
Linked Data in Translation-Kits

FEISGILTT Dublin June 2014
Yves Savourel

ENLASO Corporation

Slides and code are available at:
https://copy.com/nGbcO13l9YLs

This presentation was made possible by

The main points

• What T-Kits users need:

 Terms (with definitions, translations), Context
information, disambiguation, Translation examples
(concordances)

• Technical challenges

– Coding the information in or near the content

• Usability challenges

– Where/when to gather the information

– How to present the information

Where / When

• Before extraction: to annotate the source
content. Especially available for content in
HTML5 and XML (microdata, RDFa, ITS, etc.)

• At T-Kit creation time: to add terminology and
provide disambiguation.

• On-demand: when the users (translator,
editor, localization engineer) need it.

Information in original documents

• Schema.org microdata, ITS Text Analysis, ITS
Terminology, RDFa, etc.

+ No need for text analysis: Information can be
used directly

- Original annotations may makes text handing
more complicated (a lot of inline codes)
(never underestimate the amount of pain
inline codes can bring)

Information in T-Kits

• Associated by scope (i.e. not linked to a
specific span of content). Useful for some data
like concepts, glossaries, etc. that can be
associated with content later by CAT tools.

• As annotations associated with specific spans
of content. This saves some processing to the
CAT tools, but may lead to repetitions if not
using stand-off notations.

Information queried on-demand

+ End user control what s/he wants

+ Avoid having stale data

- Users may miss on some information

- Requires live and good enough connection

• Tools need to be smart (e.g. query in advance
the next segments using another thread)

• Some of the information can be in the cached
in the T-Kit.

Technical challenges

• Difference between plain text and marked up
text. Many tools take only plain text or HTML.
 Need to retrofit the annotations in the
target format.

• Overlapping annotations (e.g. <mrk> in XLIFF
v1.2) can create problem.

• Results not in parsing order, may make
applying the information difficult.

Examples

XLIFF 2.0 document with 2 <file> elements:

• Extract the “concepts” in a given <file> using
AlchemyAPI service.

• Mark up the segments with ITS Terminology
annotations using Yahoo! Content Analysis.

• Mark up the segments with ITS Text Analysis
annotations and create glossary entries using
DBpedia Spotlight, Wikidata services and
BabelNet data.

Using AlchemyAPI

• Load the document
• Create a map of JSONArray objects keyed on <file> ids
• For each event in the document:

• If it is a START_FILE event:
• Reset the block of text, store the id of the <file>.

• If it is a TEXT_UNIT event:
• For each <segment>:

• Append the plain-text content of the segment to the block of text.
• If it is a END_FILE event:

• Call the TextGetRankedConcepts service on the block of text.
• Store the resulting JSONArray and the corresponding <file> id in the map.

• For each <file> id in the map:
• Get the document MID_FILE node for the given file id
• Create a new <cpt:concepts> element (extension)
• Create a new <cpt:concept> element for each item in the JSONArray.

• Save the document

Using Yahoo! Content Analysis

• For each <unit>:

• For each <segment>:
• Call Yahoo! Content Analysis service on the coded text of the segment.
• For each entity found:

• Annotate the fragment using ITS Terminology (with confidence score and, if
available, the Wikidata link as termInfoRef).

Using DBpedia Spotlight, Wikidata and BabelNet
• For each <unit>:

• Create a new map of Resource objects
• For each <segment>:

• Create a new list of Occurrence object
• Call the DBpedia Spotlight Candidates service on the text of the segment.
• For each candidate found:

• Create a new Occurrence object (1 occurrence = 1 unique URI on 1 unique
span of content).
• If the Resource for the URI doesn’t exist yet: create a new Resource.

• For each new Resource created:
• Do a query on DBpedia SPARQL end-point for the URI to try to get the
corresponding Wikidata Q-value.
• If we get a Q-value:

• Do a wbgetentities GET on Wikidata to try to get a translation.
• Call BabelNet API to try to get translations from BabelNet dataset.

• Add the new Resource objects to the unit’s Resource list.
• Sort the list of Occurrence objects for this segment by position in the string.
• For each Occurrence:

• Annotate the fragment using ITS Text Analysis and adding extra attributes
using extension attributes.

• For each Resource with translations:
• Add a glossary entry in the <unit>.

Summary

• Technically: It is relatively easy to apply linked-
data in T-Kits

• But:

– Information should not get in the way of the end-
users tasks (translation, edit, etc.)

– Most tools in the production chain need to be
aware of the metadata annotation mechanisms
 need to use standard markup

– Too much information is no information

A few links

• LIDER Project
http://lider-project.eu/

• BabelNet
http://www.babelnet.org/

• ITS 2.0 Specification (W3C ITS IG)
http://www.w3.org/TR/its20/

• Schema.org microdata (W3C Semantic Web IG)
http://schema.org/

http://lider-project.eu/
http://lider-project.eu/
http://lider-project.eu/
http://www.babelnet.org/
http://www.w3.org/TR/its20/
http://schema.org/

