Example 84
<div about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein
 1879-03-14
 <div rel="dbp:birthPlace">
 <span about="http://dbpedia.org/resource/German_Empire"
 property="dbp:conventionalLongName">the German Empire

 </div>
</div>

When
this
happens
the

@rel

for
'birth
place'
is
regarded
as
a
'hanging
rel'
because
it
has
not
yet
generated
any
triples,
but
these
'incomplete
triples'
are
completed
by
the

@about

that
appears
on
the
next
line.
The
first
step
is
therefore
to
store
the
two
parts
of
the
triple
that
the
RDFa
Processor

does

have,
but
without
an
object:

Example
85

<http://dbpedia.org/resource/Albert_Einstein>
dbp:birthPlace

?

.

Then
as
processing
continues,
the
RDFa
Processor
encounters
the
subject
of
the
statement
about
the
long
name
for
the
German
Empire,
and
this
is
used
in
two
ways.
First
it
is
used
to
complete
the
'incomplete
triple':

 Example 86
<http://dbpedia.org/resource/Albert_Einstein>
dbp:birthPlace

<http://dbpedia.org/resource/German_Empire>

.

and
second
it
is
used
to
generate
its
own
triple:

 Example 87
<http://dbpedia.org/resource/German_Empire>
dbp:conventionalLongName
"the

German
Empire"

.

Note
that
each
occurrence
of

@about

will
complete
any
incomplete
triples.
For
example,
to
mark
up
the
fact
that
Albert
Einstein
had
a
residence
both
in
the
German
Empire
and
Switzerland,
an
author
need
only
specify
one

@rel

value
that
is
then
used
with
multiple

@about

values:

 Example 88
<div about="http://dbpedia.org/resource/Albert_Einstein" rel="dbp-owl:residence">

</div>

In
this
example
there
is
one
incomplete
triple:

Example
89

<http://dbpedia.org/resource/Albert_Einstein>
dbp-owl:residence

?

.

When
the
processor
meets
each
of
the

@about

values,
this
triple
is
completed,
giving:

 Example 90
<http://dbpedia.org/resource/Albert_Einstein>
 dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
<http://dbpedia.org/resource/Albert_Einstein>
dbp-owl:residence

<http://dbpedia.org/resource/Switzerland>

.

These
examples
show
how

@about

completes
triples,
but
there
are
other
situations
that
can
have
the
same
effect.
For
example,
when

@typeof

creates
a
new

bnode

(as
described
above),
that
will
be
used
to
complete
any
'incomplete
triples'.
To
indicate
that
Spinoza
influenced
both
Einstein
and
Schopenhauer,
the
following
markup
could
be
used:

 Example 91
<div about="http://dbpedia.org/resource/Baruch_Spinoza">
 <div rel="dbp-owl:influenced">
 <div typeof="foaf:Person">
 Albert Einstein
 1879-03-14

 </div>
 <div typeof="foaf:Person">
 Arthur Schopenhauer
 1788-02-22

 </div>
 </div>
</div>

First
the
following
incomplete
triple
is
stored:

Example
92

<http://dbpedia.org/resource/Baruch_Spinoza>
dbp-owl:influenced

?

.

Then
when
the
RDFa
Processor
processes
the
two
occurrences
of

@typeof
,
each
generates
a

bnode
,
which
is
used
to
both
complete
the
'incomplete
triple',
and
to
set
the
subject
for
further
statements:

 Example 93
<http://dbpedia.org/resource/Baruch_Spinoza"> dbp-owl:influenced _:a .
_:a rdf:type foaf:Person .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .
<http://dbpedia.org/resource/Baruch_Spinoza"> dbp-owl:influenced _:b .

_:b rdf:type foaf:Person .
_:b foaf:name "Arthur Schopenhauer" .

_:b

dbp:dateOfBirth
"1788-02-22"^^xsd:date

.

Triples
are
also
'completed'
if
any
one
of

@property
,

@rel

or

@rev

are
present.
However,
unlike
the
situation
when

@about

or

@typeof

are
present,
all
predicates
are
attached
to
one

bnode
:

 Example 94
<div about="http://dbpedia.org/resource/Baruch_Spinoza" rel="dbp-owl:influenced">
 Albert Einstein
 1879-03-14
 <div rel="dbp-owl:residence">

 </div>
</div>

This
example
has
two
'hanging
rels',
and
so
two
situations
when
'incomplete
triples'
will
be
created.
Processing
would
proceed
as
follows;
first
an
incomplete
triple
is
stored:

Example
95

<http://dbpedia.org/resource/Baruch_Spinoza>
dbp-owl:influenced

?

.

Next,
the
RDFa
Processor
processes
the
predicate
values
for

foaf:name
,

dbp:dateOfBirth

and

dbp-owl:residence
,
but
note
that
only
the
first
needs
to
'complete'
the
'hanging
rel'.
So
processing

foaf:name

generates
two
triples:

 Example 96
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced _:a .

_:a

foaf:name
"Albert
Einstein"

.

but
processing

dbp:dateOfBirth

generates
only
one:

Example
97

_:a

dbp:dateOfBirth
"1879-03-14"^^xsd:date

.

Processing

dbp-owl:residence

also
uses
the
same

bnode
,
but
note
that
it
also
generates
its
own
'incomplete
triple':

Example
98

_:a
dbp-owl:residence

?

.

As
before,
the
two
occurrences
of

@about

complete
the
'incomplete
triple',
once
each:

 Example 99
_:a dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .
_:a
dbp-owl:residence

<http://dbpedia.org/resource/Switzerland>

.

The
entire
set
of
triples
that
an
RDFa
Processor
should
generate
is
as
follows:

 Example 100
<http://dbpedia.org/resource/Baruch_Spinoza> dbp-owl:influenced _:a .
_:a foaf:name "Albert Einstein" .
_:a dbp:dateOfBirth "1879-03-14"^^xsd:date .
_:a dbp-owl:residence <http://dbpedia.org/resource/German_Empire> .

_:a

dbp-owl:residence
<http://dbpedia.org/resource/Switzerland>
.

8.3

Object
resolution

Although
objects
have
been
discussed
in
the
previous
sections,
as
part
of
the
explanation
of
subject
resolution,
chaining,
evaluation
contexts,
and
so
on,
this
section
will
look
at
objects
in
more
detail.

There
are
two
types
of
object,

IRI
resource

s
and

literal

s.

A

literal

object
can
be
set
by

@content

or
the
inline
text
of
element
if

@property

to
express
a

predicate
.

Note
that
the
use
of

@content

prohibits
the
inclusion
of
rich
markup
in
your
literal.
If
the
inline
content
of
an
element
accurately
represents
the
object,
then
documents
should
rely
upon
that
rather
than
duplicating
that
data
using
the

@content
.

An

IRI
resource

object
can
be
set
using
one
of

@rel

or

@rev

to
express
a

predicate
,
and
then

either

using
one
of

@href
,

@resource

or

@src

to
provide
an
object
resource
explicitly,

or

using
the
chaining
techniques
described
above
to
obtain
an
object
from
a
nested
subject,
or
from
a

bnode
.

Alternatively
,
the

@property

can
also
be
used
to
define
an
IRI
resource;
this
requires
the
presence
of
a

@resource
,

@href
,
or

@src

and

the
absence
of

@rel
,

@rev
,

@datatype
,
or

@content
.

8.3.1

Object
resolution
for
the

@property

attribute

An

object
literal

will
be
generated
when

@property

is
present
and
no
resource
attribute
is
present.

@property

provides
the
predicate,
and
the
following
sections
describe
how
the
actual
literal
to
be
generated
is
determined.

8.3.1.1

Plain
Literals

@content

can
be
used
to
indicate
a

plain
literal
,
as
follows:

 Example 101
<meta about="http://internet-apps.blogspot.com/"
property="dc:creator"

content="Mark
Birbeck"

/>

The

plain
literal

can
also
be
specified
by
using
the
content
of
the
element:

 Example 102
<span about="http://internet-apps.blogspot.com/"
property="dc:creator">

Mark
Birbeck

Both
of
these
examples
give
the
following
triple:

Example
103

<http://internet-apps.blogspot.com/>
dc:creator
"Mark
Birbeck"

.

The
value
of

@content

is
given
precedence
over
any
element
content,
so
the
following
would
give
exactly
the
same
triple
as
shown
above:

 Example 104
<span about="http://internet-apps.blogspot.com/"
property="dc:creator"

content="Mark
Birbeck"

>John
Doe

8.3.1.1.1

Language
Tags

RDF
allows

plain
literal

s
to
have
a
language
tag,
as
illustrated
by
the
following
example
from
[

RDF-TESTCASES

]:

 Example 105
<http://example.org/node>
<http://example.org/property>
"chat"

@fr

.

In
RDFa
the
Host
Language
may
provide
a
mechanism
for
setting
the
language
tag.
In
XHTML+RDFa
[

XHTML-RDFA

],
for
example,
the
XML
language
attribute

@xml:lang

or
the
attribute

@lang

is
used
to
add
this
information,
whether
the
plain
literal
is
designated
by

@content
,
or
by
the
inline
text
of
the
element:

 Example 106
<meta about="http://example.org/node"
property="ex:property"

xml:lang="fr"

content="chat"

/>

Note
that
the
language
value
can
be
inherited
as
defined
in
[

XML10-4e

],
so
the
following
syntax
will
give
the
same
triple
as
above:

 Example 107
<html xmlns="http://www.w3.org/1999/xhtml"
 prefix="ex: http://www.example.com/ns/" xml:lang="fr">

 <head>
 <title xml:lang="en">Example</title>
 <meta about="http://example.org/node"
 property="ex:property" content="chat" />

 </head>
 ...
</html>

8.3.1.2

Typed
Literals

Literals
can
be
given
a
data
type
using

@datatype
.

This
can
be
represented
in
RDFa
as
follows:

 Example 108
<span property="cal:dtstart" content="2015-09-16T16:00:00-05:00"
 datatype="xsd:dateTime">
 September 16th at 4pm
.

The
triple
that
this
markup
generates
includes
the
datatype
after
the
literal:

Example
109

<>
cal:dtstart
"2015-09-16T16:00:00-05:00"^^

xsd:dateTime

.

8.3.1.3

XML
Literals

XML
documents
cannot
contain
XML
markup
in
their
attributes,
which
means
it
is
not
possible
to
represent
XML
within

@content

(the
following
would
cause
an
XML
parser
to
generate
an
error):

 Example 110
<head>
 <meta property="dc:title"
 content="E = mc²: The Most Urgent Problem of Our Time" />

</head>

RDFa
therefore
supports
the
use
of
arbitrary
markup
to
express
XML
literals
by
using

@datatype
:

 Example 111
<h2 property="dc:title" datatype="rdf:XMLLiteral">
 E = mc²: The Most Urgent Problem of Our Time
</h2>

This
would
generate
the
following
triple,
with
the
XML
preserved
in
the
literal:

Example
112

<>
dc:title
"E

=
mc²:
The
Most
Urgent
Problem
of
Our
Time"^^rdf:XMLLiteral

.

Note

This
requires
that
an
IRI
mapping
for
the
prefix

rdf

has
been
defined.

In
the
examples
given
here
the

sup

element
is
actually
part
of
the
meaning
of
the
literal,
but
there
will
be
situations
where
the
extra
markup
means
nothing,
and
can
therefore
be
ignored.
In
this
situation
omitting
the

@datatype

attribute
or
specifying
an
empty

@datatype

value
can
be
used
to
create
a
plain
literal:

 Example 113
<p>You searched for Einstein:</p>
<p about="http://dbpedia.org/resource/Albert_Einstein">
 Albert Einstein

 (b. March 14, 1879, d. April 18, 1955) was a German-born theoretical physicist.
</p>

Rendering
of
this
page
has
highlighted
the
term
the
user
searched
for.
Setting

@datatype

to
nothing
ensures
that
the
data
is
interpreted
as
a
plain
literal,
giving
the
following
triple:

Example
114

<http://dbpedia.org/resource/Albert_Einstein>
foaf:name

"Albert
Einstein"

.

Note

The
value
of
this

XML
Literal

is
the
exclusive
canonicalization
[

XML-EXC-C14N

]
of
the
RDFa
element's
value.

8.3.2

IRI
object
resolution

Most
of
the
rules
governing
the
processing
of
objects
that
are
resources
are
to
be
found
in
the
processing
descriptions
given
above,
since
they
are
important
for
establishing
the
subject.
This
section
aims
to
highlight
general
concepts,
and
anything
that
might
have
been
missed.

One
or
more

IRI
object

s
are
needed
when

@rel

or

@rev

is
present.
Each
attribute
will
cause
triples
to
be
generated
when
used
with

@href
,

@resource

or

@src
,
or
with
the
subject
value
of
any
nested
statement
if
none
of
these
attributes
are
present.

If

@rel

or

@rev

is
not
present,
and
neither
is

@datatype

or

@content
,
a

@property

attribute
will
cause
triples
to
be
generated
when
used
with

@href
,

@resource

or

@src
.
(See
also
the

section
on

@property

and

@typeof

for
an
additional
special
case
involving

@property
.)

@rel

and

@rev

are
essentially
the
inverse
of
each
other;
whilst

@rel

establishes
a
relationship
between
the

current
subject

as
subject,
and
the

current
object
resource

as
the
object,

@rev

does
the
exact
opposite,
and
uses
the

current
object
resource

as
the
subject,
and
the

current
subject

as
the
object.

8.3.2.1

Using

@resource

to
set
the
object

RDFa
provides
the

@resource

attribute
as
a
way
to
set
the
object
of
statements.
This
is
particularly
useful
when
referring
to
resources
that
are
not
themselves
navigable
links:

 Example 115
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>On Crime and Punishment</title>
 <base href="http://www.example.com/candp.xhtml" />

 </head>
 <body>
 <blockquote about="#q1" rel="dc:source" resource="urn:ISBN:0140449132" >
 <p id="q1">

 Rodion Romanovitch! My dear friend! If you go on in this way
 you will go mad, I am positive! Drink, pray, if only a few drops!
 </p>
 </blockquote>
 </body>
</html>

The

blockquote

element
generates
the
following
triple:

 Example 116
<http://www.example.com/candp.xhtml#q1>
<http://purl.org/dc/terms/source>
<urn:ISBN:0140449132>
.

Note
that,
in
the
example
above,

@property

could
have
been
used
instead
of

@rel
,
yielding
the
same
triple.

8.3.2.2

Using

@href

or

@src

to
set
the
object

If
no

@resource

is
present,
then

@href

or

@src

are
next
in
priority
order
for
setting
the
object.

When
a
predicate
has
been
expressed
using

@rel
,
the

@href

or

@src

on
the
RDFa
statement's
element
is
used
to
identify
the
object
with
a

IRI
reference
.
Their
types
are
an
IRI:

 Example 117
<link about="mailto:john@example.org"

rel="foaf:knows"
href="mailto:sue@example.org"

/>

It's
also
possible
to
use
both

@rel

and

@rev

at
the
same
time
on
an
element.
This
is
particularly
useful
when
two
things
stand
in
two
different
relationships
with
each
other,
for
example
when
a
picture
is
taken

by

Mark,
but
that
picture
also

depicts

him:

 Example 118
<img about="http://www.blogger.com/profile/1109404"
src="photo1.jpg"

rev="dc:creator"
rel="foaf:img"

/>

which
then
yields
two
triples:

 Example 119
<photo1.jpg>
 dc:creator <http://www.blogger.com/profile/1109404> .
<http://www.blogger.com/profile/1109404>
foaf:img
<photo1.jpg>
.

8.3.2.3

Incomplete
triples

When
a
triple
predicate
has
been
expressed
using

@rel

or

@rev
,
but
no

@href
,

@src
,
or

@resource

exists
on
the
same
element,
there
is
a
'hanging
rel'.
This
causes
the
current
subject
and
all
possible
predicates
(with
an
indicator
of
whether
they
are
'forwards,
i.e.,

@rel

values,
or
not,
i.e.,

@rev

values),
to
be
stored
as
'incomplete
triples'
pending
discovery
of
a
subject
that
could
be
used
to
'complete'
those
triples.

This
process
is
described
in
more
detail
in

Completing
'Incomplete
Triples'
.

8.4

List
Generation

An
RDF
graph
is
a
collection
of
triples.
This
also
means
that
if
the
graph
contains
two
triples
sharing
the
same
subject
and
predicate:

Example
120

<http://www.example.com>
<http://www.example.com/predicate>
"first
object",
"second
object"

;

There
is
no
way
for
an
application
to
rely
on
the
relative
order
of
the
two
triples
when,
for
example,
querying
a
database
containing
these
triples.
For
most
of
the
applications
and
data
sets
this
is
not
a
problem,
but,
in
some
cases,
the
order
is
important.
A
typical
case
is
publications:
when
a
book
or
an
article
has
several
co-authors,
the
order
of
the
authors
may
be
important.

RDF
has
a
set
of
predefined
predicates
that
have
an
agreed-upon
semantic
of
order.
For
example,
the
publication:
"Semantic

Annotation
and
Retrieval,
by
Ben
Adida,
Mark
Birbeck,
and
Ivan
Herman"

could
be
described
in
RDF
triples
using
these
terms
as
follows:

 Example 121
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;

 dc:creator [
 rdf:first <http://ben.adida.net/#me ;
 rdf:rest [
 rdf:first <http://twitter.com/markbirbeck> ;
 rdf:rest [
 rdf:first <http://www.ivan-herman.net/foaf#me> ;
 rdf:rest rdf:nil .
] .
] .
] .
	...
]

which
conveys
the
notion
of
'order'
for
the
three
authors.
Admittedly,
this
is
not
very
readable.
However,
Turtle
has
a
syntactic
shorthand
for
these
structures:

 Example 122
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;

 dc:creator
 (<http://ben.adida.net/#me>
 <http://twitter.com/markbirbeck>
 <http://www.ivan-herman.net/foaf#me>
) .
 ...
]

It
would
of
course
be
possible
to
reproduce
the
same
structure
in
RDFa,
using
the
RDF
predicates

rdf:first
,

rdf:rest
,
as
well
as
the
special
resource

rdf:nil
.
However,
to
make
this
easier,
RDFa
provides
the

@inlist
.
What
this
attribute
signals
is
that
the
object
generated
on
that
element
should
be
put
on
a
list;
the
list
is
used
with
the
common
predicate
and
subject.
Here
is
how
the
previous
structure
could
look
like
in
RDFa:

 Example 123
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/ typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval" by
 <a inlist="" property="dc:creator"
 href="http://ben.adida.net/#me">Ben Adida,
 <a inlist="" property="dc:creator"
 href="http://twitter.com/markbirbeck">Mark Birbeck, and
 <a inlist="" property="dc:creator"
 href="http://www.ivan-herman.net/foaf#me">Ivan Herman.

</p>

Note
that
the
order
in
the
list
is
determined
by
the
document
order.
(The
value
of
the

@inlist

is
not
relevant,
only
its
presence
is.)

Lists
may
also
include
IRIs
and
not
only
literals.
For
example,
two
of
the
three
co-authors
could
decide
to
publicise
their
FOAF
address
in
the
authors’
list:

 Example 124
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/ typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval", by
 Ben Adida,
 Mark Birbeck, and
 Ivan Herman.

</p>

yielding:

 Example 125
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;
 dc:creator (<http://ben.adida.net/#me> "Mark Birbeck" <http://www.ivan-herman.net/foaf#me>) .

 ...
]

In
the
example
above,

@rel

could
have
been
used
leading
exactly
to
the
same
triples:

 Example 126
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/ typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval", by
 Ben Adida,
 Mark Birbeck, and
 Ivan Herman.

</p>

Incomplete
Triples

can
also
be
used
in
conjunction
with
lists
when
all
list
elements
are
resources
and
not
literals.
For
example,
the
previous
example,
this
time
with
all
three
authors
referring
to
their
FOAF
profile,
could
have
been
written
as:

 Example 127
<p prefix="bibo: http://purl.org/ontology/bibo/ dc: http://purl.org/dc/terms/ typeof="bibo:Chapter">
 "Semantic Annotation and Retrieval", by

 Ben Adida,
 Mark Birbeck, and
 Ivan Herman.

</p>

Resulting
in:

 Example 128
@prefix bibo: <http://purl.org/ontology/bibo/> .
@prefix dc: <http://purl.org/dc/terms/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[a bibo:Chapter ;
 dc:title "Semantic Annotation and Retrieval" ;

 dc:creator (<http://ben.adida.net/#me>
 <http://internet-apps.blogspot.com/2008/03/my-profile.html#me>
 <http://www.ivan-herman.net/foaf#me>) .
 ...
]

Note
that
it
is
also
possible
to
express
an
empty
list,
without

@inlist
,
using:

Example
129

<span
rel="prop"
resource="rdf:nil"/>

9.

RDFa
Initial
Contexts

RDFa
permits
Host
Languages
to
define
an

initial
context
.
Such
a
context
is
a
collection
of
terms,
prefix
mappings,
and/or
a
default
vocabulary
declaration.
An
initial
context
is
either
intrinsically
known
to
the
parser,
or
it
is
loaded
as
external
documents
and
processed.
These
documents

MUST

be
defined
in
an
approved
RDFa
Host
Language
(currently
XML+RDFa,
XHTML+RDFa
[

XHTML-RDFA

],
and
HTML+RDFa
[

HTML-RDFA

]).

They

MAY

also
be
defined
in
other
formats
(e.g.,
RDF/XML
[

RDF-SYNTAX-GRAMMAR

],
or
Turtle
[

TURTLE

]).

When
an
initial
context
document
is
processed,
it
is
evaluated
as
follows:

		
Parse
the
content
(according
to
the
processing
rules
for
that
document
type)
and
extract
the
triples
into
a
collection
associated
with
that
IRI.
Note:
These
triples

MUST
NOT

be
co-mingled
with
the
triples
being
extracted
from
any
other
IRI.

		
For
every
subject
with
a
pair
of
predicates
that
have
the
values

rdfa:prefix

and

rdfa:uri
,
create
a
key-value
mapping
from
the

rdfa:prefix

object
literal
(the
key)
to
the

rdfa:uri

object
literal
(the
value).
Add
this
mapping
to
the

list
of
IRI
mappings

of
the

initial
evaluation
context
,
after
transforming
the
'prefix'
component
to
lower-case.

		
For
every
subject
with
a
pair
of
predicates
that
have
the
values

rdfa:term

and

rdfa:uri
,
create
a
key-value
mapping
from
the

rdfa:term

object
literal
(the
key)
to
the

rdfa:uri

object
literal
(the
value).
Add
this
mapping
to
the

term
mappings

of
the

initial
evaluation
context
.

		
For
an
extracted
triple
that
has
a
predicate
of

rdfa:vocabulary
,
define
the

default
vocabulary

of
the

initial
evaluation
context

to
be
the
object
literal
of
the

rdfa:vocabulary

predicate.

When
an
RDFa
Initial
Context
is
defined
using
an
RDF
serialization,
it

MUST

use
the
vocabulary
terms
above
to
declare
the
components
of
the
context.

Note

Caching
of
the
relevant
triples
retrieved
via
this
mechanism
is

RECOMMENDED
.
Embedding
definitions
for
well
known,
stable
RDFa
Initial
Contexts
in
the
implementation
is

RECOMMENDED
.

Note

		
The
object
literal
for
the

rdfa:uri

predicate

MUST

be
an
absolute
IRI.

		
The
object
literal
for
the

rdfa:term

predicate

MUST

match
the
production
for

term
.

		
The
object
literal
for
the

rdfa:prefix

predicate
must
match
the
production
for

prefix
.

		
The
object
literal
for
the

rdfa:vocabulary

predicate

MUST

be
an
absolute
IRI.

		
If
one
of
the
objects
is
not
a
literal,
does
not
match
its
associated
production,
if
there
is
more
than
one

rdfa:vocabulary

predicate,
or
if
there
are
additional

rdfa:uri

or

rdfa:term

predicates
sharing
the
same
subject,
an
RDFa
Processor

MUST
NOT

create
the
associated
mapping.

10.

RDFa
Vocabulary
Expansion

Since
RDFa
is
based
on
RDF,
the
semantics
of
RDF
vocabularies
can
be
used
to
gain
more
knowledge
about
data.
Vocabularies,
properties
and
classes
are
identified
by
IRIs,
which
enables
them
to
be
discoverable.
RDF
data
published
at
the
location
of
these
IRIs
can
be
retrieved,
and
descriptions
of
the
properties
and
classes
using
specified
semantics
can
be
applied.

RDFa
Vocabulary
Expansion

is
an
optional
processing
step
which
may
be
added
once
the
normal
processing
steps
described
in

Processing
Model

are
complete.
Vocabulary
expansion
relies
on
a
very
small
sub-set
of
OWL
entailment
[

OWL2-OVERVIEW

]
to
add
triples
to
the

output
graph

based
on
rules
and
property/class
relationships
described
in
referenced
vocabularies.
Vocabulary
expansion

MAY

be
performed
as
part
of
a
larger
RDF
toolset
including,
for
example,
an
OWL
2
RL
reasoner.
Alternatively,
using
vocabulary
data
added
to
the

output
graph

in
processing
step
2
of

Sequence
,
expansion

MAY

also
be
done
using
a
separate
and
dedicated
(e.g.,
rule
based)
reasoner
after
the

output
graph

has
been
generated,
or
as
the
last
processing
step
by
an
RDFa
processor.

It
can
be
very
useful
to
make
generalized
data
available
for
subsequent
usage
of
RDFa-embedded
data
by
expanding
inferred
statements
entailed
by
these
semantics.
This
provides
for
existing
vocabularies
that
extend
well-known
vocabularies
to
have
those
properties
added
to
the
output
graph
automatically.
For
example,
the
namespace
document
of
the
Creative
Commons
vocabulary,
i.e.,

http://creativecommons.org/ns
,
defines

cc:license

to
be
a
sub-property
of

dc:license
.
By
using
the

@vocab

attribute,
one
can
describe
a
licensing
information
as
follows:

 Example 130
This document is licensed under the
<a vocab="http://creativecommons.org/ns#"
 rel="license"
 href="http://creativecommons.org/licenses/by-nc-nd/3.0/">

 Creative Commons By-NC-ND License
.

which
results
in
the
following

output
graph
:

 Example 131
@prefix cc: <http://creativecommons.org/ns#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
<> cc:license <http://creativecommons.org/licenses/by-nc-nd/3.0/> ;
rdfa:usesVocabulary
<http://creativecommons.org/ns#>
.

After
vocabulary
expansion,
the

output
graph

contains:

 Example 132
@prefix cc: <http://creativecommons.org/ns#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix dc: <http://purl.org/dc/terms/> .
<> cc:license <http://creativecommons.org/licenses/by-nc-nd/3.0/>;
 dc:license <http://creativecommons.org/licenses/by-nc-nd/3.0/> ;
rdfa:usesVocabulary
<http://creativecommons.org/ns#>
.

Other
vocabularies,
specifically
intended
to
provide
relations
to
multiple
vocabularies,
could
also
be
defined
by
publishers,
allowing
use
of
terms
in
a
single
namespace
which
result
in
properties
and/or
classes
from
other
primary
vocabularies
being
imported.
This
benefits
publishers
as
data
is
now
more
widely
searchable
and
encourages
the
practice
of
referencing
well-known
vocabularies.

10.1

Details
of
the
RDFa
Vocabulary
Expansion

This
section
is
non-normative.

Once
the

output
graph

is
generated
following
the
processing
steps
defined
in

Sequence
,
processors

MAY

perform
the
following
processing
steps
on
the
output
graph.
It
must
do
so
only
if
the
user
of
the
processor
explicitly
asks
for
it,
as
prescribed
in

Vocabulary
Expansion
Control
of
RDFa
Processors
.

A

vocabulary
graph

is
created
as
follows:
Each
object
IRI
in
the

output
graph

that
has
a
subject
the
current
document
(

base

)
IRI
and
a
predicate
of

rdfa:usesVocabulary

is
dereferenced.
If
the
dereferencing
yields
the
serialization
of
an
RDF
graph,
that
serialization
is
parsed
and
the
resulting
graph
is
merged
with
the
vocabulary
graph.
(An
RDFa
processor
capable
of
vocabulary
expansion

MUST

accept
an
RDF
graph
serialized
in
RDFa,
and

SHOULD

accept
other
standard
serialization
formats
of
RDF
such
as
RDF/XML
[

RDF-SYNTAX-GRAMMAR

]
and
Turtle
[

TURTLE

].)

Note

Note
that
if,
in
the
second
step,
a
particular
vocabulary
is
serialized
in
RDFa,
that
particular
graph
is
not
expected
to
undergo
any
vocabulary
expansion
on
its
own.

Vocabulary
expansion
is
then
performed
as
follows:

		
The
processor
operates
on
the
merge
of
the
default
and
vocabulary
graphs
using

RDFa
Vocabulary
Entailment
.

		
Add
the
new
triples
inferred
from
the

output
graph

using
this
entailment
to
the
(expanded)

output
graph
.
The
processor

SHOULD
NOT

add
the
triples
appearing
in
the

vocabulary
graph

only.

The
goal
of
the
second
step
is
to
avoid
adding
the
"axioms",

e.g.,
the
sub-property
definitions
to
the
output
graph.
Applications
usually
do
not
require
any
of
this
additional
information.

10.1.1

RDFa
Vocabulary
Entailment

This
section
is
non-normative.

For
the
purpose
of
vocabulary
processing,
RDFa
used
a
very
restricted
subset
of
the
OWL
vocabulary
and
is
based
on
the
RDF-Based
Semantics
of
OWL
[

OWL2-RDF-BASED-SEMANTICS

].
The
RDFa
Vocabulary
Entailment
uses
the
following
terms:

		

rdf:type

		

rdfs:subClassOf

		

rdfs:subPropertyOf

		

owl:equivalentClass

		

owl:equivalentProperty

Note

RDFa
Vocabulary
Entailment
considers
only
the
entailment
on
individuals
(i.e.,
not
on
the
relationships
that
can
be
deduced
on
the
properties
or
the
classes
themselves.)

Note

While
the
formal
definition
of
the
RDFa
Entailment
refers
to
the
general
OWL
2
Semantics,
practical
implementations
may
rely
on
a
subset
of
the
OWL
2
RL
Profile’s
entailment
expressed
in
rules
(

section
4.3

of
[

OWL2-PROFILES

]).
The
relevant
rules
are,
using
the
rule
identifications
in

section
4.3

of
[

OWL2-PROFILES

]):

prp-spo1
,

prp-eqp1
,

prp-eqp2
,

cax-sco
,

cax-eqc1
,
and

cax-eqc2
.

The
entailment
described
in
this
section
is
the

minimum

useful
level
for
RDFa.
Processors
may,
of
course,
choose
to
follow
more
powerful
entailment
regimes,
e.g.,
include
full
RDFS
[

RDF-MT

]
or
OWL
[

OWL2-OVERVIEW

]
entailments.
Using
those
entailments
applications
may
perform
datatype
validation
by
checking

rdfs:range

of
a
property,
or
use
the
advanced
facilities
offered
by,
e.g.,
OWL’s
property
chains
to
interlink
vocabularies
further.

10.2

Vocabulary
Expansion
Control
of
RDFa
Processors

Conforming
RDFa
processors
are
not
required
to
provide
vocabulary
expansion.

If
an
RDFa
processor
provides
vocabulary
expansion,
it

MUST
NOT

be
performed
by
default.
Instead,
the
processor

MUST

provide
an
option,

vocab_expansion
,
which,
when
used,
instructs
the
RDFa
processor
to
perform
a
vocabulary
expansion
before
returning
the
output
graph.

Note

Although
vocabulary
expansion
is
described
in
terms
of
a

vocabulary
graph

and
OWL
2
entailment
rules,
processors
are
free
to
use
any
process
which
obtains
equivalent
results.

10.2.1

Notes
to
RDFa
Vocabulary
Implementations
and
Publishing

This
section
is
non-normative.

For
RDFa
Processors
caching
the
relevant
graphs
retrieved
via
this
mechanism
is

RECOMMENDED
.
Caching
is
usually
based
on
HTTP
response
headers
like
expiration
time,
cache
control,
etc.

For
publishers
of
vocabularies,
the
IRI
for
the
vocabularies

SHOULD

be
dereferenceable,
and
should
return
an
RDF
graph
with
the
vocabulary
description.
This
vocabulary
description

SHOULD

be
available
encoded
in
RDFa,
and

MAY

also
be
available
in
other
RDF
serialization
syntaxes
(using
content
negotiation
to
choose
among
the
different
formats).
If
possible,
vocabulary
descriptions

SHOULD

include
subproperty
and
subclass
statements
linking
the
vocabulary
terms
to
other,
well-known
vocabularies.
Finally,
HTTP
responses

SHOULD

include
fields
usable
for
cache
control,
e.g.,
expiration
date.

A.

CURIE
Datatypes

In
order
to
facilitate
the
use
of
CURIEs
in
markup
languages,
this
specification
defines
some
additional
datatypes
in
the
XHTML
datatype
space
(

http://www.w3.org/1999/xhtml/datatypes/

).
Markup
languages
that
want
to
import
these
definitions
can
find
them
in
the
"datatypes"

file
for
their
schema
grammar:

		

DTD
xhtml-datatypes.mod

		

XML
Schema
xhtml-datatypes.xsd

Specifically,
the
following
datatypes
are
defined:

		

CURIE

		
A
single

curie

		

CURIEs

		
A
white
space
separated
list
of

CURIE

s

		

CURIEorIRI

		
A

CURIE

or
an

IRI

		

CURIEorIRIs

		
A
white
space
separated
list
of

CURIEorIRI

s

		

SafeCURIE

		
A
single

safe_curie

		

SafeCURIEorCURIEorIRI

		
A
single

SafeCURIE

or

CURIEorIRI

		

SafeCURIEorCURIEorIRIs

		
A
white
space
separated
list
of

SafeCURIEorCURIEorIRI

s.

		

TERM

		
A
single

term

		

TERMorCURIEorAbsIRI

		
A

TERM

or
a

CURIEorIRI

		

TERMorCURIEorAbsIRIs

		
A
white
space
separated
list
of

TERMorCURIEorAbsIRI

s

A.1

XML
Schema
Definition

This
section
is
non-normative.

The
following

informative

XML
Schema
definition
for
these
datatypes
is
included
as
an
example:

 Example 133
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/1999/xhtml/datatypes/"
 xmlns:xh11d="http://www.w3.org/1999/xhtml/datatypes/"
 targetNamespace="http://www.w3.org/1999/xhtml/datatypes/"
 elementFormDefault="qualified"

>
 <xs:simpleType name="CURIE">
 <xs:restriction base="xs:string">
 <xs:pattern value="(([\i-[:]][\c-[:]]*)?:)?(/[^\s/][^\s]*|[^\s/][^\s]*|[^\s]?)" />
 <xs:minLength value="1"/>

 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="CURIEs">
 <xs:list itemType="xh11d:CURIE"/>

 </xs:simpleType>
 <xs:simpleType name="SafeCURIE">
 <xs:restriction base="xs:string">
 <xs:pattern value="\[(([\i-[:]][\c-[:]]*)?:)?(/[^\s/][^\s]*|[^\s/][^\s]*|[^\s]?)\]" />
 <xs:minLength value="3"/>

 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="SafeCURIEs">
 <xs:list itemType="xh11d:SafeCURIE"/>

 </xs:simpleType>
 <xs:simpleType name="TERM">
 <xs:restriction base="xs:Name">
 <xs:pattern value="[\i-[:]][/\c-[:]]*" />

 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="CURIEorIRI">
 <xs:union memberTypes="xh11d:CURIE xsd:anyURI" />

 </xs:simpleType>
 <xs:simpleType name="CURIEorIRIs">
 <xs:list itemType="xh11d:CURIEorIRI"/>

 </xs:simpleType>
 <xs:simpleType name="SafeCURIEorCURIEorIRI">
 <xs:union memberTypes="xh11d:SafeCURIE xh11d:CURIE xsd:anyURI" />

 </xs:simpleType>
 <xs:simpleType name="SafeCURIEorCURIEorIRIs">
 <xs:list itemType="xh11d:SafeCURIEorCURIEorIRI"/>

 </xs:simpleType>
 <xs:simpleType name='AbsIRI'>
 <xs:restriction base='xs:string'>
 <xs:pattern value="[\i-[:]][\c-[:]]+:.+" />

 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="TERMorCURIEorAbsIRI">
 <xs:union memberTypes="xh11d:TERM xh11d:CURIE xh11d:AbsIRI" />

 </xs:simpleType>
 <xs:simpleType name="TERMorCURIEorAbsIRIs">
 <xs:list itemType="xh11d:SafeCURIEorCURIEorAbsIRI"/>

 </xs:simpleType>
</xs:schema>

A.2

XML
DTD
Definition

This
section
is
non-normative.

The
following

informative

XML
DTD
definition
for
these
datatypes
is
included
as
an
example:

 Example 134
<!ENTITY % CURIE.datatype "CDATA" >
<!ENTITY % CURIEs.datatype "CDATA" >
<!ENTITY % CURIEorIRI.datatype "CDATA" >
<!ENTITY % CURIEorIRIs.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRI.datatype "CDATA" >
<!ENTITY % SafeCURIEorCURIEorIRIs.datatype "CDATA" >
<!ENTITY % TERMorCURIEorAbsIRI.datatype "CDATA" >

<!ENTITY
%
TERMorCURIEorAbsIRIs.datatype
"CDATA"

>

B.

The
RDFa
Vocabulary

The
RDFa
Vocabulary
has
three
roles:
it
contains
the
predicates
to
define
the
terms
and
prefixes
in

initial
context

documents,
it
contains
the
classes
and
predicates
for
the
messages
that
a

processor
graph

may
contain
and,
finally,
it
contains
the
predicate
necessary
for
vocabulary
processing.
The
IRI
of
the
vocabulary
is

http://www.w3.org/ns/rdfa#

;
the
usual
prefix
used
in
this
document
is

rdfa
.

This
vocabulary
specification
is
available
in

XHTML+RDFa
1.1
,

Turtle
,
and
in

RDF/XML

formats.

B.1

Term
and
Prefix
Assignments

The
RDFa
Vocabulary
includes
the
following
triples
(shown
here
in
Turtle
[

TURTLE

]
format):

 Example 135
@prefix dc: <http://purl.org/dc/terms/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://www.w3.org/ns/rdfa#> a owl:Ontology .
rdfa:PrefixOrTermMapping a rdfs:Class, owl:Class ;
 dc:description "The top level class for prefix or term mappings." .

rdfa:PrefixMapping dc:description "The class for prefix mappings." .

 rdfs:subClassOf rdfa:PrefixOrTermMapping .

rdfa:TermMapping dc:description "The class for term mappings." .

 rdfs:subClassOf rdfa:PrefixOrTermMapping .
rdfa:prefix a rdf:Property, owl:DatatypeProperty ;
 rdfs:domain rdfa:PrefixMapping ;
 dc:description "Defines a prefix mapping for an IRI; the value is supposed to be a NMTOKEN." .

rdfa:term a rdf:Property, owl:DatatypeProperty ;
 rdfs:domain rdfa:TermMapping ;
 dc:description "Defines a term mapping for an IRI; the value is supposed to be a NMTOKEN." .

rdfa:uri a rdf:Property, owl:DatatypeProperty ;
 rdfs:domain rdfa:PrefixOrTermMapping ;
 dc:description """Defines the IRI for either a prefix or a term mapping;
 the value is supposed to be an absolute IRI.""" .

rdfa:vocabulary a rdf:Property, owl:DatatypeProperty ;
 dc:description """Defines an IRI to be used as a default vocabulary;

 the value is can be any string; for documentation purposes it is advised to use
the
string
‘true’
or
‘True’."""

.

These
predicates
can
be
used
to
define
the

initial
context

for
a
given
Host
Language.

These
predicates
are
used
to
'pair'
IRI
strings
and
their
usage
in
the
form
of
a
prefix
and/or
a
term
as
part
of,
for
example,
a
blank
node.
An
example
can
be
as
follows:

 Example 136
[] rdfa:uri "http://xmlns.com/foaf/0.1/name" ;
rdfa:prefix
"foaf"

.

which
defines
a
prefix
for
the
FOAF
IRI.

B.2

Processor
Graph
Reporting

The
Vocabulary
includes
the
following
term
definitions
(shown
here
in
Turtle
[

TURTLE

]
format):

 Example 137
@prefix dc: <http://purl.org/dc/terms/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
rdfa:PGClass a rdfs:Class, owl:Class;
 dc:description "The top level class of the hierarchy." .

rdfa:Error dcterms:description "The class for all error conditions.";

 rdfs:subClassOf rdfa:PGClass .
rdfa:Warning dcterms:description "The class for all warnings.";

 rdfs:subClassOf rdfa:PGClass .
rdfa:Info dcterms:description "The class for all informations.";

 rdfs:subClassOf rdfa:PGClass .
rdfa:DocumentError dc:description "An error condition to be used when the document
 fails to be fully processed as a result of non-conformant host language markup.";

 rdfs:subClassOf rdfa:Error .
rdfa:VocabReferenceError dc:description "A warning to be used

 when the value of a @vocab attribute cannot be dereferenced, hence the vocabulary expansion
 cannot be completed.";

 rdfs:subClassOf rdfa:Warning .
rdfa:UnresolvedTerm dc:description "A warning to be used when a Term fails to be resolved.";

 rdfs:subClassOf rdfa:Warning .
rdfa:UnresolvedCURIE dc:description "A warning to be used when a CURIE prefix
 fails to be resolved.";

 rdfs:subClassOf rdfa:Warning .

rdfa:context a owl:ObjectProperty, rdf:Property;
 dc:description "Provides extra context for the error, e.g., http response,
 an XPointer/XPath information, or simply the IRI that created the error.";

rdfs:domain
rdfa:PGClass
.

B.3

Term
for
vocabulary
expansion

The
Vocabulary
includes
the
following
term
definitions
(shown
here
in
Turtle
[

TURTLE

]
format):

 Example 138
@prefix dc: <http://purl.org/dc/terms/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfa: <http://www.w3.org/ns/rdfa#> .
rdfa:usesVocabulary a owl:ObjectProperty, rdf:Property;
 dc:description "Provides a relationship between the host document and a vocabulary

defined
using
the
@vocab
facility
of
RDFa1.1."

.

C.

Changes

This
section
is
non-normative.

C.1

Major
differences
with
RDFa
Syntax
1.0

This
section
is
non-normative.

This
specification
introduces
a
number
of
new
features,
and
extends
the
behavior
of
some
features
from
the
previous
version.
The
following
summary
may
be
helpful
to
RDFa
Processor
developers,
but
is

not

meant
to
be
comprehensive.

		
Specific
rules
about
XHTML
have
been
moved
into
a
companion
specification:
[

XHTML-RDFA

].

		
Prefix
mappings
can
now
be
declared
using

@prefix

in
addition
to

@xmlns
.
The
usage
of

@xmlns

has
been
deprecated.

		
Prefix
names
are
now
required
to
be
converted
to
lower-case
when
the
mapping
is
defined.
Prefixes
are
checked
in
a
case-insensitive
manner
during
CURIE
expansion.

		
You
can
now
use
an
Absolute
IRI
everywhere
you
could
previously
only
use
a
CURIE
(e.g.,
in
the
value
of

@datatype

).

		
There
is
now
a
concept
of
a

term
.
This
concept
has
replaced
the
concept
of
a
'reserved
word'.
It
is
possible
now
to
use
a
'term'
in
most
places
where
you
could
previously
only
use
a
CURIE.

		
You
can
define
a
default
prefix
mapping
(via

@vocab

)
that
will
be
used
on
undefined
terms.

		
When
a
triple
would
include
an
object
literal,
and
there
is
no
explicit
datatype
attribute,
the
object
literal
will
now
be
a
'plain
literal'.
In
version
1.0
it
would
have
been
an
'XMLLiteral'.

		
The

@inlist

attribute
can
be
used
to
instruct
the
processor
to
generate
RDF
lists
with
the
resources
rather
than
simple
triples.

		
The
effect
of

@src

is
now
identical
to

@href

rather
than

@about

like
in
version
1.0.

While
this
specification
strives
to
be
as
backward
compatible
as
possible
with
[

RDFA-SYNTAX

],
the
changes
above
mean
that
there
are
some
circumstances
where
it
is
possible
for
different
RDF
triples
to
be
output
for
the
same
document
when
processed
by
an
RDFa
1.0
processor
vs.
an
RDFa
1.1
processor.
In
order
to
minimize
these
differences,
a
document
author
can
do
the
following:

		
Use
the
XHTML+RDFa
1.0
document
type
as
defined
in
[

RDFA-SYNTAX

].

		
Place
a

@version

attribute
with
the
value

XHTML+RDFa
1.0

on
the

html

element.

		
If
there
are
places
in
the
document
where
an
object
literal

MUST

be
an
XMLLiteral,
use

datatype='rdf:XMLLiteral'
.

		
If
there
are
places
in
the
document
where
an
object
literal

MUST

be
a
plain
literal,
use

datatype=''
.

		
If
there
are
places
in
the
document
where

@src

is
used,
add
an

@about

(unless
already
present)
with
the
same
IRI.

When
producing
XHTML+RDFa
1.1
documents,
it
is
possible
to
reduce
the
incompatibilities
with
RDFa
1.0
conforming
processors
by
doing
the
following:

		
DO
NOT
use
the

@vocab

feature.

		
DO
NOT
rely
upon
host
language
defaults
for
IRI
mappings.

		
DO
NOT
use
absolute
IRIs
in
place
of
CURIEs.

		
Use

@xmlns

AND

@prefix

when
declaring
prefix
mappings.

		
DO
NOT
use
TERMs
on

@datatype
,

@property
,
or

@typeof
.

		
When
using
TERMs
in

@rel

and

@rev
,
only
use
ones
defined
in
[

RDFA-SYNTAX

].

		
Place
a

version

attribute
with
the
value

XHTML+RDFa
1.0

on
the

html

element.

		
If
there
are
places
in
the
document
where
an
object
literal

MUST

be
an
XMLLiteral,
use

datatype='rdf:XMLLiteral'
.

		
If
there
are
places
in
the
document
where
an
object
literal

MUST

be
a
plain
literal,
use

datatype=''
.

		
If
there
are
places
in
the
document
where

@src

is
used,
add
an

@about

(unless
already
present)
with
the
same
IRI.

D.

Acknowledgments

This
section
is
non-normative.

At
the
time
of
publication,
the
active
members
of
the
RDF
Web
Applications
Working
Group
were:

		
Stéphane
Corlosquet,
MIND
Center
for
Interdisciplinary
Informatics

		
Ivan
Herman,

W3C

		
Gregg
Kellogg
(Invited
Expert)

		
Niklas
Lindström
(Invited
Expert)

		
Shane
McCarron,
Applied
Testing
and
Technology,
Inc.
(Invited
Expert)

		
Steven
Pemberton,
Centre
for
Mathematics
and
Computer
Science
(CWI)

		
Manu
Sporny,
Digital
Bazaar
(Chair,
Invited
Expert)

E.

References

E.1

Normative
references

		
[HTML-RDFA]

		
Manu
Sporny
et
al.

HTML+RDFa
1.1
.
22
August

2013.
W3C
Recommendation.
URL:

http://www.w3.org/TR/html-rdfa/

		
[OWL2-OVERVIEW]

		
W3C
OWL
Working
Group.

OWL
2
Web
Ontology
Language
Document

Overview
(Second
Edition)

.
11
December
2012.

W3C
Recommendation.
URL:

http://www.w3.org/TR/owl2-overview/

		
[OWL2-PROFILES]

		
Boris
Motik;
Bernardo
Cuenca
Grau;
Ian
Horrocks;
Zhe
Wu;
Achille
Fokoue.

OWL
2
Web
Ontology
Language
Profiles
(Second
Edition)

.
11
December
2012.

W3C
Recommendation.
URL:

http://www.w3.org/TR/owl2-profiles/

		
[OWL2-RDF-BASED-SEMANTICS]

		
Michael
Schneider.

OWL
2
Web
Ontology
Language
RDF-Based

Semantics
(Second
Edition)

.
11
December
2012.

W3C
Recommendation.
URL:

http://www.w3.org/TR/owl2-rdf-based-semantics/

		
[RDF-MT]

		
Patrick
Hayes.

RDF
Semantics

.
10
February
2004.
W3C
Recommendation.
URL:

http://www.w3.org/TR/rdf-mt/

		
[RDF-SYNTAX-GRAMMAR]

		
Dave
Beckett.

RDF/XML
Syntax
Specification
(Revised)

.
10
February
2004.
W3C
Recommendation.
URL:

http://www.w3.org/TR/rdf-syntax-grammar

		
[RFC2119]

		
S.
Bradner.

Key
words
for
use
in
RFCs
to
Indicate
Requirement
Levels.

March
1997.
Internet
RFC
2119.
URL:

http://www.ietf.org/rfc/rfc2119.txt

		
[RFC3987]

		
M.
Dürst;
M.
Suignard.

Internationalized
Resource
Identifiers
(IRIs)

.
January
2005.
RFC.
URL:

http://www.ietf.org/rfc/rfc3987.txt

		
[XHTML-RDFA]

		
Shane
McCarron.

XHTML+RDFa
1.1
-
Second
Edition
.
22
August

2013.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xhtml-rdfa/

		
[XML-NAMES]

		
Tim
Bray;
Dave
Hollander;
Andrew
Layman;

Richard
Tobin;
Henry
Thompson

et
al.

Namespaces
in
XML
1.0
(Third
Edition)

.
8
December
2009.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xml-names

		
[XML10-4e]

		
C.
M.
Sperberg-McQueen
et
al.

Extensible
Markup
Language
(XML)
1.0
(Fourth
Edition)

.
26
November
2008.

W3C
Recommendation.
URL:

http://www.w3.org/TR/2006/REC-xml-20060816/

		
[XMLSCHEMA11-2]

		
David
Peterson;
Sandy
Gao;
Ashok
Malhotra;
Michael
Sperberg-McQueen;

Henry
Thompson;
Paul
V.
Biron

et
al.

W3C
XML
Schema
Definition
Language
(XSD)
1.1
Part
2:
Datatypes

.
5
April
2012.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xmlschema11-2/

E.2

Informative
references

		
[HTML401]

		
Dave

Raggett;
Arnaud
Le
Hors;
Ian
Jacobs.

HTML
4.01
Specification

.
24
December
1999.
W3C
Recommendation.
URL:

http://www.w3.org/TR/html401

		
[MICROFORMATS]

		

Microformats

.
URL:

http://microformats.org

		
[QNAMES]

		
N.
Walsh.

Using
Qualified
Names
(QNames)
as
Identifiers
in
XML
Content

.
17
March,
2004.
TAG
Finding.
URL:

http://www.w3.org/2001/tag/doc/qnameids-2004-03-17

		
[RDF-PRIMER]

		
Frank
Manola;
Eric
Miller.

RDF
Primer

.
10
February
2004.
W3C
Recommendation.
URL:

http://www.w3.org/TR/rdf-primer/

		
[RDF-SYNTAX]

		
Graham
Klyne;
Jeremy
Carroll.

Resource
Description
Framework
(RDF):
Concepts
and
Abstract
Syntax

.
10
February
2004.
W3C
Recommendation.
URL:

http://www.w3.org/TR/rdf-concepts/

		
[RDF-TESTCASES]

		
jan
grant;

Dave
Beckett.

RDF
Test
Cases

.
10
February
2004.
W3C
Recommendation.
URL:

http://www.w3.org/TR/rdf-testcases

		
[RDFA-PRIMER]

		
Ben
Adida;
Ivan
Herman;
Manu
Sporny;
Mark
Birbeck.

RDFa
1.1

Primer
.
22
August
2013.

W3C
Note.
URL:

http://www.w3.org/TR/rdfa-primer/

		
[RDFA-SYNTAX]

		
Ben
Adida;
Mark
Birbeck;
Shane
McCarron;
Steven
Pemberton

et
al.

RDFa
in
XHTML:
Syntax
and
Processing
.
14
October
2008.
W3C
Recommendation.
URL:

http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014

		
[RELAXNG-SCHEMA]

		

Information
technology
--
Document
Schema
Definition
Language
(DSDL)
--
Part
2:
Regular-grammar-based
validation
--
RELAX
NG

.
ISO/IEC
19757-2:2008.
URL:

http://standards.iso.org/ittf/PubliclyAvailableStandards/c052348_ISO_IEC_19757-2_2008(E).zip

		
[SAX]

		
D.
Megginson,
et
al.

SAX:
The
Simple
API
for
XML

.
May
1998.
URL:

http://www.megginson.com/downloads/SAX/

		
[TURTLE]

		
David
Beckett;
Tim
Berners-Lee.

Turtle:
Terse
RDF
Triple
Language

.
January
2008.
W3C
Team
Submission.
URL:

http://www.w3.org/TeamSubmission/turtle/

		
[WIDGETS-URI]

		
Marcos
Caceres.

Widget
URI
scheme

.
13
March
2012.

W3C
Note.

URL:

http://www.w3.org/TR/widgets-uri/

		
[XHTML11]

		
Shane
McCarron;
Masayasu
Ishikawa.

XHTML™
1.1
-
Module-based
XHTML
-
Second
Edition

.
23
November
2010.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xhtml11/

		
[XML-EXC-C14N]

		
John
Boyer;

Donald
Eastlake;

Joseph
Reagle.

Exclusive
XML
Canonicalization
Version
1.0

.
18
July
2002.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xml-exc-c14n

		
[XML10]

		
Tim
Bray;
Jean
Paoli;
Michael
Sperberg-McQueen;
Eve
Maler;
François
Yergeau

et
al.

Extensible
Markup
Language
(XML)
1.0
(Fifth
Edition)

.
26
November
2008.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xml

		
[XMLSCHEMA11-1]

		
Sandy
Gao;
Michael

Sperberg-McQueen;
Henry
Thompson;
Noah
Mendelsohn;
David
Beech;
Murray
Maloney.

W3C
XML
Schema
Definition
Language
(XSD)
1.1
Part
1:
Structures

.
5
April
2012.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xmlschema11-1/

Icons/w3c_home.png

json-ld/diff-20131105.xhtml

[image: W3C]

JSON-LD
1.0

A
JSON-based
Serialization
for
Linked
Data

W3C

Proposed

Recommendation
05
November
2013

16
January
2014

		
This
version:

		
http://www.w3.org/TR/2013/PR-json-ld-20131105/

http://www.w3.org/TR/2014/REC-json-ld-20140116/

		
Latest
published
version:

		

http://www.w3.org/TR/json-ld/

		
Latest
editor's
draft:
http://dvcs.w3.org/hg/json-ld/raw-file/default/spec/latest/json-ld/index.html

Previous
version:

		
http://www.w3.org/TR/2013/CR-json-ld-20130910/

http://www.w3.org/TR/2013/PR-json-ld-20131105/

		
Editors:

		

Manu
Sporny
,

Digital
Bazaar

		

Gregg
Kellogg
,

Kellogg
Associates

		

Markus
Lanthaler
,

Graz
University
of
Technology

		
Authors:

		

Manu
Sporny
,

Digital
Bazaar

		

Dave
Longley
,

Digital
Bazaar

		

Gregg
Kellogg
,

Kellogg
Associates

		

Markus
Lanthaler
,

Graz
University
of
Technology

		

Niklas
Lindström

Please
refer
to
the

errata

for
this
document,
which
may
include
some
normative
corrections.

This
document
is
also
available
in
this
non-normative
format:

diff
to
previous
version

The
English
version
of
this
specification
is
the
only
normative
version.
Non-normative

translations

may
also
be
available.

Copyright

©
2010-2013

2010-2014

W3C

®

(

MIT

,

ERCIM

,

Keio
,

Beihang

),
All
Rights
Reserved.

W3C

liability
,

trademark

and

document
use

rules
apply.

Abstract

JSON
is
a
useful
data
serialization
and
messaging
format.
This
specification
defines
JSON-LD,
a
JSON-based
format
to
serialize
Linked
Data.
The
syntax
is
designed
to
easily
integrate
into
deployed
systems
that
already
use
JSON,
and
provides
a
smooth
upgrade
path
from
JSON
to
JSON-LD.
It
is
primarily
intended
to
be
a
way
to
use
Linked
Data
in
Web-based
programming
environments,
to
build
interoperable
Web
services,
and
to
store
Linked
Data
in
JSON-based
storage
engines.

Status
of
This
Document

This
section
describes
the
status
of
this
document
at
the
time
of
its
publication.
Other
documents
may
supersede
this
document.
A
list
of
current

W3C

publications
and
the
latest
revision
of
this
technical
report
can
be
found
in
the

W3C

technical
reports
index

at
http://www.w3.org/TR/.

This
document
has
been
under
development
for
over
31
months

reviewed
by

W3C

Members,
by
software
developers,
and
by
other

W3C

groups
and
interested
parties,
and
is
endorsed
by
the
Director
as
a

W3C

Recommendation.
It
is
a
stable
document
and
may
be
used
as
reference
material
or
cited
from
another
document.

W3C

's
role

in
making
the
Recommendation
is
to
draw
attention
to
the
specification
and
to
promote
its
widespread
deployment.
This
enhances
the
functionality
and
interoperability
of
the
Web.

This
specification
has
been
developed
by

the
JSON
for
Linking
Data
Community
Group.
The
document

Group
before
it

has
been
transferred
to
the
RDF
Working
Group
for
review,
improvement,
and
publication.

publication
along
the
Recommendation
track.

The
specification
has
undergone
significant
development,
review,
and

document
contains
small
editorial

changes
arising
from
comments
received

during
the
course
of

Proposed
Recommendation
review;
see

the
last
31
months.

diff-marked
version

for
details.

There
are
several
independent
interoperable
implementations
of
this
specification.
There
is
a
fairly
complete
test
suite
[
JSON-LD-TESTS
]
and
a
live
JSON-LD
editor

An

implementation
report

that
is
capable

as

of
demonstrating
the
features
described
in
this
document.
While
development
on
implementations,
the
test
suite
and
the
live
editor
will
continue,
they
are
believed
to
be
mature
enough
to
be
integrated
into
a
non-production
system
at
this
point
in
time
with
the
expectation
that
they
could
be
used
in
a
production
system
within
the
next
two
months.
Changes
since
the
10 September 2013
Candidate
Recommendation
:

October 2013
is
available.

Clarify
context-sensitivity
of
@type

This
document
was
published
by
the

RDF
Working
Group

as
a
Proposed

Recommendation.
This
document
is
intended
to
become
a
W3C
Recommendation.
The
W3C
Membership
and
other
interested
parties
are
invited

If
you
wish

to
review
the
document
and
send

make

comments
regarding
this
document,
please
send
them

to

public-rdf-comments@w3.org

(

subscribe
,

archives

)
through
05
December
2013.
Advisory
Committee
Representatives
should
consult
their
WBS
questionnaires
.
Note
that
substantive
technical

).
All

comments
were
expected
during
the
Last
Call
review
period
that
ended
10
May
2013.
Publication
as
a
Proposed
Recommendation
does
not
imply
endorsement
by
the
W3C
Membership.
This
is
a
draft
document
and
may
be
updated,
replaced
or
obsoleted
by
other
documents
at
any
time.
It
is
inappropriate
to
cite
this
document
as
other
than
work
in
progress.

are
welcome.

This
document
was
produced
by
a
group
operating
under
the

5
February
2004

W3C

Patent
Policy
.

W3C

maintains
a

public
list
of
any
patent
disclosures

made
in
connection
with
the
deliverables
of
the
group;
that
page
also
includes
instructions
for
disclosing
a
patent.
An
individual
who
has
actual
knowledge
of
a
patent
which
the
individual
believes
contains

Essential
Claim(s)

must
disclose
the
information
in
accordance
with

section
6
of
the

W3C

Patent
Policy
.

Table
of
Contents

		

1.

Introduction

		

1.1

How
to
Read
this
Document

		

2.

Design
Goals
and
Rationale

		

3.

Terminology

		

3.1

General
Terminology

		

3.2

Data
Model
Overview

		

3.3

Syntax
Tokens
and
Keywords

		

4.

Conformance

		

5.

Basic
Concepts

		

5.1

The
Context

		

5.2

IRIs

		

5.3

Node
Identifiers

		

5.4

Specifying
the
Type

		

6.

Advanced
Concepts

		

6.1

Base

IRI

		

6.2

Default
Vocabulary

		

6.3

Compact
IRIs

		

6.4

Typed
Values

		

6.5

Type
Coercion

		

6.6

Embedding

		

6.7

Advanced
Context
Usage

		

6.8

Interpreting
JSON
as
JSON-LD

		

6.9

String
Internationalization

		

6.10

IRI

Expansion
within
a
Context

		

6.11

Sets
and
Lists

		

6.12

Reverse
Properties

		

6.13

Named
Graphs

		

6.14

Identifying
Blank
Nodes

		

6.15

Aliasing
Keywords

		

6.16

Data
Indexing

		

6.17

Expanded
Document
Form

		

6.18

Compacted
Document
Form

		

6.19

Flattened
Document
Form

		

6.20

Embedding
JSON-LD
in
HTML
Documents

		

7.

Data
Model

		

8.

JSON-LD
Grammar

		

8.1

Terms

		

8.2

Node
Objects

		

8.3

Value
Objects

		

8.4

Lists
and
Sets

		

8.5

Language
Maps

		

8.6

Index
Maps

		

8.7

Context
Definitions

		

9.

Relationship
to
RDF

		

9.1

Serializing/Deserializing
RDF

		

A.

Relationship
to
Other
Linked
Data
Formats

		

A.1

Turtle

		

A.2

RDFa

		

A.3

Microformats

		

A.4

Microdata

		

B.

IANA
Considerations

		

C.

Acknowledgements

		

D.

References

		

D.1

Normative
references

		

D.2

Informative
references

1.

Introduction

This
section
is
non-normative.

Linked
Data
[

LINKED-DATA

]
is
a
way
to
create
a
network
of
standards-based
machine
interpretable
data
across
different
documents
and
Web
sites.
It
allows
an
application
to
start
at
one
piece
of
Linked
Data,
and
follow
embedded
links
to
other
pieces
of
Linked
Data
that
are
hosted
on
different
sites
across
the
Web.

JSON-LD
is
a
lightweight
syntax
to
serialize
Linked
Data
in
JSON
[

RFC4627

].
Its
design
allows
existing
JSON
to
be
interpreted
as
Linked
Data
with
minimal
changes.
JSON-LD
is
primarily
intended
to
be
a
way
to
use
Linked
Data
in
Web-based
programming
environments,
to
build
interoperable
Web
services,
and
to
store
Linked
Data
in
JSON-based
storage
engines.
Since
JSON-LD
is
100%
compatible
with
JSON,
the
large
number
of
JSON
parsers
and
libraries
available
today
can
be
reused.
In
addition
to
all
the
features
JSON
provides,
JSON-LD
introduces:

		
a
universal
identifier
mechanism
for

JSON
objects

via
the
use
of

IRIs
,

		
a
way
to
disambiguate
keys
shared
among
different
JSON
documents
by
mapping
them
to

IRIs

via
a

context
,

		
a
mechanism
in
which
a
value
in
a

JSON
object

may
refer
to
a

JSON
object

on
a
different
site
on
the
Web,

		
the
ability
to
annotate

strings

with
their
language,

		
a
way
to
associate
datatypes
with
values
such
as
dates
and
times,

		
and
a
facility
to
express
one
or
more
directed
graphs,
such
as
a
social
network,
in
a
single
document.

JSON-LD
is
designed
to
be
usable
directly
as
JSON,
with
no
knowledge
of
RDF
[

RDF11-CONCEPTS

].
It
is
also
designed
to
be
usable
as
RDF,
if
desired,
for
use
with
other
Linked
Data
technologies
like
SPARQL.
Developers
who
require
any
of
the
facilities
listed
above
or
need
to
serialize
an
RDF
Graph
or
RDF
Dataset
in
a
JSON-based
syntax
will
find
JSON-LD
of
interest.
People
intending
to
use
JSON-LD
with
RDF
tools
will
find
it
can
be
used
as
another
RDF
syntax,
like
Turtle
[

TURTLE

].
Complete
details
of
how
JSON-LD
relates
to
RDF
are
in
section

9.

Relationship
to
RDF

.

The
syntax
is
designed
to
not
disturb
already
deployed
systems
running
on
JSON,
but
provide
a
smooth
upgrade
path
from
JSON
to
JSON-LD.
Since
the
shape
of
such
data
varies
wildly,
JSON-LD
features
mechanisms
to
reshape
documents
into
a
deterministic
structure
which
simplifies
their
processing.

1.1

How
to
Read
this
Document

This
section
is
non-normative.

This
document
is
a
detailed
specification
for
a
serialization
of
Linked
Data
in
JSON.
The
document
is
primarily
intended
for
the
following
audiences:

		
Software
developers
who
want
to
encode
Linked
Data
in
a
variety
of
programming
languages
that
can
use
JSON

		
Software
developers
who
want
to
convert
existing
JSON
to
JSON-LD

		
Software
developers
who
want
to
understand
the
design
decisions
and
language
syntax
for
JSON-LD

		
Software
developers
who
want
to
implement
processors
and
APIs
for
JSON-LD

		
Software
developers
who
want
to
generate
or
consume
Linked
Data,
an
RDF
graph,
or
an
RDF
Dataset
in
a
JSON
syntax

A
companion
document,
the
JSON-LD
Processing
Algorithms
and
API
specification
[

JSON-LD-API

],
specifies
how
to
work
with
JSON-LD
at
a
higher
level
by
providing
a
standard
library
interface
for
common
JSON-LD
operations.

To
understand
the
basics
in
this
specification
you
must
first
be
familiar
with
JSON,
which
is
detailed
in
[

RFC4627

].

This
document
almost
exclusively
uses
the
term

IRI

(

Internationalized
Resource
Indicator

)
when
discussing
hyperlinks.
Many
Web
developers
are
more
familiar
with
the
URL
(

Uniform
Resource
Locator

)
terminology.
The
document
also
uses,
albeit
rarely,
the
URI
(

Uniform
Resource
Indicator

)
terminology.
While
these
terms
are
often
used
interchangeably
among
technical
communities,
they
do
have
important
distinctions
from
one
another
and
the
specification
goes
to
great
lengths
to
try
and
use
the
proper
terminology
at
all
times.

2.

Design
Goals
and
Rationale

This
section
is
non-normative.

JSON-LD
satisfies
the
following
design
goals:

		
Simplicity

		
No
extra
processors
or
software
libraries
are
necessary
to
use
JSON-LD
in
its
most
basic
form.
The
language
provides
developers
with
a
very
easy
learning
curve.
Developers
only
need
to
know
JSON
and
two

keywords

(

@context

and

@id

)
to
use
the
basic
functionality
in
JSON-LD.

		
Compatibility

		
A
JSON-LD
document
is
always
a
valid
JSON
document.
This
ensures
that
all
of
the
standard
JSON
libraries
work
seamlessly
with
JSON-LD
documents.

		
Expressiveness

		
The
syntax
serializes
directed
graphs.
This
ensures
that
almost
every
real
world
data
model
can
be
expressed.

		
Terseness

		
The
JSON-LD
syntax
is
very
terse
and
human
readable,
requiring
as
little
effort
as
possible
from
the
developer.

		
Zero
Edits,
most
of
the
time

		
JSON-LD
ensures
a
smooth
and
simple
transition
from
existing
JSON-based
systems.
In
many
cases,
zero
edits
to
the
JSON
document
and
the
addition
of
one
line
to
the
HTTP
response
should
suffice
(see

section
6.8
Interpreting
JSON
as
JSON-LD

).
This
allows
organizations
that
have
already
deployed
large
JSON-based
infrastructure
to
use
JSON-LD's
features
in
a
way
that
is
not
disruptive
to
their
day-to-day
operations
and
is
transparent
to
their
current
customers.
However,
there
are
times
where
mapping
JSON
to
a
graph
representation
is
a
complex
undertaking.
In
these
instances,
rather
than
extending
JSON-LD
to
support
esoteric
use
cases,
we
chose
not
to
support
the
use
case.
While
Zero
Edits
is
a
design
goal,
it
is
not
always
possible
without
adding
great
complexity
to
the
language.
JSON-LD
focuses
on
simplicity
when
possible.

		
Usable
as
RDF

		
JSON-LD
is
usable
by
developers
as
idiomatic
JSON,
with
no
need
to
understand
RDF
[

RDF11-CONCEPTS

].
JSON-LD
is
also
usable
as
RDF,
so
people
intending
to
use
JSON-LD
with
RDF
tools
will
find
it
can
be
used
like
any
other
RDF
syntax.
Complete
details
of
how
JSON-LD
relates
to
RDF
are
in
section

9.

Relationship
to
RDF

.

3.

Terminology

3.1

General
Terminology

This
document
uses
the
following
terms
as
defined
in
JSON
[

RFC4627

].
Refer
to
the

JSON
Grammar

section
in
[

RFC4627

]
for
formal
definitions.

		

JSON
object

		
An
object
structure
is
represented
as
a
pair
of
curly
brackets
surrounding
zero
or
more
key-value
pairs.
A
key
is
a

string
.
A
single
colon
comes
after
each
key,
separating
the
key
from
the
value.
A
single
comma
separates
a
value
from
a
following
key.
In
contrast
to
JSON,
in
JSON-LD
the
keys
in
an
object
must
be
unique.

		

array

		
An
array
structure
is
represented
as
square
brackets
surrounding
zero
or
more
values.
Values
are
separated
by
commas.
In
JSON,
an
array
is
an

ordered

sequence
of
zero
or
more
values.
While
JSON-LD
uses
the
same
array
representation
as
JSON,
the
collection
is

unordered

by
default.
While
order
is
preserved
in
regular
JSON
arrays,
it
is
not
in
regular
JSON-LD
arrays
unless
specifically
defined
(see

section
6.11
Sets
and
Lists

).

		

string

		
A
string
is
a
sequence
of
zero
or
more
Unicode
characters,
wrapped
in
double
quotes,
using
backslash
escapes
(if
necessary).

		

number

		
A
number
is
similar
to
that
used
in
most
programming
languages,
except
that
the
octal
and
hexadecimal
formats
are
not
used
and
leading
zeros
are
not
allowed.

		

true

and

false

		
Values
that
are
used
to
express
one
of
two
possible
boolean
states.

		

null

		
The

null

value,
which
is
typically
used
to
clear
or
forget
data.
For
example,
a
key-value
pair
in
the

@context

where
the
value
is

null

explicitly
decouples
a

term

's
association
with
an

IRI

.
A
key-value
pair
in
the
body
of
a
JSON-LD
document
whose
value
is

null

has
the
same
meaning
as
if
the
key-value
pair
was
not
defined.
If

@value
,

@list
,
or

@set

is
set
to

null

in
expanded
form,
then
the
entire

JSON
object

is
ignored.

3.2

Data
Model
Overview

This
section
is
non-normative.

Generally
speaking,
the
data
model
used
for
JSON-LD
is
a
labeled,
directed

graph
.
The
graph
contains

nodes
,
which
are
connected
by

edges
.
A

node

is
typically
data
such
as
a

string
,

number
,

typed
values

(like
dates
and
times)
or
an

IRI

.
There
is
also
a
special
class
of

node

called
a

blank
node
,
which
is
typically
used
to
express
data
that
does
not
have
a
global
identifier
like
an

IRI

.

Blank
nodes

are
identified
using
a

blank
node
identifier
.
This
simple
data
model
is
incredibly
flexible
and
powerful,
capable
of
modeling
almost
any
kind
of
data.
For
a
deeper
explanation
of
the
data
model,
see
section

7.

Data
Model

.

Developers
who
are
familiar
with
Linked
Data
technologies
will
recognize
the
data
model
as
the
RDF
Data
Model.
To
dive
deeper
into
how
JSON-LD
and
RDF
are
related,
see
section

9.

Relationship
to
RDF

.

3.3

Syntax
Tokens
and
Keywords

JSON-LD
specifies
a
number
of
syntax
tokens
and

keywords

that
are
a
core
part
of
the
language:

		

@context

		
Used
to
define
the
short-hand
names
that
are
used
throughout
a
JSON-LD
document.
These
short-hand
names
are
called

terms

and
help
developers
to
express
specific
identifiers
in
a
compact
manner.
The

@context

keyword
is
described
in
detail
in

section
5.1
The
Context
.

		

@id

		
Used
to
uniquely
identify

things

that
are
being
described
in
the
document
with

IRIs

or

blank
node
identifiers
.
This
keyword
is
described
in

section
5.3
Node
Identifiers
.

		

@value

		
Used
to
specify
the
data
that
is
associated
with
a
particular

property

in
the
graph.
This
keyword
is
described
in

section
6.9
String
Internationalization

and

section
6.4
Typed
Values
.

		

@language

		
Used
to
specify
the
language
for
a
particular
string
value
or
the
default
language
of
a
JSON-LD
document.
This
keyword
is
described
in

section
6.9
String
Internationalization
.

		

@type

		
Used
to
set
the
data
type
of
a

node

or

typed
value
.
This
keyword
is
described
in

section
6.4
Typed
Values
.

		

@container

		
Used
to
set
the
default
container
type
for
a

term
.
This
keyword
is
described
in

section
6.11
Sets
and
Lists
.

		

@list

		
Used
to
express
an
ordered
set
of
data.
This
keyword
is
described
in

section
6.11
Sets
and
Lists
.

		

@set

		
Used
to
express
an
unordered
set
of
data
and
to
ensure
that
values
are
always
represented
as
arrays.
This
keyword
is
described
in

section
6.11
Sets
and
Lists
.

		

@reverse

		
Used
to
express
reverse
properties.
This
keyword
is
described
in

section
6.12
Reverse
Properties
.

		

@index

		
Used
to
specify
that
a
container
is
used
to
index
information
and
that
processing
should
continue
deeper
into
a
JSON
data
structure.
This
keyword
is
described
in

section
6.16
Data
Indexing
.

		

@base

		
Used
to
set
the
base

IRI

against
which

relative
IRIs

are
resolved.
This
keyword
is
described
in

section
6.1
Base
IRI
.

		

@vocab

		
Used
to
expand
properties
and
values
in

@type

with
a
common
prefix

IRI

.
This
keyword
is
described
in

section
6.2
Default
Vocabulary
.

		

@graph

		
Used
to
express
a

graph
.
This
keyword
is
described
in

section
6.13
Named
Graphs
.

		
:

		
The
separator
for
JSON
keys
and
values
that
use

compact
IRIs
.

All
keys,

keywords
,
and
values
in
JSON-LD
are
case-sensitive.

4.

Conformance

This
specification
describes
the
conformance
criteria
for
JSON-LD
documents.
This
criteria
is
relevant
to
authors
and
authoring
tool
implementers.
As
well
as
sections
marked
as
non-normative,
all
authoring
guidelines,
diagrams,
examples,
and
notes
in
this
specification
are
non-normative.
Everything
else
in
this
specification
is
normative.

A

JSON-LD
document

complies
with
this
specification
if
it
follows
the
normative
statements
in
appendix

8.

JSON-LD
Grammar

.
JSON
documents
can
be
interpreted
as
JSON-LD
by
following
the
normative
statements
in

section
6.8
Interpreting
JSON
as
JSON-LD
.
For
convenience,
normative
statements
for
documents
are
often
phrased
as
statements
on
the
properties
of
the
document.

The
key
words

MUST
,

MUST
NOT
,

REQUIRED
,

SHALL
,

SHALL
NOT
,

SHOULD
,

SHOULD
NOT
,

RECOMMENDED
,

NOT
RECOMMENDED
,

MAY
,
and

OPTIONAL

in
this
specification
have
the
meaning
defined
in
[

RFC2119

].

5.

Basic
Concepts

This
section
is
non-normative.

JSON
[

RFC4627

]
is
a
lightweight,
language-independent
data
interchange
format.
It
is
easy
to
parse
and
easy
to
generate.
However,
it
is
difficult
to
integrate
JSON
from
different
sources
as
the
data
may
contain
keys
that
conflict
with
other
data
sources.
Furthermore,
JSON
has
no
built-in
support
for
hyperlinks,
which
are
a
fundamental
building
block
on
the
Web.
Let's
start
by
looking
at
an
example
that
we
will
be
using
for
the
rest
of
this
section:

 {

Example
1
:
Sample
JSON
document

{

 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "image": "http://manu.sporny.org/images/manu.png"
}

It's
obvious
to
humans
that
the
data
is
about
a
person
whose

name

is
"Manu
Sporny"
and
that
the

homepage

property
contains
the
URL
of
that
person's
homepage.
A
machine
doesn't
have
such
an
intuitive
understanding
and
sometimes,
even
for
humans,
it
is
difficult
to
resolve
ambiguities
in
such
representations.
This
problem
can
be
solved
by
using
unambiguous
identifiers
to
denote
the
different
concepts
instead
of
tokens
such
as
"name",
"homepage",
etc.

Linked
Data,
and
the
Web
in
general,
uses

IRIs

(Internationalized
Resource
Identifiers
as
described
in
[

RFC3987

])
for
unambiguous
identification.
The
idea
is
to
use

IRIs

to
assign
unambiguous
identifiers
to
data
that
may
be
of
use
to
other
developers.
It
is
useful
for

terms
,
like

name

and

homepage
,
to
expand
to

IRIs

so
that
developers
don't
accidentally
step
on
each
other's
terms.
Furthermore,
developers
and
machines
are
able
to
use
this

IRI

(by
using
a
web
browser,
for
instance)
to
go
to
the
term
and
get
a
definition
of
what
the
term
means.
This
process
is
known
as

IRI

dereferencing.

Leveraging
the
popular

schema.org
vocabulary
,
the
example
above
could
be
unambiguously
expressed
as
follows:

 {

Example
2
:
Sample
JSON-LD
document
using
full
IRIs
instead
of
terms

{

 "http://schema.org/name": "Manu Sporny",
 "http://schema.org/url": { "@id": "http://manu.sporny.org/" }, ← The '@id' keyword means 'This value is an identifier that is an IRI'
 "http://schema.org/image": { "@id": "http://manu.sporny.org/images/manu.png" }
}

In
the
example
above,
every
property
is
unambiguously
identified
by
an

IRI

and
all
values
representing

IRIs

are
explicitly
marked
as
such
by
the

@id

keyword
.
While
this
is
a
valid
JSON-LD
document
that
is
very
specific
about
its
data,
the
document
is
also
overly
verbose
and
difficult
to
work
with
for
human
developers.
To
address
this
issue,
JSON-LD
introduces
the
notion
of
a

context

as
described
in
the
next
section.

5.1

The
Context

This
section
is
non-normative.

When
two
people
communicate
with
one
another,
the
conversation
takes
place
in
a
shared
environment,
typically
called
"the
context
of
the
conversation".
This
shared
context
allows
the
individuals
to
use
shortcut
terms,
like
the
first
name
of
a
mutual
friend,
to
communicate
more
quickly
but
without
losing
accuracy.
A
context
in
JSON-LD
works
in
the
same
way.
It
allows
two
applications
to
use
shortcut
terms
to
communicate
with
one
another
more
efficiently,
but
without
losing
accuracy.

Simply
speaking,
a

context

is
used
to
map

terms

to

IRIs
.

Terms

are
case
sensitive
and
any
valid

string

that
is
not
a
reserved
JSON-LD

keyword

can
be
used
as
a

term
.

For
the
sample
document
in
the
previous
section,
a

context

would
look
something
like
this:

 {

Example
3
:
Context
for
the
sample
document
in
the
previous
section

{

 "@context":
 {
 "name": "http://schema.org/name", ← This means that 'name' is shorthand for 'http://schema.org/name'
 "image": {
 "@id": "http://schema.org/image", ← This means that 'image' is shorthand for 'http://schema.org/image'
 "@type": "@id" ← This means that a string value associated with 'image' should be interpreted as an identifier that is an IRI
 },
 "homepage": {
 "@id": "http://schema.org/url", ← This means that 'homepage' is shorthand for 'http://schema.org/url'
 "@type": "@id" ← This means that a string value associated with 'homepage' should be interpreted as an identifier that is an IRI
 }
 }
}

As
the

context

above
shows,
the
value
of
a

term
definition

can
either
be
a
simple
string,
mapping
the

term

to
an

IRI

,
or
a

JSON
object
.

When
a

JSON
object

is
associated
with
a
term,
it
is
called
an

expanded
term
definition
.
The
example
above
specifies
that
the
values
of

image

and

homepage
,
if
they
are
strings,
are
to
be
interpreted
as

IRIs
.

Expanded
term
definitions

also
allow
terms
to
be
used
for

index
maps

and
to
specify
whether

array

values
are
to
be
interpreted
as

sets
or
lists
.

Expanded
term
definitions

may
be
defined
using

absolute

or

compact
IRIs

as
keys,
which
is
mainly
used
to
associate
type
or
language
information
with
an

absolute

or

compact

IRI

.

Contexts

can
either
be
directly
embedded
into
the
document
or
be
referenced.
Assuming
the
context
document
in
the
previous
example
can
be
retrieved
at

http://json-ld.org/contexts/person.jsonld
,
it
can
be
referenced
by
adding
a
single
line
and
allows
a
JSON-LD
document
to
be
expressed
much
more
concisely
as
shown
in
the
example
below:

 {

Example
4
:
Referencing
a
JSON-LD
context

{

 "@context": "http://json-ld.org/contexts/person.jsonld",
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "image": "http://manu.sporny.org/images/manu.png"
}

The
referenced
context
not
only
specifies
how
the
terms
map
to

IRIs

in
the
Schema.org
vocabulary
but
also
specifies
that
string
values
associated
with
the

homepage

and

image

property
can
be
interpreted
as
an

IRI

(

"@type":
"@id"
,
see

section
5.2
IRIs

for
more
details).
This
information
allows
developers
to
re-use
each
other's
data
without
having
to
agree
to
how
their
data
will
interoperate
on
a
site-by-site
basis.
External
JSON-LD
context
documents
may
contain
extra
information
located
outside
of
the

@context

key,
such
as
documentation
about
the

terms

declared
in
the
document.
Information
contained
outside
of
the

@context

value
is
ignored
when
the
document
is
used
as
an
external
JSON-LD
context
document.

JSON
documents
can
be
interpreted
as
JSON-LD
without
having
to
be
modified
by
referencing
a

context

via
an
HTTP
Link
Header
as
described
in

section
6.8
Interpreting
JSON
as
JSON-LD
.
It
is
also
possible
to
apply
a
custom
context
using
the
JSON-LD
API
[

JSON-LD-API

].

In

JSON-LD
documents
,

contexts

may
also
be
specified
inline.
This
has
the
advantage
that
documents
can
be
processed
even
in
the
absence
of
a
connection
to
the
Web.
Ultimately,
this
is
a
modeling
decision
and
different
use
cases
may
require
different
handling.

 {

Example
5
:
In-line
context
definition

{

 "@context":
 {
 "name": "http://schema.org/name",
 "image": {
 "@id": "http://schema.org/image",
 "@type": "@id"
 },
 "homepage": {
 "@id": "http://schema.org/url",
 "@type": "@id"
 }
 },
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "image": "http://manu.sporny.org/images/manu.png"
}

This
section
only
covers
the
most
basic
features
of
the
JSON-LD
Context.
More
advanced
features
related
to
the
JSON-LD
Context
are
covered
in
section

6.

Advanced
Concepts

.

5.2

IRIs

This
section
is
non-normative.

IRIs

(Internationalized
Resource
Identifiers
[

RFC3987

])
are
fundamental
to
Linked
Data
as
that
is
how
most

nodes

and

properties

are
identified.
In
JSON-LD,
IRIs
may
be
represented
as
an

absolute

IRI

or
a

relative

IRI

.
An

absolute

IRI

is
defined
in
[

RFC3987

]
as
containing
a

scheme

along
with

path

and
optional

query

and

fragment

segments.
A

relative

IRI

is
an

IRI

that
is
relative
to
some
other

absolute

IRI

.
In
JSON-LD
all

relative
IRIs

are
resolved
relative
to
the

base

IRI

.

A

string

is
interpreted
as
an

IRI

when
it
is
the
value
of
an

@id

member:

 {

Example
6
:
Values
of
@id
are
interpreted
as
IRI

{

...
 "homepage": { "@id": "http://example.com/" }
...
}

Values
that
are
interpreted
as

IRIs
,
can
also
be
expressed
as

relative
IRIs
.
For
example,
assuming
that
the
following
document
is
located
at

http://example.com/about/
,
the

relative

IRI

../

would
expand
to

http://example.com/

(for
more
information
on
where

relative
IRIs

can
be
used,
please
refer
to
section

8.

JSON-LD
Grammar

).

 {

Example
7
:
IRIs
can
be
relative

{

...
 "homepage": { "@id": "../" }
...
}

Absolute
IRIs

can
be
expressed
directly
in
the
key
position
like
so:

 {

Example
8
:
IRI
as
a
key

{

...
 "http://schema.org/name": "Manu Sporny",
...
}

In
the
example
above,
the
key

http://schema.org/name

is
interpreted
as
an

absolute

IRI

.

Term-to-

IRI

expansion
occurs
if
the
key
matches
a

term

defined
within
the

active
context
:

 {

Example
9
:
Term
expansion
from
context
definition

{

 "@context":
 {
 "name": "http://schema.org/name"
 },
 "name": "Manu Sporny",
 "status": "trollin'"
}

JSON
keys
that
do
not
expand
to
an

IRI

,
such
as

status

in
the
example
above,
are
not
Linked
Data
and
thus
ignored
when
processed.

If
type

coercion

rules
are
specified
in
the

@context

for
a
particular

term

or
property

IRI
,
an

IRI

is
generated:

Example
10
:
Type
coercion

{

 "@context":
 {
 ...
 "homepage":
 {
 "@id": "http://schema.org/url",
 "@type": "@id"
 }
 ...
 }
...
 "homepage": "http://manu.sporny.org/",
...
}

In
the
example
above,
since
the
value

http://manu.sporny.org/

is
expressed
as
a
JSON

string
,
the
type

coercion

rules
will
transform
the
value
into
an

IRI

when
processing
the
data.
See

section
6.5
Type
Coercion

for
more
details
about
this
feature.

In
summary,

IRIs

can
be
expressed
in
a
variety
of
different
ways
in
JSON-LD:

		

JSON
object

keys
that
have
a

term

mapping
in
the

active
context

expand
to
an

IRI

(only
applies
outside
of
the

context
definition

).

		
An

IRI

is
generated
for
the

string

value
specified
using

@id

or

@type
.

		
An

IRI

is
generated
for
the

string

value
of
any
key
for
which
there
are

coercion

rules
that
contain
a

an

@type

key
that
is
set
to
a
value
of

@id

or

@vocab
.

This
section
only
covers
the
most
basic
features
associated
with
IRIs
in
JSON-LD.
More
advanced
features
related
to
IRIs
are
covered
in
section

6.

Advanced
Concepts

.

5.3

Node
Identifiers

This
section
is
non-normative.

To
be
able
to
externally
reference

nodes

in
a

graph
,
it
is
important
that

nodes

have
an
identifier.

IRIs

are
a
fundamental
concept
of
Linked
Data,
for

nodes

to
be
truly
linked,
dereferencing
the
identifier
should
result
in
a
representation
of
that

node
.
This
may
allow
an
application
to
retrieve
further
information
about
a

node
.

In
JSON-LD,
a

node

is
identified
using
the

@id

keyword
:

 {

Example
11
:
Identifying
a
node

{

 "@context":
 {
 ...
 "name": "http://schema.org/name"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 ...
}

The
example
above
contains
a

node
object

identified
by
the

IRI

http://me.markus-lanthaler.com/
.

This
section
only
covers
the
most
basic
features
associated
with
node
identifiers
in
JSON-LD.
More
advanced
features
related
to
node
identifiers
are
covered
in
section

6.

Advanced
Concepts

.

5.4

Specifying
the
Type

This
section
is
non-normative.

The
type
of
a
particular
node
can
be
specified
using
the

@type

keyword
.
In
Linked
Data,
types
are
uniquely
identified
with
an

IRI

.

{

Example
12
:
Specifying
the
type
for
a
node

{

...
 "@id": "http://example.org/places#BrewEats",
 "@type": "http://schema.org/Restaurant",
...
}

A
node
can
be
assigned
more
than
one
type
by
using
an

array
:

{

Example
13
:
Specifying
multiple
types
for
a
node

{

...
 "@id": "http://example.org/places#BrewEats",
 "@type": ["http://schema.org/Restaurant", "http://schema.org/Brewery"],
...
}

The
value
of
a

an

@type

key
may
also
be
a

term

defined
in
the

active
context
:

{

Example
14
:
Using
a
term
to
specify
the
type

{

 "@context": {
 ...
 "Restaurant": "http://schema.org/Restaurant",
 "Brewery": "http://schema.org/Brewery"
 }
 "@id": "http://example.org/places#BrewEats",
 "@type": ["Restaurant", "Brewery"],
 ...
}

Note

This
section
only
covers
the
most
basic
features
associated
with
types
in
JSON-LD.
It
is
worth
noting
that
the

@type

keyword

is
not
only
used
to
specify
the
type
of
a

node

but
also
to
express

typed
values

(as
described
in

section
6.4
Typed
Values

)
and
to

type
coerce

values
(as
described
in

section
6.5
Type
Coercion

).
Specifically,

@type

cannot
be
used
in
a

context

to
define
a

node's

type.
For
a
detailed
description
of
the
differences,
please
refer
to

section
6.4
Typed
Values
.

6.

Advanced
Concepts

JSON-LD
has
a
number
of
features
that
provide
functionality
above
and
beyond
the
core
functionality
described
above.
The
following
section
describes
this
advanced
functionality
in
more
detail.

6.1

Base

IRI

This
section
is
non-normative.

JSON-LD
allows

IRI

s
to
be
specified
in
a
relative
form
which
is
resolved
against
the
document
base
according

section
5.1
Establishing
a
Base
URI

of
[

RFC3986

].
The
base

IRI

may
be
explicitly
set
with
a

context

using
the

@base

keyword.

For
example,
if
a
JSON-LD
document
was
retrieved
from

http://example.com/document.jsonld
,
relative
IRIs
would
resolve
against
that

IRI
:

 {

Example
15
:
Use
a
relative
IRI
as
node
identifier

{

 "@context": {
 "label": "http://www.w3.org/2000/01/rdf-schema#label"
 },
 "@id": "",
 "label": "Just a simple document"
}

This
document
uses
an
empty

@id
,
which
resolves
to
the
document
base.
However,
if
the
document
is
moved
to
a
different
location,
the

IRI

would
change.
To
prevent
this
without
having
to
use
an

absolute

IRI

,
a

context

may
define
a

an

@base

mapping,
to
overwrite
the
base

IRI

for
the
document.

 {

Example
16
:
Setting
the
document
base
in
a
document

{

 "@context": {
 "@base": "http://example.com/document.jsonld"
 },
 "@id": "",
 "label": "Just a simple document"
}

Setting

@base

to

null

will
prevent

relative
IRIs

to
be
expanded
to

absolute
IRIs
.

Please
note
that
the

@base

will
be
ignored
if
used
in
external
contexts.

6.2

Default
Vocabulary

This
section
is
non-normative.

At
times,
all
properties
and
types
may
come
from
the
same
vocabulary.
JSON-LD's

@vocab

keyword
allows
an
author
to
set
a
common
prefix
to
be
used
for
all
properties
and
types
that
do
not
match
a

term

and
are
neither
a

compact

IRI

nor
an

absolute

IRI

(i.e.,
they
do
not
contain
a
colon).

 {

Example
17
:
Using
a
common
vocabulary
prefix

{

 "@context": {
 "@vocab": "http://schema.org/"
 }
 "@id": "http://example.org/places#BrewEats",
 "@type": "Restaurant",
 "name": "Brew Eats"
 ...
}

If

@vocab

is
used
but
certain
keys
in
an

object

should
not
be
expanded
using
the
vocabulary

IRI

,
a

term

can
be
explicitly
set
to

null

in
the

context
.
For
instance,
in
the
example
below
the

databaseId

member
would
not
expand
to
an

IRI

.

 {

Example
18
:
Using
the
null
keyword
to
ignore
data

{

 "@context":
 {
 "@vocab": "http://schema.org/",
 "databaseId": null
 },
 "@id": "http://example.org/places#BrewEats",
 "@type": "Restaurant",
 "name": "Brew Eats",
 "databaseId": "23987520"
}

6.3

Compact
IRIs

This
section
is
non-normative.

A

compact

IRI

is
a
way
of
expressing
an

IRI

using
a

prefix

and

suffix

separated
by
a
colon
(
:

).
The

prefix

is
a

term

taken
from
the

active
context

and
is
a
short
string
identifying
a
particular

IRI

in
a
JSON-LD
document.
For
example,
the
prefix

foaf

may
be
used
as
a
short
hand
for
the
Friend-of-a-Friend
vocabulary,
which
is
identified
using
the

IRI

http://xmlns.com/foaf/0.1/
.
A
developer
may
append
any
of
the
FOAF
vocabulary
terms
to
the
end
of
the
prefix
to
specify
a
short-hand
version
of
the

absolute

IRI

for
the
vocabulary
term.
For
example,

foaf:name

would
be
expanded
to
the

IRI

http://xmlns.com/foaf/0.1/name
.

 {

Example
19
:
Prefix
expansion

{

 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/"
...
 },
 "@type": "foaf:Person"
 "foaf:name": "Dave Longley",
...
}

In
the
example
above,

foaf:name

expands
to
the

IRI

http://xmlns.com/foaf/0.1/name

and

foaf:Person

expands
to

http://xmlns.com/foaf/0.1/Person
.

Prefixes

are
expanded
when
the
form
of
the
value
is
a

compact

IRI

represented
as
a

prefix:suffix

combination,
the

prefix

matches
a

term

defined
within
the

active
context
,
and
the

suffix

does
not
begin
with
two
slashes (

slashes (

//

).
The

compact

IRI

is
expanded
by
concatenating
the

IRI

mapped
to
the

prefix

to
the
(possibly
empty)

suffix
.
If
the

prefix

is
not
defined
in
the

active
context
,
or
the
suffix
begins
with
two
slashes
(such
as
in

http://example.com

),
the
value
is
interpreted
as

absolute

IRI

instead.
If
the
prefix
is
an
underscore
(

_

),
the
value
is
interpreted
as

blank
node
identifier

instead.

It's
also
possible
to
use
compact
IRIs
within
the
context
as
shown
in
the
following
example:

 {

Example
20
:
Using
vocabularies

{

 "@context":
 {
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "foaf": "http://xmlns.com/foaf/0.1/",
 "foaf:homepage": { "@type": "@id" },
 "picture": { "@id": "foaf:depiction", "@type": "@id" }
 },
 "@id": "http://me.markus-lanthaler.com/",
 "@type": "foaf:Person",
 "foaf:name": "Markus Lanthaler",
 "foaf:homepage": "http://www.markus-lanthaler.com/",
 "picture": "http://twitter.com/account/profile_image/markuslanthaler"
}

6.4

Typed
Values

This
section
is
non-normative.

A
value
with
an
associated
type,
also
known
as
a

typed
value
,
is
indicated
by
associating
a
value
with
an

IRI

which
indicates
the
value's
type.
Typed
values
may
be
expressed
in
JSON-LD
in
three
ways:

		
By
utilizing
the

@type

keyword

when
defining
a

term

within
a

an

@context

section.

		
By
utilizing
a

value
object
.

		
By
using
a
native
JSON
type
such
as

number
,

true
,
or

false
.

The
first
example
uses
the

@type

keyword
to
associate
a
type
with
a
particular

term

in
the

@context
:

{

Example
21
:
Expanded
term
definition
with
type
coercion

{

 "@context":
 {
 "modified":
 {
 "@id": "http://purl.org/dc/terms/modified",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"
 }
 },
...
 "@id": "http://example.com/docs/1",
 "modified": "2010-05-29T14:17:39+02:00",
...
}

The

modified

key's
value
above
is
automatically
type
coerced
to
a

dateTime

value
because
of
the
information
specified
in
the

@context
.
A
JSON-LD
processor
will
interpret
the
example
above
as
follows:

		
Subject

		
Property

		
Value

		
Value
Type

		
http://example.com/docs/1

		
http://purl.org/dc/terms/modified

		
2010-05-29T14:17:39+02:00

		
http://www.w3.org/2001/XMLSchema#dateTime

The
second
example
uses
the
expanded
form
of
setting
the
type
information
in
the
body
of
a
JSON-LD
document:

{

Example
22
:
Expanded
value
with
type

{

 "@context":
 {
 "modified":
 {
 "@id": "http://purl.org/dc/terms/modified"
 }
 },
...
 "modified":
 {
 "@value": "2010-05-29T14:17:39+02:00",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"
 }
...
}

Both
examples
above
would
generate
the
value

2010-05-29T14:17:39+02:00

with
the
type

http://www.w3.org/2001/XMLSchema#dateTime
.
Note
that
it
is
also
possible
to
use
a

term

or
a

compact

IRI

to
express
the
value
of
a
type.

Note

The

@type

keyword

is
also
used
to
associate
a
type
with
a

node
.
The
concept
of
a

node
type

and
a

value
type

are
different.

A

node
type

specifies
the
type
of
thing
that
is
being
described,
like
a
person,
place,
event,
or
web
page.
A

value
type

specifies
the
data
type
of
a
particular
value,
such
as
an
integer,
a
floating
point
number,
or
a
date.

{

Example
23
:
Example
demonstrating
the
context-sensitivity
for
@type

{

...
 "@id": "http://example.org/posts#TripToWestVirginia",
 "@type": "http://schema.org/BlogPosting", ← This is a node type
 "modified":
 {
 "@value": "2010-05-29T14:17:39+02:00",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime" ← This is a value type
 }
...
}

The
first
use
of

@type

associates
a

node
type

(

http://schema.org/BlogPosting

)
with
the

node
,
which
is
expressed
using
the

@id

keyword
.
The
second
use
of

@type

associates
a

value
type

(

http://www.w3.org/2001/XMLSchema#dateTime

)
with
the
value
expressed
using
the

@value

keyword
.
As
a
general
rule,
when

@value

and

@type

are
used
in
the
same

JSON
object
,
the

@type

keyword

is
expressing
a

value
type
.
Otherwise,
the

@type

keyword

is
expressing
a

node
type
.
The
example
above
expresses
the
following
data:

		
Subject

		
Property

		
Value

		
Value
Type

		
http://example.org/posts#TripToWestVirginia

		
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

		
http://schema.org/BlogPosting

		
-

		
http://example.org/posts#TripToWestVirginia

		
http://purl.org/dc/terms/modified

		
2010-05-29T14:17:39+02:00

		
http://www.w3.org/2001/XMLSchema#dateTime

6.5

Type
Coercion

This
section
is
non-normative.

JSON-LD
supports
the
coercion
of
values
to
particular
data
types.
Type

coercion

allows
someone
deploying
JSON-LD
to
coerce
the
incoming
or
outgoing
values
to
the
proper
data
type
based
on
a
mapping
of
data
type

IRIs

to

terms
.
Using
type
coercion,
value
representation
is
preserved
without
requiring
the
data
type
to
be
specified
with
each
piece
of
data.

Type
coercion
is
specified
within
an

expanded
term
definition

using
the

@type

key.
The
value
of
this
key
expands
to
an

IRI

.
Alternatively,
the

keywords

@id

or

@vocab

may
be
used
as
value
to
indicate
that
within
the
body
of
a
JSON-LD
document,
a

string

value
of
a

term

coerced
to

@id

or

@vocab

is
to
be
interpreted
as
an

IRI

.
The
difference
between

@id

and

@vocab

is
how
values
are
expanded
to

absolute
IRIs
.

@vocab

first
tries
to
expand
the
value
by
interpreting
it
as

term
.
If
no
matching

term

is
found
in
the

active
context
,
it
tries
to
expand
it
as

compact

IRI

or

absolute

IRI

if
there's
a
colon
in
the
value;
otherwise,
it
will
expand
the
value
using
the

active
context's

vocabulary
mapping,
if
present,
or
by
interpreting
it
as

relative

IRI

.
Values
coerced
to

@id

in
contrast
are
expanded
as

compact

IRI

or

absolute

IRI

if
a
colon
is
present;
otherwise,
they
are
interpreted
as

relative

IRI

.

Terms

or

compact
IRIs

used
as
the
value
of
a

@type

key
may
be
defined
within
the
same
context.
This
means
that
one
may
specify
a

term

like

xsd

and
then
use

xsd:integer

within
the
same
context
definition.

The
example
below
demonstrates
how
a
JSON-LD
author
can
coerce
values
to

typed
values

and

IRIs
.

{

Example
24
:
Expanded
term
definition
with
types

{

 "@context":
 {
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "http://xmlns.com/foaf/0.1/name",
 "age":
 {
 "@id": "http://xmlns.com/foaf/0.1/age",
 "@type": "xsd:integer"
 },
 "homepage":
 {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "@id": "http://example.com/people#john",
 "name": "John Smith",
 "age": "41",
 "homepage":
 [
 "http://personal.example.org/",
 "http://work.example.com/jsmith/"
]
}

The
example
shown
above
would
generate
the
following
data.

		
Subject

		
Property

		
Value

		
Value
Type

		
http://example.com/people#john

		
http://xmlns.com/foaf/0.1/name

		
John
Smith

		

		
http://example.com/people#john

		
http://xmlns.com/foaf/0.1/age

		
41

		
http://www.w3.org/2001/XMLSchema#integer

		
http://example.com/people#john

		
http://xmlns.com/foaf/0.1/homepage

		
http://personal.example.org/

		

IRI

		
http://work.example.com/jsmith/

		

IRI

Terms
may
also
be
defined
using

absolute
IRIs

or

compact
IRIs
.
This
allows
coercion
rules
to
be
applied
to
keys
which
are
not
represented
as
a
simple

term
.
For
example:

{

Example
25
:
Term
definitions
using
compact
and
absolute
IRIs

{

 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/",
 "foaf:age":
 {
 "@id": "http://xmlns.com/foaf/0.1/age",
 "@type": "xsd:integer"
 },
 "http://xmlns.com/foaf/0.1/homepage":
 {
 "@type": "@id"
 }
 },
 "foaf:name": "John Smith",
 "foaf:age": "41",
 "http://xmlns.com/foaf/0.1/homepage":
 [
 "http://personal.example.org/",
 "http://work.example.com/jsmith/"
]
}

In
this
case
the

@id

definition
in
the
term
definition
is
optional.
If
it
does
exist,
the

compact

IRI

or

IRI

representing
the
term
will
always
be
expanded
to

IRI

defined
by
the

@id

key—regardless
of
whether
a
prefix
is
defined
or
not.

Type
coercion
is
always
performed
using
the
unexpanded
value
of
the
key.
In
the
example
above,
that
means
that
type
coercion
is
done
looking
for

foaf:age

in
the

active
context

and
not
for
the
corresponding,
expanded

IRI

http://xmlns.com/foaf/0.1/age
.

Note

Keys
in
the
context
are
treated
as

terms

for
the
purpose
of
expansion
and
value
coercion.
At
times,
this
may
result
in
multiple
representations
for
the
same
expanded

IRI
.
For
example,
one
could
specify
that

dog

and

cat

both
expanded
to

http://example.com/vocab#animal
.
Doing
this
could
be
useful
for
establishing
different
type
coercion
or
language
specification
rules.
It
also
allows
a

compact

IRI

(or
even
an
absolute

IRI

)
to
be
defined
as
something
else
entirely.
For
example,
one
could
specify
that
the

term

http://example.org/zoo

should
expand
to

http://example.org/river
,
but
this
usage
is
discouraged
because
it
would
lead
to
a
great
deal
of
confusion
among
developers
attempting
to
understand
the
JSON-LD
document.

6.6

Embedding

This
section
is
non-normative.

Embedding

is
a
JSON-LD
feature
that
allows
an
author
to
use

node
objects

as

property

values.
This
is
a
commonly
used
mechanism
for
creating
a
parent-child
relationship
between
two

nodes
.

The
example
shows
two
nodes
related
by
a
property
from
the
first
node:

 {

Example
26
:
Embedding
a
node
object
as
property
value
of
another
node
object

{

...
 "name": "Manu Sporny",
 "knows":
 {
 "@type": "Person",
 "name": "Gregg Kellogg",
 }
...
}

A

node
object
,
like
the
one
used
above,
may
be
used
in
any
value
position
in
the
body
of
a
JSON-LD
document.

6.7

Advanced
Context
Usage

This
section
is
non-normative.

Section

5.1

The
Context

introduced
the
basics
of
what
makes
JSON-LD
work.
This
section
expands
on
the
basic
principles
of
the

context

and
demonstrates
how
more
advanced
use
cases
can
be
achieved
using
JSON-LD.

In
general,
contexts
may
be
used
at
any
time
a

JSON
object

is
defined.
The
only
time
that
one
cannot
express
a
context
is
inside
a
context
definition
itself.
For
example,
a

JSON-LD
document

may
use
more
than
one
context
at
different
points
in
a
document:

 [

Example
27
:
Using
multiple
contexts

[

 {
 "@context": "http://example.org/contexts/person.jsonld",
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "depiction": "http://twitter.com/account/profile_image/manusporny"
 },
 {
 "@context": "http://example.org/contexts/place.jsonld",
 "name": "The Empire State Building",
 "description": "The Empire State Building is a 102-story landmark in New York City.",
 "geo": {
 "latitude": "40.75",
 "longitude": "73.98"
 }
 }
]

Duplicate
context

terms

are
overridden
using
a
most-recently-defined-wins
mechanism.

 {

Example
28
:
Scoped
contexts
within
node
objects

{

 "@context":
 {
 "name": "http://example.com/person#name,
 "details": "http://example.com/person#details"
 }",
 "name": "Markus Lanthaler",
 ...
 "details":
 {
 "@context":
 {
 "name": "http://example.com/organization#name"
 },
 "name": "Graz University of Technology"
 }
}

In
the
example
above,
the

name

term

is
overridden
in
the
more
deeply
nested

details

structure.
Note
that
this
is
rarely
a
good
authoring
practice
and
is
typically
used
when
working
with
legacy
applications
that
depend
on
a
specific
structure
of
the

JSON
object
.
If
a

term

is
redefined
within
a
context,
all
previous
rules
associated
with
the
previous
definition
are
removed.
If
a

term

is
redefined
to

null
,
the

term

is
effectively
removed
from
the
list
of

terms

defined
in
the

active
context
.

Multiple
contexts
may
be
combined
using
an

array
,
which
is
processed
in
order.
The
set
of
contexts
defined
within
a
specific

JSON
object

are
referred
to
as

local
contexts
.
The

active
context

refers
to
the
accumulation
of

local
contexts

that
are
in
scope
at
a
specific
point
within
the
document.
Setting
a

local
context

to

null

effectively
resets
the

active
context

to
an
empty
context.
The
following
example
specifies
an
external
context
and
then
layers
an
embedded
context
on
top
of
the
external
context:

 {

Example
29
:
Combining
external
and
local
contexts

{

 "@context": [
 "http://json-ld.org/contexts/person.jsonld",
 {
 "pic": "http://xmlns.com/foaf/0.1/depiction"
 }
],
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "pic": "http://twitter.com/account/profile_image/manusporny"
}

Note

When
possible,
the

context

definition
should
be
put
at
the
top
of
a
JSON-LD
document.
This
makes
the
document
easier
to
read
and
might
make
streaming
parsers
more
efficient.
Documents
that
do
not
have
the

context

at
the
top
are
still
conformant
JSON-LD.

Note

To
avoid
forward-compatibility
issues,

terms

starting
with
an

an

@

character
are
to
be
avoided
as
they
might
be
used
as

keywords

in
future
versions
of
JSON-LD.
Terms
starting
with
an

an

@

character
that
are
not

JSON-LD
1.0
keywords

are
treated
as
any
other
term,
i.e.,
they
are
ignored
unless
mapped
to
an

IRI

.
Furthermore,
the
use
of
empty

terms

(

""

)
is
not
allowed
as
not
all
programming
languages
are
able
to
handle
empty
JSON
keys.

6.8

Interpreting
JSON
as
JSON-LD

Ordinary
JSON
documents
can
be
interpreted
as
JSON-LD
by
referencing
a
JSON-LD

context

document
in
an
HTTP
Link
Header.
Doing
so
allows
JSON
to
be
unambiguously
machine-readable
without
requiring
developers
to
drastically
change
their
documents
and
provides
an
upgrade
path
for
existing
infrastructure
without
breaking
existing
clients
that
rely
on
the

application/json

media
type
or
a
media
type
with
a

+json

suffix
as
defined
in
[

RFC6839

].

In
order
to
use
an
external
context
with
an
ordinary
JSON
document,
an
author

MUST

specify
an

IRI

to
a
valid

JSON-LD
document

in
an
HTTP
Link
Header
[

RFC5988

]
using
the

http://www.w3.org/ns/json-ld#context

link
relation.
The
referenced
document

MUST

have
a
top-level

JSON
object
.
The

@context

subtree
within
that
object
is
added
to
the
top-level

JSON
object

of
the
referencing
document.
If
an

array

is
at
the
top-level
of
the
referencing
document
and
its
items
are

JSON
objects
,
the

@context

subtree
is
added
to
all

array

items.
All
extra
information
located
outside
of
the

@context

subtree
in
the
referenced
document

MUST

be
discarded.
Effectively
this
means
that
the

active
context

is
initialized
with
the
referenced
external

context
.
A
response

MUST
NOT

contain
more
than
one
HTTP
Link
Header
[

RFC5988

]
using
the

http://www.w3.org/ns/json-ld#context

link
relation.

The
following
example
demonstrates
the
use
of
an
external
context
with
an
ordinary
JSON
document:

 GET /ordinary-json-document.json HTTP/1.1

Example
30
:
Referencing
a
JSON-LD
context
from
a
JSON
document
via
an
HTTP
Link
Header

GET /ordinary-json-document.json HTTP/1.1

Host: example.com
Accept: application/ld+json,application/json,*/*;q=0.1
====================================
HTTP/1.1 200 OK
...
Content-Type: application/json
Link: <http://json-ld.org/contexts/person.jsonld>; rel="http://www.w3.org/ns/json-ld#context"; type="application/ld+json"
{
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/",
 "image": "http://twitter.com/account/profile_image/markuslanthaler"
}

Please
note
that

JSON-LD
documents

served
with
the

application/ld+json

media
type

MUST

have
all
context
information,
including
references
to
external
contexts,
within
the
body
of
the
document.
Contexts
linked
via
a

http://www.w3.org/ns/json-ld#context

HTTP
Link
Header

MUST

be
ignored
for
such
documents.

6.9

String
Internationalization

This
section
is
non-normative.

At
times,
it
is
important
to
annotate
a

string

with
its
language.
In
JSON-LD
this
is
possible
in
a
variety
of
ways.
First,
it
is
possible
to
define
a
default
language
for
a
JSON-LD
document
by
setting
the

@language

key
in
the

context
:

 {

Example
31
:
Setting
the
default
language
of
a
JSON-LD
document

{

 "@context":
 {
 ...
 "@language": "ja"
 },
 "name": "花澄",
 "occupation": "科学者"
}

The
example
above
would
associate
the

ja

language
code
with
the
two

strings

花澄

and

科学者
.
Languages
codes
are
defined
in
[

BCP47

].
The
default
language
applies
to
all

string

values
that
are
not

type
coerced
.

To
clear
the
default
language
for
a
subtree,

@language

can
be
set
to

null

in
a

local
context

as
follows:

 {

Example
32
:
Clearing
default
language

{

 "@context": {
 ...
 "@language": "ja"
 },
 "name": "花澄",
 "details": {
 "@context": {
 "@language": null
 },
 "occupation": "Ninja"
 }
}

Second,
it
is
possible
to
associate
a
language
with
a
specific

term

using
an

expanded
term
definition
:

 {

Example
33
:
Expanded
term
definition
with
language

{

 "@context": {
 ...
 "ex": "http://example.com/vocab/",
 "@language": "ja",
 "name": { "@id": "ex:name", "@language": null },
 "occupation": { "@id": "ex:occupation" },
 "occupation_en": { "@id": "ex:occupation", "@language": "en" },
 "occupation_cs": { "@id": "ex:occupation", "@language": "cs" }
 },
 "name": "Yagyū Muneyoshi",
 "occupation": "忍者",
 "occupation_en": "Ninja",
 "occupation_cs": "Nindža",
 ...
}

The
example
above
would
associate

忍者

with
the
specified
default
language
code

ja
,

Ninja

with
the
language
code

en
,
and

Nindža

with
the
language
code

cs
.
The
value
of

name
,

Yagyū
Muneyoshi

wouldn't
be
associated
with
any
language
code
since

@language

was
reset
to

null

in
the

expanded
term
definition
.

Note

Language
associations
are
only
applied
to
plain

strings
.

Typed
values

or
values
that
are
subject
to

type
coercion

are
not
language
tagged.

Just
as
in
the
example
above,
systems
often
need
to
express
the
value
of
a
property
in
multiple
languages.
Typically,
such
systems
also
try
to
ensure
that
developers
have
a
programmatically
easy
way
to
navigate
the
data
structures
for
the
language-specific
data.
In
this
case,

language
maps

may
be
utilized.

 {

Example
34
:
Language
map
expressing
a
property
in
three
languages

{

 "@context":
 {
 ...
 "occupation": { "@id": "ex:occupation", "@container": "@language" }
 },
 "name": "Yagyū Muneyoshi",
 "occupation":
 {
 "ja": "忍者",
 "en": "Ninja",
 "cs": "Nindža"
 }
 ...
}

The
example
above
expresses
exactly
the
same
information
as
the
previous
example
but
consolidates
all
values
in
a
single
property.
To
access
the
value
in
a
specific
language
in
a
programming
language
supporting
dot-notation
accessors
for
object
properties,
a
developer
may
use
the

property.language

pattern.
For
example,
to
access
the
occupation
in
English,
a
developer
would
use
the
following
code
snippet:

obj.occupation.en
.

Third,
it
is
possible
to
override
the
default
language
by
using
a

value
object
:

 {

Example
35
:
Overriding
default
language
using
an
expanded
value

{

 "@context": {
 ...
 "@language": "ja"
 },
 "name": "花澄",
 "occupation": {
 "@value": "Scientist",
 "@language": "en"
 }
}

This
makes
it
possible
to
specify
a
plain
string
by
omitting
the

@language

tag
or
setting
it
to

null

when
expressing
it
using
a

value
object
:

 {

Example
36
:
Removing
language
information
using
an
expanded
value

{

 "@context": {
 ...
 "@language": "ja"
 },
 "name": {
 "@value": "Frank"
 },
 "occupation": {
 "@value": "Ninja",
 "@language": "en"
 },
 "speciality": "手裏剣"
}

6.10

IRI

Expansion
within
a
Context

This
section
is
non-normative.

In
general,
normal

IRI

expansion
rules
apply
anywhere
an

IRI

is
expected
(see

section
5.2
IRIs

).
Within
a

context

definition,
this
can
mean
that
terms
defined
within
the
context
may
also
be
used
within
that
context
as
long
as
there
are
no
circular
dependencies.
For
example,
it
is
common
to
use
the

xsd

namespace
when
defining

typed
value

s:

{

Example
37
:
IRI
expansion
within
a
context

{

 "@context":
 {
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "http://xmlns.com/foaf/0.1/name",
 "age":
 {
 "@id": "http://xmlns.com/foaf/0.1/age",
 "@type": "xsd:integer"
 },
 "homepage":
 {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 ...
}

In
this
example,
the

xsd

term

is
defined
and
used
as
a

prefix

for
the

@type

coercion
of
the

age

property.

Terms

may
also
be
used
when
defining
the

IRI

of
another

term
:

{

Example
38
:
Using
a
term
to
define
the
IRI
of
another
term
within
a
context

{

 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "foaf:name",
 "age":
 {
 "@id": "foaf:age",
 "@type": "xsd:integer"
 },
 "homepage":
 {
 "@id": "foaf:homepage",
 "@type": "@id"
 }
 },
 ...
}

Compact
IRIs

and

IRIs

may
be
used
on
the
left-hand
side
of
a

term

definition.

{

Example
39
:
Using
a
compact
IRI
as
a
term

{

 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "foaf:name",
 "foaf:age":
 {
 "@type": "xsd:integer"
 },
 "foaf:homepage":
 {
 "@type": "@id"
 }
 },
 ...
}

In
this
example,
the

compact

IRI

form
is
used
in
two
different
ways.
In
the
first
approach,

foaf:age

declares
both
the

IRI

for
the

term

(using
short-form)
as
well
as
the

@type

associated
with
the

term
.
In
the
second
approach,
only
the

@type

associated
with
the

term

is
specified.
The
full

IRI

for

foaf:homepage

is
determined
by
looking
up
the

foaf

prefix

in
the

context
.

Absolute
IRIs

may
also
be
used
in
the
key
position
in
a

context
:

{

Example
40
:
Associating
context
definitions
with
absolute
IRIs

{

 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "foaf:name",
 "foaf:age":
 {
 "@id": "foaf:age",
 "@type": "xsd:integer"
 },
 "http://xmlns.com/foaf/0.1/homepage":
 {
 "@type": "@id"
 }
 },
 ...
}

In
order
for
the

absolute

IRI

to
match
above,
the

absolute

IRI

needs
to
be
used
in
the

JSON-LD
document
.
Also
note
that

foaf:homepage

will
not
use
the

{
"@type":
"@id"
}

declaration
because

foaf:homepage

is
not
the
same
as

http://xmlns.com/foaf/0.1/homepage
.
That
is,

terms

are
looked
up
in
a

context

using
direct
string
comparison
before
the

prefix

lookup
mechanism
is
applied.

Note

While
it
is
possible
to
define
a

compact

IRI

,
or
an

absolute

IRI

to
expand
to
some
other
unrelated

IRI

(for
example,

foaf:name

expanding
to

http://example.org/unrelated#species

),
such
usage
is
strongly
discouraged.

The
only
exception
for
using
terms
in
the

context

is
that
circular
definitions
are
not
allowed.
That
is,
a
definition
of

term1

cannot
depend
on
the
definition
of

term2

if

term2

also
depends
on

term1
.
For
example,
the
following

context

definition
is
illegal:

{

Example
41
:
Illegal
circular
definition
of
terms
within
a
context

{

 "@context":
 {
 "term1": "term2:foo",
 "term2": "term1:bar"
 },
 ...
}

6.11

Sets
and
Lists

This
section
is
non-normative.

A
JSON-LD
author
can
express
multiple
values
in
a
compact
way
by
using

arrays
.
Since
graphs
do
not
describe
ordering
for
links
between
nodes,
arrays
in
JSON-LD
do
not
provide
an
ordering
of
the
contained
elements
by
default.
This
is
exactly
the
opposite
from
regular
JSON
arrays,
which
are
ordered
by
default.
For
example,
consider
the
following
simple
document:

{

Example
42
:
Multiple
values
with
no
inherent
order

{

...
 "@id": "http://example.org/people#joebob",
 "nick": ["joe", "bob", "JB"],
...
}

The
example
shown
above
would
result
in
the
following
data
being
generated,
each
relating
the
node
to
an
individual
value,
with
no
inherent
order:

		
Subject

		
Property

		
Value

		
http://example.org/people#joebob

		
http://xmlns.com/foaf/0.1/nick

		
joe

		
http://example.org/people#joebob

		
http://xmlns.com/foaf/0.1/nick

		
bob

		
http://example.org/people#joebob

		
http://xmlns.com/foaf/0.1/nick

		
JB

Multiple
values
may
also
be
expressed
using
the
expanded
form:

{

Example
43
:
Using
an
expanded
form
to
set
multiple
values

{

 "@id": "http://example.org/articles/8",
 "dc:title":
 [
 {
 "@value": "Das Kapital",
 "@language": "de"
 },
 {
 "@value": "Capital",
 "@language": "en"
 }
]
}

The
example
shown
above
would
generate
the
following
data,
again
with
no
inherent
order:

		
Subject

		
Property

		
Value

		
Language

		
http://example.org/articles/8

		
http://purl.org/dc/terms/title

		
Das
Kapital

		
de

		
http://example.org/articles/8

		
http://purl.org/dc/terms/title

		
Capital

		
en

As
the
notion
of
ordered
collections
is
rather
important
in
data
modeling,
it
is
useful
to
have
specific
language
support.
In
JSON-LD,
a
list
may
be
represented
using
the

@list

keyword

as
follows:

{

Example
44
:
An
ordered
collection
of
values
in
JSON-LD

{

...
 "@id": "http://example.org/people#joebob",
 "foaf:nick":
 {
 "@list": ["joe", "bob", "jaybee"]
 },
...
}

This
describes
the
use
of
this

array

as
being
ordered,
and
order
is
maintained
when
processing
a
document.
If
every
use
of
a
given
multi-valued
property
is
a
list,
this
may
be
abbreviated
by
setting

@container

to

@list

in
the

context
:

{

Example
45
:
Specifying
that
a
collection
is
ordered
in
the
context

{

 "@context":
 {
 ...
 "nick":
 {
 "@id": "http://xmlns.com/foaf/0.1/nick",
 "@container": "@list"
 }
 },
...
 "@id": "http://example.org/people#joebob",
 "nick": ["joe", "bob", "jaybee"],
...
}

Note

List
of
lists
in
the
form
of

list
objects

are
not
allowed
in
this
version
of
JSON-LD.
This
decision
was
made
due
to
the
extreme
amount
of
added
complexity
when
processing
lists
of
lists.

While

@list

is
used
to
describe

ordered
lists
,
the

@set

keyword
is
used
to
describe

unordered
sets
.
The
use
of

@set

in
the
body
of
a
JSON-LD
document
is
optimized
away
when
processing
the
document,
as
it
is
just
syntactic
sugar.
However,

@set

is
helpful
when
used
within
the
context
of
a
document.
Values
of
terms
associated
with
a

an

@set

or

@list

container
are
always
represented
in
the
form
of
an

array
,
even
if
there
is
just
a
single
value
that
would
otherwise
be
optimized
to
a
non-array
form
in
compact
form
(see

section
6.18
Compacted
Document
Form

).
This
makes
post-processing
of
JSON-LD
documents
easier
as
the
data
is
always
in
array
form,
even
if
the
array
only
contains
a
single
value.

6.12

Reverse
Properties

This
section
is
non-normative.

JSON-LD
serializes
directed

graphs
.
That
means
that
every

property

points
from
a

node

to
another

node

or

value
.
However,
in
some
cases,
it
is
desirable
to
serialize
in
the
reverse
direction.
Consider
for
example
the
case
where
a
person
and
its
children
should
be
described
in
a
document.
If
the
used
vocabulary
does
not
provide
a

children

property

but
just
a

parent

property
,
every

node

representing
a
child
would
have
to
be
expressed
with
a

property

pointing
to
the
parent
as
in
the
following
example.

 [

Example
46
:
A
document
with
children
linking
to
their
parent

[

 {
 "@id": "#homer",
 "http://example.com/vocab#name": "Homer"
 },
 {
 "@id": "#bart",
 "http://example.com/vocab#name": "Bart",
 "http://example.com/vocab#parent": { "@id": "#homer" }
 },
 {
 "@id": "#lisa",
 "http://example.com/vocab#name": "Lisa",
 "http://example.com/vocab#parent": { "@id": "#homer" }
 }
]

Expressing
such
data
is
much
simpler
by
using
JSON-LD's

@reverse

keyword
:

 {

Example
47
:
A
person
and
its
children
using
a
reverse
property

{

 "@id": "#homer",
 "http://example.com/vocab#name": "Homer",
 "@reverse": {
 "http://example.com/vocab#parent": [
 {
 "@id": "#bart",
 "http://example.com/vocab#name": "Bart"
 },
 {
 "@id": "#lisa",
 "http://example.com/vocab#name": "Lisa"
 }
]
 }
}

The

@reverse

keyword

can
also
be
used
in

expanded
term
definitions

to
create
reverse
properties
as
shown
in
the
following
example:

 {

Example
48
:
Using
@reverse
to
define
reverse
properties

{

 "@context": {
 "name": "http://example.com/vocab#name",
 "children": { "@reverse": "http://example.com/vocab#parent" }
 },
 "@id": "#homer",
 "name": "Homer",
 "children": [
 {
 "@id": "#bart",
 "name": "Bart"
 },
 {
 "@id": "#lisa",
 "name": "Lisa"
 }
]
}

6.13

Named
Graphs

This
section
is
non-normative.

At
times,
it
is
necessary
to
make
statements
about
a

graph

itself,
rather
than
just
a
single

node
.
This
can
be
done
by
grouping
a
set
of

nodes

using
the

@graph

keyword
.
A
developer
may
also
name
data
expressed
using
the

@graph

keyword

by
pairing
it
with
an

@id

keyword

as
shown
in
the
following
example:

 {

Example
49
:
Identifying
and
making
statements
about
a
graph

{

 "@context": {
 "generatedAt": {
 "@id": "http://www.w3.org/ns/prov#generatedAtTime",
 "@type": "http://www.w3.org/2001/XMLSchema#date"
 },
 "Person": "http://xmlns.com/foaf/0.1/Person",
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@id": "http://example.org/graphs/73",
 "generatedAt": "2012-04-09",
 "@graph":
 [
 {
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "Person",
 "name": "Manu Sporny",
 "knows": "http://greggkellogg.net/foaf#me"
 },
 {
 "@id": "http://greggkellogg.net/foaf#me",
 "@type": "Person",
 "name": "Gregg Kellogg",
 "knows": "http://manu.sporny.org/about#manu"
 }
]
}

The
example
above
expresses
a

named
graph

that
is
identified
by
the

IRI

http://example.org/graphs/73
.
That
graph
is
composed
of
the
statements
about
Manu
and
Gregg.
Metadata
about
the
graph
itself
is
expressed
via
the

generatedAt

property,
which
specifies
when
the
graph
was
generated.
An
alternative
view
of
the
information
above
is
represented
in
table
form
below:

		
Graph

		
Subject

		
Property

		
Value

		
Value
Type

		

		
http://example.org/graphs/73

		
http://www.w3.org/ns/prov#generatedAtTime

		
2012-04-09

		
http://www.w3.org/2001/XMLSchema#date

		
http://example.org/graphs/73

		
http://manu.sporny.org/about#manu

		
http://www.w3.org/2001/XMLSchema#type

		
http://xmlns.com/foaf/0.1/Person

		

		
http://example.org/graphs/73

		
http://manu.sporny.org/about#manu

		
http://xmlns.com/foaf/0.1/name

		
Manu
Sporny

		

		
http://example.org/graphs/73

		
http://manu.sporny.org/about#manu

		
http://xmlns.com/foaf/0.1/knows

		
http://greggkellogg.net/foaf#me

		

		
http://example.org/graphs/73

		
http://greggkellogg.net/foaf#me

		
http://www.w3.org/2001/XMLSchema#type

		
http://xmlns.com/foaf/0.1/Person

		

		
http://example.org/graphs/73

		
http://greggkellogg.net/foaf#me

		
http://xmlns.com/foaf/0.1/name

		
Gregg
Kellogg

		

		
http://example.org/graphs/73

		
http://greggkellogg.net/foaf#me

		
http://xmlns.com/foaf/0.1/knows

		
http://manu.sporny.org/about#manu

		

When
a
JSON-LD
document's
top-level
structure
is
an

object

that
contains
no
other

properties

than

@graph

and
optionally

@context

(properties
that
are
not
mapped
to
an

IRI

or
a

keyword

are
ignored),

@graph

is
considered
to
express
the
otherwise
implicit

default
graph
.
This
mechanism
can
be
useful
when
a
number
of

nodes

exist
at
the
document's
top
level
that
share
the
same

context
,
which
is,
e.g.,
the
case
when
a
document
is

flattened
.
The

@graph

keyword
collects
such
nodes
in
an

array

and
allows
the
use
of
a
shared
context.

 {

Example
50
:
Using
@graph
to
explicitly
express
the
default
graph

{

 "@context": ...,
 "@graph":
 [
 {
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "foaf:Person",
 "name": "Manu Sporny",
 "knows": "http://greggkellogg.net/foaf#me"
 },
 {
 "@id": "http://greggkellogg.net/foaf#me",
 "@type": "foaf:Person",
 "name": "Gregg Kellogg",
 "knows": "http://manu.sporny.org/about#manu"
 }
]
}

In
this
case,
embedding
doesn't
work
as
each

node
object

references
the
other.
This
is
equivalent
to
using
multiple

node
objects

in
array
and
defining
the

@context

within
each

node
object
:

 [

Example
51
:
Context
needs
to
be
duplicated
if
@graph
is
not
used

[

 {
 "@context": ...,
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "foaf:Person",
 "name": "Manu Sporny",
 "knows": "http://greggkellogg.net/foaf#me"
 },
 {
 "@context": ...,
 "@id": "http://greggkellogg.net/foaf#me",
 "@type": "foaf:Person",
 "name": "Gregg Kellogg",
 "knows": "http://manu.sporny.org/about#manu"
 }
]

6.14

Identifying
Blank
Nodes

This
section
is
non-normative.

At
times,
it
becomes
necessary
to
be
able
to
express
information
without
being
able
to
uniquely
identify
the

node

with
an

IRI

.
This
type
of
node
is
called
a

blank
node
.
JSON-LD
does
not
require
all
nodes
to
be
identified
using

@id
.
However,
some
graph
topologies
may
require
identifiers
to
be
serializable.
Graphs
containing
loops,
e.g.,
cannot
be
serialized
using
embedding
alone,

@id

must
be
used
to
connect
the
nodes.
In
these
situations,
one
can
use

blank
node
identifiers
,
which
look
like

IRIs

using
an
underscore
(

_

)
as
scheme.
This
allows
one
to
reference
the
node
locally
within
the
document,
but
makes
it
impossible
to
reference
the
node
from
an
external
document.
The

blank
node
identifier

is
scoped
to
the
document
in
which
it
is
used.

 {

Example
52
:
Specifying
a
local
blank
node
identifier

{

 ...
 "@id": "_:n1",
 "name": "Secret Agent 1",
 "knows":
 {
 "name": "Secret Agent 2",
 "knows": { "@id": "_:n1" }
 }
}

The
example
above
contains
information
about
to

two

secret
agents
that
cannot
be
identified
with
an

IRI

.
While
expressing
that

agent 1

agent 1

knows

agent 2

agent 2

is
possible
without
using

blank
node
identifiers
,
it
is
necessary
to

assign

agent 1

agent 1

an
identifier
so
that
it
can
be
referenced
from

agent 2

agent 2

.

It
is
worth
nothing
that
blank
node
identifiers
may
be
relabeled
during
processing.
If
a
developer
finds
that
they
refer
to
the

blank
node

more
than
once,
they
should
consider
naming
the
node
using
a
dereferenceable

IRI

so
that
it
can
also
be
referenced
from
other
documents.

6.15

Aliasing
Keywords

This
section
is
non-normative.

Each
of
the
JSON-LD

keywords
,
except
for

@context
,
may
be
aliased
to
application-specific
keywords.
This
feature
allows
legacy
JSON
content
to
be
utilized
by
JSON-LD
by
re-using
JSON
keys
that
already
exist
in
legacy
documents.
This
feature
also
allows
developers
to
design
domain-specific
implementations
using
only
the
JSON-LD

context
.

 {

Example
53
:
Aliasing
keywords

{

 "@context":
 {
 "url": "@id",
 "a": "@type",
 "name": "http://xmlns.com/foaf/0.1/name"
 },
 "url": "http://example.com/about#gregg",
 "a": "http://xmlns.com/foaf/0.1/Person",
 "name": "Gregg Kellogg"
}

In
the
example
above,
the

@id

and

@type

keywords

have
been
given
the
aliases

url

and

a
,
respectively.

Since
keywords
cannot
be
redefined,
they
can
also
not
be
aliased
to
other
keywords.

6.16

Data
Indexing

This
section
is
non-normative.

Databases
are
typically
used
to
make
access
to
data
more
efficient.
Developers
often
extend
this
sort
of
functionality
into
their
application
data
to
deliver
similar
performance
gains.
Often
this
data
does
not
have
any
meaning
from
a
Linked
Data
standpoint,
but
is
still
useful
for
an
application.

JSON-LD
introduces
the
notion
of

index
maps

that
can
be
used
to
structure
data
into
a
form
that
is
more
efficient
to
access.
The
data
indexing
feature
allows
an
author
to
structure
data
using
a
simple
key-value
map
where
the
keys
do
not
map
to

IRIs
.
This
enables
direct
access
to
data
instead
of
having
to
scan
an
array
in
search
of
a
specific
item.
In
JSON-LD
such
data
can
be
specified
by
associating
the

@index

keyword

with
a

@container

declaration
in
the
context:

 {

Example
54
:
Indexing
data
in
JSON-LD

{

 "@context":
 {
 "schema": "http://schema.org/",
 "name": "schema:name",
 "body": "schema:articleBody",
 "words": "schema:wordCount",
 "post": {
 "@id": "schema:blogPost",
 "@container": "@index"
 }
 },
 "@id": "http://example.com/",
 "@type": "schema:Blog",
 "name": "World Financial News",
 "post": {
 "en": {
 "@id": "http://example.com/posts/1/en",
 "body": "World commodities were up today with heavy trading of crude oil...",
 "words": 1539
 },
 "de": {
 "@id": "http://example.com/posts/1/de",
 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...",
 "words": 1204
 }
 }
}

In
the
example
above,
the

post

term

has
been
marked
as
an

index
map
.
The

en
,
de
,

and

ja

de

keys
will
be
ignored
semantically,
but
preserved
syntactically,
by
the
JSON-LD
Processor.
This
allows
a
developer
to
access
the
German
version
of
the

post

using
the
following
code
snippet:

obj.post.de
.

The
interpretation
of
the
data
above
is
expressed
in
the
table
below.
Note
how
the
index
keys
do
not
appear
in
the
Linked
Data
below,
but
would
continue
to
exist
if
the
document
were
compacted
or
expanded
(see

section
6.18
Compacted
Document
Form

and

section
6.17
Expanded
Document
Form

)
using
a
JSON-LD
processor:

		
Subject

		
Property

		
Value

		
http://example.com/

		
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

		
http://schema.org/Blog

		
http://example.com/

		
http://schema.org/name

		
World
Financial
News

		
http://example.com/

		
http://schema.org/blogPost

		
http://example.com/posts/1/en

		
http://example.com/

		
http://schema.org/blogPost

		
http://example.com/posts/1/de

		
http://example.com/posts/1/en

		
http://schema.org/articleBody

		
World
commodities
were
up
today
with
heavy
trading
of
crude
oil...

		
http://example.com/posts/1/en

		
http://schema.org/wordCount

		
1539

		
http://example.com/posts/1/de

		
http://schema.org/articleBody

		
Die
Werte
an
Warenbörsen
stiegen
im
Sog
eines
starken
Handels
von
Rohöl...

		
http://example.com/posts/1/de

		
http://schema.org/wordCount

		
1204

6.17

Expanded
Document
Form

This
section
is
non-normative.

The
JSON-LD
Processing
Algorithms
and
API
specification
[

JSON-LD-API

]
defines
a
method
for

expanding

a
JSON-LD
document.
Expansion
is
the
process
of
taking
a
JSON-LD
document
and
applying
a

@context

such
that
all
IRIs,
types,
and
values
are
expanded
so
that
the

@context

is
no
longer
necessary.

For
example,
assume
the
following
JSON-LD
input
document:

 {

Example
55
:
Sample
JSON-LD
document

{

 "@context":
 {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/"
}

Running
the
JSON-LD
Expansion
algorithm
against
the
JSON-LD
input
document
provided
above
would
result
in
the
following
output:

 [

Example
56
:
Expanded
form
for
the
previous
example

[

 {
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Manu Sporny" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://manu.sporny.org/" }
]
 }
]

JSON-LD's
media
type

defines
a

profile

parameter
which
can
be
used
to
signal
or
request
expanded
document
form.
The
profile
URI
identifying
expanded
document
form
is

http://www.w3.org/ns/json-ld#expanded
.

6.18

Compacted
Document
Form

This
section
is
non-normative.

The
JSON-LD
Processing
Algorithms
and
API
specification
[

JSON-LD-API

]
defines
a
method
for

compacting

a
JSON-LD
document.
Compaction
is
the
process
of
applying
a
developer-supplied
context
to
shorten

IRIs

to

terms

or

compact
IRIs

and
JSON-LD
values
expressed
in
expanded
form
to
simple
values
such
as

strings

or

numbers
.
Often
this
makes
it
simpler
to
work
with
document
as
the
data
is
expressed
in
application-specific
terms.
Compacted
documents
are
also
typically
easier
to
read
for
humans.

For
example,
assume
the
following
JSON-LD
input
document:

 [

Example
57
:
Sample
expanded
JSON-LD
document

[

 {
 "http://xmlns.com/foaf/0.1/name": ["Manu Sporny"],
 "http://xmlns.com/foaf/0.1/homepage": [
 {
 "@id": "http://manu.sporny.org/"
 }
]
 }
]

Additionally,
assume
the
following
developer-supplied
JSON-LD
context:

 {

Example
58
:
Sample
context

{

 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 }
}

Running
the
JSON-LD
Compaction
algorithm
given
the
context
supplied
above
against
the
JSON-LD
input
document
provided
above
would
result
in
the
following
output:

 {

Example
59
:
Compact
form
of
the
sample
document
once
sample
context
has
been
applied

{

 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/"
}

JSON-LD's
media
type

defines
a

profile

parameter
which
can
be
used
to
signal
or
request
compacted
document
form.
The
profile
URI
identifying
compacted
document
form
is

http://www.w3.org/ns/json-ld#compacted
.

6.19

Flattened
Document
Form

This
section
is
non-normative.

The
JSON-LD
Processing
Algorithms
and
API
specification
[

JSON-LD-API

]
defines
a
method
for

flattening

a
JSON-LD
document.
Flattening
collects
all
properties
of
a

node

in
a
single

JSON
object

and
labels
all

blank
nodes

with

blank
node
identifiers
.
This
ensures
a
shape
of
the
data
and
consequently
may
drastically
simplify
the
code
required
to
process
JSON-LD
in
certain
applications.

For
example,
assume
the
following
JSON-LD
input
document:

 {

Example
60
:
Sample
JSON-LD
document

{

 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": [
 {
 "@id": "http://manu.sporny.org/about#manu",
 "name": "Manu Sporny"
 },
 {
 "name": "Dave Longley"
 }
]
}

Running
the
JSON-LD
Flattening
algorithm
against
the
JSON-LD
input
document
in
the
example
above
and
using
the
same
context
would
result
in
the
following
output:

 {

Example
61
:
Flattened
and
compacted
form
for
the
previous
example

{

 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@graph": [
 {
 "@id": "_:b0",
 "name": "Dave Longley"
 },
 {
 "@id": "http://manu.sporny.org/about#manu",
 "name": "Manu Sporny"
 },
 {
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": [
 { "@id": "http://manu.sporny.org/about#manu" },
 { "@id": "_:b0" }
]
 }
]
}

JSON-LD's
media
type

defines
a

profile

parameter
which
can
be
used
to
signal
or
request
flattened
document
form.
The
profile
URI
identifying
flattened
document
form
is

http://www.w3.org/ns/json-ld#flattened
.
It
can
be
combined
with
the
profile
URI
identifying

expanded
document
form

or

compacted
document
from
.

6.20

Embedding
JSON-LD
in
HTML
Documents

This
section
is
non-normative.

HTML
script
tags
can
be
used
to
embed
blocks
of
data
in
documents.
This
way,
JSON-LD
content
can
be
easily
embedded
in
HTML
by
placing
it
in
a
script
element
with
the

type

attribute
set
to

application/ld+json
.

Example
62
:
Embedding
JSON-LD
in
HTML

<script type="application/ld+json">
{
 "@context": "http://json-ld.org/contexts/person.jsonld",
 "@id": "http://dbpedia.org/resource/John_Lennon",
 "name": "John Lennon",
 "born": "1940-10-09",
 "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"
}
</script>

</script>

Depending
on
how
the
HTML
document
is
served,
certain
strings
may
need
to
be
escaped.

Defining
how
such
data
may
be
used
is
beyond
the
scope
of
this
specification.
The
embedded
JSON-LD
document
might
be
extracted
as
is
or,
e.g.,
be
interpreted
as
RDF.

If
JSON-LD
content
is
extracted
as
RDF
[

RDF11-CONCEPTS

],
it
should
be
expanded
into
an

RDF
Dataset

using
the

Deserialize
JSON-LD
to
RDF
Algorithm

[

JSON-LD-API

].

7.

Data
Model

JSON-LD
is
a
serialization
format
for
Linked
Data
based
on
JSON.
It
is
therefore
important
to
distinguish
between
the
syntax,
which
is
defined
by
JSON
in
[

RFC4627

],
and
the

data
model

which
is
an
extension
of
the
RDF
data
model
[

RDF11-CONCEPTS

].
The
precise
details
of
how
JSON-LD
relates
to
the
RDF
data
model
are
given
in

section
9.
Relationship
to
RDF
.

To
ease
understanding
for
developers
unfamiliar
with
the
RDF
model,
the
following
summary
is
provided:

		
A

JSON-LD
document

serializes
a

generalized
RDF
Dataset

[

RDF11-CONCEPTS

],
which
is
a
collection
of

graphs

that
comprises
exactly
one

default
graph

and
zero
or
more

named
graphs

.

		
The

default
graph

does
not
have
a
name
and

MAY

be
empty.

		
Each

named
graph

is
a
pair
consisting
of
an

IRI

or

blank
node
identifier

(the

graph
name

)
and
a

graph
.
Whenever
practical,
the

graph
name

SHOULD

be
an

IRI

.

		
A

graph

is
a
labeled
directed
graph,
i.e.,
a
set
of

nodes

connected
by

edges
.

		
Every

edge

has
a
direction
associated
with
it
and
is
labeled
with
an

IRI

or
a

blank
node
identifier
.
Within
the
JSON-LD
syntax
these
edge
labels
are
called

properties

.
Whenever
practical,
an

edge

SHOULD

be
labeled
with
an

IRI

.

		
Every

node

is
an

IRI

,
a

blank
node
,
a

JSON-LD
value
,
or
a

list
.

		
A

node

having
an
outgoing
edge

MUST

be
an

IRI

or
a

blank
node
.

		
A

graph

MUST
NOT

contain
unconnected

nodes
,
i.e.,
nodes
which
are
not
connected
by
an

edge

to
any
other

node
.

		
An

IRI

(Internationalized
Resource
Identifier)
is
a
string
that
conforms
to
the
syntax
defined
in
[

RFC3987

].

IRIs

used
within
a

graph

SHOULD

return
a
Linked
Data
document
describing
the
resource
denoted
by
that

IRI

when
being
dereferenced.

		
A

blank
node

is
a

node

which
is
neither
an

IRI

,
nor
a

JSON-LD
value
,
nor
a

list
.
A
blank
node

MAY

be
identified
using
a

blank
node
identifier
.

		
A

blank
node
identifier

is
a
string
that
can
be
used
as
an
identifier
for
a

blank
node

within
the
scope
of
a

JSON-LD
document
.
Blank
node
identifiers
begin
with

_:
.

		
A

JSON-LD
value

is
a

typed
value
,
a

string

(which
is
interpreted
as

typed
value

with
type

xsd:string

),
a

number

(

numbers

with
a
non-zero
fractional
part,
i.e.,
the
result
of
a
modulo‑1
operation,
are
interpreted
as

typed
values

with
type

xsd:double
,
all
other

numbers

are
interpreted
as

typed
values

with
type

xsd:integer

),

true

or

false

(which
are
interpreted
as

typed
values

with
type

xsd:boolean

),
or
a

language-tagged
string
.

		
A

typed
value

consists
of
a
value,
which
is
a
string,
and
a
type,
which
is
an

IRI

.

		
A

language-tagged
string

consists
of
a
string
and
a
non-empty
language
tag
as
defined
by
[

BCP47

].
The
language
tag

MUST

be
well-formed
according
to
section

2.2.9
Classes
of
Conformance

of
[

BCP47

].

		
A

list

is
a
sequence
of
zero
or
more

IRIs
,

blank
nodes
,
and

JSON-LD
values
.

Lists

are
interpreted
as

RDF
list
structures

[

RDF11-MT

].

JSON-LD
documents

MAY

contain
data
that
cannot
be
represented
by
the

data
model

defined
above.
Unless
otherwise
specified,
such
data
is
ignored
when
a

JSON-LD
document

is
being
processed.
One
result
of
this
rule
is
that
properties
which
are
not
mapped
to
an

IRI

,
a

blank
node
,
or

keyword

will
be
ignored.

[image: An illustration of the data model]

Figure 1:

Figure 1:

An
illustration
of
the
data
model.

8.

JSON-LD
Grammar

This
appendix
restates
the
syntactic
conventions
described
in
the
previous
sections
more
formally.

A

JSON-LD
document

MUST

be
a
valid
JSON
document
as
described
in
[

RFC4627

].

A

JSON-LD
document

MUST

be
a
single

node
object

or
an

array

whose
elements
are
each

node
objects

at
the
top
level.

In
contrast
to
JSON,
in
JSON-LD
the
keys
in

objects

MUST

be
unique.

Note

JSON-LD
allows

keywords

to
be
aliased
(see

section
6.15
Aliasing
Keywords

for
details).
Whenever
a

keyword

is
discussed
in
this
grammar,
the
statements
also
apply
to
an
alias
for
that

keyword
.
For
example,
if
the

active
context

defines
the

term

id

as
an
alias
for

@id
,
that
alias
may
be
legitimately
used
as
a
substitution
for

@id
.
Note
that

keyword

aliases
are
not
expanded
during
context
processing.

8.1

Terms

A

term

is
a
short-hand

string

that
expands
to
an

IRI

or
a

blank
node
identifier
.

A

term

MUST
NOT

equal
any
of
the
JSON-LD

keywords
.

To
avoid
forward-compatibility
issues,
a

term

SHOULD
NOT

start
with
an

@

character
as
future
versions
of
JSON-LD
may
introduce
additional

keywords
.
Furthermore,
the
term

MUST
NOT

be
an
empty

string

(

""

)
as
not
all
programming
languages
are
able
to
handle
empty
JSON
keys.

See

section
5.1
The
Context

and

section
5.2
IRIs

for
further
discussion
on
mapping

terms

to

IRIs
.

8.2

Node
Objects

A

node
object

represents
zero
or
more
properties
of
a

node

in
the

graph

serialized
by
the

JSON-LD
document
.
A

JSON
object

is
a

node
object

if
it
exists
outside
of
a
JSON-LD

context

and:

		
it
does
not
contain
the

@value
,

@list
,
or

@set

keywords,
and

		
it
is
not
the
top-most

JSON
object

in
the
JSON-LD
document
consisting
of
no
other
members
than

@graph

and

@context
.

The

properties

of
a

node

in
a

graph

may
be
spread
among
different

node
objects

within
a
document.
When
that
happens,
the
keys
of
the
different

node
objects

need
to
be
merged
to
create
the
properties
of
the
resulting

node
.

A

node
object

MUST

be
a

JSON
object
.
All
keys
which
are
not

IRIs
,

compact
IRIs
,

terms

valid
in
the

active
context
,
or
one
of
the
following

keywords

MUST

be
ignored
when
processed:

		

@context
,

		

@id
,

		

@graph
,

		

@type
,

		

@reverse
,
or

		

@index

If
the

node
object

contains
the

@context

key,
its
value

MUST

be

null
,
an

absolute

IRI

,
a

relative

IRI

,
a

context
definition
,
or
an

array

composed
of
any
of
these.

If
the

node
object

contains
the

@id

key,
its
value

MUST

be
an

absolute

IRI

,
a

relative

IRI

,
or
a

compact

IRI

(including

blank
node
identifiers

).
See

section
5.3
Node
Identifiers
,

section
6.3
Compact
IRIs
,
and

section
6.14
Identifying
Blank
Nodes

for
further
discussion
on

@id

values.

If
the

node
object

contains
the

@graph

key,
its
value

MUST

be
a

node
object

or
an

array

of
zero
or
more

node
objects
.
If
the

node
object

contains
an

@id

keyword,
its
value
is
used
as
the
label
of
a
named
graph.
See

section
6.13
Named
Graphs

for
further
discussion
on

@graph

values.
As
a
special
case,
if
a

JSON
object

contains
no
keys
other
than

@graph

and

@context
,
and
the

JSON
object

is
the
root
of
the
JSON-LD
document,
the

JSON
object

is
not
treated
as
a

node
object

;
this
is
used
as
a
way
of
defining

node
definitions

that
may
not
form
a
connected
graph.
This
allows
a

context

to
be
defined
which
is
shared
by
all
of
the
constituent

node
objects
.

If
the

node
object

contains
the

@type

key,
its
value

MUST

be
either
an

absolute

IRI

,
a

relative

IRI

,
a

compact

IRI

(including

blank
node
identifiers

),
a

term

defined
in
the

active
context

expanding
into
an

absolute

IRI

,
or
an

array

of
any
of
these.
See

section
5.4
Specifying
the
Type

for
further
discussion
on

@type

values.

If
the

node
object

contains
the

@reverse

key,
its
value

MUST

be
a

JSON
object

containing
members
representing
reverse
properties.
Each
value
of
such
a
reverse
property

MUST

be
an

absolute

IRI

,
a

relative

IRI

,
a

compact

IRI

,
a

blank
node
identifier
,
a

node
object

or
an

array

containing
a
combination
of
these.

If
the

node
object

contains
the

@index

key,
its
value

MUST

be
a

string
.
See

section
6.16
Data
Indexing

for
further
discussion
on

@index

values.

Keys
in
a

node
object

that
are
not

keywords

MAY

expand
to
an

absolute

IRI

using
the

active
context
.
The
values
associated
with
keys
that
expand
to
an

absolute

IRI

MUST

be
one
of
the
following:

		

string
,

		

number
,

		

true
,

		

false
,

		

null
,

		

node
object
,

		

value
object
,

		

list
object
,

		

set
object
,

		
an

array

of
zero
or
more
of
the
possibilities
above,

		
a

language
map
,
or

		
an

index
map

8.3

Value
Objects

A

value
object

is
used
to
explicitly
associate
a
type
or
a
language
with
a
value
to
create
a

typed
value

or
a

language-tagged
string
.

A

value
object

MUST

be
a

JSON
object

containing
the

@value

key.
It

MAY

also
contain
a

an

@type
,
a

an

@language
,
an

@index
,
or
an

@context

key
but

MUST
NOT

contain
both
a

an

@type

and
a

an

@language

key
at
the
same
time.
A

value
object

MUST
NOT

contain
any
other
keys
that
expand
to
an

absolute

IRI

or

keyword
.

The
value
associated
with
the

@value

key

MUST

be
either
a

string
,
a

number
,

true
,

false

or

null
.

The
value
associated
with
the

@type

key

MUST

be
a

term
,
a

compact

IRI

,
an

absolute

IRI

,
a

relative

IRI

,
or

null
.

The
value
associated
with
the

@language

key

MUST

have
the
lexical
form
described
in
[

BCP47

],
or
be

null
.

The
value
associated
with
the

@index

key

MUST

be
a

string
.

See

section
6.4
Typed
Values

and

section
6.9
String
Internationalization

for
more
information
on

value
objects
.

8.4

Lists
and
Sets

A

list

represents
an

ordered

set
of
values.
A
set
represents
an

unordered

set
of
values.
Unless
otherwise
specified,

arrays

are
unordered
in
JSON-LD.
As
such,
the

@set

keyword,
when
used
in
the
body
of
a
JSON-LD
document,
represents
just
syntactic
sugar
which
is
optimized
away
when
processing
the
document.
However,
it
is
very
helpful
when
used
within
the
context
of
a
document.
Values
of
terms
associated
with
a

an

@set

or

@list

container
will
always
be
represented
in
the
form
of
an

array

when
a
document
is
processed—even
if
there
is
just
a
single
value
that
would
otherwise
be
optimized
to
a
non-array
form
in

compact
document
form
.
This
simplifies
post-processing
of
the
data
as
the
data
is
always
in
a
deterministic
form.

A

list
object

MUST

be
a

JSON
object

that
contains
no
keys
that
expand
to
an

absolute

IRI

or

keyword

other
than

@list
,

@context
,
and

@index
.

A

set
object

MUST

be
a

JSON
object

that
contains
no
keys
that
expand
to
an

absolute

IRI

or

keyword

other
than

@list
,

@context
,
and

@index
.
Please
note
that
the

@index

key
will
be
ignored
when
being
processed.

In
both
cases,
the
value
associated
with
the
keys

@list

and

@set

MUST

be
one
of
the
following
types:

		

string
,

		

number
,

		

true
,

		

false
,

		

null
,

		

node
object
,

		

value
object
,
or

		
an

array

of
zero
or
more
of
the
above
possibilities

See

section
6.11
Sets
and
Lists

for
further
discussion
on
sets
and
lists.

8.5

Language
Maps

A

language
map

is
used
to
associate
a
language
with
a
value
in
a
way
that
allows
easy
programmatic
access.
A

language
map

may
be
used
as
a
term
value
within
a

node
object

if
the
term
is
defined
with

@container

set
to

@language
.
The
keys
of
a

language
map

MUST

be

strings

representing
[

BCP47

]
language
codes
and
the
values

MUST

be
any
of
the
following
types:

		

null
,

		

string
,
or

		
an

array

of
zero
or
more
of
the
above
possibilities

See

section
6.9
String
Internationalization

for
further
discussion
on
language
maps.

8.6

Index
Maps

An

index
map

allows
keys
that
have
no
semantic
meaning,
but
should
be
preserved
regardless,
to
be
used
in
JSON-LD
documents.
An

index
map

may
be
used
as
a

term

value
within
a

node
object

if
the
term
is
defined
with

@container

set
to

@index
.
The
values
of
the
members
of
an

index
map

MUST

be
one
of
the
following
types:

		

string
,

		

number
,

		

true
,

		

false
,

		

null
,

		

node
object
,

		

value
object
,

		

list
object
,

		

set
object
,

		
an

array

of
zero
or
more
of
the
above
possibilities

See

section
6.16
Data
Indexing

for
further
information
on
this
topic.

8.7

Context
Definitions

A

context
definition

defines
a

local
context

in
a

node
object
.

A

context
definition

MUST

be
a

JSON
object

whose
keys

MUST

either
be

terms
,

compact
IRIs
,

absolute
IRIs
,
or
the

keywords

@language
,

@base
,
and

@vocab
.

If
the

context
definition

has
a

an

@language

key,
its
value

MUST

have
the
lexical
form
described
in
[

BCP47

]
or
be

null
.

If
the

context
definition

has
a

an

@base

key,
its
value

MUST

be
an

absolute

IRI

,
a

relative

IRI

,
or

null
.

If
the

context
definition

has
a

an

@vocab

key,
its
value

MUST

be
a

absolute

IRI

,
a

compact

IRI

,
a

blank
node
identifier
,
a

term
,
or

null
.

The
value
of
keys
that
are
not

keywords

MUST

be
either
an

absolute

IRI

,
a

compact

IRI

,
a

term
,
a

blank
node
identifier
,
a

keyword
,

null
,
or
an

expanded
term
definition
.

An

expanded
term
definition

is
used
to
describe
the
mapping
between
a

term

and
its
expanded
identifier,
as
well
as
other
properties
of
the
value
associated
with
the

term

when
it
is
used
as
key
in
a

node
object
.

An

expanded
term
definition

MUST

be
a

JSON
object

composed
of
zero
or
more
keys
from

@id
,

@reverse
,

@type
,

@language

or

@container
.
An

expanded
term
definition

SHOULD
NOT

contain
any
other
keys.

If
an

expanded
term
definition

has
an

@reverse

member,
it

MUST
NOT

have
an

@id

member
at
the
same
time.
If
an

@container

member
exists,
its
value

MUST

be

null
,

@set
,
or

@index
.

If
the
term
being
defined
is
not
a

compact

IRI

or

absolute

IRI

and
the

active
context

does
not
have
an

@vocab

mapping,
the

expanded
term
definition

MUST

include
the

@id

key.

If
the

expanded
term
definition

contains
the

@id

keyword
,
its
value

MUST

be

null
,
an

absolute

IRI

,
a

blank
node
identifier
,
a

compact

IRI

,
a

term
,
or
a

keyword
.

If
the

expanded
term
definition

contains
the

@type

keyword
,
its
value

MUST

be
an

absolute

IRI

,
a

compact

IRI

,
a

term
,

null
,
or
the
one
of
the

keywords

@id

or

@vocab
.

If
the

expanded
term
definition

contains
the

@language

keyword
,
its
value

MUST

have
the
lexical
form
described
in
[

BCP47

]
or
be

null
.

If
the

expanded
term
definition

contains
the

@container

keyword
,
its
value

MUST

be
either

@list
,

@set
,

@language
,

@index
,
or
be

null
.
If
the
value
is

@language
,
when
the

term

is
used
outside
of
the

@context
,
the
associated
value

MUST

be
a

language
map
.
If
the
value
is

@index
,
when
the

term

is
used
outside
of
the

@context
,
the
associated
value

MUST

be
an

index
map
.

Terms

MUST
NOT

be
used
in
a
circular
manner.
That
is,
the
definition
of
a
term
cannot
depend
on
the
definition
of
another
term
if
that
other
term
also
depends
on
the
first
term.

See

section
5.1
The
Context

for
further
discussion
on
contexts.

9.

Relationship
to
RDF

JSON-LD
is
a

concrete
RDF
syntax

as
described
in
[

RDF11-CONCEPTS

].
Hence,
a
JSON-LD
document
is
both
an
RDF
document

and

a
JSON
document
and
correspondingly
represents
an
instance
of
an
RDF
data
model.
However,
JSON-LD
also
extends
the
RDF
data
model
to
optionally
allow
JSON-LD
to
serialize

Generalized
RDF
Datasets
.
The
JSON-LD
extensions
to
the
RDF
data
model
are:

		
In
JSON-LD

properties

can
be

IRIs

or

blank
nodes

whereas
in
RDF
properties
(predicates)
have
to
be

IRIs
.
This
means
that
JSON-LD
serializes

generalized
RDF
Datasets
.

		
In
JSON-LD

lists

are
part
of
the
data
model
whereas
in
RDF
they
are
part
of
a
vocabulary,
namely
[

RDF-SCHEMA

RDF11-SCHEMA

].

		
RDF
values
are
either
typed

literals

(

typed
values

)
or
language-tagged
strings
(

language-tagged
strings

)

whereas
JSON-LD
also
supports
JSON's
native
data
types,
i.e.,

number
,

strings
,
and
the
boolean
values

true

and

false
.
The
JSON-LD
Processing
Algorithms
and
API
specification
[

JSON-LD-API

]
defines
the

conversion
rules

between
JSON's
native
data
types
and
RDF's
counterparts
to
allow
round-tripping.

Summarized,
these
differences
mean
that
JSON-LD
is
capable
of
serializing
any
RDF
graph
or
dataset
and
most,
but
not
all,
JSON-LD
documents
can
be
directly
interpreted
as
RDF
as
described
in
RDF
1.1
Concepts
[

RDF11-CONCEPTS

].

For
authors
and
developers
working
with

blank
nodes

as

properties

when
deserializing
to
RDF,
three
potential
approaches
are
suggested:

		
If
the
author
is
not
yet
ready
to
commit
to
a
stable

IRI
,
the
property
should
be
mapped
to
an

IRI

that
is
documented
as
unstable.

		
If
the
developer
wishes
to
use

blank
nodes

as

properties

and
also
wishes
to
interpret
the
data
as
a

generalized
RDF
Dataset
,
there
is
an
option,

produce
generalized
RDF
,
in
the
Deserialize
JSON-LD
to
RDF
algorithm
[

JSON-LD-API

]
to
do
so.
Note
that
a

generalized
RDF
Dataset

is
an
extension
of
RDF;
it
does
not
conform
to
the
RDF
standard.

		
If
the
author
or
developer
wishes
to
use

blank
nodes

as

properties

and
wishes
to
interpret
the
data
as
a
standard
(non-generalized)

RDF
Dataset
,
it
is
possible
to
losslessly
interpret
JSON-LD
as
RDF
by
transforming

blank
nodes

used
as

properties

to

IRIs
,
by
minting
new
"Skolem
IRIs"
as
per

Replacing
Blank
Nodes
with
IRIs

of
[

RDF11-CONCEPTS

].

The
normative
algorithms
for
interpreting
JSON-LD
as
RDF
and
serializing
RDF
as
JSON-LD
are
specified
in
the
JSON-LD
Processing
Algorithms
and
API
specification
[

JSON-LD-API

].

Even
though
JSON-LD
serializes

generalized
RDF
Datasets
,
it
can
also
be
used
as
a

RDF
graph
source
.
In
that
case,
a
consumer

MUST

only
use
the
default
graph
and
ignore
all
named
graphs.
This
allows
servers
to
expose
data
in
languages
such
as
Turtle
and
JSON-LD
using
content
negotiation.

Note

Publishers
supporting
both
dataset
and
graph
syntaxes
have
to
ensure
that
the
primary
data
is
stored
in
the
default
graph
to
enable
consumers
that
do
not
support
datasets
to
process
the
information.

9.1

Serializing/Deserializing
RDF

This
section
is
non-normative.

The
process
of
serializing
RDF
as
JSON-LD
and
deserializing
JSON-LD
to
RDF
depends
on
executing
the
algorithms
defined
in

RDF
Serialization-Deserialization
Algorithms

in
the
JSON-LD
Processing
Algorithms
and
API
specification
[

JSON-LD-API

].
It
is
beyond
the
scope
of
this
document
to
detail
these
algorithms
any
further,
but
a
summary
of
the
necessary
operations
is
provided
to
illustrate
the
process.

The
procedure
to
deserialize
a
JSON-LD
document
to
RDF
involves
the
following
steps:

		
Expand
the
JSON-LD
document,
removing
any
context;
this
ensures
that
properties,
types,
and
values
are
given
their
full
representation
as

IRIs

and
expanded
values.
Expansion
is
discussed
further
in

section
6.17
Expanded
Document
Form
.

		
Flatten
the
document,
which
turns
the
document
into
an
array
of

node
objects
.
Flattening
is
discussed
further
in

section
6.19
Flattened
Document
Form
.

		
Turn
each

node
object

into
a
series
of

RDF
triples
.

For
example,
consider
the
following
JSON-LD
document
in
compact
form:

 {

Example
63
:
Sample
JSON-LD
document

{

 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": [
 {
 "@id": "http://manu.sporny.org/about#manu",
 "name": "Manu Sporny"
 },
 {
 "name": "Dave Longley"
 }
]
}

Running
the
JSON-LD
Expansion
and
Flattening
algorithms
against
the
JSON-LD
input
document
in
the
example
above
would
result
in
the
following
output:

 [

Example
64
:
Flattened
and
expanded
form
for
the
previous
example

[

 {
 "@id": "_:b0",
 "http://xmlns.com/foaf/0.1/name": "Dave Longley"
 },
 {
 "@id": "http://manu.sporny.org/about#manu",
 "http://xmlns.com/foaf/0.1/name": "Manu Sporny"
 },
 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": "Markus Lanthaler",
 "http://xmlns.com/foaf/0.1/knows": [
 { "@id": "http://manu.sporny.org/about#manu" },
 { "@id": "_:b0" }
]
 }
]

Deserializing
this
to
RDF
now
is
a
straightforward
process
of
turning
each

node
object

into
one
or
more
RDF
triples.
This
can
be
expressed
in
Turtle
as
follows:

 _:b0 <http://xmlns.com/foaf/0.1/name> "Dave Longley" .

Example
65
:
Turtle
representation
of
expanded/flattened
document

_:b0 <http://xmlns.com/foaf/0.1/name> "Dave Longley" .

<http://manu.sporny.org/about#manu> <http://xmlns.com/foaf/0.1/name> "Manu Sporny" .
<http://me.markus-lanthaler.com/> <http://xmlns.com/foaf/0.1/name> "Markus Lanthaler" ;
<http://xmlns.com/foaf/0.1/knows>
<http://manu.sporny.org/about#manu>,
_:b0
.

 <http://xmlns.com/foaf/0.1/knows> <http://manu.sporny.org/about#manu>, _:b0 .

The
process
of
serializing
RDF
as
JSON-LD
can
be
thought
of
as
the
inverse
of
this
last
step,
creating
an
expanded
JSON-LD
document
closely
matching
the
triples
from
RDF,
using
a
single

node
object

for
all
triples
having
a
common
subject,
and
a
single

property

for
those
triples
also
having
a
common
predicate.

A.

Relationship
to
Other
Linked
Data
Formats

This
section
is
non-normative.

The
JSON-LD
examples
below
demonstrate
how
JSON-LD
can
be
used
to
express
semantic
data
marked
up
in
other
linked
data
formats
such
as
Turtle,
RDFa,
Microformats,
and
Microdata.
These
sections
are
merely
provided
as
evidence
that
JSON-LD
is
very
flexible
in
what
it
can
express
across
different
Linked
Data
approaches.

A.1

Turtle

This
section
is
non-normative.

The
following
are
examples
of
transforming
RDF
expressed
in
Turtle
[

TURTLE

]
into
JSON-LD.

Prefix
definitions

This
section
is
non-normative.

The
JSON-LD
context
has
direct
equivalents
for
the
Turtle

@prefix

declaration:

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

Example
66
:
A
set
of
statements
serialized
in
Turtle

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://manu.sporny.org/about#manu> a foaf:Person;
 foaf:name "Manu Sporny";
foaf:homepage
<http://manu.sporny.org/>
.

 foaf:homepage <http://manu.sporny.org/> .

 {

Example
67
:
The
same
set
of
statements
serialized
in
JSON-LD

{

 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/"
 },
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "foaf:Person",
 "foaf:name": "Manu Sporny",
 "foaf:homepage": { "@id": "http://manu.sporny.org/" }
}

Embedding

Both
Turtle
and
JSON-LD
allow
embedding,
although
Turtle
only
allows
embedding
of

blank
nodes
.

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

Example
68
:
Embedding
in
Turtle

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://manu.sporny.org/about#manu>
 a foaf:Person;
 foaf:name "Manu Sporny";
foaf:knows
[
a
foaf:Person;
foaf:name
"Gregg
Kellogg"
]
.

 foaf:knows [a foaf:Person; foaf:name "Gregg Kellogg"] .

 {

Example
69
:
Same
embedding
example
in
JSON-LD

{

 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/"
 },
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "foaf:Person",
 "foaf:name": "Manu Sporny",
 "foaf:knows":
 {
 "@type": "foaf:Person",
 "foaf:name": "Gregg Kellogg"
 }
}

Conversion
of
native
data
types

In
JSON-LD
numbers
and
boolean
values
are
native
data
types.
While
Turtle
has
a
shorthand
syntax
to
express
such
values,
RDF's
abstract
syntax
requires
that
numbers
and
boolean
values
are
represented
as
typed
literals.
Thus,
to
allow
full
round-tripping,
the
JSON-LD
Processing
Algorithms
and
API
specification
[

JSON-LD-API

]
defines
conversion
rules
between
JSON-LD's
native
data
types
and
RDF's
counterparts.

Numbers

without
fractions
are
converted
to

xsd:integer

-typed
literals,
numbers
with
fractions
to

xsd:double

-typed
literals
and
the
two
boolean
values

true

and

false

to
a

xsd:boolean

-typed
literal.
All
typed
literals
are
in
canonical
lexical
form.

 {

Example
70
:
JSON-LD
using
native
data
types
for
numbers
and
boolean
values

{

 "@context":
 {
 "ex": "http://example.com/vocab#"
 },
 "@id": "http://example.com/",
 "ex:numbers": [14, 2.78],
 "ex:booleans": [true, false]
}

 @prefix ex: <http://example.com/vocab#> .

Example
71
:
Same
example
in
Turtle
using
typed
literals

@prefix ex: <http://example.com/vocab#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
<http://example.com/>
 ex:numbers "14"^^xsd:integer, "2.78E0"^^xsd:double ;
ex:booleans
"true"^^xsd:boolean,
"false"^^xsd:boolean
.

 ex:booleans "true"^^xsd:boolean, "false"^^xsd:boolean .

Lists

Both
JSON-LD
and
Turtle
can
represent
sequential
lists
of
values.

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

Example
72
:
A
list
of
values
in
Turtle

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example.org/people#joebob> a foaf:Person;
 foaf:name "Joe Bob";
foaf:nick
(
"joe"
"bob"
"jaybee"
)
.

 foaf:nick ("joe" "bob" "jaybee") .

 {

Example
73
:
Same
example
with
a
list
of
values
in
JSON-LD

{

 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/"
 },
 "@id": "http://example.org/people#joebob",
 "@type": "foaf:Person",
 "foaf:name": "Joe Bob",
 "foaf:nick":
 {
 "@list": ["joe", "bob", "jaybee"]
 }
}

A.2

RDFa

This
section
is
non-normative.

The
following
example
describes
three
people
with
their
respective
names
and
homepages
in
RDFa
[

RDFA-CORE

].

 >

Example
74
:
RDFa
fragment
that
describes
three
people

<div prefix="foaf: http://xmlns.com/foaf/0.1/">

 <li typeof="foaf:Person">
 Bob

 <li typeof="foaf:Person">
 Eve

 <li typeof="foaf:Person">
 Manu

</div>

An
example
JSON-LD
implementation
using
a
single

context

is
described
below.

 {

Example
75
:
Same
description
in
JSON-LD
(context
shared
among
node
objects)

{

 "@context":
 {
 "foaf": "http://xmlns.com/foaf/0.1/"
 },
 "@graph":
 [
 {
 "@type": "foaf:Person",
 "foaf:homepage": "http://example.com/bob/",
 "foaf:name": "Bob"
 },
 {
 "@type": "foaf:Person",
 "foaf:homepage": "http://example.com/eve/",
 "foaf:name": "Eve"
 },
 {
 "@type": "foaf:Person",
 "foaf:homepage": "http://example.com/manu/",
 "foaf:name": "Manu"
 }
]
}

A.3

Microformats

This
section
is
non-normative.

The
following
example
uses
a
simple
Microformats
hCard
example
to
express
how
Microformats
[

MICROFORMATS

]
are
represented
in
JSON-LD.

 <div class="vcard">

Example
76
:
HTML
fragment
with
a
simple
Microformats
hCard

<div class="vcard">

 Tantek Çelik
</div>

The
representation
of
the
hCard
expresses
the
Microformat
terms
in
the

context

and
uses
them
directly
for
the

url

and

fn

properties.
Also
note
that
the
Microformat
to
JSON-LD
processor
has
generated
the
proper
URL
type
for

http://tantek.com/
.

 {

Example
77
:
Same
hCard
representation
in
JSON-LD

{

 "@context":
 {
 "vcard": "http://microformats.org/profile/hcard#vcard",
 "url":
 {
 "@id": "http://microformats.org/profile/hcard#url",
 "@type": "@id"
 },
 "fn": "http://microformats.org/profile/hcard#fn"
 },
 "@type": "vcard",
 "url": "http://tantek.com/",
 "fn": "Tantek Çelik"
}

A.4

Microdata

This
section
is
non-normative.

The
HTML
Microdata
[

MICRODATA

]
example
below
expresses
book
information
as
a
Microdata
Work
item.

 <dl itemscope

Example
78
:
HTML
fragments
that
describes
a
book
using
microdata

<dl itemscope

 itemtype="http://purl.org/vocab/frbr/core#Work"
 itemid="http://purl.oreilly.com/works/45U8QJGZSQKDH8N">
 <dt>Title</dt>
 <dd><cite itemprop="http://purl.org/dc/terms/title">Just a Geek</cite></dd>
 <dt>By</dt>
 <dd>Wil Wheaton</dd>
 <dt>Format</dt>
 <dd itemprop="http://purl.org/vocab/frbr/core#realization"
 itemscope
 itemtype="http://purl.org/vocab/frbr/core#Expression"
 itemid="http://purl.oreilly.com/products/9780596007683.BOOK">
 <link itemprop="http://purl.org/dc/terms/type" href="http://purl.oreilly.com/product-types/BOOK">
 Print
 </dd>
 <dd itemprop="http://purl.org/vocab/frbr/core#realization"
 itemscope
 itemtype="http://purl.org/vocab/frbr/core#Expression"
 itemid="http://purl.oreilly.com/products/9780596802189.EBOOK">
 <link itemprop="http://purl.org/dc/terms/type" href="http://purl.oreilly.com/product-types/EBOOK">
 Ebook
 </dd>
</dl>

Note
that
the
JSON-LD
representation
of
the
Microdata
information
stays
true
to
the
desires
of
the
Microdata
community
to
avoid
contexts
and
instead
refer
to
items
by
their
full

IRI

.

 [

Example
79
:
Same
book
description
in
JSON-LD
(avoiding
contexts)

[

 {
 "@id": "http://purl.oreilly.com/works/45U8QJGZSQKDH8N",
 "@type": "http://purl.org/vocab/frbr/core#Work",
 "http://purl.org/dc/terms/title": "Just a Geek",
 "http://purl.org/dc/terms/creator": "Whil Wheaton",
 "http://purl.org/vocab/frbr/core#realization":
 [
 "http://purl.oreilly.com/products/9780596007683.BOOK",
 "http://purl.oreilly.com/products/9780596802189.EBOOK"
]
 },
 {
 "@id": "http://purl.oreilly.com/products/9780596007683.BOOK",
 "@type": "http://purl.org/vocab/frbr/core#Expression",
 "http://purl.org/dc/terms/type": "http://purl.oreilly.com/product-types/BOOK"
 },
 {
 "@id": "http://purl.oreilly.com/products/9780596802189.EBOOK",
 "@type": "http://purl.org/vocab/frbr/core#Expression",
 "http://purl.org/dc/terms/type": "http://purl.oreilly.com/product-types/EBOOK"
 }
]

B.

IANA
Considerations

This
section
has
been
submitted
to
the
Internet
Engineering
Steering
Group
(IESG)
for
review,
approval,
and
registration
with
IANA.

application/ld+json

		
Type
name:

		
application

		
Subtype
name:

		
ld+json

		
Required
parameters:

		
None

		
Optional
parameters:

		

		

profile

		

A
a
non-empty
list
of
space-separated
URIs
identifying
specific
constraints
or
conventions
that
apply
to
a
JSON-LD
document
according
[

RFC6906

].
A
profile
does
not
change
the
semantics
of
the
resource
representation
when
processed
without
profile
knowledge,
so
that
clients
both
with
and
without
knowledge
of
a
profiled
resource
can
safely
use
the
same
representation.
The

profile

parameter

MAY

be
used
by
clients
to
express
their
preferences
in
the
content
negotiation
process.
If
the
profile
parameter
is
given,
a
server

SHOULD

return
a
document
that
honors
the
profiles
in
the
list
which
are
recognized
by
the
server.
It
is

RECOMMENDED

that
profile
URIs
are
dereferenceable
and
provide
useful
documentation
at
that
URI.
For
more
information
and
background
please
refer
to
[

RFC6906

].

This
specification
defines
three
values
for
the

profile

parameter.
To
request
or
specify

expanded
JSON-LD
document
form
,
the
URI

http://www.w3.org/ns/json-ld#expanded

SHOULD

be
used.
To
request
or
specify

compacted
JSON-LD
document
form
,
the
URI

http://www.w3.org/ns/json-ld#compacted

SHOULD

be
used.
To
request
or
specify

flattened
JSON-LD
document
form
,
the
URI

http://www.w3.org/ns/json-ld#flattened

SHOULD

be
used.
Please
note
that,
according
[

HTTP11

],
the
value
of
the

profile

parameter
has
to
be
enclosed
in
quotes
(

"

)
because
it
contains
special
characters
and,
if
multiple
profiles
are
combined,
whitespace.

When
processing
the
"profile"
media
type
parameter,
it
is
important
to
note
that
its
value
contains
one
or
more
URIs
and
not
IRIs.
In
some
cases
it
might
therefore
be
necessary
to
convert
between
IRIs
and
URIs
as
specified
in

section
3
Relationship
between
IRIs
and
URIs

of
[

RFC3987

].

		
Encoding
considerations:

		
See
RFC 6839,

RFC 6839,

section
3.1.

		
Security
considerations:

		
See
[

RFC4627

]

Since
JSON-LD
is
intended
to
be
a
pure
data
exchange
format
for
directed
graphs,
the
serialization

SHOULD
NOT

be
passed
through
a
code
execution
mechanism
such
as
JavaScript's

eval()

function
to
be
parsed.
An
(invalid)
document
may
contain
code
that,
when
executed,
could
lead
to
unexpected
side
effects
compromising
the
security
of
a
system.

When
processing
JSON-LD
documents,
links
to
remote
contexts
are
typically
followed
automatically,
resulting
in
the
transfer
of
files
without
the
explicit
request
of
the
user
for
each
one.
If
remote
contexts
are
served
by
third
parties,
it
may
allow
them
to
gather
usage
patterns
or
similar
information
leading
to
privacy
concerns.
Specific
implementations,
such
as
the
API
defined
in
the
JSON-LD
Processing
Algorithms
and
API
specification
[

JSON-LD-API

],
may
provide
fine-grained
mechanisms
to
control
this
behavior.

JSON-LD
contexts
that
are
loaded
from
the
Web
over
non-secure
connections,
such
as
HTTP,
run
the
risk
of
being
altered
by
an
attacker
such
that
they
may
modify
the
JSON-LD

active
context

in
a
way
that
could
compromise
security.
It
is
advised
that
any
application
that
depends
on
a
remote
context
for
mission
critical
purposes
vet
and
cache
the
remote
context
before
allowing
the
system
to
use
it.

Given
that
JSON-LD
allows
the
substitution
of
long
IRIs
with
short
terms,
JSON-LD
documents
may
expand
considerably
when
processed
and,
in
the
worst
case,
the
resulting
data
might
consume
all
of
the
recipient's
resources.
Applications
should
treat
any
data
with
due
skepticism.

		
Interoperability
considerations:

		
Not
Applicable

		
Published
specification:

		
http://www.w3.org/TR/json-ld

		
Applications
that
use
this
media
type:

		
Any
programming
environment
that
requires
the
exchange
of
directed
graphs.
Implementations
of
JSON-LD
have
been
created
for
JavaScript,
Python,
Ruby,
PHP,
and
C++.

		
Additional
information:

		

		
Magic
number(s):

		
Not
Applicable

		
File
extension(s):

		.jsonld

		
Macintosh
file
type
code(s):

		
TEXT

		
Person
&
email
address
to
contact
for
further
information:

		
Manu
Sporny
<msporny@digitalbazaar.com>

		
Intended
usage:

		
Common

		
Restrictions
on
usage:

		
None

		
Author(s):

		
Manu
Sporny,
Dave
Longley,
Gregg
Kellogg,
Markus
Lanthaler,
Niklas
Lindström

		
Change
controller:

		

W3C

Fragment
identifiers
used
with

application/ld+json

are
treated
as
in
RDF
syntaxes,
as
per

RDF
1.1
Concepts
and
Abstract
Syntax

[

RDF11-CONCEPTS

].

C.

Acknowledgements

This
section
is
non-normative.

The
authors
would
like
to
extend
a
deep
appreciation
and
the
most
sincere
thanks
to
Mark
Birbeck,
who
contributed
foundational
concepts
to
JSON-LD
via
his
work
on
RDFj.
JSON-LD
uses
a
number
of
core
concepts
introduced
in
RDFj,
such
as
the
context
as
a
mechanism
to
provide
an
environment
for
interpreting
JSON
data.
Mark
had
also
been
very
involved
in
the
work
on
RDFa
as
well.
RDFj
built
upon
that
work.
JSON-LD
exists
because
of
the
work
and
ideas
he
started
nearly
a
decade
ago
in
2004.

A
large
amount
of
thanks
goes
out
to
the
JSON-LD
Community
Group
participants
who
worked
through
many
of
the
technical
issues
on
the
mailing
list
and
the
weekly
telecons
-
of
special
mention
are
François
Daoust,
Stéphane
Corlosquet,
Lin
Clark,
and
Zdenko
'Denny'
Vrandečić.

The
work
of
David
I.
Lehn
and
Mike
Johnson
are
appreciated
for
reviewing,
and
performing
several
early
implementations
of
the
specification.
Thanks
also
to
Ian
Davis
for
this
work
on
RDF/JSON.

Thanks
to
the
following
individuals,
in
order
of
their
first
name,
for
their
input
on
the
specification:
Adrian
Walker,
Alexandre
Passant,
Andy
Seaborne,
Ben
Adida,
Blaine
Cook,
Bradley
Allen,
Brian
Peterson,
Bryan
Thompson,
Conal
Tuohy,
Dan
Brickley,
Danny
Ayers,
Daniel
Leja,
Dave
Reynolds,
David
Booth,
David
I.
Lehn,
David
Wood,
Dean
Landolt,
Ed
Summers,
elf
Pavlik,
Eric
Prud'hommeaux,
Erik
Wilde,
Fabian
Christ,
Jon
A.
Frost,
Gavin
Carothers,
Glenn
McDonald,
Guus
Schreiber,
Henri
Bergius,
Jose
María
Alvarez
Rodríguez,
Ivan
Herman,
Jack
Moffitt,
Josh
Mandel,
KANZAKI
Masahide,
Kingsley
Idehen,
Kuno
Woudt,
Larry
Garfield,
Mark
Baker,
Mark
MacGillivray,
Marko
Rodriguez,
Marios
Meimaris,
Matt
Wuerstl,
Melvin
Carvalho,
Nathan
Rixham,
Olivier
Grisel,
Paolo
Ciccarese,
Pat
Hayes,
Patrick
Logan,
Paul
Kuykendall,
Pelle
Braendgaard,
Peter
Patel-Schneider,
Peter
Williams,
Pierre-Antoine
Champin,
Richard
Cyganiak,
Roy
T.
Fielding,
Sandro
Hawke,
Simon
Grant,
Srecko
Joksimovic,
Stephane
Fellah,
Steve
Harris,
Ted
Thibodeau
Jr.,
Thomas
Steiner,
Tim
Bray,
Tom
Morris,
Tristan
King,
Sergio
Fernández,
Werner
Wilms,
and
William
Waites.

D.

References

D.1

Normative
references

		
[BCP47]

		
A.
Phillips;
M.
Davis.

Tags
for
Identifying
Languages

.
September
2009.
IETF
Best
Current
Practice.
URL:

http://tools.ietf.org/html/bcp47

		
[RDF11-CONCEPTS]

		
Richard
Cyganiak,
David
Wood,
Markus
Lanthaler,
Editors.

RDF
1.1
Concepts
and
Abstract
Syntax.

Syntax

5
November
2013.

.
9
January
2014.

W3C
Candidate

Proposed

Recommendation
(work
in
progress).
URL:
http://www.w3.org/TR/2013/CR-rdf11-concepts-20131105/

http://www.w3.org/TR/2014/PR-rdf11-concepts-20140109/

.
The
latest
edition
is
available
at

http://www.w3.org/TR/rdf11-concepts/

		
[RFC2119]

		
S.
Bradner.

Key
words
for
use
in
RFCs
to
Indicate
Requirement
Levels.

March
1997.
Internet
RFC
2119.
URL:

http://www.ietf.org/rfc/rfc2119.txt

		
[RFC3987]

		
M.
Dürst;
M.
Suignard.

Internationalized
Resource
Identifiers
(IRIs)

.
January
2005.
RFC.
URL:

http://www.ietf.org/rfc/rfc3987.txt

		
[RFC4627]

		
D.
Crockford.

The
application/json
Media
Type
for
JavaScript
Object
Notation
(JSON)
(RFC
4627)

.
July
2006.
RFC.
URL:

http://www.ietf.org/rfc/rfc4627.txt

		
[RFC5988]

		
M.
Nottingham.

Web
Linking
.

.
October
2010.
Internet
RFC
5988.
URL:

http://www.ietf.org/rfc/rfc5988.txt

D.2

Informative
references

		
[HTTP11]

		
R.
Fielding
et
al.

Hypertext
Transfer
Protocol
-
HTTP/1.1

.
June
1999.
RFC.
URL:

http://www.ietf.org/rfc/rfc2616.txt

		
[JSON-LD-API]

		
Markus
Lanthaler,
Gregg
Kellogg,
Manu
Sporny,
Editors.

JSON-LD
1.0
Processing
Algorithms
and
API
.
5
November
2013.

.
16
January
2014.

W3C
Proposed

Recommendation.
URL:
http://www.w3.org/TR/2013/PR-json-ld-api-20131105/
.
The
latest
edition
is
available
at

http://www.w3.org/TR/json-ld-api/

[JSON-LD-TESTS]
JSON-LD
1.0
Test
Suite

.
W3C
Test
Suite.
URL:
http://www.w3.org/2013/json-ld-tests/

		
[LINKED-DATA]

		
Tim
Berners-Lee.

Linked
Data

.
Personal
View,
imperfect
but
published.
URL:

http://www.w3.org/DesignIssues/LinkedData.html

		
[MICRODATA]

		
Ian
Hickson,
Editor.

HTML
Microdata
.
25

.
29

October
2012.

2013.

W3C
Working
Draft
(work
in
progress).

Group
Note.

URL:
http://www.w3.org/TR/2012/WD-microdata-20121025/
.
The
latest
edition
is
available
at
http://www.w3.org/TR/microdata/

http://www.w3.org/TR/2013/NOTE-microdata-20131029/

		
[MICROFORMATS]

		

Microformats

.
URL:

http://microformats.org

[RDF-SCHEMA]
Dan
Brickley;
Ramanathan
Guha.
RDF
Vocabulary
Description
Language
1.0:
RDF
Schema

.
10
February
2004.
W3C
Recommendation.
URL:
http://www.w3.org/TR/rdf-schema

		
[RDF11-MT]

		
Patrick
J.
Hayes,
Peter
F.
Patel-Schneider,
Editors.

RDF
1.1
Semantics.

Semantics

5
November
2013.

.
9
January
2014.

W3C
Candidate

Proposed

Recommendation
(work
in
progress).
URL:
http://www.w3.org/TR/2013/CR-rdf11-mt-20131105/

http://www.w3.org/TR/2014/PR-rdf11-mt-20140109/

.
The
latest
edition
is
available
at

http://www.w3.org/TR/rdf11-mt/

		
[RDF11-SCHEMA]

		
Dan
Brickley;
R.V.
Guha,
Editors.

RDF
Schema
1.1
.
9
January
2014.
W3C
Proposed
Edited
Recommendation
(work
in
progress).
URL:

http://www.w3.org/TR/2014/PER-rdf-schema-20140109/
.
The
latest
edition
is
available
at

http://www.w3.org/TR/rdf-schema/

		
[RDFA-CORE]

		
Ben
Adida;
Mark
Birbeck;
Shane
McCarron;
Ivan
Herman
et
al.

RDFa
Core
1.1
-
Second
Edition

.
22
August
2013.
W3C
Recommendation.
URL:

http://www.w3.org/TR/rdfa-core/

		
[RFC3986]

		
T.
Berners-Lee;
R.
Fielding;
L.
Masinter.

Uniform
Resource
Identifier
(URI):
Generic
Syntax
(RFC
3986)

.
January
2005.
RFC.
URL:

http://www.ietf.org/rfc/rfc3986.txt

		
[RFC6839]

		
Tony
Hansen,
Alexey
Melnikov.

Additional
Media
Type
Structured
Syntax
Suffixes
.

January
2013.
Internet
RFC
6839.
URL:

http://www.ietf.org/rfc/rfc6839.txt

		
[RFC6906]

		
Erik
Wilde.

The
'profile'
Link
Relation
Type
.

.
March
2013.
Internet
RFC
6906.
URL:

http://www.ietf.org/rfc/rfc6906.txt

		
[TURTLE]

		
Eric
Prud'hommeaux,
Gavin
Carothers,
Editors.

RDF
1.1

Turtle:
Terse
RDF
Triple
Language.

Language

19
February
2013.

.
9
January
2014.

W3C
Candidate

Proposed

Recommendation
(work
in
progress).
URL:
http://www.w3.org/TR/2013/CR-turtle-20130219/

http://www.w3.org/TR/2014/PR-turtle-20140109/

.
The
latest
edition
is
available
at

http://www.w3.org/TR/turtle/

rdfa-primer/diagrams/contact-info.png
_iblanknodet

TYPE —————»() foatPerson

foafphone

- \O

<tel:+1:617-555-7332>
foatname

<mailto:alice@example.com>

Vics Birpemsvick™

StyleSheets/TR/logo-IG-Note.png
310N dnous) 3sa423U] DEAA

html-rdfa/diff-20130822.xhtml
delete: <html lang="en" dir="ltr" prefix="dcterms: http://purl.org/dc/terms/ bibo: http://purl.org/ontology/bibo/ foaf: http://xmlns.com/foaf/0.1/ xsd: http://www.w3.org/2001/XMLSchema#" typeof="bibo:Document"> insert: <html lang="en" dir="ltr" typeof="bibo:Document w3p:REC" about="" property="dcterms:language" content="en"> HTML+RDFa 1.1 delete: <link rel="stylesheet" href="//www.w3.org/StyleSheets/TR/W3C-PR"> insert: <link rel="stylesheet" href="http://www.w3.org/StyleSheets/TR/W3C-REC">
 [image: W3C]

 delete: <h1 class="title p-name" id="title"> insert: <h1 class="title p-name" id="title" property="dcterms:title"> HTML+RDFa 1.1

 delete: <h2 id="subtitle"> insert: <h2 property="bibo:subtitle" id="subtitle"> Support for RDFa in HTML4 and HTML5

 delete: <h2 id="w3c-proposed-recommendation-25-june-2013"> insert: <h2 property="dcterms:issued" datatype="xsd:dateTime" content="2013-08-22T04:00:00.000Z" id="w3c-recommendation-22-august-2013"> W3C Proposed Recommendation delete: <time class="dt-published" datetime="2013-06-25"> 25 June insert: <time class="dt-published" datetime="2013-08-22"> 22 August 2013

 		 This version:

 		 delete: http://www.w3.org/TR/2013/PR-html-rdfa-20130625/ insert: http://www.w3.org/TR/2013/REC-html-rdfa-20130822/

 		 Latest published version:

 		 http://www.w3.org/TR/html-rdfa/

 		 Latest editor's draft: Previous version:

 		 delete: http://www.w3.org/2010/02/rdfa/sources/rdfa-in-html/ insert: http://www.w3.org/TR/2013/PR-html-rdfa-20130625/

 		 Test suite:

 		 http://rdfa.info/test-suite/

 		 Previous version: delete: </dt> delete: <dd> delete: http://www.w3.org/TR/2013/WD-html-rdfa-20130207/ delete: delete: </dd> delete: <dt> Editor:

 delete: <dd rel="bibo:editor"> insert: <dd class="p-author h-card vcard" rel="bibo:editor" inlist=""> 		 delete: insert: Manu Sporny , Digital Bazaar, Inc.

 		 Authors:

 delete: <dd rel="dcterms:contributor"> insert: <dd class="p-author h-card vcard" rel="dcterms:contributor"> 		 delete: insert: Shane McCarron , Applied Testing and Technology, Inc.

 delete: <dd rel="dcterms:contributor"> insert: <dd class="p-author h-card vcard" rel="dcterms:contributor"> 		 delete: insert: Ben Adida , Creative Commons

 delete: <dd rel="dcterms:contributor"> insert: <dd class="p-author h-card vcard" rel="dcterms:contributor"> 		 delete: insert: Mark Birbeck , Sidewinder Labs

 delete: <dd rel="dcterms:contributor"> insert: <dd class="p-author h-card vcard" rel="dcterms:contributor"> 		 delete: insert: Gregg Kellogg , Kellogg Associates

 delete: <dd rel="dcterms:contributor"> insert: <dd class="p-author h-card vcard" rel="dcterms:contributor"> 		 delete: insert: Ivan Herman , W3C

 delete: <dd rel="dcterms:contributor"> insert: <dd class="p-author h-card vcard" rel="dcterms:contributor"> 		 delete: insert: Steven Pemberton , CWI

 delete: </dl> This document is also available in this non-normative format: delete: insert: diff to previous version . insert: </p>

 insert: </dl>

 insert: <p> Please refer to the insert: insert: errata insert: insert: for this document, which may include some normative corrections. insert: </p>

 insert: <p> The English version of this specification is the only normative version. Non-normative insert: translations insert: may also be available.

 Copyright Â© 2009-2013 W3C Â® (MIT , ERCIM , Keio , Beihang), All Rights Reserved. W3C liability , trademark and document use rules apply.

 Abstract

 This specification defines rules and guidelines for adapting the RDFa Core 1.1 and RDFa Lite 1.1 specifications for use in HTML5 and XHTML5. The rules defined in this specification not only apply to HTML5 documents in non-XML and XML mode, but also to HTML4 and XHTML documents interpreted through the HTML5 parsing rules.

 Status of This Document

 This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

 This specification had been jointly developed by the delete: RDFa Working Group delete: and the delete: HTML Working Group delete: . The document was previously published via the HTML Working Group, but has since been transitioned to the newly rechartered RDFa Working Group. delete: </p> delete: <p> Changes in this version of the specification include: delete: </p> delete: delete: Made the Turtle output in Example #1 easier to understand for beginners. (editorial) delete: delete: Narrowed delete: <code> link delete: </code> and delete: <code> meta delete: </code> elements validity in the body of a document to require the use of delete: <code> @property delete: </code> . (non-substantive) delete: delete: Changed the description of delete: <code> @datetime delete: </code> processing to be easier to understand for implementers. (editorial) delete: delete: Noted that the delete: <code> @datetime delete: </code> and delete: <code> rdf:HTML delete: </code> features are non-normative features from non-REC documents and that once those features are published in REC documents that a Proposed Edited Recommendation will be published for HTML+RDFa 1.1 making the features normative. (non-substantive) delete: delete: Documented the single formal objection to the specification (editorial). delete: delete: delete: <p> This specification skipped the Candidate Recommendation phase due to having four fully interoperable implementations available before entering the Candidate Recommendation phase. The final delete: implementation report delete: considered by the Director has been made available to the public. reviewed by insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> Members, by software developers, and by other insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> groups and interested parties, and is endorsed by the Director as a insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> Recommendation. It is a stable document and may be used as reference material or cited from another document. insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> 's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.

 This specification is an extension to the HTML5 language. All normative content in the HTML5 specification, unless specifically overridden by this specification, is intended to be the basis for this specification.

 Note
 There are two features in this specification, @datetime processing and rdf:HTML literals, that are currently defined as non-normative features. The intent is that these features will eventually become normative features once the specification that describes the @datetime attribute [HTML5] and the specification that defines rdf:HTML [RDF-CONCEPTS] become W3C Recommendations. Implementers should implement these features now; a 2nd (or later) edition of this specification will clarify the long-term stability of those features. Based on the discussion between the RDFa Working Group, the HTML Working Group, and the RDF Working Group, it is not expected that implementation changes will be necessary as HTML5 and RDF 1.1 advance to Recommendation.

 There has been a single delete: formal objection delete: filed on this specification, arguing that the use of prefixes is too complicated for a Web technology. The RDFa WG delete: made changes delete: based on the commenters feedback. The commenter did not respond to the changes made. Three requests for feedback were made over the course of several months with no response from the commenter. The RDFa WG does not believe the changes made would be enough to address the commenters request, which asked that that prefixes should be removed entirely or hard-coded. delete: </p> delete: <p> A sample test harness is available for software developers. This set of tests is not intended to be exhaustive. A community-maintained website contains more information on further reading, developer tools, and software libraries that can be used to extract and process RDFa data from web documents. The final insert: implementation report insert: considered by the Director has been made available to the public.

 This document was published by the RDFa Working Group as a Proposed Recommendation. This document is intended to become a delete: <abbr title="World Wide Web Consortium"> W3C delete: </abbr> Recommendation. The delete: <abbr title="World Wide Web Consortium"> W3C delete: </abbr> Membership and other interested parties are invited to review the document and If you wish to make comments regarding this document, please send comments to delete: them to insert: public-rdfa-wg@w3.org (subscribe , archives) through 23 July 2013. Advisory Committee Representatives should consult their delete: WBS questionnaires delete: . Note that substantive technical). All comments were expected during the Last Call review period that ended 28 February 2013. delete: </p> delete: <p> Publication as a Proposed Recommendation does not imply endorsement by the delete: <abbr title="World Wide Web Consortium"> W3C delete: </abbr> Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress. The Proposed Recommendation review period ends on 23 July 2013. are welcome.

 This document was produced by a group operating under the delete: insert: 5 February 2004 W3C Patent Policy . W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy .

 Table of Contents

 		 1. Introduction

 		 2. Conformance 		 2.1 Document Conformance

 		 2.2 RDFa Processor Conformance

 		 2.3 User Agent Conformance

 		 3. Extensions to RDFa Core 1.1 		 3.1 Additional RDFa Processing Rules

 		 3.2 Modifying the Input Document

 		 3.3 Specifying the Language for a Literal

 		 3.4 Invalid XMLLiteral Values

 		 3.5 Property Copying 		 3.5.1 Implementing Property Copying

 		 4. Extensions to the HTML5 Syntax

 		 5. Backwards Compatibility 		 5.1 @xmlns: -Prefixed Attributes

 		 5.2 Conformance Criteria for @xmlns: -Prefixed Attributes

 		 5.3 Preserving Namespaces via Coercion to Infoset

 		 5.4 Infoset-based Processors 		 5.4.1 Extracting URI Mappings from Infosets

 		 5.4.2 Processing RDFa Attributes

 		 5.5 DOM Level 1 and Level 2-based Processors 		 5.5.1 Extracting URI Mappings via DOM Level 2

 		 5.5.2 Processing RDFa Attributes

 		 A. About this Document 		 A.1 History

 		 A.2 Change History

 		 A.3 Acknowledgments

 		 B. References 		 B.1 Normative references

 		 B.2 Informative references

 1. Introduction

 This section is non-normative.

 Today's web is built predominantly for human readers. Even as machine-readable data begins to permeate the web, it is typically distributed in a separate file, with a separate format, and very limited correspondence between the human and machine versions. As a result, web browsers can provide only minimal assistance to humans in parsing and processing web pages: browsers only see presentation information. RDFa is intended to solve the problem of marking up machine-readable data in HTML documents. RDFa provides a set of HTML attributes to augment visual data with machine-readable hints. Using RDFa, authors may turn their existing human-visible text and links into machine-readable data without repeating content.

 2. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative. Everything else in this specification is normative.

 The key words MUST , MUST NOT , REQUIRED , SHOULD , SHOULD NOT , RECOMMENDED , MAY , and OPTIONAL in this specification are to be interpreted as described in [RFC2119].

 2.1 Document Conformance

 There are two types of document conformance criteria for HTML documents containing RDFa semantics; HTML+RDFa and HTML+RDFa Lite .

 The following conformance criteria apply to any HTML document including RDFa markup:

 		 All document conformance requirements stated as mandatory in the HTML5 specification MUST be met.

 		 The appropriate Extensions to the HTML5 Syntax , as described in this document, MUST be considered valid and conforming. Note that there are fewer supported attributes if the RDFa Lite syntax [RDFA-LITE] is desired over the more advanced set of RDFa attributes outlined in RDFa Core.

 		 All HTML5 elements and attributes SHOULD be used in a way that conforms to [HTML5]. All RDFa attributes SHOULD be used in a way that is conforms to [RDFA-CORE] and this document.

 An example of a conforming HTML+RDFa document, with the RDFa portions highlighted in green:

 Example 1 : Example of an HTML+RDFa 1.1 document
 <!DOCTYPE html> <html lang="en"> <head> <title>Example Document</title> </head> <body vocab="http://schema.org/" > <p typeof="Blog" > Welcome to my blog. </p> </body> </html>

 The following data will be extracted by a conforming RDFa processor, shown in Turtle format [TURTLE]: Example 2 : Turtle output of Example Document
 [] a <http://schema.org/Blog>; <http://schema.org/url> <http://example.org/> .

 Non-XML mode HTML+RDFa 1.1 documents SHOULD be labeled with the Internet Media Type text/html as defined in section 12.1 of the HTML5 specification [HTML5].

 XML mode XHTML5+RDFa 1.1 documents SHOULD be labeled with the Internet Media Type application/xhtml+xml as defined in section 12.3 of the HTML5 specification [HTML5], MUST NOT use a DOCTYPE declaration for XHTML+RDFa 1.0 or XHTML+RDFa 1.1, and SHOULD NOT use the @version attribute.

 2.2 RDFa Processor Conformance

 The RDFa processor conformance criteria are listed below, all of which are mandatory:

 		 An RDFa processor MUST implement all of the mandatory features specified in the RDFa Core 1.1 specification [RDFA-CORE].

 		 An RDFa processor MUST support any mandatory features described in this specification.

 2.3 User Agent Conformance

 A user agent is considered to be a type of RDFa processor when the user agent stores or processes RDFa attributes and their values. The reason there are separate RDFa Processor Conformance and a User Agent Conformance sections is because one can be a valid HTML5 RDFa processor but not a valid HTML5 user agent (for example, by only providing a very small subset of rendering functionality).

 The user agent conformance criteria are listed below, all of which are mandatory:

 		 A user agent MUST conform to all requirements listed in Section 2.2: Conformance Requirements of the HTML5 specification.

 		 A user agent MUST implement all of the features required by this specification.

 		 A user agent MUST implement all of the features required in the RDFa Core 1.1 specification, excluding those features which are specifically overridden by this specification as detailed in the Extensions to RDFa Core 1.1 .

 3. Extensions to RDFa Core 1.1

 The RDFa Core 1.1 [RDFA-CORE] specification is the base document on which this specification builds. RDFa Core 1.1 specifies the attributes and syntax, in Section 5: Attributes and Syntax , and processing model, in Section 7: Processing Model , for extracting RDF from a web document. This section specifies changes to the attributes and processing model defined in RDFa Core 1.1 in order to support extracting RDF from HTML documents.

 The requirements and rules, as specified in RDFa Core and further extended in this document, apply to all HTML5 documents. An RDFa processor operating on both HTML and XHTML documents, specifically on their resulting DOMs or infosets, MUST apply these processing rules for HTML4, HTML5 and XHTML5 serializations, DOMs and/or infosets.

 3.1 Additional RDFa Processing Rules

 Documents conforming to the rules in this specification are processed according to [RDFA-CORE] with the following extensions:

 		 The default vocabulary URI is undefined.

 		 HTML+RDFa uses an additional initial context by default, http://www.w3.org/2011/rdfa-context/html-rdfa-1.1 , which must be applied after the initial context for [RDFA-CORE] (http://www.w3.org/2011/rdfa-context/rdfa-1.1).

 		 The base can be set using the base element. For XHTML5+RDFa 1.1 documents, base can also be set using the @xml:base attribute.

 		 The current language can be set using either the @lang or @xml:lang attributes. When the @lang attribute and the @xml:lang attribute are specified on the same element, the @xml:lang attribute takes precedence. When both @lang and @xml:lang are specified on the same element, they MUST have the same value. Further details related to setting the insert: current language insert: can be found in section insert: insert: 3.3 insert: insert: Specifying the Language for a Literal insert: insert: .

 		 When determining which set of RDFa processing rules to use for documents served with the application/xhtml+xml media type, a conforming RDFa processor MUST look at the value in the DOCTYPE declaration of the document. If a DOCTYPE declaration exists, then the processing rules are: 		 XHTML1+RDFa 1.0 for a DOCTYPE of <!DOCTYPE html PUBLIC "-// W3C //DTD XHTML+RDFa 1.0//EN" "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd"> , or

 		 XHTML1+RDFa 1.1 for a DOCTYPE of <!DOCTYPE html PUBLIC "-// W3C //DTD XHTML+RDFa 1.1//EN" "http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd"> , or

 		 XHTML5+RDFa 1.1 for all other values of DOCTYPE.

 Documents served as application/xhtml+xml , that don't contain a DOCTYPE declaration, and don't specify a @version attribute MUST be interpreted as XHTML5+RDFa 1.1 documents.

 		 In Section 7.5: Sequence, processing step 3 , if the processor graph feature is supported and if an IRI mapping overwrites a previously existing mapping in the local list of IRI mappings with a different value, the processor MUST generate an appropriate rdfa:PrefixRedefinition warning and place the associated triples into the processor graph .

 		 In Section 7.5: Sequence, immediately after processing step 4 , if the @property attribute and the @rel and/or @rev attribute exists on the same element, the non-CURIE and non-URI @rel and @rev values are ignored. If, after this, the value of @rel and/or @rev becomes empty, then the processor MUST act as if the respective attribute is not present.

 		 In Section 7.5, processing step 5 , and processing step 6 , if no IRI is provided by a resource attribute (e.g., @about , @href , @resource , or @src), then first check to see if the element is the head or body element. If it is, then set new subject to parent object .

 		 In Section 7.5: Sequence, processing step 11 , the HTML5 @datetime attribute MUST be utilized when generating the current property value, unless @content is also present on the same element. Otherwise, if @datetime is present, the current property value must be generated as follows. The literal value is the value contained in the @datetime attribute. If @datatype is present, it is to be used as defined in the RDFa Core [RDFA-CORE] processing rules. Otherwise, if the value of @datetime lexically matches a valid xsd:date , xsd:time , xsd:dateTime , xsd:duration , xsd:gYear , or xsd:gYearMonth a typed literal must be generated, with its datatype set to the matching xsd datatype. Otherwise, a plain literal MUST be generated, taking into account the current language . Implementers should note that the correct order of match testing should be: xsd:duration , xsd:dateTime , xsd:date , xsd:time , xsd:gYearMonth , and xsd:gYear . This feature is currently non-normative, see the note on when it will become normative.

 		 In Section 7.5: Sequence, processing step 11 , if the element is time , and the element does not have @datetime or @content attributes, the processor MUST act as if there is a @datetime attribute containing exactly the elements text value. This feature is currently non-normative, see the note on when it will become normative.

 		 In Section 7.5: Sequence, step 11, immediately after sub-step 2 , if the @datatype attribute is present and evaluates to http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML , the value of the HTML Literal is a string created by serializing all child nodes to text. This applies to all nodes that are descendants of the current element , not including the element itself. The HTML Literal is given a datatype of http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML as defined in Section 5.2: The rdf:HTML Datatype of [RDF-CONCEPTS]. This feature is currently non-normative, see the note on when it will become normative.

 		 Once the output graph is generated following the processing steps defined in Section 7.5: Sequence of the RDFa Core 1.1 specification [RDFA-CORE], and the steps in this section, perform the operations defined in Implementing Property Copying .

 The @version attribute is not supported in HTML5 and is non-conforming. However, if an HTML+RDFa document contains the @version attribute on the html element, a conforming RDFa processor MUST examine the value of this attribute. If the value matches that of a defined version of RDFa, then the processing rules for that version MUST be used. If the value does not match a defined version, or there is no @version attribute, then the processing rules for the most recent version of RDFa 1.1 MUST be used.

 3.2 Modifying the Input Document

 RDFa's tree-based processing rules, outlined in Section 7.5: Sequence of the RDFa Core 1.1 specification [RDFA-CORE], allow an input document to be automatically corrected, cleaned-up, re-arranged, or modified in any way that is approved by the host language prior to processing. Element nesting issues in HTML documents SHOULD be corrected before the input document is translated into the DOM, a valid tree-based model, on which the RDFa processing rules will operate.

 Any mechanism that generates a data structure equivalent to the HTML5 or XHTML5 DOM, such as the html5lib library, MAY be used as the mechanism to construct the tree-based model provided as input to the RDFa processing rules.

 3.3 Specifying the Language for a Literal

 According to RDFa Core 1.1 the current language MAY be specified by the host language. In order to conform to this specification, RDFa processors MUST use the mechanism described in The lang and xml:lang attributes section of the [HTML5] specification to determine the language of a node.

 If the final encapsulating MIME type for an HTML fragment is not decided on while editing, it is RECOMMENDED that the author specify both @lang and @xml:lang where the value in both attributes is exactly the same.

 Note
 The HTML5 specification takes the Content-Language HTTP header into account when determining the language of an element. Some RDFa processor implementations, like those written in JavaScript, may not have access to this header and will be non-conforming in the edge case where the language is only specified in the Content-Language HTTP header. In these instances, RDFa document authors are urged to set the language in the document via the @lang attribute on the html element in order to ensure that the document is interpreted correctly across all RDFa processors.

 3.4 Invalid XMLLiteral Values

 When generating literals of type XMLLiteral, the processor MUST ensure that the output XMLLiteral is a namespace well-formed XML fragment. A namespace well-formed XML fragment has the following properties:

 		 The XML fragment, when placed inside of a single root element, MUST validate as well-formed XML. The normative language that describes a well-formed XML document is specified in Section 2.1 "Well-Formed XML Documents" of the XML specification.

 		 The XML fragment, when placed inside of a single root element, MUST retain all active namespace information. The currently active attributes declared using @xmlns and @xmlns: that are stored in the RDFa processor's current evaluation context in the IRI mappings MUST be preserved in the generated XMLLiteral. The PREFIX value for @xmlns:PREFIX MUST be entirely transformed into lower-case characters when preserving the value in the XMLLiteral. All active namespaces declared via @xmlns , @xmlns: , and @prefix MUST be placed in each top-level element in the generated XMLLiteral, taking care to not overwrite pre-existing namespace values.

 An RDFa processor that transforms the XML fragment MUST use the Coercing an HTML DOM into an infoset algorithm, as specified in the HTML5 specification, followed by the algorithm defined in the Serializing XHTML Fragments section of the HTML5 specification. If an error or exception occurs at any point during the transformation, the triple containing the XMLLiteral MUST NOT be generated.

 Transformation to a namespace well-formed XML fragment is required because an application that consumes XMLLiteral data expects that data to be a namespace well-formed XML fragment.

 The transformation requirement does not apply to plain text input data that are text-only, such as literals that contain a @datatype attribute with an empty value (""), or input data that contain only text nodes.

 An example transformation demonstrating the preservation of namespace values is provided below. The â†’ symbol is used to denote that the line is a continuation of the previous line and is included purely for the purposes of readability:

 Example 3 : Namespace preservation markup
 <p xmlns:ex="http://example.org/vocab#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> Two rectangles (the example markup for them are stored in a triple): <svg xmlns =" http://www.w3.org/2000/svg " property="ex:markup" datatype="rdf:XMLLiteral"> â†’<rect width="300" height="100" style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/> â†’<rect width="50" height="50" style="fill:rgb(255,0,0);stroke-width:2;stroke:rgb(0,0,0)"/></svg> </p>

 The markup above SHOULD produce the following triple, which preserves the xmlns declaration in the markup by injecting the @xmlns attribute in the rect elements:

 Example 4 : Namespace preservation triple
 <> <http://example.org/vocab#markup> """<rect xmlns="http://www.w3.org/2000/svg" width="300" â†’height="100" style="fill:rgb(0,0,255);stroke-width:1; stroke:rgb(0,0,0)"/> â†’<rect xmlns="http://www.w3.org/2000/svg" width="50" â†’height="50" style="fill:rgb(255,0,0);stroke-width:2; â†’stroke:rgb(0,0,0)"/>"""^^<http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral> .

 Since the ex and rdf namespaces are not used in either rect element, they are not preserved in the XMLLiteral.

 Similarly, compound document elements that reside in different namespaces must have their namespace declarations preserved:

 Example 5 : Namespace preservation for compound document elements
 <p xmlns:ex="http://example.org/vocab#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:fb="http://www.facebook.com/2008/fbml" > This is how you markup a user in FBML: â†’<fb:user uid="12345">The User</fb:user> â†’ </p>

 The markup above SHOULD produce the following triple, which preserves the fb namespace in the corresponding triple:

 Example 6 : Namespace element preservation triple
 <> <http://example.org/vocab#markup> """ â†’<fb:user uid="12345"></fb:user> â†’"""^^<http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral> .

 3.5 Property Copying

 There are times when authors will find that they have many resources on a page that share a common set of properties. For example, several music events may have different performance times, but use the same location, band, and ticket prices. In this particular case, it is beneficial to have a short-hand notation to instruct the RDFa processor to include the location, band, and ticket price information without having to repeat all of the markup that expresses the data.

 HTML+RDFa defines a property copying mechanism which allows properties associated with a resource to be copied to another resource. This mechanism can be activated by using the rdfa:copy predicate. The feature is illustrated in the following two examples:

 Example 7 : Events with duplicate properties
 <div vocab="http://schema.org/"> <p typeof="MusicEvent"> <link property="image" href="Muse1.jpg"/> <link property="image" href="Muse2.jpg"/> <link property="image" href="Muse3.jpg"/> Muse at the United Center. <time property="startDate" datetime="20130403">March datetime="2013-03-03">March 3rd 2013</time>, United Center, Chicago, Illinois ... </p> <p typeof="MusicEvent"> <link property="image" href="Muse1.jpg"/> <link property="image" href="Muse2.jpg"/> <link property="image" href="Muse3.jpg"/> Muse at the Target Center. <time property="startDate" datetime="20130703">March datetime="2013-03-07">March 7th 2013</time>, Target Center, Minneapolis, Minnesota ... </p> </div>

 In this case, two music events are defined with image , name , startDate , and location properties. The image and name values are identical for the two events and are unnecessarily duplicated in the markup. Using RDFa's property copying feature, a pattern can be declared that expresses the common properties. This pattern can then be copied into other resources within the document:

 Example 8 : Copying common properties
 <div vocab="http://schema.org/"> <div resource="#muse" typeof="rdfa:Pattern"> <link property="image" href="Muse1.jpg"/> <link property="image" href="Muse2.jpg"/> <link property="image" href="Muse3.jpg"/> Muse </div> <p typeof="MusicEvent"> <link property="rdfa:copy" href="#muse"/> Muse at the United Center. <time property="startDate" datetime="20130403">March datetime="2013-03-03">March 3rd 2013</time>, United Center, Chicago, Illinois ... </p> <p typeof="MusicEvent"> <link property="rdfa:copy" href="#muse"/> Muse at the Target Center. <time property="startDate" datetime="20130703">March datetime="2013-03-07">March 7th 2013</time>, Target Center, Minneapolis, Minnesota ... </p> </div>

 In this case, the common properties for all of the events are expressed in the first div . The common properties are copied into each event resource via the rdfa:copy predicate. The output for the previous two examples is the same:

 Example 9 : Turtle output of property copying example
 @prefix schema: <http://schema.org/> . @prefix xsd: http://www.w3.org/2001/XMLSchema#> . [] a schema:MusicEvent; schema:image <Muse1.jpg>, <Muse2.jpg>, <Muse3.jpg>; schema:name "Muse"; schema:startDate "March 3rd 2013"; "2013-03-03"^^xsd:date; schema:location <#united> . [] a schema:MusicEvent; schema:image <Muse1.jpg>, <Muse2.jpg>, <Muse3.jpg>; schema:name "Muse"; schema:startDate "March 7th 2013"; "2013-03-07"^^xsd:date; schema:location <#target> .

 The copy process is iterative, so that resources may copy other resources that copy other resources. For example:

 Example 10 : Resources may copy other resources that copy other resources
 <div vocab="http://schema.org/"> <div typeof="Person"> <link property="rdfa:copy" href="#lennon"/> <link property="rdfa:copy" href="#band"/> </div> <p resource="#lennon" typeof="rdfa:Pattern" > Name: John Lennon <p> <div resource="#band" typeof="rdfa:Pattern" > <div property="band" typeof="MusicGroup"> <link property="rdfa:copy" href="#beatles"/> </div> </div> <div resource="#beatles" typeof="rdfa:Pattern" > <p>Band: The Beatles</p> <p>Size: 4 players</p> </div> </div>

 In the example above, the properties from #lennon and #band are copied into the first resource. Then the properties from #beatles are copied into #band . Subsequently, those properties are again copied into the first resource yielding the following output:

 Example 11 : Iterative copying example output in Turtle
 @prefix schema: <http://schema.org/> . [a schema:Person; schema:name "John Lennon" ; schema:band [a schema:MusicGroup; schema:name "The Beatles"; schema:size "4"]] .

 Similar to Vocabulary Expansion as defined in [RDFA-CORE], RDFa Property Copying operates on the output graph after document processing is complete.

 3.5.1 Implementing Property Copying

 Once the output graph is generated following the processing steps defined in Section 7.5: Sequence of the RDFa Core 1.1 specification [RDFA-CORE], and the Extensions to the HTML5 Syntax defined in this specification, processors MUST update the output graph using the following rules:

 		 Run the following rule for each rdfa:copy statement in the output graph , and for each new rdfa:copy statement added as a result of property copying until no new triples are added to the output graph : 		 Rule name 		 If output graph contains 		 then add

 		 pattern-copy 		 ?subject rdfa:copy ?target
 ?target rdf:type rdfa:Pattern
 ?target ?predicate ?object 		 ?subject ?predicate ?object

 		 Finally, run this rule to remove utilized rdfa:copy statements and rdfa:Pattern resources from the output graph : 		 Rule name 		 If output graph contains 		 then remove

 		 pattern-clean 		 ?subject rdfa:copy ?target
 ?target rdf:type rdfa:Pattern
 ?target ?predicate ?object 		 ?subject rdfa:copy ?target
 ?subject rdf:type rdfa:Pattern
 ?target ?predicate ?object

 Note
 Implementers should be aware that a simplistic implementation of the pattern-copy rule may lead to an infinite loop when handling circular dependencies. A processor should cease the pattern-copy rule when no unique triples are generated.

 Note
 Alternate rules may be used to update the output graph as long as the end result is the same.

 4. Extensions to the HTML5 Syntax

 There are a few attributes that are added as extensions to the HTML5 syntax in order to fully support RDFa:

 		 If HTML+RDFa Lite document conformance is desired, all RDFa attributes and valid values (including CURIEs), as listed in RDFa Lite 1.1, Section 2: The Attributes , MUST be allowed and validate as conforming when used in an HTML4, HTML5 or XHTML5 document. For the avoidance of doubt, the following RDFa attributes are allowed on all elements in the HTML5 content model: @vocab , @typeof , @property , @resource , and @prefix . All other attributes that RDFa may process, such as @href and @src , are only allowed when consistent with the content model for that element, as defined in the HTML5 specification.

 		 If HTML+RDFa document conformance is desired, all RDFa attributes and valid values (including CURIEs), as listed in RDFa Core 1.1, Section 2.1: The RDFa Attributes , MUST be allowed and validate as conforming when used in an HTML4, HTML5 or XHTML5 document. For the avoidance of doubt, the following RDFa attributes are allowed on all elements in the HTML5 content model: @vocab , @typeof , @property , @resource , @prefix , @content , @about , @rel , @rev , @datatype , and @inlist . All other attributes that RDFa may process, such as @href and @src , are only allowed when consistent with the content model for that element, as defined in the HTML5 specification.

 		 If the @property RDFa attribute is present on the link or meta elements, they MUST be viewed as conforming if used in the body of the document. More specifically, when link or meta elements contain the RDFa @property attribute and are used in the body of an HTML5 document, they MUST be considered flow content .

 		 If the RDFa @property attribute is present on the link element, the @rel attribute is not required.

 		 If the RDFa @resource attribute is present on the link element, the @href attribute is not required.

 		 If the RDFa @property attribute is present on the meta element, neither the @name , @http-equiv , nor @charset attributes are required and the @content attribute MUST be specified.

 5. Backwards Compatibility

 RDFa Core 1.1 deprecates the usage of @xmlns: in RDFa 1.1 documents. Web page authors SHOULD NOT use @xmlns: to express prefix mappings in RDFa 1.1 documents. Web page authors SHOULD use the @prefix attribute to specify prefix mappings.

 However, there are times when XHTML+RDFa 1.0 documents are served by web servers using the text/html MIME type. In these instances, the HTML5 specification asserts that the document is processed according to the non-XML mode HTML5 processing rules. In these particular cases, it is important that the prefixes declared via @xmlns: are preserved for the RDFa processors to ensure backwards-compatibility with RDFa 1.0 documents. The following sections elaborate upon the backwards compatibility requirements for RDFa processor implementations.

 5.1 @xmlns: -Prefixed Attributes

 The RDFa Core 1.1 [RDFA-CORE] specification deprecates the use of the @xmlns: mechanism to declare CURIE prefix mappings in favor of the @prefix attribute. However, there are instances where its use is unavoidable. For example, publishing legacy documents as HTML5 or supporting older XHTML+RDFa 1.0 documents that rely on the @xmlns: attribute.

 CURIE prefix mappings specified using attributes prepended with @xmlns: MUST be processed using the algorithm defined in section 4.4.1: Extracting URI Mappings from Infosets for infoset-based processors, or section 4.5.1: Extracting URI Mappings from DOMs for DOM Level 2-based processors. For CURIE prefix mappings using the @prefix attribute, Section 7.5: Sequence, step 3 MUST be used to process namespace values.

 Since CURIE prefix mappings have been specified using @xmlns: , and since HTML attribute names are case-insensitive, CURIE prefix names declared using the @xmlns: attribute-name pattern xmlns:<PREFIX>="<URI>" SHOULD be specified using only lower-case characters. For example, the text " @xmlns: " and the text in "<PREFIX>" SHOULD be lower-case only. This is to ensure that prefix mappings are interpreted in the same way between HTML (case-insensitive attribute names) and XHTML (case-sensitive attribute names) document types.

 5.2 Conformance Criteria for @xmlns: -Prefixed Attributes

 Since RDFa 1.0 documents may contain attributes starting with @xmlns: to specify CURIE prefixes, any attribute starting with a case-insensitive match on the text string " @xmlns: " MUST be preserved in the DOM or other tree-like model that is passed to the RDFa Processor. For documents conforming to this specification, attributes with names that have a case insensitive prefix matching " @xmlns: " MUST be considered conforming. Conformance checkers SHOULD accept attribute names that have a case insensitive prefix matching " @xmlns: " as conforming. Conformance checkers SHOULD generate warnings noting that the use of @xmlns: is deprecated. Conformance checkers MAY report the use of xmlns: as an error.

 All attributes starting with a case insensitive prefix matching " @xmlns: " MUST conform to the production rules outlined in Namespaces in XML [XML-NAMES11], Section 3: Declaring Namespaces . Documents that contain @xmlns: attributes that do not conform to Namespaces in XML MUST NOT be accepted as conforming.

 5.3 Preserving Namespaces via Coercion to Infoset

 RDFa 1.0 documents may contain the @xmlns: pattern to declare prefix mappings, it is important that namespace information that is declared in non-XML mode HTML5 documents are mapped to an infoset correctly. In order to ensure this mapping is performed correctly, the "Coercing an HTML DOM into an infoset" rules defined in [HTML5] must be extended to include the following rule:

 If the XML API is namespace-aware, the tool must ensure that ([namespace name], [local name], [normalized value]) namespace tuples are created when converting the non-XML mode DOM into an infoset. Given a standard @xmlns: definition, xmlns:foo="http://example.org/bar#" , the [namespace name] is http://www.w3.org/2000/xmlns/ , the [local name] is foo , and the [normalized value] is http://example.org/bar# , thus the namespace tuple would be (http://www.w3.org/2000/xmlns/ , foo , http://example.org/bar#).

 For example, given the following input text:

 Example 12
 <div xmlns:com="https://w3id.org/commerce#">

 The div element above, when coerced from an HTML DOM into an infoset, should contain an attribute in the [namespace attributes] list with a [namespace name] set to " http://www.w3.org/2000/xmlns/ ", a [local name] set to com , and a [normalized value] of " https://w3id.org/commerce# ".

 5.4 Infoset-based Processors

 While the intent of the RDFa processing instructions is to provide a set of rules that are as language and toolchain independent as possible, for the sake of clarity, detailed methods of extracting RDFa content from processors operating on an XML Information Set are provided below.

 5.4.1 Extracting URI Mappings from Infosets

 Extracting URI Mappings declared via @xmlns: while operating from within an infoset-based RDFa processor can be achieved using the following algorithm:

 While processing an element as described in [RDFA-CORE], Section 7.5: Sequence , Step #2:

 		 For each attribute in the [namespace attributes] list that has a [prefix] value, create an [IRI mapping] by storing the [prefix] as the value to be mapped, and the [normalized value] as the value to map.

 		 For each attribute in the [attributes] list that has no value for [prefix] and a [local name] that starts with @xmlns: , create an [IRI mapping] by storing the [local name] part with the @xmlns: characters removed as the value to be mapped, and the [normalized value] as the value to map. Note
 This step is unnecessary if the infoset coercion rules preserve namespaces specified in non-XML mode.

 For example, assume that the following markup is processed by an infoset-based RDFa processor:

 Example 13
 <div xmlns:ps="https://w3id.org/payswarm#" ...

 After the markup is processed, there should exist a [URI mapping] in the [local list of URI mappings] that contains a mapping from ps to https://w3id.org/payswarm# .

 5.4.2 Processing RDFa Attributes

 There are a number of non-prefixed attributes that are associated with RDFa Processing in HTML5. If an XML Information Set based RDFa processor is used to process these attributes, the following algorithm should be used to detect and extract the values of the attributes.

 While processing Infoset Attribute Information Items in Element Information Items as described in [RDFA-CORE], Section 7.5: Sequence, Step #4 through Step #9 :

 		 For each Attribute Information Item specific to RDFa in the infoset [attributes] list that has a [prefix] with no value, extract and use the [normalized value].

 5.5 DOM Level 1 and Level 2-based Processors

 Most DOM-aware RDFa processors are capable of accessing DOM Level 1 [DOM-LEVEL-1] methods to process attributes on elements. To discover all @xmlns: -specified CURIE prefix mappings, the Node.attributes NamedNodeMap can be iterated over. Each Attr.name that starts with the text string @xmlns: specifies a CURIE prefix mapping. The value to be mapped is the string after the @xmlns: substring in the Attr.name variable and the value to be mapped is the value of the Attr.value variable.

 The intent of the RDFa processing instructions are to provide a set of rules that are as language and toolchain independent as possible. If a developer chooses to not use the DOM1 environment mechanism outlined in the previous paragraph, they may use the following DOM2 [DOM-LEVEL-2-CORE] environment mechanism.

 5.5.1 Extracting URI Mappings via DOM Level 2

 Extracting URI Mappings declared via @xmlns: while operating from within a DOM Level 2 based RDFa processor can be achieved using the following algorithm:

 While processing each DOM2 [Element] as described in [RDFA-CORE], Section 7.5: Sequence, Step #2 :

 		 For each [Attr] in the [Node.attributes] list that has a [namespace prefix] value of @xmlns , create an [IRI mapping] by storing the [local name] as the value to be mapped, and the [Node.nodeValue] as the value to map.

 		 For each [Attr] in the [Node.attributes] list that has a [namespace prefix] value of null and a [local name] that starts with @xmlns: , create an [IRI mapping] by storing the [local name] part with the @xmlns: characters removed as the value to be mapped, and the [Node.nodeValue] as the value to map. Note
 This step is unnecessary if the XML and non-XML mode DOMs are namespace consistent.

 For example, assume that the following markup is processed by a DOM2-based RDFa processor:

 Example 14
 <div xmlns:com="https://w3id.org/commerce#" ...

 After the markup is processed, there should exist a [URI mapping] in the [local list of URI mappings] that contains a mapping from com to https://w3id.org/commerce# .

 5.5.2 Processing RDFa Attributes

 There are a number of non-prefixed attributes that are associated with RDFa processing in HTML5. If an DOM2-based RDFa processor is used to process these attributes, the following algorithm should be used to detect and extract the values of the attributes.

 While processing an element as described in [RDFA-CORE], Section 5.5: Sequence, Step #3 through Step #9 :

 		 For each RDFa attribute in the [Node.attributes] list that has a [namespace prefix] that is null, extract and use [Node.nodeValue] as the value.

 Note
 When extracting values from @href and @src , web authors and developers should note that certain values MAY be transformed if accessed via the DOM versus a non-DOM processor. The rules for modification of URL values can be found in the main HTML5 specification under delete: insert: Section 2.6.2: Parsing 2.5: URLs .

 A. About this Document

 A.1 History

 This section is non-normative.

 In early 2004, Mark Birbeck published a document named "RDF in XHTML" via the XHTML2 Working Group wherein he laid the groundwork for what would eventually become RDFa (The Resource Description Framework in Attributes).

 In 2006, the work was co-sponsored by the Semantic Web Deployment Working Group, which began to formalize a technology to express semantic data in XHTML. This technology was successfully developed and reached consensus at the W3C , later published as an official W3C Recommendation. While HTML provides a mechanism to express the structure of a document (title, paragraphs, links), RDFa provides a mechanism to express the meaning in a document (people, places, events).

 The document, titled "RDF in XHTML: Syntax and Processing" [XHTML-RDFA], defined a set of attributes and rules for processing those attributes that resulted in the output of machine-readable semantic data. While the document applied to XHTML, the attributes and rules were always intended to operate across any tree-based structure containing attributes on tree nodes (such as HTML4, SVG and ODF).

 While RDFa was initially specified for use in XHTML, adoption by a number of large organizations on the web spurred RDFa's use in non-XHTML languages. Its use in HTML4, before an official specification was developed for those languages, caused concern regarding document conformance.

 Over the years, the members of the RDFa Community had discussed the possibility of applying the same attributes and processing rules outlined in the XHTML+RDFa specification to all HTML family documents. By design, the possibility of a unified semantic data expression mechanism between all HTML and XHTML family documents was squarely in the realm of possibility.

 An RDFa Working Group was created in 2010 to address the issues concerning multiple language implementations of RDFa. The XHTML+RDFa document was split into a base specification, called RDFa Core 1.1 [RDFA-CORE], and thin specifications that layer above RDFa Core 1.1. The XHTML+RDFa 1.1 specification [XHTML-RDFA] is an example of such a thin specification. This document, also a thin specification, is targeted at HTML4, HTML5 and XHTML5.

 This document describes the extensions to the RDFa Core 1.1 specification that permits the use of RDFa in all HTML family documents. By using the attributes and processing rules described in the RDFa Core 1.1 specification and heeding the minor changes in this document, authors can generate markup that produces the same semantic data output in HTML4, HTML5 and XHTML5.

 A.2 Change History

 This section is non-normative.

 2009-10-15: First version of the RDFa for HTML4, HTML5 and XHTML5.

 2010-03-04: Updated HTML5 coercion to infoset rules, preservation of namespaces in infoset and DOM2-based processors, clarifying how to extract RDFa attributes via infoset, how to extract RDFa attributes via DOM2.

 2010-05-02: Inheritance of basic processing rules from RDFa 1.1 [RDFA-CORE], instead of XHTML+RDFa 1.0 [RDFA-SYNTAX], inclusion of the HTML Default Vocabulary Terms, inclusion of a HTML 4.01 + RDFa 1.1 DTD for validation purposes.

 2010-06-24: Inheritance of basic processing rules from RDFa 1.1 [RDFA-CORE], instead of XHTML+RDFa 1.0 [RDFA-SYNTAX], inclusion of the HTML Default Vocabulary Terms, added HTML 4.01 + RDFa 1.1 DTD for validation purposes, added normative definition of @version attribute.

 2010-10-19: Removal of @version attribute, migrated HTML Vocabulary Terms to RDFa Profile document, added statement to send comments to the HTML WG bug tracker.

 2011-01-11: Removed decentralized extensibility issue markers, added DOM Level 1 prefix mapping extraction algorithm.

 2011-04-05: Moved all xmlns: rules into a section titled Backwards Compatibility and brought spec in-line with latest RDFa Core 1.1 spec.

 2011-05-12: Generated Last Call document, no substantive changes.

 2011-12-30: Addition of normative dependency for RDFa Lite 1.1. Addition of rules to allow meta and link elements in flow and phrasing content as long as they contain at least one RDFa-specific attribute. Added support for @datetime and value processing.

 2012-03-10: Clarification of where each RDFa attribute is allowed to be used. Feature at risk warning for HTML4+RDFa DTD-based validation.

 2012-09-10: Publishing control of the HTML+RDFa document is handed over from the HTML WG to the newly re-chartered RDFa WG. DTD-based validation is removed from the specification.

 2012-12-13: Addition of new HTML-specific processing rules for dealing with XHTML5 vs. HTML5 documents, xml:base, HTML Literals, property and rel/rev on the same element, and more types for the datetime attribute.

 2012-12-27: Added Property Copying section and special processing for head and body.

 2013-01-19: Removed @value processing, added @content overriding @datetime if present, cleanup and prep for Last Call publication in RDFa WG.

 2013-06-06: Applied all Last Call comments and editorial fixes in preparation for Proposed Recommendation phase. insert: </p>

 insert: <p> 2013-08-07: Fixed invalid dates, bad grammar, updated status of document for Recommendation publication.

 A.3 Acknowledgments

 This section is non-normative.

 At the time of publication, the members of the RDFa Working Group were:

 Ivan Herman (staff contact), Shane McCarron, Gregg Kellogg, Niklas LindstrÃ¶m, Steven Pemberton, Manu Sporny (chair), Ted Thibodeau, and StÃ©phane Corlosquet.

 A great deal of thanks to everyone that provided feedback on the specification (most of whom are listed below):

 Adam Powell, Alex Milowski, Andy Seaborne, Arto Bendiken, Austin William, BAI Xi, Benjamin Adrian, Benjamin Nowack, Bjoern Hoehrmann, Christian Langanke, Christoph Lange, Cindy Lewis, Corey Mwamba, Crisfer Inmobiliaria, Dan Brickley, Daniel Friesen, Dave Beckett, David Wood, D. Grant, Dominik Tomaszuk, Dominique Hazael-Massieux, Doug Schepers, Dr. Olaf , Edward O'Connor, Faye Harris, Felix Sasaki, Gavin Carothers, Grant Robertson, Guus Schreiber, Harry Halpin, Michael Hausenblas, Henri Bergius, Henri Sivonen, Henry Story, Holger Knublauch, Ian Hickson, Irene Celino, Alexander Kroener, Knud MÃ¶ller, Philip JÃ¤genstedt, Reto Bachmann-GmÃ¼r, Ivan Mikhailov, James Leigh, Jeff Sonstein, Jeni Tennison, Jens Haupert, Jochen Rau, John Breslin, John Cowan, John O'Donovan, Jonathan Rees, Julian Reschke, KANZAKI Masahide, Kingsley Idehen, Knud Hinnerk, Landong Zuo, Leif Halvard Silli, Liam R., Lin Clark, Maciej Stachowiak, Mark Nottingham, Markus Gylling, Martin Hepp, Martin McEvoy, Matthias Tylkowski, Darin McBeath, Melvin Carvalho, Michael Chan, Michael Hausenblas, Michael Steidl, Michaelâ„¢ Smith, Mischa Tuffield, Misha Wolf, Nathan Rixham, Nathan Yergler, Nicholas Stimpson, Noah Mendelsohn, Paul Cotton, Paul Sparrow, Pete Cordell, Peter Frederick, Peter Mika, Peter Occil, Phil Archer, Reece Dunn, Richard Cyganiak, Robert Leif, Robert Weir, Ramanathan V. Guha, Sami Korhonen, Sam Ruby, Sandro Hawke, Sebastian Germesin, Sebastian Heath, Shelley Powers, Simon Grant, Simon Reinhardt, Stefan Schumacher, Tab Atkins Jr., Thomas Adamich, Thomas Baker, Thomas Roessler, Thomas Steiner, Tim Berners-Lee, Toby Inkster, Tom Adamich, Tantek Ã‡elik, Ville SkyttÃ¤, Wayne Smith, and Will Clark

 B. References

 B.1 Normative references

 		 [DOM-LEVEL-1]

 		 Vidur Apparao Scott Isaacson; Steven B Byrne; Mike Champion; Ian Jacobs; Arnaud Le Hors; Gavin Nicol; Jonathan Robie; Robert S Sutor; Chris Wilson; Lauren Wood et al. Document Object Model (DOM) Level 1 . 1 October 1998. W3C Recommendation. URL: http://www.w3.org/TR/DOM-Level-1/

 		 [DOM-LEVEL-2-CORE]

 		 Arnaud Le Hors Hors; Philippe Le HÃ©garet; Lauren Wood; Gavin Nicol; Jonathan Robie; Mike Champion; Steven B Byrne et al. Document Object Model (DOM) Level 2 Core Specification . 13 November 2000. W3C Recommendation. URL: http://www.w3.org/TR/DOM-Level-2-Core/

 		 [HTML5]

 		 Robin Berjon et al. HTML5 . 17 December 2012. 6 August 2013. W3C Candidate Recommendation. URL: http://www.w3.org/TR/html5/

 		 [RDFA-CORE]

 		 Ben Adida; Mark Birbeck; Shane McCarron McCarron; Ivan Herman et al. delete: insert: RDFa Core 1.1: Syntax and processing rules for embedding RDF through attributes 1.1 - Second Edition . 7 June 2012. 22 August 2013. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-core/

 		 [RDFA-LITE]

 		 Manu Sporny. delete: insert: RDFa Lite 1.1 . 7 June 2012. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-lite/

 		 [RFC2119]

 		 S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

 		 [XML-NAMES11]

 		 Tim Bray; Dave Hollander; Andrew Layman Layman; Richard Tobin et al. Namespaces in XML 1.1 (Second Edition) . 16 August 2006. W3C Recommendation. URL: http://www.w3.org/TR/xml-names11/

 B.2 Informative references

 		 [RDF-CONCEPTS]

 		 Richard Cyganiak, David Wood, Editors. RDF 1.1 Concepts and Abstract Syntax World Wide Web Consortium (work in progress). 13 January 23 July 2013. Last Call Working Draft.

 		 [RDFA-SYNTAX]

 		 Ben Adida Adida; Mark Birbeck; Shane McCarron; Steven Pemberton et al. delete: insert: RDFa in XHTML: Syntax and Processing . 14 October 2008. W3C Recommendation. URL: delete: http://www.w3.org/TR/rdfa-syntax/ insert: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/

 		 [TURTLE]

 		 Eric Prud'hommeaux, Gavin Carothers. Turtle: Terse RDF Triple Language. 10 July 2012. 19 February 2013. W3C Working Draft. Candidate Recommendation. URL: http://www.w3.org/TR/turtle/

 		 [XHTML-RDFA]

 		 Shane McCarron; et. al. delete: McCarron. insert: XHTML+RDFa 1.1 - Second Edition . 7 June 2012. 22 August 2013. W3C Proposed Edited Recommendation. URL: http://www.w3.org/TR/xhtml-rdfa/

rdfa-primer/diagrams/two-blogs-with-foaf-with-URI.png
<hitpexampie.comalicalposisirouble _with_bob> <htpexample.comaicelpostsimy_photos>

detite

st
docreator \
doaegr

“The Troubie with Bob" 1 il post my photos nevertheless

<htiplexample comialicelfme> TYPE () foatPerson

foatphone

p— \o

<tel+1.617-655.7332>
foatname.

<maito:aice@example.com>

“Alco Bipemsuick’

rdfa-primer/diagrams/image-about.png
<http:/lexample.combobiphotosisunset jpg>

<httpiipurlorgldchtermsicreator>

<httpiipurl org/deltermstitie>

'

“Beautiul Sunset” “Bob”

StyleSheets/TR/logo-NOTE.png
0N DEM

