

 RDF 1.1 Core

 W3C Recommendation

 Dan Brickley, Richard Cyganiak, R.V. Guha, Patrick J. Hayes, Markus Lanthaler, Peter F. Patel-Schneider, Yves Raimond, Guus Schreiber, David Wood, and Antoine Zimmermann (eds.)

 World Wide Web Consortium (W3C)

 25 February, 2014

 [image: W3C main logo]

 Note: this ePub edition does not represent the authoritative texts of the specifications; please consult the originals on the W3C Web Site for those

 Copyright © of the original documents: 2014 W3C® (MIT, ERCIM, W3C® (MIT, ERCIM, Keio, Beihang).

 All right reserved. W3C liability, trademark, and document use rules apply.

 Original, authoritative documents:

 	
 RDF 1.1 Primer: http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/

 	
 RDF 1.1 Concepts and Abstract Syntax: http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

 	
 RDF Schema 1.1: http://www.w3.org/TR/2014/REC-rdf-schema-20140225/

 	
 RDF 1.1 Semantics: http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

 	
 RDF 1.1: On Semantics of RDF Datasets (Note): http://www.w3.org/TR/2014/NOTE-rdf11-datasets-20140225/

 	
 What's New in RDF 1.1 (Note): http://www.w3.org/TR/2014/NOTE-rdf11-new-20140225/

 Table of Contents

 	
 Cover

 	
 Table of Contents

 	
 RDF 1.1 Primer

 	
 Introduction

 	
 Why Use RDF?

 	
 RDF Data Model

 	
 RDF Vocabularies

 	
 Writing RDF graphs

 	
 Semantics of RDF Graphs

 	
 RDF Data

 	
 More Information

 	
 Acknowledgments

 	
 References

 	
 RDF 1.1 Concepts and Abstract Syntax

 	
 Introduction

 	
 Conformance

 	
 RDF Graphs

 	
 RDF Datasets

 	
 Datatypes

 	
 Fragment Identifiers

 	
 Generalized RDF Triples, Graphs, and Datasets

 	
 Acknowledgments

 	
 Changes between RDF 1.0 and RDF 1.1

 	
 References

 	
 RDF Schema 1.1

 	
 Introduction

 	
 Classes

 	
 Properties

 	
 Using the Domain and Range vocabulary

 	
 Other vocabulary

 	
 RDF Schema summary

 	
 Acknowledgments

 	
 Change since 2004 Recommendation

 	
 References

 	
 RDF 1.1 Semantics

 	
 Introduction

 	
 Conformance

 	
 Semantic Extensions and Entailment Regimes

 	
 Notation and Terminology

 	
 Simple Interpretations

 	
 Skolemization (Informative)

 	
 Literals and datatypes

 	
 RDF Interpretations

 	
 RDFS Interpretations

 	
 RDF Datasets

 	
 Entailment rules (Informative)

 	
 Finite interpretations (Informative)

 	
 Proofs of some results (Informative)

 	
 RDF reification, containers and collections (Informative)

 	
 Change Log (informative)

 	
 Acknowledgements

 	
 References

 	
 RDF 1.1: On Semantics of RDF Datasets (Note)

 	
 Introduction

 	
 Existing Work

 	
 Formal definitions

 	
 Declaring the intended semantics

 	
 Acknowledgements

 	
 Changes since the first public working draft of 17 December 2013

 	
 References

 	
 What's New in RDF 1.1 (Note)

 	
 Introduction

 	
 Abstract Syntax

 	
 New Serialization Formats

 	
 Semantics

 	
 Acknowledgments

 	
 References

 	Begin reading

 	Table of Contents

 [image: W3C]

 RDF 1.1 Primer

 W3C Working Group Note 25 February 2014

 	This version:

 	http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/

 	Latest published version:

 	http://www.w3.org/TR/rdf11-primer/

 	Previous version:

 	http://www.w3.org/TR/2013/WD-rdf11-primer-20131217/

 	Latest Recommendation:

 	http://www.w3.org/TR/rdf-primer

 	Editors:

 	Guus Schreiber, VU University Amsterdam

	Yves Raimond, BBC

 	Previous Editors:

 	

 Frank Manola

 	

 Eric Miller

 	

 Brian McBride

 Please check the errata for any errors or issues
 reported since publication.

 Copyright ©
 2003-2014

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang),

 All Rights Reserved.

 W3C liability,
 trademark and

 document use

 rules apply.

 Abstract

 This primer is designed to provide the reader with the basic
 knowledge required to effectively use RDF. It introduces the basic
 concepts of RDF and shows concrete examples of the use of RDF.
 Secs. 3-5 can be used as a minimalist introduction into the key
 elements of RDF. Changes between RDF 1.1
 and RDF 1.0 (2004 version) are summarized in a separate document: "What's New in RDF
 1.1" [RDF11-NEW].

 Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

 This document is part of the RDF 1.1 document suite. It is an
 informative note on the key concepts of RDF. For a normative
 specification of RDF 1.1 the reader is referred to the RDF
 1.1. Concepts and Abstract Syntax document [RDF11-CONCEPTS].

 This document was published by the RDF Working Group as a Working Group Note.

 If you wish to make comments regarding this document, please send them to
 public-rdf-comments@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 Publication as a Working Group Note does not imply endorsement by the W3C
 Membership. This is a draft document and may be updated, replaced or obsoleted by other
 documents at any time. It is inappropriate to cite this document as other than work in
 progress.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction
	2. Why Use RDF?
	3. RDF Data Model	3.1 Triples
	3.2 IRIs
	3.3 Literals
	3.4 Blank nodes
	3.5 Multiple graphs

	4. RDF Vocabularies
	5. Writing RDF graphs	5.1 Turtle family of RDF languages	5.1.1 N-Triples
	5.1.2 Turtle
	5.1.3 TriG
	5.1.4 N-Quads

	5.2 JSON-LD
	5.3 RDFa
	5.4 RDF/XML

	6. Semantics of RDF Graphs
	7. RDF Data
	8. More Information
	A. Acknowledgments
	B. References	B.1 Informative references

1. Introduction

 The Resource Description Framework (RDF) is a framework for
 expressing information about

 resources.
 Resources
 can be anything, including documents, people, physical objects, and abstract
 concepts.

 RDF is intended for situations in which information on the Web needs to
 be processed by applications, rather than being only displayed to
 people. RDF provides a common framework for expressing this
 information so it can be exchanged between applications without
 loss of meaning. Since it is a common framework, application
 designers can leverage the availability of common RDF parsers and
 processing tools. The ability to exchange information between
 different applications means that the information may be made
 available to applications other than those for which it was
 originally created.

 In particular RDF can be used to publish and interlink data on the Web.
 For example, retrieving http://www.example.org/bob#me
 could provide data about Bob, including the fact that he
 knows Alice, as identified by her IRI (an IRI is an "International
 Resource Identifier"; see Sec. 3.2 for details).
 Retrieving Alice's IRI could then provide more data about her, including links
 to other datasets for her friends, interests, etc. A person or
 an automated process can then follow such links and aggregate data about these
 various things. Such uses of RDF are often
 qualified as Linked Data [LINKED-DATA].

 This document is not normative and does not give a complete
 account of RDF 1.1. Normative
 specifications of RDF can be found in the following documents:

 	A document describing the basic concepts underlying RDF, as
 well as abstract syntax ("RDF Concepts and Abstract Syntax")
 [RDF11-CONCEPTS]

 	A document describing the formal model-theoretic semantics
 of RDF ("RDF Semantics") [RDF11-MT]

 	Specifications of serialization formats for RDF:

	 	Turtle [TURTLE] and TriG [TRIG]

	 	JSON-LD [JSON-LD] (JSON based)

	 	RDFa [RDFA-PRIMER] (for HTML embedding)

	 	N-Triples [N-TRIPLES] and N-Quads [N-QUADS]
 (line-based exchange formats)

	 	RDF/XML [RDF11-XML] (the original 2004 syntax, updated
 for RDF 1.1)

	

 	A document describing RDF Schema [RDF11-SCHEMA], which
 provides a data-modeling vocabulary for RDF data.

2. Why Use RDF?

 The following illustrates various different uses of RDF, aimed
 at different communities of practice.

 	Adding machine-readable information to Web pages using, for example,
 the popular schema.org
 vocabulary, enabling them to be displayed
 in an enhanced format on search engines or to be processed automatically
 by third-party applications.

 	Enriching a dataset by linking it to third-party
 datasets. For example, a dataset about
 paintings could be enriched by linking them to the corresponding
 artists in Wikidata,
 therefore giving access to a wide range of information about
 them and related resources.

 	Interlinking API feeds, making sure that clients can easily
 discover how to access more information.

 	Using the datasets currently published as Linked Data
 [LINKED-DATA], for example
 building aggregations of data around specific topics.

 	Building distributed social networks by interlinking RDF
 descriptions of people
 across multiple Web sites.

 	Providing a standards-compliant way for exchanging data
 between databases.

 	Interlinking various datasets within an organisation,
 enabling cross-dataset queries to
 be performed using SPARQL [SPARQL11-OVERVIEW].

3. RDF Data Model

 3.1 Triples

 RDF allows us to make statements about resources.
 The format of these statements is simple. A statement always
 has the following structure:

 <subject> <predicate> <object>

 An RDF statement expresses a relationship between two resources.
 The subject and the object
 represent the two resources being
 related; the predicate represents the nature of their
 relationship. The relationship is phrased in a directional way
 (from subject to object) and is called in RDF a
 property. Because RDF statements consist of
 three elements they are called triples.

 Here are examples of RDF triples (informally expressed in pseudocode):

 Example 1: Sample triples (informal)
<Bob> <is a> <person>.
<Bob> <is a friend of> <Alice>.
<Bob> <is born on> <the 4th of July 1990>.
<Bob> <is interested in> <the Mona Lisa>.
<the Mona Lisa> <was created by> <Leonardo da Vinci>.
<the video 'La Joconde à Washington'> <is about> <the Mona Lisa>

 The same resource is often referenced in multiple triples. In the example above,
 Bob is the subject of four triples, and the Mona Lisa is the subject of
 one and the object of two triples. This ability to have the same resource be
 in the subject position of one triple and the object position of another
 makes it possible to find connections between triples, which is an
 important part of RDF's power.

 We can visualize triples as a connected
 graph. Graphs consists
 of nodes and arcs. The subjects and
 objects of the triples make up the nodes in the graph; the
 predicates form the arcs. Fig. 1
 shows the graph resulting from the sample triples.

 [image: Informal graphs of the sample triples]
 Fig. 1 Informal graph of the sample triples

 Once you have a graph like this you can use SPARQL [SPARQL11-OVERVIEW] to
 query for e.g. people interested in paintings by Leonardo da
 Vinci.

 The RDF Data Model is described in this section
 in the form of an "abstract syntax", i.e. a data model that is independent of a
 particular concrete syntax (the syntax used to represent triples stored in
 text files). Different concrete syntaxes may
 produce exactly the same graph from the perspective of the
 abstract syntax. The semantics of RDF graphs [RDF11-MT] are defined in
 terms of this abstract syntax. Concrete RDF syntax is introduced
 later in Sec. 5.

 In the next three subsections we discuss the three types of RDF data
 that occur in triples: IRIs, literals and blank nodes.

 3.2 IRIs

 The abbreviation IRI is short for "International Resource
 Identifier". An IRI
 identifies a resource. The URLs (Uniform Resource Locators) that
 people use as Web addresses are one form of IRI. Other forms of IRI
 provide an identifier for a resource without implying its location
 or how to access it. The notion of IRI is a
 generalization of URI (Uniform Resource Identifier), allowing
 non-ASCII characters to be used in the IRI character string. IRIs are specified
 in RFC 3987 [RFC3987].

IRIs can appear in all three positions of a triple.

 As mentioned, IRIs are used to identify resources such as documents,
 people, physical objects, and abstract concepts.
 For example, the IRI for Leonardo da Vinci in DBpedia is:

 http://dbpedia.org/resource/Leonardo_da_Vinci

 The IRI for an INA video about the Mona Lisa entitled 'La Joconde à Washington' in Europeana is:

 http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619

 IRIs are global identifiers, so other people can re-use this
 IRI to identify the same thing. For example, the following IRI is
 used by many people as an RDF property to state an acquaintance
 relationship between people:

 http://xmlns.com/foaf/0.1/knows

 RDF is agnostic about what the IRI represents. However,
 IRIs may be given meaning by particular vocabularies or
 conventions. For example, DBpedia uses IRIs of the form
 http://dbpedia.org/resource/Name to denote the thing
 described by the corresponding Wikipedia article.

 3.3 Literals

 Literals
 are basic values that are not IRIs. Examples of literals include
 strings such as "La Joconde", dates such as "the 4th of July, 1990"
 and numbers such as "3.14159".
 Literals are associated with a datatype
 enabling such values to be parsed and interpreted correctly.
 String literals can optionally be associated with a language
 tag. For example, "Léonard de Vinci" could
 be associated with the "fr" language tag and "李奥纳多·达·文西"
 with the "zh" language tag.

 Literals may only appear in the object position of a triple.

 The RDF Concepts document provides a (non-exhaustive)
 list
 of datatypes. This includes many datatypes defined by XML
 Schema, such as string, boolean, integer, decimal and date.

 3.4 Blank nodes

 IRIs and literals together provide the basic material for
 writing down RDF statements. In addition, it is sometimes handy
 to be able to talk about resources without bothering to use a global
 identifier. For example, we might want to state that the Mona
 Lisa painting has in its background an unidentified tree which
 we know to be a cypress tree. A resource without a global identifier, such as the
 painting's cypress tree, can be represented in RDF by a blank
 nodes. Blank nodes are like simple
 variables in algebra; they represent some thing without saying
 what their value is.

 Blank nodes can appear in the subject and object
 position of a triple. They can be used
 to denote resources without explicitly naming them with an
 IRI.

 [image: Blank node example: cypress tree]
 Fig. 2 Informal blank node example: the background of the Mona Lisa depicts
 an unnamed resource that belongs to the class of cypress trees.

 3.5 Multiple graphs

 RDF provides a mechanism to group RDF statements in multiple
 graphs and associate such graphs with an IRI . Multiple graphs are a recent extension of the RDF
 data model. In practice, RDF tool builders and data managers
 needed a mechanism to talk about subsets of a collection of
 triples. Multiple graphs were first introduced in the RDF query
 language SPARQL. The RDF data model was therefore extended with a notion of
 multiple graphs that is closely aligned with SPARQL.

 Multiple graphs in
 an RDF document constitute an
 RDF
 dataset. An RDF dataset may have multiple named graphs and
 at most one unnamed ("default") graph.

For example, the
 statements in Example 1
 could be grouped in two named
 graphs. A first graph could be provided by a social networking
 site and identified by http://example.org/bob:

 Example 2: First graph in the sample dataset
<Bob> <is a> <person>.
<Bob> <is a friend of> <Alice>.
<Bob> <is born on> <the 4th of July 1990>.
<Bob> <is interested in> <the Mona Lisa>.

 The IRI associated with the graph is
 called the graph
 name.

 A second graph could be provided by Wikidata
 and identified by
 https://www.wikidata.org/wiki/Special:EntityData/Q12418:

 Example 3: Second graph in the sample dataset
<Leonardo da Vinci> <is the creator of> <the Mona Lisa>.
<The video 'La Joconde à Washington'> <is about> <the Mona Lisa>

 Below is an example of an unnamed graph. It contains two triples that
 have the graph name <http://example.org/bob>
 as subject. The triples associate publisher and license information with
 this graph IRI:

 Example 4: Unnamed graph in the sample dataset
<http://example.org/bob> <is published by> <http://example.org>.
<http://example.org/bob> <has license> <http://creativecommons.org/licenses/by/3.0/>.

 In this example dataset we assume graph
 names represent the source of the RDF data held within the
 corresponding graphs, i.e. by retrieving
 <http://example.org/bob> we would get access to the four triples
 in that graph.

 Note
RDF provides no standard way to convey this semantic
 assumption (i.e., that graph names represent the source of the
 RDF data) to other readers of the dataset. Those readers will
 need to rely on out-of-band knowledge, such as established
 community practice, to interpret the dataset
 in the intended way. Possible semantics of datasets are described in a separate note
 [RDF11-DATASETS].

 [image: Informal graph of the sample dataset]
 Fig. 3 Informal graph of the sample dataset

 Sec. 5.1.3 provides an example
 of concrete syntax for this graph.

4. RDF Vocabularies

 The RDF data model provides a way to make statements about
 resources. As we mentioned, this data model does not make any
 assumptions about what resource IRIs stand for. In practice, RDF
 is typically used in combination with vocabularies or other
 conventions that provide semantic information about these
 resources.

 To support the definition of vocabularies RDF provides
 the RDF Schema language
 [RDF11-SCHEMA]. This language allows one to define semantic
 characteristics of
 RDF data. For example, one can state that the IRI
 http://www.example.org/friendOf can be used as a property and that the
 subjects and objects of http://www.example.org/friendOf triples must be
 resources of class http://www.example.org/Person.

RDF Schema uses the notion of class to
 specify categories that can be used to classify resources. The
 relation between an instance and its class is stated through the
 type property. With RDF Schema one can create hierarchies
 of classes and sub-classes and of
 properties and sub-properties. Type restrictions on the subjects
 and objects of particular triples can be defined through
 domain and range
 restrictions. An example of a domain restriction was given above:
 subjects of "friendOf" triples should be of class "Person".

 The main modeling
 constructs provided by RDF Schema are summarized in the table below:

 Table 1: RDF Schema Constructs

 	Construct
 	Syntactic form
 	Description

 	Class (a class)
 	C rdf:type rdfs:Class
 	C (a resource) is an RDF class

 	Property (a class)
 	P rdf:type rdf:Property
 	P (a resource) is an RDF property

 	type (a property)
 	I rdf:type C
 	I (a resource) is an instance of C (a class)

 	subClassOf (a property)
 	C1 rdfs:subClassOf C2
 	C1 (a class) is a subclass of C2 (a class)

 	subPropertyOf (a property)
 	P1 rdfs:subPropertyOf P2
 	P1 (a property) is a sub-property of P2 (a property)

 	domain (a property)
 	P rdfs:domain C
 	domain of P (a property) is C (a class)

 	range (a property)
 	P rdfs:range C
 	range of P (a property) is C (a class)

Note
The syntactic form (second column) is in a prefix
notation wich is discussed in more detail in
Sec. 5.
The fact that the constructs have two different prefixes
(rdf: and rdfs:) is a somewhat annoying
historical artefact, which is preserved for backward
compatibility.

With the help of RDF Schema one can build a model of RDF data. A
simple informal example:

 Example 5: RDF Schema triples (informal)
<Person> <type> <Class>
<is a friend of> <type> <Property>
<is a friend of> <domain> <Person>
<is a friend of> <range> <Person>
<is a good friend of> <subPropertyOf> <is a friend of>

Note that, while <is a friend of> is a
property typically used as the predicate of a triple (as it was in
Example 1), properties like this are themselves resources that can be
described by triples or provide values in the descriptions of other
resources. In this example, <is a friend of> is the subject of triples
that assign type, domain, and range values to it, and it is the object of
a triple that describes something about the <is a good friend of>
property.

One of the first RDF vocabularies used worldwide was the
"Friend of a Friend" (FOAF)
vocabulary for describing social networks. Other examples of RDF
vocabularies are:

 	Dublin Core

 	The Dublin Core Metadata Initiative maintains a metadata element
 set for describing a wide range of resources. The vocabulary provides
 properties such as "creator", "publisher" and "title".

 	schema.org

	Schema.org is a vocabulary developed by a group of major search
 providers. The idea is that webmasters can use these terms to mark-up
 Web pages, so that search engines understand what the pages are
 about.

 	SKOS

 	SKOS is a vocabulary for publishing classification schemes
 such as terminologies and thesauri on the Web. SKOS is since 2009 a W3C
 recommendation and is widely used in the library world. The Library of
 Congress published its Subject Headings as a SKOS
 vocabulary.

Vocabularies get their value from reuse: the more vocabulary IRIs
are reused by others, the more valuable it becomes to use the
IRIs (the so-called network effect). This means you should prefer
re-using someone else's IRI instead of inventing a new one.

For a formal specification of the semantics of the RDF Schema
constructs the reader is referred to
the RDF Semantics document [RDF11-MT]. Users interested in more comprehensive
semantic modeling of RDF data might consider using OWL
[OWL2-OVERVIEW]. OWL is an RDF vocabulary, so it can be
used in combination with RDF Schema.

5. Writing RDF graphs

 A number of different serialization formats exist for writing down RDF
 graphs. However, different ways of writing down the same graph lead
 to exactly the same triples, and are thus logically equivalent.

 In this section we briefly introduce, through annotated examples, the following formats:

 	Turtle family of RDF languages
 (N-Triples,
 Turtle,
 TriG and
 N-Quads);

 	JSON-LD (JSON-based RDF syntax);

 	RDFa (for HTML and XML embedding);

 	RDF/XML (XML syntax for RDF).

Note

Reading tip: Sec. 5.1 (Turtle et al.) discusses all
basic concepts for serializing RDF. We suggest you
read the sections on JSON-LD, RDFa and RDF/XML only if you are
interested in that particular usage of RDF.

5.1 Turtle family of RDF languages

In this subsection we introduce four RDF languages
which are closely related. We start with N-Triples, as it provides
basic syntax for writing down RDF triples. The Turtle syntax
extends this basic syntax with various forms of syntactic sugar to improve
readability. Subsequently we discuss TriG and N-Quads, which are extensions of Turtle
respectively N-Triples to encode multiple graphs. Together, these four are
referred to as the "Turtle family of RDF languages".

5.1.1 N-Triples

N-Triples [N-TRIPLES] provides a simple line-based, plain-text way for serializing RDF
graphs. The informal graph in Fig. 1 can be represented in N-Triples in the
following way:

Example 6: N-Triples
01 <http://example.org/bob#me> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
02 <http://example.org/bob#me> <http://xmlns.com/foaf/0.1/knows> <http://example.org/alice#me> .
03 <http://example.org/bob#me> <http://schema.org/birthDate> "1990-07-04"^^<http://www.w3.org/2001/XMLSchema#date> .
04 <http://example.org/bob#me> <http://xmlns.com/foaf/0.1/topic_interest> <http://www.wikidata.org/entity/Q12418> .
05 <http://www.wikidata.org/entity/Q12418> <http://purl.org/dc/terms/title> "Mona Lisa" .
06 <http://www.wikidata.org/entity/Q12418> <http://purl.org/dc/terms/creator> <http://dbpedia.org/resource/Leonardo_da_Vinci> .
07 <http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619> <http://purl.org/dc/terms/subject> <http://www.wikidata.org/entity/Q12418> .

Each line represents a triple. Full IRIs are enclosed in angle brackets
(<>). The period at the end of the line signals the
end of the triple. In line 3 we see an example of a literal, in this case a date. The
datatype is appended to the literal through a ^^ delimiter. The date
representation follows the conventions of the XML Schema datatype
date.

Because string literals are so ubiquitous N-Triples allows the user to
omit the datatype when writing a string literal. Thus, "Mona
Lisa" in line 5 is equivalent to
"Mona Lisa"^^xsd:string.
In case of language-tagged strings the tag
appears directly after the string, separated by a @
symbol, e.g. "La Joconde"@fr (the French name of the Mona
Lisa).

Note
For technical reasons the datatype of language-tagged
strings is not xsd:string but
rdf:langString. The
datatype of language-tagged strings is never specified explicitly.

The figure below shows the triples resulting from the example:

 [image: Graph of the sample triples]
 Fig. 4 RDF graph resulting from the N-Triples example

Note that the seven lines in the N-Triples example correspond to the seven
arcs in the diagram above.

N-Triples is often used for exchanging large amounts of RDF and for
processing large RDF graphs with line-oriented text processing
tools.

5.1.2 Turtle

Turtle [TURTLE] is an extension of N-Triples.
In addition to the basic N-Triples syntax, Turtle
introduces a number of syntactic shortcuts, such as
support for namespace prefixes, lists and shorthands for datatyped
literals. Turtle provides a trade-off between ease of
writing, ease of parsing and readability. The graph shown in
Fig. 4 can be
represented in Turtle as follows:

Example 7: Turtle
01 BASE <http://example.org/>
02 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
03 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
04 PREFIX schema: <http://schema.org/>
05 PREFIX dcterms: <http://purl.org/dc/terms/>
06 PREFIX wd: <http://www.wikidata.org/entity/>
07
08 <bob#me>
09 a foaf:Person ;
10 foaf:knows <alice#me> ;
11 schema:birthDate "1990-07-04"^^xsd:date ;
12 foaf:topic_interest wd:Q12418 .
13
14 wd:Q12418
15 dcterms:title "Mona Lisa" ;
16 dcterms:creator <http://dbpedia.org/resource/Leonardo_da_Vinci> .
17
18 <http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619>
19 dcterms:subject wd:Q12418 .

The Turtle example is logically equivalent to the N-Triples
example. Lines 1-6 contain a number of directives which provide shorthands for
writing down IRIs. Relative IRIs (such as bob#me on line 8) are
resolved against a base IRI, specified here in line 1.
Lines 2-6 define IRI prefixes (such as foaf:), which can
be use for prefixed names (such as foaf:Person) instead of full IRIs.
The corresponding IRI is constructed by replacing the prefix with its
corresponding IRI (in this example foaf:Person stands for
<http://xmlns.com/foaf/0.1/Person>).

Lines 8-12 show how Turtle provides a shorthand for a set of
triples with the same subject. Lines 9-12 specify the predicate-object
part of triples that have <http://example.org/bob#me> as
their subject. The semicolons at the end of lines 9-11 indicate that
the predicate-object pair that follows it is part of
a new triple that uses the most recent subject shown in the data — in
this case bob#me.

Line 9 shows an example of a special kind of syntactic sugar. The triple
should informally be read as "Bob (is) a Person". The
a predicate
is a shorthand for the property rdf:type which models the
instance relation (see Table 1).
The a shorthand is intended to match the human
intuition about rdf:type.

Representation of blank nodes

Below we see two syntactic variants for writing down blank nodes, using the
earlier cypress tree example:

Example 8: Blank node
PREFIX lio: <http://purl.org/net/lio#>

<http://dbpedia.org/resource/Mona_Lisa> lio:shows _:x .
_:x a <http://dbpedia.org/resource/Cypress> .

The term _:x is a blank node. It represents an
unnamed resource depicted in
the Mona Lisa painting; the unnamed resource is an instance of the
Cypress class. The example above provides concrete syntax
for the informal graph in Fig. 2.

Turtle also has an alternative notation for blank nodes, which
does not require the use of syntax like _:x:

Example 9: Blank nodes (alternative notation)
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

Some resource (blank node) is interested in some other resource
entitled "Mona Lisa" and created by Leonardo da Vinci.

[] foaf:topic_interest [
 dcterms:title "Mona Lisa" ;
 dcterms:creator <http://dbpedia.org/resource/Leonardo_da_Vinci>] .

Square brackets represent here a blank node. Predicate-object pairs within
the square brackets are interpreted as triples with the blank node as
subject. Lines starting with '#' represent
comments.

For more details about the syntax of Turtle please consult the Turtle specification [TURTLE].

5.1.3 TriG

The syntax of Turtle supports only the specification of single
graphs without a means for "naming" them. TriG [TRIG] is an
extension of Turtle enabling the specification of
multiple graphs in the form of an RDF dataset.

Note
In RDF 1.1 any legal Turtle document is a legal TriG
document. One could view it as one language. The names Turtle and TriG
still exist for historical reasons.

The multiple-graphs version of our example
can be specified in TriG as follows:

Example 10: TriG
01 BASE <http://example.org/>
02 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
03 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
04 PREFIX schema: <http://schema.org/>
05 PREFIX dcterms: <http://purl.org/dc/terms/>
06 PREFIX wd: <http://www.wikidata.org/entity/>
07
08 GRAPH <http://example.org/bob>
09 {
10 <bob#me>
11 a foaf:Person ;
12 foaf:knows <alice#me> ;
13 schema:birthDate "1990-07-04"^^xsd:date ;
14 foaf:topic_interest wd:Q12418 .
15 }
16
17 GRAPH <https://www.wikidata.org/wiki/Special:EntityData/Q12418>
18 {
19 wd:Q12418
20 dcterms:title "Mona Lisa" ;
21 dcterms:creator <http://dbpedia.org/resource/Leonardo_da_Vinci> .
22
23 <http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619>
24 dcterms:subject wd:Q12418 .
25 }
26
27 <http://example.org/bob>
28 dcterms:publisher <http://example.org> ;
29 dcterms:rights <http://creativecommons.org/licenses/by/3.0/> .

 This RDF dataset contains two named graphs. Lines 8 and 17 list
 the names of these two graphs. The triples in the named graph are
 placed in between matching curly braces (lines 9 & 15, 18 &
 25). Optionally you can precede the graph name with the keyword
 GRAPH. This may improve readability, but it is mainly
 introduced for alignment with SPARQL Update [SPARQL11-UPDATE].

 The syntax of the triples and of the directives at the top conforms to
 the Turtle syntax.

 The two triples specified on lines 27-29 are not part of any
 named graph. Together they form the unnamed ("default") graph of this RDF
 dataset.

 The figure below shows the triples resulting from this example.

 [image: Triples resulting from the TriG example]
 Fig. 5 Triples resulting from the TriG example

5.1.4 N-Quads

N-Quads [N-QUADS] is a simple extension to N-Triples to enable the exchange of RDF
datasets. N-Quads allows one to add a fourth element to a line, capturing
the graph IRI of the triple described on that line. Here is the
N-Quads version of the TriG example above:

Example 11: N-Quads
01 <http://example.org/bob#me> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> <http://example.org/bob> .
02 <http://example.org/bob#me> <http://xmlns.com/foaf/0.1/knows> <http://example.org/alice#me> <http://example.org/bob> .
03 <http://example.org/bob#me> <http://schema.org/birthDate> "1990-07-04"^^<http://www.w3.org/2001/XMLSchema#date> <http://example.org/bob> .
04 <http://example.org/bob#me> <http://xmlns.com/foaf/0.1/topic_interest> <http://www.wikidata.org/entity/Q12418> <http://example.org/bob> .
05 <http://www.wikidata.org/entity/Q12418> <http://purl.org/dc/terms/title> "Mona Lisa" <https://www.wikidata.org/wiki/Special:EntityData/Q12418> .
06 <http://www.wikidata.org/entity/Q12418> <http://purl.org/dc/terms/creator> <http://dbpedia.org/resource/Leonardo_da_Vinci> <https://www.wikidata.org/wiki/Special:EntityData/Q12418> .
07 <http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619> <http://purl.org/dc/terms/subject> <http://www.wikidata.org/entity/Q12418> <https://www.wikidata.org/wiki/Special:EntityData/Q12418> .
08 <http://example.org/bob> <http://purl.org/dc/terms/publisher> <http://example.org> .
09 <http://example.org/bob> <http://purl.org/dc/terms/rights> <http://creativecommons.org/licenses/by/3.0/> .

The nine lines in the N-Quads example correspond to the nine
arcs in Fig. 5. Lines 1-7 represent quads, where the first
element constitutes the graph IRI. The part of the quad after the
graph IRI specifies the
subject, predicate and object of the statement, following the syntactic
conventions of N-Triples. Lines 8 and 9 represent the statements in the unnamed (default)
graph, which lack a fourth element and thus constitute regular triples.

Like N-Triples, N-Quads is typically used for exchanging large RDF datasets and for
processing RDF with line-oriented text processing tools.

5.2 JSON-LD

 JSON-LD [JSON-LD]
 provides a JSON syntax for RDF graphs and datasets.
 JSON-LD can be used to transform JSON documents to RDF with
 minimal changes. JSON-LD offers universal identifiers for
 JSON objects, a mechanism in which a JSON document can refer to
 an object described in another JSON document elsewhere on the
 Web, as well as datatype and language handling. JSON-LD
 also provides a way to serialize RDF datasets
 through the use of the @graph keyword.

 The following JSON-LD example encodes the graph of Fig. 4:

Example 12: JSON-LD
01 {
02 "@context": "example-context.json",
03 "@id": "http://example.org/bob#me",
04 "@type": "Person",
05 "birthdate": "1990-07-04",
06 "knows": "http://example.org/alice#me",
07 "interest": {
08 "@id": "http://www.wikidata.org/entity/Q12418",
09 "title": "Mona Lisa",
10 "subject_of": "http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619",
11 "creator": "http://dbpedia.org/resource/Leonardo_da_Vinci"
12 }
13 }

 The @context key on line 2
 points to a JSON document
 describing how the document can be mapped to an RDF graph (see below).
 Each JSON object corresponds to an RDF resource. In this example
 the main resource being described is
 http://example.org/bob#me, as
 specified on line 3, through the use of the @id keyword.
 The @id keyword, when used as a key in a JSON-LD document, points
 to an IRI identifying the resource corresponding to the current JSON object.
 We describe the type of this resource on line 4, its birth date
 on line 5 and one of its friends on line 6. From line 7 to 12 we describe
 one of its interests, the Mona Lisa painting.

 To describe this painting we create a
 new JSON object on line 7 and associate it with the Mona Lisa IRI in Wikidata
 on line 8. We then describe various properties of that painting
 from line 9 to line 11.

 The JSON-LD context used in this example is given below.

Example 13: JSON-LD context specification
01 {
02 "@context": {
03 "foaf": "http://xmlns.com/foaf/0.1/",
04 "Person": "foaf:Person",
05 "interest": "foaf:topic_interest",
06 "knows": {
07 "@id": "foaf:knows",
08 "@type": "@id"
09 },
10 "birthdate": {
11 "@id": "http://schema.org/birthDate",
12 "@type": "http://www.w3.org/2001/XMLSchema#date"
13 },
14 "dcterms": "http://purl.org/dc/terms/",
15 "title": "dcterms:title",
16 "creator": {
17 "@id": "dcterms:creator",
18 "@type": "@id"
19 },
20 "subject_of": {
21 "@reverse": "dcterms:subject",
22 "@type": "@id"
23 }
24 }
25 }

 This context describes how a JSON-LD document can be mapped
 to an RDF graph. Lines 4 to 9 specify how to map
 Person, interest and knows
 to types and properties in the FOAF namespace defined
 on line 3. We also specify on line 8 that the knows
 key has a value that will be interpreted as an IRI, through
 the use of the @type and @id keywords.

 From line 10 to line 12 we map birthdate to
 a schema.org property IRI and specify that its value can
 be mapped to an xsd:date datatype.

 From line 16 to line 23 we describe how to map
 title, creator and subject_of
 to Dublin Core property IRIs. The @reverse
 keyword on line 21 is used to specify that, whenever we
 encounter "subject_of": "x" in a JSON-LD document using this
 context, we should map it to an RDF triple which subject is the x
 IRI, which property is dcterms:subject and
 which object is the resource corresponding to the parent JSON object.

5.3 RDFa

RDFa [RDFA-PRIMER] is an RDF syntax that can be used to embed RDF data within
HTML and XML documents. This enables, for example, search engines to aggregate
this data when crawling the Web and use it to enrich search
results (see, e.g., schema.org
and Rich
Snippets).

The HTML example below encodes the
RDF graph depicted in Fig. 4:

Example 14: RDFa
01 <body prefix="foaf: http://xmlns.com/foaf/0.1/
02 schema: http://schema.org/
03 dcterms: http://purl.org/dc/terms/">
04 <div resource="http://example.org/bob#me" typeof="foaf:Person">
05 <p>
06 Bob knows Alice
07 and was born on the <time property="schema:birthDate">1990-07-04</time>.
08 </p>
09 <p>
10 Bob is interested in <span property="foaf:topic_interest"
11 resource="http://www.wikidata.org/entity/Q12418">the Mona Lisa.
12 </p>
13 </div>
14 <div resource="http://www.wikidata.org/entity/Q12418">
15 <p>
16 The Mona Lisa was painted by
17 Leonardo da Vinci
18 and is the subject of the video
19 'La Joconde à Washington'.
20 </p>
21 </div>
22 <div resource="http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619">
23 <link property="dcterms:subject" href="http://www.wikidata.org/entity/Q12418"/>
24 </div>
25 </body>

The example above contains four special RDFa attributes to enable
specification of RDF triples within HTML: resource,
property, typeof and prefix.

The prefix attribute in line 1 specifies IRI
shorthands in a similar fashion as the Turtle prefixes. Strictly
speaking, these particular prefixes could have been omitted, as RDFa has a
list of predefined
prefixes which includes the ones used in this example.

The div elements in lines 4 and 14 have a resource
attribute specifying the IRI about which RDF statements can be
made within this HTML element. The meaning of the typeof
attribute in line 4 is similar to the (is) a shorthand in
Turtle: the subject http://example.org/bob#me is an
instance (rdf:type) of the class foaf:Person.

In line 6 we see a property attribute; the value
of this attribute (foaf:knows) is interpreted as an RDF
property IRI; the value of the href attribute
(http://example.org/alice#me) is
interpreted here as the object of the triple. Thus, the RDF statement
that results from line 6 is:

<http://example.org/bob#me> <http://xmlns.com/foaf/0.1/knows> <http://example.org/alice#me> .

In line 7 we see a triple with as object a literal value. The
property attribute is specified here on the HTML
time element. HTML requires that the content of the time
element should be some valid time
value. By using the built-in HTML semantics of the
time element RDFa can interpret
the value as an xsd:date without an explicit datatype declaration.

In lines 10-11 we see the resource attribute also being used for
specifying the object of a triple. This approach is used when the object is an
IRI and the IRI itself is not part of the HTML content (such as an href
attribute). Line 16 contains a second example of a literal ("Mona
Lisa"), defined here as content of the span attribute. If
RDFa cannot infer the datatype of the literal, it will assume the
datatype to be xsd:string.

It is not always possible to define RDF statements as part of the
HTML content of the document. In that case it is possible to use HTML
constructs that do not render content to specify a triple. An example
can be found on lines 22-23. The HTML link element on
line 23 is used here to specify what
the subject of the Europeana video (line 22) is.

The use of RDFa in this example is limited to RDFa Lite
[RDFA-LITE]. For more information about RDFa please consult the RDFa
Primer [RDFA-PRIMER].

5.4 RDF/XML

RDF/XML [RDF-SYNTAX-GRAMMAR] provides an XML syntax for RDF
graphs. When RDF was originally developed in the late 1990s, this was its
only syntax, and some people still call this syntax "RDF". In 2001, a
precursor to Turtle called "N3" was proposed, and gradually the other
languages listed here have been adopted and standardized.

The RDF/XML example below encodes the
RDF graph depicted in Fig. 4:

Example 15: RDF/XML
01 <?xml version="1.0" encoding="utf-8"?>
02 <rdf:RDF
03 xmlns:dcterms="http://purl.org/dc/terms/"
04 xmlns:foaf="http://xmlns.com/foaf/0.1/"
05 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
06 xmlns:schema="http://schema.org/">
07 <rdf:Description rdf:about="http://example.org/bob#me">
08 <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
09 <schema:birthDate rdf:datatype="http://www.w3.org/2001/XMLSchema#date">1990-07-04</schema:birthDate>
10 <foaf:knows rdf:resource="http://example.org/alice#me"/>
11 <foaf:topic_interest rdf:resource="http://www.wikidata.org/entity/Q12418"/>
12 </rdf:Description>
13 <rdf:Description rdf:about="http://www.wikidata.org/entity/Q12418">
14 <dcterms:title>Mona Lisa</dcterms:title>
15 <dcterms:creator rdf:resource="http://dbpedia.org/resource/Leonardo_da_Vinci"/>
16 </rdf:Description>
17 <rdf:Description rdf:about="http://data.europeana.eu/item/04802/243FA8618938F4117025F17A8B813C5F9AA4D619">
18 <dcterms:subject rdf:resource="http://www.wikidata.org/entity/Q12418"/>
19 </rdf:Description>
20 </rdf:RDF>

In RDF/XML RDF triples are specified within an XML element
rdf:RDF (lines 2 and 20). The attributes of the
rdf:RDF start tag (lines 3-6) provide a shorthand for writing down
names of XML elements and attributes. The XML element
rdf:Description (short for
http://www.w3.org/1999/02/22-rdf-syntax-ns#Description)
is used to define sets of triples that have as subject the IRI
specified by the about attribute. The first description
block (line 7-12) has four sub-elements. The name of the subelement is
an IRI representing an RDF property, e.g., rdf:type (line 8). Here, each
subelement represents one triple.
In cases where the object of the triple is also an IRI
the property subelement has no content and the object IRI is specified
using the rdf:resource attribute (lines 8, 10-11, 15 and
18). For example, line 10 corresponds to the triple:

<http://example.org/bob#me> <http://xmlns.com/foaf/0.1/knows> <http://example.org/alice#me> .

When the object of the
triple is a literal the literal value is entered as content of the
property element (lines 9 and 14). The datatype is specified as
attribute of the property element (line 9). If the datatype is
omitted (line 14) and no language tag is present the literal is
considered to have the datatype xsd:string.

The example shows the baseline syntax; please consult the RDF/XML
document [RDF11-XML] for a more in-depth treatment of the syntax. It
might seem strange that the attribute values contain full IRIs,
despite the fact that for some of these namespace prefixes were
defined. This is because these prefixes can only be used for XML
element and attribute names.

6. Semantics of RDF Graphs

 An overarching goal in the use of RDF is to be able to
 automatically merge useful information from multiple sources to
 form a larger collection that is still coherent and useful. As a
 starting point for this merging, all the information is conveyed
 in the same simple style, subject-predicate-object triples, as
 described above. To keep the information coherent, however, we
 need more than just a standard syntax; we also need agreement
 about the semantics of these triples.

 By this point in the Primer, the reader is likely to have an
 intuitive grasp of the semantics of RDF:

 	The IRIs used to name the subject, predicate, and object are "global" in scope,
 naming the same thing each time they are used.

 	Each triple is "true" exactly when the predicate relation actually exists between
 the subject and the object.

 	An RDF graph is "true" exactly when all the triples in it are "true".

 These notions,
 and others, are specified with mathematical precision in the RDF
 Semantics document [RDF11-MT].

 One of the benefits of RDF having these declarative semantics
 is that systems can make logical inferences. That is, given a
 certain set of input triples which they accept as true, systems
 can in some circumstances deduce that other triples must,
 logically, also be true. We say the first set of triples "entails"
 the additional triples. These systems, called "reasoners", can also
 sometimes deduce that the given input triples contradict each
 other.

 Given the flexibility of RDF, where new vocabularies can be
 created when people want to use new concepts, there are many
 different kinds of reasoning one might want to do. When a
 specific kind of reasoning seems to be useful in many different
 applications, it can be documented as an entailment regime.
 Several entailment regimes are specified in RDF Semantics. For
 technical descriptions of some other entailment regimes and how to
 use these with SPARQL, see [SPARQL11-ENTAILMENT].
 Note that some
 entailment regimes are fairly easy to implement and reasoning can
 be done quickly, while others require sophisticated
 techniques to implement efficiently.

 As a sample entailment, consider the following two statements:

 ex:bob foaf:knows ex:alice .
 foaf:knows rdfs:domain foaf:Person .

 The RDF Semantics document tell us that from this graph it is legal to
 derive the following triple:

 ex:bob rdf:type foaf:Person .

 The derivation above is an example of an RDF Schema entailment [RDF11-MT].

 The semantics of RDF also tell us that the triple:

 ex:bob ex:age "forty"^^xsd:integer .

 leads to a logical inconsistency, because the literal does not
 abide by the constraints defined for the XML Schema datatype integer.

 Note that RDF tools may not recognize all datatypes. As a
 minimum, tools are required to support the datatypes for string literals
 and language-tagged literals.

 Unlike many other data
 modeling languages, RDF Schema allows considerable modeling
 freedom. For example, the same entity may be used
 as both a class and a property. Also, there is no strict separation
 between the world of "classes" and of "instances". Therefore, RDF
 semantics views the following graph as valid:

 ex:Jumbo rdf:type ex:Elephant .
 ex:Elephant rdf:type ex:Species .

 So, an elephant can both be a class (with Jumbo as a sample
 instance) and an instance (namely of the class of
 animal species).

 The examples in this section are just meant to give the reader
some feeling about what the RDF Semantics brings you. Please consult
[RDF11-MT] for a complete description.

7. RDF Data

 RDF allows you to combine triples from any source into a graph
 and process it as legal RDF. A large amount of RDF data is
 available as Linked
 Data [LINKED-DATA]. Datasets are being published and
 interlinked on the Web using RDF, and many of them offer a
 querying facility through SPARQL [SPARQL11-OVERVIEW]. Examples
 of such datasets used in the examples above include:

 	Wikidata, a free,
 collaborative and multilingual database and ran by the
 Wikimedia Foundation.

 	DBpedia, publishing data extracted
 from Wikipedia infoboxes.

 	WordNet,
 a lexical database of English terms, grouped in sets
 of synonyms, with a range of semantic interrelations. Similar
 databases exist for other languages.

 	Europeana, publishing
 data about cultural objects from a large number of European
 institutions.

 	VIAF, publishing data about
 people, works and geographic places from a number of national
 libraries and other agencies.

 A list of datasets available as Linked Data is maintained at
 datahub.io.

 A number of vocabulary terms have become popular for
 recording links between RDF data sources. An example is the
 sameAs property provided by the OWL vocabulary. This
 property can be used to indicate that two IRIs point in fact
 to the same resource. This is useful because different publishers
 may use different identifiers to denote the same thing. For
 example, VIAF (see above) also has an IRI denoting Leonardo da
 Vinci. With the help of owl:sameAs we can record this
 information:

 Example 16: Link between datasets
<http://dbpedia.org/resource/Leonardo_da_Vinci>
 owl:sameAs <http://viaf.org/viaf/24604287/> .

 Such links can be deployed by RDF data-processing
 software, for example by merging or comparing RDF data of
 IRIs that point to the same resource.

8. More Information

 This concludes our brief introduction into RDF. Please consult
 the references to get more detailed information. You might also
 want to take a look at the W3C Linked Data page.

A. Acknowledgments

 Antoine Isaac provided many examples, including the
 different syntactic forms. Pierre-Antoine Champin provided one of
 the JSON-LD examples. Andrew Wood designed the
 diagrams. Sandro Hawke wrote the first part of the section on RDF
 semantics.

We are grateful for the comments provided by (in
 alphabetical order) Gareth Adams, Thomas Baker, Dan Brickley, Pierre-Antoine
 Champin, Bob DuCharme, Sandro Hawke, Patrick
 Hayes, Ivan Herman, Kingsley Idehen, Antoine Isaac, Markus Lanthaler, and David Wood.

The introduction of this document contains a number of sentences from the
 2004 Primer [RDF-PRIMER]. For the rest the RDF 1.1 Primer is a completely
 new document.

B. References
B.1 Informative references
	[JSON-LD]
	Manu Sporny, Gregg Kellogg, Markus Lanthaler, Editors. JSON-LD 1.0. 16 January 2014. W3C Recommendation. URL: http://www.w3.org/TR/json-ld/

	[LINKED-DATA]
	Tim Berners-Lee. Linked Data. Personal View, imperfect but published. URL: http://www.w3.org/DesignIssues/LinkedData.html

	[N-QUADS]
	Gavin Carothers. RDF 1.1 N-Quads. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-n-quads-20140225/. The latest edition is available at http://www.w3.org/TR/n-quads/

	[N-TRIPLES]
	Gavin Carothers, Andy Seabourne. RDF 1.1 N-Triples. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-n-triples-20140225/. The latest edition is available at http://www.w3.org/TR/n-triples/

	[OWL2-OVERVIEW]
	W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview (Second Edition). 11 December 2012. W3C Recommendation. URL: http://www.w3.org/TR/owl2-overview/

	[RDF-PRIMER]
	Frank Manola; Eric Miller. RDF Primer. 10 February 2004. W3C Recommendation. URL: http://www.w3.org/TR/rdf-primer/

	[RDF-SYNTAX-GRAMMAR]
	Fabien Gandon; Guus Schreiber. RDF 1.1 XML Syntax. 9 January 2014. W3C Proposed Edited Recommendation. URL: http://www.w3.org/TR/rdf-syntax-grammar/

	[RDF11-CONCEPTS]
	Richard Cyganiak, David Wood, Markus Lanthaler. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-concepts/

	[RDF11-DATASETS]
	Antoine Zimmermann. RDF 1.1: On Semantics of RDF Datasets. W3C Working Group Note, 25 February 2014. The latest version is available at http://www.w3.org/TR/rdf11-datasets/.

	[RDF11-MT]
	Patrick J. Hayes, Peter F. Patel-Schneider. RDF 1.1 Semantics. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-mt/

	[RDF11-NEW]
	David Wood. What’s New in RDF 1.1. W3C Working Group Note, 25 February 2014. The latest version is available at http://www.w3.org/TR/rdf11-new/.

	[RDF11-SCHEMA]
	Dan Brickley, R. V. Guha. RDF Schema 1.1. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf-schema-20140225/. The latest published version is available at http://www.w3.org/TR/rdf-schema/.

	[RDF11-XML]
	Fabien Gandon, Guus Schreiber. RDF 1.1 XML Syntax. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/. The latest published version is available at http://www.w3.org/TR/rdf-syntax-grammar/.

	[RDFA-LITE]
	Manu Sporny. RDFa Lite 1.1. 7 June 2012. W3C Recommendation. URL: http://www.w3.org/TR/rdfa-lite/

	[RDFA-PRIMER]
	Ivan Herman; Ben Adida; Manu Sporny; Mark Birbeck. RDFa 1.1 Primer - Second Edition. 22 August 2013. W3C Note. URL: http://www.w3.org/TR/rdfa-primer/

	[RFC3987]
	M. Dürst; M. Suignard. Internationalized Resource Identifiers (IRIs). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3987.txt

	[SPARQL11-ENTAILMENT]
	Birte Glimm; Chimezie Ogbuji. SPARQL 1.1 Entailment Regimes. 21 March 2013. W3C Recommendation. URL: http://www.w3.org/TR/sparql11-entailment/

	[SPARQL11-OVERVIEW]
	The W3C SPARQL Working Group. SPARQL 1.1 Overview. 21 March 2013. W3C Recommendation. URL: http://www.w3.org/TR/sparql11-overview/

	[SPARQL11-UPDATE]
	Paul Gearon; Alexandre Passant; Axel Polleres. SPARQL 1.1 Update. 21 March 2013. W3C Recommendation. URL: http://www.w3.org/TR/sparql11-update/

	[TRIG]
	Gavin Carothers, Andy Seaborne. TriG: RDF Dataset Language. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-trig-20140225/. The latest edition is available at http://www.w3.org/TR/trig/

	[TURTLE]
	Eric Prud'hommeaux, Gavin Carothers. RDF 1.1 Turtle: Terse RDF Triple Language. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-turtle-20140225/. The latest edition is available at http://www.w3.org/TR/turtle/

 [image: W3C]

 RDF 1.1 Concepts and Abstract Syntax

 W3C Recommendation 25 February 2014

 	This version:

 	http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

 	Latest published version:

 	http://www.w3.org/TR/rdf11-concepts/

 	Previous version:

 	http://www.w3.org/TR/2014/PR-rdf11-concepts-20140109/

 	Previous Recommendation:

 	http://www.w3.org/TR/rdf-concepts

 	Editors:

 	Richard Cyganiak, DERI, NUI Galway

	David Wood, 3 Round Stones

	Markus Lanthaler, Graz University of Technology

 	Previous Editors:

 	

 Graham Klyne

 	

 Jeremy J. Carroll

 	

 Brian McBride

 Please check the errata for any errors or issues
 reported since publication.

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2004-2014

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang),

 All Rights Reserved.

 W3C liability,
 trademark and

 document use

 rules apply.

 Abstract

 The Resource Description Framework (RDF) is a framework for
 representing information in the Web. This document defines an abstract syntax
 (a data model) which serves to link all RDF-based languages and
 specifications. The abstract syntax has two key data structures:
 RDF graphs are sets of subject-predicate-object triples,
 where the elements may be IRIs, blank nodes, or datatyped literals. They
 are used to express descriptions of resources. RDF datasets are used
 to organize collections of RDF graphs, and comprise a default graph
 and zero or more named graphs. RDF 1.1 Concepts and Abstract Syntax
 also introduces key concepts and terminology, and discusses
 datatyping and the handling of fragment identifiers in IRIs within
 RDF graphs.

 Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

 This document is part of the RDF 1.1 document suite. It is the central
 RDF 1.1 specification and defines the core RDF concepts. A new concept in
 RDF 1.1 is the notion of an RDF dataset to represent multiple
 graphs. Test suites and implementation reports of a number of RDF 1.1
 specifications that build on this document are available through the
 RDF 1.1 Test Cases
 document [RDF11-TESTCASES].
 There have been no changes to this document since its publication as
 Proposed Recommendation.

 This document was published by the RDF Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdf-comments@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 This document has been reviewed by W3C Members, by software developers, and by other W3C
 groups and interested parties, and is endorsed by the Director as a W3C Recommendation.
 It is a stable document and may be used as reference material or cited from another
 document. W3C's role in making the Recommendation is to draw attention to the
 specification and to promote its widespread deployment. This enhances the functionality
 and interoperability of the Web.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction	1.1 Graph-based Data Model
	1.2 Resources and Statements
	1.3 The Referent of an IRI
	1.4 RDF Vocabularies and Namespace IRIs
	1.5 RDF and Change over Time
	1.6 Working with Multiple RDF Graphs
	1.7 Equivalence, Entailment and Inconsistency
	1.8 RDF Documents and Syntaxes

	2. Conformance
	3. RDF Graphs	3.1 Triples
	3.2 IRIs
	3.3 Literals
	3.4 Blank Nodes
	3.5 Replacing Blank Nodes with IRIs
	3.6 Graph Comparison

	4. RDF Datasets	4.1 RDF Dataset Comparison
	4.2 Content Negotiation of RDF Datasets

	5. Datatypes	5.1 The XML Schema Built-in Datatypes
	5.2 The rdf:HTML Datatype
	5.3 The rdf:XMLLiteral Datatype
	5.4 Datatype IRIs

	6. Fragment Identifiers
	7. Generalized RDF Triples, Graphs, and Datasets
	8. Acknowledgments
	A. Changes between RDF 1.0 and RDF 1.1
	B. References	B.1 Normative references
	B.2 Informative references

1. Introduction
This section is non-normative.

 The Resource Description Framework (RDF) is a framework
 for representing information in the Web.

 This document defines an abstract syntax (a data model)
 which serves to link all RDF-based languages and specifications,
 including:

 	the formal
 model-theoretic semantics for RDF [RDF11-MT];

 	serialization syntaxes for storing and exchanging RDF such as
 Turtle [TURTLE]
 and JSON-LD [JSON-LD];

 	the SPARQL
 Query Language [SPARQL11-OVERVIEW];

 	the RDF Schema vocabulary
	[RDF11-SCHEMA].

 1.1 Graph-based Data Model

 The core structure of the abstract syntax is a set of
 triples, each consisting of a subject,
 a predicate and an object. A set of such triples is called
 an RDF graph. An RDF graph can be visualized as a node and
 directed-arc diagram, in which each triple is represented as a
 node-arc-node link.

 [image: An RDF graph with two nodes (Subject and Object) and a triple connecting them (Predicate)]
 Fig. 1 An RDF graph with two nodes (Subject and Object) and a triple connecting them (Predicate)

 There can be three kinds of nodes in an
 RDF graph: IRIs, literals,
 and blank nodes.

 1.2 Resources and Statements

 Any IRI or literal denotes
 something in the world (the "universe of discourse").
 These things are called
 resources. Anything can be a resource,
 including physical things, documents, abstract concepts, numbers
 and strings; the term is synonymous with "entity" as it is used in
 the RDF Semantics specification [RDF11-MT].
 The resource denoted by an IRI is called its referent, and the
 resource denoted by a literal is called its
 literal value. Literals have
 datatypes that define the range of possible
 values, such as strings, numbers, and dates. Special kind of literals,
 language-tagged strings, denote
 plain-text strings in a natural language.

 Asserting an RDF triple says that some relationship,
 indicated by the predicate, holds between the
 resources denoted by
 the subject and object. This statement corresponding
 to an RDF triple is known as an RDF statement.
 The predicate itself is an IRI and denotes a property,
 that is, a resource that can be thought of as a binary relation.
 (Relations that involve more than two entities can only be
 indirectly
 expressed in RDF [SWBP-N-ARYRELATIONS].)

 Unlike IRIs and literals,
 blank nodes do not identify specific
 resources. Statements
 involving blank nodes say that something with the given relationships
 exists, without explicitly naming it.

 1.3 The Referent of an IRI

 The resource denoted by an IRI
 is also called its referent. For some IRIs with particular
 meanings, such as those identifying XSD datatypes, the referent is
 fixed by this specification. For all other IRIs, what exactly is
 denoted by any given IRI is not defined by this specification. Other
 specifications may fix IRI referents, or apply other constraints on
 what may be the referent of any IRI.

 Guidelines for determining the referent of an IRI are
 provided in other documents, like
 Architecture of the World Wide Web, Volume One [WEBARCH]
 and Cool URIs for the Semantic Web [COOLURIS].
 A very brief, informal, and partial account follows:

 	By design, IRIs have global scope. Thus, two different appearances of an IRI
 denote the same resource. Violating this principle constitutes
 an IRI collision [WEBARCH].

 	By social convention, the
 IRI owner
 [WEBARCH] gets to say what the intended (or usual)
 referent of an IRI is. Applications and users need not
 abide by this intended denotation, but there may be a loss of
 interoperability with other applications and users if they do
 not do so.

 	The IRI owner can establish the intended referent
 by means of a specification or other document that explains
 what is denoted. For example, the
 Organization Ontology document [VOCAB-ORG]
 specifies the intended referents of various IRIs that start with
 http://www.w3.org/ns/org#.

 	A good way of communicating the intended referent
 is to set up the IRI so that it
 dereferences [WEBARCH]
 to such a document.

 	Such a document can, in fact, be an RDF document
 that describes the denoted resource by means of
 RDF statements.

 Perhaps the most important characteristic of IRIs
 in web architecture is that they can be
 dereferenced,
 and hence serve as starting points for interactions with a remote server.
 This specification is not concerned with such interactions.
 It does not define an interaction model. It only treats IRIs as globally
 unique identifiers in a graph data model that describes resources.
 However, those interactions are critical to the concept of
 Linked Data [LINKED-DATA],
 which makes use of the RDF data model and serialization formats.

 1.4 RDF Vocabularies and Namespace IRIs

 An RDF vocabulary is a collection of IRIs
 intended for use in RDF graphs. For example,
 the IRIs documented in [RDF11-SCHEMA] are the RDF Schema vocabulary.
 RDF Schema can itself be used to define and document additional
 RDF vocabularies. Some such vocabularies are mentioned in the
 Primer [RDF11-PRIMER].

 The IRIs in an RDF vocabulary often begin with
 a common substring known as a namespace IRI.
 Some namespace IRIs are associated by convention with a short name
 known as a namespace prefix. Some examples:

 Some example namespace prefixes and IRIs

 	Namespace prefix
 	Namespace IRI
 	RDF vocabulary

 	rdf
 	http://www.w3.org/1999/02/22-rdf-syntax-ns#
 	The RDF built-in vocabulary [RDF11-SCHEMA]

 	rdfs
 	http://www.w3.org/2000/01/rdf-schema#
 	The RDF Schema vocabulary [RDF11-SCHEMA]

 	xsd
 	http://www.w3.org/2001/XMLSchema#
 	The RDF-compatible XSD types

 In some serialization formats it is common to abbreviate IRIs
 that start with namespace IRIs by using a
 namespace prefix in order to assist readability. For example, the IRI
 http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
 would be abbreviated as rdf:XMLLiteral.
 Note however that these abbreviations are not valid IRIs,
 and must not be used in contexts where IRIs are expected.
 Namespace IRIs and namespace prefixes are not a formal part of the
 RDF data model. They are merely a syntactic convenience for
 abbreviating IRIs.

 The term “namespace” on its own does not have a
 well-defined meaning in the context of RDF, but is sometimes informally
 used to mean “namespace IRI” or “RDF vocabulary”.

 1.5 RDF and Change over Time

 The RDF data model is atemporal: RDF graphs
 are static snapshots of information.

 However, RDF graphs can express information
 about events and about temporal aspects of other entities,
 given appropriate vocabulary terms.

 Since RDF graphs are defined as mathematical
 sets, adding or removing triples from an
 RDF graph yields a different RDF graph.

 We informally use the term RDF source to refer to a
 persistent yet mutable source or container of
 RDF graphs. An RDF source is a resource
 that may be said to have a state that can change over time.
 A snapshot of the state can be expressed as an RDF graph.
 For example, any web document that has an RDF-bearing representation
 may be considered an RDF source. Like all resources, RDF sources may
 be named with IRIs and therefore described in
 other RDF graphs.

 Intuitively speaking, changes in the universe of discourse
 can be reflected in the following ways:

 	An IRI, once minted, should never
 change its intended referent. (See
 URI persistence
 [WEBARCH].)

 	Literals, by design, are constants and
 never change their value.

 	A relationship that holds between two resources
 at one time may not hold at another time.

 	RDF sources may change their state over time.
 That is, they may provide different RDF graphs
 at different times.

 	Some RDF sources may, however, be immutable
 snapshots of another RDF source, archiving its state at some
 point in time.

 1.6 Working with Multiple RDF Graphs

 As RDF graphs are sets of triples, they can be
 combined easily, supporting the use of data from
 multiple sources. Nevertheless, it is sometimes desirable to work
 with multiple RDF graphs while keeping their contents separate.
 RDF datasets support this requirement.

 An RDF dataset is a collection of
 RDF graphs. All but one of these graphs have
 an associated IRI or blank node. They are called
 named graphs, and the IRI or blank node
 is called the graph name.
 The remaining graph does not have an associated IRI, and is called
 the default graph of the RDF dataset.

 There are many possible uses for RDF datasets.
 One such use is to hold snapshots of multiple
 RDF sources.

 1.7 Equivalence, Entailment and Inconsistency

 An RDF triple encodes a statement—a
 simple logical expression, or claim about the world.
 An RDF graph is the conjunction (logical AND) of
 its triples. The precise details of this meaning of RDF triples and graphs are
 the subject of the RDF Semantics specification [RDF11-MT], which yields the
 following relationships between RDF graphs:

 	Entailment

 	An RDF graph A entails another RDF graph B
 if every possible arrangement of the world
 that makes A true also makes B true. When A
 entails B, if the truth of A is presumed or demonstrated
 then the truth of B is established.

 	Equivalence

 	Two RDF graphs A and B
 are equivalent if they make the same claim about the world.
 A is equivalent to B if and only if
 A entails B and
 B entails A.

 	Inconsistency

 	An RDF graph is inconsistent if it contains
 an internal contradiction. There is no possible arrangement
 of the world that would make the expression true.

 An entailment regime [RDF11-MT] is a specification that
 defines precise conditions that make these relationships hold.
 RDF itself recognizes only some basic cases of entailment, equivalence
 and inconsistency. Other specifications, such as
 RDF Schema [RDF11-SCHEMA]
 and OWL 2
 [OWL2-OVERVIEW], add more powerful entailment regimes,
 as do some domain-specific vocabularies.

 This specification does not constrain how implementations
 use the logical relationships defined by
 entailment regimes.
 Implementations may or may not detect
 inconsistencies, and may make all,
 some or no entailed information
 available to users.

 1.8 RDF Documents and Syntaxes

 An RDF document is a document that encodes an
 RDF graph or RDF dataset in a concrete RDF syntax,
 such as Turtle [TURTLE], RDFa [RDFA-PRIMER], JSON-LD [JSON-LD], or
 TriG [TRIG]. RDF documents enable the exchange of RDF graphs and RDF
 datasets between systems.

 A concrete RDF syntax may offer
 many different ways to encode the same RDF graph or
 RDF dataset, for example through the use of
 namespace prefixes,
 relative IRIs, blank node identifiers,
 and different ordering of statements. While these aspects can have great
 effect on the convenience of working with the RDF document,
 they are not significant for its meaning.

2. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
 and notes in this specification are non-normative. Everything else in this specification is
 normative.

 The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY,
 and OPTIONAL in this specification are to be interpreted as described in [RFC2119].

 This specification, RDF 1.1 Concepts and Abstract Syntax,
 defines a data model and related terminology for use in
 other specifications, such as
 concrete RDF syntaxes,
 API specifications, and query languages.
 Implementations cannot directly conform to
 RDF 1.1 Concepts and Abstract Syntax,
 but can conform to such other specifications that normatively
 reference terms defined here.

3. RDF Graphs

 An RDF graph is a set of
 RDF triples.

 3.1 Triples

 An RDF triple consists of three components:

 	the subject, which is an
 IRI or a blank node

 	the predicate, which is an IRI

 	the object, which is an IRI,
 a literal or a blank node

 An RDF triple is conventionally written in the order subject,
 predicate, object.

 The set of nodes of an RDF graph
 is the set of subjects and objects of triples in the graph.
 It is possible for a predicate IRI to also occur as a node in
 the same graph.

 IRIs, literals and
 blank nodes are collectively known as
 RDF terms.

 IRIs, literals
 and blank nodes are distinct and distinguishable.
 For example, http://example.org/ as a string literal
 is neither equal to http://example.org/ as an IRI,
 nor to a blank node with the blank node identifier
 http://example.org/.

 3.2 IRIs

 An IRI
 (Internationalized Resource Identifier) within an RDF graph
 is a Unicode string [UNICODE] that conforms to the syntax
 defined in RFC 3987 [RFC3987].

 IRIs in the RDF abstract syntax MUST be absolute, and MAY
 contain a fragment identifier.

 IRI equality:
 Two IRIs are equal if and only if they are equivalent
 under Simple String Comparison according to
 section 5.1
 of [RFC3987]. Further normalization MUST NOT be performed when
 comparing IRIs for equality.

 Note

 URIs and IRIs:
 IRIs are a generalization of
 URIs
 [RFC3986] that permits a wider range of Unicode characters.
 Every absolute URI and URL is an IRI, but not every IRI is an URI.
 When IRIs are used in operations that are only
 defined for URIs, they must first be converted according to
 the mapping defined in
 section 3.1
 of [RFC3987]. A notable example is retrieval over the HTTP
 protocol. The mapping involves UTF-8 encoding of non-ASCII
 characters, %-encoding of octets not allowed in URIs, and
 Punycode-encoding of domain names.

 Relative IRIs:
 Some concrete RDF syntaxes permit
 relative IRIs as a convenient shorthand
 that allows authoring of documents independently from their final
 publishing location. Relative IRIs must be
 resolved
 against a base IRI to make them absolute.
 Therefore, the RDF graph serialized in such syntaxes is well-defined only
 if a base IRI
 can be established [RFC3986].

 IRI normalization:
 Interoperability problems can be avoided by minting
 only IRIs that are normalized according to
 Section 5
 of [RFC3987]. Non-normalized forms that are best avoided
 include:

 	Uppercase characters in scheme names and domain names

 	Percent-encoding of characters where it is not
 required by IRI syntax

 	Explicitly stated HTTP default port
 (http://example.com:80/);
 http://example.com/ is preferable

 	Completely empty path in HTTP IRIs
 (http://example.com);
 http://example.com/ is preferable

 	“/./” or “/../” in the path
 component of an IRI

 	Lowercase hexadecimal letters within percent-encoding
 triplets (“%3F” is preferable over
 “%3f”)

 	Punycode-encoding of Internationalized Domain Names
 in IRIs

 	IRIs that are not in Unicode Normalization
 Form C [NFC]

 3.3 Literals

 Literals are used for values such as strings, numbers, and dates.

 A literal in an RDF graph consists of two or three
 elements:

 	a lexical form, being a Unicode [UNICODE] string,
 which SHOULD be in Normal Form C [NFC],

 	a datatype IRI, being an IRI
 identifying a datatype that determines how the lexical form maps
 to a literal value, and

 	if and only if the datatype IRI is
 http://www.w3.org/1999/02/22-rdf-syntax-ns#langString, a
 non-empty language tag as defined by [BCP47]. The
 language tag MUST be well-formed according to
 section 2.2.9
 of [BCP47].

 A literal is a language-tagged string if the third element
 is present. Lexical representations of language tags MAY be converted
 to lower case. The value space of language tags is always in lower
 case.

 Please note that concrete syntaxes MAY support
 simple literals consisting of only a
 lexical form without any datatype IRI or language tag.
 Simple literals are syntactic sugar for abstract syntax
 literals
 with the datatype IRI
 http://www.w3.org/2001/XMLSchema#string. Similarly, most
 concrete syntaxes represent
 language-tagged strings without
 the datatype IRI because it always equals
 http://www.w3.org/1999/02/22-rdf-syntax-ns#langString.

 The literal value associated with a literal is:

 	If the literal is a language-tagged string,
 then the literal value is a pair consisting of its lexical form
 and its language tag, in that order.

 	If the literal's datatype IRI is in the set of
 recognized datatype IRIs, let d be the
 referent of the datatype IRI.

 	If the literal's lexical form is in the lexical space
 of d, then the literal value is the result of applying
 the lexical-to-value mapping of d to the
 lexical form.

 	Otherwise, the literal is ill-typed and no literal value can be
 associated with the literal. Such a case produces a semantic
 inconsistency but is not syntactically ill-formed.
 Implementations MUST accept ill-typed literals and produce RDF
 graphs from them. Implementations MAY produce warnings when
 encountering ill-typed literals.

 	If the literal's datatype IRI is not in the set of
 recognized datatype IRIs, then the literal value is
 not defined by this specification.

 Literal term equality: Two literals are term-equal (the same
 RDF literal) if and only if the two lexical forms,
 the two datatype IRIs, and the two
 language tags (if any) compare equal,
 character by character. Thus, two literals can have the same value
 without being the same RDF term. For example:

 "1"^^xs:integer
 "01"^^xs:integer

 denote the same value, but are not the
 same literal RDF terms and are not
 term-equal because their
 lexical form differs.

 3.4 Blank Nodes

 Blank nodes are disjoint from
 IRIs and literals. Otherwise,
 the set of possible blank nodes is arbitrary. RDF makes no reference to
 any internal structure of blank nodes.

 Note

 Blank node identifiers
 are local identifiers that are used in some
 concrete RDF syntaxes
 or RDF store implementations.
 They are always locally scoped to the file or RDF store,
 and are not persistent or portable identifiers
 for blank nodes. Blank node identifiers are not
 part of the RDF abstract syntax, but are entirely dependent
 on the concrete syntax or implementation. The syntactic restrictions
 on blank node identifiers, if any, therefore also depend on
 the concrete RDF syntax or implementation. Implementations that handle blank node
 identifiers in concrete syntaxes need to be careful not to create the
 same blank node from multiple occurrences of the same blank node identifier
 except in situations where this is supported by the syntax.

 3.5 Replacing Blank Nodes with IRIs

 Blank nodes do not have identifiers in the RDF abstract syntax. The
 blank node identifiers introduced
 by some concrete syntaxes have only
 local scope and are purely an artifact of the serialization.

 In situations where stronger identification is needed, systems MAY
 systematically replace some or all of the blank nodes in an RDF graph
 with IRIs. Systems wishing to do this SHOULD
 mint a new, globally
 unique IRI (a Skolem IRI) for each blank node so replaced.

 This transformation does not appreciably change the meaning of an
 RDF graph, provided that the Skolem IRIs do not occur anywhere else.
 It does however permit the possibility of other graphs
 subsequently using the Skolem IRIs, which is not possible
 for blank nodes.

 Systems may wish to mint Skolem IRIs in such a way that they can
 recognize the IRIs as having been introduced solely to replace blank
 nodes. This allows a system to map IRIs back to blank nodes
 if needed.

 Systems that want Skolem IRIs to be recognizable outside of the system
 boundaries SHOULD use a well-known IRI [RFC5785] with the registered
 name genid. This is an IRI that uses the HTTP or HTTPS scheme,
 or another scheme that has been specified to use well-known IRIs; and whose
 path component starts with /.well-known/genid/.

For example, the authority responsible for the domain
 example.com could mint the following recognizable Skolem IRI:

 http://example.com/.well-known/genid/d26a2d0e98334696f4ad70a677abc1f6

 Note
RFC 5785 [RFC5785] only specifies well-known URIs,
 not IRIs. For the purpose of this document, a well-known IRI is any
 IRI that results in a well-known URI after IRI-to-URI mapping [RFC3987].

 3.6 Graph Comparison

 Two
 RDF graphs G and G' are
 isomorphic (that is, they have an identical
 form) if there is a bijection M between the sets of nodes of the two
 graphs, such that:

 	M maps blank nodes to blank nodes.

 	M(lit)=lit for all RDF literals lit which
 are nodes of G.

 	M(iri)=iri for all IRIs iri
 which are nodes of G.

 	The triple (s, p, o) is in G if and
 only if the triple (M(s), p, M(o)) is in
 G'

 See also: IRI equality, literal term equality.

 With this definition, M shows how each blank node
 in G can be replaced with
 a new blank node to give G'. Graph isomorphism
 is needed to support the RDF Test Cases [RDF11-TESTCASES] specification.

4. RDF Datasets

 An RDF dataset is a collection of
 RDF graphs, and comprises:

 	Exactly one default graph, being an RDF graph.
 The default graph does not have a name and MAY be empty.

 	Zero or more named graphs.
 Each named graph is a pair consisting of an IRI or a blank node
 (the graph name), and an RDF graph.
 Graph names are unique within an RDF dataset.

 Blank nodes can be shared between graphs
 in an RDF dataset.

 Note

 Despite the use of the word “name” in “named graph”, the
 graph name is not required to denote the graph. It is
 merely syntactically paired with the graph. RDF does not place any
 formal restrictions on what resource the graph name may denote,
 nor on the relationship between that resource and the graph.
 A discussion of different RDF dataset semantics can be found in
 [RDF11-DATASETS].

 Some RDF dataset implementations do not
 track empty named graphs. Applications
 can avoid interoperability issues by not ascribing importance to
 the presence or absence of empty named graphs.

 SPARQL 1.1 [SPARQL11-OVERVIEW] also defines the concept of an RDF
				Dataset. The definition of an RDF Dataset in SPARQL 1.1 and this
				specification differ slightly in that this specification allows RDF
				Graphs to be identified using either an IRI or a blank node. SPARQL 1.1
				Query Language only allows RDF Graphs to be identified using an IRI.
				Existing SPARQL implementations might not allow blank nodes to be used
				to identify RDF Graphs for some time, so their use can cause
				interoperability problems.
 Skolemizing blank nodes used as
 graph names can be used to overcome these interoperability problems.

 4.1 RDF Dataset Comparison

 Two RDF datasets
 (the RDF dataset D1 with default graph DG1 and any named
 graph NG1 and the RDF dataset D2 with default graph
 DG2 and any named graph NG2)
 are dataset-isomorphic if and only if
 there is a bijection M between the nodes, triples and graphs in
 D1 and those in D2 such that:

 	M maps blank nodes to blank nodes;

 	M is the identity map on literals and URIs;

 	For every triple <s p o>, M(<s, p, o>)=
 <M(s), M(p), M(o)>;

 	For every graph G={t1, ..., tn},
 M(G)={M(t1), ..., M(tn)};

 	DG2 = M(DG1); and

 	<n, G> is in NG1 if and only if
 <M(n), M(G)> is in NG2.

 4.2 Content Negotiation of RDF Datasets
This section is non-normative.

 Web resources may have multiple representations that are made available via
 content negotiation
 [WEBARCH]. A representation may be returned in an RDF serialization
 format that supports the expression of both RDF datasets and
 RDF graphs. If an RDF dataset
 is returned and the consumer is expecting an RDF graph,
 the consumer is expected to use the RDF dataset's default graph.

5. Datatypes

 Datatypes are used with RDF literals
 to represent values such as strings, numbers and dates.
 The datatype abstraction used in RDF is compatible with XML Schema
 [XMLSCHEMA11-2]. Any datatype definition that conforms
 to this abstraction MAY be used in RDF, even if not defined
 in terms of XML Schema. RDF re-uses many of the XML Schema
 built-in datatypes, and defines two additional non-normative datatypes,
 rdf:HTML and rdf:XMLLiteral.
 The list of datatypes supported by an implementation is determined
 by its recognized datatype IRIs.

 A datatype consists of a lexical space,
 a value space and a lexical-to-value mapping, and
 is denoted by one or more IRIs.

The lexical space of a datatype is a set of Unicode [UNICODE] strings.

 The lexical-to-value mapping of a datatype is a set of
 pairs whose first element belongs to the lexical space,
 and the second element belongs to the value space
 of the datatype. Each member of the lexical space is paired with exactly
 one value, and is a lexical representation
 of that value. The mapping can be seen as a function
 from the lexical space to the value space.

 Note
Language-tagged
 strings have the datatype IRI
 http://www.w3.org/1999/02/22-rdf-syntax-ns#langString.
 No datatype is formally defined for this IRI because the definition
 of datatypes does not accommodate
 language tags in the lexical space.
 The value space associated with this datatype IRI is the set
 of all pairs of strings and language tags.

 For example, the XML Schema datatype xsd:boolean,
 where each member of the value space has two lexical
 representations, is defined as follows:

 	Lexical space:

 	{“true”, “false”, “1”, “0”}

 	Value space:

 	{true, false}

 	Lexical-to-value mapping

 	{
 <“true”, true>,
 <“false”, false>,
 <“1”, true>,
 <“0”, false>,
 }

 The literals that can be defined using this
 datatype are:

 This table lists the literals of type xsd:boolean.

 	Literal
 	Value

 	<“true”, xsd:boolean>
 	true

 	<“false”, xsd:boolean>
 	false

 	<“1”, xsd:boolean>
 	true

 	<“0”, xsd:boolean>
 	false

 5.1 The XML Schema Built-in Datatypes

 IRIs of the form
 http://www.w3.org/2001/XMLSchema#xxx,
 where xxx
 is the name of a datatype, denote the built-in datatypes defined in
 XML Schema 1.1 Part 2:
 Datatypes [XMLSCHEMA11-2]. The XML Schema built-in types
 listed in the following table are the
 RDF-compatible XSD types. Their use is RECOMMENDED.

 Readers might note that the xsd:hexBinary and xsd:base64Binary
 datatypes are the only safe datatypes for transferring binary
 information.

 A list of the RDF-compatible XSD types, with short descriptions"
 		Datatype	Value space (informative)

 	Core types	xsd:string	Character strings (but not all Unicode character strings)

 	xsd:boolean	true, false

 	xsd:decimal	Arbitrary-precision decimal numbers

 	xsd:integer	Arbitrary-size integer numbers

 	IEEE floating-point
numbers
 	xsd:double	64-bit floating point numbers incl. ±Inf, ±0, NaN

 	xsd:float	32-bit floating point numbers incl. ±Inf, ±0, NaN

 	Time and date
 	xsd:date	Dates (yyyy-mm-dd) with or without timezone

 	xsd:time	Times (hh:mm:ss.sss…) with or without timezone

 	xsd:dateTime	Date and time with or without timezone

 	xsd:dateTimeStamp	Date and time with required timezone

 	Recurring and
partial dates
 	xsd:gYear	Gregorian calendar year

 	xsd:gMonth	Gregorian calendar month

 	xsd:gDay	Gregorian calendar day of the month

 	xsd:gYearMonth	Gregorian calendar year and month

 	xsd:gMonthDay	Gregorian calendar month and day

 	xsd:duration	Duration of time

 	xsd:yearMonthDuration	Duration of time (months and years only)

 	xsd:dayTimeDuration	Duration of time (days, hours, minutes, seconds only)

 	Limited-range
integer numbers
 	xsd:byte	-128…+127 (8 bit)

 	xsd:short	-32768…+32767 (16 bit)

 	xsd:int	-2147483648…+2147483647 (32 bit)

 	xsd:long	-9223372036854775808…+9223372036854775807 (64 bit)

 	xsd:unsignedByte	0…255 (8 bit)

 	xsd:unsignedShort	0…65535 (16 bit)

 	xsd:unsignedInt	0…4294967295 (32 bit)

 	xsd:unsignedLong	0…18446744073709551615 (64 bit)

 	xsd:positiveInteger	Integer numbers >0

 	xsd:nonNegativeInteger	Integer numbers ≥0

 	xsd:negativeInteger	Integer numbers <0

 	xsd:nonPositiveInteger	Integer numbers ≤0

 	Encoded binary data
 	xsd:hexBinary	Hex-encoded binary data

 	xsd:base64Binary	Base64-encoded binary data

 	Miscellaneous
XSD types
 	xsd:anyURI	Absolute or relative URIs and IRIs

 	xsd:language	Language tags per [BCP47]

 	xsd:normalizedString	Whitespace-normalized strings

 	xsd:token	Tokenized strings

 	xsd:NMTOKEN	XML NMTOKENs

 	xsd:Name	XML Names

 	xsd:NCName	XML NCNames

 The other built-in XML Schema datatypes are unsuitable
 for various reasons and SHOULD NOT be used:

 	xsd:QName
 and xsd:ENTITY
 require an enclosing XML document context.

 	xsd:ID
 and xsd:IDREF
 are for cross references within an XML document.

 	xsd:NOTATION
 is not intended for direct use.

 	xsd:IDREFS,
 xsd:ENTITIES
 and xsd:NMTOKENS
 are sequence-valued datatypes which do not fit the RDF datatype
 model.

 5.2 The rdf:HTML Datatype
This section is non-normative.

 RDF provides for HTML content as a possible literal value.
 This allows markup in literal values. Such content is indicated
 in an RDF graph using a literal whose datatype
 is set to rdf:HTML. This datatype is defined
 as non-normative because it depends on [DOM4], a specification that
 has not yet reached W3C Recommendation status.

 The rdf:HTML datatype is defined as follows:

 	The IRI denoting this datatype

 	is http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML.

 	The lexical space

 	is the set of Unicode [UNICODE] strings.

 	The value space

 	is a set of DOM
 DocumentFragment
 nodes [DOM4]. Two
 DocumentFragment
 nodes A and B are considered equal if and only if
 the DOM method
 A.isEqualNode(B)
 [DOM4] returns true.

 	The lexical-to-value mapping

 	
 Each member of the lexical space is associated with the result
 of applying the following algorithm:

 	Let domnodes be the list of DOM nodes [DOM4]
 that result from applying the
 HTML fragment parsing algorithm [HTML5]
 to the input string, without a context element.

 	Let domfrag be a DOM
 DocumentFragment [DOM4]
 whose childNodes attribute is equal to domnodes

 	Return domfrag.normalize()

 Note

 Any language annotation (lang="…") or
 XML namespaces (xmlns) desired in the HTML content
 must be included explicitly in the HTML literal. Relative URLs
 in attributes such as href do not have a well-defined
 base URL and are best avoided.
 RDF applications may use additional equivalence relations,
 such as that which relates an xsd:string with an
 rdf:HTML literal corresponding to a single text node
 of the same string.

 5.3 The rdf:XMLLiteral Datatype
This section is non-normative.

 RDF provides for XML content as a possible literal value.
 Such content is indicated in an RDF graph using a literal
 whose datatype is set to rdf:XMLLiteral.
 This datatype is defined as non-normative because it depends on [DOM4],
 a specification that has not yet reached W3C Recommendation status.

 The rdf:XMLLiteral datatype is defined as follows:

 	The IRI denoting this datatype

 	is http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral.

 	The lexical space

 	is the set of all strings which are well-balanced, self-contained
 XML content
 [XML10]; and for which embedding between an arbitrary
 XML start tag and an end tag yields a document conforming to
 XML Namespaces
 [XML-NAMES].

 	The value space

 	is a set of DOM
 DocumentFragment
 nodes [DOM4]. Two
 DocumentFragment
 nodes A and B are considered equal if and only if the DOM method
 A.isEqualNode(B)
 returns true.

 	The lexical-to-value mapping

 	
 Each member of the lexical space is associated with the result of applying the following algorithm:

 	Let domfrag be a DOM
 DocumentFragment
 node [DOM4] corresponding to the input string

 	Return domfrag.normalize()

 	The canonical mapping

 	defines a
 canonical lexical form [XMLSCHEMA11-2]
 for each member of the value space. The rdf:XMLLiteral canonical mapping is the
 exclusive XML canonicalization method
 (with comments, with empty
 InclusiveNamespaces PrefixList)
 [XML-EXC-C14N].

 Note
Any XML namespace declarations (xmlns),
 language annotation (xml:lang) or base URI declarations
 (xml:base) desired in the XML content must be included
 explicitly in the XML literal. Note that some concrete RDF syntaxes
 may define mechanisms for inheriting them from the context (e.g.,
 @parseType="literal"
 in RDF/XML [RDF11-XML]).

 5.4 Datatype IRIs

 Datatypes are identified by IRIs. If
 D is a set of IRIs which are used to refer to
 datatypes, then the elements of D are called recognized
 datatype IRIs. Recognized IRIs have fixed
 referents. If any IRI of the form
 http://www.w3.org/2001/XMLSchema#xxx is recognized, it
 MUST refer to the RDF-compatible XSD type named xsd:xxx for
 every XSD type listed in section 5.1.
 Furthermore, the following IRIs are allocated for non-normative
 datatypes:

 	The IRI http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
 refers to the datatype rdf:XMLLiteral

 	The IRI http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML
 refers to the datatype rdf:HTML

 Note
Semantic extensions of RDF might choose to
 recognize other datatype IRIs
 and require them to refer to a fixed datatype. See the RDF
 Semantics specification [RDF11-MT] for more information on
 semantic extensions.

 RDF processors are not required to recognize datatype IRIs.
 Any literal typed with an unrecognized IRI is treated just like
 an unknown IRI, i.e. as referring to an unknown thing. Applications
 MAY give a warning message if they are unable to determine the
 referent of an IRI used in a typed literal, but they SHOULD NOT
 reject such RDF as either a syntactic or semantic error.

Other specifications MAY impose additional constraints on
 datatype IRIs, for example, require support
 for certain datatypes.

 Note
The Web Ontology Language
 [OWL2-OVERVIEW] offers facilities for formally defining
 custom
 datatypes that can be used with RDF. Furthermore, a practice for
 identifying

 user-defined simple XML Schema datatypes
 is suggested in [SWBP-XSCH-DATATYPES]. RDF implementations
 are not required to support either of these facilities.

6. Fragment Identifiers
This section is non-normative.

 RDF uses IRIs, which may include
 fragment identifiers, as resource identifiers.
 The semantics of fragment identifiers is
 defined in
 RFC 3986 [RFC3986]: They identify a secondary resource
 that is usually a part of, view of, defined in, or described in
 the primary resource, and the precise semantics depend on the set
 of representations that might result from a retrieval action
 on the primary resource.

 This section discusses the handling of fragment identifiers
 in representations that encode RDF graphs.

 In RDF-bearing representations of a primary resource
 <foo>,
 the secondary resource identified by a fragment bar
 is the resource denoted by the
 full IRI <foo#bar> in the RDF graph.
 Since IRIs in RDF graphs can denote anything, this can be
 something external to the representation, or even external
 to the web.

 In this way, the RDF-bearing representation acts as an intermediary
 between the web-accessible primary resource, and some set of possibly
 non-web or abstract entities that the RDF graph may describe.

 In cases where other specifications constrain the semantics of
 fragment identifiers in RDF-bearing representations, the encoded
 RDF graph should use fragment identifiers in a way that is consistent
 with these constraints. For example, in an HTML+RDFa document [HTML-RDFA],
 the fragment chapter1 may identify a document section
 via the semantics of HTML's @name or @id
 attributes. The IRI <#chapter1> should
 then be taken to denote that same section in any RDFa-encoded
 triples within the same document.
 Similarly, fragment identifiers should be used consistently in resources
 with multiple representations that are made available via
 content negotiation
 [WEBARCH]. For example, if the fragment chapter1 identifies a
 document section in an HTML representation of the primary resource, then the
 IRI <#chapter1> should be taken to
 denote that same section in all RDF-bearing representations of the
 same primary resource.

7. Generalized RDF Triples, Graphs, and Datasets
This section is non-normative.

 It is sometimes convenient to loosen the requirements
 on RDF triples. For example, the completeness
 of the RDFS entailment rules is easier to show with a
 generalization of RDF triples.

 A generalized RDF
 triple is a triple having a subject, a predicate,
 and object, where each can be an IRI, a
 blank node or a
 literal. A
 generalized RDF graph
 is a set of generalized RDF triples. A
 generalized RDF dataset
 comprises a distinguished generalized RDF graph, and zero
 or more pairs each associating an IRI, a blank node or a literal
 to a generalized RDF graph.

 Generalized RDF triples, graphs, and datasets differ
 from normative RDF triples,
 graphs, and
 datasets only
 by allowing IRIs,
 blank nodes and
 literals to appear
 in any position, i.e., as subject, predicate, object or graph names.

 Note
 Any users of
 generalized RDF triples, graphs or datasets need to be
 aware that these notions are non-standard extensions of
 RDF and their use may cause interoperability problems.
 There is no requirement on the part of any RDF tool to
 accept, process, or produce anything beyond standard RDF
 triples, graphs, and datasets.

8. Acknowledgments
This section is non-normative.

 The editors acknowledge valuable contributions from Thomas Baker,
 Tim Berners-Lee, David Booth, Dan Brickley, Gavin Carothers, Jeremy Carroll,
 Pierre-Antoine Champin, Dan Connolly, John Cowan, Martin J. Dürst,
 Alex Hall, Steve Harris, Sandro Hawke, Pat Hayes, Ivan Herman, Peter F. Patel-Schneider,
 Addison Phillips, Eric Prud'hommeaux, Nathan Rixham, Andy Seaborne, Leif Halvard Silli,
 Guus Schreiber, Dominik Tomaszuk, and Antoine Zimmermann.

 The membership of the RDF Working Group included Thomas Baker,
 Scott Bauer, Dan Brickley, Gavin Carothers, Pierre-Antoine Champin,
 Olivier Corby, Richard Cyganiak, Souripriya Das, Ian Davis, Lee Feigenbaum,
 Fabien Gandon, Charles Greer, Alex Hall, Steve Harris, Sandro Hawke,
 Pat Hayes, Ivan Herman, Nicholas Humfrey, Kingsley Idehen, Gregg Kellogg,
 Markus Lanthaler, Arnaud Le Hors, Peter F. Patel-Schneider,
 Eric Prud'hommeaux, Yves Raimond, Nathan Rixham, Guus Schreiber,
 Andy Seaborne, Manu Sporny, Thomas Steiner, Ted Thibodeau, Mischa Tuffield,
 William Waites, Jan Wielemaker, David Wood, Zhe Wu, and Antoine Zimmermann.

A. Changes between RDF 1.0 and RDF 1.1
This section is non-normative.

 A detailed overview of the differences between RDF versions 1.0
 and 1.1 can be found in
 What’s New in RDF 1.1 [RDF11-NEW].

B. References
B.1 Normative references
	[BCP47]
	A. Phillips; M. Davis. Tags for Identifying Languages. September 2009. IETF Best Current Practice. URL: http://tools.ietf.org/html/bcp47

	[NFC]
	M. Davis, Ken Whistler. TR15, Unicode Normalization Forms.. 17 September 2010, URL: http://www.unicode.org/reports/tr15/

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

	[RFC3987]
	M. Dürst; M. Suignard. Internationalized Resource Identifiers (IRIs). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3987.txt

	[UNICODE]
	The Unicode Standard. URL: http://www.unicode.org/versions/latest/

	[XMLSCHEMA11-2]
	David Peterson; Sandy Gao; Ashok Malhotra; Michael Sperberg-McQueen; Henry Thompson; Paul V. Biron et al. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. 5 April 2012. W3C Recommendation. URL: http://www.w3.org/TR/xmlschema11-2/

B.2 Informative references
	[COOLURIS]
	Leo Sauermann; Richard Cyganiak. Cool URIs for the Semantic Web. 3 December 2008. W3C Note. URL: http://www.w3.org/TR/cooluris

	[DOM4]
	Anne van Kesteren; Aryeh Gregor; Ms2ger; Alex Russell; Robin Berjon. W3C DOM4. 4 February 2014. W3C Last Call Working Draft. URL: http://www.w3.org/TR/dom/

	[HTML-RDFA]
	Manu Sporny. HTML+RDFa 1.1. 22 August 2013. W3C Recommendation. URL: http://www.w3.org/TR/html-rdfa/

	[HTML5]
	Robin Berjon; Steve Faulkner; Travis Leithead; Erika Doyle Navara; Edward O'Connor; Silvia Pfeiffer. HTML5. 4 February 2014. W3C Candidate Recommendation. URL: http://www.w3.org/TR/html5/

	[JSON-LD]
	Manu Sporny, Gregg Kellogg, Markus Lanthaler, Editors. JSON-LD 1.0. 16 January 2014. W3C Recommendation. URL: http://www.w3.org/TR/json-ld/

	[LINKED-DATA]
	Tim Berners-Lee. Linked Data. Personal View, imperfect but published. URL: http://www.w3.org/DesignIssues/LinkedData.html

	[OWL2-OVERVIEW]
	W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview (Second Edition). 11 December 2012. W3C Recommendation. URL: http://www.w3.org/TR/owl2-overview/

	[RDF11-DATASETS]
	Antoine Zimmermann. RDF 1.1: On Semantics of RDF Datasets. W3C Working Group Note, 25 February 2014. The latest version is available at http://www.w3.org/TR/rdf11-datasets/.

	[RDF11-MT]
	Patrick J. Hayes, Peter F. Patel-Schneider. RDF 1.1 Semantics. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-mt/

	[RDF11-NEW]
	David Wood. What’s New in RDF 1.1. W3C Working Group Note, 25 February 2014. The latest version is available at http://www.w3.org/TR/rdf11-new/.

	[RDF11-PRIMER]
	Guus Schreiber, Yves Raimond. RDF 1.1 Primer. W3C Working Group Note, 25 February 2014. The latest version is available at http://www.w3.org/TR/rdf11-primer/.

	[RDF11-SCHEMA]
	Dan Brickley, R. V. Guha. RDF Schema 1.1. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf-schema-20140225/. The latest published version is available at http://www.w3.org/TR/rdf-schema/.

	[RDF11-TESTCASES]
	Gregg Kellogg, Markus Lanthaler. RDF 1.1 Test Cases. W3C Working Group Note, 25 February 2014. The latest published version is available at http://www.w3.org/TR/rdf11-testcases/.

	[RDF11-XML]
	Fabien Gandon, Guus Schreiber. RDF 1.1 XML Syntax. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/. The latest published version is available at http://www.w3.org/TR/rdf-syntax-grammar/.

	[RDFA-PRIMER]
	Ivan Herman; Ben Adida; Manu Sporny; Mark Birbeck. RDFa 1.1 Primer - Second Edition. 22 August 2013. W3C Note. URL: http://www.w3.org/TR/rdfa-primer/

	[RFC3986]
	T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax (RFC 3986). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3986.txt

	[RFC5785]
	Mark Nottingham; Eran Hammer-Lahav. Defining Well-Known Uniform Resource Identifiers (URIs) (RFC 5785). April 2010. RFC. URL: http://www.rfc-editor.org/rfc/rfc5785.txt

	[SPARQL11-OVERVIEW]
	The W3C SPARQL Working Group. SPARQL 1.1 Overview. 21 March 2013. W3C Recommendation. URL: http://www.w3.org/TR/sparql11-overview/

	[SWBP-N-ARYRELATIONS]
	Natasha Noy; Alan Rector. Defining N-ary Relations on the Semantic Web. 12 April 2006. W3C Note. URL: http://www.w3.org/TR/swbp-n-aryRelations

	[SWBP-XSCH-DATATYPES]
	Jeremy Carroll; Jeff Pan. XML Schema Datatypes in RDF and OWL. 14 March 2006. W3C Note. URL: http://www.w3.org/TR/swbp-xsch-datatypes

	[TRIG]
	Gavin Carothers, Andy Seaborne. TriG: RDF Dataset Language. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-trig-20140225/. The latest edition is available at http://www.w3.org/TR/trig/

	[TURTLE]
	Eric Prud'hommeaux, Gavin Carothers. RDF 1.1 Turtle: Terse RDF Triple Language. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-turtle-20140225/. The latest edition is available at http://www.w3.org/TR/turtle/

	[VOCAB-ORG]
	Dave Reynolds. The Organization Ontology. 16 January 2014. W3C Recommendation. URL: http://www.w3.org/TR/vocab-org/

	[WEBARCH]
	Ian Jacobs; Norman Walsh. Architecture of the World Wide Web, Volume One. 15 December 2004. W3C Recommendation. URL: http://www.w3.org/TR/webarch/

	[XML-EXC-C14N]
	John Boyer; Donald Eastlake; Joseph Reagle. Exclusive XML Canonicalization Version 1.0. 18 July 2002. W3C Recommendation. URL: http://www.w3.org/TR/xml-exc-c14n

	[XML-NAMES]
	Tim Bray; Dave Hollander; Andrew Layman; Richard Tobin; Henry Thompson et al. Namespaces in XML 1.0 (Third Edition). 8 December 2009. W3C Recommendation. URL: http://www.w3.org/TR/xml-names

	[XML10]
	Tim Bray; Jean Paoli; Michael Sperberg-McQueen; Eve Maler; François Yergeau et al. Extensible Markup Language (XML) 1.0 (Fifth Edition). 26 November 2008. W3C Recommendation. URL: http://www.w3.org/TR/xml

 [image: W3C]

 RDF Schema 1.1

 W3C Recommendation 25 February 2014

 	This version:

 	http://www.w3.org/TR/2014/REC-rdf-schema-20140225/

 	Latest published version:

 	http://www.w3.org/TR/rdf-schema/

 	Previous version:

 	http://www.w3.org/TR/2014/PER-rdf-schema-20140109/

 	Editors:

 	Dan Brickley, Google

	R.V. Guha, Google

 	Previous Editors:

 	

 Brian McBride

 Please check the errata for any errors or issues
 reported since publication.

 This document is also available in this non-normative format:

 diff w.r.t. 2004 Recommendation

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2004-2014

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang),

 All Rights Reserved.

 W3C liability,
 trademark and

 document use

 rules apply.

 Abstract

 RDF
 Schema provides a data-modelling vocabulary for RDF data. RDF Schema
 is an extension of the basic RDF vocabulary.

 Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

 This document is an edited version of the 2004 RDF
 Schema Recommendation. The purpose of this revision is to make this
 document available as part of the RDF 1.1 document set. Changes are
 limited to errata, revised references, terminology updates, and adaptations to
 the introduction. The title of the document was changed from "RDF
 Vocabulary Description Language 1.0: RDF Schema" to "RDF Schema 1.1".
 The technical content of the document is unchanged. Details of the changes
 are listed in the Changes section.
 Since the edits to this document do not constitute a technical
 change the Director decided no new implementation report was
 required.

 This document was published by the RDF Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdf-comments@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 This document has been reviewed by W3C Members, by software developers, and by other W3C
 groups and interested parties, and is endorsed by the Director as a W3C Recommendation.
 It is a stable document and may be used as reference material or cited from another
 document. W3C's role in making the Recommendation is to draw attention to the
 specification and to promote its widespread deployment. This enhances the functionality
 and interoperability of the Web.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction
	2. Classes	2.1 rdfs:Resource
	2.2 rdfs:Class
	2.3 rdfs:Literal
	2.4 rdfs:Datatype
	2.5 rdf:langString
	2.6 rdf:HTML
	2.7 rdf:XMLLiteral
	2.8 rdf:Property

	3. Properties	3.1 rdfs:range
	3.2 rdfs:domain
	3.3 rdf:type
	3.4 rdfs:subClassOf
	3.5 rdfs:subPropertyOf
	3.6 rdfs:label
	3.7 rdfs:comment

	4. Using the Domain and Range vocabulary
	5. Other vocabulary	5.1 Container Classes and Properties	5.1.1 rdfs:Container
	5.1.2 rdf:Bag
	5.1.3 rdf:Seq
	5.1.4 rdf:Alt
	5.1.5 rdfs:ContainerMembershipProperty
	5.1.6 rdfs:member

	5.2 RDF Collections	5.2.1 rdf:List
	5.2.2 rdf:first
	5.2.3 rdf:rest
	5.2.4 rdf:nil

	5.3 Reification Vocabulary	5.3.1 rdf:Statement
	5.3.2 rdf:subject
	5.3.3 rdf:predicate
	5.3.4 rdf:object

	5.4 Utility Properties	5.4.1 rdfs:seeAlso
	5.4.2 rdfs:isDefinedBy
	5.4.3 rdf:value

	6. RDF Schema summary	6.1 RDF classes
	6.2 RDF properties

	A. Acknowledgments
	B. Change since 2004 Recommendation
	C. References	C.1 Normative references
	C.2 Informative references

1. Introduction

 RDF Schema provides a data-modelling vocabulary for RDF data.
 It is complemented by several companion documents which
 describe the basic concepts and abstract syntax of RDF
 [RDF11-CONCEPTS], the formal semantics of RDF [RDF11-MT], and
 various concrete syntaxes for RDF, such as Turtle [TURTLE],
 TriG, [TRIG], and JSON-LD [JSON-LD]. The RDF Primer
 [RDF11-PRIMER] provides an informal introduction and
 examples of the use of the concepts specified in this document.

 This document is intended to provide a clear specification of RDF
 Schema to those who find the formal semantics
 specification [RDF11-MT]
 daunting. Thus, this document duplicates material also specified in the
 RDF
 Semantics specification. Where there is disagreement between this
 document
 and the RDF Semantics specification, the RDF Semantics specification
 should
 be taken to be correct.

 RDF Schema is a semantic
 extension of RDF. It provides mechanisms for describing groups of
 related resources and the relationships between these resources. RDF
 Schema is written in RDF
 using the terms described in this document. These resources are used to
 determine characteristics of other resources, such as the domains
 and ranges of properties.

 The RDF Schema class and property system is similar to the type
 systems of object-oriented programming languages such as Java. RDF
 Schema differs from many such systems in that instead of defining a
 class in
 terms of the properties its instances may have, RDF Schema
 describes properties in terms of the classes of
 resource to which they apply. This is the role of the domain
 and range
 mechanisms described in this specification. For example, we could
 define the eg:author property to have a domain of eg:Document
 and a range of
 eg:Person, whereas a classical object oriented system might
 typically define a class eg:Book with an attribute called
 eg:author of type eg:Person. Using the RDF
 approach, it is easy for others to subsequently define additional
 properties with a domain of eg:Document or a range of
 eg:Person. This can be done without the need to re-define
 the original description of
 these classes. One benefit of the RDF property-centric approach is that
 it
 allows anyone to extend the description of existing resources, one of
 the
 architectural principles of the Web [BERNERS-LEE98].

 This specification does not attempt to enumerate all the possible forms
 of
 representing the meaning of RDF
 classes and properties. Instead, the RDF Schema strategy is
 to acknowledge that there are many techniques through which the meaning
 of
 classes and properties can be described. Richer vocabulary or 'ontology'
 languages such as OWL [OWL2-OVERVIEW], inference rule
 languages and other formalisms (for example temporal logics) will each
 contribute to our ability to capture meaningful generalizations about
 data in
 the Web.

 The language defined in this specification consists of a collection of
 RDF resources that can be used to describe other RDF resources in
 application-specific RDF vocabularies. The core vocabulary is defined in
 a namespace informally called rdfs here. That namespace is
 identified by the IRI

 http://www.w3.org/2000/01/rdf-schema#

 and is conventionally associated with the prefix rdfs:. This
 specification also uses the prefix
 rdf: to refer to the RDF namespace

 http://www.w3.org/1999/02/22-rdf-syntax-ns#

 For convenience and readability, this specification uses an abbreviated
 form to represent IRIs. A name of the form prefix:suffix should be
 interpreted as a IRI consisting of the IRI associated
 with the prefix concatenated with the suffix.

2. Classes

 Resources may be divided into groups called classes. The members of a
 class are known as instances of the class. Classes are
 themselves
 resources. They are often identified by IRIs
 and
 may be described using RDF properties. The rdf:type
 property may be used to state that a
 resource is an instance of a class.

 RDF distinguishes between a class and the set of its instances.
 Associated
 with each class is a set, called the class extension of the class, which
 is
 the set of the instances of the class. Two classes may have the same set
 of
 instances but be different classes. For example, the tax office may
 define
 the class of people living at the same address as the editor of this
 document. The Post Office may define the class of people whose address
 has
 the same zip code as the address of the author. It is possible for these
 classes to have exactly the same instances, yet to have different
 properties.
 Only one of the classes has the property that it was defined by the tax
 office, and only the other has the property that it was defined by the
 Post
 Office.

 A class may be a member of its own class extension and may be an
 instance of itself.

 The group of resources that are RDF Schema classes is itself a class
 called rdfs:Class.

 If a class C is a subclass of a class C', then all instances
 of C will
 also be instances of C'. The rdfs:subClassOf
 property may be used to state that one class is a subclass of another.
 The term super-class is used as the inverse of subclass. If a class C'
 is a super-class of a class C, then all instances of C are also
 instances of C'.

 The RDF Concepts and Abstract Syntax [RDF11-CONCEPTS] specification
 defines the RDF concept of an RDF
 datatype. All datatypes are classes. The instances of a class that
 is a
 datatype are the members of the value space of the datatype.

 2.1 rdfs:Resource

 All things described by RDF are called resources, and are
 instances of the class rdfs:Resource. This is the class
 of
 everything. All other classes are subclasses
 of
 this class. rdfs:Resource is an instance of rdfs:Class.

 2.2 rdfs:Class

 This is the class of resources that are RDF classes.
 rdfs:Class is an instance of rdfs:Class.

 2.3 rdfs:Literal

 The class rdfs:Literal is the class of literal
 values such as strings and integers. Property values such as textual
 strings are examples of RDF literals.

 rdfs:Literal is an instance of rdfs:Class.
 rdfs:Literal is a subclass of rdfs:Resource.

 2.4 rdfs:Datatype

 rdfs:Datatype is the class of datatypes. All instances
 of
 rdfs:Datatype correspond to the RDF
model
 of a datatype described in the RDF Concepts specification
 [RDF11-CONCEPTS].
 rdfs:Datatype is
 both an instance of and a subclass of rdfs:Class. Each instance of rdfs:Datatype
 is a subclass of rdfs:Literal.

 2.5 rdf:langString

 The class rdf:langString is the class of language-tagged
 string values. rdf:langString is an instance of
 rdfs:Datatype and a subclass
 of rdfs:Literal.

 2.6 rdf:HTML
This section is non-normative.

 The class rdf:HTML is the class of HTML
literal
 values. rdf:HTML is an instance of
 rdfs:Datatype and a subclass
 of rdfs:Literal.

 2.7 rdf:XMLLiteral
This section is non-normative.

 The class rdf:XMLLiteral is the class of XML
literal
 values. rdf:XMLLiteral is an instance of
 rdfs:Datatype and a subclass
 of rdfs:Literal.

 2.8 rdf:Property

 rdf:Property is the class of RDF properties.
 rdf:Property is an instance of rdfs:Class.

3. Properties

 The RDF Concepts and Abstract Syntax specification [RDF11-CONCEPTS]
 describes the concept of an RDF property as a relation between subject
 resources and object resources.

 This specification defines the concept of subproperty. The rdfs:subPropertyOf
 property may be used to state that one property is a subproperty of
 another.
 If a property P is a subproperty of property P', then all pairs of
 resources which are related by P are also related by P'. The term
 super-property is often
 used as the inverse of subproperty. If a property P' is a super-property
 of a property P, then all pairs of resources which are related by P are
 also related by P'. This specification does not define a top
 property that is the super-property of all properties.

 Note

 The basic facilities provided by rdfs:domain
 and rdfs:range do not provide any
 direct way to indicate property restrictions that are local to a class.
 Although it is possible to combine use rdfs:domain
 and rdfs:range with sub-property
 hierarchies, direct support for such declarations are provided by richer
 Web Ontology languages such as OWL [OWL2-OVERVIEW].

 3.1 rdfs:range

 rdfs:range is an instance of rdf:Property
 that is used to state that
 the values of a property are instances of one or more classes.

 The triple

 P rdfs:range C

 states that P is an instance of the class rdf:Property,
 that C is an instance of the class rdfs:Class
 and that the resources denoted by the objects of triples whose
 predicate is P are instances of the class C.

 Where P has more than one rdfs:range property, then the resources
 denoted by the objects of triples with predicate P are instances of
 all the classes stated by the rdfs:range properties.

 The rdfs:range property can be applied to itself. The
 rdfs:range of rdfs:range is the class rdfs:Class.
 This states that any resource
 that is the value of an rdfs:range property is an
 instance of rdfs:Class.

 The rdfs:range property is applied to properties. This
 can be represented in RDF using the rdfs:domain
 property. The rdfs:domain of rdfs:range
 is
 the class rdf:Property. This
 states
 that any resource with an rdfs:range property is an
 instance of
 rdf:Property.

 3.2 rdfs:domain

 rdfs:domain is an instance of rdf:Property
 that is used to state that
 any resource that has a given property is an instance of one or more
 classes.

 A triple of the form:

 P rdfs:domain C

 states that P is an instance of the class rdf:Property,
 that C is a instance of the class rdfs:Class
 and that the resources denoted by the subjects of triples whose
 predicate is P are instances of the class C.

 Where a property P has more than one rdfs:domain property, then the
 resources denoted by subjects of triples with predicate P are
 instances of all the classes stated by the rdfs:domain
 properties.

 The rdfs:domain property may be applied to itself. The
 rdfs:domain of rdfs:domain is the class rdf:Property.
 This states that any
 resource with an rdfs:domain property is an instance of
 rdf:Property.

 The rdfs:range of
 rdfs:domain is the class rdfs:Class.
 This states that any resource that is the value of an rdfs:domain
 property is an
 instance of rdfs:Class.

 3.3 rdf:type

 rdf:type is an instance of rdf:Property
 that is used to
 state that a resource is an instance of a class.

 A triple of the form:

 R rdf:type C

 states that C is an instance of rdfs:Class
 and R is an instance of C.

 The rdfs:domain of
 rdf:type is rdfs:Resource.
 The rdfs:range of rdf:type is rdfs:Class.

 3.4 rdfs:subClassOf

 The property rdfs:subClassOf is an instance of rdf:Property that is used to state
 that all the instances of one class are instances of another.

 A triple of the form:

 C1 rdfs:subClassOf C2

 states that C1 is an instance of rdfs:Class,
 C2 is an instance of rdfs:Class
 and C1 is a subclass of C2. The rdfs:subClassOf
 property is transitive.

 The rdfs:domain of
 rdfs:subClassOf is rdfs:Class.
 The rdfs:range of rdfs:subClassOf
 is rdfs:Class.

 3.5 rdfs:subPropertyOf

 The property rdfs:subPropertyOf is an instance of rdf:Property that is used to state
 that all resources related by one property are also related by
 another.

 A triple of the form:

 P1 rdfs:subPropertyOf P2

 states that P1 is an instance of rdf:Property,
 P2 is an instance of rdf:Property
 and P1 is a subproperty of P2. The
 rdfs:subPropertyOf property is transitive.

 The rdfs:domain of
 rdfs:subPropertyOf is rdf:Property.
 The rdfs:range of
 rdfs:subPropertyOf is rdf:Property.

 3.6 rdfs:label

 rdfs:label is an instance of rdf:Property
 that may be used to provide a human-readable version of a resource's
 name.

 A triple of the form:

 R rdfs:label L

 states that L is a human readable label for R.

 The rdfs:domain of
 rdfs:label is rdfs:Resource.
 The rdfs:range of rdfs:label is
 rdfs:Literal.

 Multilingual labels are supported using the language
 tagging facility of RDF literals.

 3.7 rdfs:comment

 rdfs:comment is an instance of rdf:Property
 that may be used to provide a human-readable description of a
 resource.

 A triple of the form:

 R rdfs:comment L

 states that L is a human readable description of R.

 The rdfs:domain of
 rdfs:comment is rdfs:Resource.
 The rdfs:range of rdfs:comment
 is rdfs:Literal.

 A textual comment helps clarify the meaning of RDF classes and
 properties.
 Such in-line documentation complements the use of both formal
 techniques
 (Ontology and rule languages) and informal (prose documentation,
 examples,
 test cases). A variety of documentation forms can be combined to
 indicate the
 intended meaning of the classes and properties described in an RDF
 vocabulary. Since RDF vocabularies are expressed as RDF graphs,
 vocabularies
 defined in other namespaces may be used to provide richer
 documentation.

 Multilingual documentation is supported through use of the language
 tagging facility of RDF literals.

4. Using the Domain and Range vocabulary
This section is non-normative.

 This specification introduces an RDF vocabulary for describing the
 meaningful use of properties and classes in RDF data. For example, an
 RDF
 vocabulary might describe limitations on the types of values that are
 appropriate for some property, or on the classes to which it makes sense
 to
 ascribe such properties.

 RDF Schema provides a mechanism for describing this information, but
 does not say whether or how an application should use it. For example,
 while an RDF vocabulary can assert that an author property
 is used to
 indicate resources that are instances of the class Person,
 it
 does not say whether or how an application should act in processing that
 range information. Different applications will use this information in
 different ways. For example, data checking tools might use this to help
 discover errors in some data set, an interactive editor might suggest
 appropriate values, and a reasoning application might use it to infer
 additional information from instance data.

 RDF vocabularies can describe relationships between vocabulary items
 from
 multiple independently developed vocabularies. Since IRIs are used
 to identify classes and properties on the Web, it is possible to create
 new
 properties that have a domain or range whose
 value
 is a class defined in another namespace.

5. Other vocabulary

 Additional classes and properties, including constructs for
 representing
 containers and RDF statements, and for deploying RDF vocabulary
 descriptions
 in the World Wide Web, are defined in this section.

 5.1 Container Classes and Properties
This section is non-normative.

 RDF containers are resources that are used to represent collections.
 The same resource may appear in a container more than
 once. Unlike containment in the physical world, a container may be
 contained in itself.

 Three different kinds of container are defined. Whilst the formal
 semantics [RDF11-MT] of all three classes of container are
 identical,
 different classes may be used to indicate informally further
 information. An rdf:Bag is used to indicate that the container is
 intended to be unordered. An rdf:Seq is used to indicate that the
 order indicated by the numerical order of the container
 membership properties
 of the container is intended to be significant. An rdf:Alt container
 is used
 to indicate that typical processing of the container will be to select
 one of
 the members.

 Just as a hen house may have the property that it is made of wood,
 that
 does not mean that all the hens it contains are made of wood, a
 property of a
 container is not necessarily a property of all of its members.

 RDF containers are defined by the following classes and properties.

 5.1.1 rdfs:Container

 The rdfs:Container class is a super-class of the RDF
 Container classes, i.e. rdf:Bag,
 rdf:Seq, rdf:Alt.

 5.1.2 rdf:Bag

 The rdf:Bag class is the class of RDF 'Bag'
 containers. It is
 a subclass of rdfs:Container.
 Whilst formally it is no
 different from an rdf:Seq or an
 rdf:Alt, the rdf:Bag
 class is used
 conventionally to indicate to a human reader that the container is
 intended
 to be unordered.

 5.1.3 rdf:Seq

 The rdf:Seq class is the class of RDF 'Sequence'
 containers.
 It is a subclass of rdfs:Container.
 Whilst formally it is no
 different from an rdf:Bag or an
 rdf:Alt, the rdf:Seq
 class is used
 conventionally to indicate to a human reader that the numerical
 ordering of
 the container membership
 properties of the container is intended to be significant.

 5.1.4 rdf:Alt

 The rdf:Alt class is the class of RDF 'Alternative'
 containers. It is a subclass of rdfs:Container. Whilst formally
 it is no
 different from an rdf:Seq or an
 rdf:Bag, the rdf:Alt
 class is used
 conventionally to indicate to a human reader that typical processing
 will be
 to select one of the members of the container. The first member of
 the
 container, i.e. the value of the rdf:_1
 property, is the
 default choice.

 5.1.5 rdfs:ContainerMembershipProperty

 The rdfs:ContainerMembershipProperty class has as
 instances
 the properties rdf:_1, rdf:_2, rdf:_3 ... that are
 used to state
 that a resource is a member of a container.
 rdfs:ContainerMembershipProperty is a subclass
 of rdf:Property. Each
 instance of
 rdfs:ContainerMembershipProperty is an rdfs:subPropertyOf
 the rdfs:member property.

 Given a container C, a triple of the form:

 C rdf:_nnn O

 where nnn is the decimal representation of an integer
 greater than 0 with
 no leading zeros, states that O is a member of the container C.

 Container membership properties may be applied to resources other
 than containers.

 5.1.6 rdfs:member

 rdfs:member is an instance of rdf:Property
 that is a super-property of all
 the container membership properties i.e. each container membership
 property
 has an rdfs:subPropertyOf
 relationship to the property rdfs:member.

 The rdfs:domain of
 rdfs:member is rdfs:Resource.
 The rdfs:range of rdfs:member
 is
 rdfs:Resource.

 5.2 RDF Collections
This section is non-normative.

 RDF containers are open in the sense that the core RDF specifications
 define no mechanism to state that there are no more members. The RDF
 Collection vocabulary of classes and properties can describe a closed
 collection, i.e. one that can have no more members.

 A collection is represented as a list of items, a representation that
 will be familiar to those with experience of Lisp and similar
 programming languages. There is a shorthand
 notation in the Turtle syntax specification for representing
 collections.

 Note

 RDFS does not require that there be only one first element of a
 list-like structure, or even that a list-like structure have a first
 element.

 5.2.1 rdf:List

 rdf:List is an instance of rdfs:Class
 that can be used to build descriptions of lists and other list-like
 structures.

 5.2.2 rdf:first

 rdf:first is an instance of rdf:Property
 that can be used to build descriptions of lists and other list-like
 structures.

 A triple of the form:

 L rdf:first O

 states that there is a first-element relationship between L and O.

 The rdfs:domain of rdf:first
 is rdf:List. The rdfs:range
 of rdf:first is rdfs:Resource.

 5.2.3 rdf:rest

 rdf:rest is an instance of rdf:Property
 that can be used to build descriptions of lists and other list-like
 structures.

 A triple of the form:

 L rdf:rest O

 states that there is a rest-of-list relationship between L and O.

 The rdfs:domain of rdf:rest
 is rdf:List. The rdfs:range
 of rdf:rest is rdf:List.

 5.2.4 rdf:nil

 The resource rdf:nil is an instance of rdf:List
 that can be used to represent an empty list or other list-like
 structure.

 A triple of the form:

 L rdf:rest rdf:nil

 states that L is an instance of rdf:List
 that has one item; that item can be indicated using the rdf:first
 property.

 5.3 Reification Vocabulary
This section is non-normative.

 5.3.1 rdf:Statement

 rdf:Statement is an instance of rdfs:Class.
 It is intended to represent the class of RDF statements. An RDF
 statement is the statement made by a token of an RDF triple. The
 subject of an RDF statement is the instance of rdfs:Resource
 identified by the subject of the triple. The predicate of an RDF
 statement is the instance of rdf:Property
 identified by the predicate of the triple. The object of an RDF
 statement is the instance of rdfs:Resource
 identified by the object of the triple.
 rdf:Statement is in the domain of the properties rdf:predicate, rdf:subject
 and rdf:object. Different
 individual rdf:Statement instances may have the same
 values for their rdf:predicate,
 rdf:subject
 and rdf:object properties.

 5.3.2 rdf:subject

 rdf:subject is an instance of rdf:Property
 that is used to state the
 subject of a statement.

 A triple of the form:

 S rdf:subject R

 states that S is an instance of rdf:Statement
 and that the subject of S is
 R.

 The rdfs:domain
 of rdf:subject is
 rdf:Statement. The rdfs:range
 of rdf:subject is
 rdfs:Resource.

 5.3.3 rdf:predicate

 rdf:predicate is an instance of rdf:Property
 that is used to state the
 predicate of a statement.

 A triple of the form:

 S rdf:predicate P

 states that S is an instance of rdf:Statement,
 that P is an instance of
 rdf:Property and that the
 predicate
 of S is P.

 The rdfs:domain of
 rdf:predicate is rdf:Statement
 and the rdfs:range is rdfs:Resource.

 5.3.4 rdf:object

 rdf:object is an instance of rdf:Property
 that is used to state the
 object of a statement.

 A triple of the form:

 S rdf:object O

 states that S is an instance of rdf:Statement
 and that the object of S is
 O.

 The rdfs:domain of
 rdf:object is rdf:Statement.
 The rdfs:range of rdf:object
 is
 rdfs:Resource.

 5.4 Utility Properties

 The following utility classes and properties are defined in the RDF
 core
 namespaces.

 5.4.1 rdfs:seeAlso

 rdfs:seeAlso is an instance of rdf:Property
 that is used to indicate a
 resource that might provide additional information about the subject
 resource.

 A triple of the form:

 S rdfs:seeAlso O

 states that the resource O may provide additional information about
 S. It
 may be possible to retrieve representations of O from the Web, but
 this is
 not required. When such representations may be retrieved, no
 constraints are
 placed on the format of those representations.

 The rdfs:domain of
 rdfs:seeAlso is rdfs:Resource.
 The rdfs:range of rdfs:seeAlso
 is
 rdfs:Resource.

 5.4.2 rdfs:isDefinedBy

 rdfs:isDefinedBy is an instance of rdf:Property
 that is used to indicate a
 resource defining the subject resource. This property may be used to
 indicate
 an RDF vocabulary in which a resource is described.

 A triple of the form:

 S rdfs:isDefinedBy O

 states that the resource O defines S. It may be possible to
 retrieve
 representations of O from the Web, but this is not required. When
 such
 representations may be retrieved, no constraints are placed on the
 format of
 those representations. rdfs:isDefinedBy is a subproperty
 of rdfs:seeAlso.

 The rdfs:domain of
 rdfs:isDefinedBy is rdfs:Resource.
 The rdfs:range of rdfs:isDefinedBy
 is
 rdfs:Resource.

 5.4.3 rdf:value

 rdf:value is an instance of rdf:Property
 that may be used in
 describing structured values.

 rdf:value has no meaning on its own. It is provided as a piece of
 vocabulary that may be used in idioms such as illustrated
 in example below:

 Example 1
<http://www.example.com/2002/04/products#item10245>
 <http://www.example.org/terms/weight> [
 rdf:value 2.4 ;
 <http://www.example.org/terms/units> <http://www.example.org/units/kilograms>
] .

 Despite
 the lack of formal specification of the meaning of this property,
 there is
 value in defining it to encourage the use of a common idiom in
 examples of
 this kind.

 The rdfs:domain of
 rdf:value is rdfs:Resource.
 The rdfs:range of rdf:value
 is rdfs:Resource.

6. RDF Schema summary
This section is non-normative.

 The tables in this section provide an overview of the RDF Schema vocabulary.

 6.1 RDF classes

 	Class name
 	comment

 	rdfs:Resource
 	The class resource, everything.

 	rdfs:Literal
 	The class of literal values, e.g. textual strings and
 integers.

 	rdf:langString
 	The class of language-tagged string literal values.

 	rdf:HTML
 	The class of HTML literal values.

 	rdf:XMLLiteral
 	The class of XML literal values.

 	rdfs:Class
 	The class of classes.

 	rdf:Property
 	The class of RDF properties.

 	rdfs:Datatype
 	The class of RDF datatypes.

 	rdf:Statement
 	The class of RDF statements.

 	rdf:Bag
 	The class of unordered containers.

 	rdf:Seq
 	The class of ordered containers.

 	rdf:Alt
 	The class of containers of alternatives.

 	rdfs:Container
 	The class of RDF containers.

 	rdfs:ContainerMembershipProperty
 	The class of container membership properties, rdf:_1, rdf:_2,
 ..., all of which are sub-properties of 'member'.

 	rdf:List
 	The class of RDF Lists.

 6.2 RDF properties

 	Property name
 	comment
 	domain
 	range

 	rdf:type
 	The subject is an instance of a class.
 	rdfs:Resource
 	rdfs:Class

 	rdfs:subClassOf
 	The subject is a subclass of a class.
 	rdfs:Class
 	rdfs:Class

 	rdfs:subPropertyOf
 	The subject is a subproperty of a property.
 	rdf:Property
 	rdf:Property

 	rdfs:domain
 	A domain of the subject property.
 	rdf:Property
 	rdfs:Class

 	rdfs:range
 	A range of the subject property.
 	rdf:Property
 	rdfs:Class

 	rdfs:label
 	A human-readable name for the subject.
 	rdfs:Resource
 	rdfs:Literal

 	rdfs:comment
 	A description of the subject resource.
 	rdfs:Resource
 	rdfs:Literal

 	rdfs:member
 	A member of the subject resource.
 	rdfs:Resource
 	rdfs:Resource

 	rdf:first
 	The first item in the subject RDF list.
 	rdf:List
 	rdfs:Resource

 	rdf:rest
 	The rest of the subject RDF list after the first item.
 	rdf:List
 	rdf:List

 	rdfs:seeAlso
 	Further information about the subject resource.
 	rdfs:Resource
 	rdfs:Resource

 	rdfs:isDefinedBy
 	The definition of the subject resource.
 	rdfs:Resource
 	rdfs:Resource

 	rdf:value
 	Idiomatic property used for structured values.
 	rdfs:Resource
 	rdfs:Resource

 	rdf:subject
 	The subject of the subject RDF statement.
 	rdf:Statement
 	rdfs:Resource

 	rdf:predicate
 	The predicate of the subject RDF statement.
 	rdf:Statement
 	rdfs:Resource

 	rdf:object
 	The object of the subject RDF statement.
 	rdf:Statement
 	rdfs:Resource

 In addition to these classes and properties, RDF also uses properties
 called rdf:_1, rdf:_2, rdf:_3...
 etc.,
 each of which is both a sub-property of rdfs:member and
 an
 instance of the class rdfs:ContainerMembershipProperty.
 There is
 also an instance of rdf:List called rdf:nil
 that is
 an empty rdf:List.

A. Acknowledgments
This section is non-normative.

 The RDF Schema design was originally produced by the RDF Schema Working
 Group (1997-2000). The current specification is largely an editorial
 clarification of that design, and has benefited greatly from the hard
 work of
 the RDF Core Working Group
 members, and
 from
 implementation feedback from many members of the RDF
 Interest Group. In
 2013-2014 Guus Schreiber edited this document on behalf of the RDF
 Working Group
 to bring it in line with the RDF 1.1 specifications.

 David Singer of IBM was the chair of the original RDF Schema group
 throughout most of the development of this specification; we thank David
 for
 his efforts and thank IBM for supporting him and us in this endeavor.
 Particular thanks are also due to Andrew Layman for his editorial work
 on
 early versions of this specification.

 The original RDF Schema Working Group membership included:

 Nick Arnett (Verity), Dan Brickley (ILRT / University of Bristol),
 Walter
 Chang (Adobe), Sailesh Chutani (Oracle), Ron Daniel (DATAFUSION),
 Charles
 Frankston (Microsoft), Joe Lapp (webMethods Inc.), Patrick Gannon
 (CommerceNet), RV Guha (Epinions, previously of Netscape
 Communications), Tom
 Hill (Apple Computer), Renato Iannella (DSTC), Sandeep Jain (Oracle),
 Kevin
 Jones, (InterMind), Emiko Kezuka (Digital Vision Laboratories), Ora
 Lassila
 (Nokia Research Center), Andrew Layman (Microsoft), John McCarthy
 (Lawrence
 Berkeley National Laboratory), Michael Mealling (Network Solutions),
 Norbert
 Mikula (DataChannel), Eric Miller (OCLC), Frank Olken (Lawrence Berkeley
 National Laboratory), Sri Raghavan (Digital/Compaq), Lisa Rein
 (webMethods
 Inc.), Tsuyoshi Sakata (Digital Vision Laboratories), Leon Shklar
 (Pencom Web
 Works), David Singer (IBM), Wei (William) Song (SISU), Neel Sundaresan
 (IBM),
 Ralph Swick (W3C), Naohiko Uramoto (IBM), Charles Wicksteed (Reuters
 Ltd.),
 Misha Wolf (Reuters Ltd.)

B. Change since 2004 Recommendation
This section is non-normative.

 Changes for RDF 1.1 Recommendation

	 	No changes.

	

 Changes for RDF 1.1 Proposed Edited Recommendation

 	Conversion to ReSpec, including formatting of examples and notes.

 	References to RDF 1.0 documents where appropriate
 replaced by references to RDF 1.1 documents.

 	Replaced the term "URI Reference" with the term "IRI".

 	Removed discussion about distinction between plain and typed
 literals, as this distinction is absent in RDF 1.1 and has no
 technical bearing on RDF Schema.

 	Removed the introductory paragraph of Sec. "Reification
 Vocabulary", as this discussion is not related to the
 technical content and is irrelevant and confusing now.

 	Update of affiliation of the editors.

 	Added RDF WG to the Acknowledgements section.

 	Renamed the document from "RDF Vocabulary Description Language
 1.0: RDF Schema" to "RDF Schema 1.1", as the term Vocabulary
 Description Language has led to confusion.

 	Three paragraphs of the Introduction were left out. These
 paragraphs described the things that RDF Schema does not do and are
 now much less relevant than in 2004.

 	Added the datatypes rdf:langString and rdf:HTML.

 	Removed Appendix "RDF Schema in RDF/XML". It was informative, but
 now out of date, in terms of content and in terms of
 syntax.

	 	Marked rdf:HTML and rdf:XMLLiteral
 as non-normative.

	 	Removed references to 2004 Primer from Secs. 5.1, 5.2
 and 5.4.3. In the latter case the example referred to was
 moved into this document for readability purposes.

C. References
C.1 Normative references
	[JSON-LD]
	Manu Sporny, Gregg Kellogg, Markus Lanthaler, Editors. JSON-LD 1.0. 16 January 2014. W3C Recommendation. URL: http://www.w3.org/TR/json-ld/

	[RDF11-CONCEPTS]
	Richard Cyganiak, David Wood, Markus Lanthaler. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-concepts/

	[RDF11-MT]
	Patrick J. Hayes, Peter F. Patel-Schneider. RDF 1.1 Semantics. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-mt/

	[TRIG]
	Gavin Carothers, Andy Seaborne. TriG: RDF Dataset Language. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-trig-20140225/. The latest edition is available at http://www.w3.org/TR/trig/

	[TURTLE]
	Eric Prud'hommeaux, Gavin Carothers. RDF 1.1 Turtle: Terse RDF Triple Language. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-turtle-20140225/. The latest edition is available at http://www.w3.org/TR/turtle/

C.2 Informative references
	[BERNERS-LEE98]
	Tim Berners-Lee. What the Semantic Web can represent. 1998. URI: http://www.w3.org/DesignIssues/RDFnot.html.

	[OWL2-OVERVIEW]
	W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview (Second Edition). 11 December 2012. W3C Recommendation. URL: http://www.w3.org/TR/owl2-overview/

	[RDF11-PRIMER]
	Guus Schreiber, Yves Raimond. RDF 1.1 Primer. W3C Working Group Note, 25 February 2014. The latest version is available at http://www.w3.org/TR/rdf11-primer/.

 [image: W3C]

 RDF 1.1 Semantics

 W3C Recommendation 25 February 2014

 	This version:

 	http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

 	Latest published version:

 	http://www.w3.org/TR/rdf11-mt/

 	Test suite:

 	http://www.w3.org/TR/2014/NOTE-rdf11-testcases-20140225/

 	Implementation report:

 	http://www.w3.org/2013/rdf-mt-reports/index.html

 	Previous version:

 	http://www.w3.org/TR/2014/PR-rdf11-mt-20140109/

 	Previous Recommendation:

 	http://www.w3.org/TR/rdf-mt/

 	Editors:

 	Patrick J. Hayes, Florida IHMC

	Peter F. Patel-Schneider, Nuance Communications

 Please check the errata for any errors or issues
 reported since publication.

 The English version of this specification is the only normative version. Non-normative
 translations may also be available.

 Copyright ©
 2004-2014

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang),

 All Rights Reserved.

 W3C liability,
 trademark and

 document use

 rules apply.

 Abstract

 This document describes a precise semantics for the Resource Description
 Framework 1.1 [RDF11-CONCEPTS] and RDF Schema [RDF11-SCHEMA]. It defines a number of distinct entailment regimes and corresponding patterns of entailment. It is part of a suite of documents which comprise the full specification of RDF 1.1.

 Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

This document is part of RDF 1.1 document suite.
This is a revision of the 2004 Semantics specification for RDF
[RDF-MT] and supersedes that
document. For an informal summary of the substantive (non-editorial)
changes since then, see Entailment
Changes.

 This document was published by the RDF Working Group as a Recommendation.

 If you wish to make comments regarding this document, please send them to
 public-rdf-comments@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 Please see the Working Group's implementation
 report.

 This document has been reviewed by W3C Members, by software developers, and by other W3C
 groups and interested parties, and is endorsed by the Director as a W3C Recommendation.
 It is a stable document and may be used as reference material or cited from another
 document. W3C's role in making the Recommendation is to draw attention to the
 specification and to promote its widespread deployment. This enhances the functionality
 and interoperability of the Web.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction
	2. Conformance
	3. Semantic Extensions and Entailment Regimes
	4. Notation and Terminology	4.1 Shared blank nodes, unions and merges

	5. Simple Interpretations	5.1 Blank nodes	5.1.1 Shared blank nodes (Informative)

	5.2 Simple Entailment
	5.3 Properties of simple entailment (Informative)

	6. Skolemization (Informative)
	7. Literals and datatypes	7.1 D-interpretations
	7.2 Datatype entailment	7.2.1 Patterns of datatype entailment (Informative)

	8. RDF Interpretations	8.1 RDF entailment	8.1.1 Patterns of RDF entailment (Informative)

	9. RDFS Interpretations	9.1 A note on rdfs:Literal (Informative)
	9.2 RDFS entailment	9.2.1 Patterns of RDFS entailment (Informative)

	10. RDF Datasets
	A. Entailment rules (Informative)
	B. Finite interpretations (Informative)
	C. Proofs of some results (Informative)
	D. RDF reification, containers and collections (Informative)	D.1 Reification
	D.2 RDF containers
	D.3 RDF collections

	E. Change Log (informative)
	F. Acknowledgements
	G. References	G.1 Normative references
	G.2 Informative references

 Notes

Notes in this style indicate changes from the 2004 RDF 1.0 semantics.

Notes in this style are technical asides on obscure or recondite matters.

1. Introduction

 This document defines a model-theoretic semantics for RDF graphs and the RDF and RDFS vocabularies, providing an exact formal specification of when truth is preserved by transformations of RDF or operations which derive RDF content from other RDF.

2. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples,
 and notes in this specification are non-normative. Everything else in this specification is
 normative.

 The key words MUST, MUST NOT, REQUIRED, SHOULD, SHOULD NOT, RECOMMENDED, MAY,
 and OPTIONAL in this specification are to be interpreted as described in [RFC2119].

This specification, RDF 1.1 Semantics, is normative for RDF semantics and the validity of RDF inference processes. It is not normative for many aspects of RDF meaning which are not described or specified by this semantics, including social issues of how IRIs are assigned meanings in use and how the referents of IRIs are related to Web content expressed in other media such as natural language texts.

3. Semantic Extensions and Entailment Regimes

 RDF is intended for use as a base notation for a variety of extended notations such as OWL [OWL2-OVERVIEW] and RIF [RIF-OVERVIEW], whose expressions can be encoded as RDF graphs which use a particular vocabulary with a specially defined meaning. Also, particular IRI vocabularies may be given meanings by other specifications or conventions. When such extra meanings are assumed, a given RDF graph may support more extensive entailments than are sanctioned by the basic RDF semantics. In general, the more assumptions that are made about the meanings of IRIs in an RDF graph, the more entailments follow from those assumptions.

A particular such set of semantic assumptions is called a semantic extension. Each semantic extension defines an entailment regime (used here in the same sense as in the SPARQL 1.1 Entailment Regime recommendation [SPARQL11-ENTAILMENT]) of entailments which are valid under that extension. RDFS, described later in this document, is one such semantic extension. We will refer to entailment regimes by names such as RDFS entailment, D-entailment, etc.

Semantic extensions MAY impose special syntactic conditions or restrictions upon RDF graphs, such as requiring certain triples to be present, or prohibiting particular combinations of IRIs in triples, and MAY consider RDF graphs which do not conform to these conditions to be errors. For example, RDF statements of the form

 ex:a rdfs:subClassOf "Thing"^^xsd:string .

 are prohibited in the OWL semantic extension based on description logics [OWL2-SYNTAX]. In such cases, basic RDF operations such as taking a subset of triples, or combining RDF graphs, may cause syntax errors in parsers which recognize the extension conditions. None of the semantic extensions normatively defined in this document impose such syntactic restrictions on RDF graphs.

All entailment regimes MUST be monotonic extensions of the simple entailment regime described in the document, in the sense that if A simply entails B then A also entails B under any extended notion of entailment, provided that any syntactic conditions of the extension are also satisfied. Put another way, a semantic extension cannot "cancel" an entailment made by a weaker entailment regime, although it can treat the result as a syntax error.

4. Notation and Terminology

 This document uses the following terminology for describing RDF graph syntax, all as defined in the companion RDF Concepts specification [RDF11-CONCEPTS]: IRI, RDF triple, RDF graph, subject, predicate, object, RDF source, node, blank node, literal, isomorphic, and RDF dataset. All the definitions in this document apply unchanged to generalized RDF triples, graphs, and datasets.

An interpretation is a mapping from IRIs and literals into a set, together with some constraints upon the set and the mapping. This document defines various notions of interpretation, each corresponding in a standard way to an entailment regime. These are identified by prefixes such as simple interpretation, etc., and are defined in later sections. The unqualified term interpretation is usually used to refer to any compatible kind of interpretation in general, but if clear from the context might refer to a specific kind of interpretation.

The words denotes and refers to are used interchangeably as synonyms for the relationship between an IRI or literal and what it refers to in a given interpretation, itself called the denotation or referent. IRI meanings may also be determined by other constraints external to the RDF semantics; when we wish to refer to such an externally defined naming relationship, we will use the word identify and its cognates. For example, the fact that the IRI http://www.w3.org/2001/XMLSchema#decimal is widely used as the name of a datatype described in the XML Schema document [XMLSCHEMA11-2] might be described by saying that the IRI identifies that datatype. If an IRI identifies something it may or may not refer to it in a given interpretation, depending on how the semantics is specified. For example, an IRI used as a graph name identifying a named graph in an RDF dataset may refer to something different from the graph it identifies.

Throughout this document, the equality sign = indicates strict identity. The statement "A = B" means that there is one entity to which both expressions "A" and "B" refer. Angle brackets < x, y > are used to indicate an ordered pair
 of x and y.

Throughout this document, RDF graphs and other fragments of RDF abstract syntax are written using the notational conventions of the Turtle syntax [TURTLE]. The namespace prefixes rdf: rdfs: and xsd: are used as in [RDF11-CONCEPTS], section 1.4. When the exact IRI does not matter, the prefix ex: is used. When stating general rules or conditions we use three-character variables such as aaa, xxx, sss to indicate arbitrary IRIs, literals, or other components of RDF syntax. Some cases are illustrated by node-arc diagrams showing the graph structure directly.

A name is any IRI or literal. A typed literal contains
 two names: itself and its internal type
 IRI. A vocabulary is a set of names.

The empty graph is the empty set of triples.

A subgraph of an RDF graph is a subset
 of the triples in the graph. A triple is identified with the singleton set
 containing it, so that each triple in a graph is considered to be a subgraph.
 A proper subgraph is a proper subset of the triples in the graph.

A ground RDF graph is one that contains no blank
 nodes.

Suppose that M is a functional mapping from a set of blank
 nodes to some set of literals, blank nodes and IRIs. Any graph obtained
 from a graph G by replacing some or all of the blank nodes N in G by M(N) is
 an instance of G. Any graph is an instance of itself,
 an instance of an instance of G is an instance of G,
 and if H is an instance of G then every triple in H is an instance of at least one triple
 in G.

An instance with respect to a vocabulary
 V is an instance in which all the
 names in the instance that were substituted
 for blank nodes in the original are names
 from V.

A proper instance of a graph
 is an instance in which a blank node has been replaced by a name, or two blank
 nodes in the graph have been mapped into the same node in the instance.

Two graphs are isomorphic when each maps into the other by a 1:1 mapping on blank nodes. Isomorphic graphs are mutual instances with an invertible instance
 mapping. As blank nodes have no particular identity beyond their location in a graph, we will often treat isomorphic graphs as identical.

An RDF graph is lean if it has no instance which is
 a proper subgraph of itself. Non-lean graphs have internal redundancy
 and express the same content as their lean subgraphs. For example, the graph

ex:a ex:p _:x .

 _:y ex:p _:x .

is not lean, but

ex:a ex:p _:x .

 _:x ex:p _:x .

is lean. Ground graphs are lean.

 4.1 Shared blank nodes, unions and merges

Graphs share blank nodes only if they are derived from graphs
described by documents or other structures (such as an RDF dataset) that explicitly provide for the sharing of blank nodes between different RDF graphs. Simply downloading a
web document does not mean that the blank nodes in a resulting RDF
graph are the same as the blank nodes coming from other downloads of
the same document or from the same RDF source.

 RDF applications which manipulate concrete syntaxes for RDF which use blank node identifiers should take care to keep track of the identity of the blank nodes they identify. Blank node identifiers often have a local scope, so when RDF from different sources is combined, identifiers may have to be changed in order to avoid accidental conflation of distinct blank nodes.

 For example, two documents may both use the blank node identifier "_:x" to identify a blank node, but unless these documents are in a shared identifier scope or are derived from a common source, the occurrences of "_:x" in one document will identify a different blank node than the one in the graph described by the other document. When graphs are formed by combining RDF from multiple sources, it may be necessary to standardize apart the blank node identifiers by replacing them by others which do not occur in the other document(s). For example, the two graphs represented by the following texts:

ex:a ex:p _:x .

[image: Graph 1]

ex:b ex:q _:x .

[image: Graph 2]

contain four nodes. Their union would therefore also contain four nodes:

[image: Union Graph]

 However, the document formed by simply concatenating these textual surface representations:

ex:a ex:p _:x .

ex:b ex:q _:x .

describes a graph containing three nodes:

[image: Incorrect Union Graph]

 since the two occurrences of the blank node identifier "_:x" occurring in a common identifier scope identify the same blank node. The four-node union of these two graphs is more properly described by a surface form such as:

ex:a ex:p _:x1 .

ex:b ex:q _:x2 .

in which the blank node identifiers have been standardized apart to avoid conflating the distinct blank nodes. (The particular blank node identifiers used have no significance, only that they are distinct.)

It is possible for two or more graphs to share a blank node, for example if they are subgraphs of a single larger graph or derived from a common source. In this case, the union of a set of graphs preserves the identity of blank nodes shared between the graphs. In general, the union of a set of RDF graphs accurately represents the same semantic content as the graphs themselves, whether or not they share blank nodes.

A related operation, called merging, takes the union after forcing any shared blank nodes, which occur in more than one graph, to be distinct in each graph. The resulting graph is called the merge. The merge of subgraphs of a graph may be larger than the original graph. For example, the result of merging the two singleton subgraphs of the three-node graph

[image: Three-node Graph]

is the four-node graph

[image: Four-node Graph]

The union is always an instance of the merge. If graphs have no blank nodes in common, then their merge and union are identical.

5. Simple Interpretations

This section defines the basic notions of simple interpretation and truth for RDF graphs. All semantic extensions of any vocabulary or higher-level notation encoded in RDF MUST conform to these minimal truth conditions. Other semantic extensions may extend and add to these, but they MUST NOT modify or negate them. For example, because simple interpretations are mappings which apply to IRIs, a semantic extension cannot interpret different occurrences of a single IRI differently.

The entire semantics applies to RDF graphs, not to RDF sources. An RDF source has a semantic meaning only through the graph that is its value at a given time, or in a given state. Graphs cannot change their semantics with time.

A simple interpretation I is a structure consisting of:

Definition of a simple interpretation.

 	1. A non-empty set IR of resources, called the domain or universe
 of I.
 2. A set IP, called the set of properties of I.

 3. A mapping IEXT from IP into the powerset of IR x IR i.e. the
 set of sets of pairs < x, y > with x and y in IR .

 4. A mapping IS from IRIs into (IR union IP)

 5. A partial mapping IL from literals into IR

The 2004 RDF 1.0 semantics defined simple interpretations relative to a vocabulary.

In the 2004 RDF 1.0 semantics, IL was a total, rather than partial, mapping.

 The 2004 RDF 1.0 specification divided literals into 'plain' literals with no type and optional language tags, and typed literals. Usage has shown that it is important that every literal have a type. RDF 1.1 replaces plain literals without language tags by literals typed with the XML Schema string datatype, and introduces the special type rdf:langString for language-tagged strings. The full semantics for typed literals is given in the next section.

 Simple interpretations are required to interpret all names, and are therefore infinite. This simplifies the exposition. However, RDF can be interpreted using finite structures, supporting decidable algorithms. Details are given in Appendix B.

IEXT(x), called
 the extension of x, is a
 set of pairs which identify the arguments for which the property is true,
 that is, a binary relational extension.

The distinction between IR and IL will become significant below when the semantics of datatypes are defined. IL is allowed to be partial because some literals may fail to have a referent.

It is conventional to map a relation name to a relational extension directly. This however presumes that the vocabulary is segregated into relation names and individual names, and RDF makes no such assumption. Moreover, RDF allows an IRI to be used as a relation name applied to itself as an argument. Such self-application structures are used in RDFS, for example. The use of the IEXT mapping to distinguish the relation as an object from its relational extension accommodates both of these requirements. It also provides for a notion of RDFS 'class' which can be distinguished from its set-theoretic extension. A similar technique is used in the ISO/IEC Common Logic standard [ISO24707].

 The denotation of a ground RDF graph in a simple interpretation I is then given by the following
 rules, where the interpretation is also treated as a function from expressions (names, triples and graphs) to elements of the universe and truth values:

 Semantic conditions for ground graphs.

 	if E is a literal then I(E) = IL(E)

 	if E is an IRI then I(E) = IS(E)

 	if E is a ground triple s p o.
 then I(E) = true if

 I(p) is in IP and the pair <I(s),I(o)>
 is in IEXT(I(p))

 otherwise I(E) = false.

 	if E is a ground RDF graph then I(E) = false if I(E') =
 false for some triple E' in E, otherwise I(E) =true.

 If IL(E) is undefined for some literal E then E has no semantic value, so any triple containing it will be false, so any graph containing that triple will also be false.

 The final condition implies that the empty graph (the empty set of triples) is always true.

The sets IP and IR may overlap, indeed IP can be a subset of IR. Because of the domain conditions on IEXT, the denotation of the subject and object of any true triple will be in IR; so any IRI which occurs in a graph both as a predicate and as a subject or object will denote something in the intersection of IP and IR.

Semantic extensions may impose further constraints upon interpretation mappings by requiring some IRIs to refer in particular ways. For example, D-interpretations, described below, require some IRIs, understood as identifying and referring to datatypes, to have a fixed denotation.

 5.1 Blank nodes

Blank nodes are treated as simply indicating the existence of a thing, without using an IRI to identify any particular thing. This is not the same as assuming that the blank node indicates an 'unknown' IRI.

 Suppose I is a simple interpretation and A is a mapping from a set of blank nodes to the universe IR of I. Define the mapping [I+A] to be I on names, and A on blank nodes on the set: [I+A](x)=I(x) when x is a name and [I+A](x)=A(x) when x is a blank node; and extend this mapping to triples and RDF graphs using the rules given above for ground graphs. Then the semantic conditions for an RDF graph are:

 Semantic condition for blank nodes.

 	If E is an RDF graph then I(E) = true if [I+A](E) =
 true for some mapping A from the set of blank nodes in E to IR, otherwise
 I(E)= false.

Mappings from blank nodes to referents are not part of the definition of a simple interpretation, since the truth condition refers only to some such mapping.
Blank nodes themselves differ from other nodes in not being assigned
a denotation by a simple interpretation, reflecting the intuition that
they have no 'global' meaning.

5.1.1 Shared blank nodes (Informative)
This section is non-normative.

 The semantics for blank nodes are stated in terms of the truth of a graph. However, when two (or more) graphs share a blank node, their meaning is not fully captured by treating them in isolation. For example, consider the overlapping graphs

[image: Overlapping Graphs]

 and a simple interpretation I over the universe {Alice, Bob, Monica, Ruth} with:

I(ex:Alice)=Alice, I(ex:Bob)=Bob, IEXT(I(ex:hasChild))={<Alice,Monica>,<Bob,Ruth> }

Each of the inner graphs is true under this interpretation, but the two of them together is not, because the three-node graph says that Alice and Bob have a child together. In order to capture the full meaning of graphs sharing a blank node, it is necessary to consider the union graph containing all the triples which contain the blank node.

 RDF graphs can be viewed as conjunctions of simple atomic sentences in first-order logic, where blank nodes are free variables which are understood to be existential. Taking the union of two graphs is then analogous to syntactic conjunction in this syntax. RDF syntax has no explicit variable-binding quantifiers, so the truth conditions for any RDF graph treat the free variables in that graph as existentially quantified in that graph. Taking the union of graphs which share a blank node changes the implied quantifier scopes.

5.2 Simple Entailment

Following standard terminology, we say that I (simply) satisfies E when I(E)=true, that E is (simply) satisfiable when a simple interpretation exists which satisfies it, otherwise (simply) unsatisfiable, and that a graph G simply entails a graph E when every interpretation which satisfies G also satisfies E. If two graphs E and F each entail the other then they are logically equivalent.

In later sections these notions will be adapted to other classes of interpretations, but throughout this section 'entailment' should be interpreted as meaning simple entailment.

We do not define a notion of entailment between sets of graphs. To determine whether a set of graphs entails a graph, the graphs in the set must first be combined into one graph, either by taking the union or the merge of the graphs. Unions preserve the common meaning of shared blank nodes, while merging effectively ignores any sharing of blank nodes. Merging the set of graphs produces the same definition of entailment by a set that was defined in the 2004 RDF 1.0 specification.

 Any process which constructs a graph E from
 some other graph S is (simply) valid if S
 simply entails E in every case, otherwise invalid.

The fact that an inference is valid should not be understood as meaning that any RDF application is obliged or required to make the inference. Similarly, the logical invalidity of some RDF transformation or process does not mean that the process is incorrect or prohibited. Nothing in this specification requires or prohibits any particular operations on RDF graphs or sources. Entailment and validity are concerned solely with establishing the conditions on such operations which guarantee the preservation of truth. While logically invalid processes, which do not follow valid entailments, are not prohibited, users should be aware that they may be at risk of introducing falsehoods into true RDF data. Nevertheless, particular uses of logically invalid processes may be justified and appropriate for data processing under circumstances where truth can be ensured by other means.

Entailment refers only to the truth of RDF graphs, not to their suitability for any other purpose. It is possible for an RDF graph to be fitted for a given purpose and yet validly entail another graph which is not appropriate for the same purpose. An example is the RDF test cases manifest [RDF-TESTCASES] which is provided as an RDF document for user convenience. This document lists examples of correct entailments by describing their antecedents and conclusions. Considered as an RDF graph, the manifest simply entails a subgraph which omits the antecedents, and would therefore be incorrect if used as a test case manifest. This is not a violation of the RDF semantic rules, but it shows that the property of "being a correct RDF test case manifest" is not preserved under RDF entailment, and therefore cannot be described as an RDF semantic extension. Such entailment-risky uses of RDF should be restricted to cases, as here, where it is obvious to all parties what the intended special restrictions on entailment are, in contrast with the more normal case of using RDF for the open publication of data on the Web.

5.3 Properties of simple entailment (Informative)
This section is non-normative.

The properties described here apply only to simple entailment, not to extended notions of entailment introduced in later sections. Proofs are given in Appendix C.

Every graph is simply satisfiable.

This does not always hold for extended notions of interpretation. For example, a graph containing an ill-typed literal is D-unsatisfiable.

The following interpolation lemma

 G simply entails a graph E if and only if a subgraph of G is an instance of E.

 completely characterizes simple entailment in syntactic
 terms. To detect whether one RDF graph simply entails another, check that
 there is some instance of the entailed graph which is a subset of the first graph.

This is clearly decidable, but it is also difficult to determine in general, since one can encode the NP-hard subgraph problem (detecting whether one mathematical graph is a subgraph of another) as detecting simple entailment between RDF graphs. This construction (due to Jeremy Carroll) uses graphs all of whose nodes are blank nodes. The complexity of checking simple entailment is reduced by having fewer blank nodes in the conclusion E. When E is a ground graph, it is simply a matter of checking the subset relationship on sets of triples.

Interpolation has a number of direct consequences, for example:

 The empty graph is simply entailed by
 any graph, and does not simply entail any graph except itself.

 A graph simply entails all its subgraphs.

 A graph
 is simply entailed by any of its instances.

 If
 E is a lean graph and E' is a proper instance of E, then E does
 not simply entail E'.

 If S is a subgraph of S' and S simply entails E, then S' simply entails E.

 If S entails a finite graph E, then some finite subset S' of S entails E.

The property just above is called compactness - RDF is compact. As RDF graphs can be infinite, this is sometimes important.

 If E contains an IRI which does not occur anywhere in S, then S does not simply entail E.

6. Skolemization (Informative)
This section is non-normative.

Skolemization is a transformation on RDF graphs which eliminates blank nodes by replacing them with "new" IRIs, which means IRIs which are coined for this purpose and are therefore guaranteed to not occur in any other RDF graph (at the time of creation). See Section 3.5 of [RDF11-CONCEPTS] for a fuller discussion.

 Suppose G is a graph containing blank nodes and sk is a skolemization mapping from the blank nodes in G to the skolem IRIs which are substituted for them, so that sk(G) is a skolemization of G. Then the semantic relationship between them can be summarized as follows.

 sk(G) simply entails G (since sk(G) is an instance of G.)

 G does not simply entail sk(G) (since sk(G) contains IRIs not in G.)

 For any graph H, if sk(G) simply entails H then there is a graph H' such that G entails H' and H=sk(H') .

 For any graph H which does not contain any of the "new" IRIs introduced into sk(G), sk(G) simply entails H if and only if G simply entails H.

The second property means that a graph is not logically equivalent to its skolemization. Nevertheless, they are in a strong sense almost interchangeable, as shown the next two properties. The third property means that even when conclusions are drawn from the skolemized graph which do contain the new vocabulary, these will exactly mirror what could have been derived from the original graph with the original blank nodes in place. The replacement of blank nodes by IRIs does not effectively alter what can be validly derived from the graph, other than by giving new names to what were formerly anonymous entities. The fourth property, which is a consequence of the third, clearly shows that in some sense a skolemization of G can "stand in for" G as far as entailments are concerned. Using sk(G) instead of G will not affect any entailments which do not involve the new skolem vocabulary.

7. Literals and datatypes

 In the 2004 RDF 1.0 specification, datatype D-entailment was defined as a semantic extension of RDFS-entailment. Here it is defined as a direct extension to basic RDF. This is more in conformity with actual usage, where RDF with datatypes is widely used without the RDFS vocabulary. If there is a need to distinguish this from the 2004 RDF 1.0 terminology, the longer phrasing "simple D-entailment" or "simple datatype entailment" should be used rather than "D-entailment".

 Datatypes are identified by IRIs. Interpretations will vary according to which IRIs are recognized as denoting datatypes. We describe this using a parameter D on simple interpretations, where D is the set of recognized datatype IRIs.

The previous version of this specification defined the parameter D as a datatype map from IRIs to datatypes, i.e. as a restricted kind of interpretation mapping. As the current semantics presumes that a recognized IRI identifies a unique datatype, this IRI-to-datatype mapping is globally unique and externally specified, so we can think of D as either a set of IRIs or as a fixed datatype map. Formally, the datatype map corresponding to the set D is the restriction of a D-interpretation to the set D. Semantic extensions which are stated in terms of conditions on datatype maps can be interpreted as applying to this mapping.

The exact mechanism by which an IRI identifies a datatype is considered to be external to the semantics, but the semantics presumes that a recognized IRI identifies a unique datatype wherever it occurs. RDF processors which are not able to determine which datatype is identified by an IRI cannot recognize that IRI, and should treat any literals with that IRI as their datatype IRI as unknown names.

RDF literals and datatypes are fully described in Section 5 of [RDF11-CONCEPTS]. In summary: with one exception, RDF literals combine a string and an IRI identifying a datatype. The exception is language-tagged strings, which have two syntactic components, a string and a language tag, and are assigned the type rdf:langString. A datatype is understood to define a partial mapping, called the lexical-to-value mapping, from a lexical space (a set of character strings) to values. The function L2V maps datatypes to their lexical-to-value mapping. A literal with datatype d denotes the value obtained by applying this mapping to the character string sss: L2V(d)(sss). If the literal string is not in the lexical space, so that the lexical-to-value mapping gives no value for the literal string, then the literal has no referent. The value space of a datatype is the range of the lexical-to-value mapping. Every literal with that type either refers to a value in the value space of the type, or fails to refer at all. An ill-typed literal is one whose datatype IRI is recognized, but whose character string is assigned no value by the lexical-to-value mapping for that datatype.

 RDF processors are not required to recognize any datatype IRIs other than rdf:langString and xsd:string, but when IRIs listed in Section 5 of [RDF11-CONCEPTS] are recognized, they MUST be interpreted as described there, and when the IRI rdf:PlainLiteral is recognized, it MUST be interpreted to refer to the datatype defined in [RDF-PLAIN-LITERAL]. RDF processors MAY recognize other datatype IRIs, but when other datatype IRIs are recognized, the mapping between the datatype IRI and the datatype it refers to MUST be specified unambiguously, and MUST be fixed during all RDF transformations or manipulations. In practice, this can be achieved by the IRI linking to an external specification of the datatype which describes both the components of the datatype itself and the fact that the IRI identifies the datatype, thereby fixing a value of the datatype map of this IRI.

Literals with rdf:langString as their datatype are an exceptional case which are given a special treatment. The IRI rdf:langString is classified as a datatype IRI, and interpreted to refer to a datatype, even though no L2V mapping is defined for it. The value space of rdf:langString is the set of all pairs of a string with a language tag. The semantics of literals with this as their type are given below.

RDF literal syntax allows any IRI to be used in a typed literal, even when it is not recognized as referring to a datatype. Literals with such an "unknown" datatype IRI, which is not in the set of recognized datatypes, SHOULD NOT be treated as errors, although RDF applications MAY issue a warning. Such literals SHOULD be treated like IRIs and assumed to denote some thing in the universe IR. RDF processors which do not recognize a datatype IRI will not be able to detect some entailments which are visible to one which does. For example, the fact that
ex:a ex:p "20.0000"^^xsd:decimal .
entails
ex:a ex:p "20.0"^^xsd:decimal .
will not be visible to a processor which does not recognize the datatype IRI xsd:decimal.

7.1 D-interpretations

Let D be a set of IRIs identifying datatypes. A (simple) D-interpretation is a simple interpretation which satisfies the following conditions:

Semantic conditions for datatyped literals.

	If rdf:langString is in D, then for every language-tagged string E with lexical form sss and language tag ttt, IL(E)= < sss, ttt' >, where ttt' is ttt converted to lower case using US-ASCII rules

	For every other IRI aaa in D, I(aaa) is the datatype identified by aaa, and for every literal "sss"^^aaa, IL("sss"^^aaa) = L2V(I(aaa))(sss)

If the literal is ill-typed then the L2V(I(aaa)) mapping has no value, and so the literal cannot denote anything. In this case, any triple containing the literal must be false. Thus, any triple, and hence any graph, containing an ill-typed literal will be D-unsatisfiable, i.e. false in every D-interpretation. This applies only to literals typed with recognized datatype IRIs in D; literals with an unrecognized type IRI are not ill-typed and cannot give rise to a D-unsatisfiable graph.

The special datatype rdf:langString has no ill-typed literals. Any syntactically legal literal with this type will denote a value in every D-interpretation where D includes rdf:langString. The only ill-typed literals of type xsd:string are those containing a Unicode code point which does not match the Char production in [XML10]. Such strings cannot be written in an XML-compatible surface syntax.

 In the 2004 RDF 1.0 specification, ill-typed literals were required to denote a value in IR, and D-unsatisfiability could be recognized only by using the RDFS semantics.

7.2 Datatype entailment

A graph is (simply) D-satisfiable or satisfiable recognizing D when it has the value true in some D-interpretation, and a graph S (simply) D-entails or entails recognizing D a graph G when every D-interpretation which satisfies S also D-satisfies G.

 Unlike the case with simple interpretations, it is possible for a graph to have no satisfying D-interpretations, i.e. to be D-unsatisfiable. RDF processors MAY treat an unsatisfiable graph as signaling an error condition, but this is not required.

 A D-unsatisfiable graph D-entails any graph.

The fact that an unsatisfiable statement entails any other statement has been known since antiquity. It is called the principle of ex falso quodlibet. It should not be interpreted to mean that it is necessary, or even permissible, to actually draw any conclusion from an unsatisfiable graph.

In all of this language, 'D' is being used as a parameter to represent some set of datatype IRIs, and different D sets will yield different notions of satisfiability and entailment. The more datatypes are recognized, the stronger is the entailment, so that if D ⊂ E and S E-entails G then S must D-entail G. Simple entailment is { }-entailment, i.e. D-entailment when D is the empty set, so if S D-entails G then S simply entails G.

 7.2.1 Patterns of datatype entailment (Informative)
This section is non-normative.

Unlike simple entailment, it is not possible to give a single syntactic criterion to detect all D-entailments, which
can hold because of particular properties of the lexical-to-value mappings of the recognized datatypes. For example, if D contains xsd:decimal then

ex:a ex:p "25.0"^^xsd:decimal .

D-entails

ex:a ex:p "25"^^xsd:decimal .

In general, any triple containing a literal with a recognized datatype IRI D-entails another literal when the lexical strings of the literals map to the same value under the lexical-to-value map of the datatype. If two different datatypes in D map lexical strings to a common value, then a triple containing a literal typed with one datatype may D-entail another triple containing a literal typed with a different datatype. For example, "25"^^xsd:integer and "25.0"^^xsd:decimal have the same value, so the above also D-entails

ex:a ex:p "25"^^xsd:integer .

when D also contains xsd:integer.

(There is a W3C Note [SWBP-XSCH-DATATYPES] containing a long discussion of literal values.)

Ill-typed literals are the only way in which a graph can be simply D-unsatisfiable, but datatypes can give rise to a variety of other unsatisfiable graphs when combined with the RDFS vocabulary, defined later.

8. RDF Interpretations

 RDF interpretations impose extra semantic conditions on xsd:string and part of the infinite
 set of IRIs with the namespace prefix rdf: .

 	RDF vocabulary

 	rdf:type rdf:subject rdf:predicate rdf:object
 rdf:first rdf:rest rdf:value rdf:nil
 rdf:List rdf:langString rdf:Property rdf:_1 rdf:_2
 ...

An RDF interpretation recognizing D is a D-interpretation I where D includes rdf:langString and xsd:string, and which satisfies:

RDF semantic conditions.

 	x is
 in IP if and only if <x, I(rdf:Property)> is in IEXT(I(rdf:type))

	For every IRI aaa in D, < x, I(aaa) > is in IEXT(I(rdf:type)) if and only if x is in the value space of I(aaa)

 and satisfies every triple in the following infinite set:

 RDF axioms.

 	rdf:type rdf:type rdf:Property .

 rdf:subject rdf:type rdf:Property .

 rdf:predicate rdf:type rdf:Property .

 rdf:object rdf:type rdf:Property .

 rdf:first rdf:type rdf:Property .

 rdf:rest rdf:type rdf:Property .

 rdf:value rdf:type rdf:Property .

 rdf:nil rdf:type rdf:List .

 rdf:_1 rdf:type rdf:Property .

 rdf:_2 rdf:type rdf:Property .

 ...

RDF imposes no particular normative meanings on the rest of the RDF vocabulary. Appendix D describes the intended uses of some of this vocabulary.

The datatype IRIs rdf:langString and xsd:string MUST be recognized by all RDF interpretations.

Two other datatypes rdf:XMLLiteral and rdf:HTML are defined in [RDF11-CONCEPTS]. RDF-D interpretations MAY fail to recognize these datatypes.

8.1 RDF entailment

S RDF entails E recognizing D when every RDF interpretation recognizing D which satisfies S also satisfies E. When D is {rdf:langString, xsd:string} then we simply say S RDF entails E. E is RDF unsatisfiable (recognizing D) when it has no satisfying RDF interpretation (recognizing D).

The properties of simple entailment described earlier do not all apply to RDF entailment. For example, all the RDF axioms are true in every RDF interpretation, and so are RDF entailed by the empty graph, contradicting interpolation for RDF entailment.

8.1.1 Patterns of RDF entailment (Informative)
This section is non-normative.

 The last semantic condition in the above table gives the following entailment pattern for recognized datatype IRIs:

RDF entailment pattern.

 	
 	if S contains
 	then S RDF entails, recognizing D

 	rdfD1
 	 xxx aaa "sss"^^ddd .

 for ddd in D
 	xxx aaa _:nnn .

_:nnn rdf:type ddd .

Note, this is valid even when the literal is ill-typed, since an unsatisfiable graph entails any triple.

For example,

 ex:a ex:p "123"^^xsd:integer .

RDF entails recognizing {xsd:integer}

ex:a ex:p _:x .

 _:x rdf:type xsd:integer .

In addition, the first RDF semantic condition justifies the following entailment pattern:

 	
 	if S contains
 	then S RDF entails, recognizing D

 	rdfD2
 	xxx aaa yyy .
 	aaa rdf:type rdf:Property .

So that the above example also RDF entails
ex:p rdf:type rdf:Property .
 recognizing {xsd:integer}.

Some datatypes support idiosyncratic entailment patterns which do not hold for other datatypes. For example,

 ex:a ex:p "true"^^xsd:boolean .

ex:a ex:p "false"^^xsd:boolean .

ex:v rdf:type xsd:boolean .

together RDF entail

ex:a ex:p ex:v .

 recognizing {xsd:boolean}.

In addition, the semantic conditions on value spaces may produce other unsatisfiable graphs. For example, when D contains xsd:integer and xsd:boolean, then the following is RDF unsatisfiable recognizing D:

_:x rdf:type xsd:boolean .

_:x rdf:type xsd:integer .

9. RDFS Interpretations

RDF Schema [RDF11-SCHEMA]
 extends RDF to a larger vocabulary
 with more complex semantic constraints:

 	RDFS vocabulary

 	rdfs:domain rdfs:range rdfs:Resource rdfs:Literal
 rdfs:Datatype rdfs:Class rdfs:subClassOf rdfs:subPropertyOf
 rdfs:member rdfs:Container rdfs:ContainerMembershipProperty
 rdfs:comment rdfs:seeAlso rdfs:isDefinedBy
 rdfs:label

(rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy
 and rdfs:label are included here because some constraints which
 apply to their use can be stated using rdfs:domain, rdfs:range
 and rdfs:subPropertyOf. Other than this, the formal semantics does
 not constrain their meanings.)

It is convenient to state the RDFS semantics
 in terms of a new semantic construct, a class, i.e. a resource which represents
 a set of things in the universe which all have that class as a value of their
 rdf:type property. Classes are defined to be things of type rdfs:Class,
 and the set of all classes in an interpretation will be called IC.
 The semantic conditions are stated in terms of a mapping ICEXT (for the Class
 Extension in I) from IC to the set of subsets of IR.
 A class may have an
 empty class extension. Two different classes can have the same class extension.
 The class extension of rdfs:Class contains the class rdfs:Class.

 An RDFS interpretation (recognizing D) is an RDF interpretation (recognizing D) I
 which satisfies the semantic conditions in the following table, and all the triples in the subsequent table of RDFS axiomatic triples.

 RDFS semantic conditions.

 	 ICEXT(y) is defined to be { x : < x,y > is in IEXT(I(rdf:type)) }

 IC is defined to be ICEXT(I(rdfs:Class))

 LV is defined to be ICEXT(I(rdfs:Literal))

 ICEXT(I(rdfs:Resource)) = IR

ICEXT(I(rdf:langString)) is the set {I(E) : E a language-tagged string }

for every other IRI aaa in D, ICEXT(I(aaa)) is the value space of I(aaa)

for every IRI aaa in D, I(aaa) is in ICEXT(I(rdfs:Datatype))

 	 If
 < x,y > is in IEXT(I(rdfs:domain)) and < u,v > is
 in IEXT(x) then u is in ICEXT(y)

 	 If
 < x,y > is in IEXT(I(rdfs:range)) and < u,v > is
 in IEXT(x) then v is in ICEXT(y)

 	IEXT(I(rdfs:subPropertyOf))
 is transitive and reflexive on IP

 	 If
 <x,y> is in IEXT(I(rdfs:subPropertyOf)) then x and
 y are in IP and IEXT(x) is a subset of IEXT(y)

 	If
 x is in IC then < x, I(rdfs:Resource) > is in IEXT(I(rdfs:subClassOf))

 	IEXT(I(rdfs:subClassOf))
 is transitive and reflexive on IC

 	 If
 < x,y > is in IEXT(I(rdfs:subClassOf)) then x and y are
 in IC and ICEXT(x) is a subset of ICEXT(y)

 	If
 x is in ICEXT(I(rdfs:ContainerMembershipProperty)) then:

 < x, I(rdfs:member) > is in IEXT(I(rdfs:subPropertyOf))

 	If
 x is in ICEXT(I(rdfs:Datatype)) then < x,
 I(rdfs:Literal) > is in IEXT(I(rdfs:subClassOf))

	

 RDFS axiomatic triples.

 	 rdf:type rdfs:domain rdfs:Resource .

 rdfs:domain rdfs:domain rdf:Property .

 rdfs:range rdfs:domain rdf:Property .

 rdfs:subPropertyOf rdfs:domain rdf:Property .

 rdfs:subClassOf rdfs:domain rdfs:Class .

 rdf:subject rdfs:domain rdf:Statement .

 rdf:predicate rdfs:domain rdf:Statement .

 rdf:object rdfs:domain rdf:Statement .

 rdfs:member rdfs:domain rdfs:Resource .

 rdf:first rdfs:domain rdf:List .

 rdf:rest rdfs:domain rdf:List .

 rdfs:seeAlso rdfs:domain rdfs:Resource .

 rdfs:isDefinedBy rdfs:domain rdfs:Resource .

 rdfs:comment rdfs:domain rdfs:Resource .

 rdfs:label rdfs:domain rdfs:Resource .

 rdf:value rdfs:domain rdfs:Resource .

 rdf:type rdfs:range rdfs:Class .

 rdfs:domain rdfs:range rdfs:Class .

 rdfs:range rdfs:range rdfs:Class .

 rdfs:subPropertyOf rdfs:range rdf:Property .

 rdfs:subClassOf rdfs:range rdfs:Class .

 rdf:subject rdfs:range rdfs:Resource .

 rdf:predicate rdfs:range rdfs:Resource .

 rdf:object rdfs:range rdfs:Resource .

 rdfs:member rdfs:range rdfs:Resource .

 rdf:first rdfs:range rdfs:Resource .

 rdf:rest rdfs:range rdf:List .

 rdfs:seeAlso rdfs:range rdfs:Resource .

 rdfs:isDefinedBy rdfs:range rdfs:Resource .

 rdfs:comment rdfs:range rdfs:Literal .

 rdfs:label rdfs:range rdfs:Literal .

 rdf:value rdfs:range rdfs:Resource .

 rdf:Alt rdfs:subClassOf rdfs:Container .

 rdf:Bag rdfs:subClassOf rdfs:Container .

 rdf:Seq rdfs:subClassOf rdfs:Container .

 rdfs:ContainerMembershipProperty rdfs:subClassOf rdf:Property .

 rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso .

 rdfs:Datatype rdfs:subClassOf rdfs:Class .

 rdf:_1 rdf:type rdfs:ContainerMembershipProperty .

 rdf:_1 rdfs:domain rdfs:Resource .

 rdf:_1 rdfs:range rdfs:Resource .

 rdf:_2 rdf:type rdfs:ContainerMembershipProperty .

 rdf:_2 rdfs:domain rdfs:Resource .

 rdf:_2 rdfs:range rdfs:Resource .

 ...

In the 2004 RDF 1.0 semantics, LV was defined as part of a simple interpretation structure, and the definition given here was a constraint.

Since I is an RDF interpretation, the first condition implies that IP
 = ICEXT(I(rdf:Property)).

 The semantic conditions on RDF interpretations, together with the RDFS conditions on ICEXT, mean that every recognized datatype can be treated as a class whose extension is the value space of the datatype, and every literal with that datatype either fails to refer, or refers to a value in that class.

When using RDFS semantics, the referents of all recognized datatype IRIs can be considered to be in the class rdfs:Datatype.

The axioms and conditions listed above have some redundancy. For example, all but one
 of the RDF axiomatic triples can be derived from the RDFS axiomatic triples
 and the semantic conditions on ICEXT, rdfs:domain and rdfs:range.

 Other triples which must be true in all RDFS interpretations
 include the following. This is not a complete set.

 Some rdfs-valid triples.

 	rdfs:Resource rdf:type rdfs:Class .

 rdfs:Class rdf:type rdfs:Class .

 rdfs:Literal rdf:type rdfs:Class .

 rdf:XMLLiteral rdf:type rdfs:Class .

rdf:HTML rdf:type rdfs:Class .

 rdfs:Datatype rdf:type rdfs:Class .

 rdf:Seq rdf:type rdfs:Class .

 rdf:Bag rdf:type rdfs:Class .

 rdf:Alt rdf:type rdfs:Class .

 rdfs:Container rdf:type rdfs:Class .

 rdf:List rdf:type rdfs:Class .

 rdfs:ContainerMembershipProperty rdf:type rdfs:Class .

 rdf:Property rdf:type rdfs:Class .

 rdf:Statement rdf:type rdfs:Class .

 rdfs:domain rdf:type rdf:Property .

 rdfs:range rdf:type rdf:Property .

 rdfs:subPropertyOf rdf:type rdf:Property .

 rdfs:subClassOf rdf:type rdf:Property .

 rdfs:member rdf:type rdf:Property .

 rdfs:seeAlso rdf:type rdf:Property .

 rdfs:isDefinedBy rdf:type rdf:Property .

 rdfs:comment rdf:type rdf:Property .

 rdfs:label rdf:type rdf:Property .

RDFS does not partition the universe into disjoint categories of classes, properties and individuals. Anything in the universe can be used as a class or as a property, or both, while retaining its status as an individual which may be in classes and have properties. Thus, RDFS permits classes which contain other classes, classes of properties, properties of classes, etc. As the axiomatic triples above illustrate, it also permits classes which contain themselves and properties which apply to themselves. A property of a class is not necessarily a property of its members, nor vice versa.

9.1 A note on rdfs:Literal (Informative)
This section is non-normative.

The class rdfs:Literal is not the class of literals, but rather that of literal values, which may also be referred to by IRIs. For example, LV does not contain the literal "foodle"^^xsd:string but it does contain the string "foodle".

 A triple of the form

 ex:a rdf:type rdfs:Literal .

 is consistent even though its subject is an IRI rather
 than a literal. It says that the IRI 'ex:a'
 refers to a literal value, which is quite possible since literal values are things in the universe. Blank nodes may range over literal values, for the same reason.

9.2 RDFS entailment

S RDFS entails E recognizing D when every RDFS interpretation recognizing D
 which satisfies S also satisfies E.

 Since every RDFS interpretation is an RDF interpretation, if S RDFS entails
 E then S also RDF entails E; but RDFS entailment is stronger than RDF entailment.
 Even the empty graph has a large number of RDFS entailments which are not RDF entailments,
 for example all triples of the form

 aaa rdf:type rdfs:Resource .

where aaa is an IRI, are true in all RDFS interpretations.

 9.2.1 Patterns of RDFS entailment (Informative)
This section is non-normative.

RDFS entailment holds for all the following patterns, which correspond closely to the RDFS semantic conditions:

RDFS entailment patterns.

 	
 	If S contains:
 	then S RDFS entails recognizing D:

 	rdfs1
 	any IRI aaa in D
 	aaa rdf:type rdfs:Datatype .

 	rdfs2
 	 aaa rdfs:domain xxx .

 yyy aaa zzz .
 	yyy rdf:type xxx .

 	rdfs3
 	aaa rdfs:range xxx .

 yyy aaa zzz .
 	zzz rdf:type xxx .

 	rdfs4a
 	xxx aaa yyy .
 	xxx rdf:type rdfs:Resource .

 	rdfs4b
 	xxx aaa yyy.
 	yyy rdf:type rdfs:Resource .

 	rdfs5
 	 xxx rdfs:subPropertyOf yyy .

 yyy rdfs:subPropertyOf zzz .
 	xxx rdfs:subPropertyOf zzz .

 	rdfs6
 	xxx rdf:type rdf:Property .
 	xxx rdfs:subPropertyOf xxx .

 	rdfs7
 	 aaa rdfs:subPropertyOf bbb .

 xxx aaa yyy .
 	xxx bbb yyy .

 	rdfs8
 	xxx rdf:type rdfs:Class .
 	xxx rdfs:subClassOf rdfs:Resource .

 	rdfs9
 	xxx rdfs:subClassOf yyy .

 zzz rdf:type xxx .
 	zzz rdf:type yyy .

 	rdfs10
 	xxx rdf:type rdfs:Class .
 	xxx rdfs:subClassOf xxx .

 	rdfs11
 	 xxx rdfs:subClassOf yyy .

 yyy rdfs:subClassOf zzz .
 	xxx rdfs:subClassOf zzz .

 	rdfs12
 	xxx rdf:type rdfs:ContainerMembershipProperty .
 	xxx rdfs:subPropertyOf rdfs:member .

 	rdfs13
 	xxx rdf:type rdfs:Datatype .
 	xxx rdfs:subClassOf rdfs:Literal .

RDFS provides for several new ways to be unsatisfiable recognizing D. For example, the following graph is RDFS unsatisfiable recognizing {xsd:integer, xsd:boolean}:

ex:p rdfs:domain xsd:boolean .

ex:a rdf:type xsd:integer .

ex:a ex:p ex:c .

10. RDF Datasets

RDF datasets, defined in RDF Concepts [RDF11-CONCEPTS], package up zero or more named RDF graphs along with a single unnamed, default RDF graph. The graphs in a single dataset may share blank nodes. The association of graph name IRIs with graphs is used by SPARQL [SPARQL11-QUERY] to allow queries to be directed against particular graphs.

Graph names in a dataset may refer to something other than the graph they are paired with. This allows IRI referring to other kinds of entities, such as persons, to be used in a dataset to identify graphs of information relevant to the entity denoted by the graph name IRI.

When a graph name is used inside RDF triples in a dataset it may or may not refer to the graph it names. The semantics does not require, nor should RDF engines presume, without some external reason to do so, that graph names used in RDF triples refer to the graph they name.

RDF datasets MAY be used to express RDF content. When used in this way, a dataset SHOULD be understood to have at least the same content as its default graph. Note however that replacing the default graph of a dataset by a logically equivalent graph will not in general produce a structurally similar dataset, since it may for example disrupt co-occurrences of blank nodes between the default graph and other graphs in the dataset, which may be important for reasons other than the semantics of the graphs in the dataset.

Other semantic extensions and entailment regimes MAY place further semantic conditions and restrictions on RDF datasets, just as with RDF graphs. One such extension, for example, could set up a modal-like interpretation structure so that entailment between datasets would require RDF graph entailments between the graphs with the same name (adding in empty graphs as required).

Appendices

A. Entailment rules (Informative)
This section is non-normative.

(This section is based on work described more fully in [HORST04], [HORST05], which should be consulted for technical details and proofs.)

 The RDF and RDFS entailment patterns listed in the above tables can be viewed as left-to-right rules which add the entailed conclusion to a graph. These rule sets can be used to check RDF (or RDFS) entailment between graphs S and E, by the following sequence of operations:

1. Add to S all the RDF (or RDF and RDFS) axiomatic triples except those containing the container membership property IRIs rdf:_1, rdf:_2,

2. For every container membership property IRI which occurs in E, add the RDF (or RDF and RDFS) axiomatic triples which contain that IRI.

3. Apply the RDF (or RDF and RDFS) inference patterns as rules, adding each conclusion to the graph, to exhaustion; that is, until they generate no new triples.

4. Determine if E has an instance which is a subset of the set, i.e. whether the enlarged set simply entails E.

This process is clearly correct, in that if it gives a positive result then indeed S does RDF (RDFS) entail E. It is not, however, complete: there are cases of S entailing E which are not detectable by this process. Examples include:

 	
 	RDF entails

 	ex:a ex:p "string"^^xsd:string .

ex:b ex:q "string"^^xsd:string .
 	ex:a ex:p _:b .

ex:b ex:q _:b .

_:b rdf:type xsd:string .

 	
 	RDFS entails

 	ex:a rdfs:subPropertyOf _:b .

_:b rdfs:domain ex:c .

ex:d ex:a ex:e .
 	ex:d rdf:type ex:c .

 Both of these can be handled by allowing the rules to apply to a generalization of the RDF syntax in which literals may occur in subject position and blank nodes may occur in predicate position.

Consider generalized RDF triples, graphs, and datasets instead of RDF triples, graphs and datasets (extending the generalization used in [HORST04] and following exactly the terms used in [OWL2-PROFILES]). The semantics described in this document applies to the generalization without change, so that the notions of interpretation, satisfiability and entailment can be used freely. Then we can replace the first RDF entailment pattern with the simpler and more direct

G-RDF-D entailment pattern.

 	
 	if S contains
 	then S RDF entails, recognizing D

 	GrdfD1
 	 xxx aaa "sss"^^ddd .

 for ddd in D
 	"sss"^^ddd rdf:type ddd .

 which gives the entailments;

ex:a ex:p "string"^^xsd:string .

ex:b ex:q "string"^^xsd:string .

"string"^^xsd:string rdf:type xsd:string . by GrdfD1

which is an instance (in generalized RDF) of the desired conclusion, above.

 The second example can be derived using the RDFS rules:

ex:a rdfs:subPropertyOf _:b .

_:b rdfs:domain ex:c .

ex:d ex:a ex:e .

ex:d _:b ex:c . by rdfs7

ex:d rdf:type ex:c . by rdfs2

Where the entailment patterns have been applied to generalized RDF syntax but yield a final conclusion which is legal RDF.

With the generalized syntax, these rules are complete for both RDF and RDFS entailment. Stated exactly:

Let S and E be RDF graphs. Define the generalized RDF (RDFS) closure of S towards E to be the set obtained by the following procedure.

1. Add to S all the RDF (and RDFS) axiomatic triples which do not contain any container membership property IRI.

2. For each container membership property IRI which occurs in E, add the RDF (and RDFS) axiomatic triples which contain that IRI.

3. If no triples were added in step 2., add the RDF (and RDFS) axiomatic triples which contain rdf:_1.

4. Apply the rules GrdfD1 and rdfD2 (and the rules rdfs1 through rdfs13), with D={rdf:langString, xsd:string), to the set in all possible ways, to exhaustion.

Then we have the completeness result:

If S is RDF (RDFS) consistent, then S RDF entails (RDFS entails) E just when the generalized RDF (RDFS) closure of S towards E simply entails E.

The closures are finite. The generation process is decidable and of polynomial complexity. Detecting simple entailment is NP-complete in general, but of low polynomial order when E contains no blank nodes.

Every RDF(S) closure, even starting with the empty graph, will contain all RDF(S) tautologies which can be expressed using the vocabulary of the original graph plus the RDF and RDFS vocabularies. In practice there is little utility in re-deriving these, and a subset of the rules can be used to establish most entailments of practical interest.

If it is important to stay within legal RDF syntax, rule rdfD1 may be used instead of GrdfD1, and the introduced blank node can be used as a substitute for the literal in subsequent derivations. The resulting set of rules will not however be complete.

As noted earlier, detecting datatype entailment for larger sets of datatype IRIs requires attention to idiosyncratic properties of the particular datatypes.

B. Finite interpretations (Informative)
This section is non-normative.

To keep the exposition simple, the RDF semantics has been phrased in a way which requires interpretations to be larger than absolutely necessary. For example, all interpretations are required to interpret the whole IRI vocabulary, and the universes of all D-interpretations where D contains
xsd:string must contain all possible strings and therefore be infinite. This appendix sketches, without proof, how to re-state the semantics using smaller semantic structures, without changing any entailments.

Basically, it is only necessary for an interpretation structure to interpret the names actually used in the graphs whose entailment is being considered, and to consider interpretations whose universes are at most as big as the number of names and blank nodes in the graphs. More formally, we can define a pre-interpretation over a vocabulary V to be a structure I similar to a simple interpretation but with a mapping only from V to its universe IR. Then when determining whether G entails E, consider only pre-interpretations over the finite vocabulary of names actually used in G union E. The universe of such a pre-interpretation can be restricted to the cardinality N+B+1, where N is the size of the vocabulary and B is the number of blank nodes in the graphs. Any such pre-interpretation may be extended to simple interpretations, all of which which will give the same truth values for any triples in G or E. Satisfiability, entailment and so on can then be defined with respect to these finite pre-interpretations, and shown to be identical to the ideas defined in the body of the specification.

When considering D-entailment, pre-interpretations may be kept finite by weakening the semantic conditions for datatyped literals so that IR need contain literal values only for literals which actually occur in G or E, and the size of the universe restricted to (N+B)×(D+1), where D is the number of recognized datatypes. (A tighter bound is possible.) For RDF entailment, only the finite part of the RDF vocabulary which includes those container membership properties which actually occur in the graphs need to be interpreted, and the second RDF semantic condition is weakened to apply only to values which are values of literals which actually occur in the vocabulary. For RDFS interpretations, again only that finite part of the infinite container membership property vocabulary which actually occurs in the graphs under consideration needs to be interpreted. In all these cases, a pre-interpretation of the vocabulary of a graph may be extended to a full interpretation of the appropriate type without changing the truth-values of any triples in the graphs.

The whole semantics could be stated in terms of pre-interpretations, yielding the same entailments, and allowing finite RDF graphs to be interpreted in finite structures, if the finite model property is considered important.

C. Proofs of some results (Informative)
This section is non-normative.

 The empty graph is simply entailed by
 any graph, and does not simply entail any graph except itself.

The empty graph is true in all simple interpretations, so is entailed by any graph. If G contains a triple <a b c>, then any simple interpretation I with IEXT(I(b))={ } makes G false; so the empty graph does not entail G. QED.

 A graph simply entails all its subgraphs.

If I satisfies G then it satisfies every triple in G, hence every triple in any subset of G. QED.

 A graph
 is simply entailed by any of its instances.

Suppose H is an instance of G with the instantiation mapping M, and that I satisfies H. For blank nodes n in G which are not in H define A(n)=I(M(n)); then I+A satisfies G, so I satisfies G. QED.

Every graph is simply satisfiable.

Consider the simple interpretation with universe {x}, IEXT(x)= <x,x > and I(aaa)=x for any IRI aaa. This interpretation satisfies every RDF graph. QED.

 G simply entails a graph E if and only if a subgraph of G is an instance of E.

If a subgraph E' of G is an instance of E then G entails E' which entails E, so G entails E. Now suppose G entails E, and consider the Herbrand interpretation I of G defined as follows. IR contains the names and blank nodes which occur in the graph, with I(n)=n for each name n; n is in IP and <a, b> in IEXT(n) just when the triple <a n b> is in the graph. (For IRIs which do not occur in the graph, assign them values in IR at random.) I satisfies every triple <s p o> in E; that is, for some mapping A from the blank nodes of E to the vocabulary of G, the triple <[I+A](s) I(p) [I+A](o)> occurs in G. But this is an instance of <s p o> under the instance mapping A; so an instance of E is a subgraph of G. QED.

if E is lean and E' is a proper instance of E, then E does not simply entail E'.

Suppose E entails E', then a subgraph of E is an instance of E', which is a proper instance of E; so a subgraph of E is a proper instance of E, so E is not lean. QED.

If E contains an IRI which does not occur in S, then S does not simply entail E.

IF S entails E then a subgraph of S is an instance of E, so every IRI in E must occur in that subgraph, so must occur in S. QED.

For any graph H, if sk(G) simply entails H there there is a graph H' such that G entails H' and H=sk(H').

The skolemization mapping sk substitutes a unique new IRI for each blank node, so it is 1:1, so has an inverse. Define ks to be the inverse mapping which replaces each skolem IRI by the blank node it replaced. Since sk(G) entails H, a subgraph of sk(G) is an instance of H, say A(H) for some instance mapping A on the blank nodes in H. Then ks(A(H)) is a subgraph of G; and ks(A(H))=A(ks(H)) since the domains of A and ks are disjoint. So ks(H) has an instance which is a subgraph of G, so is entailed by G; and H=sk(ks(H)). QED.

For any graph H which does not contain any of the "new" IRIs introduced into sk(G), sk(G) simply entails H if and only if G simply entails H.

Using the terminology in the previous proof: if H does not contain any skolem IRIs, then H=ks(H). So if sk(G) entails H then G entails ks(H)=H; and if G entails H then sk(G) entails G entails H, so sk(G) entails H. QED.

D. RDF reification, containers and collections (Informative)
This section is non-normative.

The RDF semantic conditions do not place formal constraints on the meaning
 of much of the RDF vocabulary which is intended for use in describing containers and bounded collections,
 or the reification vocabulary intended to enable an RDF graph to describe RDF triples. This appendix briefly reviews the intended meanings of this vocabulary.

The omission of these conditions from the formal semantics is a design decision
 to accommodate variations in existing RDF usage and to make it easier to implement
 processes to check formal RDF entailment. For example, implementations may decide
 to use special procedural techniques to implement the RDF collection vocabulary.

D.1 Reification

 	RDF reification vocabulary

 	rdf:Statement rdf:subject rdf:predicate
 rdf:object

 The intended meaning of this vocabulary is to allow an RDF graph to act as metadata describing other RDF triples.

 Consider an example graph containing a single triple:

 ex:a ex:b ex:c .

 and suppose that IRI ex:graph1 is used to identify this graph. Exactly how this identification is achieved is external to the RDF model, but it might be by the IRI resolving to a concrete syntax document describing the graph, or by the IRI being the associated name of a named graph in a dataset. Assuming that the IRI can be used to refer to the triple, then the reification vocabulary allows us to describe the first graph in another graph:

 ex:graph1 rdf:type rdf:Statement .

 ex:graph1 rdf:subject ex:a .

 ex:graph1 rdf:predicate ex:b .

 ex:graph1 rdf:object ex:c .

 The second graph is called a reification of the triple in the first
 graph.

 Reification is not a form of quotation. Rather, the reification describes the
 relationship between a token of a triple and the resources that the triple refers
 to. The value of the rdf:subject property is not the
 subject IRI itself but the thing it denotes, and similarly for rdf:predicate and rdf:object. For example, if the referent of ex:a is Mount Everest, then the subject of the reified triple is also the mountain, not the IRI which refers to it.

Reifications can be written with a blank node as subject, or with an IRI subject which does not identify any concrete realization of a triple, in both of which cases they simply assert the existence of the described triple.

 The subject of a reification is intended to refer to a concrete realization of an RDF triple, such as a document in a surface syntax, rather than a triple considered as an abstract object. This supports use cases where properties such as dates of
 composition or provenance information are applied to the
 reified triple, which are meaningful only when thought of as
 referring to a particular instance or token of a triple.

 A reification of a triple does not entail the triple, and is not
 entailed by it. The
 reification only says that the triple token exists and what it is about,
 not that it is true, so it does not entail the triple. On the other hand, asserting a triple does not automatically imply that any
 triple tokens exist in the universe being described by the triple.
 For example, the triple might be part of an ontology describing
 animals, which could be satisfied by an interpretation in which the
 universe contained only animals, and in which a reification of it was therefore
 false.

 Since the relation between triples and reifications of triples
 in any RDF graph or graphs need not be one-to-one, asserting a
 property about some entity described by a reification need not
 entail that the same property holds of another such entity, even if
 it has the same components. For example,

 _:xxx rdf:type rdf:Statement .

 _:xxx rdf:subject ex:subject .

 _:xxx rdf:predicate ex:predicate .

 _:xxx rdf:object ex:object .

 _:yyy rdf:type rdf:Statement .

 _:yyy rdf:subject ex:subject .

 _:yyy rdf:predicate ex:predicate .

 _:yyy rdf:object ex:object .

 _:xxx ex:property ex:foo .

 does not entail

 _:yyy ex:property ex:foo .

D.2 RDF containers

 	RDF(S) Container Vocabulary

 	rdf:Seq rdf:Bag rdf:Alt rdf:_1 rdf:_2
 ... rdfs:member rdfs:Container rdfs:ContainerMembershipProperty

 RDF provides vocabularies for describing three classes of
 containers. Containers have a type, and their members can
 be enumerated by using a fixed set of container membership
 properties. These properties are indexed by integers to
 provide a way to distinguish the members from each other, but these
 indices should not necessarily be thought of as defining an
 ordering of the container itself; some containers are considered to be unordered.

 The RDFS vocabulary adds a generic membership
 property which holds regardless of position, and classes containing
 all the containers and all the membership properties.

 One should understand this vocabulary as describing
 containers, rather than as a tool for constructing them, as
 would typically be supplied by a programming language. The actual containers are entities in the semantic universe,
 and RDF graphs which use the vocabulary simply provide very basic
 information about these entities, enabling an RDF graph to
 characterize the container type and give partial information about
 the members of a container. Since the RDF container vocabulary is
 so limited, many natural assumptions concerning RDF containers
 cannot be formally sanctioned by the RDF formal semantics. This should not be taken as
 meaning that these assumptions are false, but only that RDF does
 not formally entail that they must be true.

 There are no special semantic conditions on the container
 vocabulary: the only structure which RDF presumes its containers
 to have is what can be inferred from the use of this vocabulary and
 the general RDF semantic conditions. This amounts to knowing the type of a container, and having a partial
 enumeration
 of the items in the container. The intended mode of use is that things
 of type rdf:Bag
 are considered to be unordered but to allow duplicates; things of
 type rdf:Seq are considered to be ordered, and things
 of type rdf:Alt are considered to represent a
 collection of alternatives, possibly with a preference ordering.
 If the container is of an ordered type, then the ordering of items in the container is intended to be
 indicated by the numerical ordering of the container membership
 properties, which are assumed to be single-valued.
 However, these informal conditions are not reflected in any formal RDF
 entailments.

The RDF semantics does not support any entailments which could arise from enumerating
 the elements of an unordered rdf:Bag in a different order. For example,

 _:xxx rdf:type rdf:Bag .

 _:xxx rdf:_1 ex:a .

 _:xxx rdf:_2 ex:b .

 does not entail

 _:xxx rdf:_1 ex:b .

 _:xxx rdf:_2 ex:a .

 (If this conclusion were valid, then the result of
 adding it to the original graph would be entailed by the graph, and this would assert that both elements were in both
 positions. This is a consequence of the fact that RDF is a purely
 assertional language.)

 There is no assumption that a property of a container applies to
 any of the elements of the container, or vice versa.

 There is no formal requirement that
 the three container classes are disjoint, so that for example
 it is consistent to assert that something is both an rdf:Bag and an rdf:Seq.
 There is no assumption that containers are gap-free, so that for example

 _:xxx rdf:type rdf:Seq.

 _:xxx rdf:_1 ex:a .

 _:xxx rdf:_3 ex:c .

 does not entail

 _:xxx rdf:_2 _:yyy .

 There is no way in RDF to assert
 that a container contains only a fixed number of members. This is a
 reflection of the fact that it is always consistent to add a triple
 to a graph asserting a membership property of any container. And
 finally, there is no built-in assumption that an RDF container has
 only finitely many members.

D.3 RDF collections

 	RDF Collection Vocabulary

 	rdf:List rdf:first rdf:rest rdf:nil

 RDF provides a vocabulary for describing collections, i.e.'list
 structures', in terms of head-tail links. Collections differ from
 containers in allowing branching structure and in having an
 explicit terminator, allowing applications to determine the exact
 set of items in the collection.

As with containers, no special semantic conditions are imposed on this vocabulary
 other than the type of rdf:nil being rdf:List. It
 is intended for use typically in a context where a container is described using
 blank nodes to connect a 'well-formed' sequence of items, each described by
 two triples of the form

 _:c1 rdf:first aaa .

 _:c1 rdf:rest _:c2 .

where the final item is indicated by the use of rdf:nil as the
 value of the property rdf:rest. In a familiar convention, rdf:nil
 can be thought of as the empty collection. Any such graph amounts to an assertion
 that the collection exists, and since the members of the collection can be determined
 by inspection, this is often sufficient to enable applications to determine
 what is meant. The semantics does not require any collections
 to exist other than those mentioned explicitly in a graph (and the empty collection).
 For example, the existence of a collection containing two items does not automatically
 guarantee that the similar collection with the items permuted also exists:

 _:c1 rdf:first ex:aaa .

 _:c1 rdf:rest _:c2 .

 _:c2 rdf:first ex:bbb .

 _:c2 rdf:rest rdf:nil .

 does not entail

_:c3 rdf:first ex:bbb .

 _:c3 rdf:rest _:c4 .

 _:c4 rdf:first ex:aaa .

 _:c4 rdf:rest rdf:nil .

 Also, RDF imposes no 'well-formedness' conditions on the use of this
 vocabulary, so that it is possible to write RDF graphs which assert
 the existence of highly peculiar objects such as lists with forked
 or non-list tails, or multiple heads:

_:666 rdf:first ex:aaa .

 _:666 rdf:first ex:bbb .

 _:666 rdf:rest ex:ccc .

 _:666 rdf:rest rdf:nil .

It is also possible to write a set of triples which under-specify a collection
 by failing to specify its rdf:rest property value.

Semantic extensions may
 place extra syntactic well-formedness restrictions on the use of this vocabulary
 in order to rule out such graphs. They may
 exclude interpretations of the collection vocabulary which violate the convention
 that the subject of a 'linked' collection of two-triple items of the form described
 above, ending with an item ending with rdf:nil, denotes a totally
 ordered sequence whose members are the denotations of the rdf:first
 values of the items, in the order got by tracing the rdf:rest properties
 from the subject to rdf:nil. This permits sequences which contain
 other sequences.

 The RDFS semantic conditions require that any
 subject of the rdf:first property, and any subject or object of
 the rdf:rest property, be of rdf:type rdf:List.

E. Change Log (informative)
This section is non-normative.

Changes since Proposed Recommendation:

	 Typo fixed in Sec. 7.

Changes since Candidate Recommendation:

	 Minor typos corrected. Some text added to section 7 defining datatype maps.

Changes since Last Call:

	 Repaired several broken internal links and typos.

	 Added table of RDF vocabulary.

	 Added text mentioning lexical spaces in datatypes.

	 Added extended change note defining datatype map.

	 Removed informative section on intuitive summary of truth conditions 	

	 Added a general description of the notion of interpretation.

	 Adjusted several uses of "interpretation" and related terminology to state the particular kind of interpretation in question or use a more appropriate term.

	 Brian McBride was acknowledged as series editor of the previous
 version.

	 The wording looking like a definition of RDF Datasets was replaced by
 more informative wording.

F. Acknowledgements
This section is non-normative.

The basic idea of using an explicit extension mapping to allow self-application without violating the axiom of foundation was
suggested by Christopher Menzel. The generalized RDF syntax used in Appendix A, and the example showing the need for it, were suggested by Herman ter Horst, who also proved completeness and complexity results for the rule sets. Jeremy Carroll first showed that simple entailment is NP-complete in general. Antoine Zimmerman suggested several simplifications and improvements to the proofs and presentation.

The RDF 1.1 editors acknowledge valuable contributions from Thomas Baker, Dan Brickley, Gavin Carothers, Jeremy Carroll, Pierre-Antoine Champin, Richard Cyganiak, Martin J. Dürst, Alex Hall, Steve Harris, Ivan Herman, Eric Prud'hommeaux, Andy Seaborne, David Wood and Antoine Zimmermann.

This specification is a product of extended deliberations by
members of the RDF Working Group. This specification draws upon the
earlier specification [RDF-MT], whose editor acknowledged valuable
inputs from Jeremy Carroll, Dan Connolly, Jan Grant, R. V. Guha,
Herman ter Horst, Graham Klyne, Ora Lassilla, Brian McBride, Sergey
Melnick, Peter Patel-Schneider, Jos deRoo and Patrick Stickler.
Brian McBride was the series editor for this earlier specification.

This document was prepared using the ReSpec.js specification writing tool developed by Robin Berjon.

G. References
G.1 Normative references
	[RDF-PLAIN-LITERAL]
	Jie Bao, Sandro Hawke, Boris Motik, Peter F. Patel-Schneider, Alex Polleres. rdf:PlainLiteral: A Datatype for RDF Plain Literals (Second Edition) 11 December 2012. W3C Recommendation. URL: http://www.w3.org/TR/rdf-plain-literal/

	[RDF11-CONCEPTS]
	Richard Cyganiak, David Wood, Markus Lanthaler. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-concepts/

	[RFC2119]
	S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Internet RFC 2119. URL: http://www.ietf.org/rfc/rfc2119.txt

	[SPARQL11-ENTAILMENT]
	Birte Glimm; Chimezie Ogbuji. SPARQL 1.1 Entailment Regimes. 21 March 2013. W3C Recommendation. URL: http://www.w3.org/TR/sparql11-entailment/

	[TURTLE]
	Eric Prud'hommeaux, Gavin Carothers. RDF 1.1 Turtle: Terse RDF Triple Language. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-turtle-20140225/. The latest edition is available at http://www.w3.org/TR/turtle/

G.2 Informative references
	[HORST04]
	Herman J. ter Horst. Extending the RDFS Entailment Lemma, in S.A. McIlraith et al. (Eds.), The Semantic Web - ISWC2004, Proceedings of the Third International Semantic Web Conference, Hiroshima, Japan, November 2004, Springer, LNCS 3298, pp. 77-91.

	[HORST05]
	Herman J. ter Horst. Completeness, Decidability and Complexity of Entailment for RDF Schema and a Semantic Extension Involving the OWL Vocabulary, Journal of Web Semantics 3 (2005) 79-115.

	[ISO24707]
	Information technology — Common Logic (CL): a framework for a family of logic-based languages 1 October 2007. International Standard ISO/IEC 24707:2007(E). URL: http://standards.iso.org/ittf/PubliclyAvailableStandards/c039175_ISO_IEC_24707_2007%28E%29.zip

	[OWL2-OVERVIEW]
	W3C OWL Working Group. OWL 2 Web Ontology Language Document Overview (Second Edition). 11 December 2012. W3C Recommendation. URL: http://www.w3.org/TR/owl2-overview/

	[OWL2-PROFILES]
	Boris Motik; Bernardo Cuenca Grau; Ian Horrocks; Zhe Wu; Achille Fokoue. OWL 2 Web Ontology Language Profiles (Second Edition). 11 December 2012. W3C Recommendation. URL: http://www.w3.org/TR/owl2-profiles/

	[OWL2-SYNTAX]
	Boris Motik; Peter Patel-Schneider; Bijan Parsia. OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax (Second Edition). 11 December 2012. W3C Recommendation. URL: http://www.w3.org/TR/owl2-syntax/

	[RDF-MT]
	Patrick Hayes. RDF Semantics. 10 February 2004. W3C Recommendation. URL: http://www.w3.org/TR/rdf-mt/

	[RDF-TESTCASES]
	jan grant; Dave Beckett. RDF Test Cases. 10 February 2004. W3C Recommendation. URL: http://www.w3.org/TR/rdf-testcases

	[RDF11-SCHEMA]
	Dan Brickley, R. V. Guha. RDF Schema 1.1. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf-schema-20140225/. The latest published version is available at http://www.w3.org/TR/rdf-schema/.

	[RIF-OVERVIEW]
	Michael Kifer; Harold Boley. RIF Overview (Second Edition). 5 February 2013. W3C Note. URL: http://www.w3.org/TR/rif-overview/

	[SPARQL11-QUERY]
	Steven Harris; Andy Seaborne. SPARQL 1.1 Query Language. 21 March 2013. W3C Recommendation. URL: http://www.w3.org/TR/sparql11-query/

	[SWBP-XSCH-DATATYPES]
	Jeremy Carroll; Jeff Pan. XML Schema Datatypes in RDF and OWL. 14 March 2006. W3C Note. URL: http://www.w3.org/TR/swbp-xsch-datatypes

	[XML10]
	Tim Bray; Jean Paoli; Michael Sperberg-McQueen; Eve Maler; François Yergeau et al. Extensible Markup Language (XML) 1.0 (Fifth Edition). 26 November 2008. W3C Recommendation. URL: http://www.w3.org/TR/xml

	[XMLSCHEMA11-2]
	David Peterson; Sandy Gao; Ashok Malhotra; Michael Sperberg-McQueen; Henry Thompson; Paul V. Biron et al. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. 5 April 2012. W3C Recommendation. URL: http://www.w3.org/TR/xmlschema11-2/

 [image: W3C]

 RDF 1.1: On Semantics of RDF Datasets

 W3C Working Group Note 25 February 2014

 	This version:

 	http://www.w3.org/TR/2014/NOTE-rdf11-datasets-20140225/

 	Latest published version:

 	http://www.w3.org/TR/rdf11-datasets/

 	Previous version:

 	http://www.w3.org/TR/2013/WD-rdf11-datasets-20131217/

 	Editor:

 	Antoine Zimmermann, École Nationale Supérieure des Mines de Saint-Étienne

 Please check the errata for any errors or issues
 reported since publication.

 Copyright ©
 2014

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang),

 All Rights Reserved.

 W3C liability,
 trademark and

 document use

 rules apply.

Abstract

 RDF defines the concept of RDF datasets, a structure composed of a distinguished RDF graph and zero or more named graphs, being pairs comprising an IRI or blank node and an RDF graph. While RDF graphs have a formal model-theoretic semantics that determines what arrangements of the world make an RDF graph true, no agreed formal semantics exists for RDF datasets. This document presents some issues to be addressed when defining a formal semantics for datasets, as they have been discussed in the RDF 1.1 Working Group, and specify several semantics in terms of model theory, each corresponding to a certain design choice for RDF datasets.

Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

 The document is part of the RDF 1.1 document suite. The RDF
 Working Group did not standardize the semantics of RDF
 datasets. This note discusses issues in specifying such semantics.

 This document was published by the RDF Working Group as a Working Group Note.

 If you wish to make comments regarding this document, please send them to
 public-rdf-comments@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 Publication as a Working Group Note does not imply endorsement by the W3C
 Membership. This is a draft document and may be updated, replaced or obsoleted by other
 documents at any time. It is inappropriate to cite this document as other than work in
 progress.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction
	2. Existing Work	2.1 The RDF semantics
	2.2 The Named Graphs paper
	2.3 The SPARQL specification

	3. Formal definitions	3.1 Named graphs have no meaning	3.1.1 Formalization
	3.1.2 Examples of entailment and non-entailments
	3.1.3 Properties of this dataset semantics

	3.2 Default graph as union or as merge	3.2.1 Formalization: first version
	3.2.2 Formalization: second version
	3.2.3 Examples
	3.2.4 Properties of this dataset semantics

	3.3 The graph name denotes the named graph or the graph	3.3.1 Formalization
	3.3.2 Examples
	3.3.3 Properties of this dataset semantics

	3.4 Each named graph defines its own context	3.4.1 Formalization
	3.4.2 Examples
	3.4.3 Properties of this dataset semantics
	3.4.4 Variants of this dataset semantics

	3.5 Named graph are in a particular relationship with what the graph name dereferences to	3.5.1 Formalization
	3.5.2 Examples
	3.5.3 Properties of this dataset semantics

	3.6 Quad semantics	3.6.1 Formalization
	3.6.2 Properties of this dataset semantics

	3.7 Quoted graphs
	3.8 Relationship with SPARQL entailment regime

	4. Declaring the intended semantics
	A. Acknowledgements
	B. Changes since the first public working draft of 17 December 2013
	C. References	C.1 Informative references

1. Introduction

 The Resource Description Framework (RDF) version 1.1 defines the concept of RDF datasets, a notion introduced first by the SPARQL specification [RDF-SPARQL-QUERY]. An RDF dataset is defined as a collection of RDF graphs where all but one are named graphs associated with an IRI or blank node (the graph name), and the unnamed default graph [RDF11-CONCEPTS]. Given that RDF is a data model equipped with a formal semantics [RDF11-MT], it is natural to try and define what the semantics of datasets should be.

 The RDF Working Group was chartered
 to provide such semantics in its recommendation:

 Required features

 	Standardize a model and semantics for multiple graphs and graphs stores
	 [...]

	However, discussions within the Working Group revealed that very different assumptions currently exist among practitioners, who are using RDF datasets with their own intuition of the meaning of datasets. Defining the semantics of RDF datasets requires an understanding of the two following issues:

	
			what the graph names (IRI or blank node) denote, or what are the constraints on what the names can possibly denote;

			how the triples in the named graph influence the meaning of the dataset.

	

	
	Possible choices for the denotation of graph names are:

	
			it denotes the RDF graph in the (name,graph) pair;

			it denotes the pair itself;

			it denotes a supergraph of the graph inside the pair;

			it denotes a container for the RDF graph, that is, a mutable element;

			it denotes the information resource that can be obtained by dereferencing the graph name, when it is an IRI and if such resource exists;

			it denotes an arbitrary resource that is constrained to be in a special relationship (for instance, ex:hasGraph with the graph inside the pair;

			it denotes the deductive closure of the graph inside the pair;

			it denotes an arbitrary resource that is in a special relation with the deductive closure, or with a superset of the graph;

			it denotes an unconstrained resource;

			etc.

	

	Even with an intuitive understanding of what the truth of an RDF dataset should be, the precise model-theoretic formalization can be subject to many variations.

	
	Possible choices for the meaning of the triples in the named graphs include:

	
			all the triples in the named graphs and default graphs contribute to the truth of the dataset in the same way triples contribute to the truth of a single graph;

			the triples of the named graphs are considered part of the knowledge of the default graph;

			different named graphs indicate different “contexts”, or different “worlds”, and the triples inside a named graph are assumed to be true in the associated context only; in this case, the default graph can be interpreted as yet another context, or be considered as a “global context” which must hold in all contexts, or again as metadata about the contexts;

			the named graphs are considered as “hypothetical graphs” which bear the same consequences as their RDF graphs, but they do not participate in the truth of the dataset; this is similar to the “context” option above but it allows a graph to contain contradictions without making the dataset contradictory;

			the triples are merely quoted without any indication of what they mean; they do not participate in the truth of a dataset.

	

	
	Depending on the assumptions taken with respect to these two issues, the formalization of the semantics of RDF datasets can vary very much.

	In this Working Group Note, we examine the propositions that were given by Working Group members in the course of a one-year-and-a-half debate.

	

	

2. Existing Work

	We first take a look at existing specifications that could shed a light on how the semantics of datasets should be defined. There are three important documents that closely relate to the issue:

	
			the RDF semantics, as standardized in 2004 [RDF-MT] and its revision in 2014 [RDF11-MT];

			the article Named Graphs by Carroll et al. [CARROLL-05], which first introduced the term “named graph” and contains a section on formal semantics;

			the SPARQL specification [SPARQL11-QUERY], which defines RDF datasets and how to query them.

	

	
	
		2.1 The RDF semantics

		
		
		As described in RDF 1.1 Semantics, a set of RDF graphs can be interpreted as either the union of the graphs or as their merge ([RDF11-MT], Technical note, Section 5.2).

		So, a first intuition could be that an RDF dataset, being presented as a collection of graph, should mean exactly what the set of its named graphs and default graph means. However, this completely leaves out the potential meaning of graph names, which could be valuable indicators for the truth of a dataset.

		Formally, the semantics of RDF defines a notion of interpretation for a set of triples (i.e., an RDF graph), which then can extend to a set of RDF graphs. A dataset is neither a set of triples nor a set of RDF graphs. It is a set of pairs (name,graph) together with a distinguished RDF graph and the RDF semantics does not itself specify a meaning for these pairs.

		Conceptually, it is problematic since one of the reasons for separating triples into distinct (named) graphs is to avoid propagating the knowledge of one graph to the entire triple base. Sometimes, contradicting graphs need to coexist in a store. Sometimes named graphs are not endorsed by the system as a whole, they are merely quoted.

	
	
	
		2.2 The Named Graphs paper

		In Carroll et al. [CARROLL-05], a named graph is defined as a pair comprising an IRI and an RDF graph. The notion of RDF interpretation is extended to named graphs by saying that the graph IRI in the pair must denote the pair itself. This non-ambiguously answers the question of what the graph IRI denotes. This can then be used to define proper dataset semantics, as shown in Section 3.3. Note that it is deliberate that the graph IRI is forced to denote the pair rather than the RDF graph. This is done in order to differentiate two occurrences of the same RDF graph that could have been published at different times, or authored by different people. A simple reference to the RDF graph would simply identify a mathematical set, which is the same wherever it occurs.

	
	
	
		2.3 The SPARQL specification

		RDF 1.1 borrows the notion of RDF dataset from the SPARQL specification [SPARQL11-QUERY], with the notable different that RDF 1.1 allows graph names to be blank nodes. So, in order to understand the semantics of dataset, it is worthwhile looking at how SPARQL uses datasets. SPARQL defines what answers to queries posed against a dataset are, but it never defines the notions that are key to a model theoretic formal semantics: it neither presents interpretations nor entailment. Still, it is worth noticing that a ASK query that only contains a basic graph pattern without variables yields the same result as asking whether the RDF graph in the query is entailed by the default graph. Based on this observation, one may extrapolate that a ASK query containing no variables and only GRAPH graph patterns would yield the same result as dataset entailment.

		This can be used as a guide for formalizing the semantics of datasets, as can be seen in Section 3.7.

	
	

	

3. Formal definitions

	This section presents the different options proposed, together with their formal definitions. We include each time a discussion of the merits of the choice, and some properties.

	Each subsection here describes the option informally, before presenting the formal definitions. As far as the formal part is concerned, one has to be familiar with the definitions given in RDF Semantics. We rely a lot on the notion of interpretation and entailment, which are key in model theory.

	All proposed options share some commonalities:

	
			they behave identically on datasets that do not contain named graphs; precisely, entailment between datasets having no named graph is carried out in the same way as entailment between RDF graphs;

			they define notions of interpretation and entailment in function of the corresponding notions in RDF Semantics.

	

	The first item above reflects the indication given in [RDF11-MT] (Section "RDF Datasets") with respect to dataset semantics: a dataset SHOULD be understood to have at least the same content as its default graph.

	The dependency on RDF semantics is such that most of the dataset semantics below reuse RDF semantics as a black box. More precisely, it is not necessary to be specific about how truth of RDF graphs is defined as long as there is a notion of interpretation that determines the truth of a set of triples. In fact, RDF Semantics does not define a single formal semantics, but multiple ones, depending on what standard vocabularies are endorsed by an application (such as the RDF, RDFS, XSD vocabularies). Consequently, we parameterize most of the definitions below with an unspecified entailment regime E. RDF 1.1 defines the following entailment regimes: simple entailment, D-entailment, RDF-entailment, RDFS-entailment. Additionally, OWL defines two other entailment regimes, based on the OWL 2 direct semantics [OWL2-DIRECT-SEMANTICS] and the OWL 2 RDF-based semantics [OWL2-RDF-BASED-SEMANTICS].

	For an entailment regime E, we will say E-interpretation, E-entailment, E-equivalence, E-consistency to describe the notions of interpretations, entailment, equivalence and consistency associated with the regime E. Similarly, we will use the terms dataset-interpretation, dataset-entailment, dataset-equivalence, dataset-consistency for the corresponding notions in dataset semantics.

	This document provides examples in TriG [TRIG] and assumes that the following prefixes are defined:

	
 Namespace prefixes and IRIs used in this document

 	Namespace prefix
 	Namespace IRI

 	rdf
 	http://www.w3.org/1999/02/22-rdf-syntax-ns#

 	rdfs
 	http://www.w3.org/2000/01/rdf-schema#

 	xsd
 	http://www.w3.org/2001/XMLSchema#

 	ex
 	http://example.org/voc#

	
		3.1 Named graphs have no meaning

		The simplest semantics defines an interpretation of a dataset as an RDF interpretation of the default graph. The dataset is true, according to the interpretation, if and only if the default graph is true. In this case, any datasets that have equivalent default graphs are dataset-equivalent.

		This means that the named graphs in a dataset are irrelevant to determining the truth of a dataset. Therefore, arbitrary modifications of the named graphs in a graph store always yield a logically equivalent dataset, according to this semantics.

		
		
			3.1.1 Formalization

			Considering an entailment regime E, a dataset-interpretation with respect to E is an E-interpretation. Given an interpretation I and a dataset D having default graph G and named graphs NG, I(D) is true if and only if I(G) is true.

		
		
		
			3.1.2 Examples of entailment and non-entailments

			Consider the following dataset:

			
		Example 1
{ ex:s ex:p ex:o . }
ex:g1 { ex:a ex:b ex:c }

		does not dataset-entail:

		Example 2
{ ex:s ex:p ex:o .
 ex:a ex:b ex:c .}

		but dataset-entails:

		Example 3
{} # empty default graph
ex:g2 { ex:x ex:y ex:z }

		Since graph names are not particularly constrained, one can use them in triples, for instance:

		Example 4
{ ex:g1 ex:author ex:Bob .
 ex:g1 ex:created "2013-09-17"^^xsd:date .}
ex:g1 { ex:a ex:b ex:c }

		but it would dataset-entail:

		Example 5
{ ex:g1 ex:author ex:Bob .
 ex:g1 ex:created "2013-09-17"^^xsd:date .}
ex:g1 { ex:x ex:y ex:z }

		

		
			3.1.3 Properties of this dataset semantics

			Assuming this semantics is convenient since it merely ignores named graphs in a dataset for any reasoning task. As a result, datasets can be simply treated as regular RDF graphs by extracting the default graph. Named graphs can still be used to preserve useful information, but it bears no more meaning than a commentary in a program source code.

			The obvious disadvantage is that, since named graphs are completely disregarded in terms of meaning, there is no guarantee that any information intended to be conveyed by the named graphs is preserved by inference.

		
	

	
		3.2 Default graph as union or as merge

		It is sometimes assumed that named graphs are simply a convenient way of sorting the triples but all the triples participate in a united knowledge base that takes the place of the default graph. More precisely, a dataset is considered to be true if all the triples in all the graphs, named or default, are true together. This description allows two formalizations of dataset semantics, depending on how blank nodes spanning several named graphs are treated. Indeed, if one blank node appears in several named graphs, it may be intentional, to indicate the existence of only one thing across the graphs, in which case union is appropriate. If the sharing of blank nodes is incidental, merge is also an applicable solution.

		
			3.2.1 Formalization: first version

			We define a dataset-interpretation with respect to an entailment regime E as an E-interpretation. Given a dataset-interpretation I and a dataset D having default graph G and named graphs NG, I(D) is true if and only if I(G) is true and for all ng in NG, I(ng) is true.

			This is equivalent to I(D) is true if I(H) is true where H is the merge of all the RDF graphs, named or default, appearing in D.

		
		
		
			3.2.2 Formalization: second version

			We define a dataset-interpretation with respect to an entailment regime E as an E-interpretation. Given a dataset-interpretation I and a dataset D having default graph G and named graphs NG, I(D) is true if and only if I(H) is true where H is the union of all the RDF graphs, named or default, appearing in D.

			An alternative presentation of this variant is the following: define I+A to be an extended interpretation which is like I except that it uses A to give the interpretation of blank nodes; define blank(D) to be the set of blank nodes in D. Then I(D) is true if and only if [I+A](D) is true for some mapping A from blank(D) to the set of resources in I.

		
		
		
			3.2.3 Examples

			Consider the following dataset:

		Example 6
{ ex:s ex:p ex:o . } # default graph
ex:g1 { ex:a ex:b ex:c }

		dataset-entails:

		Example 7
{ ex:s ex:p ex:o .
 ex:a ex:b ex:c .}

		If the entailment regime E is RDFS with the recognized datatype xsd:integer, then the following RDF dataset is RDFS-dataset-inconsistent:

		Example 8
{ } # empty default graph
ex:g1 { ex:age rdfs:range xsd:integer . }
ex:g2 { ex:bob ex:age "twenty" .}

		
		
		
			3.2.4 Properties of this dataset semantics

			This semantics allows one to partition the triples of an RDF graph into multiple named graphs for easier data management, yet retaining the meaning of the overall RDF graph. Note that this choice of semantics does not impact the way graph names are interpreted: it is possible to further constrain the graph names to denote the RDF graph associated with it, or other possible constraints. The possible interpretations of graph names, and their consequences, are presented in the next sections.

			This semantics is implicitly assumed by existing graph store implementations. The OWLIM RDF database management system implements reasoning techniques over RDF datasets that materialize inferred statements into the database [[citation needed]]. This is done by taking the union of the graphs in the named graphs, applying standard entailment regimes over this RDF graph and putting the inferred triples into the default graph.

			This dataset semantics makes all triples in the named graphs contribute to a global knowledge, thus making the whole dataset inconsistent whenever two graphs are mutually contradictory. In situations where named graphs are used to store RDF graphs obtained from various sources on the open Web, inconsistencies or contradictions can easily occur. Notably, Web crawlers of search engines harvest all RDF documents, and it is known as a fact that the Web contains documents serializing inconsistent RDF graphs as well as documents that are mutually contradicting yet consistent on their own. In this case, this semantics can be seen as problematic.

		
	

	
		3.3 The graph name denotes the named graph or the graph

		It is common to use the graph name as a way to identify the RDF graph inside the named graphs, or rather, to identify a particular occurrence of the graph. This allows one to describe the graph or the graph source in triples. For instance, one may want to say who the creator of a particular occurrence of a graph is. Assuming this semantics for graph names amounts to say that each named graph pair is an assertion that sets the referent of the graph name to be the associated graph or named graph pair.

		Intuitively, this semantics can be seen as quoting the RDF graphs inside the named graphs. In this sense, ex:alice {ex:bob ex:is ex:smart} has to be understood as Alice said: “Bob is smart” which does not entail Alice said: “Bob is intelligent” because Alice did not use the word “intelligent”, even though “smart” and “intelligent” can be understood as equivalent. Note, however, that this analogy is only valid insofar as it can provide an intuition of this type of semantics, but the formalization does not actually refer to speech and the act of asserting.

		
			3.3.1 Formalization

			In order to be consistent with RDF model theory, blank nodes used as graph names are treated like existential variables. Consequently, their semantics is formalized according to the same notation presented in [RDF11-MT]:

			Suppose I is an interpretation and A is a mapping from a set of blank nodes to the universe IR of I. Define the mapping [I+A] to be I on names, and A on blank nodes on the set: [I+A](x)=I(x) when x is a name and [I+A](x)=A(x) when x is a blank node; and extend this mapping to triples and RDF graphs using the rules given above for ground graphs.

			A dataset-interpretation I with respect to an entailment regime E is an E-interpretation extended to named graphs and datasets as follows:

				if (n,g) is a named graph where the graph name is an IRI, then I(n,g) is true if and only if I(n) = (n,g).
			
	if D is a dataset comprising default graph DG and named graphs NG, then I(D) is true if and only if there exists a mapping from blank nodes to the universe IR of I such that [I+A](DG) is true and for all named graph (n,g) in NG, [I+A](n) = (n,g).

			

		
		
		
			3.3.2 Examples

			Consider the following dataset:

		Example 9
{ } # empty default graph
ex:g1 { ex:a ex:b ex:c }
ex:g2 { ex:x ex:y ex:z }

		dataset-entails:

		Example 10
{ }
_:b { ex:a ex:b ex:c }
ex:g2 { ex:x ex:y ex:z }

		but does not dataset-entail:

		Example 11
{ }
ex:g1 { [] ex:b ex:c }
ex:g2 { ex:x ex:y ex:z }

		nor:

		Example 12
{ }
ex:g1 { }

			If the entailment regime E is RDFS with the recognized datatype xsd:integer, then the following RDF dataset is RDFS-dataset-inconsistent:

		Example 13
{ ex:age rdfs:range xsd:integer .
 ex:me ex:age ex:g1 . } # default graph
ex:g1 { ex:s ex:p ex:o }

			The graph name can be used in triples to attached metadata (here ex:hasNextVersion is a custom term that does not enforce a formal constraint, so it is up to the implementation to decide how to treat it):

		Example 14
{ ex:g1 ex:published "2013-08-26"^^xsd:date .
 ex:g1 ex:hasNextVersion ex:g2 .}
ex:g1 { ex:s1 ex:p1 ex:o1 .
 ex:s2 ex:p2 ex:o2 }
ex:g2 { ex:s1 ex:p1 ex:o1 }

		
		
		
			3.3.3 Properties of this dataset semantics

			There are important implications with this semantics. In this case, a named graph pair can only entail itself or a graph that is structurally equivalent if the graph name is a blank node. Graph names have to be handled almost like literals. Unlike other IRIs or blank nodes, their denotation is strictly fixed, like literals are. This means that graph IRIs may possibly clash with constraints on datatypes, as in the example above.

			A variant of this dataset semantics imposes that the graph name denotes the RDF graph itself, rather than the pair. This means that two occurrences of the same graph in different named graph pairs actually identify the same thing. Thus, the graph names associated with the same RDF graphs are interchangeable in any triple in this case.

		
	

	
		3.4 Each named graph defines its own context

		Named graphs in RDF datasets are sometimes used to delimit a context in which the triples of the named graphs are true. From the truth of these triples according to the graph semantics, follows the truth of the named graph pair. An example of such situation occurs when one wants to keep track of the evolution of facts with time. Another example is when one wants to allow different viewpoints to be expressed and reasoned with, without creating a conflict or inconsistency. By having inferences done at the named graph level, one can prevent for instance that triples coming from untrusted parties are influencing trusted knowledge. Yet it does not disallow reasoning with and drawing conclusions from untrusted information.

		Intuitively, this semantics can be seen as interpreting the RDF graphs inside the named graphs. In this sense, ex:alice {ex:bob ex:is ex:smart} has to be understood as Alice said that Bob is smart which entails Alice said that Bob is intelligent because it is what Bob means, whether he used the term “smart”, “intelligent”, or “bright”. Neither sentence implies that Alice used these actual words.

		
			3.4.1 Formalization

			There are several possible formalizations of this leading to similar entailments. One way is to interpret the graph name as denoting a graph, and a named graph pair is true if this graph entails the graph inside the pair. In this case, a dataset-interpretation with respect to an entailment regime E is an E-interpretation such that:

			
					given a mapping A from blank nodes to the univers IR and a named graph pair ng = (n,G), [I+A](ng) is true if [I+A](n) is an RDF graph and E-entails G;

					for a dataset D = (DG,NG), I(D) is true if there exists a mapping A from blank nodes to the universe IR such that [I+A](DG) is true and for all named graph ng in NG, [I+A](ng) is true;
				
	I(D) is false otherwise.

			

		
		
		
			3.4.2 Examples

			Consider the following dataset:

		Example 15
{ } # empty default graph
ex:g1 { ex:YoutubeEmployee rdfs:subClassOf ex:GoogleEmployee .
 ex:steveChen rdf:type ex:YoutubeEmployee . }
ex:g2 { ex:chadHurley rdf:type ex:YoutubeEmployee }

		RDFS-dataset-entails:

		Example 16
{ }
ex:g1 { ex:steveChen rdf:type ex:GoogleEmployee }

		but does not RDFS-dataset-entail:

		Example 17
{ }
ex:g2 { ex:chadHurley rdf:type ex:GoogleEmployee }

		Graph names used in triples that express metadata do not necessarily generate inconsistency:

		Example 18
{ ex:g1 ex:validAfter "2006"^^xsd:gYear .
 ex:g1 ex:published "2013-08-26"^^xsd:date .
 ex:g2 ex:validAt "2005"^^xsd:gYear .}
ex:g1 { ex:YoutubeEmployee rdfs:subClassOf ex:GoogleEmployee .
 ex:steveChen rdf:type ex:YoutubeEmployee . }
ex:g2 { ex:chadHurley rdf:type ex:YoutubeEmployee }

			(here, ex:validAfter and ex:validAt are custom terms that do not enforce a formal constraint, but may be used internally for, e.g., checking the temporal validity of triples in the named graph).

		
		
		
			3.4.3 Properties of this dataset semantics

			This semantics assumes that the truth of named graphs is preserved when replacing the RDF graphs inside named graphs with equivalent graphs. This means in particular, that one can normalize literals and still preserve the truth of a named graph. This means too that standard RDF inferences that can be drawn from the RDF graphs inside named graphs can be added to the graph associated with the graph name without impacting the truth of the RDF dataset.

			While this semantics does not guarantee that reasoning with RDF datasets will preserve the exact triples of an original dataset, it is semantically valid to store both the original and any entailed datasets.

			An example implementation of such a context-based semantics is Sindice [DELBRU-ET-AL-2008].

		
		
		
			3.4.4 Variants of this dataset semantics

			There are several variants of this type of dataset-semantics

			
					The default graph is interpreted as universal truth, that is, for a named graph (n,G), I(n) E-entails the default graph.

					The graph name does not denote an RDF graph but a resource associated with an RDF graph.

					Each named graph could be associated with a distinct E-interpretation and impose all interpretations to be true for their corresponding graph, in order for the dataset to be true.

			

		
	

	
		3.5 Named graph are in a particular relationship with what the graph name dereferences to

		In accordance with linked data principles, IRIs may be assumed to reference the document that is obtained by dereferencing it. If the document contains an RDF graph it can be assumed that the graph in the named graph is in a special relationship (such as, equals, entails) with this RDF graph.

		In such case, the truth of an RDF dataset is dependent on the state of the Web, and the same dataset may entail different statements at different times.

		
			3.5.1 Formalization

			Let d be the function that maps an IRI to an RDF graph that can be obtained from dereferencing the IRI. For an IRI u, d(u) is empty when dereferencing returns an error or a document that does not encode an RDF graph.

			A dataset-interpretation I with respect to an entailment regime E is an E-interpretation such that:

			
					for a named graph pair ng = (n,G), I(ng) is true if d(n) equals (respectively, is a subgraph of, is entailed by) G;

					for a dataset D = (DG,NG), I(D) is true if I(DG) is true and for all named graph ng in NG, I(ng) is true;
				
	I(D) is false otherwise.

			

		
		
		
			3.5.2 Examples

			Entailments in this semantics depend not only on the content of a dataset but also on the content of the Web and the ability of a reasoner to accept this content. Moreover, the entailments vary whether the considered relation is “equals”, or “subgraph of”, or “entailed by”.

			For instance, if the reasoner is offline, then the dereferencing function d in the previous definition always return an empty graph. In this case, if the relation is “equals” or “subgraph of”, only empty named graphs can be true; if the relation is “entails by”, then only named graphs containing axiomatic triples are true. In general, if the relationship is “equals”, named graph do not provide extra entailments.

		
		
		
			3.5.3 Properties of this dataset semantics

			The distinguishing characteristic of this dataset semantics is the fact that a single RDF dataset can lead to different entailments, depending on the state of the Web. This can be seen as a feature for systems that need to be in line with what is found online, but is a drawback for systems that must retain consistency even when they go offline.

		
	

	

	
	
		3.6 Quad semantics

		This approach consists in considering named graph as sets of quadruples, having the subject, predicate and object of the triples as first three components, and the graph IRI as the fourth element. Each quadruple is interpreted similarly to a triple in RDF, except that the relation that the predicate denotes is not indicating a binary relation but a ternary relation.

		This semantics is extending the semantics of RDF rather than simply reusing it.

		
			3.6.1 Formalization

			A quad-interpretation is a tuple (IR,IP,IEXT,IS,IL,LV) where IR, IP, IS, IL and LV are defined as in RDF and IEXT is a mapping from IP into the powerset of IR × IR union IR × IR × IR.

			Since this option modifies the notion of simple-interpretation, which is the basis for all E-interpretations in any entailment regime E, it is not clear how it can be extended to arbitrary entailment regimes. For instance, does the following quad set:

		Example 19
ex:a rdf:type ex:c ex:x .
ex:c rdfs:subClassOf ex:d ex:x .

		RDFS-dataset-entails:

		Example 20
ex:a rdf:type ex:d ex:x .

		
		
		
			3.6.2 Properties of this dataset semantics

			With this semantics, all inferences that are valid with normal RDF triples are preserved, but it is necessary to extend RDFS in order to accommodate for ternary relations. There are several existing proposals that extend this quad semantics by dealing with a specific “dimension”, such as time, uncertainty, provenance. For instance, temporal RDF [TEMPORAL-RDF] uses the fourth element to denote a time frame and thus allow reasoning to be performed per time frame. Special semantic rules allow one to combine triples in overlapping time frames. Fuzzy RDF [FUZZY-RDF] extends the semantics to deal with uncertainty. stRDF [ST-RDF] extends temporal RDF to deal with spatial information. Annotated RDF [ANNOTATED-RDF] generalizes the previous proposals.

		
	

	
		3.7 Quoted graphs

		Quoted graphs are a way to associate information to a specific RDF graph without constraining the relationship between a graph name and the graph associated with it in a dataset. An RDF graph is “quoted” by using a literal having a lexical form that is a syntactic expression of the graph. For instance:

		Example 21
{ ex:g ex:quotes "ex:a ex:b []"^^ex:turtle . }
ex:g { ex:b rdf:type rdfex:Property .
 ex:a ex:b _:x . }

		This technique allows one to assume a dataset semantics of contexts (as in Section 3.4) and still preserve an initial version of a graph. However, quoting big graphs may be cumbersome and would require a custom datatype to be recognized.

	

	
		3.8 Relationship with SPARQL entailment regime

		There is a strong relationship between SPARQL ASK queries with an entailment regime [SPARQL11-ENTAILMENT] and inferences in the regime. If an ASK query does not contain variables and its WHERE clause only contains a basic graph pattern, then the query can be seen as an RDF graph. If such a graph query Q returns true when issued against an RDF graph G with entailment regime E, then G E-entails Q. If it returns false, then G does not E-entail Q.

		A dataset semantics can also be compared to what ASK queries return when they do not contain variables but may contain basic graph patterns or graph graph patterns. For instance, consider the dataset:

		Example 22
{ }
ex:g1 { ex:x rdf:type ex:c .
 ex:c rdfs:subClassOf ex:d . }
ex:g2 { ex:y rdf:type ex:c . }

		Then the query:

		Example 23
ASK WHERE {
 GRAPH ex:g1 { ex:x rdf:type ex:d }
}

		with RDFS entailment regime would answer true, but the query:

		Example 24
ASK WHERE {
 GRAPH ex:g1 { ex:x rdf:type ex:d }
 GRAPH ex:g2 { ex:y rdf:type ex:d }
}

		would answer false.

		This can lead to a classification of dataset semantics in terms of whether they are compatible with SPARQL ASK queries or not. It can be noted that a semantics where each named graph defines its own context is “SPARQL-ASK-compatible”, while a semantics where the graph name denotes the graph or named graph is not compatible in this sense.

	

	

4. Declaring the intended semantics

	
	The RDF Working Group did not define a formal semantics for a multiple graph data model because none of the semantics presented before could obtained consensus. Choosing one or another of the propositions before would have gone against some deployed implementations. Therefore, the Working Group discussed the possibility to define several semantics, among which an implementation could choose, and provide the means to declare which semantics is adopted.

	This was not retained eventually, because of the lack of experience, so there is no definite option for this. Nonetheless, for completeness, we describe here possible solutions.

	Using vocabularies

	A dataset can be described in RDF using vocabularies like voiD [VOID] and the SPARQL service description vocabulary [SPARQL11-SERVICE-DESCRIPTION]. VoiD is used to describe how a collection of RDF triples is organized in a web site or across web sites, giving information about the size of the datasets, the location of the dump files, the IRI of the query endpoints, and so on. The notion of dataset in voiD is used as a more informal and broader concept than RDF dataset. However, an RDF dataset and the graphs in it can be describe as voiD datasets and the information can be completed with SPARQL service description

	Example 25
@prefix er: <http://www.w3.org/ns/entailment> .
@prefix sd: <http://www.w3.org/ns/sparql-service-description#> .
[] a sd:Dataset;
 sd:defaultEntailmentRegime er:RDF;
 sd:namedGraph [
 sd:name "http://example.com/ng1";
 sd:entailmentRegime er:RDFS
] .

	A vocabulary specifically tailored for describing the intended dataset semantics could be defined in a future specification.

	Using other mechanisms

	Communication of the intended semantics could be performed in various ways, from having the author tell the consumers directly, to inventing a protocol for this. Use of the HTTP protocol and content negotiation could be a possible way too. Special syntactic markers in the concrete serialization of datasets could convey the intended meaning. All of those are solutions that do not follow current practices.

A. Acknowledgements

This document is the result of extensive discussions that involved
many members of the RDF 1.1 Working Group. The editor especially
acknowledges valuable contributions from Richard Cyganiak, Sandro
Hawks, Pat Hayes, Ivan Herman, Peter F. Patel-Schneider, Guus
Schreiber, and David Wood.

B. Changes since the first public working draft of 17 December 2013

		2014-02-21: Fixed wrong style for some section titles.

		2014-02-21: Defined prefixes and updated TriG examples.

		2014-02-19: Updated references to [SPARQL11-QUERY].

		2014-02-19: Removed Issue 2, adding support for blank nodes in the formalization of the semantics.

		2014-02-19: Removed Issue 1 and added a sentence to mitigate the issue.

		2014-02-19: Added an explanatory sentence to the formalization of Section 3.3.

C. References
C.1 Informative references
	[ANNOTATED-RDF]
	Octavian Udrea, Diego Reforgiato Recupero, V. S. Subrahmanian. Annotated RDF. In The Semantic Web: Research and Applications, 3rd European Semantic Web Conference, ESWC 2006, Budva, Montenegro, June 11-14, 2006, Proceedings. Springer, LNCS 4011, pp. 487-501

	[CARROLL-05]
	Jeremy J. Carroll, Christian Bizer, Patrick J. Hayes and Patrick Stickler. Named Graphs, Provenance and Trust. Proc. 14th Int. Conf. on World Wide Web, WWW 2005, Chiba, Japan, May 10-14, 2005, pp. 613-622.

	[DELBRU-ET-AL-2008]
	Renaud Delbru, Axel Polleres, Giovanni Tummarello, Stefan Decker. Context Dependent Reasoning for Semantic Documents in Sindice. In Proceedings of the 4th International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS). Karlsruhe, Germany, 2008.

	[FUZZY-RDF]
	Umberto Straccia. A Minimal Deductive System for General Fuzzy RDF. In Web Reasoning and Rule Systems, Third International Conference, RR 2009, Chantilly, VA, USA, October 25-26, 2009, Proceedings. Springer, LNCS 5837, pp. 166-181

	[OWL2-DIRECT-SEMANTICS]
	Boris Motik; Peter Patel-Schneider; Bernardo Cuenca Grau. OWL 2 Web Ontology Language Direct Semantics (Second Edition). 11 December 2012. W3C Recommendation. URL: http://www.w3.org/TR/owl2-direct-semantics/

	[OWL2-RDF-BASED-SEMANTICS]
	Michael Schneider. OWL 2 Web Ontology Language RDF-Based Semantics (Second Edition). 11 December 2012. W3C Recommendation. URL: http://www.w3.org/TR/owl2-rdf-based-semantics/

	[RDF-MT]
	Patrick Hayes. RDF Semantics. 10 February 2004. W3C Recommendation. URL: http://www.w3.org/TR/rdf-mt/

	[RDF-SPARQL-QUERY]
	Eric Prud'hommeaux; Andy Seaborne. SPARQL Query Language for RDF. 15 January 2008. W3C Recommendation. URL: http://www.w3.org/TR/rdf-sparql-query/

	[RDF11-CONCEPTS]
	Richard Cyganiak, David Wood, Markus Lanthaler. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-concepts/

	[RDF11-MT]
	Patrick J. Hayes, Peter F. Patel-Schneider. RDF 1.1 Semantics. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-mt/

	[SPARQL11-ENTAILMENT]
	Birte Glimm; Chimezie Ogbuji. SPARQL 1.1 Entailment Regimes. 21 March 2013. W3C Recommendation. URL: http://www.w3.org/TR/sparql11-entailment/

	[SPARQL11-QUERY]
	Steven Harris; Andy Seaborne. SPARQL 1.1 Query Language. 21 March 2013. W3C Recommendation. URL: http://www.w3.org/TR/sparql11-query/

	[SPARQL11-SERVICE-DESCRIPTION]
	Gregory Williams. SPARQL 1.1 Service Description. 21 March 2013. W3C Recommendation. URL: http://www.w3.org/TR/sparql11-service-description/

	[ST-RDF]
	Manolis Koubarakis, Kostis Kyzirakos. Modeling and Querying Metadata in the Semantic Sensor Web: The Model stRDF and the Query Language stSPARQL. In The Semantic Web: Research and Applications, 7th Extended Semantic Web Conference, ESWC 2010, Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings, Part I. Springer, LNCS 6088, pp. 425-439.

	[TEMPORAL-RDF]
	Claudio Gutiérrez, Carlos A. Hurtado, Alejandro A. Vaisman. Temporal RDF. In The Semantic Web: Research and Applications, Second European Semantic Web Conference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005, Proceedings. Springer, LNCS 3532, pp. 93-107

	[TRIG]
	Gavin Carothers, Andy Seaborne. TriG: RDF Dataset Language. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-trig-20140225/. The latest edition is available at http://www.w3.org/TR/trig/

	[VOID]
	Keith Alexander; Richard Cyganiak; Michael Hausenblas; Jun Zhao. Describing Linked Datasets with the VoID Vocabulary. 3 March 2011. W3C Note. URL: http://www.w3.org/TR/void/

 [image: W3C]

 What’s New in RDF 1.1

 W3C Working Group Note 25 February 2014

 	This version:

 	http://www.w3.org/TR/2014/NOTE-rdf11-new-20140225/

 	Latest published version:

 	http://www.w3.org/TR/rdf11-new/

 	Previous version:

 	http://www.w3.org/TR/2013/WD-rdf11-new-20131217/

 	Editor:

 	David Wood, 3 Round Stones Inc.

 Please check the errata for any errors or issues
 reported since publication.

 Copyright ©
 2014

 W3C®
 (MIT,
 ERCIM,
 Keio, Beihang),

 All Rights Reserved.

 W3C liability,
 trademark and

 document use

 rules apply.

 Abstract

 This document provides the reader with a summary
 of changes to RDF introduced in RDF version 1.1.

	Status of This Document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C technical reports index at
 http://www.w3.org/TR/.

 This document is intended to provide the reader with a summary
of changes to RDF introduced in RDF version 1.1.

 This document was published by the RDF Working Group as a Working Group Note.

 If you wish to make comments regarding this document, please send them to
 public-rdf-comments@w3.org
 (subscribe,
 archives).

 All comments are welcome.

 Publication as a Working Group Note does not imply endorsement by the W3C
 Membership. This is a draft document and may be updated, replaced or obsoleted by other
 documents at any time. It is inappropriate to cite this document as other than work in
 progress.

 This document was produced by a group operating under the
 5 February 2004 W3C Patent
 Policy.

 W3C maintains a public list of any patent
 disclosures

 made in connection with the deliverables of the group; that page also includes
 instructions for disclosing a patent. An individual who has actual knowledge of a patent
 which the individual believes contains
 Essential
 Claim(s) must disclose the information in accordance with
 section
 6 of the W3C Patent Policy.

Table of Contents
	1. Introduction
	2. Abstract Syntax	2.1 Identifiers
	2.2 Literals
	2.3 Datasets
	2.4 Datatypes

	3. New Serialization Formats
	4. Semantics
	A. Acknowledgments
	B. References	B.1 Normative references
	B.2 Informative references

	

1. Introduction

 This document is informative in nature. Its
 purpose is to provide a summary of differences between RDF versions 1.0
 and 1.1 and to introduce new additions in a very brief manner.

		Readers new to RDF should start with the RDF 1.1 Primer
		[RDF11-PRIMER] and then move on to the specifications in which they are
		most interested. This document is meant to serve as a guide for those
		already familiar with RDF 1.0 who wish to understand changes in version
		1.1.

 Normative specifications of RDF can be found in the
		following documents:

 	A document describing the basic concepts underlying RDF, as
 well as abstract syntax ("RDF Concepts and Abstract Syntax")
 [RDF11-CONCEPTS]

 	A document describing the formal model-theoretic semantics
 of RDF ("RDF Semantics") [RDF11-MT]

 	Specifications of concrete syntaxes for RDF, such as Turtle
 [TURTLE], TriG [TRIG], N-Triples [N-TRIPLES],
			N-Quads [N-QUADS] and JSON-LD [JSON-LD]. RDFa [RDFA-PRIMER]
			is also a concrete syntax for RDF, but it was not defined
			by the RDF Working Group. The 2004 RDF/XML syntax
		was updated to be in line with the RDF 1.1
		specifications [RDF11-XML].

 	A document describing RDF Schema [RDF11-SCHEMA], which
		provides a data-modeling vocabulary for RDF data.

		The following prefixes are used in this document:

		
		
		 Prefixes and IRIs
		 	Namespace prefix	Namespace IRI	RDF vocabulary

		 	rdf	http://www.w3.org/1999/02/22-rdf-syntax-ns#	The RDF built-in vocabulary [RDF11-SCHEMA]

		 	xsd	http://www.w3.org/2001/XMLSchema#	The
		 RDF-compatible XML Schema datatypes

		

	

2. Abstract Syntax

	
2.1 Identifiers

	
Identifiers in RDF 1.1 are now IRIs. The following table
summarizes specific differences.

	

 Identifiers in RDF 1.0 and 1.1.

 	
		RDF 1.0
		RDF 1.1

		Identifiers
		RDF URI References
		IRIs

		Additional characters
		
	"<", ">",
	"{", "}", "|", "\", "^",
	"`", ‘"’ (double quote), and " " (space)
	
		None; percent-encoding must be used as described in
 section 2.1 of [RFC3986].

		Fragment identifiers
		Fragment identifiers interpreted in accordance with RDF/XML representation.
	
		Full IRIs, including possible fragment identifiers, denote a resource.
	

		Blank nodes
		
	RDF 1.0 makes no reference to any internal structure of blank nodes. Given two
	blank nodes, it is possible to determine whether or not they are the same.
	
		
	Blank node identifiers are local identifiers that are used in
 some concrete RDF syntaxes or RDF store implementations. They are
 always locally scoped to the file or RDF store, and are not
 persistent or portable identifiers for blank nodes. See the section
 in Concepts and Abstract Syntax regarding Skolemization if blank
 nodes must be shared between implementations.
	

	
2.2 Literals

	
The following table summarizes differences in the handling of literals.

 Literals in RDF 1.0 and 1.1.

 	
		RDF 1.0
		RDF 1.1

		Language tags
		Literals with a language tag did not have a datatype URI.
		Literals with language tags now have the datatype IRI
 rdf:langString.

		Simple literals
		Simple literals could appear directly, e.g. "a literal".
		All literals have datatypes; serializations or other
 implementations might choose to support syntax for simple literals,
 but only as synonyms for xsd:string literals.

		Control codes in the #x0-#x1F range were permitted.
		The xsd:string datatype does not permit the
 #x0 character, and implementations might not permit control codes in
 the #x1-#x1F range. A literal with type xsd:string
 containing the #x0 character is ill-typed.

		Language tags
		Permitted language tags that adhered to the generic
 tag/subtag syntax of language tags, but were not well-formed
 according to [BCP47].
		Language tags must be well-formed according to [BCP47].

	
Planned updates to DOM version 4 [DOM4] are not complete as of
this writing. The Working	Group decided to
follow the changes to the DOM in order to support the
new datatype rdf:HTML.
The unfinished status of DOM version 4 is why both
rdf:HTML and rdf:XMLLiteral are
non-normative in RDF 1.1 Concepts. RDF 1.1 Concepts and Abstract
Syntax clarifies functionality deemed to be
useful for those including fragments of XML and HTML content in RDF
serialization formats.

		

	

2.3 Datasets

	
RDF 1.1 introduces the concept of RDF Datasets. An RDF Dataset is a collection of RDF
Graphs. SPARQL 1.1 [SPARQL11-OVERVIEW] also defines the concept of an RDF Dataset, but
the definition in RDF 1.1 differs slightly in that RDF 1.1 allows RDF Graphs to be
identified using either an IRI or a blank node. More information is available in
RDF 1.1 Concepts and Abstract Syntax.

The semantics of RDF Datasets
are minimally specified as of RDF
1.1. The Working Group published a
draft Note discussing issues related
to semantics of datasets [RDF11-DATASETS].

		
RDF Graphs may be named using an IRI or a blank node. RDF Graphs that are so named are
called named graphs.

		
RDF 1.1 includes three new serialization formats capable of
representing multiple graphs.

	

	
2.4 Datatypes

	
A table of RDF-compatible XSD datatypes has been added to RDF 1.1 Concepts and
Abstract Syntax. Any XSD datatypes not represented in this table are incompatible
with RDF. The following XSD 1.1 datatypes were added to the list of
RDF-compatible datatypes:

	

 	xsd:duration

 	xsd:dayTimeDuration

 	xsd:yearMonthDuration

 	xsd:dateTimeStamp

Support for rdf:XMLLiteral support is now
optional. Technically, support for
any individual datatype is optional and therefore may not be present in a given
implementation. RDF-conformant specifications may require specific
datatype maps.

3. New Serialization Formats

RDF 1.1 introduces a number of new serialization formats. RDF 1.1 Concepts and
Abstract Syntax makes it clear that RDF/XML is no longer the only recommended serialization
format; RDF itself should be considered to be the data model (the
abstract syntax), not any particular serialization.

 Fig. 1 RDF 1.0 and 1.1 serialization formats

4. Semantics

Most of the changes between RDF and RDF 1.1 do not have any effect on
implementations of entailment.

Datatype entailment formally refers to a set of 'recognized' datatypes,
replacing datatype maps in RDF 1.0 Semantics, but this does not have any
effect on implementation.

Datatype entailment formally refers to a set of 'recognized' datatype IRIs.
The RDF 1.0 Semantics used the concept of a datatype map: in the new semantic
description, this is the mapping from recognized IRIs to the datatypes they
identify. This change does not have any effect on implementation or semantic
entailments.

RDF entailment has two required datatypes xsd:string
and rdf:langString
which must be recognized, but this doesn't appreciably add to RDF
entailment as these two datatypes replace plain literals.

One change that does affect entailment is that graphs containing invalid
literals (e.g., "a"^^xsd:integer) are immediately inconsistent for
recognized datatypes, even in sub-RDFS entailment regimes.

RDF 1.1 includes RDF Datasets. However, the semantics of RDF Datasets in
RDF 1.1 is minimal and entailment per se is only defined on RDF graphs so
there are no changes here.

	

A. Acknowledgments

The editor gratefully acknowledges the members of the RDF Working
Group who contributed to this document, including Richard Cyganiak,
Gavin Garothers, Pat Hayes, Sandro Hawke, Gregg Kellogg, Markus
Lanthaler, Peter Patel-Schneider, Eric Prud-hommeaux, Guus Schreiber
and Manu Sporny.

The membership of the RDF Working Group included Thomas Baker,
Scott Bauer, Dan Brickley, Gavin Carothers, Pierre-Antoine Champin,
Olivier Corby, Richard Cyganiak, Souripriya Das, Ian Davis, Lee
Feigenbaum, Fabien Gandon, Charles Greer, Alex Hall, Steve Harris,
Sandro Hawke, Pat Hayes, Ivan Herman, Nicholas Humfrey, Kingsley
Idehen, Gregg Kellogg, Markus Lanthaler, Arnaud Le Hors, Peter F.
Patel-Schneider, Eric Prud'hommeaux, Yves Raimond, Nathan Rixham, Guus
Schreiber, Andy Seaborne, Manu Sporny, Thomas Steiner, Ted Thibodeau,
Mischa Tuffield, William Waites, Jan Wielemaker, David Wood, Zhe Wu,
and Antoine Zimmermann.

B. References
B.1 Normative references
	[BCP47]
	A. Phillips; M. Davis. Tags for Identifying Languages. September 2009. IETF Best Current Practice. URL: http://tools.ietf.org/html/bcp47

	[DOM4]
	Anne van Kesteren; Aryeh Gregor; Ms2ger; Alex Russell; Robin Berjon. W3C DOM4. 4 February 2014. W3C Last Call Working Draft. URL: http://www.w3.org/TR/dom/

	[JSON-LD]
	Manu Sporny, Gregg Kellogg, Markus Lanthaler, Editors. JSON-LD 1.0. 16 January 2014. W3C Recommendation. URL: http://www.w3.org/TR/json-ld/

	[N-QUADS]
	Gavin Carothers. RDF 1.1 N-Quads. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-n-quads-20140225/. The latest edition is available at http://www.w3.org/TR/n-quads/

	[N-TRIPLES]
	Gavin Carothers, Andy Seabourne. RDF 1.1 N-Triples. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-n-triples-20140225/. The latest edition is available at http://www.w3.org/TR/n-triples/

	[RDF11-CONCEPTS]
	Richard Cyganiak, David Wood, Markus Lanthaler. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-concepts/

	[RDF11-MT]
	Patrick J. Hayes, Peter F. Patel-Schneider. RDF 1.1 Semantics. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/. The latest edition is available at http://www.w3.org/TR/rdf11-mt/

	[RDF11-SCHEMA]
	Dan Brickley, R. V. Guha. RDF Schema 1.1. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf-schema-20140225/. The latest published version is available at http://www.w3.org/TR/rdf-schema/.

	[RDF11-XML]
	Fabien Gandon, Guus Schreiber. RDF 1.1 XML Syntax. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/. The latest published version is available at http://www.w3.org/TR/rdf-syntax-grammar/.

	[RDFA-PRIMER]
	Ivan Herman; Ben Adida; Manu Sporny; Mark Birbeck. RDFa 1.1 Primer - Second Edition. 22 August 2013. W3C Note. URL: http://www.w3.org/TR/rdfa-primer/

	[RFC3986]
	T. Berners-Lee; R. Fielding; L. Masinter. Uniform Resource Identifier (URI): Generic Syntax (RFC 3986). January 2005. RFC. URL: http://www.ietf.org/rfc/rfc3986.txt

	[TRIG]
	Gavin Carothers, Andy Seaborne. TriG: RDF Dataset Language. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-trig-20140225/. The latest edition is available at http://www.w3.org/TR/trig/

	[TURTLE]
	Eric Prud'hommeaux, Gavin Carothers. RDF 1.1 Turtle: Terse RDF Triple Language. W3C Recommendation, 25 February 2014. URL: http://www.w3.org/TR/2014/REC-turtle-20140225/. The latest edition is available at http://www.w3.org/TR/turtle/

B.2 Informative references
	[RDF11-DATASETS]
	Antoine Zimmermann. RDF 1.1: On Semantics of RDF Datasets. W3C Working Group Note, 25 February 2014. The latest version is available at http://www.w3.org/TR/rdf11-datasets/.

	[RDF11-PRIMER]
	Guus Schreiber, Yves Raimond. RDF 1.1 Primer. W3C Working Group Note, 25 February 2014. The latest version is available at http://www.w3.org/TR/rdf11-primer/.

	[SPARQL11-OVERVIEW]
	The W3C SPARQL Working Group. SPARQL 1.1 Overview. 21 March 2013. W3C Recommendation. URL: http://www.w3.org/TR/sparql11-overview/

StyleSheets/TR/logo-CG-Note.png

rdf-schema/diff.xhtml
delete: <?xml version="1.0" encoding="utf-8"?> delete: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> delete: <html xmlns="http://www.w3.org/1999/xhtml"> insert: <!DOCTYPE html> insert: <html lang="en" typeof="bibo:Document w3p:REC" about="" property="dcterms:language" content="en" prefix="bibo: http://purl.org/ontology/bibo/ w3p: http://www.w3.org/2001/02pd/rec54#" xmlns="http://www.w3.org/1999/xhtml"> delete: <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> insert: <meta http-equiv="content-type" content="text/html; charset=utf-8" /> RDF Vocabulary Description Language 1.0: RDF Schema 1.1 insert: <style> delete: <link rel="stylesheet" type="text/css"
 href="http://www.w3.org/StyleSheets/TR/W3C-REC" /> insert: <style> insert: <style> insert: <link rel="stylesheet" href="https://www.w3.org/StyleSheets/TR/W3C-REC" />
 delete: <body> delete: <div class="head"> insert: <body class="h-entry" role="document" id="respecDocument"> insert: <div class="head" role="contentinfo" id="respecHeader"> delete: <img height="48" width="72"
src="http://www.w3.org/Icons/w3c_home" alt="W3C" border="0" /> delete: delete: </p> delete: <h1 id="title"> RDF Vocabulary Description Language 1.0: insert: [image: W3C] insert: insert: </p>

 insert: <h1 property="dcterms:title" id="title" class="title p-name"> RDF Schema 1.1

 delete: <h2 id="doctype"> insert: <h2 content="2014-02-24T23:00:00.000Z" datatype="xsd:dateTime" property="dcterms:issued" id="w3c-recommendation-25-february-2014"> insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> Recommendation 10 insert: <time datetime="2014-02-25" class="dt-published"> 25 February 2004 2014 insert: </time>

 		 This Version: version:

 		 delete: http://www.w3.org/TR/2004/REC-rdf-schema-20040210/ insert: http://www.w3.org/TR/2014/REC-rdf-schema-20140225/

 		 Latest Version: published version:

 		 delete: insert: http://www.w3.org/TR/rdf-schema/

 		 Previous Version: version:

 		 delete: http://www.w3.org/TR/2003/PR-rdf-schema-20031215/ insert: http://www.w3.org/TR/2014/PER-rdf-schema-20140109/

 		 Editors:

 delete: <dd> delete: insert: <dd inlist="" rel="bibo:editor" class="p-author h-card vcard"> 		 insert: insert: Dan Brickley , W3C < delete: <a> danbri@w3.org delete: > Google insert:

 delete: <dd> insert: <dd inlist="" rel="bibo:editor" class="p-author h-card vcard"> 		 insert: insert: R.V. Guha, IBM < delete: rguha@us.ibm.com delete: > Guha insert: , Google insert:

 		 Series editor: Previous Editors:

 		 delete: Brian McBride delete: (Hewlett Packard Labs) < delete: bwm@hplb.hpl.hp.com delete: >

 delete: Acknowledgments delete: Please refer to the delete: check the insert: errata for any errors or issues reported since publication. insert: </p>

 insert: <p> This document is also available in this document, which non-normative format: insert: diff w.r.t. 2004 Recommendation insert: insert: </p>

 insert: <p> The English version of this specification is the only normative version. Non-normative insert: translations insert: may include some normative corrections. delete: </p> delete: <p> See also delete: translations delete: . be available.

 Copyright © 2004 Â© 2004-2014 delete: <acronym title="World Wide Web Consortium"> insert: <abbr title="World Wide Web Consortium"> W3C delete: </acronym> insert: </abbr> ® Â® (delete: <acronym title="Massachusetts Institute of Technology"> insert: <abbr title="Massachusetts Institute of Technology"> MIT delete: </acronym> insert: </abbr> , delete: delete: <acronym title="European Research Consortium for Informatics and Mathematics"> insert: insert: <abbr title="European Research Consortium for Informatics and Mathematics"> ERCIM delete: </acronym> insert: </abbr> , Keio insert: , insert: Beihang), All Rights Reserved. insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> liability , trademark , and document use and delete: software licensing delete: rules apply.

 insert: <hr />

 delete: <hr /> delete: <h2> insert: <section id="abstract" class="introductory" property="dcterms:abstract" datatype="" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_abstract"> Abstract

 The Resource Description Framework (RDF) is a general-purpose language for representing information in the Web. This specification describes how to use RDF to describe RDF vocabularies. This specification defines a RDF Schema provides a data-modelling vocabulary for this purpose and defines other built-in RDF vocabulary initially specified in the RDF Model and Syntax Specification. delete: </p> delete: <div class="status"> delete: <h2 class="nonum"> delete: RDF data. RDF Schema is an extension of the basic RDF vocabulary. insert: </p>

 insert: </section> insert: <section class="introductory" id="sotd" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_sotd"> Status of this This Document delete:

 delete: <p> This document has been reviewed by W3C Members and other interested parties, and it has been endorsed by the Director as a delete: W3C Recommendation delete: . W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web. delete: </p> delete: <p> This is one document in a delete: set of six delete: (delete: Primer delete: , delete: Concepts delete: , delete: Syntax delete: , delete: Semantics delete: , delete: Vocabulary delete: , and delete: Test Cases delete:) intended to jointly replace the original Resource Description Framework specifications, delete: RDF Model and Syntax (1999 Recommendation) delete: and delete: RDF Schema (2000 Candidate Recommendation) delete: . It has been developed by the delete: RDF Core Working Group delete: as part of the delete: W3C Semantic Web Activity delete: (delete: Activity Statement delete: , delete: Group Charter delete:) for publication on 10 February 2004. delete: </p> delete: <p> Changes to this document since the delete: <a
href="http://www.w3.org/TR/2003/PR-rdf-schema-20031215/"
shape="rect"> Proposed Recommendation Working Draft delete: are detailed in the delete: change log delete: . delete: </p> delete: <p> The public is invited to send comments to delete: www-rdf-comments@w3.org delete: (delete: archive delete:) and to participate in general discussion of related technology on delete: <a
href="mailto:www-rdf-interest@w3.org"
shape="rect"> www-rdf-interest@w3.org delete: (delete: <a
href="http://lists.w3.org/Archives/Public/www-rdf-interest/"
shape="rect"> archive delete:). delete: </p> delete: <p> A list of delete: implementations delete: is available. delete: </p> delete: <p> The W3C maintains a list of delete: <a href="http://www.w3.org/2001/sw/RDFCore/ipr-statements"
rel="disclosure"> any patent disclosures related to this work delete: . delete: </p> This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> publications and the latest revision of this technical report can be found in the insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> technical reports index at http://www.w3.org/TR/.

 delete: </div> delete: <h2> delete: delete: insert: <p> This document is an edited version of the 2004 RDF Schema Recommendation. The purpose of this revision is to make this document available as part of the RDF 1.1 document set. Changes are limited to errata, revised references, terminology updates, and adaptations to the introduction. The title of the document was changed from "RDF Vocabulary Description Language 1.0: RDF Schema" to "RDF Schema 1.1". The technical content of the document is unchanged. Details of the changes are listed in the insert: Changes insert: section. Since the edits to this document do not constitute a technical change the Director decided no new implementation report was required. insert: </p>

 insert: <p> This document was published by the insert: RDF Working Group insert: as a Recommendation. If you wish to make comments regarding this document, please send them to insert: public-rdf-comments@w3.org insert: (insert: subscribe insert: , insert: archives insert:). All comments are welcome. insert: </p>

 insert: <p> This document has been reviewed by insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> Members, by software developers, and by other insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> groups and interested parties, and is endorsed by the Director as a insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> Recommendation. It is a stable document and may be used as reference material or cited from another document. insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> 's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web. insert: </p>

 insert: <p> This document was produced by a group operating under the insert: 5 February 2004 insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> Patent Policy insert: . insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> maintains a insert: public list of any patent disclosures insert: made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains insert: Essential Claim(s) insert: must disclose the information in accordance with insert: section 6 of the insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr> Patent Policy insert: . insert: </p>

 insert: </section> insert: <section id="toc"> insert: <h2 class="introductory" aria-level="1" role="heading" id="h2_toc"> Table of Contents

 delete: <blockquote> insert: <ul class="toc" role="directory" id="respecContents"> insert: <li class="tocline"> 		 insert: insert: 1. delete: insert: Introduction delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 2. delete: insert: Classes delete:
 insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: 2.1 delete: insert: rdfs:Resource delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 2.2 delete: insert: rdfs:Class delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 2.3 delete: insert: rdfs:Literal delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 2.4 delete: insert: rdfs:Datatype delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 2.5 delete: insert: rdf:langString insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.6 insert: rdf:HTML insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.7 insert: rdf:XMLLiteral delete:
 2.6 delete: insert:

 insert: <li class="tocline"> 		 insert: insert: 2.8 insert: rdf:Property delete:
 insert:

 insert:

 insert:

 insert: <li class="tocline"> 		 insert: insert: 3. delete: insert: Properties delete:
 insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: 3.1 delete: insert: rdfs:range delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 3.2 delete: insert: rdfs:domain delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 3.3 delete: insert: rdf:type delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 3.4 delete: insert: rdfs:subClassOf delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 3.5 delete: insert: rdfs:subPropertyOf delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 3.6 delete: insert: rdfs:label delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 3.7 delete: insert: rdfs:comment delete:
 insert:

 insert:

 insert:

 insert: <li class="tocline"> 		 insert: insert: 4. delete: insert: Using the Domain and Range vocabulary (Informative) delete: delete:
 insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 5. delete: insert: Other vocabulary delete:
 insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: 5.1 delete: insert: Container Classes and Properties delete:
 insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: 5.1.1 delete: insert: rdfs:Container delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.1.2 delete: insert: rdf:Bag delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.1.3 delete: insert: rdf:Seq delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.1.4 delete: insert: rdf:Alt delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.1.5 delete: insert: rdfs:ContainerMembershipProperty delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.1.6 delete: insert: rdfs:member delete:
 insert:

 insert:

 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.2 delete: insert: RDF Collections delete:
 insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: 5.2.1 delete: insert: rdf:List delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.2.2 delete: insert: rdf:first delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.2.3 delete: insert: rdf:rest delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.2.4 delete: insert: rdf:nil delete:
 insert:

 insert:

 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.3 delete: insert: Reification Vocabulary delete:
 insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: 5.3.1 delete: insert: rdf:Statement delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.3.2 delete: insert: rdf:subject delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.3.3 delete: insert: rdf:predicate delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.3.4 delete: insert: rdf:object delete:
 insert:

 insert:

 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.4 delete: insert: Utility Properties delete:
 insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: 5.4.1 delete: insert: rdfs:seeAlso delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.4.2 delete: insert: rdfs:isDefinedBy delete:
 insert:

 insert: <li class="tocline"> 		 insert: insert: 5.4.3 delete: insert: rdf:value delete:
 insert:

 insert:

 insert:

 insert:

 insert:

 insert: <li class="tocline"> 		 insert: insert: 6. delete: insert: RDF Schema summary (Informative) delete: delete:
 insert: insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: 6.1 delete: Classes delete: delete:
 insert: RDF classes insert: insert:

 insert: <li class="tocline"> 		 insert: insert: 6.2 delete: Properties delete: delete:
 7. delete: insert: RDF properties insert: insert:

 insert:

 insert:

 insert: <li class="tocline"> 		 insert: insert: A. insert: Acknowledgments insert: insert:

 insert: <li class="tocline"> 		 insert: insert: B. insert: Change since 2004 Recommendation insert: insert:

 insert: <li class="tocline"> 		 insert: insert: C. insert: References delete:
 7.1 delete: insert: <ul class="toc"> insert: <li class="tocline"> 		 insert: insert: C.1 insert: Normative References delete: delete:
 7.2 delete: Informational References delete: delete:
 8. delete: Acknowledgments delete: delete:
 Appendix A delete: RDF Schema as RDF/XML delete: delete:
 delete: </blockquote> delete: <hr /> delete: <h2> delete: delete: references insert: insert:

 insert: <li class="tocline"> 		 insert: insert: C.2 insert: Informative references insert: insert:

 insert:

 insert:

 insert:

 insert: </section> insert: <section id="ch_introduction" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_ch_introduction"> insert: 1. insert: Introduction

 The Resource Description Framework (RDF) is a general-purpose language RDF Schema provides a data-modelling vocabulary for representing information in the Web. delete: </p> delete: <p> This specification is one of several [delete: RDF-PRIMER delete:] [delete: RDF-SYNTAX delete:] [delete: RDF-CONCEPTS delete:] [delete: RDF-SEMANTICS delete:] [delete: RDF-TESTS delete:] related to RDF. The reader is referred to the delete: RDF schema chapter delete: in the RDF Primer [delete: RDF-PRIMER delete:] for an informal introduction and examples of the use of the concepts specified in this document. delete: </p> delete: <p> This specification introduces RDF's vocabulary description language, RDF Schema. RDF data. It is complemented by several companion documents which describe RDF's XML encoding the basic concepts and abstract syntax of RDF [delete: RDF-SYNTAX delete: insert: <cite> insert: RDF11-CONCEPTS insert: insert: </cite>], mathematical foundations the formal semantics of RDF [delete: RDF-SEMANTICS delete:] and Resource Description Framework (RDF): Concepts and Abstract Syntax insert: <cite> insert: RDF11-MT insert: insert: </cite>], and various concrete syntaxes for RDF, such as Turtle [delete: RDF-CONCEPTS delete: insert: <cite> insert: TURTLE insert: insert: </cite>], TriG, [insert: <cite> insert: TRIG insert: insert: </cite>], and JSON-LD [insert: <cite> insert: JSON-LD insert: insert: </cite>]. The RDF Primer [delete: RDF-PRIMER delete: insert: <cite> insert: RDF11-PRIMER insert: insert: </cite>] provides an informal introduction and examples of the use of the concepts specified in this document.

 This document is intended to provide a clear specification of the RDF vocabulary description language RDF Schema to those who find the formal semantics specification, RDF Semantics specification [delete: RDF-SEMANTICS delete: insert: <cite> insert: RDF11-MT insert: insert: </cite>] daunting. Thus, this document duplicates material also specified in the RDF Semantics specification . specification. Where there is disagreement between this document and the RDF Semantics specification, the RDF Semantics specification should be taken to be correct.

 RDF properties may be thought of as attributes of resources and in this sense correspond to traditional attribute-value pairs. RDF properties also represent relationships between resources. delete: </p> delete: <p> RDF however, provides no mechanisms for describing these properties, nor does it provide any mechanisms for describing the relationships between these properties and other resources. That is the role of the RDF vocabulary description language, RDF Schema. RDF Schema defines classes and properties that may be used to describe classes, properties and other resources. delete: </p> delete: <p> This document does not specify a vocabulary of descriptive properties such as "author". Instead it specifies mechanisms that may be used to name and describe properties and the classes of resource they describe. delete: </p> delete: <p> RDF's vocabulary description language, RDF Schema, is a is a insert: semantic extension (as delete: defined delete: in [delete: RDF-SEMANTICS delete:]) insert: of RDF. It provides mechanisms for describing groups of related resources and the relationships between these resources. RDF Schema vocabulary descriptions are is written in RDF using the terms described in this document. These resources are used to determine characteristics of other resources, such as the domains and ranges of properties.

 The RDF vocabulary description language Schema class and property system is similar to the type systems of object-oriented programming languages such as Java. RDF Schema differs from many such systems in that instead of defining a class in terms of the properties its instances may have, the RDF vocabulary description language RDF Schema describes properties in terms of the classes of resource to which they apply. This is the role of the domain and range mechanisms described in this specification. For example, we could define the eg:author property to have a domain of eg:Document and a range of eg:Person , whereas a classical object oriented system might typically define a class eg:Book with an attribute called eg:author of type eg:Person . Using the RDF approach, it is easy for others to subsequently define additional properties with a domain of eg: Document or a range of eg:Person . This can be done without the need to re-define the original description of these classes. One benefit of the RDF property-centric approach is that it allows anyone to extend the description of existing resources, one of the architectural principles of the Web [delete: insert: <cite> insert: BERNERS-LEE98 insert: </cite>].

 This specification does not attempt to enumerate all the possible forms of vocabulary description that are useful for representing the meaning of RDF classes and properties. Instead, the RDF vocabulary description Schema strategy is to acknowledge that there are many techniques through which the meaning of classes and properties can be described. Richer vocabulary or 'ontology' languages such as DAML+OIL, W3C's OWL [delete: OWL delete:] language, insert: <cite> insert: OWL2-OVERVIEW insert: insert: </cite>], inference rule languages and other formalisms (for example temporal logics) will each contribute to our ability to capture meaningful generalizations about data in the Web. RDF vocabulary designers can create and deploy Semantic Web applications using the RDF vocabulary description language 1.0 facilities, while exploring richer vocabulary description languages that share this general approach.

 The language defined in this specification consists of a collection of RDF resources that can be used to describe properties of other RDF resources (including properties) in application-specific RDF vocabularies. The core vocabulary is defined in a namespace informally called 'rdfs' insert: <code> rdfs insert: </code> here. That namespace is identified by the URI-Reference IRI insert: </p>

 insert: <blockquote> insert: <code> http://www.w3.org/2000/01/rdf-schema# and is insert: </code> insert: </blockquote>

 and is conventionally associated with the prefix 'rdfs'. insert: <code> rdfs: insert: </code> . This specification also uses the prefix 'rdf' insert: <code> rdf: insert: </code> to refer to the delete: RDF namespace delete: http://www.w3.org/1999/02/22-rdf-syntax-ns#. delete: </p> insert: <p> insert: </p>

 insert: <blockquote> insert: <code> http://www.w3.org/1999/02/22-rdf-syntax-ns# insert: </code> insert: </blockquote>

 For convenience and readability, this specification uses an abbreviated form to represent URI-References. IRIs. A name of the form prefix:suffix should be interpreted as a URI-Reference IRI consisting of the URI-Reference IRI associated with the prefix concatenated with the suffix.

 delete: <h2> delete: insert: </section> insert: <section id="ch_classes" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_ch_classes"> insert: 2. insert: Classes delete:

 Resources may be divided into groups called classes. The members of a class are known as instances of the class. Classes are themselves resources. They are often identified by delete: RDF URI References insert: IRIs and may be described using RDF properties. The delete: insert: rdf:type property may be used to state that a resource is an instance of a class.

 RDF distinguishes between a class and the set of its instances. Associated with each class is a set, called the class extension of the class, which is the set of the instances of the class. Two classes may have the same set of instances but be different classes. For example, the tax office may define the class of people living at the same address as the editor of this document. The Post Office may define the class of people whose address has the same zip code as the address of the author. It is possible for these classes to have exactly the same instances, yet to have different properties. Only one of the classes has the property that it was defined by the tax office, and only the other has the property that it was defined by the Post Office.

 A class may be a member of its own class extension and may be an instance of itself.

 The group of resources that are RDF Schema classes is itself a class called delete: insert: rdfs:Class .

 delete: <p> delete: delete: insert: <p id="def-subclass"> If a class C is a subclass of a class C', then all instances of C will also be instances of C'. The rdfs:subClassOf property may be used to state that one class is a subclass of another. The term super-class is used as the inverse of subclass. If a class C' is a super-class of a class C, then all instances of C are also instances of C'.

 The RDF Concepts and Abstract Syntax [delete: RDF-CONCEPTS delete: insert: <cite> insert: RDF11-CONCEPTS insert: insert: </cite>] specification defines the RDF concept of an delete: insert: RDF datatype . All datatypes are classes. The instances of a class that is a datatype are the members of the value space of the datatype.

 delete: <h4> delete: insert: <section id="ch_resource" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_resource"> insert: 2.1 insert: rdfs:Resource delete: </h4> insert: </h3>

 All things described by RDF are called resources , and are instances of the class rdfs:Resource . This is the class of everything. All other classes are subclasses of this class. rdfs:Resource is an instance of delete: insert: rdfs:Class .

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_class" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_class"> insert: 2.2 insert: rdfs:Class delete: </h4> insert: </h3>

 This is the class of resources that are RDF classes. rdfs:Class is an instance of rdfs:Class.

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_literal" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_literal"> insert: 2.3 insert: rdfs:Literal delete: </h4> insert: </h3>

 The class rdfs:Literal is the class of delete: insert: literal values such as strings and integers. Property values such as textual strings are examples of RDF literals. Literals may be delete: plain delete: or delete: typed delete: . A typed literal insert: </p>

 insert: <p> insert: <code> rdfs:Literal insert: </code> is an instance of a datatype class. This specification does not define the class of plain literals. delete: </p> delete: <p> delete: <code> rdfs:Literal delete: </code> is an instance of delete: insert: rdfs:Class . rdfs:Literal is a delete: insert: subclass of delete: insert: rdfs:Resource .

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_datatype" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_datatype"> insert: 2.4 insert: rdfs:Datatype delete: </h4> insert: </h3>

 rdfs:Datatype is the class of datatypes. All instances of rdfs:Datatype correspond to the delete: insert: RDF model of a datatype described in the RDF Concepts specification [delete: RDF-CONCEPTS delete: insert: <cite> insert: RDF11-CONCEPTS insert: insert: </cite>]. rdfs:Datatype is both an instance of and a subclass of delete: insert: rdfs:Class . Each instance of rdfs:Datatype is a subclass of rdfs:Literal.

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_langstring" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_langstring"> insert: 2.5 insert: rdf:langString insert: </h3>

 insert: <p> The class insert: <code> rdf:langString insert: </code> is the class of insert: language-tagged string values insert: . insert: <code> rdf:langString insert: </code> is an instance of insert: <code> rdfs:Datatype insert: </code> and a insert: subclass insert: of insert: insert: <code> rdfs:Literal insert: </code> insert: . insert: </p>

 insert: </section> insert: <section class="informative" id="ch_html" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_html"> insert: 2.6 insert: rdf:HTML insert: </h3>

 insert: <p> insert: This section is non-normative. insert: insert: </p>

 insert: <p> The class insert: <code> rdf:HTML insert: </code> is the class of insert: HTML literal values insert: . insert: <code> rdf:HTML insert: </code> is an instance of insert: <code> rdfs:Datatype insert: </code> and a insert: subclass insert: of insert: insert: <code> rdfs:Literal insert: </code> insert: . insert: </p>

 insert: </section> insert: <section class="informative" id="ch_xmlliteral" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_xmlliteral"> insert: 2.7 insert: rdf:XMLLiteral delete: </h4> insert: </h3>

 insert: <p> insert: This section is non-normative. insert: insert: </p>

 The class rdf:XMLLiteral is the class of delete: insert: XML literal values . rdf:XMLLiteral is an instance of rdfs:Datatype and a subclass of delete: insert: rdfs:Literal .

 delete: <h4> delete: delete: 2.6 insert: </section> insert: <section id="ch_property" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_property"> insert: 2.8 insert: rdf:Property delete: </h4> insert: </h3>

 rdf:Property is the class of RDF properties. rdf:Property is an instance of delete: insert: rdfs:Class .

 delete: <h2> delete: insert: </section> insert: </section> insert: <section id="ch_properties" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_ch_properties"> insert: 3. insert: Properties delete:

 The RDF Concepts and Abstract Syntax specification [delete: RDF-CONCEPTS delete: insert: <cite> insert: RDF11-CONCEPTS insert: insert: </cite>] describes the concept of an RDF property as a relation between subject resources and object resources.

 delete: <p> delete: delete: insert: <p id="def-subproperty"> This specification defines the concept of subproperty. The rdfs:subPropertyOf property may be used to state that one property is a subproperty of another. If a property P is a subproperty of property P', then all pairs of resources which are related by P are also related by P'. The term super-property is often used as the inverse of subproperty. If a property P' is a super-property of a property P, then all pairs of resources which are related by P are also related by P'. This specification does not define a top property that is the super-property of all properties.

 delete: <p> delete: insert: <div class="note"> insert: <div class="note-title" aria-level="2" role="heading" id="h_note_1"> insert: Note delete: : insert: insert: </div>
 insert: <p class=""> The basic facilities provided by rdfs:domain and rdfs:range do not provide any direct way to indicate property restrictions that are local to a class. Although it is possible to combine use delete: insert: rdfs:domain and rdfs:range with sub-property hierarchies, direct support for such declarations are provided by richer delete: Web Ontology delete: languages such as OWL [delete: OWL delete: insert: <cite> insert: OWL2-OVERVIEW insert: insert: </cite>].

 delete: <h4> delete: delete: insert: </div>
 insert: <section id="ch_range" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_range"> insert: 3.1 insert: rdfs:range delete: </h4> insert: </h3>

 rdfs:range is an instance of delete: insert: rdf:Property that is used to state that the values of a property are instances of one or more classes.

 The triple

 delete: <p> insert: <code> P rdfs:range C delete: </p> insert: </code>

 states that P is an instance of the class delete: insert: rdf:Property , that C is an instance of the class rdfs:Class and that the resources denoted by the objects of triples whose predicate is P are instances of the class C.

 Where P has more than one rdfs:range property, then the resources denoted by the objects of triples with predicate P are instances of all the classes stated by the rdfs:range properties.

 The rdfs:range property can be applied to itself. The rdfs:range of rdfs:range is the class delete: insert: rdfs:Class . This states that any resource that is the value of an rdfs:range property is an instance of delete: insert: rdfs:Class .

 The rdfs:range property is applied to properties. This can be represented in RDF using the delete: insert: rdfs:domain property. The delete: insert: rdfs:domain of rdfs:range is the class rdf:Property . This states that any resource with an rdfs:range property is an instance of rdf:Property .

 delete: <h4> delete: insert: </section> insert: <section id="ch_domain" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_domain"> insert: 3.2 insert: rdfs:domain delete: </h4> insert: </h3>

 rdfs:domain is an instance of delete: insert: rdf:Property that is used to state that any resource that has a given property is an instance of one or more classes.

 A triple of the form:

 delete: <p> insert: <code> P rdfs:domain C delete: </p> insert: </code>

 states that P is an instance of the class rdf:Property , that C is a instance of the class rdfs:Class and that the resources denoted by the subjects of triples whose predicate is P are instances of the class C.

 Where a property P has more than one rdfs:domain property, then the resources denoted by subjects of triples with predicate P are instances of all the classes stated by the rdfs:domain properties.

 The rdfs:domain property may be applied to itself. The rdfs:domain of rdfs:domain is the class delete: insert: rdf:Property . This states that any resource with an rdfs:domain property is an instance of delete: insert: rdf:Property .

 The rdfs:range of rdfs:domain is the class rdfs:Class . This states that any resource that is the value of an rdfs:domain property is an instance of rdfs:Class .

 delete: <h4> delete: insert: </section> insert: <section id="ch_type" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_type"> insert: 3.3 insert: rdf:type delete: </h4> insert: </h3>

 rdf:type is an instance of delete: insert: rdf:Property that is used to state that a resource is an instance of a class.

 A triple of the form:

 delete: <p> insert: <code> R rdf:type C delete: </p> insert: </code>

 states that C is an instance of delete: insert: rdfs:Class and R is an instance of C.

 The rdfs:domain of rdf:type is rdfs:Resource . The delete: insert: rdfs:range of rdf:type is delete: insert: rdfs:Class .

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_subclassof" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_subclassof"> insert: 3.4 insert: rdfs:subClassOf delete: </h4> insert: </h3>

 The property rdfs:subClassOf is an instance of rdf:Property that is used to state that all the instances of one class are instances of another.

 A triple of the form:

 delete: <p> insert: <code> C1 rdfs:subClassOf C2 delete: </p> insert: </code>

 states that C1 is an instance of delete: insert: rdfs:Class , C2 is an instance of delete: rdfs:Class delete: delete: </code> and C1 is a delete: subclass delete: of C2. The delete: <code> rdfs:subClassOf delete: </code> property is transitive. delete: </p> delete: <p> The delete: delete: <code> rdfs:domain delete: </code> delete: of delete: <code> rdfs:subClassOf delete: </code> is delete: <code> rdfs:Class and C1 is a insert: subclass insert: of C2. The insert: <code> rdfs:subClassOf insert: </code> property is transitive. insert: </p>

 insert: <p> The insert: insert: <code> rdfs:domain insert: </code> insert: of insert: <code> rdfs:subClassOf insert: </code> is insert: <code> insert: rdfs:Class insert: insert: </code> . The delete: insert: rdfs:range of rdfs:subClassOf is rdfs:Class .

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_subpropertyof" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_subpropertyof"> insert: 3.5 insert: rdfs:subPropertyOf delete: </h4> insert: </h3>

 The property rdfs:subPropertyOf is an instance of rdf:Property that is used to state that all resources related by one property are also related by another.

 A triple of the form:

 delete: <p> insert: <code> P1 rdfs:subPropertyOf P2 delete: </p> insert: </code>

 states that P1 is an instance of delete: insert: rdf:Property , P2 is an instance of delete: insert: rdf:Property and P1 is a delete: insert: subproperty of P2. The rdfs:subPropertyOf property is transitive.

 The rdfs:domain of rdfs:subPropertyOf is delete: insert: rdf:Property . The delete: insert: rdfs:range of rdfs:subPropertyOf is delete: insert: rdf:Property .

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_label" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_label"> insert: 3.6 insert: rdfs:label delete: </h4> insert: </h3>

 rdfs:label is an instance of rdf:Property that may be used to provide a human-readable version of a resource's name.

 A triple of the form:

 delete: <p> insert: <code> R rdfs:label L delete: </p> insert: </code>

 states that L is a human readable label for R.

 The rdfs:domain of rdfs:label is delete: insert: rdfs:Resource . The delete: insert: rdfs:range of rdfs:label is delete: insert: rdfs:Literal .

 Multilingual labels are supported using the delete: insert: language tagging facility of RDF literals.

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_comment" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_comment"> insert: 3.7 insert: rdfs:comment delete: </h4> insert: </h3>

 rdfs:comment is an instance of rdf:Property that may be used to provide a human-readable description of a resource.

 A triple of the form:

 delete: <p> insert: <code> R rdfs:comment L delete: </p> insert: </code>

 states that L is a human readable description of R.

 The rdfs:domain of rdfs:comment is delete: insert: rdfs:Resource . The delete: insert: rdfs:range of rdfs:comment is delete: insert: rdfs:Literal .

 A textual comment helps clarify the meaning of RDF classes and properties. Such in-line documentation complements the use of both formal techniques (Ontology and rule languages) and informal (prose documentation, examples, test cases). A variety of documentation forms can be combined to indicate the intended meaning of the classes and properties described in an RDF vocabulary. Since RDF vocabularies are expressed as RDF graphs, vocabularies defined in other namespaces may be used to provide richer documentation.

 Multilingual documentation is supported through use of the delete: insert: language tagging facility of RDF literals.

 delete: <h2> delete: delete: insert: </section> insert: </section> insert: <section id="ch_domainrange" class="informative" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_ch_domainrange"> insert: 4. insert: Using the Domain and Range Vocabulary (Informative) vocabulary

 insert: <p> insert: This section is non-normative. insert: insert: </p>

 This specification introduces an RDF vocabulary for describing the meaningful use of properties and classes in RDF data. For example, an RDF vocabulary might describe limitations on the types of values that are appropriate for some property, or on the classes to which it makes sense to ascribe such properties.

 The RDF Vocabulary Description language RDF Schema provides a mechanism for describing this information, but does not say whether or how an application should use it. For example, while an RDF vocabulary can assert that an author property is used to indicate resources that are instances of the class Person , it does not say whether or how an application should act in processing that range information. Different applications will use this information in different ways. For example, data checking tools might use this to help discover errors in some data set, an interactive editor might suggest appropriate values, and a reasoning application might use it to infer additional information from instance data.

 RDF vocabularies can describe relationships between vocabulary items from multiple independently developed vocabularies. Since URI-References IRIs are used to identify classes and properties in on the Web, it is possible to create new properties that have a domain or range whose value is a class defined in another namespace.

 delete: <h2> delete: delete: insert: </section> insert: <section id="ch_othervocab" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_ch_othervocab"> insert: 5. insert: Other vocabulary

 Additional classes and properties, including constructs for representing containers and RDF statements, and for deploying RDF vocabulary descriptions in the World Wide Web Web, are defined in this section.

 delete: <h3> delete: insert: <section class="informative" id="ch_containervocab" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_containervocab"> insert: 5.1 delete: insert: Container Classes and Properties

 insert: <p> insert: This section is non-normative. insert: insert: </p>

 RDF containers are resources that are used to represent collections. An delete: introduction delete: to RDF containers with examples may be found in the RDF Primer [delete: RDF-PRIMER delete:]. The same resource may appear in a container more than once. Unlike containment in the physical world, a container may be contained in itself.

 Three different kinds of container are defined. Whilst the formal semantics [delete: RDF-SEMANTICS delete: insert: <cite> insert: RDF11-MT insert: insert: </cite>] of all three classes of container are identical, different classes may be used to indicate informally further information. An rdf:Bag is used to indicate that the container is intended to be unordered. An rdf:Seq is used to indicate that the order indicated by the numerical order of the delete: insert: container member ship membership properties of the container is intended to be significant. An rdf:Alt container is used to indicate that typical processing of the container will be to select one of the members.

 Just as a hen house may have the property that it is made of wood, that does not mean that all the hens it contains are made of wood, a property of a container is not necessarily a property of all of its members.

 RDF containers are defined by the following classes and properties.

 delete: <h4> delete: delete: insert: <section id="ch_container" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_container"> insert: 5.1.1 insert: rdfs:Container

 The rdfs:Container class is a super-class of the RDF Container classes, i.e. rdf:Bag , delete: insert: rdf:Seq , delete: insert: rdf:Alt .

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_bag" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_bag"> insert: 5.1.2 insert: rdf:Bag

 The rdf:Bag class is the class of RDF 'Bag' containers. It is a subclass of delete: insert: rdfs:Container . Whilst formally it is no different from an rdf:Seq or an delete: insert: rdf:Alt , the rdf:Bag class is used conventionally to indicate to a human reader that the container is intended to be unordered.

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_seq" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_seq"> insert: 5.1.3 insert: rdf:Seq

 The rdf:Seq class is the class of RDF 'Sequence' containers. It is a subclass of delete: insert: rdfs:Container . Whilst formally it is no different from an rdf:Bag or an delete: insert: rdf:Alt , the rdf:Seq class is used conventionally to indicate to a human reader that the numerical ordering of the container membership properties of the container is intended to be significant.

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_alt" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_alt"> insert: 5.1.4 insert: rdf:Alt

 The rdf:Alt class is the class of RDF 'Alternative' containers. It is a subclass of delete: insert: rdfs:Container . Whilst formally it is no different from an rdf:Seq or an delete: insert: rdf:Bag , the rdf:Alt class is used conventionally to indicate to a human reader that typical processing will be to select one of the members of the container. The first member of the container, i.e. the value of the delete: insert: rdf:_1 property, is the default choice.

 delete: <h4> delete: <a id="ch_containermembershipproperty"
name="ch_containermembershipproperty"> delete: insert: </section> insert: <section id="ch_containermembershipproperty" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_containermembershipproperty"> insert: 5.1.5 insert: rdfs:ContainerMembershipProperty

 The rdfs:ContainerMembershipProperty class has as instances the properties rdf:_1, rdf:_2, rdf:_3 ... that are used to state that a resource is a member of a container. rdfs:ContainerMembershipProperty is a delete: insert: subclass of delete: insert: rdf:Property . Each instance of rdfs:ContainerMembershipProperty is an delete: insert: rdfs:subPropertyOf the delete: insert: rdfs:member property.

 Given a container C, a triple of the form:

 delete: <p> insert: <code> C rdf:_nnn O delete: </p> insert: </code>

 where insert: <code> nnn insert: </code> is the decimal representation of an integer greater than 0 with no leading zeros, states that O is a member of the container C.

 Container membership properties may be applied to resources other than containers.

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_member" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_member"> insert: 5.1.6 insert: rdfs:member

 rdfs:member is an instance of delete: insert: rdf:Property that is a super-property of all the container membership properties i.e. each container membership property has an rdfs:subPropertyOf relationship to the property rdfs:member .

 The rdfs:domain of rdfs:member is delete: rdfs:Resource delete: delete: </code> . The delete: delete: <code> rdfs:range delete: </code> delete: of delete: <code> rdfs:member delete: </code> is delete: <code> rdfs:Resource . delete: </p> delete: <h3> delete: The insert: insert: <code> rdfs:range insert: </code> insert: of insert: <code> rdfs:member insert: </code> is insert: <code> insert: rdfs:Resource insert: insert: </code> . insert: </p>

 insert: </section> insert: </section> insert: <section class="informative" id="ch_collectionvocab" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_collectionvocab"> insert: 5.2 delete: insert: RDF Collections

 insert: <p> insert: This section is non-normative. insert: insert: </p>

 RDF containers are open in the sense that the core RDF specifications define no mechanism to state that there are no more members. The RDF Collection vocabulary of classes and properties can describe a closed collection, i.e. one that can have no more members. The reader is referred to the delete: collections delete: section of the RDF primer for an informal introduction to collections with examples.

 A collection is represented as a list of items, a representation that will be familiar to those with experience of Lisp and similar programming languages. There is a delete: insert: shorthand notation in the RDF/XML Turtle syntax specification [delete: RDF-SYNTAX delete:] for representing collections.

 delete: <p> delete: insert: <div class="note"> insert: <div class="note-title" aria-level="3" role="heading" id="h_note_2"> insert: Note delete: : insert: insert: </div>
 insert: <p class=""> RDFS does not require that there be only one first element of a list-like structure, or even that a list-like structure have a first element.

 delete: <h4> delete: delete: insert: </div>
 insert: <section id="ch_list" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_list"> insert: 5.2.1 insert: rdf:List

 rdf:List is an instance of rdfs:Class that can be used to build descriptions of lists and other list-like structures.

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_first" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_first"> insert: 5.2.2 insert: rdf:first

 rdf:first is an instance of delete: insert: rdf:Property that can be used to build descriptions of lists and other list-like structures.

 A triple of the form:

 delete: <p> insert: <code> L rdf:first O delete: </p> insert: </code>

 states that there is a first-element relationship between L and O.

 The rdfs:domain of rdf:first is rdf:List . The rdfs:range of rdf:first is rdfs:Resource .

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_rest" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_rest"> insert: 5.2.3 insert: rdf:rest

 rdf:rest is an instance of delete: insert: rdf:Property that can be used to build descriptions of lists and other list-like structures.

 A triple of the form:

 delete: <p> insert: <code> L rdf:rest O delete: </p> insert: </code>

 states that there is a rest-of-list relationship between L and O.

 The rdfs:domain of rdf:rest is rdf:List . The rdfs:range of rdf:rest is rdf:List .

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_nil" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_nil"> insert: 5.2.4 insert: rdf:nil

 The resource rdf:nil is an instance of delete: insert: rdf:List that can be used to represent an empty list or other list-like structure.

 A triple of the form:

 delete: <p> insert: <code> L rdf:rest rdf:nil delete: </p> insert: </code>

 states that L is an instance of delete: insert: rdf:List that has one item; that item can be indicated using the rdf:first property.

 delete: <h3> delete: insert: </section> insert: </section> insert: <section class="informative" id="ch_reificationvocab" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_reificationvocab"> insert: 5.3 delete: insert: Reification Vocabulary

 The original RDF Model and Syntax Specification [delete: RDFMS delete:] defined a vocabulary for describing RDF statements without stating them. [delete: RDFMS delete:] did not provide a formal semantics for this vocabulary, and the informal definition that was provided was somewhat inconsistent. The current RDF specification does not assign a normative formal semantics to this vocabulary. However, an intended meaning of this vocabulary (which generally clarifies the intent of the [delete: RDFMS delete:] definition) is described here. An informal introduction to the reification vocabulary, with examples, may be found in the RDF Primer [delete: RDF-PRIMER delete:]. delete: </p> delete: <h4> delete: delete: insert: This section is non-normative. insert: insert: </p>

 insert: <section id="ch_statement" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_statement"> insert: 5.3.1 insert: rdf:Statement

 rdf:Statement is an instance of rdfs:Class. It is intended to represent the class of RDF statements. An RDF statement is the statement made by a token of an RDF delete: triple delete: . triple. The subject of an RDF statement is the instance of delete: insert: rdfs:Resource identified by the subject of the triple. The predicate of an RDF statement is the instance of delete: insert: rdf:Property identified by the predicate of the triple. The object of an RDF statement is the instance of delete: insert: rdfs:Resource identified by the object of the triple. rdf:Statement is in the domain of the properties rdf:predicate , rdf:subject and rdf:object . Different individual rdf:Statement instances may have the same values for their rdf:predicate , rdf:subject and rdf:object properties.

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_subject" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_subject"> insert: 5.3.2 insert: rdf:subject

 rdf:subject is an instance of delete: insert: rdf:Property that is used to state the subject of a statement.

 A triple of the form:

 delete: <p> insert: <code> S rdf:subject R delete: </p> insert: </code>

 states that S is an instance of delete: <code> delete: rdf:Statement delete: delete: </code> and that the subject of S is R. delete: </p> delete: <p class="schemacomment"> The delete: delete: <code> rdfs:domain delete: </code> delete: of delete: <code> rdf:subject delete: </code> is rdf:Statement and that the subject of S is R. insert: </p>

 insert: <p class="schemacomment"> The insert: insert: <code> rdfs:domain insert: </code> insert: of insert: <code> rdf:subject insert: </code> is insert: <code> insert: rdf:Statement insert: insert: </code> . The delete: insert: rdfs:range of rdf:subject is rdfs:Resource .

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_predicate" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_predicate"> insert: 5.3.3 insert: rdf:predicate

 rdf:predicate is an instance of delete: insert: rdf:Property that is used to state the predicate of a statement.

 A triple of the form:

 delete: <p> insert: <code> S rdf:predicate P delete: </p> insert: </code>

 states that S is an instance of delete: insert: rdf:Statement , that P is an instance of rdf:Property and that the delete: predicate delete: of S is P.

 The rdfs:domain of rdf:predicate is delete: insert: rdf:Statement and the delete: insert: rdfs:range is delete: insert: rdfs:Resource .

 delete: <h4> delete: delete: insert: </section> insert: <section id="ch_object" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_object"> insert: 5.3.4 insert: rdf:object

 rdf:object is an instance of delete: insert: rdf:Property that is used to state the object of a statement.

 A triple of the form:

 delete: <p> insert: <code> S rdf:object O delete: </p> insert: </code>

 states that S is an instance of delete: insert: rdf:Statement and that the object of S is O.

 The rdfs:domain of rdf:object is delete: insert: rdf:Statement . The delete: insert: rdfs:range of rdf:object is rdfs:Resource .

 delete: <h3> delete: delete: insert: </section> insert: </section> insert: <section id="ch_utilvocab" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_utilvocab"> insert: 5.4 insert: Utility Properties

 The following utility classes and properties are defined in the RDF core namespaces.

 delete: <h4> delete: delete: insert: <section id="ch_seealso" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_seealso"> insert: 5.4.1 insert: rdfs:seeAlso

 rdfs:seeAlso is an instance of delete: insert: rdf:Property that is used to indicate a resource that might provide additional information about the subject resource.

 A triple of the form:

 delete: <p> insert: <code> S rdfs:seeAlso O delete: </p> insert: </code>

 states that the resource O may provide additional information about S. It may be possible to retrieve representations of O from the Web, but this is not required. When such representations may be retrieved, no constraints are placed on the format of those representations.

 The rdfs:domain of rdfs:seeAlso is delete: rdfs:Resource delete: delete: </code> . The delete: <code> delete: rdfs:range delete: delete: </code> of delete: <code> rdfs:seeAlso delete: </code> is delete: <code> rdfs:Resource . delete: </p> delete: <h4> delete: delete: The insert: <code> insert: rdfs:range insert: insert: </code> of insert: <code> rdfs:seeAlso insert: </code> is insert: <code> insert: rdfs:Resource insert: insert: </code> . insert: </p>

 insert: </section> insert: <section id="ch_isdefinedby" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_isdefinedby"> insert: 5.4.2 insert: rdfs:isDefinedBy

 rdfs:isDefinedBy is an instance of delete: insert: rdf:Property that is used to indicate a resource defining the subject resource. This property may be used to indicate an RDF vocabulary in which a resource is described.

 A triple of the form:

 delete: <p> insert: <code> S rdfs:isDefinedBy O delete: </p> insert: </code>

 states that the resource O defines S. It may be possible to retrieve representations of O from the Web, but this is not required. When such representations may be retrieved, no constraints are placed on the format of those representations. rdfs:isDefinedBy is a delete: insert: subproperty of delete: insert: rdfs:seeAlso .

 The rdfs:domain of rdfs:isDefinedBy is delete: rdfs:Resource delete: delete: </code> . The delete: <code> delete: rdfs:range delete: delete: </code> of delete: <code> rdfs:isDefinedBy delete: </code> is delete: <code> rdfs:Resource . delete: </p> delete: <h4> delete: delete: The insert: <code> insert: rdfs:range insert: insert: </code> of insert: <code> rdfs:isDefinedBy insert: </code> is insert: <code> insert: rdfs:Resource insert: insert: </code> . insert: </p>

 insert: </section> insert: <section id="ch_value" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h4 aria-level="3" role="heading" id="h4_ch_value"> insert: 5.4.3 insert: rdf:value

 rdf:value is an instance of delete: insert: rdf:Property that may be used in describing structured values.

 rdf:value has no meaning on its own. It is provided as a piece of vocabulary that may be used in idioms such as illustrated in delete: example 16 delete: of the RDF primer below: insert: </p>

 insert: <div class="example"> insert: <div class="example-title"> insert: Example 1 insert: insert: </div>
 insert: <pre class="example"> <http://www.example.com/2002/04/products#item10245> <http://www.example.org/terms/weight> [delete: RDF-PRIMER delete:]. rdf:value 2.4 ; <http://www.example.org/terms/units> <http://www.example.org/units/kilograms>] . insert: </pre>

 insert: </div>
 insert: <p> Despite the lack of formal specification of the meaning of this property, there is value in defining it to encourage the use of a common idiom in examples of this kind.

 The rdfs:domain of rdf:value is delete: insert: rdfs:Resource . The delete: insert: rdfs:range of rdf:value is delete: insert: rdfs:Resource .

 delete: <h2> delete: delete: insert: </section> insert: </section> insert: </section> insert: <section id="ch_summary" class="informative" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_ch_summary"> insert: 6. insert: RDF Schema summary (Informative)

 insert: This table presents section is non-normative. insert: insert: </p>

 insert: <p> The tables in this section provide an overview of the vocabulary of RDF, drawing together vocabulary originally defined in the RDF Model and Syntax specification with classes and properties that originate with RDF Schema. delete: </p> delete: <h3> delete: delete: RDF Schema vocabulary. insert: </p>

 insert: <section id="ch_sumclasses" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_sumclasses"> insert: 6.1 insert: RDF classes

 delete: <table border="1" summary="RDF classes"> delete: <tbody valign="top"> insert: <table> insert: <tbody>insert: <td>insert: </tr>insert: <tr>insert: <td>insert: <td>insert: </tr>insert: <tr>insert: <td> 		 Class name 		 comment

 		 insert: rdfs:Resource insert: 		 The class resource, everything.

 		 insert: rdfs:Literal insert: 		 The class of literal values, e.g. textual strings and integers.

 		 rdf:XMLLiteral insert: rdf:langString insert: 		 The class of XML literals language-tagged string literal values.

 		 rdfs:Class insert: rdf:HTML insert: 		 The class of classes. HTML literal values.

 		 rdf:Property insert: rdf:XMLLiteral insert: 		 The class of RDF properties. XML literal values.

 		 rdfs:Datatype insert: rdfs:Class insert: 		 The class of RDF datatypes. classes.

 		 rdf:Statement insert: rdf:Property insert: 		 The class of RDF statements. properties.

 		 insert: rdfs:Datatype insert: insert: </td> 		 The class of RDF datatypes. insert: </td>

 		 insert: rdf:Statement insert: insert: </td> 		 The class of RDF statements. insert: </td>

 		 insert: rdf:Bag insert: 		 The class of unordered containers.

 		 insert: rdf:Seq insert: 		 The class of ordered containers.

 		 insert: rdf:Alt insert: 		 The class of containers of alternatives.

 		 insert: rdfs:Container insert: 		 The class of RDF containers.

 		 insert: rdfs:ContainerMembershipProperty insert: 		 The class of container membership properties, rdf:_1, rdf:_2, ..., all of which are sub-properties of 'member'.

 		 insert: rdf:List insert: 		 The class of RDF Lists.

 delete: <h3> delete: delete: insert: </section> insert: <section id="ch_sumproperties" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_ch_sumproperties"> insert: 6.2 insert: RDF properties

 delete: <table border="1" summary="RDF properties"> delete: <tbody valign="top"> insert: <table> insert: <tbody> 		 Property name 		 comment 		 domain 		 range

 		 insert: rdf:type insert: 		 The subject is an instance of a class. 		 rdfs:Resource 		 rdfs:Class

 		 insert: rdfs:subClassOf insert: 		 The subject is a subclass of a class. 		 rdfs:Class 		 rdfs:Class

 		 insert: rdfs:subPropertyOf insert: 		 The subject is a subproperty of a property. 		 rdf:Property 		 rdf:Property

 		 insert: rdfs:domain insert: 		 A domain of the subject property. 		 rdf:Property 		 rdfs:Class

 		 insert: rdfs:range insert: 		 A range of the subject property. 		 rdf:Property 		 rdfs:Class

 		 insert: rdfs:label insert: 		 A human-readable name for the subject. 		 rdfs:Resource 		 rdfs:Literal

 		 insert: rdfs:comment insert: 		 A description of the subject resource. 		 rdfs:Resource 		 rdfs:Literal

 		 insert: rdfs:member insert: 		 A member of the subject resource. 		 rdfs:Resource 		 rdfs:Resource

 		 insert: rdf:first insert: 		 The first item in the subject RDF list. 		 rdf:List 		 rdfs:Resource

 		 insert: rdf:rest insert: 		 The rest of the subject RDF list after the first item. 		 rdf:List 		 rdf:List

 		 insert: rdfs:seeAlso insert: 		 Further information about the subject resource. 		 rdfs:Resource 		 rdfs:Resource

 		 insert: rdfs:isDefinedBy insert: 		 The definition of the subject resource. 		 rdfs:Resource 		 rdfs:Resource

 		 insert: rdf:value insert: 		 Idiomatic property used for structured values (see the RDF Primer for delete: an example delete: of its usage). values. 		 rdfs:Resource 		 rdfs:Resource

 		 insert: rdf:subject insert: 		 The subject of the subject RDF statement. 		 rdf:Statement 		 rdfs:Resource

 		 insert: rdf:predicate insert: 		 The predicate of the subject RDF statement. 		 rdf:Statement 		 rdfs:Resource

 		 insert: rdf:object insert: 		 The object of the subject RDF statement. 		 rdf:Statement 		 rdfs:Resource

 In addition to these classes and properties, RDF also uses properties called rdf:_1 , rdf:_2 , rdf:_3 ... etc., each of which is both a sub-property of rdfs:member and an instance of the class rdfs:ContainerMembershipProperty . There is also an instance of rdf:List called rdf:nil that is an empty rdf:List .

 delete: <h3> delete: delete: delete: </h3> delete: <hr /> delete: <h2> delete: 7. delete: References delete: </h2> delete: <h3> delete: delete: 7.1 Normative References delete: </h3> delete: <dl> delete: <dt> delete: <a id="ref-rdf-concepts"
 name="ref-rdf-concepts"> delete: [RDF-CONCEPTS] delete: </dt> delete: <dd> delete: <cite> delete: Resource Description Framework (RDF): Concepts and Abstract Syntax delete: delete: </cite> , Graham Klyne and Jeremy J. Carroll, Editors, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ . delete: Latest version delete: available at http://www.w3.org/TR/rdf-concepts/ . delete: </dd> delete: <dt> delete: <a id="ref-rdf-semantics"
 name="ref-rdf-semantics"> delete: [RDF-SEMANTICS] delete: </dt> delete: <dd> delete: <cite> delete: RDF Semantics delete: delete: </cite> , Patrick Hayes, Editor, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-mt-20040210/ . delete: Latest version delete: available at http://www.w3.org/TR/rdf-mt/ . delete: </dd> delete: <dt> delete: <a id="ref-rdf-syntax"
 name="ref-rdf-syntax"> delete: [RDF-SYNTAX] delete: </dt> delete: <dd> delete: <cite> delete: RDF/XML Syntax Specification (Revised) delete: delete: </cite> , Dave Beckett, Editor, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/ . delete: Latest version delete: available at http://www.w3.org/TR/rdf-syntax-grammar/ . delete: </dd> delete: <dt> delete: <a id="ref-rdf-tests"
 name="ref-rdf-tests"> delete: [RDF-TESTS] delete: </dt> delete: <dd> delete: <cite> delete: RDF Test Cases delete: delete: </cite> , Jan Grant and Dave Beckett, Editors, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/ . delete: Latest version delete: available at http://www.w3.org/TR/rdf-testcases/ . delete: </dd> delete: <dt> delete: delete: [RDFMS] delete: </dt> delete: <dd> delete: delete: <cite> Resource Description Framework (RDF) Model and Syntax delete: </cite> delete: , W3C Recommendation, 22 February 1999 delete:
 delete: <small> delete: <tt> delete: http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/ delete: delete: </tt> delete: </small> delete:
 delete: </dd> delete: <dt> delete: delete: [XMLNS] delete: </dt> delete: <dd> delete: delete: <cite> Namespaces in XML delete: </cite> delete: ; W3C Recommendation, 14 January 1999 delete:
 delete: <small> delete: <tt> delete: http://www.w3.org/TR/1999/REC-xml-names-19990114/ delete: delete: </tt> delete: </small> delete:
 delete: </dd> delete: </dl> delete: <h3> delete: delete: 7.2 Informational References delete: </h3> delete: <dl> delete: <dt> delete: [RDF-PRIMER] delete: delete: </dt> delete: <dd> delete: <cite> delete: RDF Primer delete: delete: </cite> , Frank Manola and Eric Miller, Editors, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-rdf-primer-20040210/ . delete: Latest version delete: available at http://www.w3.org/TR/rdf-primer/ . delete: </dd> delete: <dt> delete: [BERNERS-LEE98] delete: delete: </dt> delete: <dd> delete: delete: <cite> What the Semantic Web can represent delete: </cite> delete: , Tim Berners-Lee, 1998 delete:
 delete: <small> delete: <tt> delete: http://www.w3.org/DesignIssues/RDFnot.html delete: delete: </tt> delete: </small> delete:
 delete: </dd> delete: <dt> delete: delete: [EXTWEB] delete: </dt> delete: <dd> delete: delete: <cite> Web Architecture: Extensible Languages delete: </cite> delete: , Tim Berners-Lee and Dan Connolly, 1998 delete:
 delete: <small> delete: <tt> delete: http://www.w3.org/TR/1998/NOTE-webarch-extlang-19980210 delete: delete: </tt> delete: </small> delete:
 delete: </dd> delete: <dt> delete: delete: [DCMI] delete: </dt> delete: <dd> delete: delete: <cite> Dublin Core Metadata Initiative delete: </cite> delete: delete:
 delete: <small> delete: <tt> delete: http://www.dublincore.org/ delete: delete: </tt> delete: </small> delete:
 delete: </dd> delete: <dt> delete: delete: [OWL] delete: </dt> delete: <dd> delete: <cite> delete: OWL Web Ontology Language Reference delete: delete: </cite> , Mike Dean and Guus Schreiber, Editors, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-owl-ref-20040210/ . delete: Latest version delete: available at http://www.w3.org/TR/owl-ref/ . delete: </dd> delete: <dt> delete: delete: [SCHEMA-ARCH] delete: </dt> delete: <dd> delete: delete: <cite> The Cambridge CommuniquÃ© delete: </cite> delete: , W3C NOTE, 7 October 1999, Swick and Thompson delete:
 delete: <small> delete: <tt> delete: http://www.w3.org/TR/1999/NOTE-schema-arch-19991007 delete: delete: </tt> delete: </small> delete:
 delete: </dd> delete: <dt> delete: delete: [XML] delete: </dt> delete: <dd> delete: delete: <cite> Extensible Markup Language (XML) 1.0 delete: </cite> delete: , W3C Recommendation, 10-February-1988, Section 3.2 Element Type Declarations delete:
 delete: <small> delete: <tt> delete: http://www.w3.org/TR/1998/REC-xml-19980210.html#elemdecls delete: delete: </tt> delete: </small> delete:
 delete: </dd> delete: </dl> delete: <h2> delete: delete: delete: delete: 8. insert: </section> insert: </section> insert: <section id="ch_acknowledgements" class="appendix informative" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_ch_acknowledgements"> insert: A. insert: Acknowledgments

 insert: <p> insert: This section is non-normative. insert: insert: </p>

 The RDF Schema design was originally produced by the RDF Schema Working Group (1997-2000). The current specification is largely an editorial clarification of that design, and has benefited greatly from the hard work of the RDF Core Working Group members , and from implementation feedback from many members of the delete: insert: RDF Interest Group . In 2013-2014 Guus Schreiber edited this document on behalf of the insert: RDF Working Group insert: to bring it in line with the RDF 1.1 specifications.

 David Singer of IBM was the chair of the original RDF Schema group throughout most of the development of this specification; we thank David for his efforts and thank IBM for supporting him and us in this endeavor. Particular thanks are also due to Andrew Layman for his editorial work on early versions of this specification.

 The original RDF Schema Working Group membership included:

 Nick Arnett (Verity), Dan Brickley (ILRT / University of Bristol), Walter Chang (Adobe), Sailesh Chutani (Oracle), Ron Daniel (DATAFUSION), Charles Frankston (Microsoft), Joe Lapp (webMethods Inc.), Patrick Gannon (CommerceNet), RV Guha (Epinions, previously of Netscape Communications), Tom Hill (Apple Computer), Renato Iannella (DSTC), Sandeep Jain (Oracle), Kevin Jones, (InterMind), Emiko Kezuka (Digital Vision Laboratories), Ora Lassila (Nokia Research Center), Andrew Layman (Microsoft), John McCarthy (Lawrence Berkeley National Laboratory), Michael Mealling (Network Solutions), Norbert Mikula (DataChannel), Eric Miller (OCLC), Frank Olken (Lawrence Berkeley National Laboratory), Sri Raghavan (Digital/Compaq), Lisa Rein (webMethods Inc.), Tsuyoshi Sakata (Digital Vision Laboratories), Leon Shklar (Pencom Web Works), David Singer (IBM), Wei (William) Song (SISU), Neel Sundaresan (IBM), Ralph Swick (W3C), (insert: <abbr title="World Wide Web Consortium"> W3C insert: </abbr>), Naohiko Uramoto (IBM), Charles Wicksteed (Reuters Ltd.), Misha Wolf (Reuters Ltd.)

 delete: <h2> delete: delete: insert: </section> insert: <section id="PER-changes" class="appendix informative" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_PER-changes"> insert: B. insert: Change since 2004 Recommendation

 delete: <h2> delete: delete: insert: <p> insert: This section is non-normative. insert: insert: </p>

 insert: <p> Changes delete: </h2> delete: <p> The following is an outline of the main changes made to this specification, latest first, since the Last Call Working Draft of delete: 23 January 2003 delete: . See the delete: Last Call issue tracking document delete: for details of the specific issues raised regarding this specification. RDF 1.1 Recommendation

 		 Amended delete: Appendix A delete: to note that the RDF/XML description of RDF and RDFS terms is not directly published at the RDFS namespace, but split between the 'rdf:' and 'rdfs:' namespace documents. Also removed the pre-REC warning that the WG might choose to change the namespace URI prior to Recommendation. No changes. insert:

 insert:

 insert: <p> Changes for RDF 1.1 Proposed Edited Recommendation insert: </p>

 insert: insert: 		 Conversion to ReSpec, including formatting of examples and notes.

 		 Amended rdfs:range specification for rdf:predicate for consistency References to RDF 1.0 documents where appropriate replaced by references to RDF 1.1 documents. insert:

 insert: 		 Replaced the term "URI Reference" with the Semantics document (previously rdf:Property; now, rdfs:Resource) term "IRI".

 		 Removed reference to RDF mimetypes doc, discussion about distinction between plain and typed literals, as the IETF draft this distinction is absent in RDF 1.1 and has expired and is 404 missing no technical bearing on their site. RDF Schema.

 		 Reification vocabulary redescribed (delete: details delete:). Removed the introductory paragraph of Sec. insert: "Reification Vocabulary" insert: , as this discussion is not related to the technical content and is irrelevant and confusing now.

 		 Reworded rdfs:comment for rdfs:member, changing "container" to "resource" Update of affiliation of the editors.

 		 Reworded lead-in to Appendix A per delete: 0170.html delete: Added RDF WG to the Acknowledgements section. insert:

 insert: 		 Renamed the document from "RDF Vocabulary Description Language 1.0: RDF Schema" to "RDF Schema 1.1", as the term Vocabulary Description Language has led to confusion. insert:

 insert: 		 Three paragraphs of the Introduction were left out. These paragraphs described the things that RDF Schema does not do and are now much less relevant than in 2004. insert:

 insert: 		 Added the datatypes insert: <code> rdf:langString insert: </code> and insert: <code> rdf:HTML insert: </code> .

 		 OWL references Removed Appendix "RDF Schema in RDF/XML". It was informative, but now go to OWL specs rather than WebOnt homepage. Fixed minor typos per delete: 0373.html delete:) out of date, in terms of content and in terms of syntax.

 		 Reworded rdf:nil to tone down the imperative style. Marked insert: <code> rdf:HTML insert: </code> and insert: <code> rdf:XMLLiteral insert: </code> as non-normative.

 		 Added note to Properties section warning about over-use of sub-property, and referencing OWL, an editorial suggestion Removed references to 2004 Primer from Bijan Parsia. (delete: details delete:). delete: delete: Regarding delete: pfps-12 delete: , delete: discussion delete: led to rdf:first/rest/List/nil rewritten per Peter Patel-Schneider's suggestion. delete: delete: Change to description of subProperty and subClass, to match delete: changes to RDF Semantics delete: . See delete: discussion delete: Secs. 5.1, 5.2 and 5.4.3. In the latter case the example referred to was moved into this document for details. delete: delete: Edits delete: closing delete: 'what is rdf schema' issue by clarifying that RDFS is a semantic extension of RDF, as defined in the RDF Semantics document. This closes rdfcore last call issue pfps-24. readability purposes.

 delete: <h2> delete: delete: Appendix A: RDF Schema as RDF/XML insert: </section> insert: <section class="appendix" id="references" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h2 aria-level="1" role="heading" id="h2_references"> insert: C. insert: References

 delete: <p> An RDFS description of the delete: RDF vocabulary delete: and delete: RDFS vocabulary delete: is given here in RDF/XML syntax. It includes statements describing RDF resources originally introduced by the 1999 RDF Model and Syntax specification, as well as definitions for resources introduced in the RDF Core Schema vocabulary. delete: </p> delete: <p> This material is also insert: <section id="normative-references" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_normative-references"> insert: C.1 insert: Normative references insert: </h3>

 insert: <dl class="bibliography" about=""> insert: <dt id="bib-JSON-LD"> 		 [JSON-LD] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Manu Sporny, Gregg Kellogg, Markus Lanthaler, Editors. insert: <cite> insert: JSON-LD 1.0 insert: insert: </cite> . 16 January 2014. W3C Recommendation. URL: insert: http://www.w3.org/TR/json-ld/ insert: insert: </dd>

 insert: <dt id="bib-RDF11-CONCEPTS"> 		 [RDF11-CONCEPTS] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Richard Cyganiak, David Wood, Markus Lanthaler. insert: <cite> insert: RDF 1.1 Concepts and Abstract Syntax. insert: insert: </cite> W3C Recommendation, 25 February 2014. URL: insert: http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/ insert: . The latest edition is available as delete: a separate RDF/XML document at insert: http://www.w3.org/TR/rdf11-concepts/ insert: insert: </dd>

 insert: <dt id="bib-RDF11-MT"> 		 [RDF11-MT] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Patrick J. Hayes, Peter F. Patel-Schneider. insert: <cite> insert: RDF 1.1 Semantics. insert: insert: </cite> W3C Recommendation, 25 February 2014. URL: insert: http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/ . It does not necessarily match the content published The latest edition is available at the delete: RDF namespace URI delete: or the delete: RDFS namespace URI delete: , which may evolve over time. delete: </p> delete: <table cellpadding="5" border="1" width="95%" summary="RDF Schema in RDF"> delete: <tbody> delete: <tr> delete: <td> delete: <pre> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:owl="http://www.w3.org/2002/07/owl#"> <owl:Ontology rdf:about="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-schema#Resource"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:label>Resource</rdfs:label> <rdfs:comment>The class resource, everything.</rdfs:comment> </rdfs:Class> <rdf:Property rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#type"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> <rdfs:label>type</rdfs:label> <rdfs:comment>The subject is an instance of a class.</rdfs:comment> <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/> <rdfs:domain rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> </rdf:Property> <rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-schema#Class"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:label>Class</rdfs:label> <rdfs:comment>The class of classes.</rdfs:comment> <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> </rdfs:Class> <rdf:Property rdf:about="http://www.w3.org/2000/01/rdf-schema#subClassOf"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:label>subClassOf</rdfs:label> <rdfs:comment>The subject is a subclass of a class.</rdfs:comment> <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/> <rdfs:domain rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/> </rdf:Property> <rdf:Property rdf:about="http://www.w3.org/2000/01/rdf-schema#subPropertyOf"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:label>subPropertyOf</rdfs:label> <rdfs:comment>The subject is a subproperty of a property.</rdfs:comment> <rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/> <rdfs:domain rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/> </rdf:Property> <rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> <rdfs:label>Property</rdfs:label> <rdfs:comment>The class of RDF properties.</rdfs:comment> <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> </rdfs:Class> <rdf:Property rdf:about="http://www.w3.org/2000/01/rdf-schema#comment"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:label>comment</rdfs:label> <rdfs:comment>A description of the subject resource.</rdfs:comment> <rdfs:domain rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/> </rdf:Property> <rdf:Property rdf:about="http://www.w3.org/2000/01/rdf-schema#label"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:label>label</rdfs:label> <rdfs:comment>A human-readable name for the subject.</rdfs:comment> <rdfs:domain rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/> </rdf:Property> <rdf:Property rdf:about="http://www.w3.org/2000/01/rdf-schema#domain"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:label>domain</rdfs:label> <rdfs:comment>A domain of the subject property.</rdfs:comment> <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/> <rdfs:domain rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/> </rdf:Property> <rdf:Property rdf:about="http://www.w3.org/2000/01/rdf-schema#range"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:label>range</rdfs:label> <rdfs:comment>A range of the subject property.</rdfs:comment> <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/> <rdfs:domain rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/> </rdf:Property> <rdf:Property rdf:about="http://www.w3.org/2000/01/rdf-schema#seeAlso"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:label>seeAlso</rdfs:label> <rdfs:comment>Further information about the subject resource.</rdfs:comment> <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> <rdfs:domain rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> </rdf:Property> <rdf:Property rdf:about="http://www.w3.org/2000/01/rdf-schema#isDefinedBy"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:subPropertyOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#seeAlso"/> <rdfs:label>isDefinedBy</rdfs:label> <rdfs:comment>The defininition of the subject resource.</rdfs:comment> <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> <rdfs:domain rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> </rdf:Property> <rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-schema#Literal"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:label>Literal</rdfs:label> <rdfs:comment>The class of literal values, eg. textual strings and integers.</rdfs:comment> <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> </rdfs:Class> <rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> <rdfs:label>Statement</rdfs:label> <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> <rdfs:comment>The class of RDF statements.</rdfs:comment> </rdfs:Class> <rdf:Property rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#subject"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> <rdfs:label>subject</rdfs:label> <rdfs:comment>The subject of the subject RDF statement.</rdfs:comment> <rdfs:domain rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/> <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> </rdf:Property> <rdf:Property rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> <rdfs:label>predicate</rdfs:label> <rdfs:comment>The predicate of the subject RDF statement.</rdfs:comment> <rdfs:domain rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/> <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> </rdf:Property> <rdf:Property rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#object"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> <rdfs:label>object</rdfs:label> <rdfs:comment>The object of the subject RDF statement.</rdfs:comment> <rdfs:domain rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement"/> <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> </rdf:Property> <rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-schema#Container"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:label>Container</rdfs:label> <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> <rdfs:comment>The class of RDF containers.</rdfs:comment> </rdfs:Class> <rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> <rdfs:label>Bag</rdfs:label> <rdfs:comment>The class of unordered containers.</rdfs:comment> <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Container"/> </rdfs:Class> <rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> <rdfs:label>Seq</rdfs:label> <rdfs:comment>The class of ordered containers.</rdfs:comment> <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Container"/> </rdfs:Class> <rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#Alt"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> <rdfs:label>Alt</rdfs:label> <rdfs:comment>The class of containers of alternatives.</rdfs:comment> <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Container"/> </rdfs:Class> <rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-schema#ContainerMembershipProperty"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:label>ContainerMembershipProperty</rdfs:label> <rdfs:comment>The class of container membership properties, rdf:_1, rdf:_2, ..., all of which are sub-properties of 'member'.</rdfs:comment> <rdfs:subClassOf rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/> </rdfs:Class> <rdf:Property rdf:about="http://www.w3.org/2000/01/rdf-schema#member"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:label>member</rdfs:label> <rdfs:comment>A member of the subject resource.</rdfs:comment> <rdfs:domain rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> </rdf:Property> <rdf:Property rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#value"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> <rdfs:label>value</rdfs:label> <rdfs:comment>Idiomatic property used for structured values.</rdfs:comment> <rdfs:domain rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> </rdf:Property> <!-- the following are new additions, Nov 2002 --> <rdfs:Class rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#List"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> <rdfs:label>List</rdfs:label> <rdfs:comment>The class of RDF Lists.</rdfs:comment> <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/></rdfs:Class> <rdf:List rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> <rdfs:label>nil</rdfs:label> <rdfs:comment>The empty list, with no items in it. If the rest of a list is nil then the list has no more items in it.</rdfs:comment> </rdf:List> <rdf:Property rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#first"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> <rdfs:label>first</rdfs:label> <rdfs:comment>The first item in the subject RDF list.</rdfs:comment> <rdfs:domain rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#List"/> <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/> </rdf:Property> <rdf:Property rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#rest"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> <rdfs:label>rest</rdfs:label> <rdfs:comment>The rest of the subject RDF list after the first item.</rdfs:comment> <rdfs:domain rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#List"/> <rdfs:range rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#List"/> </rdf:Property> <rdfs:Class rdf:about="http://www.w3.org/2000/01/rdf-schema#Datatype"> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/2000/01/rdf-schema#"/> <rdfs:label>Datatype</rdfs:label> <rdfs:comment>The class of RDF datatypes.</rdfs:comment> <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/> </rdfs:Class> <rdfs:Datatype rdf:about="http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral"> <rdfs:subClassOf rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/> <rdfs:isDefinedBy rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/> <rdfs:label>XMLLiteral</rdfs:label> <rdfs:comment>The class of XML literal values.</rdfs:comment> </rdfs:Datatype> <rdf:Description rdf:about="http://www.w3.org/2000/01/rdf-schema#"> <rdfs:seeAlso rdf:resource="http://www.w3.org/2000/01/rdf-schema-more"/> </rdf:Description> </rdf:RDF> delete: </pre> delete: </td> delete: </tr> delete: </tbody> delete: </table> delete: <hr /> delete: <div class="metadata"> delete: <p> delete: delete: <img border="0"
src="http://www.w3.org/RDF/icons/rdf_metadata_button.40"
alt="RDF/XML Metadata" /> delete: delete: </p> delete: </div> insert: http://www.w3.org/TR/rdf11-mt/ insert: insert: </dd>

 insert: <dt id="bib-TRIG"> 		 [TRIG] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Gavin Carothers, Andy Seaborne. insert: <cite> insert: TriG: RDF Dataset Language insert: insert: </cite> . W3C Recommendation, 25 February 2014. URL: insert: http://www.w3.org/TR/2014/REC-trig-20140225/ insert: . The latest edition is available at insert: http://www.w3.org/TR/trig/ insert: insert: </dd>

 insert: <dt id="bib-TURTLE"> 		 [TURTLE] insert: </dt>

 insert: <dd rel="dcterms:requires"> 		 Eric Prud'hommeaux, Gavin Carothers. insert: <cite> insert: RDF 1.1 Turtle: Terse RDF Triple Language. insert: insert: </cite> W3C Recommendation, 25 February 2014. URL: insert: http://www.w3.org/TR/2014/REC-turtle-20140225/ insert: . The latest edition is available at insert: http://www.w3.org/TR/turtle/ insert: insert: </dd>

 insert: </dl>

 insert: </section> insert: <section id="informative-references" typeof="bibo:Chapter" resource="#ref" rel="bibo:Chapter"> insert: <h3 aria-level="2" role="heading" id="h3_informative-references"> insert: C.2 insert: Informative references insert: </h3>

 insert: <dl class="bibliography" about=""> insert: <dt id="bib-BERNERS-LEE98"> 		 [BERNERS-LEE98] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 Tim Berners-Lee. insert: <cite> insert: What the Semantic Web can represent insert: insert: </cite> . 1998. URI: insert: http://www.w3.org/DesignIssues/RDFnot.html insert: . insert: </dd>

 insert: <dt id="bib-OWL2-OVERVIEW"> 		 [OWL2-OVERVIEW] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 W3C OWL Working Group. insert: insert: <cite> OWL 2 Web Ontology Language Document Overview (Second Edition) insert: </cite> insert: . 11 December 2012. W3C Recommendation. URL: insert: http://www.w3.org/TR/owl2-overview/ insert: insert: </dd>

 insert: <dt id="bib-RDF11-PRIMER"> 		 [RDF11-PRIMER] insert: </dt>

 insert: <dd rel="dcterms:references"> 		 Guus Schreiber, Yves Raimond. insert: <cite> insert: RDF 1.1 Primer insert: insert: </cite> . W3C Working Group Note, 25 February 2014. The latest version is available at insert: http://www.w3.org/TR/rdf11-primer/ insert: . insert: </dd>

 insert: </dl>

 insert: </section> insert: </section>

StyleSheets/TR/logo-REC.png
UONEPUBWIWOIY DEA

rdf11-primer/example-blank-node.jpg
background
includes

cypress

52— “tree

StyleSheets/TR/logo-PR.png
UORBPUALIIODRY pasodo.d DEAA

rdf11-mt/RDF11SemanticsDiagrams/example4.jpg
G e
ED e

rdf11-primer/example-graph.jpg
Alice Leonardo Da Vinci

is interested in

The Mona Lisa

Person
il 15 duly4990 La Joconde a Washington

rdf-schema/diff-PER.xhtml

[image: W3C]

RDF
Schema
1.1

W3C

Proposed
Edited

Recommendation
09
January

25
February

2014

		
This
version:

		
http://www.w3.org/TR/2014/PER-rdf-schema-20140109/

http://www.w3.org/TR/2014/REC-rdf-schema-20140225/

		
Latest
published
version:

		

http://www.w3.org/TR/rdf-schema/

		
Latest
editor's
draft:
https://dvcs.w3.org/hg/rdf/raw-file/default/rdf-schema/index.html

Previous
version:

		
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

http://www.w3.org/TR/2014/PER-rdf-schema-20140109/

		
Editors:

		

Dan
Brickley
,
Google

		

R.V.
Guha
,
Google

		
Previous
Editors:

		
Brian
McBride

Please
check
the

errata

for
any
errors
or
issues
reported
since
publication.

This
document
is
also
available
in
this
non-normative
format:

diff
w.r.t.
2004
Recommendation

The
English
version
of
this
specification
is
the
only
normative
version.
Non-normative

translations

may
also
be
available.

Copyright

©
2004-2014

W3C

®

(

MIT

,

ERCIM

,

Keio
,

Beihang

),
All
Rights
Reserved.

W3C

liability
,

trademark

and

document
use

rules
apply.

Abstract

The
Resource
Description
Framework
(RDF)
is
a
language
for
representing
information
about
resources
in
the
World
Wide
Web.

RDF
Schema
provides
a
data-modelling
vocabulary
for
RDF
data.
RDF
Schema
is
an
extension
of
the
basic
RDF
vocabulary.

Status
of
This
Document

This
section
describes
the
status
of
this
document
at
the
time
of
its
publication.
Other
documents
may
supersede
this
document.
A
list
of
current

W3C

publications
and
the
latest
revision
of
this
technical
report
can
be
found
in
the

W3C

technical
reports
index

at
http://www.w3.org/TR/.

This
document
is
an
edited
version
of
the
2004
RDF
Schema
Recommendation.
The
purpose
of
this
revision
is
to
make
this
document
available
as
part
of
the
RDF
1.1
document
set.
Changes
are
limited
to
errata,
revised
references,
terminology
updates,
and
adaptations
to
the
introduction.
The
title
of
the
document
was
changed
from
"RDF

"RDF

Vocabulary
Description
Language
1.0:
RDF
Schema"

Schema"

to
"RDF

"RDF

Schema
1.1".

1.1".

The
technical
content
of
the
document
is
unchanged.
Details
of
the
changes
are
listed
in
the

Changes

section.
Since
the
edits
to
this
document
do
not
constitute
a
technical
change
the
Director
decided
no
new
implementation
report
was
required.

This
document
was
published
by
the

RDF
Working
Group

as
a
Proposed
Edited

Recommendation.
This
document
is
intended
to
become
a
W3C
Recommendation.
The
W3C
Membership
and
other
interested
parties
are
invited

If
you
wish

to
review
the
document
and
send

make

comments
regarding
this
document,
please
send
them

to

public-rdf-comments@w3.org

(

subscribe
,

archives

)
through
09
February
2014.
Advisory
Committee
Representatives
should
consult
their
WBS
questionnaires
.

).

All
comments
are
welcome.

Publication
as
a
Proposed
Edited
Recommendation
does
not
imply
endorsement

This
document
has
been
reviewed
by

W3C

Members,
by
software
developers,
and
by
other

W3C

groups
and
interested
parties,
and
is
endorsed

by
the
Director
as
a

W3C

Membership.
This

Recommendation.
It

is
a
draft

stable

document
and
may
be
updated,
replaced

used
as
reference
material

or
obsoleted
by
other
documents
at
any
time.
It

cited
from
another
document.

W3C

's
role
in
making
the
Recommendation

is
inappropriate

to
cite
this
document
as
other
than
work
in
progress.

draw
attention
to
the
specification
and
to
promote
its
widespread
deployment.
This
enhances
the
functionality
and
interoperability
of
the
Web.

This
document
was
produced
by
a
group
operating
under
the

5
February
2004

W3C

Patent
Policy
.

W3C

maintains
a

public
list
of
any
patent
disclosures

made
in
connection
with
the
deliverables
of
the
group;
that
page
also
includes
instructions
for
disclosing
a
patent.
An
individual
who
has
actual
knowledge
of
a
patent
which
the
individual
believes
contains

Essential
Claim(s)

must
disclose
the
information
in
accordance
with

section
6
of
the

W3C

Patent
Policy
.

Table
of
Contents

		

1.

Introduction

		

2.

Classes

		

2.1

rdfs:Resource

		

2.2

rdfs:Class

		

2.3

rdfs:Literal

		

2.4

rdfs:Datatype

		

2.5

rdf:langString

		

2.6

rdf:HTML

		

2.7

rdf:XMLLiteral

		

2.8

rdf:Property

		

3.

Properties

		

3.1

rdfs:range

		

3.2

rdfs:domain

		

3.3

rdf:type

		

3.4

rdfs:subClassOf

		

3.5

rdfs:subPropertyOf

		

3.6

rdfs:label

		

3.7

rdfs:comment

		

4.

Using
the
Domain
and
Range
vocabulary

		

5.

Other
vocabulary

		

5.1

Container
Classes
and
Properties

		

5.1.1

rdfs:Container

		

5.1.2

rdf:Bag

		

5.1.3

rdf:Seq

		

5.1.4

rdf:Alt

		

5.1.5

rdfs:ContainerMembershipProperty

		

5.1.6

rdfs:member

		

5.2

RDF
Collections

		

5.2.1

rdf:List

		

5.2.2

rdf:first

		

5.2.3

rdf:rest

		

5.2.4

rdf:nil

		

5.3

Reification
Vocabulary

		

5.3.1

rdf:Statement

		

5.3.2

rdf:subject

		

5.3.3

rdf:predicate

		

5.3.4

rdf:object

		

5.4

Utility
Properties

		

5.4.1

rdfs:seeAlso

		

5.4.2

rdfs:isDefinedBy

		

5.4.3

rdf:value

		

6.

RDF
Schema
summary

		

6.1

RDF
classes

		

6.2

RDF
properties

		

A.

Acknowledgments

		

B.

Change
history
B.1
Changes
for
Proposed
Edited
Recommendation
in
2013

Log

B.2
Changes
history
of
the
2004
Recommendation

		

C.

References

		

C.1

Normative
references

		

C.2

Informative
references

1.

Introduction

The
Resource
Description
Framework
(RDF)
is
a
general-purpose
language
for
representing
information
in
the
Web.

RDF
Schema
provides
a
data-modelling
vocabulary
for
RDF
data.
It
is
complemented
by
several
companion
documents
which
describe
the
basic
concepts
and
abstract
stntax

syntax

of
RDF
[

RDF11-CONCEPTS

],
the
formal
semantics
of
RDF
[

RDF11-MT

],
and
various
concrete
syntaxes
for
RDF,
such
as
Turtle
[

TURTLE

],
TriG,
[

TRIG

],
and
JSON-LD
[

JSON-LD

].
The
RDF
Primer
[

RDF11-PRIMER

]
provides
an
informal
introduction
and
examples
of
the
use
of
the
concepts
specified
in
this
document.

This
document
is
intended
to
provide
a
clear
specification
of
RDF
Schema
to
those
who
find
the
formal
semantics
specification
[

RDF11-MT

]
daunting.
Thus,
this
document
duplicates
material
also
specified
in
the
RDF
Semantics
specification.
Where
there
is
disagreement
between
this
document
and
the
RDF
Semantics
specification,
the
RDF
Semantics
specification
should
be
taken
to
be
correct.

RDF
Schema
is
a

semantic
extension

of
RDF.
It
provides
mechanisms
for
describing
groups
of
related
resources
and
the
relationships
between
these
resources.
RDF
Schema
is
written
in
RDF
using
the
terms
described
in
this
document.
These
resources
are
used
to
determine
characteristics
of
other
resources,
such
as
the

domains

and

ranges

of
properties.

The
RDF
Schema
class
and
property
system
is
similar
to
the
type
systems
of
object-oriented
programming
languages
such
as
Java.
RDF
Schema
differs
from
many
such
systems
in
that
instead
of
defining
a
class
in
terms
of
the
properties
its
instances
may
have,
RDF
Schema
describes
properties
in
terms
of
the
classes
of
resource
to
which
they
apply.
This
is
the
role
of
the

domain

and

range

mechanisms
described
in
this
specification.
For
example,
we
could
define
the

eg:author

property
to
have
a
domain
of

eg:Document

and
a
range
of

eg:Person
,
whereas
a
classical
object
oriented
system
might
typically
define
a
class

eg:Book

with
an
attribute
called

eg:author

of
type

eg:Person
.
Using
the
RDF
approach,
it
is
easy
for
others
to
subsequently
define
additional
properties
with
a
domain
of
eg:

Document

or
a
range
of

eg:Person
.
This
can
be
done
without
the
need
to
re-define
the
original
description
of
these
classes.
One
benefit
of
the
RDF
property-centric
approach
is
that
it
allows
anyone
to
extend
the
description
of
existing
resources,
one
of
the
architectural
principles
of
the
Web
[

BERNERS-LEE98

].

This
specification
does
not
attempt
to
enumerate
all
the
possible
forms
of
representing
the
meaning
of
RDF
classes
and
properties.
Instead,
the
RDF
Schema
strategy
is
to
acknowledge
that
there
are
many
techniques
through
which
the
meaning
of
classes
and
properties
can
be
described.
Richer
vocabulary
or
'ontology'
languages
such
as
OWL
[

OWL2-OVERVIEW

],
inference
rule
languages
and
other
formalisms
(for
example
temporal
logics)
will
each
contribute
to
our
ability
to
capture
meaningful
generalizations
about
data
in
the
Web.

The
language
defined
in
this
specification
consists
of
a
collection
of
RDF
resources
that
can
be
used
to
describe
other
RDF
resources
in
application-specific
RDF
vocabularies.
The
core
vocabulary
is
defined
in
a
namespace
informally
called

rdfs

here.
That
namespace
is
identified
by
the
IRI

http://www.w3.org/2000/01/rdf-schema#

and
is
conventionally
associated
with
the
prefix

rdfs:
.
This
specification
also
uses
the
prefix

rdf:

to
refer
to
the
RDF
namespace

http://www.w3.org/1999/02/22-rdf-syntax-ns#

For
convenience
and
readability,
this
specification
uses
an
abbreviated
form
to
represent
IRIs.
A
name
of
the
form
prefix:suffix
should
be
interpreted
as
a
IRI
consisting
of
the
IRI
associated
with
the
prefix
concatenated
with
the
suffix.

2.

Classes

Resources
may
be
divided
into
groups
called
classes.
The
members
of
a
class
are
known
as

instances

of
the
class.
Classes
are
themselves
resources.
They
are
often
identified
by

IRIs

and
may
be
described
using
RDF
properties.
The

rdf:type

property
may
be
used
to
state
that
a
resource
is
an
instance
of
a
class.

RDF
distinguishes
between
a
class
and
the
set
of
its
instances.
Associated
with
each
class
is
a
set,
called
the
class
extension
of
the
class,
which
is
the
set
of
the
instances
of
the
class.
Two
classes
may
have
the
same
set
of
instances
but
be
different
classes.
For
example,
the
tax
office
may
define
the
class
of
people
living
at
the
same
address
as
the
editor
of
this
document.
The
Post
Office
may
define
the
class
of
people
whose
address
has
the
same
zip
code
as
the
address
of
the
author.
It
is
possible
for
these
classes
to
have
exactly
the
same
instances,
yet
to
have
different
properties.
Only
one
of
the
classes
has
the
property
that
it
was
defined
by
the
tax
office,
and
only
the
other
has
the
property
that
it
was
defined
by
the
Post
Office.

A
class
may
be
a
member
of
its
own
class
extension
and
may
be
an
instance
of
itself.

The
group
of
resources
that
are
RDF
Schema
classes
is
itself
a
class
called

rdfs:Class

.

If
a
class
C
is
a

subclass

of
a
class
C',
then
all
instances
of
C
will
also
be
instances
of
C'.
The

rdfs:subClassOf

property
may
be
used
to
state
that
one
class
is
a
subclass
of
another.
The
term
super-class
is
used
as
the
inverse
of
subclass.
If
a
class
C'
is
a
super-class
of
a
class
C,
then
all
instances
of
C
are
also
instances
of
C'.

The
RDF
Concepts
and
Abstract
Syntax
[

RDF11-CONCEPTS

]
specification
defines
the
RDF
concept
of
an

RDF
datatype
.
All
datatypes
are
classes.
The
instances
of
a
class
that
is
a
datatype
are
the
members
of
the
value
space
of
the
datatype.

2.1

rdfs:Resource

All
things
described
by
RDF
are
called

resources
,
and
are
instances
of
the
class

rdfs:Resource
.
This
is
the
class
of
everything.
All
other
classes
are

subclasses

of
this
class.

rdfs:Resource

is
an
instance
of

rdfs:Class

.

2.2

rdfs:Class

This
is
the
class
of
resources
that
are
RDF
classes.

rdfs:Class

is
an
instance
of

rdfs:Class.

2.3

rdfs:Literal

The
class

rdfs:Literal

is
the
class
of

literal

values
such
as
strings
and
integers.
Property
values
such
as
textual
strings
are
examples
of
RDF
literals.

rdfs:Literal

is
an
instance
of

rdfs:Class

.
rdfs:Literal
is
a

subclass

of

rdfs:Resource
.

2.4

rdfs:Datatype

rdfs:Datatype

is
the
class
of
datatypes.
All
instances
of

rdfs:Datatype

correspond
to
the

RDF
model
of
a
datatype

described
in
the
RDF
Concepts
specification
[

RDF11-CONCEPTS

].

rdfs:Datatype

is
both
an
instance
of
and
a

subclass

of

rdfs:Class

.
Each
instance
of

rdfs:Datatype

is
a

subclass

of
rdfs:Literal.

2.5

rdf:langString

The
class

rdf:langString

is
the
class
of

language-tagged
string
values
.

rdf:langString

is
an
instance
of

rdfs:Datatype

and
a

subclass

of

rdfs:Literal

.

2.6

rdf:HTML

This
section
is
non-normative.

The
class

rdf:HTML

is
the
class
of

HTML
literal
values
.

rdf:HTML

is
an
instance
of

rdfs:Datatype

and
a

subclass

of

rdfs:Literal

.

2.7

rdf:XMLLiteral

This
section
is
non-normative.

The
class

rdf:XMLLiteral

is
the
class
of

XML
literal
values
.

rdf:XMLLiteral

is
an
instance
of

rdfs:Datatype

and
a

subclass

of

rdfs:Literal

.

2.8

rdf:Property

rdf:Property

is
the
class
of
RDF
properties.

rdf:Property

is
an
instance
of

rdfs:Class

.

3.

Properties

The
RDF
Concepts
and
Abstract
Syntax
specification
[

RDF11-CONCEPTS

]
describes
the
concept
of
an
RDF
property
as
a
relation
between
subject
resources
and
object
resources.

This
specification
defines
the
concept
of
subproperty.
The

rdfs:subPropertyOf

property
may
be
used
to
state
that
one
property
is
a
subproperty
of
another.
If
a
property
P
is
a
subproperty
of
property
P',
then
all
pairs
of
resources
which
are
related
by
P
are
also
related
by
P'.
The
term
super-property
is
often
used
as
the
inverse
of
subproperty.
If
a
property
P'
is
a
super-property
of
a
property
P,
then
all
pairs
of
resources
which
are
related
by
P
are
also
related
by
P'.
This
specification
does
not
define
a
top
property
that
is
the
super-property
of
all
properties.

Note

The
basic
facilities
provided
by

rdfs:domain

and

rdfs:range

do
not
provide
any
direct
way
to
indicate
property
restrictions
that
are
local
to
a
class.
Although
it
is
possible
to
combine
use

rdfs:domain

and

rdfs:range

with
sub-property
hierarchies,
direct
support
for
such
declarations
are
provided
by
richer
Web
Ontology
languages
such
as
OWL
[

OWL2-OVERVIEW

].

3.1

rdfs:range

rdfs:range

is
an
instance
of

rdf:Property

that
is
used
to
state
that
the
values
of
a
property
are
instances
of
one
or
more
classes.

The
triple

P
rdfs:range
C

states
that
P
is
an
instance
of
the
class

rdf:Property

,
that
C
is
an
instance
of
the
class

rdfs:Class

and
that
the
resources
denoted
by
the
objects
of
triples
whose
predicate
is
P
are
instances
of
the
class
C.

Where
P
has
more
than
one
rdfs:range
property,
then
the
resources
denoted
by
the
objects
of
triples
with
predicate
P
are
instances
of
all
the
classes
stated
by
the

rdfs:range

properties.

The

rdfs:range

property
can
be
applied
to
itself.
The
rdfs:range
of

rdfs:range

is
the
class

rdfs:Class

.
This
states
that
any
resource
that
is
the
value
of
an

rdfs:range

property
is
an
instance
of

rdfs:Class

.

The

rdfs:range

property
is
applied
to
properties.
This
can
be
represented
in
RDF
using
the

rdfs:domain

property.
The

rdfs:domain

of

rdfs:range

is
the
class

rdf:Property

.
This
states
that
any
resource
with
an

rdfs:range

property
is
an
instance
of

rdf:Property

.

3.2

rdfs:domain

rdfs:domain

is
an
instance
of

rdf:Property

that
is
used
to
state
that
any
resource
that
has
a
given
property
is
an
instance
of
one
or
more
classes.

A
triple
of
the
form:

P
rdfs:domain
C

states
that
P
is
an
instance
of
the
class

rdf:Property

,
that
C
is
a
instance
of
the
class

rdfs:Class

and
that
the
resources
denoted
by
the
subjects
of
triples
whose
predicate
is
P
are
instances
of
the
class
C.

Where
a
property
P
has
more
than
one
rdfs:domain
property,
then
the
resources
denoted
by
subjects
of
triples
with
predicate
P
are
instances
of
all
the
classes
stated
by
the

rdfs:domain

properties.

The

rdfs:domain

property
may
be
applied
to
itself.
The
rdfs:domain
of

rdfs:domain

is
the
class

rdf:Property

.
This
states
that
any
resource
with
an

rdfs:domain

property
is
an
instance
of

rdf:Property

.

The

rdfs:range

of

rdfs:domain

is
the
class

rdfs:Class

.
This
states
that
any
resource
that
is
the
value
of
an

rdfs:domain

property
is
an
instance
of

rdfs:Class

.

3.3

rdf:type

rdf:type

is
an
instance
of

rdf:Property

that
is
used
to
state
that
a
resource
is
an
instance
of
a
class.

A
triple
of
the
form:

R
rdf:type
C

states
that
C
is
an
instance
of

rdfs:Class

and
R
is
an
instance
of
C.

The

rdfs:domain

of

rdf:type

is

rdfs:Resource
.
The

rdfs:range

of
rdf:type
is

rdfs:Class

.

3.4

rdfs:subClassOf

The
property

rdfs:subClassOf

is
an
instance
of

rdf:Property

that
is
used
to
state
that
all
the
instances
of
one
class
are
instances
of
another.

A
triple
of
the
form:

C1
rdfs:subClassOf
C2

states
that
C1
is
an
instance
of

rdfs:Class

,
C2
is
an
instance
of

rdfs:Class

and
C1
is
a

subclass

of
C2.
The

rdfs:subClassOf

property
is
transitive.

The

rdfs:domain

of

rdfs:subClassOf

is

rdfs:Class

.
The

rdfs:range

of

rdfs:subClassOf

is

rdfs:Class

.

3.5

rdfs:subPropertyOf

The
property

rdfs:subPropertyOf

is
an
instance
of

rdf:Property

that
is
used
to
state
that
all
resources
related
by
one
property
are
also
related
by
another.

A
triple
of
the
form:

P1
rdfs:subPropertyOf
P2

states
that
P1
is
an
instance
of

rdf:Property

,
P2
is
an
instance
of

rdf:Property

and
P1
is
a

subproperty

of
P2.
The

rdfs:subPropertyOf

property
is
transitive.

The

rdfs:domain

of

rdfs:subPropertyOf

is

rdf:Property

.
The

rdfs:range

of
rdfs:subPropertyOf
is

rdf:Property

.

3.6

rdfs:label

rdfs:label

is
an
instance
of

rdf:Property

that
may
be
used
to
provide
a
human-readable
version
of
a
resource's
name.

A
triple
of
the
form:

R
rdfs:label
L

states
that
L
is
a
human
readable
label
for
R.

The

rdfs:domain

of

rdfs:label

is

rdfs:Resource

.
The

rdfs:range

of
rdfs:label
is

rdfs:Literal

.

Multilingual
labels
are
supported
using
the

language
tagging

facility
of
RDF
literals.

3.7

rdfs:comment

rdfs:comment

is
an
instance
of

rdf:Property

that
may
be
used
to
provide
a
human-readable
description
of
a
resource.

A
triple
of
the
form:

R
rdfs:comment
L

states
that
L
is
a
human
readable
description
of
R.

The

rdfs:domain

of

rdfs:comment

is

rdfs:Resource

.
The

rdfs:range

of
rdfs:comment
is

rdfs:Literal

.

A
textual
comment
helps
clarify
the
meaning
of
RDF
classes
and
properties.
Such
in-line
documentation
complements
the
use
of
both
formal
techniques
(Ontology
and
rule
languages)
and
informal
(prose
documentation,
examples,
test
cases).
A
variety
of
documentation
forms
can
be
combined
to
indicate
the
intended
meaning
of
the
classes
and
properties
described
in
an
RDF
vocabulary.
Since
RDF
vocabularies
are
expressed
as
RDF
graphs,
vocabularies
defined
in
other
namespaces
may
be
used
to
provide
richer
documentation.

Multilingual
documentation
is
supported
through
use
of
the

language
tagging

facility
of
RDF
literals.

4.

Using
the
Domain
and
Range
vocabulary

This
section
is
non-normative.

This
specification
introduces
an
RDF
vocabulary
for
describing
the
meaningful
use
of
properties
and
classes
in
RDF
data.
For
example,
an
RDF
vocabulary
might
describe
limitations
on
the
types
of
values
that
are
appropriate
for
some
property,
or
on
the
classes
to
which
it
makes
sense
to
ascribe
such
properties.

RDF
Schema
provides
a
mechanism
for
describing
this
information,
but
does
not
say
whether
or
how
an
application
should
use
it.
For
example,
while
an
RDF
vocabulary
can
assert
that
an

author

property
is
used
to
indicate
resources
that
are
instances
of
the
class

Person
,
it
does
not
say
whether
or
how
an
application
should
act
in
processing
that
range
information.
Different
applications
will
use
this
information
in
different
ways.
For
example,
data
checking
tools
might
use
this
to
help
discover
errors
in
some
data
set,
an
interactive
editor
might
suggest
appropriate
values,
and
a
reasoning
application
might
use
it
to
infer
additional
information
from
instance
data.

RDF
vocabularies
can
describe
relationships
between
vocabulary
items
from
multiple
independently
developed
vocabularies.
Since
IRIs
are
used
to
identify
classes
and
properties
on
the
Web,
it
is
possible
to
create
new
properties
that
have
a

domain

or

range

whose
value
is
a
class
defined
in
another
namespace.

5.

Other
vocabulary

Additional
classes
and
properties,
including
constructs
for
representing
containers
and
RDF
statements,
and
for
deploying
RDF
vocabulary
descriptions
in
the
World
Wide
Web,
are
defined
in
this
section.

5.1

Container
Classes
and
Properties

This
section
is
non-normative.

RDF
containers
are
resources
that
are
used
to
represent
collections.
The
same
resource
may
appear
in
a
container
more
than
once.
Unlike
containment
in
the
physical
world,
a
container
may
be
contained
in
itself.

Three
different
kinds
of
container
are
defined.
Whilst
the
formal
semantics
[

RDF11-MT

]
of
all
three
classes
of
container
are
identical,
different
classes
may
be
used
to
indicate
informally
further
information.
An
rdf:Bag
is
used
to
indicate
that
the
container
is
intended
to
be
unordered.
An
rdf:Seq
is
used
to
indicate
that
the
order
indicated
by
the
numerical
order
of
the

container
membership
properties

of
the
container
is
intended
to
be
significant.
An
rdf:Alt
container
is
used
to
indicate
that
typical
processing
of
the
container
will
be
to
select
one
of
the
members.

Just
as
a
hen
house
may
have
the
property
that
it
is
made
of
wood,
that
does
not
mean
that
all
the
hens
it
contains
are
made
of
wood,
a
property
of
a
container
is
not
necessarily
a
property
of
all
of
its
members.

RDF
containers
are
defined
by
the
following
classes
and
properties.

5.1.1

rdfs:Container

The

rdfs:Container

class
is
a
super-class
of
the
RDF
Container
classes,
i.e.

rdf:Bag

,

rdf:Seq

,

rdf:Alt

.

5.1.2

rdf:Bag

The

rdf:Bag

class
is
the
class
of
RDF
'Bag'
containers.
It
is
a

subclass

of

rdfs:Container

.
Whilst
formally
it
is
no
different
from
an

rdf:Seq

or
an

rdf:Alt

,
the

rdf:Bag

class
is
used
conventionally
to
indicate
to
a
human
reader
that
the
container
is
intended
to
be
unordered.

5.1.3

rdf:Seq

The

rdf:Seq

class
is
the
class
of
RDF
'Sequence'
containers.
It
is
a

subclass

of

rdfs:Container

.
Whilst
formally
it
is
no
different
from
an

rdf:Bag

or
an

rdf:Alt

,
the

rdf:Seq

class
is
used
conventionally
to
indicate
to
a
human
reader
that
the
numerical
ordering
of
the

container
membership
properties

of
the
container
is
intended
to
be
significant.

5.1.4

rdf:Alt

The

rdf:Alt

class
is
the
class
of
RDF
'Alternative'
containers.
It
is
a

subclass

of

rdfs:Container

.
Whilst
formally
it
is
no
different
from
an

rdf:Seq

or
an

rdf:Bag

,
the

rdf:Alt

class
is
used
conventionally
to
indicate
to
a
human
reader
that
typical
processing
will
be
to
select
one
of
the
members
of
the
container.
The
first
member
of
the
container,
i.e.
the
value
of
the

rdf:_1

property,
is
the
default
choice.

5.1.5

rdfs:ContainerMembershipProperty

The

rdfs:ContainerMembershipProperty

class
has
as
instances
the
properties

rdf:_1,
rdf:_2,
rdf:_3
...

that
are
used
to
state
that
a
resource
is
a
member
of
a
container.

rdfs:ContainerMembershipProperty

is
a

subclass

of

rdf:Property

.
Each
instance
of

rdfs:ContainerMembershipProperty

is
an

rdfs:subPropertyOf

the

rdfs:member

property.

Given
a
container
C,
a
triple
of
the
form:

C
rdf:_nnn
O

where

nnn

is
the
decimal
representation
of
an
integer
greater
than
0
with
no
leading
zeros,
states
that
O
is
a
member
of
the
container
C.

Container
membership
properties
may
be
applied
to
resources
other
than
containers.

5.1.6

rdfs:member

rdfs:member

is
an
instance
of

rdf:Property

that
is
a
super-property
of
all
the
container
membership
properties
i.e.
each
container
membership
property
has
an

rdfs:subPropertyOf

relationship
to
the
property

rdfs:member
.

The

rdfs:domain

of

rdfs:member

is

rdfs:Resource

.
The

rdfs:range

of

rdfs:member

is

rdfs:Resource

.

5.2

RDF
Collections

This
section
is
non-normative.

RDF
containers
are
open
in
the
sense
that
the
core
RDF
specifications
define
no
mechanism
to
state
that
there
are
no
more
members.
The
RDF
Collection
vocabulary
of
classes
and
properties
can
describe
a
closed
collection,
i.e.
one
that
can
have
no
more
members.

A
collection
is
represented
as
a
list
of
items,
a
representation
that
will
be
familiar
to
those
with
experience
of
Lisp
and
similar
programming
languages.
There
is
a

shorthand
notation

in
the
Turtle
syntax
specification
for
representing
collections.

Note

RDFS
does
not
require
that
there
be
only
one
first
element
of
a
list-like
structure,
or
even
that
a
list-like
structure
have
a
first
element.

5.2.1

rdf:List

rdf:List

is
an
instance
of

rdfs:Class

that
can
be
used
to
build
descriptions
of
lists
and
other
list-like
structures.

5.2.2

rdf:first

rdf:first

is
an
instance
of

rdf:Property

that
can
be
used
to
build
descriptions
of
lists
and
other
list-like
structures.

A
triple
of
the
form:

L
rdf:first
O

states
that
there
is
a
first-element
relationship
between
L
and
O.

The

rdfs:domain

of

rdf:first

is

rdf:List

.
The

rdfs:range

of

rdf:first

is

rdfs:Resource

.

5.2.3

rdf:rest

rdf:rest

is
an
instance
of

rdf:Property

that
can
be
used
to
build
descriptions
of
lists
and
other
list-like
structures.

A
triple
of
the
form:

L
rdf:rest
O

states
that
there
is
a
rest-of-list
relationship
between
L
and
O.

The

rdfs:domain

of

rdf:rest

is

rdf:List

.
The

rdfs:range

of

rdf:rest

is

rdf:List

.

5.2.4

rdf:nil

The
resource

rdf:nil

is
an
instance
of

rdf:List

that
can
be
used
to
represent
an
empty
list
or
other
list-like
structure.

A
triple
of
the
form:

L
rdf:rest
rdf:nil

states
that
L
is
an
instance
of

rdf:List

that
has
one
item;
that
item
can
be
indicated
using
the

rdf:first

property.

5.3

Reification
Vocabulary

This
section
is
non-normative.

5.3.1

rdf:Statement

rdf:Statement

is
an
instance
of

rdfs:Class.

It
is
intended
to
represent
the
class
of
RDF
statements.
An
RDF
statement
is
the
statement
made
by
a
token
of
an
RDF
triple.
The
subject
of
an
RDF
statement
is
the
instance
of

rdfs:Resource

identified
by
the
subject
of
the
triple.
The
predicate
of
an
RDF
statement
is
the
instance
of

rdf:Property

identified
by
the
predicate
of
the
triple.
The
object
of
an
RDF
statement
is
the
instance
of

rdfs:Resource

identified
by
the
object
of
the
triple.

rdf:Statement

is
in
the
domain
of
the
properties

rdf:predicate

,

rdf:subject

and

rdf:object

.
Different
individual

rdf:Statement

instances
may
have
the
same
values
for
their

rdf:predicate

,

rdf:subject

and

rdf:object

properties.

5.3.2

rdf:subject

rdf:subject

is
an
instance
of

rdf:Property

that
is
used
to
state
the
subject
of
a
statement.

A
triple
of
the
form:

S
rdf:subject
R

states
that
S
is
an
instance
of

rdf:Statement

and
that
the
subject
of
S
is
R.

The

rdfs:domain

of

rdf:subject

is

rdf:Statement

.
The

rdfs:range

of

rdf:subject

is

rdfs:Resource

.

5.3.3

rdf:predicate

rdf:predicate
is
an
instance
of

rdf:Property

that
is
used
to
state
the
predicate
of
a
statement.

A
triple
of
the
form:

S
rdf:predicate
P

states
that
S
is
an
instance
of

rdf:Statement

,
that
P
is
an
instance
of

rdf:Property

and
that
the
predicate
of
S
is
P.

The

rdfs:domain

of

rdf:predicate

is

rdf:Statement

and
the

rdfs:range

is

rdfs:Resource

.

5.3.4

rdf:object

rdf:object
is
an
instance
of

rdf:Property

that
is
used
to
state
the
object
of
a
statement.

A
triple
of
the
form:

S
rdf:object
O

states
that
S
is
an
instance
of

rdf:Statement

and
that
the
object
of
S
is
O.

The

rdfs:domain

of

rdf:object

is

rdf:Statement

.
The

rdfs:range

of

rdf:object

is

rdfs:Resource

.

5.4

Utility
Properties

The
following
utility
classes
and
properties
are
defined
in
the
RDF
core
namespaces.

5.4.1

rdfs:seeAlso

rdfs:seeAlso

is
an
instance
of

rdf:Property

that
is
used
to
indicate
a
resource
that
might
provide
additional
information
about
the
subject
resource.

A
triple
of
the
form:

S
rdfs:seeAlso
O

states
that
the
resource
O
may
provide
additional
information
about
S.
It
may
be
possible
to
retrieve
representations
of
O
from
the
Web,
but
this
is
not
required.
When
such
representations
may
be
retrieved,
no
constraints
are
placed
on
the
format
of
those
representations.

The

rdfs:domain

of

rdfs:seeAlso

is

rdfs:Resource

.
The

rdfs:range

of

rdfs:seeAlso

is

rdfs:Resource

.

5.4.2

rdfs:isDefinedBy

rdfs:isDefinedBy

is
an
instance
of

rdf:Property

that
is
used
to
indicate
a
resource
defining
the
subject
resource.
This
property
may
be
used
to
indicate
an
RDF
vocabulary
in
which
a
resource
is
described.

A
triple
of
the
form:

S
rdfs:isDefinedBy
O

states
that
the
resource
O
defines
S.
It
may
be
possible
to
retrieve
representations
of
O
from
the
Web,
but
this
is
not
required.
When
such
representations
may
be
retrieved,
no
constraints
are
placed
on
the
format
of
those
representations.

rdfs:isDefinedBy

is
a

subproperty

of

rdfs:seeAlso

.

The

rdfs:domain

of

rdfs:isDefinedBy

is

rdfs:Resource

.
The

rdfs:range

of

rdfs:isDefinedBy

is

rdfs:Resource

.

5.4.3

rdf:value

rdf:value

is
an
instance
of

rdf:Property

that
may
be
used
in
describing
structured
values.

rdf:value
has
no
meaning
on
its
own.
It
is
provided
as
a
piece
of
vocabulary
that
may
be
used
in
idioms
such
as
illustrated
in
example
below:

 <http://www.example.com/2002/04/products#item10245>

Example
1

<http://www.example.com/2002/04/products#item10245>

 <http://www.example.org/terms/weight> [
 rdf:value 2.4 ;
 <http://www.example.org/terms/units> <http://www.example.org/units/kilograms>
]
.

] .

Despite
the
lack
of
formal
specification
of
the
meaning
of
this
property,
there
is
value
in
defining
it
to
encourage
the
use
of
a
common
idiom
in
examples
of
this
kind.

The

rdfs:domain

of

rdf:value

is

rdfs:Resource

.
The

rdfs:range

of

rdf:value

is

rdfs:Resource

.

6.

RDF
Schema
summary

This
section
is
non-normative.

The
tables
in
this
section
provide
an
overview
of
the
RDF
Schema
vocabulary.

6.1

RDF
classes

		
Class
name

		
comment

		

rdfs:Resource

		
The
class
resource,
everything.

		

rdfs:Literal

		
The
class
of
literal
values,
e.g.
textual
strings
and
integers.

		

rdf:langString

		
The
class
of
language-tagged
string
literal
values.

		

rdf:HTML

		
The
class
of
HTML
literal
values.

		

rdf:XMLLiteral

		
The
class
of
XML
literal
values.

		

rdfs:Class

		
The
class
of
classes.

		

rdf:Property

		
The
class
of
RDF
properties.

		

rdfs:Datatype

		
The
class
of
RDF
datatypes.

		

rdf:Statement

		
The
class
of
RDF
statements.

		

rdf:Bag

		
The
class
of
unordered
containers.

		

rdf:Seq

		
The
class
of
ordered
containers.

		

rdf:Alt

		
The
class
of
containers
of
alternatives.

		

rdfs:Container

		
The
class
of
RDF
containers.

		

rdfs:ContainerMembershipProperty

		
The
class
of
container
membership
properties,
rdf:_1,
rdf:_2,
...,
all
of
which
are
sub-properties
of
'member'.

		

rdf:List

		
The
class
of
RDF
Lists.

6.2

RDF
properties

		
Property
name

		
comment

		
domain

		
range

		

rdf:type

		
The
subject
is
an
instance
of
a
class.

		
rdfs:Resource

		
rdfs:Class

		

rdfs:subClassOf

		
The
subject
is
a
subclass
of
a
class.

		
rdfs:Class

		
rdfs:Class

		

rdfs:subPropertyOf

		
The
subject
is
a
subproperty
of
a
property.

		
rdf:Property

		
rdf:Property

		

rdfs:domain

		
A
domain
of
the
subject
property.

		
rdf:Property

		
rdfs:Class

		

rdfs:range

		
A
range
of
the
subject
property.

		
rdf:Property

		
rdfs:Class

		

rdfs:label

		
A
human-readable
name
for
the
subject.

		
rdfs:Resource

		
rdfs:Literal

		

rdfs:comment

		
A
description
of
the
subject
resource.

		
rdfs:Resource

		
rdfs:Literal

		

rdfs:member

		
A
member
of
the
subject
resource.

		
rdfs:Resource

		
rdfs:Resource

		

rdf:first

		
The
first
item
in
the
subject
RDF
list.

		
rdf:List

		
rdfs:Resource

		

rdf:rest

		
The
rest
of
the
subject
RDF
list
after
the
first
item.

		
rdf:List

		
rdf:List

		

rdfs:seeAlso

		
Further
information
about
the
subject
resource.

		
rdfs:Resource

		
rdfs:Resource

		

rdfs:isDefinedBy

		
The
definition
of
the
subject
resource.

		
rdfs:Resource

		
rdfs:Resource

		

rdf:value

		
Idiomatic
property
used
for
structured
values.

		
rdfs:Resource

		
rdfs:Resource

		

rdf:subject

		
The
subject
of
the
subject
RDF
statement.

		
rdf:Statement

		
rdfs:Resource

		

rdf:predicate

		
The
predicate
of
the
subject
RDF
statement.

		
rdf:Statement

		
rdfs:Resource

		

rdf:object

		
The
object
of
the
subject
RDF
statement.

		
rdf:Statement

		
rdfs:Resource

In
addition
to
these
classes
and
properties,
RDF
also
uses
properties
called

rdf:_1
,

rdf:_2
,

rdf:_3
...
etc.,
each
of
which
is
both
a
sub-property
of

rdfs:member

and
an
instance
of
the
class

rdfs:ContainerMembershipProperty
.
There
is
also
an
instance
of

rdf:List

called

rdf:nil

that
is
an
empty

rdf:List
.

A.

Acknowledgments

This
section
is
non-normative.

The
RDF
Schema
design
was
originally
produced
by
the
RDF
Schema
Working
Group
(1997-2000).
The
current
specification
is
largely
an
editorial
clarification
of
that
design,
and
has
benefited
greatly
from
the
hard
work
of
the

RDF
Core
Working
Group

members
,
and
from
implementation
feedback
from
many
members
of
the

RDF
Interest
Group
.
In
2013-2014
Guus
Schreiber
edited
this
document
on
behalf
of
the

RDF
Working
Group

to
bring
it
in
line
with
the
RDF
1.1
specifications.

David
Singer
of
IBM
was
the
chair
of
the
original
RDF
Schema
group
throughout
most
of
the
development
of
this
specification;
we
thank
David
for
his
efforts
and
thank
IBM
for
supporting
him
and
us
in
this
endeavor.
Particular
thanks
are
also
due
to
Andrew
Layman
for
his
editorial
work
on
early
versions
of
this
specification.

The
original
RDF
Schema
Working
Group
membership
included:

Nick
Arnett
(Verity),
Dan
Brickley
(ILRT
/
University
of
Bristol),
Walter
Chang
(Adobe),
Sailesh
Chutani
(Oracle),
Ron
Daniel
(DATAFUSION),
Charles
Frankston
(Microsoft),
Joe
Lapp
(webMethods
Inc.),
Patrick
Gannon
(CommerceNet),
RV
Guha
(Epinions,
previously
of
Netscape
Communications),
Tom
Hill
(Apple
Computer),
Renato
Iannella
(DSTC),
Sandeep
Jain
(Oracle),
Kevin
Jones,
(InterMind),
Emiko
Kezuka
(Digital
Vision
Laboratories),
Ora
Lassila
(Nokia
Research
Center),
Andrew
Layman
(Microsoft),
John
McCarthy
(Lawrence
Berkeley
National
Laboratory),
Michael
Mealling
(Network
Solutions),
Norbert
Mikula
(DataChannel),
Eric
Miller
(OCLC),
Frank
Olken
(Lawrence
Berkeley
National
Laboratory),
Sri
Raghavan
(Digital/Compaq),
Lisa
Rein
(webMethods
Inc.),
Tsuyoshi
Sakata
(Digital
Vision
Laboratories),
Leon
Shklar
(Pencom
Web
Works),
David
Singer
(IBM),
Wei
(William)
Song
(SISU),
Neel
Sundaresan
(IBM),
Ralph
Swick
(

W3C

),
Naohiko
Uramoto
(IBM),
Charles
Wicksteed
(Reuters
Ltd.),
Misha
Wolf
(Reuters
Ltd.)

B.

Change
history

Log

This
section
is
non-normative.

B.1

Changes
for
RDF
1.1
Recommendation

		
No
changes.

Changes
for
RDF
1.1

Proposed
Edited
Recommendation
in
2013

		
Conversion
to
ResPec,
inclduing

ReSpec,
including

formatting
of
examples
and
notes.

		
Refereces
and
anchors

References

to
RDF
1.0
documents
where
appropriate
replaced
by
references
and
anchors

to
RDF
1.1
documents.

		
Replaced
the
term
"URI
Reference"

"URI
Reference"

with
the
term
"IRI".

"IRI".

		
Removed
discussion
about
distinction
between
plain
and
typed
literals,
as
this
distinction
is
absent
in
RDF
1.1
and
has
no
technical
bearing
on
RDF
Schema.

		
Removed
the
introductory
paragraph
of
Sec.

"Reification
Vocabulary"

"Reification
Vocabulary"

,
as
this
discussion
is
not
related
to
the
technical
content
and
is
irrelevant
and
confusing
now.

		
Update
of
affiliation
of
the
editors.

		
Added
RDF
WG
to
the
Acknowledgements
section.

		
Renamed
the
document
from
"RDF

"RDF

Vocabulary
Description
Language
1.0:
RDF
Schema"

Schema"

to
"RDF

"RDF

Schema
1.1",

1.1",

as
the
term
Vocabulary
Description
Language
has
led
to
confusion.

		
Three
paragraphs
of
the
Introduction
were
left
out.
These
paragraphs
described
the
things
that
RDF
Schema
does
not
do
and
are
now
much
less
relevant
than
in
2004.

		
Added
the
datatypes

rdf:langString

and

rdf:HTML
.

		
Removed
Appendix
"RDF

"RDF

Schema
in
RDF/XML".

RDF/XML".

It
was
informative,
but
now
out
of
date,
in
terms
of
content
and
in
terms
of
syntax.

		
Marked

rdf:HTML

and

rdf:XMLLiteral

as
non-normative.

		
Removed
references
to
2004
Primer
from
Secs.
5.1,
5.2
and
5.4.3.
In
the
latter
case
the
example
referred
to
was
moved
into
this
document
for
readability
purposes.

B.2
Changes
history
of
the
2004
Recommendation
The
following
is
an
outline
of
the
main
changes
made
to
the
2004
specification,
latest
first,
since
the
Last
Call
Working
Draft
of
23
January
2003
.
See
the
Last
Call
issue
tracking
document
for
details
of
the
specific
issues
raised
regarding
this
specification.
Amended
Appendix
A
to
note
that
the
RDF/XML
description
of
RDF
and
RDFS
terms
is
not
directly
published
at
the
RDFS
namespace,
but
split
between
the
'rdf:'
and
'rdfs:'
namespace
documents.
Also
removed
the
pre-REC
warning
that
the
WG
might
choose
to
change
the
namespace
URI
prior
to
Recommendation.
Amended
rdfs:range
specification
for
rdf:predicate
for
consistency
with
the
Semantics
document
(previously
rdf:Property;
now,
rdfs:Resource)
Removed
reference
to
RDF
mimetypes
doc,
as
the
IETF
draft
has
expired
and
is
404
missing
on
their
site.
Reification
vocabulary
redescribed
(
details
).
Reworded
rdfs:comment
for
rdfs:member,
changing
"container"
to
"resource"
Reworded
lead-in
to
Appendix
A
per
0170.html
.
OWL
references
now
go
to
OWL
specs
rather
than
WebOnt
homepage.
Fixed
minor
typos
per
0373.html
)
Reworded
rdf:nil
to
tone
down
the
imperative
style.
Added
note
to
Properties
section
warning
about
over-use
of
sub-property,
and
referencing
OWL,
an
editorial
suggestion
from
Bijan
Parsia.
(
details
).
Regarding
pfps-12
,
discussion
led
to
rdf:first/rest/List/nil
rewritten
per
Peter
Patel-Schneider's
suggestion.
Change
to
description
of
subProperty
and
subClass,
to
match
changes
to
RDF
Semantics
.
See
discussion
for
details.
Edits
closing
'what
is
rdf
schema'
issue
by
clarifying
that
RDFS
is
a
semantic
extension
of
RDF,
as
defined
in
the
RDF
Semantics
document.
This
closes
rdfcore
last
call
issue
pfps-24.

C.

References

C.1

Normative
references

		
[JSON-LD]

		
Manu
Sporny,
Gregg
Kellogg,
Markus
Lanthaler.

Lanthaler,
Editors.

JSON-LD
1.0
.
5
November
2013.

.
16
January
2014.

W3C
Proposed

Recommendation.
URL:
http://www.w3.org/TR/2013/PR-json-ld-20131105/
.
The
latest
edition
is
available
at

http://www.w3.org/TR/json-ld/

		
[RDF11-CONCEPTS]

		
Richard
Cyganiak,
David
Wood,
Markus
Lanthaler.

RDF
1.1
Concepts
and
Abstract
Syntax.

9
January
2014.

W3C
Proposed
Recommendation
(work
in
progress).

Recommendation,
25
February
2014.

URL:
http://www.w3.org/TR/2014/PR-rdf11-concepts-20140109/

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

.
The
latest
edition
is
available
at

http://www.w3.org/TR/rdf11-concepts/

		
[RDF11-MT]

		
Patrick
J.
Hayes,
Peter
F.
Patel-Schneider.

RDF
1.1
Semantics.

9
January
2014.

W3C
Proposed
Recommendation
(work
in
progress).

Recommendation,
25
February
2014.

URL:
http://www.w3.org/TR/2014/PR-rdf11-mt-20140109/

http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

.
The
latest
edition
is
available
at

http://www.w3.org/TR/rdf11-mt/

		
[TRIG]

		
Gavin
Carothers,
Andy
Seaborne.

TriG:
RDF
Dataset
Language

.
9
January
2014.

W3C
Proposed
Recommendation
(work
in
progress).

Recommendation,
25
February
2014.

URL:
http://www.w3.org/TR/2014/PR-trig-20140109/

http://www.w3.org/TR/2014/REC-trig-20140225/

.
The
latest
edition
is
available
at

http://www.w3.org/TR/trig/

		
[TURTLE]

		
Eric
Prud'hommeaux,
Gavin
Carothers.

RDF
1.1
Turtle:
Terse
RDF
Triple
Language.

9
January
2014.

W3C
Proposed
Recommendation
(work
in
progress).

Recommendation,
25
February
2014.

URL:
http://www.w3.org/TR/2014/PR-turtle-20140109/

http://www.w3.org/TR/2014/REC-turtle-20140225/

.
The
latest
edition
is
available
at

http://www.w3.org/TR/turtle/

C.2

Informative
references

		
[BERNERS-LEE98]

		
Tim
Berners-Lee.

What
the
Semantic
Web
can
represent

.
1998.
URI:

http://www.w3.org/DesignIssues/RDFnot.html
.

		
[OWL2-OVERVIEW]

		
W3C
OWL
Working
Group.

OWL
2
Web
Ontology
Language
Document
Overview
(Second
Edition)

.
11
December
2012.
W3C
Recommendation.
URL:

http://www.w3.org/TR/owl2-overview/

		
[RDF11-PRIMER]

		
Guus
Schreiber,
Yves
Raimond.

RDF
1.1
Primer

.
W3C
Working
Draft
(work
in
progress),
17
December
2013.

Group
Note,
25
February
2014.

The
latest
version
is
available
at

http://www.w3.org/TR/rdf11-primer/
.

Icons/w3c_main.png

rdf11-concepts/diff-20140109.xhtml

[image: W3C]

RDF
1.1
Concepts
and
Abstract
Syntax

W3C

Proposed

Recommendation
09
January

25
February

2014

		
This
version:

		
http://www.w3.org/TR/2014/PR-rdf11-concepts-20140109/

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

		
Latest
published
version:

		

http://www.w3.org/TR/rdf11-concepts/

		
Latest
editor's
draft:
https://dvcs.w3.org/hg/rdf/raw-file/default/rdf-concepts/index.html

Implementation
report:

		
https://dvcs.w3.org/hg/rdf/raw-file/default/rdf-concepts/reports/index.html

http://www.w3.org/TR/2014/NOTE-rdf11-testcases-20140225/

		
Previous
version:

		
http://www.w3.org/TR/2013/CR-rdf11-concepts-20131105/

http://www.w3.org/TR/2014/PR-rdf11-concepts-20140109/

		
Latest

Previous

Recommendation:

		

http://www.w3.org/TR/rdf-concepts

		
Editors:

		

Richard
Cyganiak
,

DERI,
NUI
Galway

		

David
Wood
,

3
Round
Stones

		

Markus
Lanthaler
,

Graz
University
of
Technology

		
Previous
Editors:

		
Graham
Klyne

		
Jeremy
J.
Carroll

		
Brian
McBride

Please
check
the

errata

for
any
errors
or
issues
reported
since
publication.

This
document
is
also
available
in
this
non-normative
format:

diff
to
previous
version

The
English
version
of
this
specification
is
the
only
normative
version.
Non-normative

translations

may
also
be
available.

Copyright

©
2004-2014

W3C

®

(

MIT

,

ERCIM

,

Keio
,

Beihang

),
All
Rights
Reserved.

W3C

liability
,

trademark

and

document
use

rules
apply.

Abstract

The
Resource
Description
Framework
(RDF)
is
a
framework
for
representing
information
in
the
Web.
This
document
defines
an
abstract
syntax
(a
data
model)
which
serves
to
link
all
RDF-based
languages
and
specifications.
The
abstract
syntax
has
two
key
data
structures:
RDF
graphs
are
sets
of
subject-predicate-object
triples,
where
the
elements
may
be
IRIs,
blank
nodes,
or
datatyped
literals.
They
are
used
to
express
descriptions
of
resources.
RDF
datasets
are
used
to
organize
collections
of
RDF
graphs,
and
comprise
a
default
graph
and
zero
or
more
named
graphs.
RDF 1.1

RDF 1.1

Concepts
and
Abstract
Syntax
also
introduces
key
concepts
and
terminology,
and
discusses
datatyping
and
the
handling
of
fragment
identifiers
in
IRIs
within
RDF
graphs.

Status
of
This
Document

This
section
describes
the
status
of
this
document
at
the
time
of
its
publication.
Other
documents
may
supersede
this
document.
A
list
of
current

W3C

publications
and
the
latest
revision
of
this
technical
report
can
be
found
in
the

W3C

technical
reports
index

at
http://www.w3.org/TR/.

This
document
is
a

part
of
the
RDF
1.1
document
suite.
The

It
is
the
central

RDF
Working
Group
welcomes
comments

1.1
specification

and
reports
of
implementations

defines
the
core
RDF
concepts.
A
new
concept

in
general,
but
given

RDF
1.1
is

the
nature

notion

of
this
document
(as
a
conceptual
overview),
the
group
is
not
expecting

an
RDF
dataset
to
represent
multiple
graphs.
There
have
been
no
changes

to
track
implementations
of

this
document
on

since

its
own.

publication
as
Proposed
Recommendation.

This
document
was
published
by
the

RDF
Working
Group

as
a
Proposed

Recommendation.
This
document
is
intended
to
become
a
W3C
Recommendation.
The
W3C
Membership
and
other
interested
parties
are
invited

If
you
wish

to
review
the
document
and
send

make

comments
regarding
this
document,
please
send
them

to

public-rdf-comments@w3.org

(

subscribe
,

archives

)
through
09
February
2014.
Advisory
Committee
Representatives
should
consult
their
WBS
questionnaires
.
Note
that
substantive
technical

).
All

comments
were
expected
during
the
Last
Call
review
period
that
ended
06
September
2013.

are
welcome.

Please
see
the
Working
Group's

implementation
report
.

Publication
as
a
Proposed
Recommendation
does
not
imply
endorsement

This
document
has
been
reviewed
by

W3C

Members,
by
software
developers,
and
by
other

W3C

groups
and
interested
parties,
and
is
endorsed

by
the
Director
as
a

W3C

Membership.
This

Recommendation.
It

is
a
draft

stable

document
and
may
be
updated,
replaced

used
as
reference
material

or
obsoleted
by
other
documents
at
any
time.
It

cited
from
another
document.

W3C

's
role
in
making
the
Recommendation

is
inappropriate

to
cite
this
document
as
other
than
work
in
progress.

draw
attention
to
the
specification
and
to
promote
its
widespread
deployment.
This
enhances
the
functionality
and
interoperability
of
the
Web.

This
document
was
produced
by
a
group
operating
under
the

5
February
2004

W3C

Patent
Policy
.

W3C

maintains
a

public
list
of
any
patent
disclosures

made
in
connection
with
the
deliverables
of
the
group;
that
page
also
includes
instructions
for
disclosing
a
patent.
An
individual
who
has
actual
knowledge
of
a
patent
which
the
individual
believes
contains

Essential
Claim(s)

must
disclose
the
information
in
accordance
with

section
6
of
the

W3C

Patent
Policy
.

Table
of
Contents

		

1.

Introduction

		

1.1

Graph-based
Data
Model

		

1.2

Resources
and
Statements

		

1.3

The
Referent
of
an

IRI

		

1.4

RDF
Vocabularies
and
Namespace
IRIs

		

1.5

RDF
and
Change
over
Time

		

1.6

Working
with
Multiple
RDF
Graphs

		

1.7

Equivalence,
Entailment
and
Inconsistency

		

1.8

RDF
Documents
and
Syntaxes

		

2.

Conformance

		

3.

RDF
Graphs

		

3.1

Triples

		

3.2

IRIs

		

3.3

Literals

		

3.4

Blank
Nodes

		

3.5

Replacing
Blank
Nodes
with
IRIs

		

3.6

Graph
Comparison

		

4.

RDF
Datasets

		

4.1

RDF
Dataset
Comparison

		

4.2

Content
Negotiation
of
RDF
Datasets

		

5.

Datatypes

		

5.1

The
XML
Schema
Built-in
Datatypes

		

5.2

The

rdf:HTML

Datatype

		

5.3

The

rdf:XMLLiteral

Datatype

		

5.4

Datatype
IRIs

		

6.

Fragment
Identifiers

		

7.

Generalized
RDF
Triples,
Graphs,
and
Datasets

		

8.

Acknowledgments

		

A.

Changes
between
RDF
1.0
and
RDF
1.1

B.
Changes
since
the
5
November
2013
Candidate
Recommendation

		

C.

B.

References

		

C.1

B.1

Normative
references

		

C.2

B.2

Informative
references

1.

Introduction

This
section
is
non-normative.

The

Resource
Description
Framework

(RDF)
is
a
framework
for
representing
information
in
the
Web.

This
document
defines
an
abstract
syntax
(a
data
model)
which
serves
to
link
all
RDF-based
languages
and
specifications,
including:

		
the

formal
model-theoretic
semantics
for
RDF
and
RDFS

[

RDF11-MT

].

]

		
serialization
syntaxes
for
storing
and
exchanging
RDF
(e.g.,

such
as

Turtle

[

TURTLE

]
and

JSON-LD

[

JSON-LD

]),

]

		
the

SPARQL
Query
Language

[

SPARQL11-OVERVIEW

],

]

		
the

RDF
Vocabulary
Description
Language

(RDFS)
[

RDF11-SCHEMA

],

]

1.1

Graph-based
Data
Model

The
core
structure
of
the
abstract
syntax
is
a
set
of

triples
,
each
consisting
of
a

subject
,
a

predicate

and
an

object
.
A
set
of
such
triples
is
called
an

RDF
graph
.
An
RDF
graph
can
be
visualized
as
a
node
and
directed-arc
diagram,
in
which
each
triple
is
represented
as
a
node-arc-node
link.

[image: An RDF graph with two nodes (Subject and Object) and a triple connecting them (Predicate)]

Fig.

1

An
RDF
graph
with
two
nodes
(Subject
and
Object)
and
a
triple
connecting
them
(Predicate)

There
can
be
three
kinds
of

nodes

in
an

RDF
graph
:

IRIs
,

literals
,
and

blank
nodes
.

1.2

Resources
and
Statements

Any

IRI

or

literal

denotes

something
in
the
world
(the
"universe

"universe

of
discourse").

discourse").

These
things
are
called

resources
.
Anything
can
be
a
resource,
including
physical
things,
documents,
abstract
concepts,
numbers
and
strings;
the
term
is
synonymous
with
"entity"

"entity"

as
it
is
used
in
the
RDF
Semantics
specification
[

RDF11-MT

].
The
resource
denoted
by
an

IRI

is
called
its

referent
,
and
the
resource
denoted
by
a
literal
is
called
its

literal
value
.
Literals
have

datatypes

that
define
the
range
of
possible
values,
such
as
strings,
numbers,
and
dates.
Special
kind
of
literals,

language-tagged
strings
,
denote
plain-text
strings
in
a
natural
language.

Asserting
an

RDF
triple

says
that

some
relationship,
indicated
by
the

predicate
,
holds
between
the

resources

denoted

by
the

subject

and

object

.
This
statement
corresponding
to
an
RDF
triple
is
known
as
an

RDF
statement
.
The
predicate
itself
is
an

IRI

and
denotes
a

property
,
that
is,
a

resource

that
can
be
thought
of
as
a
binary
relation.
(Relations
that
involve
more
than
two
entities
can
only
be

indirectly
expressed
in
RDF

[

SWBP-N-ARYRELATIONS

].)

Unlike

IRIs

and

literals
,

blank
nodes

do
not
identify
specific

resources
.

Statements

involving
blank
nodes
say
that
something
with
the
given
relationships
exists,
without
explicitly
naming
it.

1.3

The
Referent
of
an

IRI

The

resource

denoted

by
an

IRI

is
also
called
its

referent
.
For
some
IRIs
with
particular
meanings,
such
as
those
identifying
XSD
datatypes,
the
referent
is
fixed
by
this
specification.
For
all
other
IRIs,
what
exactly
is
denoted
by
any
given

IRI

is
not
defined
by
this
specification.
Other
specifications
may
fix

IRI

referents,
or
apply
other
constraints
on
what
may
be
the
referent
of
any

IRI
.

Guidelines
for
determining
the

referent

of
an

IRI

are
provided
in
other
documents,
like

Architecture
of
the
World
Wide
Web,
Volume
One

[

WEBARCH

]
and

Cool
URIs
for
the
Semantic
Web

[

COOLURIS

].
A
very
brief,
informal,
and
partial
account
follows:

		
By
design,
IRIs
have
global
scope.
Thus,
two
different
appearances
of
an

IRI

denote

the
same

resource
.
Violating
this
principle
constitutes
an

IRI

collision

[

WEBARCH

].

		
By
social
convention,
the

IRI

owner

[

WEBARCH

]
gets
to
say
what
the
intended
(or
usual)
referent
of
an

IRI

is.
Applications
and
users
need
not
abide
by
this
intended
denotation,
but
there
may
be
a
loss
of
interoperability
with
other
applications
and
users
if
they
do
not
do
so.

		
The

IRI

owner
can
establish
the
intended

referent

by
means
of
a
specification
or
other
document
that
explains
what
is
denoted.
For
example,
the

Organization
Ontology
document

[

VOCAB-ORG

]
specifies
the
intended
referents
of
various
IRIs
that
start
with

http://www.w3.org/ns/org#
.

		
A
good
way
of
communicating
the
intended
referent
is
to
set
up
the

IRI

so
that
it

dereferences

[

WEBARCH

]
to
such
a
document.

		
Such
a
document
can,
in
fact,
be
an

RDF
document

that
describes
the
denoted
resource
by
means
of

RDF
statements
.

Perhaps
the
most
important
characteristic
of

IRIs

in
web
architecture
is
that
they
can
be

dereferenced
,
and
hence
serve
as
starting
points
for
interactions
with
a
remote
server.
This
specification
is
not
concerned
with
such
interactions.
It
does
not
define
an
interaction
model.
It
only
treats
IRIs
as
globally
unique
identifiers
in
a
graph
data
model
that
describes
resources.
However,
those
interactions
are
critical
to
the
concept
of

Linked
Data

[

LINKED-DATA

],
which
makes
use
of
the
RDF
data
model
and
serialization
formats.

1.4

RDF
Vocabularies
and
Namespace
IRIs

An

RDF
vocabulary

is
a
collection
of

IRIs

intended
for
use
in

RDF
graphs
.
For
example,
the
IRIs
documented
in
[

RDF11-SCHEMA

]
are
the
RDF
Schema
vocabulary.
RDF
Schema
can
itself
be
used
to
define
and
document
additional
RDF
vocabularies.
Some
such
vocabularies
are
mentioned
in
the
Primer
[

RDF11-PRIMER

].

The

IRIs

in
an

RDF
vocabulary

often
begin
with
a
common
substring
known
as
a

namespace

IRI

.
Some
namespace
IRIs
are
associated
by
convention
with
a
short
name
known
as
a

namespace
prefix
.
Some
examples:

Some
example
namespace
prefixes
and
IRIs

		
Namespace
prefix

		
Namespace

IRI

		
RDF
vocabulary

		
rdf

		

http://www.w3.org/1999/02/22-rdf-syntax-ns#

		
The
RDF
built-in
vocabulary
[

RDF11-SCHEMA

]

		
rdfs

		

http://www.w3.org/2000/01/rdf-schema#

		
The
RDF
Schema
vocabulary
[

RDF11-SCHEMA

]

		
xsd

		

http://www.w3.org/2001/XMLSchema#

		
The

RDF-compatible
XSD
types

In
some
serialization
formats
it
is
common
to
abbreviate

IRIs

that
start
with

namespace
IRIs

by
using
a

namespace
prefix

in
order
to
assist
readability.
For
example,
the

IRI

http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral

would
be
abbreviated
as

rdf:XMLLiteral
.
Note
however
that
these
abbreviations
are

not

valid
IRIs,
and
must
not
be
used
in
contexts
where
IRIs
are
expected.
Namespace
IRIs
and
namespace
prefixes
are

not

a
formal
part
of
the
RDF
data
model.
They
are
merely
a
syntactic
convenience
for
abbreviating
IRIs.

The
term
“

namespace

”
on
its
own
does
not
have
a
well-defined
meaning
in
the
context
of
RDF,
but
is
sometimes
informally
used
to
mean
“

namespace

IRI

”
or
“

RDF
vocabulary

”.

1.5

RDF
and
Change
over
Time

The
RDF
data
model
is

atemporal
:

RDF
graphs

are
static
snapshots
of
information.

However,

RDF
graphs

can
express
information
about
events
and
about
temporal
aspects
of
other
entities,
given
appropriate

vocabulary

terms.

Since

RDF
graphs

are
defined
as
mathematical
sets,
adding
or
removing

triples

from
an
RDF
graph
yields
a
different
RDF
graph.

We
informally
use
the
term

RDF
source

to
refer
to
a
persistent
yet
mutable
source
or
container
of

RDF
graphs
.
An
RDF
source
is
a

resource

that
may
be
said
to
have
a
state
that
can
change
over
time.
A
snapshot
of
the
state
can
be
expressed
as
an
RDF
graph.
For
example,
any
web
document
that
has
an
RDF-bearing
representation
may
be
considered
an
RDF
source.
Like
all
resources,
RDF
sources
may
be
named
with

IRIs

and
therefore
described
in
other
RDF
graphs.

Intuitively
speaking,
changes
in
the
universe
of
discourse
can
be
reflected
in
the
following
ways:

		
An

IRI

,
once
minted,
should
never
change
its
intended

referent
.
(See

URI

persistence

[

WEBARCH

].)

		

Literals
,
by
design,
are
constants
and
never
change
their

value
.

		
A
relationship
that
holds
between
two

resources

at
one
time
may
not
hold
at
another
time.

		

RDF
sources

may
change
their
state
over
time.
That
is,
they
may
provide
different

RDF
graphs

at
different
times.

		
Some

RDF
sources

may,
however,
be
immutable
snapshots
of
another
RDF
source,
archiving
its
state
at
some
point
in
time.

1.6

Working
with
Multiple
RDF
Graphs

As
RDF
graphs
are
sets
of
triples,
they
can
be
combined
easily,
supporting
the
use
of
data
from
multiple
sources.
Nevertheless,
it
is
sometimes
desirable
to
work
with
multiple
RDF
graphs
while
keeping
their
contents
separate.

RDF
datasets

support
this
requirement.

An

RDF
dataset

is
a
collection
of

RDF
graphs
.
All
but
one
of
these
graphs
have
an
associated

IRI

or
blank
node.
They
are
called

named
graphs
,
and
the

IRI

or
blank
node
is
called
the

graph
name
.
The
remaining
graph
does
not
have
an
associated

IRI
,
and
is
called
the

default
graph

of
the
RDF
dataset.

There
are
many
possible
uses
for

RDF
datasets
.
One
such
use
is
to
hold
snapshots
of
multiple

RDF
sources
.

1.7

Equivalence,
Entailment
and
Inconsistency

An

RDF
triple

encodes
a

statement

—a
simple

logical
expression
,
or
claim
about
the
world.
An

RDF
graph

is
the
conjunction
(logical

AND

)
of
its
triples.
The
precise
details
of
this
meaning
of
RDF
triples
and
graphs
are
the
subject
of
the
RDF
Semantics
specification
[

RDF11-MT

],
which
yields
the
following
relationships
between

RDF
graph

s:

		

Entailment

		
An

RDF
graph

A

entails
another
RDF
graph

B

if
every
possible
arrangement
of
the
world
that
makes

A

true
also
makes

B

true.
When

A

entails

B
,
if
the
truth
of

A

is
presumed
or
demonstrated
then
the
truth
of

B

is
established.

		

Equivalence

		
Two

RDF
graphs

A

and

B

are
equivalent
if
they
make
the
same
claim
about
the
world.

A

is
equivalent
to

B

if
and
only
if

A

entails

B

and

B

entails

A
.

		

Inconsistency

		
An

RDF
graph

is
inconsistent
if
it
contains
an
internal
contradiction.
There
is
no
possible
arrangement
of
the
world
that
would
make
the
expression
true.

An

entailment
regime

[

RDF11-MT

]
is
a
specification
that
defines
precise
conditions
that
make
these
relationships
hold.
RDF
itself
recognizes
only
some
basic
cases
of
entailment,
equivalence
and
inconsistency.
Other
specifications,
such
as

RDF
Schema

[

RDF11-SCHEMA

]
and

OWL
2

[

OWL2-OVERVIEW

],
add
more
powerful
entailment
regimes,
as
do
some
domain-specific

vocabularies
.

This
specification
does
not
constrain
how
implementations
use
the
logical
relationships
defined
by

entailment
regimes
.
Implementations
may
or
may
not
detect

inconsistencies
,
and
may
make
all,
some
or
no

entailed

information
available
to
users.

1.8

RDF
Documents
and
Syntaxes

An

RDF
document

is
a
document
that
encodes
an

RDF
graph

or

RDF
dataset

in
a

concrete
RDF
syntax
,
such
as
Turtle
[

TURTLE

],
RDFa
[

RDFA-PRIMER

],
JSON-LD
[

JSON-LD

],
or
TriG
[

TRIG

].
RDF
documents
enable
the
exchange
of
RDF
graphs
and
RDF
datasets
between
systems.

A

concrete
RDF
syntax

may
offer
many
different
ways
to
encode
the
same

RDF
graph

or

RDF
dataset
,
for
example
through
the
use
of

namespace
prefixes
,
relative
IRIs,

blank
node
identifiers
,
and
different
ordering
of
statements.
While
these
aspects
can
have
great
effect
on
the
convenience
of
working
with
the

RDF
document
,
they
are
not
significant
for
its
meaning.

2.

Conformance

As
well
as
sections
marked
as
non-normative,
all
authoring
guidelines,
diagrams,
examples,
and
notes
in
this
specification
are
non-normative.
Everything
else
in
this
specification
is
normative.

The
key
words

MUST
,

MUST
NOT
,

REQUIRED
,

SHOULD
,

SHOULD
NOT
,

RECOMMENDED
,

MAY
,
and

OPTIONAL

in
this
specification
are
to
be
interpreted
as
described
in
[

RFC2119

].

This
specification,

RDF
1.1
Concepts
and
Abstract
Syntax
,
defines
a
data
model
and
related
terminology
for
use
in
other
specifications,
such
as

concrete
RDF
syntaxes
,
API
specifications,
and
query
languages.
Implementations
cannot
directly
conform
to

RDF
1.1
Concepts
and
Abstract
Syntax
,
but
can
conform
to
such
other
specifications
that
normatively
reference
terms
defined
here.

3.

RDF
Graphs

An

RDF
graph

is
a
set
of

RDF
triples
.

3.1

Triples

An

RDF
triple

consists
of
three
components:

		
the

subject
,
which
is
an

IRI

or
a

blank
node

		
the

predicate
,
which
is
an

IRI

		
the

object
,
which
is
an

IRI

,
a

literal

or
a

blank
node

An
RDF
triple
is
conventionally
written
in
the
order
subject,
predicate,
object.

The
set
of

nodes

of
an

RDF
graph

is
the
set
of
subjects
and
objects
of
triples
in
the
graph.
It
is
possible
for
a
predicate

IRI

to
also
occur
as
a
node
in
the
same
graph.

IRIs
,

literals

and

blank
nodes

are
collectively
known
as

RDF
terms
.

IRIs
,

literals

and

blank
nodes

are
distinct
and
distinguishable.
For
example,

http://example.org/

as
a
string
literal
is
neither
equal
to

http://example.org/

as
an

IRI
,
nor
to
a
blank
node
with
the

blank
node
identifier

http://example.org/
.

3.2

IRIs

An

IRI

(Internationalized
Resource
Identifier)
within
an
RDF
graph
is
a
Unicode
string
[

UNICODE

]
that
conforms
to
the
syntax
defined
in
RFC
3987
[

RFC3987

].

IRIs
in
the
RDF
abstract
syntax

MUST

be
absolute,
and

MAY

contain
a
fragment
identifier.

IRI

equality
:
Two
IRIs
are
equal
if
and
only
if
they
are
equivalent
under
Simple
String
Comparison
according
to

section
5.1

of
[

RFC3987

].
Further
normalization

MUST
NOT

be
performed
when
comparing
IRIs
for
equality.

Note

URIs
and
IRIs:

IRIs
are
a
generalization
of

URI

s

[

RFC3986

]
that
permits
a
wider
range
of
Unicode
characters.
Every
absolute

URI

and
URL
is
an

IRI
,
but
not
every

IRI

is
an

URI
.
When
IRIs
are
used
in
operations
that
are
only
defined
for
URIs,
they
must
first
be
converted
according
to
the
mapping
defined
in

section
3.1

of
[

RFC3987

].
A
notable
example
is
retrieval
over
the
HTTP
protocol.
The
mapping
involves
UTF-8
encoding
of
non-ASCII
characters,
%-encoding
of
octets
not
allowed
in
URIs,
and
Punycode-encoding
of
domain
names.

Relative
IRIs:

Some

concrete
RDF
syntaxes

permit

relative
IRIs

as
a
convenient
shorthand
that
allows
authoring
of
documents
independently
from
their
final
publishing
location.
Relative
IRIs
must
be

resolved
against

a

base

IRI

to
make
them
absolute.
Therefore,
the
RDF
graph
serialized
in
such
syntaxes
is
well-defined
only
if
a

base

IRI

can
be
established

[

RFC3986

].

IRI

normalization:

Interoperability
problems
can
be
avoided
by
minting
only
IRIs
that
are
normalized
according
to

Section
5

of
[

RFC3987

].
Non-normalized
forms
that
are
best
avoided
include:

		
Uppercase
characters
in
scheme
names
and
domain
names

		
Percent-encoding
of
characters
where
it
is
not
required
by

IRI

syntax

		
Explicitly
stated
HTTP
default
port
(

http://example.com:80/

);

http://example.com/

is
preferable

		
Completely
empty
path
in
HTTP
IRIs
(

http://example.com

);

http://example.com/

is
preferable

		
“

/./

”
or
“

/../

”
in
the
path
component
of
an

IRI

		
Lowercase
hexadecimal
letters
within
percent-encoding
triplets
(“

%3F

”
is
preferable
over
“

%3f

”)

		
Punycode-encoding
of
Internationalized
Domain
Names
in
IRIs

		
IRIs
that
are
not
in
Unicode
Normalization
Form
C
[

NFC

]

3.3

Literals

Literals
are
used
for
values
such
as
strings,
numbers,
and
dates.

A

literal

in
an

RDF
graph

consists
of
two
or
three
elements:

		
a

lexical
form
,
being
a
Unicode
[

UNICODE

]
string,
which

SHOULD

be
in
Normal
Form C

Form C

[

NFC

],

		
a

datatype

IRI

,
being
an

IRI

identifying
a
datatype
that
determines
how
the
lexical
form
maps
to
a

literal
value
,
and

		
if
and
only
if
the

datatype

IRI

is

http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
,
a
non-empty

language
tag

as
defined
by
[

BCP47

].
The
language
tag

MUST

be
well-formed
according
to

section
2.2.9

of
[

BCP47

].

A
literal
is
a

language-tagged
string

if
the
third
element
is
present.
Lexical
representations
of
language
tags

MAY

be
converted
to
lower
case.
The
value
space
of
language
tags
is
always
in
lower
case.

Please
note
that
concrete
syntaxes

MAY

support

simple
literals

consisting
of
only
a

lexical
form

without
any

datatype

IRI

or

language
tag
.
Simple
literals
are
syntactic
sugar
for
abstract
syntax

literals

with
the

datatype

IRI

http://www.w3.org/2001/XMLSchema#string
.
Similarly,
most
concrete
syntaxes
represent

language-tagged
strings

without
the

datatype

IRI

because
it
always
equals

http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
.

The

literal
value

associated
with
a

literal

is:

		
If
the
literal
is
a

language-tagged
string
,
then
the
literal
value
is
a
pair
consisting
of
its

lexical
form

and
its

language
tag
,
in
that
order.

		
If
the
literal's

datatype

IRI

is
in
the
set
of

recognized
datatype
IRIs
,
let

d

be
the

referent

of
the
datatype

IRI
.

		
If
the
literal's

lexical
form

is
in
the

lexical
space

of

d
,
then
the
literal
value
is
the
result
of
applying
the

lexical-to-value
mapping

of

d

to
the

lexical
form
.

		
Otherwise,
the
literal
is
ill-typed
and
no
literal
value
can
be
associated
with
the
literal.
Such
a
case
produces
a
semantic
inconsistency
but
is
not

syntactically

ill-formed.
Implementations

MUST

accept
ill-typed
literals
and
produce
RDF
graphs
from
them.
Implementations

MAY

produce
warnings
when
encountering
ill-typed
literals.

		
If
the
literal's

datatype

IRI

is

not

in
the
set
of

recognized
datatype
IRIs
,
then
the
literal
value
is
not
defined
by
this
specification.

Literal
term
equality
:
Two
literals
are
term-equal
(the
same
RDF
literal)
if
and
only
if
the
two

lexical
forms
,
the
two

datatype
IRIs
,
and
the
two

language
tags

(if
any)
compare
equal,
character
by
character.
Thus,
two
literals
can
have
the
same
value
without
being
the
same
RDF
term.
For
example:

 "1"^^xs:integer
 "01"^^xs:integer

 "1"^^xs:integer
 "01"^^xs:integer

denote
the
same

value
,
but
are
not
the
same
literal

RDF
terms

and
are
not

term-equal

because
their

lexical
form

differs.

3.4

Blank
Nodes

Blank
nodes

are
disjoint
from

IRIs

and

literals
.
Otherwise,
the
set
of
possible
blank
nodes
is
arbitrary.
RDF
makes
no
reference
to
any
internal
structure
of
blank
nodes.

Note

Blank
node
identifiers

are
local
identifiers
that
are
used
in
some

concrete
RDF
syntaxes

or
RDF
store
implementations.
They
are
always
locally
scoped
to
the
file
or
RDF
store,
and
are

not

persistent
or
portable
identifiers
for
blank
nodes.
Blank
node
identifiers
are

not

part
of
the
RDF
abstract
syntax,
but
are
entirely
dependent
on
the
concrete
syntax
or
implementation.
The
syntactic
restrictions
on
blank
node
identifiers,
if
any,
therefore
also
depend
on
the
concrete
RDF
syntax
or
implementation.
Implementations
that
handle
blank
node
identifiers
in
concrete
syntaxes
need
to
be
careful
not
to
create
the
same
blank
node
from
multiple
occurrences
of
the
same
blank
node
identifier
except
in
situations
where
this
is
supported
by
the
syntax.

3.5

Replacing
Blank
Nodes
with
IRIs

Blank
nodes
do
not
have
identifiers
in
the
RDF
abstract
syntax.
The

blank
node
identifiers

introduced
by
some
concrete
syntaxes
have
only
local
scope
and
are
purely
an
artifact
of
the
serialization.

In
situations
where
stronger
identification
is
needed,
systems

MAY

systematically
replace
some
or
all
of
the
blank
nodes
in
an
RDF
graph
with

IRIs
.
Systems
wishing
to
do
this

SHOULD

mint
a
new,
globally
unique

IRI

(a

Skolem

IRI

)
for
each
blank
node
so
replaced.

This
transformation
does
not
appreciably
change
the
meaning
of
an
RDF
graph,
provided
that
the
Skolem
IRIs
do
not
occur
anywhere
else.
It
does
however
permit
the
possibility
of
other
graphs
subsequently
using
the
Skolem
IRIs,
which
is
not
possible
for
blank
nodes.

Systems
may
wish
to
mint
Skolem
IRIs
in
such
a
way
that
they
can
recognize
the
IRIs
as
having
been
introduced
solely
to
replace
blank
nodes.
This
allows
a
system
to
map
IRIs
back
to
blank
nodes
if
needed.

Systems
that
want
Skolem
IRIs
to
be
recognizable
outside
of
the
system
boundaries

SHOULD

use
a
well-known

IRI

[

RFC5785

]
with
the
registered
name

genid
.
This
is
an

IRI

that
uses
the
HTTP
or
HTTPS
scheme,
or
another
scheme
that
has
been
specified
to
use
well-known
IRIs;
and
whose
path
component
starts
with

/.well-known/genid/
.

For
example,
the
authority
responsible
for
the
domain

example.com

could
mint
the
following
recognizable
Skolem

IRI
:

http://example.com/.well-known/genid/d26a2d0e98334696f4ad70a677abc1f6

Note

RFC
5785
[

RFC5785

]
only
specifies
well-known
URIs,
not
IRIs.
For
the
purpose
of
this
document,
a
well-known

IRI

is
any

IRI

that
results
in
a
well-known

URI

after

IRI

-to-

URI

mapping
[

RFC3987

].

3.6

Graph
Comparison

Two

RDF
graphs

G

and

G'

are

isomorphic

(that
is,
they
have
an
identical
form)
if
there
is
a
bijection

M

between
the
sets
of
nodes
of
the
two
graphs,
such
that:

		

M

maps
blank
nodes
to
blank
nodes.

		

M(lit)=lit

for
all

RDF
literals

lit

which
are
nodes
of

G
.

		

M(iri)=iri

for
all

IRIs

iri

which
are
nodes
of

G
.

		
The
triple

(
s,
p,
o
)

is
in

G

if
and
only
if
the
triple

(
M(s),
p,
M(o)
)

is
in

G'

See
also:

IRI

equality
,

literal
term
equality
.

With
this
definition,

M

shows
how
each
blank
node
in

G

can
be
replaced
with
a
new
blank
node
to
give

G'
.
Graph
isomorphism
is
needed
to
support
the
RDF
Test
Cases
[

RDF11-TESTCASES

]
specification.

4.

RDF
Datasets

An

RDF
dataset

is
a
collection
of

RDF
graphs
,
and
comprises:

		
Exactly
one

default
graph
,
being
an

RDF
graph
.
The
default
graph
does
not
have
a
name
and

MAY

be
empty.

		
Zero
or
more

named
graphs
.
Each
named
graph
is
a
pair
consisting
of
an

IRI

or
a
blank
node
(the

graph
name

),
and
an

RDF
graph
.
Graph
names
are
unique
within
an
RDF
dataset.

Blank
nodes

can
be
shared
between
graphs
in
an

RDF
dataset
.

Note

Despite
the
use
of
the
word
“name”
in
“

named
graph

”,
the

graph
name

is
not
required
to

denote

the
graph.
It
is
merely
syntactically
paired
with
the
graph.
RDF
does
not
place
any
formal
restrictions
on
what

resource

the
graph
name
may
denote,
nor
on
the
relationship
between
that
resource
and
the
graph.
A
discussion
of
different
RDF
dataset
semantics
can
be
found
in
[

RDF11-DATASETS

].

Some

RDF
dataset

implementations
do
not
track
empty

named
graphs
.
Applications
can
avoid
interoperability
issues
by
not
ascribing
importance
to
the
presence
or
absence
of
empty
named
graphs.

SPARQL
1.1
[

SPARQL11-OVERVIEW

]
also
defines
the
concept
of
an
RDF
Dataset.
The
definition
of
an
RDF
Dataset
in
SPARQL
1.1
and
this
specification
differ
slightly
in
that
this
specification
allows
RDF
Graphs
to
be
identified
using
either
an

IRI

or
a
blank
node.
SPARQL
1.1
Query
Language
only
allows
RDF
Graphs
to
be
identified
using
an

IRI
.
Existing
SPARQL
implementations
might
not
allow
blank
nodes
to
be
used
to
identify
RDF
Graphs
for
some
time,
so
their
use
can
cause
interoperability
problems.

Skolemizing

blank
nodes
used
as
graph
names
can
be
used
to
overcome
these
interoperability
problems.

4.1

RDF
Dataset
Comparison

Two

RDF
datasets

(the
RDF
dataset

D1

with
default
graph

DG1

and
any
named
graph

NG1

and
the
RDF
dataset

D2

with
default
graph

DG2

and
any
named
graph

NG2

)
are

dataset-isomorphic

if
and
only
if
there
is
a
bijection

M

between
the
nodes,
triples
and
graphs
in

D1

and
those
in

D2

such
that:

		

M

maps
blank
nodes
to
blank
nodes;

		

M

is
the
identity
map
on
literals
and
URIs;

		
For
every
triple
<s
p
o>,

M

(<s,
p,
o>)=
<

M(s)
,

M(p)
,

M(o)

>;

		
For
every
graph

G

={t1,
...,
tn},

M(G)

={

M(t1)
,
...,

M(tn)

};

		

DG2

=

M(DG1)

;
and

		
<n,
G>
is
in

NG1

if
and
only
if
<

M(n)
,

M(G)

>
is
in

NG2
.

4.2

Content
Negotiation
of
RDF
Datasets

This
section
is
non-normative.

Web
resources
may
have
multiple
representations
that
are
made
available
via

content
negotiation

[

WEBARCH

].
A
representation
may
be
returned
in
an
RDF
serialization
format
that
supports
the
expression
of
both

RDF
datasets

and

RDF
graphs
.
If
an

RDF
dataset

is
returned
and
the
consumer
is
expecting
an

RDF
graph
,
the
consumer
is
expected
to
use
the

RDF
dataset's

default
graph.

5.

Datatypes

Datatypes
are
used
with
RDF

literals

to
represent
values
such
as
strings,
numbers
and
dates.
The
datatype
abstraction
used
in
RDF
is
compatible
with
XML
Schema
[

XMLSCHEMA11-2

].
Any
datatype
definition
that
conforms
to
this
abstraction

MAY

be
used
in
RDF,
even
if
not
defined
in
terms
of
XML
Schema.
RDF
re-uses
many
of
the
XML
Schema
built-in
datatypes,
and
defines
two
additional
non-normative
datatypes,

rdf:HTML

and

rdf:XMLLiteral

.
The
list
of
datatypes
supported
by
an
implementation
is
determined
by
its

recognized
datatype
IRIs
.

A

datatype

consists
of
a

lexical
space
,
a

value
space

and
a

lexical-to-value
mapping
,
and
is
denoted
by
one
or
more

IRIs
.

The

lexical
space

of
a
datatype
is
a
set
of
Unicode
[

UNICODE

]
strings.

The

lexical-to-value
mapping

of
a
datatype
is
a
set
of
pairs
whose
first
element
belongs
to
the

lexical
space
,
and
the
second
element
belongs
to
the

value
space

of
the
datatype.
Each
member
of
the
lexical
space
is
paired
with
exactly
one
value,
and
is
a

lexical
representation

of
that
value.
The
mapping
can
be
seen
as
a
function
from
the
lexical
space
to
the
value
space.

Note

Language-tagged
strings

have
the

datatype

IRI

http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
.
No
datatype
is
formally
defined
for
this

IRI

because
the
definition
of

datatypes

does
not
accommodate

language
tags

in
the

lexical
space
.
The

value
space

associated
with
this
datatype

IRI

is
the
set
of
all
pairs
of
strings
and
language
tags.

For
example,
the
XML
Schema
datatype

xsd:boolean
,
where
each
member
of
the

value
space

has
two
lexical
representations,
is
defined
as
follows:

		
Lexical
space:

		
{“

true

”,
“

false

”,
“

1

”,
“

0

”}

		
Value
space:

		
{

true

,

false

}

		
Lexical-to-value
mapping

		
{
<“

true

”,

true

>,
<“

false

”,

false

>,
<“

1

”,

true

>,
<“

0

”,

false

>,
}

The

literals

that
can
be
defined
using
this
datatype
are:

This
table
lists
the
literals
of
type
xsd:boolean.

		
Literal

		
Value

		
<“

true

”,

xsd:boolean

>

		

true

		
<“

false

”,

xsd:boolean

>

		

false

		
<“

1

”,

xsd:boolean

>

		

true

		
<“

0

”,

xsd:boolean

>

		

false

5.1

The
XML
Schema
Built-in
Datatypes

IRIs

of
the
form

http://www.w3.org/2001/XMLSchema#

xxx

,
where

xxx

is
the
name
of
a
datatype,
denote
the
built-in
datatypes
defined
in

XML
Schema
1.1
Part
2:
Datatypes

[

XMLSCHEMA11-2

].
The
XML
Schema
built-in
types
listed
in
the
following
table
are
the

RDF-compatible
XSD
types
.
Their
use
is

RECOMMENDED
.

Readers
might
note
that
the
xsd:hexBinary
and
xsd:base64Binary
datatypes
are
the
only
safe
datatypes
for
transferring
binary
information.

A
list
of
the
RDF-compatible
XSD
types,
with
short
descriptions"

descriptions"

		

		
Datatype

		
Value
space
(informative)

		
Core
types

		

xsd:string

		
Character
strings
(but
not
all
Unicode
character
strings)

		

xsd:boolean

		
true,
false

		

xsd:decimal

		
Arbitrary-precision
decimal
numbers

		

xsd:integer

		
Arbitrary-size
integer
numbers

		
IEEE
floating-point

numbers

		

xsd:double

		
64-bit
floating
point
numbers
incl.
±Inf,
±0,
NaN

		

xsd:float

		
32-bit
floating
point
numbers
incl.
±Inf,
±0,
NaN

		
Time
and
date

		

xsd:date

		
Dates
(yyyy-mm-dd)
with
or
without
timezone

		

xsd:time

		
Times
(hh:mm:ss.sss…)
with
or
without
timezone

		

xsd:dateTime

		
Date
and
time
with
or
without
timezone

		

xsd:dateTimeStamp

		
Date
and
time
with
required
timezone

		
Recurring
and

partial
dates

		

xsd:gYear

		
Gregorian
calendar
year

		

xsd:gMonth

		
Gregorian
calendar
month

		

xsd:gDay

		
Gregorian
calendar
day
of
the
month

		

xsd:gYearMonth

		
Gregorian
calendar
year
and
month

		

xsd:gMonthDay

		
Gregorian
calendar
month
and
day

		

xsd:duration

		
Duration
of
time

		

xsd:yearMonthDuration

		
Duration
of
time
(months
and
years
only)

		

xsd:dayTimeDuration

		
Duration
of
time
(days,
hours,
minutes,
seconds
only)

		
Limited-range

integer
numbers

		

xsd:byte

		
-128…+127
(8
bit)

		

xsd:short

		
-32768…+32767
(16
bit)

		

xsd:int

		
-2147483648…+2147483647
(32
bit)

		

xsd:long

		
-9223372036854775808…+9223372036854775807
(64
bit)

		

xsd:unsignedByte

		
0…255
(8
bit)

		

xsd:unsignedShort

		
0…65535
(16
bit)

		

xsd:unsignedInt

		
0…4294967295
(32
bit)

		

xsd:unsignedLong

		
0…18446744073709551615
(64
bit)

		

xsd:positiveInteger

		
Integer
numbers
>0

		

xsd:nonNegativeInteger

		
Integer
numbers
≥0

		

xsd:negativeInteger

		
Integer
numbers
<0

		

xsd:nonPositiveInteger

		
Integer
numbers
≤0

		
Encoded
binary
data

		

xsd:hexBinary

		
Hex-encoded
binary
data

		

xsd:base64Binary

		
Base64-encoded
binary
data

		
Miscellaneous

XSD
types

		

xsd:anyURI

		
Absolute
or
relative
URIs
and
IRIs

		

xsd:language

		
Language
tags
per
[

BCP47

]

		

xsd:normalizedString

		
Whitespace-normalized
strings

		

xsd:token

		
Tokenized
strings

		

xsd:NMTOKEN

		
XML
NMTOKENs

		

xsd:Name

		
XML
Names

		

xsd:NCName

		
XML
NCNames

The
other
built-in
XML
Schema
datatypes
are
unsuitable
for
various
reasons
and

SHOULD
NOT

be
used:

		

xsd:QName

and

xsd:ENTITY

require
an
enclosing
XML
document
context.

		

xsd:ID

and

xsd:IDREF

are
for
cross
references
within
an
XML
document.

		

xsd:NOTATION

is
not
intended
for
direct
use.

		

xsd:IDREFS

,

xsd:ENTITIES

and

xsd:NMTOKENS

are
sequence-valued
datatypes
which
do
not
fit
the
RDF

datatype

model.

5.2

The

rdf:HTML

Datatype

This
section
is
non-normative.

RDF
provides
for
HTML
content
as
a
possible

literal
value
.
This
allows
markup
in
literal
values.
Such
content
is
indicated
in
an

RDF
graph

using
a

literal

whose

datatype

is
set
to

rdf:HTML

.
This
datatype
is
defined
as
non-normative
because
it
depends
on
[

DOM4

],
a
specification
that
has
not
yet
reached

W3C

Recommendation
status.

The

rdf:HTML

datatype
is
defined
as
follows:

		
The

IRI

denoting
this
datatype

		
is

http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML
.

		
The
lexical
space

		
is
the
set
of
Unicode
[

UNICODE

]
strings.

		
The
value
space

		
is
a
set
of
DOM

DocumentFragment

nodes
[

DOM4

].
Two

DocumentFragment

nodes

A

and

B

are
considered
equal
if
and
only
if
the
DOM
method

A
.

isEqualNode

(

B

)

[

DOM4

]
returns

true
.

		
The
lexical-to-value
mapping

		

Each
member
of
the
lexical
space
is
associated
with
the
result
of
applying
the
following
algorithm:

		
Let

domnodes

be
the
list
of

DOM
nodes

[

DOM4

]
that
result
from
applying
the

HTML
fragment
parsing
algorithm

[

HTML5

]
to
the
input
string,
without
a
context
element.

		
Let

domfrag

be
a
DOM

DocumentFragment

[

DOM4

]
whose

childNodes

attribute
is
equal
to

domnodes

		
Return

domfrag.

normalize

()

Note

Any
language
annotation
(

lang="…"

lang="…"

)
or
XML
namespaces
(

xmlns

)
desired
in
the
HTML
content
must
be
included
explicitly
in
the
HTML
literal.
Relative
URLs
in
attributes
such
as

href

do
not
have
a
well-defined
base
URL
and
are
best
avoided.
RDF
applications
may
use
additional
equivalence
relations,
such
as
that
which
relates
an

xsd:string

with
an

rdf:HTML

literal
corresponding
to
a
single
text
node
of
the
same
string.

5.3

The

rdf:XMLLiteral

Datatype

This
section
is
non-normative.

RDF
provides
for
XML
content
as
a
possible

literal
value
.
Such
content
is
indicated
in
an

RDF
graph

using
a

literal

whose

datatype

is
set
to

rdf:XMLLiteral

.
This
datatype
is
defined
as
non-normative
because
it
depends
on
[

DOM4

],
a
specification
that
has
not
yet
reached

W3C

Recommendation
status.

The

rdf:XMLLiteral

datatype
is
defined
as
follows:

		
The

IRI

denoting
this

datatype

		
is

http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
.

		
The

lexical
space

		
is
the
set
of
all
strings
which
are
well-balanced,
self-contained

XML
content

[

XML10

];
and
for
which
embedding
between
an
arbitrary
XML
start
tag
and
an
end
tag
yields
a
document
conforming
to

XML
Namespaces

[

XML-NAMES

].

		
The

value
space

		
is
a
set
of
DOM

DocumentFragment

nodes
[

DOM4

].
Two

DocumentFragment

nodes

A

and

B

are
considered
equal
if
and
only
if
the
DOM
method

A
.

isEqualNode

(

B

)

returns

true
.

		
The

lexical-to-value
mapping

		

Each
member
of
the
lexical
space
is
associated
with
the
result
of
applying
the
following
algorithm:

		
Let

domfrag

be
a
DOM

DocumentFragment

node
[

DOM4

]
corresponding
to
the
input
string

		
Return

domfrag.

normalize

()

		
The
canonical
mapping

		
defines
a

canonical
lexical
form

[

XMLSCHEMA11-2

]
for
each
member
of
the
value
space.
The

rdf:XMLLiteral

canonical
mapping
is
the

exclusive
XML
canonicalization
method

(

with
comments,
with
empty

InclusiveNamespaces
PrefixList

)
[

XML-EXC-C14N

].

Note

Any
XML
namespace
declarations
(

xmlns

),
language
annotation
(

xml:lang

)
or
base

URI

declarations
(

xml:base

)
desired
in
the
XML
content
must
be
included
explicitly
in
the
XML
literal.
Note
that
some
concrete
RDF
syntaxes
may
define
mechanisms
for
inheriting
them
from
the
context
(e.g.,

@parseType="literal"

@parseType="literal"

in
RDF/XML
[

RDF11-XML

]).

5.4

Datatype
IRIs

Datatypes
are
identified
by

IRIs
.
If

D

is
a
set
of
IRIs
which
are
used
to
refer
to
datatypes,
then
the
elements
of

D

are
called

recognized
datatype
IRIs
.
Recognized
IRIs
have
fixed

referents
.
If
any

IRI

of
the
form

http://www.w3.org/2001/XMLSchema#xxx

is
recognized,
it

MUST

refer
to
the
RDF-compatible
XSD
type
named

xsd:xxx

for
every
XSD
type
listed
in

section
5.1
.
Furthermore,
the
following
IRIs
are
allocated
for
non-normative
datatypes:

		
The

IRI

http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral

refers
to
the
datatype

rdf:XMLLiteral

		
The

IRI

http://www.w3.org/1999/02/22-rdf-syntax-ns#HTML

refers
to
the
datatype

rdf:HTML

Note

Semantic
extensions
of
RDF
might
choose
to
recognize
other
datatype
IRIs
and
require
them
to
refer
to
a
fixed
datatype.
See
the
RDF
Semantics
specification
[

RDF11-MT

]
for
more
information
on
semantic
extensions.

RDF
processors
are
not
required
to
recognize
datatype
IRIs.
Any
literal
typed
with
an
unrecognized

IRI

is
treated
just
like
an
unknown

IRI
,
i.e.
as
referring
to
an
unknown
thing.
Applications

MAY

give
a
warning
message
if
they
are
unable
to
determine
the
referent
of
an

IRI

used
in
a
typed
literal,
but
they

SHOULD
NOT

reject
such
RDF
as
either
a
syntactic
or
semantic
error.

Other
specifications

MAY

impose
additional
constraints
on

datatype
IRIs
,
for
example,
require
support
for
certain
datatypes.

Note

The
Web
Ontology
Language
[

OWL2-OVERVIEW

]
offers
facilities
for
formally
defining

custom
datatypes

that
can
be
used
with
RDF.
Furthermore,
a
practice
for
identifying

user-defined
simple
XML
Schema
datatypes

is
suggested
in
[

SWBP-XSCH-DATATYPES

].
RDF
implementations
are
not
required
to
support
either
of
these
facilities.

6.

Fragment
Identifiers

This
section
is
non-normative.

RDF
uses

IRIs
,
which
may
include

fragment
identifiers
,
as
resource
identifiers.
The
semantics
of
fragment
identifiers
is

defined
in
RFC
3986

[

RFC3986

]:
They
identify
a
secondary
resource
that
is
usually
a
part
of,
view
of,
defined
in,
or
described
in
the
primary
resource,
and
the
precise
semantics
depend
on
the
set
of
representations
that
might
result
from
a
retrieval
action
on
the
primary
resource.

This
section
discusses
the
handling
of
fragment
identifiers
in
representations
that
encode

RDF
graphs
.

In
RDF-bearing
representations
of
a
primary
resource

<foo>
,
the
secondary
resource
identified
by
a
fragment

bar

is
the

resource

denoted

by
the
full

IRI

<foo#bar>

in
the

RDF
graph
.
Since
IRIs
in
RDF
graphs
can
denote
anything,
this
can
be
something
external
to
the
representation,
or
even
external
to
the
web.

In
this
way,
the
RDF-bearing
representation
acts
as
an
intermediary
between
the
web-accessible
primary
resource,
and
some
set
of
possibly
non-web
or
abstract
entities
that
the

RDF
graph

may
describe.

In
cases
where
other
specifications
constrain
the
semantics
of
fragment
identifiers
in
RDF-bearing
representations,
the
encoded

RDF
graph

should
use
fragment
identifiers
in
a
way
that
is
consistent
with
these
constraints.
For
example,
in
an
HTML+RDFa
document
[

HTML-RDFA

],
the
fragment

chapter1

may
identify
a
document
section
via
the
semantics
of
HTML's

@name

or

@id

attributes.
The

IRI

<#chapter1>

should
then
be
taken
to

denote

that
same
section
in
any
RDFa-encoded

triples

within
the
same
document.
Similarly,
fragment
identifiers
should
be
used
consistently
in
resources
with
multiple
representations
that
are
made
available
via

content
negotiation

[

WEBARCH

].
For
example,
if
the
fragment

chapter1

identifies
a
document
section
in
an
HTML
representation
of
the
primary
resource,
then
the

IRI

<#chapter1>

should
be
taken
to

denote

that
same
section
in
all
RDF-bearing
representations
of
the
same
primary
resource.

7.

Generalized
RDF
Triples,
Graphs,
and
Datasets

This
section
is
non-normative.

It
is
sometimes
convenient
to
loosen
the
requirements
on

RDF
triple

s.
For
example,
the
completeness
of
the
RDFS
entailment
rules
is
easier
to
show
with
a
generalization
of
RDF
triples.

A

generalized
RDF
triple

is
a
triple
having
a
subject,
a
predicate,
and
object,
where
each
can
be
an

IRI

,
a

blank
node

or
a

literal
.
A

generalized
RDF
graph

is
a
set
of
generalized
RDF
triples.
A

generalized
RDF
dataset

comprises
a
distinguished
generalized
RDF
graph,
and
zero
or
more
pairs
each
associating
an

IRI
,
a
blank
node
or
a
literal
to
a
generalized
RDF
graph.

Generalized
RDF
triples,
graphs,
and
datasets
differ
from
normative
RDF

triples
,

graphs
,
and

datasets

only
by
allowing

IRIs
,

blank
nodes

and

literals

to
appear
in
any
position,
i.e.,
as
subject,
predicate,
object
or
graph
names.

Note

Any
users
of
generalized
RDF
triples,
graphs
or
datasets
need
to
be
aware
that
these
notions
are
non-standard
extensions
of
RDF
and
their
use
may
cause
interoperability
problems.
There
is
no
requirement
on
the
part
of
any
RDF
tool
to
accept,
process,
or
produce
anything
beyond
standard
RDF
triples,
graphs,
and
datasets.

8.

Acknowledgments

This
section
is
non-normative.

The
editors
acknowledge
valuable
contributions
from
Thomas
Baker,
Tim
Berners-Lee,
David
Booth,
Dan
Brickley,
Gavin
Carothers,
Jeremy
Carroll,
Pierre-Antoine
Champin,
Dan
Connolly,
John
Cowan,
Martin
J.
Dürst,
Alex
Hall,
Steve
Harris,
Sandro
Hawke,
Pat
Hayes,
Ivan
Herman,
Peter
F.
Patel-Schneider,
Addison
Phillips,
Eric
Prud'hommeaux,
Nathan
Rixham,
Andy
Seaborne,
Leif
Halvard
Silli,
Guus
Schreiber,
Dominik
Tomaszuk,
and
Antoine
Zimmermann.

The
membership
of
the
RDF
Working
Group
included
Thomas
Baker,
Scott
Bauer,
Dan
Brickley,
Gavin
Carothers,
Pierre-Antoine
Champin,
Olivier
Corby,
Richard
Cyganiak,
Souripriya
Das,
Ian
Davis,
Lee
Feigenbaum,
Fabien
Gandon,
Charles
Greer,
Alex
Hall,
Steve
Harris,
Sandro
Hawke,
Pat
Hayes,
Ivan
Herman,
Nicholas
Humfrey,
Kingsley
Idehen,
Gregg
Kellogg,
Markus
Lanthaler,
Arnaud
Le
Hors,
Peter
F.
Patel-Schneider,
Eric
Prud'hommeaux,
Yves
Raimond,
Nathan
Rixham,
Guus
Schreiber,
Andy
Seaborne,
Manu
Sporny,
Thomas
Steiner,
Ted
Thibodeau,
Mischa
Tuffield,
William
Waites,
Jan
Wielemaker,
David
Wood,
Zhe
Wu,
and
Antoine
Zimmermann.

A.

Changes
between
RDF
1.0
and
RDF
1.1

This
section
is
non-normative.

A
detailed
overview
of
the
differences
between
RDF
versions 1.0
and 1.1

versions 1.0
and 1.1

can
be
found
in

What’s
New
in
RDF 1.1

RDF 1.1

[

RDF11-NEW

].

B.
Changes
since
the
5
November
2013
Candidate
Recommendation
This
section
is
non-normative.
This
section
lists
changes
since
the
5
November
2013
Candidate
Recommendation
(CR)
.
2013-12-18:
Make
reference
to
[
RDF11-MT
]
non-normative
2013-12-18:
Update
RDF/XML,
RDF
Schema,
and
RDF
Primer
references
2013-12-17:
Minor
editorial
changes
in
response
to
a
review
by
Pat
Hayes
2013-12-17:
Update
SPARQL
reference
in
the
introduction
2013-12-16:
Minor
editorial
changes
to
1.3
The
Referent
of
an
IRI
in
response
to
a
review
by
David
Booth
2013-12-16:
Make
rdf:HTML
and
rdf:XMLLiteral
non-normative
2013-12-16:
Update
acknowledgments
2013-12-12:
Editorial
changes
in
response
to
a
review
by
Thomas
Baker
2013-12-12:
Replace
section
A.
Changes
between
RDF
1.0
and
RDF
1.1
with
a
reference
to
[
RDF11-NEW
]
2013-12-04:
Editorial
changes
to
section
3.3
Literals
as
discussed
on
the
mailing
list
2013-11-06:
Editorial
changes
in
response
to
a
review
by
Guus
Schreiber

C.

B.

References

C.1

B.1

Normative
references

		
[BCP47]

		
A.
Phillips;
M.
Davis.

Tags
for
Identifying
Languages

.
September
2009.
IETF
Best
Current
Practice.
URL:

http://tools.ietf.org/html/bcp47

		
[NFC]

		
M.
Davis,
Ken
Whistler.

TR15,
Unicode
Normalization
Forms.

.
17
September
2010,
URL:

http://www.unicode.org/reports/tr15/

		
[RFC2119]

		
S.
Bradner.

Key
words
for
use
in
RFCs
to
Indicate
Requirement
Levels.

March
1997.
Internet
RFC
2119.
URL:

http://www.ietf.org/rfc/rfc2119.txt

		
[RFC3987]

		
M.
Dürst;
M.
Suignard.

Internationalized
Resource
Identifiers
(IRIs)

.
January
2005.
RFC.
URL:

http://www.ietf.org/rfc/rfc3987.txt

		
[UNICODE]

		

The
Unicode
Standard

.
URL:

http://www.unicode.org/versions/latest/

		
[XMLSCHEMA11-2]

		
David
Peterson;
Sandy
Gao;
Ashok
Malhotra;
Michael
Sperberg-McQueen;
Henry
Thompson;
Paul
V.
Biron
et
al.

W3C
XML
Schema
Definition
Language
(XSD)
1.1
Part
2:
Datatypes

.
5
April
2012.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xmlschema11-2/

C.2

B.2

Informative
references

		
[COOLURIS]

		
Leo
Sauermann;
Richard
Cyganiak.

Cool
URIs
for
the
Semantic
Web

.
3
December
2008.
W3C
Note.
URL:

http://www.w3.org/TR/cooluris

		
[DOM4]

		
Anne
van
Kesteren;
Aryeh
Gregor;
Ms2ger;
Alex
Russell;
Robin
Berjon.

W3C
DOM4

.
7
November
2013.
W3C
Working
Draft.
URL:

http://www.w3.org/TR/dom/

		
[HTML-RDFA]

		
Manu
Sporny.

HTML+RDFa
1.1

.
22
August
2013.
W3C
Recommendation.
URL:

http://www.w3.org/TR/html-rdfa/

		
[HTML5]

		
Robin
Berjon;
Steve
Faulkner;
Travis
Leithead;
Erika
Doyle
Navara;
Edward
O'Connor;
Silvia
Pfeiffer.

HTML5

.
6
August
2013.
W3C
Candidate
Recommendation.
URL:

http://www.w3.org/TR/html5/

		
[JSON-LD]

		
Manu
Sporny,
Gregg
Kellogg,
Markus
Lanthaler.

Lanthaler,
Editors.

JSON-LD
1.0
.
5
November
2013.

.
16
January
2014.

W3C
Proposed

Recommendation.
URL:
http://www.w3.org/TR/2013/PR-json-ld-20131105/
.
The
latest
edition
is
available
at

http://www.w3.org/TR/json-ld/

		
[LINKED-DATA]

		
Tim
Berners-Lee.

Linked
Data

.
Personal
View,
imperfect
but
published.
URL:

http://www.w3.org/DesignIssues/LinkedData.html

		
[OWL2-OVERVIEW]

		
W3C
OWL
Working
Group.

OWL
2
Web
Ontology
Language
Document
Overview
(Second
Edition)

.
11
December
2012.
W3C
Recommendation.
URL:

http://www.w3.org/TR/owl2-overview/

		
[RDF11-DATASETS]

		
Antoine
Zimmermann.

RDF
1.1:
On
Semantics
of
Datasets

.
W3C
Working
Draft
(work
in
progress),
17
December
2013.

Group
Note,
25
February
2014.

The
latest
version
is
available
at

http://www.w3.org/TR/rdf11-datasets/
.

		
[RDF11-MT]

		
Patrick
J.
Hayes,
Peter
F.
Patel-Schneider.

RDF
1.1
Semantics.

9
January
2014.

W3C
Proposed
Recommendation
(work
in
progress).

Recommendation,
25
February
2014.

URL:
http://www.w3.org/TR/2014/PR-rdf11-mt-20140109/

http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

.
The
latest
edition
is
available
at

http://www.w3.org/TR/rdf11-mt/

		
[RDF11-NEW]

		
David
Wood.

What’s
New
in
RDF
1.1

.
W3C
Working
Draft
(work
in
progress),
17
December
2013.

Group
Note,
25
February
2014.

The
latest
version
is
available
at

http://www.w3.org/TR/rdf11-new/
.

		
[RDF11-PRIMER]

		
Guus
Schreiber,
Yves
Raimond.

RDF
1.1
Primer

.
W3C
Working
Draft
(work
in
progress),
17
December
2013.

Group
Note,
25
February
2014.

The
latest
version
is
available
at

http://www.w3.org/TR/rdf11-primer/
.

		
[RDF11-SCHEMA]

		
Dan
Brickley,
Ramanathan

R.
V.

Guha.

RDF
Schema
1.1

.
9
January
2014.

W3C
Proposed
Edited
Recommendation
(work
in
progress).

Recommendation,
25
February
2014.

URL:
http://www.w3.org/TR/2014/PER-rdf-schema-20140109/

http://www.w3.org/TR/2014/REC-rdf-schema-20140225/

.
The
latest
published
version
is
available
at

http://www.w3.org/TR/rdf-schema/
.

		
[RDF11-TESTCASES]

		
Gregg
Kellogg,
Markus
Lanthaler.

RDF
1.1
Test
Cases

.
W3C
Editor's
Draft
(work
in
progress).
URL:
https://dvcs.w3.org/hg/rdf/raw-file/default/rdf11-testcases/index.html

Working
Group
Note,
25
February
2014.
The
latest
published
version
is
available
at

http://www.w3.org/TR/rdf11-testcases/
.

		
[RDF11-XML]

		
Fabien
Gandon,
Guus
Schreiber.

RDF
1.1
XML
Syntax

.
W3C
Proposed
Edited
Recommendation
(work
in
progress).

Recommendation,
25
February
2014.

URL:
http://www.w3.org/TR/2014/PER-rdf-syntax-grammar-20140109/

http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/

.
The
latest
published
version
is
available
at

http://www.w3.org/TR/rdf-syntax-grammar/
.

		
[RDFA-PRIMER]

		
Ivan
Herman;
Ben
Adida;
Manu
Sporny;
Mark
Birbeck.

RDFa
1.1
Primer
-
Second
Edition

.
22
August
2013.
W3C
Note.
URL:

http://www.w3.org/TR/rdfa-primer/

		
[RFC3986]

		
T.
Berners-Lee;
R.
Fielding;
L.
Masinter.

Uniform
Resource
Identifier
(URI):
Generic
Syntax
(RFC
3986)

.
January
2005.
RFC.
URL:

http://www.ietf.org/rfc/rfc3986.txt

		
[RFC5785]

		
Mark
Nottingham;
Eran
Hammer-Lahav.

Defining
Well-Known
Uniform
Resource
Identifiers
(URIs)
(RFC
5785)

.
April
2010.
RFC.
URL:

http://www.rfc-editor.org/rfc/rfc5785.txt

		
[SPARQL11-OVERVIEW]

		
The
W3C
SPARQL
Working
Group.

SPARQL
1.1
Overview

.
21
March
2013.
W3C
Recommendation.
URL:

http://www.w3.org/TR/sparql11-overview/

		
[SWBP-N-ARYRELATIONS]

		
Natasha
Noy;
Alan
Rector.

Defining
N-ary
Relations
on
the
Semantic
Web

.
12
April
2006.
W3C
Note.
URL:

http://www.w3.org/TR/swbp-n-aryRelations

		
[SWBP-XSCH-DATATYPES]

		
Jeremy
Carroll;
Jeff
Pan.

XML
Schema
Datatypes
in
RDF
and
OWL

.
14
March
2006.
W3C
Note.
URL:

http://www.w3.org/TR/swbp-xsch-datatypes

		
[TRIG]

		
Gavin
Carothers,
Andy
Seaborne.

TriG:
RDF
Dataset
Language

.
9
January
2014.

W3C
Proposed
Recommendation
(work
in
progress).

Recommendation,
25
February
2014.

URL:
http://www.w3.org/TR/2014/PR-trig-20140109/

http://www.w3.org/TR/2014/REC-trig-20140225/

.
The
latest
edition
is
available
at

http://www.w3.org/TR/trig/

		
[TURTLE]

		
Eric
Prud'hommeaux,
Gavin
Carothers.

RDF
1.1
Turtle:
Terse
RDF
Triple
Language.

9
January
2014.

W3C
Proposed
Recommendation
(work
in
progress).

Recommendation,
25
February
2014.

URL:
http://www.w3.org/TR/2014/PR-turtle-20140109/

http://www.w3.org/TR/2014/REC-turtle-20140225/

.
The
latest
edition
is
available
at

http://www.w3.org/TR/turtle/

		
[VOCAB-ORG]

		
Dave
Reynolds.

The
Organization
Ontology

.
25
June
2013.

16
January
2014.

W3C
Candidate

Recommendation.
URL:

http://www.w3.org/TR/vocab-org/

		
[WEBARCH]

		
Ian
Jacobs;
Norman
Walsh.

Architecture
of
the
World
Wide
Web,
Volume
One

.
15
December
2004.
W3C
Recommendation.
URL:

http://www.w3.org/TR/webarch/

		
[XML-EXC-C14N]

		
John
Boyer;
Donald
Eastlake;
Joseph
Reagle.

Exclusive
XML
Canonicalization
Version
1.0

.
18
July
2002.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xml-exc-c14n

		
[XML-NAMES]

		
Tim
Bray;
Dave
Hollander;
Andrew
Layman;
Richard
Tobin;
Henry
Thompson
et
al.

Namespaces
in
XML
1.0
(Third
Edition)

.
8
December
2009.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xml-names

		
[XML10]

		
Tim
Bray;
Jean
Paoli;
Michael
Sperberg-McQueen;
Eve
Maler;
François
Yergeau
et
al.

Extensible
Markup
Language
(XML)
1.0
(Fifth
Edition)

.
26
November
2008.
W3C
Recommendation.
URL:

http://www.w3.org/TR/xml

Icons/w3c_home.png

rdf11-mt/RDF11SemanticsDiagrams/example5.jpg
ex:hasChild

ex:hasChild

rdf11-mt/RDF11SemanticsDiagrams/example1.jpg
ED— e

rdf11-primer/example-graph-iris.jpg
Leonardo Da Vinci

i tpi/dbpediacrgresourcel
Alice Leonardo_da_Vinci

http:/exarmple.org/alico#me

foaf:topic_interest
“Mona Lisa”

The Mona Lisa
http/wnwwwikidata org/entity/ Q12418

La Joconde a Washington

hitp/data suropeana.eutem/04802/243FA
Person "1990-07-04"Axsd:date 861393874117025F17ASB13CSFOAAADE 18
foaf:Person

nav.xhtml

 Table of Contents

 		
 Cover

 		
 Table of Contents

 		
 RDF 1.1 Primer

 		
 Introduction

 		
 Why Use RDF?

 		
 RDF Data Model

 		
 RDF Vocabularies

 		
 Writing RDF graphs

 		
 Semantics of RDF Graphs

 		
 RDF Data

 		
 More Information

 		
 Acknowledgments

 		
 References

 		
 RDF 1.1 Concepts and Abstract Syntax

 		
 Introduction

 		
 Conformance

 		
 RDF Graphs

 		
 RDF Datasets

 		
 Datatypes

 		
 Fragment Identifiers

 		
 Generalized RDF Triples, Graphs, and Datasets

 		
 Acknowledgments

 		
 Changes between RDF 1.0 and RDF 1.1

 		
 References

 		
 RDF Schema 1.1

 		
 Introduction

 		
 Classes

 		
 Properties

 		
 Using the Domain and Range vocabulary

 		
 Other vocabulary

 		
 RDF Schema summary

 		
 Acknowledgments

 		
 Change since 2004 Recommendation

 		
 References

 		
 RDF 1.1 Semantics

 		
 Introduction

 		
 Conformance

 		
 Semantic Extensions and Entailment Regimes

 		
 Notation and Terminology

 		
 Simple Interpretations

 		
 Skolemization (Informative)

 		
 Literals and datatypes

 		
 RDF Interpretations

 		
 RDFS Interpretations

 		
 RDF Datasets

 		
 Entailment rules (Informative)

 		
 Finite interpretations (Informative)

 		
 Proofs of some results (Informative)

 		
 RDF reification, containers and collections (Informative)

 		
 Change Log (informative)

 		
 Acknowledgements

 		
 References

 		
 RDF 1.1: On Semantics of RDF Datasets (Note)

 		
 Introduction

 		
 Existing Work

 		
 Formal definitions

 		
 Declaring the intended semantics

 		
 Acknowledgements

 		
 Changes since the first public working draft of 17 December 2013

 		
 References

 		
 What's New in RDF 1.1 (Note)

 		
 Introduction

 		
 Abstract Syntax

 		
 New Serialization Formats

 		
 Semantics

 		
 Acknowledgments

 		
 References

 		Begin reading

 		Table of Contents

StyleSheets/TR/logo-WG-Note.png
10N dnous) SUPlOAA DEAM

rdf11-primer/example-multiple-graphs-iris.jpg
] https:/www.wikidata.org/wiki/
http://example.org/bob Special:EntityData/Q12418

Leonardo Da Vinci
Alice hitp://dbpedia.orgresource/
hitp//oxample org/alicotme Loonardo_da Vinci

foaf:topic_interest

dcterms:title

“Mona Lisa”

The Mona Lisa
it/ wikidata, orglentity/Q12418

La Joconde & Washington

itp//data.europeana ou/tom/0802/243FA
8618906 4117025F 17ABB813CSFOADE 19
Person "1990-07-04"xsd:date

foaf:Person

i fcreativecommons.org/
liconsas/by/3.0/

AP

hitpfoxarmplo.org

StyleSheets/TR/logo-IG-Note.png
310N dnous) 3sa423U] DEAA

rdf11-mt/RDF11SemanticsDiagrams/example2.jpg
E e

rdf11-primer/example-multiple-graphs.jpg
) hitps:/wwwwikidata.org/wiki/
http://example.org/bob Special:EntityData/Q12418

Alice Leonardo Da Vinci

® (]

N
S
5@
&
&
&
is interested in
6.
S The Mona Lisa \\%
4
5, &
2 4
N ®

Person 14 July 1990

La Joconde a Washington

hitpcroativocommons org/
liconses/oy/3.0/

Q0D

it /fexample.org

StyleSheets/TR/logo-CR.png
UONEPUSWWIODY EPIPUED) DEAA

rdf11-new/serialization-formats.png
RDF 1.0 | RDF 1.1
|
|
| Supports Multiple Graphs
| e M
RDF/XML N-Triples | RDFa
| — JSON-LD
|
I 3
> 2
! RDF/XML 9 o
|
|
N-Tripl .
—_—
: N-Quads
|
|
|
'

StyleSheets/TR/logo-NOTE.png
0N DEM

rdf11-mt/RDF11SemanticsDiagrams/example3.jpg
17

exip—
exiq

