Linked Data in Translation-Kits

FEISGILTT Dublin June 2014

Yves Savourel
ENLASO Corporation

Slides and code are available at:
https://copy.com/nGbcO1319YLs

¥ ‘z
E N L"f/\ S O This presentation was made possible by @ ]der



The main points

e What T-Kits users need:

Terms (with definitions, translations), Context
information, disambiguation, Translation examples
(concordances)

* Technical challenges
— Coding the information in or near the content

e Usability challenges
— Where/when to gather the information
— How to present the information



Where / When

* Before extraction: to annotate the source
content. Especially available for content in
HTML5 and XML (microdata, RDFa, ITS, etc.)

e At T-Kit creation time: to add terminology and
provide disambiguation.

 On-demand: when the users (translator,
editor, localization engineer) need it.



Information in original documents

* Schema.org microdata, ITS Text Analysis, ITS
Terminology, RDFa, etc.

+ No need for text analysis: Information can be
used directly

- Original annotations may makes text handing
more complicated (a lot of inline codes)
(never underestimate the amount of pain
inline codes can bring)



Information in T-Kits

* Associated by scope (i.e. not linked to a
specific span of content). Useful for some data
like concepts, glossaries, etc. that can be
associated with content later by CAT tools.

* As annotations associated with specific spans
of content. This saves some processing to the
CAT tools, but may lead to repetitions if not
using stand-off notations.



Information queried on-demand

+ End user control what s/he wants

+ Avoid having stale data

Users may miss on some information
Requires live and good enough connection

Tools need to be smart (e.g. query in advance
the next segments using another thread)

Some of the information can be in the cached
in the T-Kit.



Technical challenges

* Difference between plain text and marked up
text. Many tools take only plain text or HTML.
- Need to retrofit the annotations in the
target format.

e Overlapping annotations (e.g. <mrk> in XLIFF
v1.2) can create problem.

* Results not in parsing order, may make
applying the information difficult.



Examples

XLIFF 2.0 document with 2 <file> elements:

e Extract the “concepts” in a given <file> using
AlchemyAPI service.

 Mark up the segments with ITS Terminology
annotations using Yahoo! Content Analysis.

e Mark up the segments with ITS Text Analysis
annotations and create glossary entries using
DBpedia Spotlight, Wikidata services and
BabelNet data.



Using AlchemyAPI

* Load the document
* Create a map of JSONArray objects keyed on <file> ids
* For each event in the document:
*Ifitisa START FILE event:
* Reset the block of text, store the id of the <file>.
Ifitisa TEXT UNIT event:
* For each <segment>:
* Append the plain-text content of the segment to the block of text.
*Ifitisa END FILE event:
* Call the TextGetRankedConcepts service on the block of text.
* Store the resulting JSONArray and the corresponding <file> id in the map.
* For each <file>id in the map:
* Get the document MID FILE node for the given file id
* Create a new <cpt:concepts> element (extension)
* Create a new <cpt:concept> element for each item in the JSONArray.
 Save the document



Using Yahoo! Content Analysis

* For each <unit>:
* For each <segment>:
* Call Yahoo! Content Analysis service on the coded text of the segment.
* For each entity found:
* Annotate the fragment using ITS Terminology (with confidence score and, if
available, the Wikidata link as termInfoRef).



Using DBpedia Spotlight, Wikidata and BabelNet
* For each <unit>:
* Create a new map of Resource objects
* For each <segment>:
* Create a new list of Occurrence object
* Call the DBpedia Spotlight Candidates service on the text of the segment.
* For each candidate found:
* Create a new Occurrence object (1 occurrence = 1 unique URI on 1 unique
span of content).
* If the Resource for the URI doesn’t exist yet: create a new Resource.
* For each new Resource created:
* Do a query on DBpedia SPARQL end-point for the URI to try to get the
corresponding Wikidata Q-value.
* If we get a Q-value:
* Do a whgetentities GET on Wikidata to try to get a translation.
* Call BabelNet API to try to get translations from BabelNet dataset.
* Add the new Resource objects to the unit’s Resource list.
* Sort the list of Occurrence objects for this segment by position in the string.
* For each Occurrence:
* Annotate the fragment using ITS Text Analysis and adding extra attributes
using extension attributes.
* For each Resource with translations:
* Add a glossary entry in the <unit>.



Summary

* Technically: It is relatively easy to apply linked-
data in T-Kits

e But:

— Information should not get in the way of the end-
users tasks (translation, edit, etc.)

— Most tools in the production chain need to be
aware of the metadata annotation mechanisms
- need to use standard markup

— Too much information is no information



A few links

LIDER Project

http://lider-project.eu/

BabelNet

http://www.babelnet.org/

ITS 2.0 Specification (W3C ITS IG)

http://www.w3.org/TR/its20/

Schema.org microdata (W3C Semantic Web IG)

http://schema.org/



http://lider-project.eu/
http://lider-project.eu/
http://lider-project.eu/
http://www.babelnet.org/
http://www.w3.org/TR/its20/
http://schema.org/

