

Web Services Description
Language (WSDL) Version 2.0 Part 2: Adjuncts

W3C Recommendation
26 June 2007

	This version:
	http://www.w3.org/TR/2007/REC-wsdl20-adjuncts-20070626
	Latest version:
	http://www.w3.org/TR/wsdl20-adjuncts
	Previous version:
	http://www.w3.org/TR/2007/PR-wsdl20-adjuncts-20070523
	Editors:
	Roberto Chinnici, Sun Microsystems
	Hugo Haas, W3C
	Amelia A. Lewis, TIBCO Software
	Jean-Jacques Moreau, Canon
	David Orchard, BEA Systems
	Sanjiva Weerawarana, WSO2

Please refer to the errata
for this document, which may include some normative
corrections.

This document is also available in these non-normative formats:
PDF, PostScript, XML, and plain text.

See also
translations.

Copyright © 2007 W3C®
(MIT, ERCIM,
Keio), All Rights Reserved.
W3C liability,
trademark
and document
use rules apply.

Abstract

WSDL 2.0 is the Web Services Description Language, an XML
language for describing Web services. This document, "Web Services
Description Language (WSDL) Version 2.0 Part 2: Adjuncts",
specifies predefined extensions for use in WSDL 2.0:

	
Message exchange patterns

	
Operation safety

	
Operation styles

	
Binding extensions for SOAP and HTTP

Status of this Document

This section describes the status of this document at the
time of its publication. Other documents may supersede this
document. A list of current W3C publications and the latest
revision of this technical report can be found in the W3C technical reports index at
http://www.w3.org/TR/.

This is the W3C
Recommendation of Web Services Description Language (WSDL)
Version 2.0 Part 2: Adjuncts for review by W3C Members and other
interested parties. It has been produced by the Web Services Description Working
Group, which is part of the W3C Web Services
Activity.

Please send comments about this document to the public public-ws-desc-comments@w3.org
mailing list (public
archive).

The Working Group released a test suite along with an implementation
report. A diff-marked
version against the previous version of this document is
available.

This document has been reviewed by W3C Members, by software
developers, and by other W3C groups and interested parties, and is
endorsed by the Director as a W3C Recommendation. It is a stable
document and may be used as reference material or cited from
another document. W3C's role in making the Recommendation is to
draw attention to the specification and to promote its widespread
deployment. This enhances the functionality and interoperability of
the Web.

This document is governed by the 24
January 2002 CPP as amended by the W3C Patent Policy
Transition Procedure. W3C maintains a public
list of any patent disclosures made in connection with the
deliverables of the group; that page also includes instructions for
disclosing a patent. An individual who has actual knowledge of a
patent which the individual believes contains
Essential Claim(s) must disclose the information in accordance
with
section 6 of the W3C Patent Policy.

Table of Contents

1. Introduction

 1.1 Notational
Conventions

 1.2 Assertions

2. Predefined Message Exchange Patterns

 2.1 Template for
Message Exchange Patterns

 2.1.1 Pattern Name

 2.2 Fault
Propagation Rules

 2.2.1 Fault Replaces Message propagation rule

 2.2.2 Message Triggers Fault propagation rule

 2.2.3 No Faults propagation rule

 2.3 Message Exchange
Patterns

 2.3.1 In-Only message exchange pattern

 2.3.2 Robust In-Only message exchange pattern

 2.3.3 In-Out message exchange pattern

 2.4 Security
Considerations

3. Predefined Extensions

 3.1 Operation safety

 3.1.1 Relationship to WSDL Component Model

 3.1.2 XML Representation

 3.1.3 Mapping from XML Representation to Component
Properties

4. Predefined Operation Styles

 4.1 RPC Style

 4.1.1 wrpc:signature
Extension

 4.1.2 XML Representation of
the wrpc:signature Extension

 4.1.3 wrpc:signature
Extension Mapping To Properties of an Interface Operation
component

 4.2 IRI
Style

 4.3 Multipart style

5. WSDL SOAP Binding Extension

 5.1 SOAP Syntax
Summary (Non-Normative)

 5.2 Identifying the use of the SOAP Binding

 5.3 SOAP Binding
Rules

 5.4 Specifying the
SOAP Version

 5.4.1 Description

 5.4.2 Relationship to WSDL Component Model

 5.4.3 XML Representation

 5.4.4 Mapping from XML Representation to
Component properties

 5.5 Specifying the
SOAP Underlying Protocol

 5.5.1 Description

 5.5.2 Relationship to WSDL Component Model

 5.5.3 XML Representation

 5.5.4 Mapping from XML Representation to
Component Properties

 5.6 Binding
Faults

 5.6.1 Description

 5.6.2 Relationship to WSDL Component Model

 5.6.3 XML Representation

 5.6.4 Mapping XML Representation to Component
Properties

 5.7 Binding
Operations

 5.7.1 Description

 5.7.2 Relationship to WSDL Component
Model

 5.7.3 XML Representation

 5.7.4 Mapping from XML Representation to
Component Properties

 5.8 Declaring
SOAP Modules

 5.8.1 Description

 5.8.2 Relationship to WSDL Component Model

 5.8.3 SOAP Module component

 5.8.4 XML Representation

 5.8.5 Mapping from XML Representation to
Component Properties

 5.8.6 IRI Identification Of A SOAP Module
component

 5.9 Declaring
SOAP Header Blocks

 5.9.1 Description

 5.9.2 Relationship to WSDL Component
Model

 5.9.3 SOAP Header Block component

 5.9.4 XML Representation

 5.9.5 Mapping XML Representation to
Component Properties

 5.9.6 IRI Identification Of A SOAP Header
Block component

 5.10 WSDL SOAP
1.2 Binding

 5.10.1 Identifying a WSDL SOAP 1.2 Binding

 5.10.2 Description

 5.10.3 SOAP 1.2 Binding Rules

 5.10.4 Binding WSDL 2.0 MEPs to SOAP 1.2 MEPs

 5.10.4.1
WSDL In-Out to SOAP Request-Response

 5.10.4.1.1
The Client

 5.10.4.1.2
The Service

 5.10.4.2
WSDL In-Out to SOAP SOAP-Response

 5.10.4.2.1
The Client

 5.10.4.2.2
The Service

 5.10.4.3
WSDL In-Only to SOAP
Request-Response

 5.10.4.3.1
The Client

 5.10.4.3.2
The Service

 5.10.4.4
WSDL Robust-In-Only to SOAP
Request-Response

 5.10.4.4.1
The Client

 5.10.4.4.2
The Service

 5.11 Conformance

6. WSDL HTTP Binding Extension

 6.1 Identifying
the use of the HTTP Binding

 6.2 HTTP Syntax
Summary (Non-Normative)

 6.3 Supported Extensions

 6.4 HTTP Binding Rules

 6.4.1 HTTP Method Selection

 6.4.2 HTTP Content Encoding
Selection

 6.4.3 Payload Construction And
Serialization Format

 6.4.3.1
Serialization rules for XML messages

 6.4.4 Default input and output
serialization format

 6.4.5 HTTP Header Construction

 6.4.6 HTTP Request IRI

 6.5 Binding
Operations

 6.5.1 Description

 6.5.2 Relationship to WSDL Component
Model

 6.5.3 Specification of serialization rules allowed

 6.5.4 XML Representation

 6.5.5 Mapping from XML Representation to
Component Properties

 6.6 Declaring
HTTP Headers

 6.6.1 Description

 6.6.2 Relationship to WSDL Component
Model

 6.6.3 HTTP Header component

 6.6.4 XML Representation

 6.6.5 Mapping from XML Representation to
Component Properties

 6.6.6 IRI Identification Of An HTTP Header
component

 6.7 Specifying
HTTP Error Code for Faults

 6.7.1 Description

 6.7.2 Relationship to WSDL Component Model

 6.7.3 XML Representation

 6.7.4 Mapping from XML Representation to
Component Properties

 6.8 Serialization Format of Instance Data

 6.8.1 Serialization of the instance data in
parts of the HTTP request IRI

 6.8.1.1
Construction of the
request IRI using the {http location} property

 6.8.2 Serialization as
application/x-www-form-urlencoded

 6.8.2.1
Case of elements
cited in the {http location} property

 6.8.2.2
Serialization of
content of the instance data not cited in the {http location}
property

 6.8.2.2.1
Construction of
the query string

 6.8.2.2.2
Controlling the serialization of
the query string in the request IRI

 6.8.2.2.3
Serialization in
the request IRI

 6.8.2.2.4
Serialization in
the message body

 6.8.3 Serialization as
application/xml

 6.8.4 Serialization as
multipart/form-data

 6.9 Specifying the Content Encoding

 6.9.1 Description

 6.9.2 Relationship to WSDL Component
Model

 6.9.3 XML Representation

 6.9.4 Mapping from XML
Representation to Component Properties

 6.10 Specifying the Use of HTTP Cookies

 6.10.1 Description

 6.10.2 Relationship to WSDL Component Model

 6.10.3 XML Representation

 6.10.4 Mapping from XML Representation to
Component Properties

 6.11 Specifying
HTTP Access Authentication

 6.11.1 Description

 6.11.2 Relationship to WSDL Component Model

 6.11.3 XML Representation

 6.11.4 Mapping from XML Representation to
Component Properties

 6.12 Conformance

7. References

 7.1 Normative References

 7.2 Informative References

Appendices

A. Acknowledgements
(Non-Normative)

B. Component Summary
(Non-Normative)

C. Assertion Summary
(Non-Normative)

1. Introduction

The Web Services Description Language Version 2.0 (WSDL 2.0)
[WSDL 2.0 Core Language]
provides a model and an XML format for describing Web services.
WSDL 2.0 enables one to separate the description of the abstract
functionality offered by a service from concrete details of a
service description such as "how" and "where" that functionality is
offered.

This document, "Web Services Description Language (WSDL) Version
2.0 Part 2: Adjuncts", specifies predefined extensions for use in
WSDL 2.0:

	
Message exchange patterns: 2. Predefined
Message Exchange Patterns

	
Operation safety declaration: 3.
Predefined Extensions

	
Operation styles: 4. Predefined
Operation Styles

	
Binding extensions:

	
A SOAP 1.2 [SOAP 1.2 Part 1:
Messaging Framework (Second Edition)] binding extension:
5. WSDL SOAP Binding
Extension

	
An HTTP/1.1 [IETF RFC 2616]
binding extension: 6. WSDL HTTP
Binding Extension

This document depends on "Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language" [WSDL 2.0 Core Language]. See also the "Web
Services Description Language (WSDL) Version 2.0 Part 0: Primer"
[WSDL 2.0 Primer] for more
information and examples.

1.1 Notational
Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL"
in this document are to be interpreted as described in RFC2119
[IETF RFC 2119].

This specification uses a number of namespace prefixes
throughout; they are listed in Table 1-1.
Note that the choice of any namespace prefix is arbitrary and not
semantically significant (see [XML
Information Set]).

Table 1-1. Prefixes and Namespaces used in this
specification	Prefix	Namespace	Notes
	wsdl	"http://www.w3.org/ns/wsdl"	This namespace is defined in
[WSDL 2.0 Core Language]. A
normative XML Schema [XML Schema
Structures], [XML Schema
Datatypes] document for the "http://www.w3.org/ns/wsdl"
namespace can be found at http://www.w3.org/ns/wsdl. This
namespace is used as the default namespace throughout this
specification.
	wsdlx	
"http://www.w3.org/ns/wsdl-extensions"	This specification extends in section
3. Predefined Extensions the
"http://www.w3.org/ns/wsdl-extensions" namespace defined in
[WSDL 2.0 Core Language]. A
normative XML Schema [XML Schema
Structures], [XML Schema
Datatypes] document for the
"http://www.w3.org/ns/wsdl-extensions" namespace can be found at
http://www.w3.org/ns/wsdl-extensions.
	wsoap	"http://www.w3.org/ns/wsdl/soap"	Defined by this specification. A
normative XML Schema [XML Schema
Structures], [XML Schema
Datatypes] document for the
"http://www.w3.org/ns/wsdl/soap" namespace can be found at http://www.w3.org/ns/wsdl/soap.
	whttp	"http://www.w3.org/ns/wsdl/http"	Defined by this specification. A
normative XML Schema [XML Schema
Structures], [XML Schema
Datatypes] document for the
"http://www.w3.org/ns/wsdl/http" namespace can be found at http://www.w3.org/ns/wsdl/http.
	wrpc	"http://www.w3.org/ns/wsdl/rpc"	Defined by this specification. A
normative XML Schema [XML Schema
Structures], [XML Schema
Datatypes] document for the
"http://www.w3.org/ns/wsdl/rpc" namespace can be found at http://www.w3.org/ns/wsdl/rpc.
	xs	"http://www.w3.org/2001/XMLSchema"	Defined in the W3C XML Schema
specification [XML Schema
Structures], [XML Schema
Datatypes].

Namespace names of the general form "http://example.org/..." and
"http://example.com/..." represent application or context-dependent
URIs [IETF RFC 3986].

All parts of this specification are normative, with the
EXCEPTION of pseudo-schemas, examples, and sections explicitly
marked as "Non-Normative". Pseudo-schemas are provided for each
component, before the description of this component. They provide
visual help for the XML [XML 1.0]
serialization. The syntax
of BNF pseudo-schemas is the same as the one used in
[WSDL 2.0 Core
Language].

1.2 Assertions

Assertions about WSDL 2.0 documents and components that are not
enforced by the normative XML schema for WSDL 2.0 are marked by a
dagger symbol (†) at the end of a sentence. Each assertion has been
assigned a unique identifier that consists of a descriptive textual
prefix and a unique numeric suffix. The numeric suffixes are
assigned sequentially and never reused so there may be gaps in the
sequence. The assertion identifiers MAY be used by implementations
of this specification for any purpose, e.g. error reporting.

The assertions and their identifiers are summarized in section
C. Assertion
Summary.

2. Predefined Message Exchange
Patterns

Web Services Description Language (WSDL) message exchange
patterns (hereafter simply 'patterns') define the sequence and
cardinality of abstract messages listed in an operation. Message
exchange patterns also define which other nodes send messages to,
and receive messages from, the service implementing the
operation.

A node is an agent (section
2.3.2.2 Agent of the Web Services Architecture [Web Services Architecture]) that can transmit
and/or receive message(s) described in WSDL description(s) and
process them.

Note:

A node
MAY be accessible via more than one physical address or
transport.†

WSDL message exchange patterns describe the interaction at the
abstract (interface) level, which may be distinct from the pattern
used by the underlying protocol binding (e.g. SOAP Message Exchange
Patterns; section 5.10.3 SOAP
1.2 Binding Rules contains the binding rules for the
selection of a SOAP 1.2 message exchange pattern, based on the WSDL
message exchange pattern in use for the SOAP binding extension
defined in section 5. WSDL SOAP
Binding Extension).

By design, WSDL message exchange patterns abstract out specific
message types. Patterns identify placeholders for messages, and
placeholders are associated with specific message types by the
operation using the pattern.

Unless explicitly stated otherwise, WSDL message exchange
patterns also abstract out binding-specific information such as
timing between messages, whether the pattern is synchronous or
asynchronous, and whether the messages are sent over a single or
multiple channels.

Like interfaces and operations, WSDL message exchange patterns
do not exhaustively describe the set of messages exchanged between
a service and other nodes; by some prior agreement, another node
and/or the service MAY send messages (to each other or to other
nodes) that are not described by the pattern.†
For instance, even though a pattern can define a single message
sent from a service to one other node, the Web service can in
practice multicast that message to other nodes.

To maximize reuse, WSDL message exchange patterns identify a
minimal contract between other parties and Web services, and
contain only information that is relevant to both the Web service
and another party.

This specification defines several message exchange patterns for
use with WSDL Version 2.0 Part 1: Core
Language [WSDL 2.0 Core
Language]. Additional, non-normative patterns are
available in [WSDL 2.0 Additional
MEPs].

2.1 Template for
Message Exchange Patterns

New message exchange patterns may be defined by any organization
able and willing to do so. It is recommended that the patterns use
the general template provided in 2.1.1 Pattern Name, after
examination of existing predefined patterns.

2.1.1
Pattern Name

This pattern consists of [number] message[s, in order] as
follows:

[enumeration, specifying, for each message] A[n optional]
message:

	
indicated by an
Interface Message Reference component whose {message
label} is "[label]" and {direction}
is "[direction]"

	
[received from|sent to] ['some' if first mention] node [node
identifier]

This pattern uses the rule [fault ruleset reference].

An
Interface Operation using this message exchange pattern has a
{message
exchange pattern} property with the value "[pattern IRI]".

Note: In the template, the bracketed items indicate a
replacement operation. Substitute the correct terms for each
bracketed item.

Note: the "received from" and "sent to" are always from the
point of view of the service, and participating nodes other than
the service are implicitly identified as the originators of or
destinations for messages in the exchange.

2.2 Fault
Propagation Rules

WSDL patterns specify their fault propagation model using
standard rulesets to indicate where faults can occur. The most
common patterns for fault propagation are defined in the following
subsections, and referenced by the patterns in 2.3 Message Exchange Patterns.
"Propagation" is defined as a best-effort attempt to transmit the
fault message to its designated recipient.

WSDL patterns specify propagation of faults, not their
generation. Nodes that generate faults MUST attempt to
propagate the faults in accordance with the governing ruleset, but
it is understood that any delivery of a network message is best
effort, not guaranteed.†
The rulesets establish the direction of the fault message and the
fault recipient; they do not provide reliability or other delivery
guarantees. When a fault is generated, the generating node
MUST attempt to propagate the fault, and MUST do so in the
direction and to the recipient specified by the
ruleset.† However, extensions or binding extensions
MAY modify these rulesets.†
For example, WS-Addressing [WSA 1.0
Core] defines a "FaultTo" address for messages, which is
used in lieu of the recipient nominated by the ruleset.

Generation of a fault, regardless of ruleset,
terminates the exchange.†

Binding extensions, features, or extension specifications can
override the semantics of a fault propagation ruleset, but this
practice is strongly discouraged.

2.2.1
Fault Replaces Message propagation rule

When the Fault Replaces Message propagation
rule is in effect, any message after the first in the pattern MAY
be replaced with a fault message, which MUST have identical
direction. †
The fault
message MUST be delivered to the same target node as the message it
replaces, unless otherwise specified by an extension or binding
extension. If there is no path to this node, the fault MUST be
discarded.†

The Fault Replaces Message propagation rule is identified by the
following URI:
http://www.w3.org/ns/wsdl/fault-replaces-message

2.2.2 Message
Triggers Fault propagation rule

When the Message Triggers Fault propagation
rule is in effect, any message, including the first in the pattern,
MAY trigger a fault message, which MUST have opposite direction.
†
The fault
message MUST be delivered to the originator of the triggering
message, unless otherwise specified by an extension or binding
extension. Any node MAY propagate a fault message, and MUST NOT do
so more than once for each triggering message. If there is no path
to the originator, the fault MUST be discarded.†

The Message Triggers Fault propagation rule is identified by the
following URI:
http://www.w3.org/ns/wsdl/message-triggers-fault

2.2.3 No Faults
propagation rule

When the No
Faults propagation rule is in effect, faults MUST NOT be
propagated. †

The No Faults propagation rule is identified by the following
URI: http://www.w3.org/ns/wsdl/no-faults

2.3 Message Exchange
Patterns

WSDL patterns are described in terms of the WSDL component
model, specifically the
Interface Message Reference and
Interface Fault Reference components.

2.3.1 In-Only message
exchange pattern

The
in-only message exchange pattern consists of exactly
one message as follows:†

	
A message:

	
indicated by a
Interface Message Reference component whose {message
label} is "In" and {direction}
is "in"

	
received from some node N

The
in-only message exchange pattern uses the rule
2.2.3 No Faults propagation
rule.†

An operation using this message exchange pattern has a {message
exchange pattern} property with the value
"http://www.w3.org/ns/wsdl/in-only".

2.3.2 Robust
In-Only message exchange pattern

The robust-in-only message
exchange pattern consists of exactly one message as
follows:†

	
A message:

	
indicated by a
Interface Message Reference component whose {message
label} is "In" and {direction}
is "in"

	
received from some node N

The
robust in-only message exchange pattern uses the rule
2.2.2 Message Triggers Fault
propagation rule.†

An operation using this message exchange pattern has a {message
exchange pattern} property with the value
"http://www.w3.org/ns/wsdl/robust-in-only".

2.3.3 In-Out message exchange
pattern

The
in-out message exchange pattern consists of exactly
two messages, in order, as follows:†

	
A message:

	
indicated by a
Interface Message Reference component whose {message
label} is "In" and {direction}
is "in"

	
received from some node N

	
A message:

	
indicated by a
Interface Message Reference component whose {message
label} is "Out" and {direction}
is "out"

	
sent to node N

The
in-out message exchange pattern uses the rule 2.2.1 Fault Replaces Message
propagation rule.†

An operation using this message exchange pattern has a {message
exchange pattern} property with the value
"http://www.w3.org/ns/wsdl/in-out".

2.4 Security
Considerations

Note that many of the message exchange patterns defined above
describe responses to an initial message (either a normal response
message or a fault.)

Such responses can be used in attempts to disrupt, attack, or
map a network, host, or services. When such responses are directed
to an address other than that originating the initial message, the
source of an attack can be obscured, or blame laid on a third
party, or denial-of-service attacks can be enabled or
exacerbated.

Security mechanisms addressing such attacks can prevent the
delivery of response messages to the receiving node. Conformance to
the message exchange pattern is measured prior to the application
of these security mechanisms.

3. Predefined Extensions

3.1 Operation safety

This section defines an extension to WSDL 2.0 [WSDL 2.0 Core Language] that allows
marking an operation as a safe interaction, as defined in section
3.4. Safe Interactions of [Web
Architecture].

This extension MAY be used for setting defaults in bindings,
such as in the HTTP binding (see 6.5.5 Mapping from XML
Representation to Component Properties).

3.1.1
Relationship to WSDL Component Model

The safety extension adds the following property to the
Interface Operation component model (defined in [WSDL 2.0 Core Language]):

	
{safe} REQUIRED. An
xs:boolean indicating whether the operation is asserted to
be safe for users to invoke. If this property is "false", then no
assertion has been made about the safety of the operation, thus the
operation MAY or MAY NOT be safe. However, an operation SHOULD be marked
safe if it meets the criteria for a safe interaction defined in
Section 3.4 of [Web
Architecture].†

3.1.2 XML
Representation

<description>
 <interface>
 <operation name="xs:NCName" pattern="xs:anyURI"
 wsdlx:safe="xs:boolean"? >
 </operation>
 </interface>
</description>

The XML representation for the safety extension is an
attribute information item with the following Infoset
properties:

	
An
OPTIONAL safe attribute information item with
the following Infoset properties:†

	
A [local name] of safe

	
A [namespace name] of "http://www.w3.org/ns/wsdl-extensions"

	
A type of xs:boolean

3.1.3 Mapping from XML Representation to
Component Properties

See Table 3-1.

Table 3-1. Mapping from XML Representation to Interface
Operation component Extension Properties	Property	Value
	{safe}	The actual value of the
safe attribute information item, if present;
otherwise the value "false".

4. Predefined Operation
Styles

This section defines
operation styles that can be used to place constraints on

Interface Operation components, in particular with respect to
the format of the messages they refer to. The serialization formats
defined in section 6.8
Serialization Format of Instance Data require bound

Interface Operation components to have one or more of the
styles defined in this section.

4.1 RPC Style

The RPC style is selected by including the value
"http://www.w3.org/ns/wsdl/style/rpc" in the {style}
property of an
Interface Operation component.

An
Interface Operation component conforming to the RPC style MUST
obey the constraints listed further below. Also, if the
wrpc:signature extension is engaged simultaneously,
the corresponding attribute information item MUST be valid
according to the schema for the extension and additionally MUST
obey the constraints listed in 4.1.1
wrpc:signature Extension and 4.1.2 XML
Representation of the wrpc:signature Extension.

Furthermore, the associated messages MUST conform to the rules
below, described using XML Schema [XML
Schema Structures]. Note that operations containing
messages described by other type systems may also indicate use of
the RPC style, as long as they are constructed in such a way as to
follow these rules.

If the RPC
style is used by an
Interface Operation component then its {message
exchange pattern} property MUST have the value either
"http://www.w3.org/ns/wsdl/in-only" or
"http://www.w3.org/ns/wsdl/in-out".†

If the
Interface Operation component uses a {message
exchange pattern} for which there is no output element, i.e.
"http://www.w3.org/ns/wsdl/in-only", then the conditions stated
below that refer to output elements MUST be considered to be
implicitly satisfied.

	
The value of
the {message
content model} property for the
Interface Message Reference components of the {interface
message references} property MUST be "#element".†

	
The content
model of input and output {element
declaration} elements MUST be defined using a complex type that
contains a sequence from XML Schema.†

	
The input
sequence MUST only contain elements and element
wildcards.† It
MUST NOT contain other structures such as xs:choice.
The input
sequence MUST NOT contain more than one element
wildcard.†
The element
wildcard, if present, MUST appear after any elements.†

	
The output
sequence MUST only contain elements.† It
MUST NOT contain other structures such as
xs:choice.

	
Both the
input and output sequences MUST contain only local element
children.† Note
that these child elements MAY contain the following attributes:
nillable, minOccurs and
maxOccurs.

	
The local
name of input element's QName MUST be the same as the
Interface Operation component's name.†

	
Input and
output elements MUST both be in the same namespace.†

	
The complex
type that defines the body of an input or an output element MUST
NOT contain any local attributes.†
Extension attributes are allowed for purposes of managing the
message infrastructure (e.g. adding identifiers to facilitate
digitally signing the contents of the message). They must not be
considered as part of the application data that is conveyed by the
message. Therefore, they are never included in an RPC signature
(see 4.1.1
wrpc:signature Extension).

	
If elements
with the same qualified name appear as children of both the input
and output elements, then they MUST both be declared using the same
named type.†

	
The input or
output sequence MUST NOT contain multiple children elements
declared with the same name.†

4.1.1
wrpc:signature Extension

The wrpc:signature extension attribute
information item MAY be used in conjunction with the RPC style
to describe the exact signature of the function represented by an
operation that uses the RPC style.

When present, the wrpc:signature extension
contributes the following property to the
Interface Operation component it is applied to:

	
{rpc signature}
OPTIONAL, but MUST
be present when the style is RPC†. A
list of pairs (q, t) whose first component is of type
xs:QName and whose second component is of type
xs:token. Values for the second component MUST be chosen
among the following four: "#in", "#out", "#inout"
"#return".†

The value of the {rpc signature}
property MUST satisfy the following conditions:

	
The value of the
first component of each pair (q, t) MUST be unique within
the list.†

	
For each child
element of the input and output messages of the operation, a pair
(q, t), whose first component q is equal to the
qualified name of that element, MUST be present in the list, with
the caveat that elements that appear with cardinality greater than
one MUST be treated as a single element.†

	
For each pair
(q, #in), there MUST be a child element of the input
element with a name of q. There MUST NOT be a child
element of the output element with the name of
q.†

	
For each pair
(q, #out), there MUST be a child element of the output
element with a name of q. There MUST NOT be a child
element of the input element with the name of
q.†

	
For each pair
(q, #inout), there MUST be a child element of the input
element with a name of q. There MUST also be a child
element of the output element with the name of
q.†

	
For each pair
(q, #return), there MUST be a child element of the output
element with a name of q. There MUST NOT be a child
element of the input element with the name of
q.†

The function signature defined by a wrpc:signature
extension is determined as follows:

	
Start with the value of the {rpc signature}
property, a (possibly empty) list of pairs of this form:

 [(q0, t0), (q1, t1), ...]

	
Filter the elements of this list into two lists, the first one
(L1) comprising pairs whose t component is one of
{#in, #out, #inout}, the second (L2) pairs whose
t component is #return. During the composition of
L1 and L2, the relative order of members in the
original list MUST be preserved.

For ease of visualization, let's denote the two lists as:

 (L1) [(a0,
u0), (a1, u1), ...]

and

 (L2) [(r0,
#return), (r1, #return), ...]

respectively.

	
Then, if the input sequence ends with an element wildcard, the
formal signature of the function is:

 f([d0] a0, [d1] a1, ..., rest) =>
(r0, r1, ...)

where rest is a formal parameter representing the
elements in the input message matched by the element wildcard.

Otherwise the formal signature of the function is:

 f([d0] a0, [d1] a1, ...) => (r0,
r1, ...)

i.e.:

	
the list of formal arguments to the function is [a0, a1,
...];

	
the direction d of each formal argument a is
one of [in], [out], [inout], determined
according to the value of its corresponding u token;

	
the list of formal return parameters of the function is [r0,
r1, ...];

	
each formal argument and formal return parameter is typed
according to the type of the child element identified by it (unique
per the conditions given above).

Note:

The wrpc:signature extension allows the
specification of multiple return values for an operation. Several
popular programming languages support multiple return values for a
function. Moreover, for languages which do not, the burden on
implementers should be small, as typically multiple return values
will be mapped to a single return value of a structure type (or its
closest language-specific equivalent).

4.1.2 XML
Representation of the wrpc:signature Extension

The XML representation for the RPC signature extension is an
attribute information item with the following Infoset
properties:

	
A [local name] of signature

	
A [namespace name] of "http://www.w3.org/ns/wsdl/rpc"

The type of the signature attribute information
item is a list type whose item type is the union of the
xs:QName type and the subtype of the xs:token
type restricted to the following four values: "#in", "#out",
"#inout", "#return". See Example
4-1 for an excerpt from the normative schema definition of this
type.

Additionally,
each even-numbered item (0, 2, 4, ...) in the list MUST be of type
xs:QName and each odd-numbered item (1, 3, 5, ...) in the
list MUST be of the subtype of xs:token described in the
previous paragraph.†

Example
4-1. Definition of the wrpc:signature extension

<xs:attribute name="signature" type="wrpc:signatureType"/>

<xs:simpleType name="signatureType">
 <xs:list itemType="wrpc:signatureItemType"/>
</xs:simpleType>

<xs:simpleType name="signatureItemType">
 <xs:union memberTypes="xs:QName wrpc:directionToken"/>
</xs:simpleType>

<xs:simpleType name="directionToken">
 <xs:restriction base="xs:token">
 <xs:enumeration value="#in"/>
 <xs:enumeration value="#out"/>
 <xs:enumeration value="#inout"/>
 <xs:enumeration value="#return"/>
 </xs:restriction>
</xs:simpleType>

4.1.3
wrpc:signature Extension Mapping To Properties of an
Interface Operation component

A wrpc:signature extension attribute
information item is mapped to the following property of the

Interface Operation component defined by its [owner].

Table 4-1. Mapping of a wrpc:signature
Extension to Interface Operation component Properties	Property	Value
	{rpc signature}	A list of (xs:QName, xs:token)
pairs formed by grouping the items present in the actual value of
the wrpc:signature attribute information item
in the order in which they appear there.

4.2 IRI Style

The IRI style is selected by including the value
"http://www.w3.org/ns/wsdl/style/iri" in the {style}
property of an
Interface Operation component.

When using
this style, the value of the {message
content model} property of the
Interface Message Reference component corresponding to the
initial message of the message exchange pattern MUST be
"#element".†

Use of this value indicates that XML Schema [XML Schema Structures] was used to define
the schema of the {element
declaration} property of the
Interface Message Reference component of the
Interface Operation component corresponding to the initial
message of the message exchange pattern. This schema MUST adhere to
the rules below:

	
The content model of this element is defined using a complex
type that contains a sequence from XML Schema.

	
The sequence
MUST only contain elements.†
It MUST NOT contain other structures such as
xs:choice. There are no occurrence constraints on the
sequence.

	
The sequence
MUST contain only local element children.† Note
these child elements can contain the nillable
attribute.

	
The localPart
of the element's QName MUST be the same as the
Interface Operation component's {name}.†

	
The complex
type that defines the body of the element or its children elements
MUST NOT contain any attributes.†

	
The children
elements of the sequence MUST derive from
xs:simpleType, and MUST NOT be of the type or derive
from xs:QName, xs:NOTATION,
xs:hexBinary or
xs:base64Binary.†

4.3 Multipart style

The Multipart style is selected by including the value
"http://www.w3.org/ns/wsdl/style/multipart" in the {style}
property of an
Interface Operation component.

When
using this style, the value of the {message
content model} property of the
Interface Message Reference component corresponding to the
initial message of the message exchange pattern MUST be
"#element".†

Use of this value indicates that XML Schema [XML Schema Structures] was used to define
the schema of the {element
declaration} property of the
Interface Message Reference component of the
Interface Operation component corresponding to the initial
message of the message exchange pattern. This schema MUST adhere to
the rules below:

	
The content model of this element is defined using a complex
type that contains a sequence from XML Schema.

	
The
sequence MUST only contain elements.†
It MUST NOT contain other structures such as
xs:choice.

	
The
sequence MUST contain only local element children.†
The
attributes minOccurs and maxOccurs for
these child elements MUST have a value 1.†
Note these child elements can contain the nillable
attribute.

	
The
localPart of the element's QName MUST be the same as the
Interface Operation component's {name}.†

	
The
complex type that defines the body of the element or its children
elements MUST NOT contain any attributes.†

	
The
sequence MUST NOT contain multiple children element declared with
the same local name.†

5. WSDL SOAP
Binding Extension

The SOAP binding extension described in this section is an
extension for [WSDL 2.0 Core
Language] to enable Web services applications to use
SOAP. This binding extension is SOAP version independent ("1.2" as
well as other versions) and extends WSDL 2.0 by adding properties
to the Binding
component, and its related components, as defined in
[WSDL 2.0 Core Language]. In
addition, an XML Infoset representation for these additional
properties is provided, along with a mapping from that
representation to the various component properties.

As allowed in [WSDL 2.0 Core
Language], a Binding
component can exist without indicating a specific
Interface component that it applies to. In this case, no

Binding Operation or
Binding Fault component can be present in the Binding
component.

The SOAP binding extension is designed with the objective of
minimizing what needs to be explicitly declared for common cases.
This is achieved by defining a set of default rules that affect all

Interface Operation components of an
Interface component to which the SOAP binding extension is
applied, unless specifically overridden by a
Binding Operation component. Thus, if a given
Interface Operation component is not referred to specifically
by a
Binding Operation component, then all the default rules apply
to that
Interface Operation component. As a result, in accordance with
the requirements of [WSDL 2.0 Core
Language], all operations of an
Interface component will be bound by this binding
extension.

Note: As in other parts of this specification,
one could have done away with "default" properties at the component
model level, and have set the value for the corresponding
non-default properties in the XML mapping section. However, default
properties are required for interface-less binding. Indeed, an
interface-less binding has no means to set the non-default version
of the property at the operation-level, since there is precisely no
operation (there is not even an interface). Hence the mapping needs
to be done elsewhere.

A subset of the HTTP properties specified in the HTTP binding
extension defined in section 6.
WSDL HTTP Binding Extension are present in a SOAP
binding when the SOAP binding uses HTTP as the underlying protocol,
for example, when the value of the {soap underlying
protocol} property of the Binding
component is "http://www.w3.org/2003/05/soap/bindings/HTTP/".
These
properties MUST NOT be used unless the underlying protocol is
HTTP.†
The allowed properties are the ones that describe the underlying
protocol (HTTP):

	
{http
location} and {http
location ignore uncited} on
Binding Operation components, as defined in 6.5 Binding Operations
and 6.8.2.2.2 Controlling
the serialization of the query string in the request
IRI, respectively.

	
{http
headers} on
Binding Message Reference and
Binding Fault components, as defined in 6.6 Declaring HTTP
Headers

	
{http query
parameter separator default} on Binding
components, {http query
parameter separator} on
Binding Operation components, as defined in 6.5.2 Relationship to WSDL
Component Model

	
{http
content encoding default} on Binding
and
Binding Operation components, {http
content encoding} on
Binding Message Reference and
Binding Fault components, as defined in 6.9 Specifying the Content
Encoding

	
{http cookies} on
Binding
components, as defined in 6.10
Specifying the Use of HTTP Cookies.

	
{http
authentication scheme} and {http authentication
realm} on Endpoint
components, as defined in 6.11
Specifying HTTP Access Authentication

5.1 SOAP Syntax
Summary (Non-Normative)

<description>
 <binding name="xs:NCName" interface="xs:QName"?
 type="http://www.w3.org/ns/wsdl/soap"
 whttp:queryParameterSeparatorDefault="xs:string"??
 whttp:contentEncodingDefault="xs:string"??
 whttp:cookies="xs:boolean"?
 wsoap:version="xs:string"?
 wsoap:protocol="xs:anyURI"
 wsoap:mepDefault="xs:anyURI"? >
 <documentation />*

 <wsoap:module ref="xs:anyURI" required="xs:boolean"? >
 <documentation />*
 </wsoap:module>*

 <fault ref="xs:QName"
 wsoap:code="union of xs:QName, xs:token"?
 wsoap:subcodes="union of (list of xs:QName), xs:token"?
 whttp:contentEncoding="xs:string"?? >

 <documentation />*

 <wsoap:module ... />*
 <wsoap:header element="xs:QName" mustUnderstand="xs:boolean"?
 required="xs:boolean"? >
 <documentation />*
 </wsoap:header>*
 <whttp:header ... />*??

 </fault>*

 <operation ref="xs:QName"
 whttp:location="xs:anyURI"??
 whttp:contentEncodingDefault="xs:string"??
 whttp:queryParameterSeparator="xs:string"??
 whttp:ignoreUncited="xs:boolean"??
 wsoap:mep="xs:anyURI"?
 wsoap:action="xs:anyURI"? >

 <documentation />*

 <wsoap:module ... />*

 <input messageLabel="xs:NCName"?
 whttp:contentEncoding="xs:string"?? >
 <documentation />*
 <wsoap:module ... />*
 <wsoap:header ... />*
 <whttp:header ... />*??
 </input>*

 <output messageLabel="xs:NCName"?
 whttp:contentEncoding="xs:string"?? >
 <documentation />*
 <wsoap:module ... />*
 <wsoap:header ... />*
 <whttp:header ... />*??
 </output>*

 <infault ref="xs:QName"
 messageLabel="xs:NCName"?>
 <documentation />*
 <wsoap:module ... />*
 </infault>*

 <outfault ref="xs:QName"
 messageLabel="xs:NCName"?>
 <documentation />*
 <wsoap:module ... />*
 </outfault>*

 </operation>*

 </binding>

 <service>
 <endpoint name="xs:NCName" binding="xs:QName" address="xs:anyURI"?
 whttp:authenticationScheme="xs:token"??
 whttp:authenticationRealm="xs:string"?? >
 <documentation />*
 </endpoint>
 </service>
</description>

Note:

The double question marks ("??") after the
attributes in the whttp namespace indicates that those
optional attributes only make sense when the SOAP binding uses HTTP
as the underlying protocol, for example, when the value of the
wsoap:protocol attribute is
"http://www.w3.org/2003/05/soap/bindings/HTTP/".

5.2
Identifying the use of the SOAP Binding

A Binding
component (defined in [WSDL 2.0 Core
Language]) is identified as a SOAP binding by assigning
the value "http://www.w3.org/ns/wsdl/soap" to the {type}
property of the Binding
component.

5.3 SOAP Binding
Rules

	
Payload Construction. When formulating the SOAP envelope to be
transmitted, the contents of the payload (i.e., the contents of the
SOAP Body element information item of the SOAP envelope)
MUST be what is defined by the corresponding
Interface Message Reference component.†
This is further subject to optimization by a feature in use which
affects serialization, such as MTOM [SOAP
Message Transmission Optimization Mechanism]. The
following binding rules MUST be adhered to:

	
If the value of the {message
content model} property of the
Interface Message Reference component is "#any", then the
payload MAY be any one XML element.

	
If the
value is "#none", then the payload MUST be empty.†

	
If the
value is "#element", then the payload MUST be the element
information item identified by the {element
declaration} property of the
Interface Message Reference component.†

	
If the

Interface Message Reference component is declared using a
non-XML type system (as considered in the Types section of
[WSDL 2.0 Core Language]),
then additional binding rules MUST be defined to indicate how to
map those components into the SOAP envelope.†

Note:

This SOAP binding extension only allows one single element in
the SOAP body.

	
SOAP Header Construction. If the {soap headers}
property as defined in section 5.9 Declaring SOAP Header
Blocks exists and is not empty in a
Binding Message Reference or
Binding Fault component, then an element information
item conforming to the element declaration of a SOAP Header Block component's
{element
declaration} property, in the {soap headers}
property, MAY be turned into a SOAP header block for the
corresponding message.

If the value of the SOAP
Header Block component's {required} property is
"true", the inclusion of this SOAP header block is REQUIRED,
otherwise it is OPTIONAL.

And, if the SOAP Header
Block component's {mustUnderstand}
property is present and its value is "true", that particular SOAP
header block MUST be marked with a mustUnderstand
attribute information item with a value of "true" or "1"
as per the SOAP specification.

SOAP header blocks other than the ones declared in the {soap headers}
property may be present at run-time, such as the SOAP header blocks
resulting from SOAP modules declared as explained in section
5.8 Declaring SOAP
Modules.

5.4 Specifying the
SOAP Version

5.4.1 Description

Every SOAP
binding MUST indicate what version of SOAP is in use for the
operations of the interface that this binding applies
to.†

By default, SOAP 1.2 [SOAP 1.2
Part 1: Messaging Framework (Second Edition)] is
used.

5.4.2 Relationship to WSDL Component
Model

The SOAP protocol specification adds the following property to
the WSDL component model (as defined in [WSDL 2.0 Core Language]):

	
{soap version} REQUIRED. A
xs:string, to the Binding
component.

5.4.3 XML Representation

<description>
 <binding name="xs:NCName" interface="xs:QName"? type="xs:anyURI"
 wsoap:version="xs:string"? >
 ...
 </binding>
</description>

The XML representation for specifying the SOAP version is an
optional attribute information item with the following
Infoset properties:

	
A [local name] of version

	
A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

	
A type of xs:string

5.4.4 Mapping from XML
Representation to Component properties

See Table 5-1.

Table 5-1. Mapping from XML Representation to Binding
component Extension Properties	Property	Value
	{soap version}	The actual value of the
wsoap:version attribute information item, if
present; otherwise "1.2".

5.5 Specifying
the SOAP Underlying Protocol

5.5.1 Description

Every SOAP
binding MUST indicate what underlying protocol is in
use.†

5.5.2 Relationship to WSDL Component
Model

The SOAP protocol specification adds the following property to
the WSDL component model (as defined in [WSDL 2.0 Core Language]):

	
{soap underlying
protocol} REQUIRED. A xs:anyURI, which is an absolute
IRI as defined by [IETF RFC
3987], to the Binding
component. This IRI refers to an appropriate SOAP underlying
protocol binding (see SOAP Protocol Binding Framework in
[SOAP 1.2 Part 1: Messaging Framework
(Second Edition)]), which is to be used for any of the
SOAP interactions described by this binding.

5.5.3 XML Representation

<description>
 <binding name="xs:NCName" interface="xs:QName"? type="xs:anyURI"
 wsoap:protocol="xs:anyURI" >
 ...
 </binding>
</description>

The XML representation for specifying the SOAP protocol is a
REQUIRED attribute information item with the following
Infoset properties:

	
A [local name] of protocol

	
A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

	
A type of xs:anyURI

5.5.4 Mapping from XML
Representation to Component Properties

See Table 5-2.

Table 5-2. Mapping from XML Representation to Binding
component Extension Properties	Property	Value
	{soap underlying
protocol}	The actual value of the
wsoap:protocol attribute information
item.

5.6 Binding
Faults

5.6.1 Description

For
every
Interface Fault component contained in an
Interface component, a mapping to a SOAP Fault MUST be
described.†
This binding extension specification allows the user to indicate
the SOAP fault code and subcodes that are transmitted for a given

Interface Fault component.

5.6.2 Relationship to WSDL Component
Model

The SOAP Fault binding extension adds the following properties
to the WSDL component model (as defined in [WSDL 2.0 Core Language]):

	
{soap fault code}
REQUIRED. A union of xs:QName and xs:token, to
the
Binding Fault component, where:

	
when
the value of the {soap
version} is "1.2", the allowed QNames MUST be the ones defined
by [SOAP 1.2 Part 1: Messaging
Framework (Second Edition)], section 5.4.6†;

	
the allowed token value is "#any".

The value of this property identifies a possible SOAP fault for
the operations in scope. If the value of this property is "#any",
no assertion is made about the possible value of the SOAP fault
code.

	
{soap fault subcodes}
REQUIRED. A union of list of xs:QName, and
xs:token where the allowed token value is "#any", to the

Binding Fault component. The value of this property identifies
one or more subcodes for this SOAP fault. The list of subcodes is
the nested sequence of subcodes. An empty list represents a fault
code without subcodes.

5.6.3 XML Representation

<description>
 <binding >
 <fault ref="xs:QName"
 wsoap:code="union of xs:QName, xs:token"?
 wsoap:subcodes="union of (list of xs:QName), xs:token"? >
 <documentation />*
 </fault>*
 </binding>
</description>

The XML representation for binding a SOAP Fault are two
attribute information items with the following Infoset
properties:

	
wsoap:code OPTIONAL attribute information item

	
A [local name] of code

	
A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

	
A type of union of xs:QName and xs:token where
the allowed token value is "#any"

	
wsoap:subcodes OPTIONAL attribute information item

	
A [local name] of subcodes

	
A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

	
A type of union of list of xs:QName, and
xs:token where the allowed token value is "#any"

5.6.4 Mapping XML Representation to
Component Properties

See Table 5-3.

Table 5-3. Mapping from XML Representation to SOAP Fault
component Properties	Property	Value
	{soap fault code}	The actual value of the
code attribute information item, if present;
otherwise "#any".
	{soap fault
subcodes}	The actual value of the
subcodes attribute information item, if
present; otherwise "#any".

5.7
Binding Operations

5.7.1 Description

For every
Interface Operation component contained in an
Interface component, in addition to the binding rules (for SOAP
1.2, see 5.10.3 SOAP 1.2 Binding
Rules), there may be additional binding information to
be specified. This binding extension specification allows the user
to indicate the SOAP Message Exchange Pattern (MEP) and a value for
the SOAP Action Feature on a per-operation basis.

5.7.2 Relationship to WSDL
Component Model

The SOAP Operation binding extension specification adds the
following property to the WSDL component model (as defined in
[WSDL 2.0 Core
Language]):

	
{soap mep default} OPTIONAL.
A
xs:anyURI, which is an absolute IRI as defined by
[IETF RFC 3987], to the

Binding component.†
The value of this property identifies the default SOAP Message
Exchange Pattern (MEP) for all the
Interface Operation components of any
Interface component to which this Binding
is applied.

	
{soap mep} OPTIONAL.
A
xs:anyURI, which is an absolute IRI as defined by
[IETF RFC 3987], to the

Binding Operation component.† The
value of this property identifies the SOAP Message Exchange Pattern
(MEP) for this specific operation (see 5.10.3 SOAP 1.2 Binding
Rules, paragraph "SOAP MEP Selection", for constraints
on bindings).

	
{soap action} OPTIONAL.
A
xs:anyURI, which is an absolute IRI as defined by
[IETF RFC 3987], to the

Binding Operation component.† The
value of this property identifies the value of the SOAP Action
Feature for the initial message of the message exchange pattern of
the
Interface Operation bound, as specified in the binding rules of
bindings to specific versions of SOAP (see 5.10.3 SOAP 1.2 Binding
Rules for the SOAP 1.2 binding when the value of the
{soap version} property
of the Binding
component is "1.2").

5.7.3 XML Representation

<description>
 <binding wsoap:mepDefault="xs:anyURI"? >
 <operation ref="xs:QName"
 wsoap:mep="xs:anyURI"?
 wsoap:action="xs:anyURI"? >
 </operation>
 </binding>
</description>

The XML representation for binding a
Binding Operation are two attribute information items
with the following Infoset properties:

	
wsoap:mep OPTIONAL attribute information item

	
A [local name] of mep

	
A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

	
A type of xs:anyURI

	
wsoap:action OPTIONAL attribute information item

	
A [local name] of action

	
A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

	
A type of xs:anyURI

The following attribute information item for the
binding element information item is
defined:

	
wsoap:mepDefault OPTIONAL attribute information
item

	
A [local name] of mepDefault

	
A [namespace name] of " http://www.w3.org/ns/wsdl/soap "

	
A type of xs:anyURI

5.7.4 Mapping from XML
Representation to Component Properties

See Table 5-4.

Table 5-4. Mapping from XML Representation to SOAP
Operation Component Properties	Property	Value
	{soap mep default}	The actual value of the
wsoap:mepDefault attribute information item,
if present.
	{soap mep}	The actual value of the
wsoap:mep attribute information item, if
present.
	{soap action}	The actual value of the
wsoap:action attribute information item, if
any.

5.8
Declaring SOAP Modules

5.8.1 Description

The SOAP messaging framework allows a Web service to engage one
or more additional features (typically implemented as one or more
SOAP header blocks), as defined by SOAP Modules (see
[SOAP 1.2 Part 1: Messaging Framework
(Second Edition)]). This binding extension specification
allows description of which SOAP Modules are in use across an
entire binding, on a per operation basis or on a per-message
basis.

5.8.2 Relationship to WSDL Component
Model

The SOAP Module component
adds the following property to the WSDL component model (as defined
in [WSDL 2.0 Core
Language]):

	
{soap modules} OPTIONAL. A set of
SOAP Module components as
defined in 5.8.3 SOAP
Module component to the Binding
component

	
Similarly, {soap modules} OPTIONAL,
to the
Binding Operation component

	
Similarly, {soap modules}
OPTIONAL, to the
Binding Message Reference component

	
Similarly, {soap modules} OPTIONAL, to
the
Binding Fault component

	
Similarly, {soap modules}
OPTIONAL, to the
Binding Fault Reference component

The SOAP modules applicable for a particular operation of any
service, consists of all the modules specified in the input or
output
Binding Message Reference components, the infault or outfault

Binding Fault Reference components, those specified within the

Binding Fault components, those specified within the
Binding Operation components and those specified within the
Binding
component. If any module is declared in multiple components, then
the requiredness of that module is defined by the closest
declaration, where closeness is defined by whether it is specified
directly at the
Binding Message Reference component or
Binding Fault Reference component level, the
Binding Fault level or the
Binding Operation component level or the Binding
component level, respectively.

5.8.3 SOAP Module component

The SOAP Module component
identifies a SOAP module that is in use.

The properties of the SOAP Module component are as
follows:

	
{ref} REQUIRED. A xs:anyURI,
which is an absolute IRI as defined by [IETF RFC 3987].† The
value of this property uniquely identifies the SOAP module that is
in use (as per the SOAP 1.2 [SOAP 1.2
Part 1: Messaging Framework (Second Edition)] processing
model).

	
{required} REQUIRED. A
xs:boolean indicating if the SOAP module is required.

	
{parent} REQUIRED. The Binding,

Binding Operation,
Binding Message Reference,
Binding Fault or
Binding Fault Reference components that contains this component
in its {soap modules}
property.

5.8.4 XML Representation

<description>
 <binding >
 <wsoap:module ref="xs:anyURI"
 required="xs:boolean"? >
 <documentation ... />*
 </wsoap:module>
 <fault>
 <wsoap:module ... />*
 </fault>
 <operation>
 <wsoap:module ... />*
 <input>
 <wsoap:module ... />*
 </input>
 <output>
 <wsoap:module ... />*
 </output>
 <infault>
 <wsoap:module ... />*
 </infault>
 <outfault>
 <wsoap:module ... />*
 </outfault>
 </operation>
 </binding>
</description>

The XML representation for a SOAP Module component is an element
information item with the following Infoset properties:

	
A [local name] of module

	
A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

	
One or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED ref attribute information item
with the following Infoset properties:

	
A [local name] of ref

	
A [namespace name] which has no value

	
A type of xs:anyURI

	
An OPTIONAL required attribute information
item with the following Infoset properties:

	
A [local name] of required

	
A [namespace name] which has no value

	
A type of xs:boolean

	
Zero or more namespace qualified attribute information
items. The [namespace name] of such attribute information
items MUST NOT be "http://www.w3.org/ns/wsdl" and MUST NOT be
"http://www.w3.org/ns/wsdl/soap".

	
Zero or more element information item amongst its
[children], in order, as follows:

	
Zero or more documentation element information
items as defined in [WSDL 2.0 Core
Language].

	
Zero or more namespace-qualified element information
items amongst its [children]. The [namespace name] of such
element information items MUST NOT be
"http://www.w3.org/ns/wsdl" and MUST NOT be
"http://www.w3.org/ns/wsdl/soap".

5.8.5 Mapping from XML
Representation to Component Properties

See Table 5-5.

Table 5-5. Mapping from XML Representation to SOAP Module
component-related Properties	Property	Value
	{soap modules}	The set of SOAP Module components corresponding to
all the module element information item in
the [children] of the binding, operation,
fault, input, output,
infault, outfault element information
items, if any.
	{ref}	The actual value of the
ref attribute information item.
	{required}	The actual value of the
required attribute information item, if
present; otherwise "false".
	{parent}	The Binding,

Binding Operation,
Binding Message Reference,
Binding Fault or
Binding Fault Reference component corresponding to the
binding, operation, fault,
input, output, infault or
outfault element information item in
[parent].

5.8.6 IRI Identification Of A SOAP
Module component

WSDL Version 2.0 Part 1: Core Language [WSDL 2.0 Core Language] defines a fragment
identifier syntax for identifying components of a WSDL 2.0
document.

A SOAP Module component can
be identified using the wsdl.extension
XPointer Framework scheme:

wsdl.extension(http://www.w3.org/ns/wsdl/soap,
wsoap.module(parent/ref))

	
parent is the pointer part of the
{parent} component, as
specified in appendix
A.2, Fragment Identifiers in [WSDL
2.0 Core Language]. parts.

	
ref is the value of the {ref} property of the component.

5.9
Declaring SOAP Header Blocks

5.9.1 Description

SOAP allows the use of header blocks in the header part of the
message. This binding extension allows users to declare the SOAP
header blocks in use on a per-message and on a per-fault basis.

5.9.2 Relationship to WSDL Component
Model

The SOAP Header Blocks binding extension specification adds the
following property to the WSDL component model (as defined in
[WSDL 2.0 Core
Language]):

	
{soap headers}
OPTIONAL. A set of SOAP Header
Block components as defined in 5.9.3 SOAP Header Block
component, to the
Binding Message Reference component.

	
Similarly, {soap headers} OPTIONAL, to
the
Binding Fault component.

5.9.3 SOAP Header Block
component

A SOAP Header Block
component describes an abstract piece of header data (SOAP header
block) that is associated with the exchange of messages between the
communicating parties. The presence of a SOAP Header Block component in a
WSDL description indicates that the service supports headers, and
MAY require a client interacting with the service to use the
described header block. Zero or one such header block may be
used.

The properties of the SOAP Header Block component are as
follows:

	
{element
declaration} REQUIRED. An XML element declaration in the
{element
declarations} property of the
Description component. This XML element declaration uniquely
represents a specific SOAP header block.

	
{mustUnderstand}
REQUIRED. A xs:boolean. When its value is "true", the SOAP header
block MUST be decorated with a SOAP mustUnderstand
attribute information item with a value of "true"; if so,
the XML element declaration referenced by the {element
declaration} property MUST allow this SOAP
mustUnderstand attribute information
item.†
Otherwise, no additional constraint is placed on the presence and
value of a SOAP mustUnderstand attribute
information item.

	
{required} REQUIRED. A
xs:boolean indicating if the SOAP header block is
required. If the value is "true", then the SOAP header
block MUST be included in the message.†
If it is "false", then the SOAP header block MAY be included.

	
{parent} REQUIRED. The

Binding Fault or
Binding Message Reference component that contains this
component in its {soap headers}
property.

5.9.4 XML Representation

<description>
 <binding name="xs:NCName" type="http://www.w3.org/ns/wsdl/soap" >
 <fault ref="xs:QName" >
 <wsoap:header element="xs:QName" mustUnderstand="xs:boolean"?
 required="xs:boolean"? >
 <documentation />*
 </wsoap:header>*
 ...
 </fault>*
 <operation ref="xs:QName" >
 <input messageLabel="xs:NCName"?>
 <wsoap:header ... />*
 ...
 </input>*
 <output messageLabel="xs:NCName"?>
 <wsoap:header ... />*
 ...
 </output>*
 </operation>*
 </binding>
</description>

The XML representation for a SOAP Header Block component is an
element information item with the following Infoset
properties:

	
A [local name] of header

	
A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

	
One or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED element attribute information
item with the following Infoset properties:

	
A [local name] of element

	
A [namespace name] which has no value

	
A type of xs:QName

	
An OPTIONAL mustUnderstand attribute
information item with the following Infoset properties:

	
A [local name] of mustUnderstand

	
A [namespace name] which has no value

	
A type of xs:boolean

	
An OPTIONAL required attribute information
item with the following Infoset properties:

	
A [local name] of required

	
A [namespace name] which has no value

	
A type of xs:boolean

	
Zero or more namespace qualified attribute information
items. The [namespace name] of such attribute information
items MUST NOT be "http://www.w3.org/ns/wsdl" and MUST NOT be
"http://www.w3.org/ns/wsdl/soap".

	
Zero or more element information item amongst its
[children], in order, as follows:

	
Zero or more documentation element information
items as defined in [WSDL 2.0 Core
Language].

	
Zero or more namespace-qualified element information
items amongst its [children]. The [namespace name] of such
element information items MUST NOT be
"http://www.w3.org/ns/wsdl" and MUST NOT be
"http://www.w3.org/ns/wsdl/soap".

5.9.5 Mapping XML Representation to
Component Properties

See Table 5-6.

Table 5-6. Mapping from XML Representation to SOAP Header
Block component-related Properties	Property	Value
	{soap
headers}	The set of SOAP Header Block components
corresponding to all the header element
information item in the [children] of the fault,
input or output element information
item, if any.
	{element
declaration}	The element declaration from the
{element
declarations} resolved to by the value of the
element attribute information item. The value of the
element attribute information item MUST
resolve to a global element declaration from the {element
declarations} property of the
Description component.†
	{mustUnderstand}	The actual value of the
mustUnderstand attribute information item, if
present; otherwise "false".
	{required}	The actual value of the
required attribute information item, if
present; otherwise "false".
	{parent}	The
Binding Fault or
Binding Message Reference component corresponding to the
fault, input or output
element information item in [parent].

5.9.6 IRI Identification Of A SOAP
Header Block component

WSDL Version 2.0 Part 1: Core Language [WSDL 2.0 Core Language] defines a fragment
identifier syntax for identifying components of a WSDL 2.0
document.

A SOAP Header Block
component can be identified using the wsdl.extension
XPointer Framework scheme:

wsdl.extension(http://www.w3.org/ns/wsdl/soap,
wsoap.header(parent/element
declaration))

	
parent is the "wsdl.*" pointer part of the
{parent} component,
as specified in appendix
A.2, Fragment Identifiers in [WSDL
2.0 Core Language], i.e. without the xmlns() pointer
parts.

	
element declaration is the value of the
{name}
of the Element Declaration component that is referred to by the
{element
declaration} property of the SOAP Header Block component.

5.10 WSDL SOAP
1.2 Binding

This section describes the SOAP 1.2 binding for WSDL 2.0. This
binding does NOT natively support the full range of capabilities
from SOAP 1.2. Certain capabilities not widely used, or viewed as
problematic in practice, are not available -in many cases because
supporting them was considered as adding considerable complexity to
the language. Here are examples of such unsupported
capabilities:

	
multiple children of the SOAP Body;

	
multiple SOAP Fault Detail entries;

	
non-qualified elements as children of a SOAP Fault Detail.

5.10.1 Identifying a WSDL SOAP 1.2
Binding

A WSDL SOAP Binding is identified as a SOAP 1.2 binding by
assigning the value "1.2" to the {soap version} property of the
Binding
component.

5.10.2 Description

The WSDL SOAP 1.2 binding extension defined in this section is
an extension of the SOAP binding defined in section 5. WSDL SOAP Binding Extension
to enable Web service applications to use SOAP 1.2 [SOAP 1.2 Part 1: Messaging Framework (Second
Edition)].

The WSDL SOAP 1.2 binding extension supports the SOAP 1.2 HTTP
binding defined by the [SOAP 1.2 Part
2: Adjuncts (Second Edition)] specification. This is
indicated by assigning the URI
"http://www.w3.org/2003/05/soap/bindings/HTTP/" (as defined by
[SOAP 1.2 Part 2: Adjuncts (Second
Edition)]) to the {soap underlying
protocol} property. Other values MAY be used for this property
in conjunction with the SOAP 1.2 binding extension defined by this
specification provided that the semantics of such protocols are
consistent with this binding extension.

Default rules in section 5.10.3 SOAP 1.2 Binding
Rules define the relationship between SOAP message
exchange patterns defined in [SOAP
1.2 Part 2: Adjuncts (Second Edition)] and WSDL message
exchange patterns defined in section 2.
Predefined Message Exchange Patterns.

5.10.3 SOAP
1.2 Binding Rules

These binding rules are applicable to SOAP 1.2 bindings.

	
SOAP Action Feature. The value of the SOAP Action
Feature for the initial message of the message exchange pattern of
the
Interface Operation bound is specified by the {soap action} property
of this
Binding Operation component. If the
Binding Operation component does NOT have a {soap action} property
defined, then the SOAP Action Feature (see [SOAP 1.2 Part 2: Adjuncts (Second
Edition)]) has NO value. Otherwise, its value is the
value of the SOAP Action Feature for the initial message of the
message exchange pattern. The {soap action} property
has NO effect when binding to the SOAP-Response MEP.

	
SOAP MEP Selection. For a given
Interface Operation component, if there is a
Binding Operation component whose {interface
operation} property matches the component in question and its
{soap mep}
property has a value, then the SOAP MEP is the value of the
{soap mep}
property. Otherwise, the SOAP MEP is the value of the Binding
component's {soap mep
default}, if any. Otherwise, the
Interface Operation component's {message
exchange pattern} property MUST have the value
"http://www.w3.org/ns/wsdl/in-out", and the SOAP MEP is the URI
"http://www.w3.org/2003/05/soap/mep/request-response/" identifying
the SOAP Request-Response Message Exchange Pattern as defined in
[SOAP 1.2 Part 2: Adjuncts (Second
Edition)].†

	
SOAP Detail Element. If any,
the value of the SOAP "Detail" element MUST be the element
information item identified by the {element
declaration} property of the
Interface Fault component.†

	
HTTP Method Selection. This default
binding rule is applicable when the value of the {soap underlying
protocol} property of the Binding
component is "http://www.w3.org/2003/05/soap/bindings/HTTP/". If
the SOAP MEP selected as specified above has the value
"http://www.w3.org/2003/05/soap/mep/request-response/" then the
HTTP method used is "POST". If the SOAP MEP selected has the value
"http://www.w3.org/2003/05/soap/mep/soap-response/" then the HTTP
method used is "GET".†

5.10.4
Binding WSDL 2.0 MEPs to SOAP 1.2 MEPs

This section describes the relationship between WSDL components
and SOAP 1.2 MEP properties as described in [SOAP 1.2 Part 2: Adjuncts (Second
Edition)].

5.10.4.1
WSDL In-Out to SOAP Request-Response

This section describes the mapping from the WSDL
"http://www.w3.org/ns/wsdl/in-out" Message Exchange Pattern (MEP)
to the SOAP "http://www.w3.org/2003/05/soap/mep/request-response/"
MEP (as would be the case for a usual SOAP-over-HTTP In-Out
operation). Extensions (such as [WSA 1.0
Core]) MAY alter these mappings.

5.10.4.1.1 The Client

As the client, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RequestingSOAPNode".

The SOAP
"http://www.w3.org/2003/05/soap/mep/ImmediateDestination" property
takes the value of the HTTP Request IRI, as defined in 6.4.6 HTTP Request IRI,
and modified as described in section 6.8.1 Serialization of the
instance data in parts of the HTTP request IRI.

The WSDL "In" message is mapped to the SOAP
"http://www.w3.org/2003/05/soap/mep/OutboundMessage" property.

The WSDL "Out" message maps to the SOAP
"http://www.w3.org/2003/05/soap/mep/InboundMessage" property.

5.10.4.1.2 The Service

As the service, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RespondingSOAPNode".

The WSDL "In" message is mapped to the SOAP
"http://www.w3.org/2003/05/soap/mep/InboundMessage" property.

The WSDL "Out" message maps to the SOAP
"http://www.w3.org/2003/05/soap/mep/OutboundMessage" property.

5.10.4.2 WSDL
In-Out to SOAP SOAP-Response

This section describes the mapping from the WSDL
"http://www.w3.org/ns/wsdl/in-out" MEP to the
"http://www.w3.org/2003/05/soap/mep/soap-response/" SOAP MEP.
Extensions (such as [WSA 1.0
Core]) MAY alter these mappings.

5.10.4.2.1 The Client

As the client, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RequestingSOAPNode".

The SOAP
"http://www.w3.org/2003/05/soap/mep/ImmediateDestination" property
takes the value of the HTTP Request IRI, as defined in 6.4.6 HTTP Request IRI,
and modified as described in section 6.8.1 Serialization of the
instance data in parts of the HTTP request IRI.

The value of the {message
content model} property for the
Interface Message Reference components of the {interface
message references} property MUST be either "#element" or
"#none". When the value is:

	
"#element", the WSDL "In" message is mapped to the destination
URI, as per the rules in section 6.8.2 Serialization as
application/x-www-form-urlencoded .

	
"#none", the WSDL "In" message is empty.

The SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMessage"
property has no value.

The WSDL "Out" message maps to the SOAP
"http://www.w3.org/2003/05/soap/mep/InboundMessage" property.

5.10.4.2.2 The Service

As the service, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RespondingSOAPNode".

The WSDL "In" message is constructed from the destination URI as
per the rules in section 6.8.2 Serialization as
application/x-www-form-urlencoded , WHEN the value of
the {message
content model} property for the
Interface Message Reference components of the {interface
message references} property is "#element".

The WSDL "Out" message maps to the SOAP
"http://www.w3.org/2003/05/soap/mep/OutboundMessage" property.

5.10.4.3
WSDL In-Only to SOAP Request-Response

This section describes the mapping from the WSDL
"http://www.w3.org/ns/wsdl/in-only" MEP to the SOAP
"http://www.w3.org/2003/05/soap/mep/request-response/" MEP.
Extensions (such as [WSA 1.0
Core]) MAY alter these mappings.

5.10.4.3.1 The Client

As the client, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RequestingSOAPNode".

The SOAP
"http://www.w3.org/2003/05/soap/mep/ImmediateDestination" property
takes the value of the HTTP Request IRI, as defined in 6.4.6 HTTP Request IRI,
and modified as described in section 6.8.1 Serialization of the
instance data in parts of the HTTP request IRI.

The WSDL "In" message is mapped to the SOAP
"http://www.w3.org/2003/05/soap/mep/OutboundMessage" property.

The SOAP "http://www.w3.org/2003/05/soap/mep/InboundMessage"
property has no value.

5.10.4.3.2 The Service

As the service, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RespondingSOAPNode".

The WSDL "In" message is mapped to the SOAP
"http://www.w3.org/2003/05/soap/mep/InboundMessage" property.

The SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMessage"
property has no value.

5.10.4.4 WSDL Robust-In-Only to SOAP
Request-Response

This section describes the mapping from the WSDL
"http://www.w3.org/ns/wsdl/robust-in-only" MEP to the SOAP
"http://www.w3.org/2003/05/soap/mep/request-response/" MEP.
Extensions (such as [WSA 1.0
Core]) MAY alter these mappings.

5.10.4.4.1 The Client

As the client, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RequestingSOAPNode".

The SOAP
"http://www.w3.org/2003/05/soap/mep/ImmediateDestination" property
takes the value of the HTTP Request IRI, as defined in 6.4.6 HTTP Request IRI,
and modified as described in section 6.8.1 Serialization of the
instance data in parts of the HTTP request IRI.

The WSDL "In" message is mapped to the SOAP
"http://www.w3.org/2003/05/soap/mep/OutboundMessage" property.

The SOAP "http://www.w3.org/2003/05/soap/mep/InboundMessage" can
contain a SOAP fault.

5.10.4.4.2 The Service

As the service, the property
"http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RespondingSOAPNode".

The WSDL "In" message is mapped to the SOAP
"http://www.w3.org/2003/05/soap/mep/InboundMessage" property.

The SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMessage"
can contain a SOAP fault.

5.11
Conformance

An element information item whose namespace name is
"http://www.w3.org/ns/wsdl" and whose local part is
description conforms to this binding extension
specification if the element information items and
attribute information items whose namespace is
http://www.w3.org/ns/wsdl/soap conform to the XML Schema for that
element or attribute as defined by this specification and
additionally adheres to all the constraints contained in this
specification.

6. WSDL HTTP
Binding Extension

The HTTP binding extension described in this section is an
extension for [WSDL 2.0 Core
Language] to enable Web services applications to use
HTTP 1.1 [IETF RFC 2616] (as
well as other versions of HTTP) and HTTPS [IETF RFC 2818]. This binding extension
extends WSDL 2.0 by adding properties to the component model
defined in [WSDL 2.0 Core
Language]. In addition an XML Infoset representation for
these additional properties is provided, along with a mapping from
that representation to the various component properties.

As allowed in [WSDL 2.0 Core
Language], a Binding
component can exist without indicating a specific
Interface component that it applies to and, in this case, no

Binding Operation or
Binding Fault components can be present in the Binding
component.

The HTTP binding extension is designed with the objective of
minimizing what needs to be explicitly declared for common cases.
This is achieved by defining a set of default rules that affect all

Interface Operation components of an
Interface component to which the HTTP binding extension is
applied, unless specifically overridden by a
Binding Operation component. Thus, if a given
Interface Operation component is not referred to specifically
by a
Binding Operation component, then all the default rules apply
to that
Interface Operation component. As a result, in accordance with
the requirements of [WSDL 2.0 Core
Language], all operations of an
Interface component will be bound by this binding
extension.

Note: As in other parts of this specification,
one could have done away with "default" properties at the component
model level, and have set the value for the corresponding
non-default properties in the XML mapping section. However, default
properties are required for interface-less binding. Indeed, an
interface-less binding has no means to set the non-default version
of the property at the operation-level, since there is precisely no
operation (there is not even an interface). Hence the mapping needs
to be done elsewhere.

[Definition: The internal tree representation of
an input, output or fault message is called an instance
data, and is constrained by the schema definition
associated with the message: the XML element referenced in the
{element
declaration} property of the
Interface Message Reference component for input and output
messages (unless the {message
content model} is "#any"), and in the {element
declaration} property of an
Interface Fault component for faults.]

6.1
Identifying the use of the HTTP Binding

A Binding
component (defined in [WSDL 2.0 Core
Language]) is identified as an HTTP binding by assigning
the value "http://www.w3.org/ns/wsdl/http" to the {type}
property of the Binding
component.

6.2 HTTP Syntax
Summary (Non-Normative)

<description>
 <binding name="xs:NCName" interface="xs:QName"?
 type="http://www.w3.org/ns/wsdl/http"
 whttp:methodDefault="xs:string"?
 whttp:queryParameterSeparatorDefault="xs:string"?
 whttp:cookies="xs:boolean"?
 whttp:contentEncodingDefault="xs:string"? >
 <documentation />?

 <fault ref="xs:QName"
 whttp:code="union of xs:int, xs:token"?
 whttp:contentEncoding="xs:string"? >
 <documentation />*
 <whttp:header name="xs:string" type="xs:QName"
 required="xs:boolean"? >
 <documentation />*
 </whttp:header>*
 </fault>*

 <operation ref="xs:QName"
 whttp:location="xs:anyURI"?
 whttp:method="xs:string"?
 whttp:inputSerialization="xs:string"?
 whttp:outputSerialization="xs:string"?
 whttp:faultSerialization="xs:string"?
 whttp:queryParameterSeparator="xs:string"?
 whttp:contentEncodingDefault="xs:string"?
 whttp:ignoreUncited="xs:boolean"? >
 <documentation />*

 <input messageLabel="xs:NCName"?
 whttp:contentEncoding="xs:string"? >
 <documentation />*
 <whttp:header ... />*
 </input>*

 <output messageLabel="xs:NCName"?
 whttp:contentEncoding="xs:string"? >
 <documentation />*
 <whttp:header ... />*
 </output>*

 <infault ref="xs:QName"
 messageLabel="xs:NCName"? >
 <documentation />*
 </infault>*

 <outfault ref="xs:QName"
 messageLabel="xs:NCName"? >
 <documentation />*
 </outfault>*

 </operation>*

 </binding>

 <service>
 <endpoint name="xs:NCName" binding="xs:QName" address="xs:anyURI"?
 whttp:authenticationScheme="xs:token"?
 whttp:authenticationRealm="xs:string"? >
 <documentation />*
 </endpoint>
 </service>
</description>

6.3 Supported
Extensions

An implementation of the HTTP binding extension MUST support the
following extensions:

	
"http://www.w3.org/ns/wsdl-extensions/safe" (see 3.1 Operation safety)

6.4 HTTP Binding Rules

6.4.1 HTTP Method
Selection

When
formulating the HTTP message to be transmitted, the HTTP request
method used MUST be selected using one of the
following:†

	
For a given
Interface Operation component, if there is a
Binding Operation component whose {interface
operation} property matches the component in question and its
{http method}
property has a value, then the value of the {http method}
property.

	
Otherwise, the value of the Binding
component's {http
method default}, if any.

	
Otherwise, if a {safe} property as defined
in 3.1 Operation safety is
present on the bound
Interface Operation component and has a value of "true", the
value "GET".

	
Otherwise, the value "POST".

6.4.2 HTTP Content Encoding
Selection

When
formulating the HTTP message to be transmitted, content encoding
for a given
Binding Message Reference component is determined as
follows:†

	
If the {http
content encoding} property has a non-empty value, a
Content-Encoding header-field MUST be inserted with
the value of this property.

	
Otherwise, if the value of the parent
Binding Operation component's {http
content encoding default} property has a non-empty value, a
Content-Encoding header-field MUST be inserted with
the value of this property.

	
Otherwise, if the value of the grandparent Binding
component's {http content
encoding default} property has a non-empty value, a
Content-Encoding header-field MUST be inserted with
the value of this property.

When
formulating the HTTP fault message to be transmitted, content
encoding for a given
Binding Fault component is determined as follows:†

	
If the {http content
encoding} property has a non-empty value, then a
Content-Encoding header-field MUST be inserted with
the value of this property.

	
If the {http content
encoding default} property has a non-empty value, then a
Content-Encoding header-field MUST be inserted with
the value of this property.

The body of the response message is encoded using the specified
content encoding.

6.4.3 Payload Construction And
Serialization Format

When
formulating the HTTP message to be transmitted, the contents of the
payload (i.e. the contents of the HTTP message body) MUST be what
is defined by the corresponding
Interface Message Reference or
Interface Fault components, serialized as specified by the
serialization format used.†

[Definition: The serialization
format is a media type token ("type/subtype"). It
identifies rules to serialize the payload in an HTTP message. Its
value is defined by the following rules. The HTTP request
serialization format MUST be in the media type range specified by
the {http input
serialization} property. The HTTP response serialization format
MUST be in the media type range specified by the {http output
serialization} property. The HTTP serialization format of a
fault MUST be in the media type range specified by the {http fault
serialization} property. The concept of media type range is
defined in Section 14.1 of [IETF RFC
2616]. The serialization format MAY have
associated media type parameters (specified with
the parameter production of media-range
in Section 14.1 of [IETF RFC
2616].]

Section 6.8 Serialization
Format of Instance Data defines serialization formats
supported by this binding extension along with their
constraints.

	

Interface Message Reference component:

	
If the value of the {message
content model} property of the
Interface Message Reference bound is "#any" or "#element", the
serialization of the instance data is specified as defined in
section 6.4.3.1 Serialization
rules for XML messages.

	
If the
value is "#none", then the payload MUST be empty and the value of
the corresponding serialization property ({http input
serialization} or {http output
serialization}) is ignored.†

	
If the value is "#other", then the serialization
format and its associated media type parameters, if any,
specifies the value of the HTTP Content-Type
entity-header field as defined in section 14.17 of [IETF RFC 2616]. The serialization of the
payload is undefined.

	

Interface Fault component: the serialization of the instance
data is specified as defined in section 6.4.3.1 Serialization rules for XML
messages.

If the

Interface Message Reference component or the
Interface Fault component is declared using a non-XML type
system (as considered in the Types section of [WSDL 2.0 Core Language]), then additional
binding rules MUST be defined in an extension specification to
indicate how to map those components into the HTTP
envelope.†

6.4.3.1
Serialization rules for XML messages

The
serialization rules for messages whose {message
content model} is either "#element" or "#any", AND the
serialization rules for fault messages, are as
follows:†

	
If the serialization format is
"application/x-www-form-urlencoded", then the serialization of the
instance data is
defined by section 6.8.2 Serialization as
application/x-www-form-urlencoded .

	
If the serialization format is
"multipart/form-data", then the serialization of the instance data is defined
by section 6.8.4 Serialization
as multipart/form-data .

	
If the serialization format is
"application/xml", then the serialization of the instance data is defined
by section 6.8.3
Serialization as application/xml .

	
Otherwise, then the serialization of the instance data is defined
by section 6.8.3
Serialization as application/xml with the following
additional rule: the value of the HTTP Content-Type
entity-header field is the value of the serialization
format and its associated media type parameters, if any.

6.4.4 Default input and output
serialization format

Section Table 6-1 defines the
default values for the GET, POST, PUT and DELETE values of the HTTP
method as selected in section 6.4.1 HTTP Method
Selection.

Table 6-1. Default values for GET, POST, PUT and
DELETE	HTTP Method	Default Input Serialization	Default Output Serialization
	Selected in 6.4.1 HTTP Method
Selection	{http input
serialization}	{http output
serialization}
	GET	
application/x-www-form-urlencoded	application/xml
	POST	application/xml	application/xml
	PUT	application/xml	application/xml
	DELETE	
application/x-www-form-urlencoded	application/xml

Note:

The application/x-www-form-urlencoded serialization
format places constraints on the XML Schema definition of the
{element
declaration} property of the
Interface Message Reference components of the
Interface Operation component bound (see 6.8.2 Serialization as
application/x-www-form-urlencoded).

The default value for the {http input
serialization} and {http output
serialization} properties for any other HTTP method selected is
application/xml.

Mechanisms other than setting the serialization properties MAY
modify the serialization format of the instance data corresponding to the
message. An example of such modification is the WSDL SOAP Binding
HTTP IRI Serialization rules specified in 5.3 SOAP Binding Rules. This
binding extension specifies that the SOAP-Response
Message Exchange Pattern ([SOAP
1.2 Part 2: Adjuncts (Second Edition)], Section 6.3)
supports input message serialization only as
application/x-www-form-urlencoded. Other examples are
other message exchange patterns or binding extensions.

6.4.5 HTTP Header Construction

If the
{http
headers} property as defined in section 6.6 Declaring HTTP
Headers exists and is not empty in a
Binding Message Reference or
Binding Fault component, HTTP headers conforming to each
HTTP Header component contained
in this {http headers}
property MAY be serialized as follows:†

	
The HTTP header field name used is the value of the {name} property of the HTTP Header component. The HTTP binding MUST
NOT set an HTTP header field corresponding to the value of the
{name} property already set
by another mechanism, such as the HTTP stack or another
feature.†

	
The HTTP header field value, whose XML Schema type is declared
by the {type
definition} property of the HTTP Header component, is serialized
following the rules of the field-value production of
section 4.2 of [IETF RFC
2616].

If the
value of an HTTP Header
component's {required}
property is "true", the inclusion of this HTTP header field is
REQUIRED†,
otherwise it is OPTIONAL.

6.4.6
HTTP Request IRI

When formulating the HTTP Request, the HTTP
Request IRI is an absolute IRI reference and is the value of the
{http
location} property of the
Binding Operation component, resolved using the value of the
{address}
property of the Endpoint
component (see section 5 of [IETF RFC
3986]).†
If the {http
location} property is not set, the HTTP Request IRI is the
value of the {address}
property of the Endpoint
component. Input serializations may define additional processing
rules to be applied to the value of {http location} before
applying the process of reference resolution, i.e. before combining
it with the {address}
property of the endpoint element to form the HTTP Request IRI. For
example, the three serialization formats defined in section
6.8 Serialization Format of
Instance Data define a syntax to use the {http location} as a
template using elements of the instance data.

If the resulting IRI uses the https scheme, then
HTTP over TLS [IETF RFC 2818]
is used to send the HTTP request.

The HTTP Request IRI identifies the resource upon which to apply
the request and is transmitted using the Request-URI, and
optionally the Host header field, as defined in [IETF RFC 2616].

6.5
Binding Operations

6.5.1 Description

This binding extension specification provides a binding to HTTP
of
Interface Operation components whose {message
exchange pattern} property has a value amongst:

	
"http://www.w3.org/ns/wsdl/in-only"

	
"http://www.w3.org/ns/wsdl/robust-in-only"

	
"http://www.w3.org/ns/wsdl/in-out"

This HTTP binding extension MAY be used with other message
exchange patterns, such as outbound message exchange patterns,
provided that additional semantics are defined, for example through
an extension.

Each of the three supported message exchange patterns above
involves one or two messages or faults being exchanged. The first one
is transmitted using an HTTP request, and the second one is
transmitted using the corresponding HTTP response.†
In
cases where only one single message is being sent, the message body
of the HTTP response MUST be empty.†

For successful responses, the HTTP response code MUST be:

	
202
when the MEP is "http://www.w3.org/ns/wsdl/in-only"†

	
204
when the MEP is
"http://www.w3.org/ns/wsdl/robust-in-only"†

For every
Binding Operation component corresponding to such
Interface Operation components, this binding extension
specification allows the user to indicate the HTTP method to use,
the input, output and fault serialization, and the location of the
bound operation.

6.5.2 Relationship to WSDL
Component Model

The HTTP binding extension adds the following properties to the
WSDL component model (as defined in [WSDL 2.0 Core Language]):

	
{http location}
OPTIONAL. An xs:anyURI, to the
Binding Operation component. It MUST
contain an IRI reference and MUST NOT include a fragment identifier
component.†

	
{http method default}
OPTIONAL. A xs:string, to the Binding
component, indicating the default value for the HTTP Request Method
for all the
Interface Operation components of any
Interface component to which this Binding
is applied.

	
{http method} OPTIONAL. A
xs:string, to the
Binding Operation component, indicating the value for the HTTP
Request Method for this specific
Binding Operation.

	
{http input
serialization} REQUIRED. A xs:string, to the
Binding Operation component, indicating allowed serialization
rules of the HTTP Request message for this specific operation, as
described in section 6.5.3
Specification of serialization rules allowed.

	
{http output
serialization} REQUIRED. A xs:string, to the
Binding Operation component, indicating allowed serialization
rules of the HTTP Response message for this specific operation, as
described in section 6.5.3
Specification of serialization rules allowed.

	
{http fault
serialization} REQUIRED. A xs:string, to the
Binding Operation component, indicating allowed serialization
rules of the HTTP Response message for this specific operation in
case a fault is returned, as described in section 6.5.3 Specification of serialization rules
allowed.

	
{http query
parameter separator default} REQUIRED. A xs:string, to
the Binding
component, indicating the default query parameter separator
character for all the
Interface Operation components of any
Interface component to which this Binding
is applied to.

	
{http
query parameter separator} OPTIONAL. A xs:string, to
the
Binding Operation component, indicating the query parameter
separator character for this
Binding Operation.

6.5.3
Specification of serialization rules allowed

The
value of the {http input
serialization}, {http output
serialization} and {http fault
serialization} properties is similar to the value allowed for
the Accept HTTP header defined by the HTTP 1.1
specification, Section 14.1 (see [IETF RFC
2616]) and MUST follow the production rules defined in
that section except for the following:†

	
The prefix "Accept:" MUST NOT be used.

	
The rule qdtext is changed from:

qdtext = <any TEXT except<">>

to:

qdtext = <any CHAR except<">>

This change is made to disallow non-US-ASCII OCTETs.

These properties indicate the range of media types and
associated parameters with which an instance MAY be serialized.
The
value of the serialization format used for a message
is a media type which MUST be covered by this range.†
Wild
cards (for example, "application/*") SHOULD NOT be used in this
attribute information item since they may lead to
interoperability problems.†

The use of {http input
serialization}, {http output
serialization} and {http fault
serialization} is specified in section 6.4.3 Payload
Construction And Serialization Format.

6.5.4 XML Representation

<description>
 <binding whttp:methodDefault="xs:string"?
 whttp:queryParameterSeparatorDefault="xs:string"? >
 <operation ref="xs:QName"
 whttp:location="xs:anyURI"?
 whttp:method="xs:string"?
 whttp:inputSerialization="xs:string"?
 whttp:outputSerialization="xs:string"?
 whttp:faultSerialization="xs:string"?
 whttp:queryParameterSeparator="xs:string"? >
 </operation>
 </binding>
</description>

The XML representation for binding an Operation are six
attribute information items with the following Infoset
properties:

	
An OPTIONAL location attribute information
item with the following Infoset properties:

	
A [local name] of location

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
A type of xs:anyURI

	
An OPTIONAL method attribute information
item with the following Infoset properties:

	
A [local name] of method

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
A type of xs:string

	
An OPTIONAL inputSerialization attribute
information item with the following Infoset properties:

	
A [local name] of inputSerialization

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
A type of xs:string

	
An OPTIONAL outputSerialization attribute
information item with the following Infoset properties:

	
A [local name] of outputSerialization

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
A type of xs:string

	
An OPTIONAL faultSerialization attribute
information item with the following Infoset properties:

	
A [local name] of faultSerialization

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
A type of xs:string

	
An OPTIONAL queryParameterSeparator attribute
information item with the following Infoset properties:

	
A [local name] of queryParameterSeparator

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
A type of xs:string whose pattern facet is
"[&;a-zA-Z0-9\-\._~!$'\(\):@/\?*\+,]{1,1}",
"&" and ";" being the most frequently
used characters in practice.

The following attribute information items for the
binding element information item are
defined:

	
An OPTIONAL methodDefault attribute information
item with the following Infoset properties:

	
A [local name] of methodDefault

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
A type of xs:string

	
An OPTIONAL queryParameterSeparatorDefault
attribute information item with the following Infoset
properties:

	
A [local name] of
queryParameterSeparatorDefault

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
A type of xs:string whose length facet value is
"1". The allowed characters are the same as for the
{http query
parameter separator} property above.

6.5.5 Mapping from XML
Representation to Component Properties

See Table 6-2.

Table 6-2. Mapping from XML Representation to Binding
Operation component Extension Properties	Property	Value
	{http location}	The actual value of the
whttp:location attribute information item, if
present.
	{http method default}	The actual value of the
whttp:methodDefault attribute information
item, if present.
	{http method}	The actual value of the
whttp:method attribute information item, if
present.
	{http input
serialization}	The actual value of the
whttp:inputSerialization attribute information
item, if present; otherwise, the default value as defined in
6.4 HTTP Binding
Rules.
	{http output
serialization}	The actual value of the
whttp:outputSerialization attribute information
item, if present; otherwise, the default value as defined in
6.4 HTTP Binding
Rules.
	{http fault
serialization}	The actual value of the
whttp:faultSerialization attribute information
item, if present; otherwise "application/xml".
	{http query
parameter separator default}	The actual value of the
whttp:queryParameterSeparatorDefault attribute
information item, if present; otherwise, "&".
	{http query
parameter separator}	The actual value of the
whttp:queryParameterSeparator attribute
information item, if present.

6.6
Declaring HTTP Headers

6.6.1 Description

HTTP allows the use of headers in messages. This binding
extension allows users to declare the HTTP headers in use on a per
message and on a per-fault basis.

6.6.2 Relationship to WSDL Component
Model

The HTTP Header binding extension specification adds the
following property to the WSDL component model (as defined in
[WSDL 2.0 Core
Language]):

	
{http headers}
OPTIONAL. A set of HTTP Header
components as defined in 6.6.3 HTTP Header
component, to the
Binding Message Reference component.

	
Similarly, {http headers} OPTIONAL, to
the
Binding Fault component.

A
Binding Message Reference or a
Binding Fault component's {http headers}
property MUST NOT contain multiple HTTP Header components with the same
{name}
property.†

6.6.3 HTTP Header component

An HTTP Header component
describes an abstract piece of header data (HTTP header field) that
is associated with the exchange of messages between the
communicating parties. The presence of a HTTP Header component in a WSDL
description indicates that the service support headers, and MAY
require a client interacting with the service to use the described
header field. Zero or one such header field may be used.

The properties of the HTTP Header component are as
follows:

	
{name} REQUIRED. An
xs:string whose pattern facet is
"[!#-'*+\-.0-9A-Z^-z|~]+", the name of the HTTP header
field. The value of this property follows the
field-name production rules as specified in section
4.2 of [IETF RFC 2616].

	
{type definition} REQUIRED.
A
Type Definition component, in the {type
definitions} property of the
Description component, constraining the value of the HTTP
header field. This type MUST be a simple type.†

	
{required} REQUIRED. An
xs:boolean indicating if the HTTP header field is
required. If
the value is "true", then the HTTP header field MUST be included in
the message.† If
it is "false", then the HTTP header field MAY be included.

	
{parent} REQUIRED. The
Binding Fault or
Binding Message Reference component that contains this
component in its {http headers}
property.

6.6.4 XML Representation

<description>
 <binding name="xs:NCName" type="http://www.w3.org/ns/wsdl/http" >
 <fault ref="xs:QName">
 <whttp:header name="xs:string" type="xs:QName"
 required="xs:boolean"? >
 <documentation />*
 </whttp:header>*
 ...
 </fault>*
 <operation ref="xs:QName" >
 <input messageLabel="xs:NCName"?>
 <whttp:header ... />*
 ...
 </input>*
 <output messageLabel="xs:NCName"?>
 <whttp:header ... />*
 ...
 </output>*
 </operation>*
 </binding>
</description>

The XML representation for a HTTP Header component is an element
information item with the following Infoset properties:

	
A [local name] of header

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
One or more attribute information items amongst its
[attributes] as follows:

	
A REQUIRED name attribute information item
with the following Infoset properties:

	
A [local name] of name

	
A [namespace name] which has no value

	
A type of xs:string whose pattern facet is
"[!#-'*+\-.0-9A-Z^-z|~]+".

	
A REQUIRED type attribute information item
with the following Infoset properties:

	
A [local name] of type

	
A [namespace name] which has no value

	
A type of xs:QName

	
An OPTIONAL required attribute information
item with the following Infoset properties:

	
A [local name] of required

	
A [namespace name] which has no value

	
A type of xs:boolean

	
Zero or more namespace qualified attribute information
items. The [namespace name] of such attribute information
items MUST NOT be "http://www.w3.org/ns/wsdl" and MUST NOT be
"http://www.w3.org/ns/wsdl/http".

	
Zero or more element information item amongst its
[children], in order, as follows:

	
Zero or more documentation element information
items as defined in [WSDL 2.0 Core
Language].

	
Zero or more namespace-qualified element information
items amongst its [children]. The [namespace name] of such
element information items MUST NOT be
"http://www.w3.org/ns/wsdl" and MUST NOT be
"http://www.w3.org/ns/wsdl/http".

6.6.5 Mapping from XML
Representation to Component Properties

See Table 6-3.

Table 6-3. Mapping from XML Representation to HTTP Header
component-related Properties	Property	Value
	{http
headers}	The set of HTTP Header components corresponding to
all the header element information item in
the [children] of the fault, input or
output element information item, if any.
	{name}	The value of the name
attribute information item.
	{type definition}	The
Type Definition component from the {type
definitions} property of the
Description component resolved to by the value of the
type attribute information item.
	{required}	The actual value of the
required attribute information item, if
present; otherwise "false".
	{parent}	The
Binding Fault or
Binding Message Reference component corresponding to the
fault, input or output
element information item in [parent].

6.6.6 IRI Identification Of An HTTP
Header component

WSDL Version 2.0 Part 1: Core Language [WSDL 2.0 Core Language] defines a fragment
identifier syntax for identifying components of a WSDL 2.0
document.

An HTTP Header component can
be identified using the wsdl.extension
XPointer Framework scheme:

wsdl.extension(http://www.w3.org/ns/wsdl/http,
whttp.header(parent/name))

	
parent is the pointer part of the
{parent} component, as
specified
in WSDL Version 2.0 Part 1: Core Language.

	
name is the {name} property value.

6.7
Specifying HTTP Error Code for Faults

6.7.1 Description

For every
Interface Fault component contained in an
Interface component, an HTTP error code MAY be defined. It
represents the error code that will be used by the service in case
the fault needs to be returned.

The
fault definition SHOULD agree with the definition of the HTTP error
codes, as specified in section 8 of [IETF
RFC 3205].†

6.7.2 Relationship to WSDL Component
Model

The HTTP Fault binding extension adds the following property to
the WSDL component model (as defined in [WSDL 2.0 Core Language]):

	
{http error status
code} REQUIRED. A union of xs:int and
xs:token where the allowed token value is "#any", to the

Binding Fault component. An integer value of this property
identifies the error Status-Code as defined by [IETF RFC 2616] that the service will use in
case the fault is returned.†
If the value of this property is "#any", no claim is made by the
service.

6.7.3 XML Representation

<description>
 <binding >
 <fault ref="xs:QName"
 whttp:code="union of xs:int, xs:token"? >
 </fault>*
 </binding>
</description>

The XML representation for binding an HTTP Fault is an
attribute information item with the following Infoset
properties:

	
a code OPTIONAL attribute information
item

	
A [local name] of code

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
A type of union of xs:int and xs:token where
the allowed token value is "#any"

6.7.4 Mapping from XML Representation
to Component Properties

See Table 6-4.

Table 6-4. Mapping from XML Representation to
Binding Fault component Extension Properties	Property	Value
	{http error status
code}	The actual value of the
whttp:code attribute information item, if
present; otherwise "#any".

6.8
Serialization Format of Instance Data

This section specifies three serialization formats defining
rules to encode the instance data of an input or output message as
an HTTP message. Table 6-5 and Table 6-6 give an overview of those
serialization formats and their constraints. All of them allow
serialization of parts of the instance data in the HTTP Request IRI, as
defined in section 6.8.1
Serialization of the instance data in parts of the HTTP request
IRI.

Other serialization formats may be defined. Those MAY place
restrictions on the style of the
Interface Operation bound.

Table 6-5. Applicability of the serialization formats
defined in this section for this HTTP binding	-	Serialization of the instance data in
parts of an HTTP message
	In the request URI	In the message body
	
application/x-www-form-urlencoded	multipart/form-data	application/xml
	HTTP request (input message)	Without message body: GET, DELETE,
…	All, some or none	-	-	-
	With message body: POST, PUT, …	All, some or none	Remainder	All	All
	HTTP response (output message)	-	-	-	All

Table 6-6. Operation styles required for using
serialization formats defined below as input
serialization	HTTP Method	Request
	Request URI: query parameters or path
components	Input serialization
	
application/x-www-form-urlencoded	multipart/form-data	application/xml
	Without message body: GET, DELETE,
…	IRI style	IRI style	-	-
	With message body: POST, PUT, …	IRI style, if any data
is serialized as path components or query parameters	IRI style	Multipart style	None required

6.8.1 Serialization of the instance
data in parts of the HTTP request IRI

This section defines templating rules for the {http location}
property of the
Binding Operation component. Templating is used by the
serialization formats defined in section 6.8 Serialization Format of Instance
Data, and MAY be reused by other serialization
formats.

With this HTTP binding, part of the instance data for HTTP
requests MAY be serialized in the HTTP request IRI, and another
part MAY be serialized in the HTTP message body.

If
the {style}
property of the
Interface Operation bound has a value of
"http://www.w3.org/ns/wsdl/style/iri" as defined in 4.2 IRI Style, and if
the {http
location} property of the
Binding Operation component is present, the value of the
{http
location} property component is used as a template†
which is combined with the {address}
property of the endpoint element to form the full IRI to be used in
an HTTP request, as specified in section 6.5.2 Relationship to WSDL
Component Model.

The
resulting IRI MUST be mapped to an URI for use in the HTTP Request
as per section 3.1 "Mapping of IRIs to URIs" of the IRI
specification [IETF RFC
3987].†
Additional rules for the serialization of the HTTP request IRI MAY
be defined by a serialization format.

6.8.1.1 Construction of
the request IRI using the {http location} property

The {http
location} property MAY cite local names of elements from the
instance data of
the message to be serialized in request IRI. Citing is
performed:

	
either by enclosing the element name within curly braces. For
example, "temperature/{town}". See Example 6-1 for additional
details;

	
or by enclosing the element name within exclamated-curly braces,
to include the element without percent-encoding. For example,
"temperature/{!town}". Detailed rules follow.

The
{http
location} property MUST conform to the following EBNF
[ISO/IEC 14977:1996] grammar,
which represents the patterns for constructing the request
IRI:†

httpLocation ::= charData? ((openBrace | closeBrace | template) charData?)*
charData ::= [^{}]*
openBrace ::= '{{'
closeBrace ::= '}}'
template ::= rawTemplate | encodedTemplate
rawTemplate ::= '{!' NCName '}'
encodedTemplate ::= '{' NCName '}'

The request IRI is constructed as follows (ALPHA
and DIGIT below are defined as per [IETF RFC 4234]):

	
The
local name in a template SHOULD match at least one element from the
instance data of
the input message.†
When there is no match, the template is replaced by an empty
string. Otherwise, the template consumes the first non-consumed
matching element from the instance data. The next occurrence of the
template consumes the next non-consumed matching element, and so on
until all templates are processed. Matching elements are consumed
in the order in which they appear in the instance data. Cited elements
(i.e. elements referenced in templates) MUST NOT carry an
xs:nil attribute whose value is "true"†.

	
Each raw template (rawTemplate production in the
grammar above) is replaced by the possibly empty single value of
the corresponding element from the instance data. No percent-encoding is
performed.

	
Each encoded template (encodedTemplate production
in the grammar above) NOT preceded in the {http location}
property by a "?" character is replaced by the possibly empty
single value of the corresponding element from the instance data. Encoding
is performed as follows:

	
The characters in the range: "&" | ";" | "!" | "$" |
"'" | "(" | ")" | "*" | "+" | "," | "=" | ":" | "@" SHOULD
be percent-encoded.

	
The other characters, EXCEPT the ones in the range: ALPHA
| DIGIT | "-" | "." | "_" | "~", MUST be
percent-encoded.

	
Each encoded template (encodedTemplate production
in the grammar above) preceded in the {http location}
property by a "?" character is replaced by the possibly empty
single value of the corresponding element from the instance data. Encoding
is performed as follows:

	
The value of the {http query
parameter separator} property, if present; otherwise the value
of the {http query
parameter separator default} property, MUST be
percent-encoded.

	
The characters in the range: "&" | ";" | "!" | "$" |
"'" | "(" | ")" | "*" | "+" | "," | "=" | ":" | "@" | "?" |
"/" SHOULD be percent-encoded.

	
The other characters, EXCEPT the ones in the range: ALPHA
| DIGIT | "-" | "." | "_" | "~", MUST be
percent-encoded.

	
Each uncited element (i.e. each element not referenced in a
template) to be serialized, if any, is encoded as for an encoded
template.

	
Percent-encoding MUST be performed using the UTF-8
representation of the character as prescribed by section 6.4 of
[IETF RFC 3987].

	
Each double curly brace (openBrace or
closeBrace production in the grammar above) is
replaced by a single literal curly brace ("{" or "}" respectively).
This provides a simple escaping mechanism.

Note that the mechanism described in this section could be used
to indicate the entire absolute IRI, including the scheme, host, or
port, for example:

{scheme}://{host}:{port}/temperature/{town}

or even:

{!myIRI}

6.8.2 Serialization as
"application/x-www-form-urlencoded"

This serialization format is designed to allow a client or Web
service to produce an IRI based on the instance data of a message and serialize
a query string in the HTTP message body as
application/x-www-form-urlencoded.

If
this format is used then the {style}
property of
Interface Operation component being bound MUST contain a value
of "http://www.w3.org/ns/wsdl/style/iri" as defined in 4.2 IRI Style, i.e.
this serialization format may only be used to serialize the HTTP
request corresponding to the initial message of an interface
operation.†

For
the HTTP binding defined in this section (6. WSDL HTTP Binding
Extension), "application/x-www-form-urlencoded" MAY be
used as a serialization format for an input
message (HTTP Request), but MUST NOT be used as a serialization
format for an output or fault message (HTTP
Response).†

6.8.2.1 Case of elements
cited in the {http location} property

In this serialization, the rules for constructing the HTTP
request IRI using elements cited in the {http location}
property defined in 6.8.1 Serialization of the
instance data in parts of the HTTP request IRI apply.
Additional rules for constructing the HTTP request IRI follow.

6.8.2.2 Serialization
of content of the instance data not cited in the {http location}
property

If
not all elements from the instance data are cited in the {http location}
property, or if the property is not present on the
Binding Operation component, then additional serialization
rules apply.†

The remainder of the instance data is formatted as a query
string as defined in 6.8.2.2.1
Construction of the query string.

If the HTTP method used for the request does not allow a message
body, then this query string is serialized as parameters in the
request IRI (see 6.8.2.2.3
Serialization in the request IRI), otherwise it is
serialized in the message body (see 6.8.2.2.4
Serialization in the message body).

6.8.2.2.1 Construction
of the query string

For
elements of the instance data not cited in the {http location}
property, a query string is constructed as follows.†

Non-nil elements with a possibly empty single value of the
instance data
not cited are serialized as query parameters in the order they
appear in the instance data.

The
instance data
MUST NOT contain elements with an xs:nil attribute
whose value is "true".†

Each parameter pair is separated by the value of the {http query
parameter separator} property, if present, or the value of the
{http query
parameter separator default} property.

	
Uncited elements with single values (non-list) are serialized as
a single name-value parameter pair. The name of the parameter is
the local name of the uncited element, and the value of the
parameter is the value of the uncited element.

	
Uncited elements with list values are serialized as one
name-value parameter pair per-list value. The name of each
parameter is the local name of the uncited element, and the value
of each parameter is the corresponding value in the list. The order
of the list values is preserved.

	
Replacement values falling outside the range (ALPHA
and DIGIT below are defined as per [IETF RFC 4234]): ALPHA | DIGIT | "-" |
"." | "_" | "~" | "!" | "$" | "&" | "'" | "(" | ")" | "*" | "+"
| "," | ";" | "=" | ":" | "@", MUST be percent-encoded.
Percent-encoding MUST be performed using the UTF-8 representation
of the character as prescribed by section 6.4 of [IETF RFC 3987].

Example 6-1.
Query string generation

The following instance data of an input message:

<data>
 <town>Fréjus</town>
 <date>2007-06-26</date>
 <unit>C</unit>
</data>

with the following value of the {http location}
property:

'temperature/{town}'

and the following value of the {http query
parameter separator default} property:

'&'

will produce the following query string:

date=2007-06-26&unit=C

6.8.2.2.2 Controlling the serialization
of the query string in the request IRI

This serialization format adds the following property to the

Binding Operation component:

	
{http
location ignore uncited} REQUIRED. A xs:boolean. This
boolean indicates whether elements not cited in the {http location}
property MUST be appended to the request IRI or ignored. If the
value of this property is "false", the rules defined in section
6.8.2.2.3
Serialization in the request IRI dictate how to
serialize elements not cited in {http location} in the
request IRI. Otherwise, those are NOT serialized in the request
IRI.

When
serializing an HTTP request that does not allow an HTTP message
body, and when {http
location ignore uncited} is "true", any element NOT cited in
the {http
location} property MUST be defined in the schema as
nillable, or have a default value, or
appear no less frequently than specified by the
minOccurs value. The element declaration SHOULD NOT
combine a default value with nillable.†

The XML representation for this property is an attribute
information item with the following Infoset properties:

	
An OPTIONAL ignoreUncited attribute information
item with the following Infoset properties:

	
A [local name] of ignoreUncited

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
A type of xs:boolean

The mapping from the XML representation to component properties
is as follows:

Table 6-7. Mapping from XML Representation to Binding
Operation component Extension Properties	Property	Value
	{http
location ignore uncited}	The actual value of the
whttp:ignoreUncited attribute information
item, if present; otherwise, "false".

6.8.2.2.3 Serialization
in the request IRI

If
the HTTP request method used does not allow HTTP message body (e.g.
"GET" and "DELETE"), and if the value of the {http
location ignore uncited} property is "false", then the
following rules apply.†

If the {http
location} property is not present, or if it is present and its
value does not contain a "?" (question mark) character, a "?" is
appended to the request IRI. If it does already contain a question
mark character, then the value of the {http query
parameter separator} property, if present, or the value of the
{http query
parameter separator default} property otherwise, is
appended.

Finally, the query string computed in 6.8.2.2.1
Construction of the query string is appended.

Example
6-2. Instance data serialized in an IRI

The instance data defined in Example 6-1 with the
following operation declaration:

<operation ref='t:data'
 whttp:location='temperature/{town}'
 whttp:method='GET' />

and the following endpoint declaration:

<endpoint name='e' binding='t:b'
 address='http://ws.example.com/service1/' />

will serialize the message in the HTTP request as follows:

GET http://ws.example.com/service1/temperature/Fr%C3%A9jus?date=2007-06-26&unit=C HTTP/1.1
Host: ws.example.com

6.8.2.2.4
Serialization in the message body

If
the HTTP request method used does allow an HTTP message body (e.g.
"POST" and "PUT"), then the following rules apply.†

Finally, the query string computed in 6.8.2.2.1
Construction of the query string is used as the value
of the HTTP message body.

The
Content-Type HTTP header field must have the value
application/x-www-form-urlencoded.†

Example 6-3.
Instance data serialized in the HTTP Request IRI and message
body

The instance data defined in Example 6-1 with the
following operation declaration:

<operation ref='t:data'
 whttp:inputSerialization='application/x-www-form-urlencoded'
 whttp:location='temperature/{town}'
 whttp:method='POST' />

and the following endpoint declaration:

<endpoint name='e' binding='t:b'
 address='http://ws.example.com/service1/' />

will serialize the message in the HTTP request as follow:

POST http://ws.example.com/service1/temperature/Fr%C3%A9jus HTTP/1.1
Host: ws.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: …

date=2007-06-26&unit=C

6.8.3 Serialization as
"application/xml"

In this serialization, for HTTP requests, the rules for
constructing the HTTP request IRI defined in 6.8.1 Serialization of the
instance data in parts of the HTTP request IRI apply
if the {style}
property of the
Interface Operation bound has a value of
"http://www.w3.org/ns/wsdl/style/iri" as defined in 4.2 IRI Style.

The instance
data of the input, output or fault message is serialized as an
XML document in the message body of the HTTP message, following the
serialization defined in [Canonical
XML]. Therefore, it is only suitable for HTTP requests
using methods allowing message bodies (i.e., for the HTTP binding
defined in this specification, input messages where the HTTP method
selected has a body), and for HTTP responses (i.e. output and fault
messages for the HTTP binding defined in this specification).

The
Content-Type HTTP header MUST have the value
application/xml [IETF RFC
3023], or a media type compatible with
application/xml as specified in section 6.4.3.1 Serialization rules for XML
messages.†
Other HTTP headers MAY be used.

6.8.4 Serialization as
"multipart/form-data"

In this serialization, for HTTP requests, the rules for
constructing the HTTP request IRI defined in 6.8.1 Serialization of the
instance data in parts of the HTTP request IRI apply
if the {style}
property of the
Interface Operation bound has a value of
"http://www.w3.org/ns/wsdl/style/iri" as defined in 4.2 IRI Style.

This format is for legacy compatibility to permit the use of
XForms clients with [IETF RFC
2388] servers. This serialization format may only be
used when binding
Interface Operation components whose {style}
property has a value of "http://www.w3.org/ns/wsdl/style/multipart"
as defined in 4.3
Multipart style, i.e. this
serialization format may only be used to serialize the HTTP request
corresponding to the initial message of an interface
operation.†

Specifically, for the HTTP binding defined in
this section (6. WSDL HTTP Binding
Extension), "multipart/form-data" MAY be used as a
serialization format for an input
message (HTTP Request), but MUST NOT be used as a serialization
format for an output or fault message (HTTP
Response).†
This format serializes the instance data in the HTTP message body,
making it only suitable for HTTP requests using methods allowing
message bodies.

Each element in the sequence is serialized into a part as
follow:

	
The
Content-Disposition header MUST have the value
form-data, and its name parameter is the
local name of the element.†

	
The
Content-Type header MUST have the value:†

	
application/xml (or a media type compatible with
application/xml) if the element has a complex
type;

	
application/octet-stream if the element is of type
xs:base64Binary, xs:hexBinary, or a
derived type;

	
text/plain if the element has a simple type; The
charset MUST be set appropriately. UTF-8 or UTF-16 MUST be at least
supported.

	
If the type is xs:base64Binary,
xs:hexBinary, xs:anySimpleType or a
derived type, the content of the part is the content of the
element. If the type is a complex type, the element is serialized
following the rules defined in the 6.8.3 Serialization as
application/xml .

The
instance data
MUST NOT contain elements with an xs:nil attribute
whose value is "true".†

Example
6-4. Example of multipart/form-data

The following instance data of an input message:

<data>
 <town>
 <name>Fréjus</name>
 <country>France</country>
 </town>
 <date>2007-06-26</date>
</data>

with the following operation element:

<operation ref='t:data'
 whttp:location='temperature'
 whttp:method='POST'
 whttp:inputSerialization='multipart/form-data'/>

will serialize the message as follow:

Content-Type: multipart/form-data; boundary=AaB03x
Content-Length: xxx

--AaB03x
Content-Disposition: form-data; name="town"
Content-Type: application/xml

<town>
 <name>Fréjus</name>
 <country>France</country>
</town>
--AaB03x
Content-Disposition: form-data; name="date"
Content-Type: text/plain; charset=utf-8

2007-06-26
--AaB03x--

6.9 Specifying the Content
Encoding

6.9.1 Description

Every
Binding Message Reference and
Binding Fault component MAY indicate which content encodings,
as defined in section 3.5 of [IETF RFC
2616], are available for this particular message.

The HTTP binding extension provides a mechanism for indicating a
default value at the Binding
component and
Binding Operation levels.

If no value is specified, no claim is being made.

6.9.2 Relationship to WSDL
Component Model

The HTTP binding extension specification adds the following
properties to the WSDL component model (as defined in
[WSDL 2.0 Core
Language]):

	
{http content encoding
default} OPTIONAL. A xs:string to the Binding
component. This property indicates the default content encodings
available for all
Binding Message Reference and
Binding Fault components of this Binding.

	
{http
content encoding default} OPTIONAL. A xs:string to the

Binding Operation component. This property indicates the
default content encodings available for all
Binding Message Reference of this
Binding Operation.

	
{http
content encoding} OPTIONAL. A xs:string to the

Binding Message Reference component. This property indicates
the content encodings available for this
Binding Message Reference component. If this property does not
have a value, the value of the {http
content encoding default} property of the parent
Binding Operation component is used instead. If that itself has
no value, the value from the
Binding Operation component's parent Binding
component is used instead.

	
Similarly, {http content
encoding} OPTIONAL, to the
Binding Fault component

These properties are not relevant when HTTP 1.0 is used.

6.9.3 XML Representation

<description>
 <binding name="xs:NCName" interface="xs:QName"? type="xs:anyURI"
 whttp:contentEncodingDefault="xs:string"? >

 <fault ref="xs:QName"
 whttp:contentEncoding="xs:string"? >
 </fault>*

 <operation location="xs:anyURI"?
 whttp:contentEncodingDefault="xs:string"? >
 <input messageLabel="xs:NCName"?
 whttp:contentEncoding="xs:string"? />

 <output messageLabel="xs:NCName"?
 whttp:contentEncoding="xs:string"? />

 </operation>
 </binding>
</description>

The XML representation for specifying the content encoding is an
OPTIONAL attribute information item for the
input, output, and fault
element information items with the following Infoset
properties:

	
A [local name] of contentEncoding

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
A type of xs:string

The XML representation for specifying the default content
encoding is an OPTIONAL attribute information item for the
binding element information item or
binding's child operation element
information items with the following Infoset properties:

	
A [local name] of contentEncodingDefault

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
A type of xs:string

6.9.4 Mapping from XML
Representation to Component Properties

See Table
6-8.

Table 6-8. Mapping from XML Representation to
Interface Message Reference component Extension
Properties	Property	Value
	{http content
encoding default} of the Binding
component	The actual value of the
whttp:contentEncodingDefault attribute information
item of the binding element information
item, if present.
	{http
content encoding default} of the
Binding Operation component	The actual value of the
whttp:contentEncodingDefault attribute information
item of the operation element information
item, if present.
	{http
content encoding} of the
Binding Message Reference component	The actual value of the
whttp:contentEncoding attribute information
item of the input or output
element information item, if present.
	{http content
encoding} of the
Binding Fault component	The actual value of the
whttp:contentEncoding attribute information
item of the fault element information
item, if present.

6.10
Specifying the Use of HTTP Cookies

6.10.1 Description

The {http cookies}
property allows Binding
components to indicate that HTTP cookies (as defined by
[IETF RFC 2965]) are used by
specific operations of the interface that this binding applies
to.

6.10.2 Relationship to WSDL Component
Model

The HTTP binding extension specification adds the following
property to the WSDL component model (as defined in [WSDL 2.0 Core Language]):

	
{http cookies} REQUIRED. A
xs:boolean to the Binding
component.

6.10.3 XML Representation

<description>
 <binding name="xs:NCName" interface="xs:QName"? type="xs:anyURI"
 whttp:cookies="xs:boolean"? >
 </binding>
</description>

The XML representation for specifying the use of HTTP cookies is
an OPTIONAL attribute information item with the following
Infoset properties:

	
A [local name] of cookies

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
A type of xs:boolean

6.10.4 Mapping from XML
Representation to Component Properties

See Table 6-9.

Table 6-9. Mapping from XML Representation to Binding
component Extension Properties	Property	Value
	{http cookies}	The actual value of the
whttp:cookies attribute information item;
otherwise, "false". A value of "true" means that the service relies
on cookies and that the client MUST understand them.†

6.11
Specifying HTTP Access Authentication

6.11.1 Description

Every Endpoint
component MAY indicate the use of an HTTP access authentication
mechanism (as defined by [IETF RFC
2616]) for the endpoint described.

This binding extension specification allows the authentication
scheme and realm to be specified.

6.11.2
Relationship to WSDL Component Model

The HTTP binding extension specification adds the following
property to the WSDL component model (as defined in [WSDL 2.0 Core Language]):

	
{http authentication
scheme} OPTIONAL. A xs:token with one of the values
"basic" or "digest", to the Endpoint
component, corresponding to the HTTP authentication scheme used.
When present, this property indicates the authentication scheme in
use: "basic" indicates the Basic Access Authentication scheme
defined in [IETF RFC 2617], and
"digest" indicates the Digest Access Authentication scheme as
defined in [IETF RFC 2617].

	
{http authentication
realm} OPTIONAL. A xs:string to the Endpoint
component. It corresponds to the realm authentication parameter
defined in [IETF RFC 2617].
If the {http authentication
scheme} property is present, then this property MUST be
present.†

6.11.3
XML Representation

<description>
 <service>
 <endpoint name="xs:NCName" binding="xs:QName" address="xs:anyURI"? >
 whttp:authenticationScheme="xs:token"?
 whttp:authenticationRealm="xs:string"? />
 </endpoint>
 </service>
</description>

The XML representation for specifying the use of HTTP access
authentication is two OPTIONAL attribute information items
with the following Infoset properties:

	
An OPTIONAL authenticationScheme attribute
information item with the following Infoset properties:

	
A [local name] of authenticationScheme

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
A type of xs:token where the allowed token values are
"basic" and "digest".

	
An OPTIONAL authenticationRealm attribute
information item with the following Infoset properties:

	
A [local name] of authenticationRealm

	
A [namespace name] of "http://www.w3.org/ns/wsdl/http"

	
A type of xs:string

6.11.4 Mapping from XML Representation
to Component Properties

See Table
6-10.

Table 6-10. Mapping from XML Representation to Endpoint
component Extension Properties	Property	Value
	{http authentication
scheme}	The actual value of the
whttp:authenticationScheme attribute information
item, if present.
	{http authentication
realm}	The actual value of the
whttp:authenticationRealm attribute information
item, if present; otherwise, if the
whttp:authenticationScheme attribute information
item is present, "" (the empty value).

6.12
Conformance

An element information item, whose namespace name is
"http://www.w3.org/ns/wsdl" and whose local part is
description, conforms to this binding extension
specification if: the element information items and
attribute information items, whose namespace is
http://www.w3.org/ns/wsdl/http, conform to the XML Schema for that
element or attribute, as defined by this specification and,
additionally, adheres to all the constraints contained in this
specification.

7. References

7.1 Normative References

	[ISO/IEC
14977:1996]
	
Extended BNF, IS0 (the International Organization for
Standardization) and IEC (the International Electrotechnical
Commission), Dec 1996. Available at
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm.
	[IETF RFC
2119]
	Key words
for use in RFCs to Indicate Requirement Levels, S.
Bradner, Author. Internet Engineering Task Force, March 1997.
Available at http://www.ietf.org/rfc/rfc2119.txt.
	[IETF RFC
2388]
	Returning
Values from Forms: multipart/form-data, L. Masinter,
Author. Internet Engineering Task Force, August 1998. Available at
http://www.ietf.org/rfc/rfc2388.txt.
	[IETF RFC
2616]
	Hypertext
Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys,
J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
Authors. Internet Engineering Task Force, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt.
	[IETF RFC
2617]
	HTTP
Authentication: Basic and Digest Access Authentication,
J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A.
Luotonen, L. Stewart, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt.
	[IETF RFC
2818]
	HTTP Over
TLS, E. Rescorla, Author. Internet Engineering Task
Force, May 2000. Available at
http://www.ietf.org/rfc/rfc2818.txt.
	[IETF RFC
2965]
	HTTP State
Management Mechanism, D. Kristol, L. Montulli Authors.
Internet Engineering Task Force, October 2000. Available at
http://www.ietf.org/rfc/rfc2965.txt.
	[IETF RFC
3023]
	XML Media
Types, M. Murata, S. St. Laurent, D. Kohn, Authors.
Internet Engineering Task Force, January 2001. Available at
http://www.ietf.org/rfc/rfc3023.txt.
	[IETF RFC
3205]
	On the use
of HTTP as a Substrate, K. Moore, Authors. Internet
Engineering Task Force, February 2002. Available at
http://www.ietf.org/rfc/rfc3205.txt.
	[IETF RFC
3986]
	Uniform
Resource Identifiers (URI): Generic Syntax, T.
Berners-Lee, R. Fielding, L. Masinter, Authors. Internet
Engineering Task Force, January 2005. Available at
http://www.ietf.org/rfc/rfc3986.txt.
	[IETF RFC
3987]
	Internationalized Resource
Identifiers (IRIs), M. Duerst, M. Suignard, Authors.
Internet Engineering Task Force, January 2005. Available at
http://www.ietf.org/rfc/rfc3987.txt.
	[IETF RFC
4234]
	Augmented
BNF for Syntax Specifications: ABNF, D. Crocker, P.
Overell, Authors. Internet Engineering Task Force, October 2005.
Available at http://www.ietf.org/rfc/rfc4234.txt.
	[Web
Architecture]
	Architecture of
the World Wide Web, Volume One, I. Jacobs, and N. Walsh,
Editors. World Wide Web Consortium, 15 December 2004. This version
of the "Architecture of the World Wide Web, Volume One"
Recommendation is http://www.w3.org/TR/2004/REC-webarch-20041215/.
The latest version of
"Architecture of the World Wide Web, Volume One" is available
at http://www.w3.org/TR/webarch/.
	[Web Services
Architecture]
	Web Services
Architecture, David Booth, Hugo Haas, Francis McCabe,
Eric Newcomer, Michael Champion, Chris Ferris, David Orchard,
Editors. World Wide Web Consortium, 11 February 2004. This version
of the "Web Services Architecture" Working Group Note is
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/. The latest version of "Web Services
Architecture" is available at
http://www.w3.org/TR/ws-arch/.
	[WSDL
2.0 Core Language]
	Web Services
Description Language (WSDL) Version 2.0 Part 1: Core
Language, R. Chinnici, J-J. Moreau, A. Ryman, S.
Weerawarana, Editors. World Wide Web Consortium, 26 June 2007. This
version of the "Web Services Description Language (WSDL) Version
2.0 Part 1: Core Language" Recommendation is available is available
at http://www.w3.org/TR/2007/REC-wsdl20-20070626. The latest version of "Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language"
is available at http://www.w3.org/TR/wsdl20.
	[SOAP 1.2 Part 1: Messaging Framework (Second
Edition)]
	SOAP Version
1.2 Part 1: Messaging Framework (Second Edition), M.
Gudgin, et al., Editors. World Wide Web Consortium, 24 June 2003,
revised 27 April 2007. This version of the "SOAP Version 1.2 Part
1: Messaging Framework (Second Edition)" Recommendation is
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/. The latest version of "SOAP
Version 1.2 Part 1: Messaging Framework" is available at
http://www.w3.org/TR/soap12-part1/.
	[SOAP 1.2 Part 2: Adjuncts (Second
Edition)]
	SOAP Version
1.2 Part 2: Adjuncts (Second Edition), M. Gudgin, et
al., Editors. World Wide Web Consortium, 24 June 2006, revised 27
April 2007. This version of the "SOAP Version 1.2 Part 2: Adjuncts
(Second Edition)" Recommendation is
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/. The latest version of "SOAP
Version 1.2 Part 2: Adjuncts" is available at
http://www.w3.org/TR/soap12-part2/.
	[XML 1.0]
	Extensible Markup
Language (XML) 1.0 (Fourth Edition), T. Bray, J. Paoli,
C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, Editors. World
Wide Web Consortium, 10 February 1998, revised 16 August 2006. This
version of the XML 1.0 Recommendation is
http://www.w3.org/TR/2006/REC-xml-20060816/. The latest version of "Extensible Markup
Language (XML) 1.0" is available at
http://www.w3.org/TR/REC-xml.
	[Canonical
XML]
	Canonical
XML, J. Boyer, Author. World Wide Web Consortium, 15
March 2001. This version of the Canonical XML Recommendation is
http://www.w3.org/TR/2001/REC-xml-c14n-20010315. The latest version of Canonical XML
is available at http://www.w3.org/TR/xml-c14n.
	[XML
Information Set]
	XML
Information Set (Second Edition), J. Cowan and R. Tobin,
Editors. World Wide Web Consortium, 24 October 2001, revised 4
February 2004. This version of the XML Information Set
Recommendation is
http://www.w3.org/TR/2004/REC-xml-infoset-20040204. The latest version of XML
Information Set is available at
http://www.w3.org/TR/xml-infoset.
	[XML
Schema Structures]
	XML Schema
Part 1: Structures Second Edition, H. Thompson, D.
Beech, M. Maloney, and N. Mendelsohn, Editors. World Wide Web
Consortium, 2 May 2001, revised 28 October 2004. This version of
the XML Schema Part 1 Recommendation is
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028. The latest version of XML Schema
Part 1 is available at http://www.w3.org/TR/xmlschema-1.
	[XML
Schema Datatypes]
	XML Schema
Part 2: Datatypes Second Edition, P. Byron and A.
Malhotra, Editors. World Wide Web Consortium, 2 May 2001, revised
28 October 2004. This version of the XML Schema Part 2
Recommendation is
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028. The latest version of XML Schema
Part 2 is available at http://www.w3.org/TR/xmlschema-2.
	[XForms
1.0]
	XForms 1.0 (Second
Edition), J. Boyer, et al., Editors. World Wide Web
Consortium, 14 October 2003, revised 14 March 2006. This version of
the XForms 1.0 Recommendation is
http://www.w3.org/TR/2006/REC-xforms-20060314/. The latest version of XForms 1.0 is
available at http://www.w3.org/TR/xforms/.

7.2 Informative References

	[WSA 1.0
Core]
	Web Services
Addressing 1.0 - Core, M. Gudgin, M. Hadley, T. Rogers,
Editors. World Wide Web Consortium, 9 May 2006. This version of Web
Services Addressing 1.0 - Core Recommendation is
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/. The latest
version of the "Web Services Addressing 1.0 - Core" document is
available from http://www.w3.org/TR/ws-addr-core.
	[WSDL
2.0 Primer]
	Web Services
Description Language (WSDL) Version 2.0 Part 0: Primer ,
D.Booth, C.K. Liu , Editors. World Wide Web Consortium, 26 June
2007. This version of the "Web Services Description Language (WSDL)
Version 2.0 Part 0: Primer" Recommendation is available at
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626. The latest version of "Web
Services Description Language (WSDL) Version 2.0 Part 0:
Primer" is available at
http://www.w3.org/TR/wsdl20-primer.
	[WSDL 2.0
Additional MEPs]
	Web
Services Description Language (WSDL) Version 2.0: Additional
MEPs, A. Lewis, Editors. World Wide Web Consortium, 26
June 2007. This version of the "Web Services Description Language
(WSDL) Version 2.0: Additional MEPs" Working Group Note is
available is available at
http://www.w3.org/TR/2007/NOTE-wsdl20-additional-meps-20070626. The
latest
version of "Web Services Description Language (WSDL) Version 2.0:
Additional MEPs" is available at
http://www.w3.org/TR/wsdl20-additional-meps.
	[SOAP Message
Transmission Optimization Mechanism]
	SOAP Message
Transmission Optimization Mechanism, N. Mendelsohn, M.
Nottingham, and H. Ruellan, Editors. World Wide Web Consortium, W3C
Recommendation, 25 January 2005. This version of SOAP Message
Transmission Optimization Mechanism is
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/. The latest version of the "SOAP
Message Transmission Optimization Mechanism" document is
available from http://www.w3.org/TR/soap12-mtom/.
	[XPointer]
	XPointer
Framework,Paul Grosso, Eve Maler, Jonathan Marsh, Norman
Walsh, Editors. World Wide Web Consortium, 25 March 2003. This
version of the XPointer Framework Proposed Recommendation is
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/ The latest version of XPointer
Framework is available at
http://www.w3.org/TR/xptr-framework/.

A.
Acknowledgements (Non-Normative)

This document is the work of the W3C Web Service Description
Working Group.

Members of the Working Group are (at the time of writing, and by
alphabetical order): Charlton Barreto (Adobe Systems, Inc), Allen
Brookes (Rogue Wave Softwave), Dave Chappell (Sonic Software),
Helen Chen (Agfa-Gevaert N. V.), Roberto Chinnici (Sun
Microsystems), Kendall Clark (University of Maryland), Glen Daniels
(Sonic Software), Paul Downey (British Telecommunications), Youenn
Fablet (Canon), Ram Jeyaraman (Microsoft), Tom Jordahl (Adobe
Systems), Anish Karmarkar (Oracle Corporation), Jacek Kopecky (DERI
Innsbruck at the Leopold-Franzens-Universität Innsbruck, Austria),
Amelia Lewis (TIBCO Software, Inc.), Philippe Le Hegaret (W3C),
Michael Liddy (Education.au Ltd.), Kevin Canyang Liu (SAP AG),
Jonathan Marsh (WSO2), Monica Martin (Sun Microsystems), Josephine
Micallef (SAIC - Telcordia Technologies), Jeff Mischkinsky (Oracle
Corporation), Dale Moberg (Cyclone Commerce), Jean-Jacques Moreau
(Canon), David Orchard (BEA Systems, Inc.), Gilbert Pilz (BEA
Systems, Inc.), Tony Rogers (Computer Associates), Arthur Ryman
(IBM), Adi Sakala (IONA Technologies), Michael Shepherd (Xerox),
Asir Vedamuthu (Microsoft Corporation), Sanjiva Weerawarana (WSO2),
Ümit Yalçınalp (SAP AG), Peter Zehler (Xerox).

Previous members were: Eran Chinthaka (WSO2), Mark Nottingham
(BEA Systems, Inc.), Hugo Haas (W3C), Vivek Pandey (Sun
Microsystems), Bijan Parsia (University of Maryland), Lily Liu
(webMethods, Inc.), Don Wright (Lexmark), Joyce Yang (Oracle
Corporation), Daniel Schutzer (Citigroup), Dave Solo (Citigroup),
Stefano Pogliani (Sun Microsystems), William Stumbo (Xerox),
Stephen White (SeeBeyond), Barbara Zengler (DaimlerChrysler
Research and Technology), Tim Finin (University of Maryland),
Laurent De Teneuille (L'Echangeur), Johan Pauhlsson (L'Echangeur),
Mark Jones (AT&T), Steve Lind (AT&T), Sandra Swearingen
(U.S. Department of Defense, U.S. Air Force), Philippe Le Hégaret
(W3C), Jim Hendler (University of Maryland), Dietmar Gaertner
(Software AG), Michael Champion (Software AG), Don Mullen (TIBCO
Software, Inc.), Steve Graham (Global Grid Forum), Steve Tuecke
(Global Grid Forum), Michael Mahan (Nokia), Bryan Thompson (Hicks
& Associates), Ingo Melzer (DaimlerChrysler Research and
Technology), Sandeep Kumar (Cisco Systems), Alan Davies
(SeeBeyond), Jacek Kopecky (Systinet), Mike Ballantyne (Electronic
Data Systems), Mike Davoren (W. W. Grainger), Dan Kulp (IONA
Technologies), Mike McHugh (W. W. Grainger), Michael Mealling
(Verisign), Waqar Sadiq (Electronic Data Systems), Yaron Goland
(BEA Systems, Inc.), Ümit Yalçınalp (Oracle Corporation), Peter
Madziak (Agfa-Gevaert N. V.), Jeffrey Schlimmer (Microsoft
Corporation), Hao He (The Thomson Corporation), Erik Ackerman
(Lexmark), Jerry Thrasher (Lexmark), Prasad Yendluri (webMethods,
Inc.), William Vambenepe (Hewlett-Packard Company), David Booth
(W3C), Sanjiva Weerawarana (IBM), Asir Vedamuthu (webMethods,
Inc.), Igor Sedukhin (Computer Associates), Martin Gudgin
(Microsoft Corporation), Rebecca Bergersen (IONA Technologies), Ugo
Corda (SeeBeyond).

The people who have contributed to discussions on
www-ws-desc@w3.org are also gratefully acknowledged.

B.
Component Summary (Non-Normative)

Table B-1 lists all the
components in the WSDL 2.0 Adjuncts abstract Component Model, and
all their properties.

Table B-1. Summary of WSDL 2.0 Adjuncts Components and
their Properties	Component	Defined Properties
	Binding	{http content
encoding default}, {http cookies}, {http method default},
{http query
parameter separator default}, {soap mep default}, {soap modules}, {soap underlying
protocol}, {soap
version}
	
Binding Fault	{http content
encoding}, {http error status
code}, {http
headers}, {soap
fault code}, {soap fault
subcodes}, {soap
headers}, {soap
modules}
	
Binding Fault Reference	{soap
modules}
	
Binding Message Reference	{http
content encoding}, {http headers},
{soap
headers}, {soap
modules}
	
Binding Operation	{http
content encoding default}, {http fault
serialization}, {http input
serialization}, {http location},
{http
location ignore uncited}, {http method}, {http output
serialization}, {http query
parameter separator}, {soap action}, {soap mep}, {soap modules}
	Endpoint	{http authentication
realm}, {http authentication
scheme}
	HTTP
Header	{name}, {parent}, {required}, {type definition}
	
Interface Operation	{rpc signature},
{safe}
	SOAP Header Block	{element
declaration}, {mustUnderstand},
{parent}, {required}
	SOAP
Module	{parent}, {ref}, {required}
	Property	Where Defined
	element declaration	SOAP Header Block.{element
declaration}
	http authentication realm	Endpoint.{http authentication
realm}
	http authentication scheme	Endpoint.{http authentication
scheme}
	http content encoding	Binding Fault.{http content
encoding}, Binding Message Reference.{http
content encoding}
	http content encoding default	Binding.{http content
encoding default}, Binding Operation.{http
content encoding default}
	http cookies	Binding.{http cookies}
	http error status code	Binding Fault.{http error status
code}
	http fault serialization	Binding Operation.{http fault
serialization}
	http headers	Binding Fault.{http headers}, Binding
Message Reference.{http
headers}
	http input serialization	Binding Operation.{http input
serialization}
	http location	Binding Operation.{http location}
	http location ignore uncited	Binding Operation.{http
location ignore uncited}
	http method	Binding Operation.{http method}
	http method default	Binding.{http method default}
	http output serialization	Binding Operation.{http output
serialization}
	http query parameter separator	Binding Operation.{http query
parameter separator}
	http query parameter separator
default	Binding.{http query
parameter separator default}
	mustUnderstand	SOAP Header Block.{mustUnderstand}
	name	HTTP Header.{name}
	parent	HTTP Header.{parent}, SOAP Header
Block.{parent}, SOAP
Module.{parent}
	ref	SOAP Module.{ref}
	required	HTTP Header.{required}, SOAP Header
Block.{required},
SOAP Module.{required}
	rpc signature	Interface Operation.{rpc signature}
	safe	Interface Operation.{safe}
	soap action	Binding Operation.{soap action}
	soap fault code	Binding Fault.{soap fault code}
	soap fault subcodes	Binding Fault.{soap fault
subcodes}
	soap headers	Binding Fault.{soap headers}, Binding
Message Reference.{soap
headers}
	soap mep	Binding Operation.{soap mep}
	soap mep default	Binding.{soap mep default}
	soap modules	Binding.{soap modules}, Binding
Fault.{soap
modules}, Binding Fault Reference.{soap modules},
Binding Message Reference.{soap modules},
Binding Operation.{soap modules}
	soap underlying protocol	Binding.{soap underlying
protocol}
	soap version	Binding.{soap version}
	type definition	HTTP Header.{type definition}

C.
Assertion Summary (Non-Normative)

This appendix summarizes assertions about WSDL 2.0 documents and
components that are not enforced by the WSDL 2.0 schema. Each
assertion is assigned a unique identifier which WSDL 2.0 processors
may use to report errors.

Table C-1. Summary of Assertions about WSDL 2.0
Documents	Id	Assertion
	OperationSafety-2028	An OPTIONAL safe
attribute information item with the following Infoset
properties:
	WRPC-2050	Additionally, each even-numbered item
(0, 2, 4, ...) in the list MUST be of type xs:QName and
each odd-numbered item (1, 3, 5, ...) in the list MUST be of the
subtype of xs:token described in the previous
paragraph.

Table C-2. Summary of Assertions about WSDL 2.0
Components	Id	Assertion
	FaultPropagationModification-2005	However, extensions or binding
extensions MAY modify these rulesets.
	HTTPAccessAuthentication-2127	If the {http authentication
scheme} property is present, then this property MUST be
present.
	HTTPBinding-2083	When formulating the HTTP message to be
transmitted, the HTTP request method used MUST be selected using
one of the following:
	HTTPBinding-2084	When formulating the HTTP message to be
transmitted, content encoding for a given
Binding Message Reference component is determined as
follows:
	HTTPBinding-2085	When formulating the HTTP fault message
to be transmitted, content encoding for a given
Binding Fault component is determined as follows:
	HTTPBinding-2086	When formulating the HTTP message to be
transmitted, the contents of the payload (i.e. the contents of the
HTTP message body) MUST be what is defined by the corresponding

Interface Message Reference or
Interface Fault components, serialized as specified by the
serialization format used.
	HTTPBinding-2087	If the value is "#none", then the
payload MUST be empty and the value of the corresponding
serialization property ({http input
serialization} or {http output
serialization}) is ignored.
	HTTPBinding-2088	If the
Interface Message Reference component or the
Interface Fault component is declared using a non-XML type
system (as considered in the Types section of [WSDL 2.0 Core Language]), then additional
binding rules MUST be defined in an extension specification to
indicate how to map those components into the HTTP envelope.
	HTTPBinding-2089	The serialization rules for messages
whose {message
content model} is either "#element" or "#any", AND the
serialization rules for fault messages, are as follows:
	HTTPBindingFault-2105	The fault definition SHOULD agree with
the definition of the HTTP error codes, as specified in section 8
of [IETF RFC 3205].
	HTTPBindingFault-2106	An integer value of this property
identifies the error Status-Code as defined by [IETF RFC 2616] that the service will use in
case the fault is returned.
	HTTPBindingOperation-2093	When formulating the HTTP Request, the
HTTP Request IRI is an absolute IRI reference and is the value of
the {http
location} property of the
Binding Operation component, resolved using the value of the
{address}
property of the Endpoint
component (see section 5 of [IETF RFC
3986]).
	HTTPBindingOperation-2094	The first one is transmitted using an
HTTP request, and the second one is transmitted using the
corresponding HTTP response.
	HTTPBindingOperation-2095	In cases where only one single message
is being sent, the message body of the HTTP response MUST be
empty.
	HTTPBindingOperation-2098	It MUST contain an IRI reference and
MUST NOT include a fragment identifier component.
	HTTPBindingOperation-2100	The value of the serialization
format used for a message is a media type which MUST be covered
by this range.
	HTTPBindingOperation-2101	Wild cards (for example,
"application/*") SHOULD NOT be used in this attribute
information item since they may lead to interoperability
problems.
	HTTPCookies-2126	A value of "true" means that the
service relies on cookies and that the client MUST understand
them.
	HTTPHeader-2090	If the {http headers}
property as defined in section 6.6 Declaring HTTP
Headers exists and is not empty in a
Binding Message Reference or
Binding Fault component, HTTP headers conforming to each
HTTP Header component contained
in this {http headers}
property MAY be serialized as follows:
	HTTPHeader-2091	The HTTP binding MUST NOT set an HTTP
header field corresponding to the value of the {name} property already set by
another mechanism, such as the HTTP stack or another feature.
	HTTPHeader-2092	If the value of an HTTP Header component's {required} property is "true",
the inclusion of this HTTP header field is REQUIRED
	HTTPHeader-2102	A
Binding Message Reference or a
Binding Fault component's {http headers}
property MUST NOT contain multiple HTTP Header components with the same
{name} property.
	HTTPHeader-2103	This type MUST be a simple type.
	HTTPHeader-2104	If the value is "true", then the HTTP
header field MUST be included in the message.
	HTTPQueryString-2115	The instance data MUST NOT contain elements with
an xs:nil attribute whose value is "true".
	HTTPQueryString-2116	When serializing an HTTP request that
does not allow an HTTP message body, and when {http
location ignore uncited} is "true", any element NOT cited in
the {http
location} property MUST be defined in the schema as
nillable, or have a default value, or
appear no less frequently than specified by the
minOccurs value. The element declaration SHOULD NOT
combine a default value with nillable.
	HTTPSerialization-2099	The value of the {http input
serialization}, {http output
serialization} and {http fault
serialization} properties is similar to the value allowed for
the Accept HTTP header defined by the HTTP 1.1
specification, Section 14.1 (see [IETF RFC
2616]) and MUST follow the production rules defined in
that section except for the following:
	HTTPSerialization-2106	The {http location}
property MUST conform to the following EBNF [ISO/IEC 14977:1996] grammar, which represents
the patterns for constructing the request IRI:
	HTTPSerialization-2107	If the {style}
property of the
Interface Operation bound has a value of
"http://www.w3.org/ns/wsdl/style/iri" as defined in 4.2 IRI Style, and if
the {http
location} property of the
Binding Operation component is present, the value of the
{http
location} property component is used as a template
	HTTPSerialization-2108	The resulting IRI MUST be mapped to an
URI for use in the HTTP Request as per section 3.1 "Mapping of IRIs
to URIs" of the IRI specification [IETF
RFC 3987].
	HTTPSerialization-2109	The local name in a template SHOULD
match at least one element from the instance data of the input message.
	HTTPSerialization-2111	If this format is used then the
{style}
property of
Interface Operation component being bound MUST contain a value
of "http://www.w3.org/ns/wsdl/style/iri" as defined in 4.2 IRI Style, i.e.
this serialization format may only be used to serialize the HTTP
request corresponding to the initial message of an interface
operation.
	HTTPSerialization-2112	For the HTTP binding defined in this
section (6. WSDL HTTP Binding
Extension), "application/x-www-form-urlencoded" MAY be
used as a serialization format for an input
message (HTTP Request), but MUST NOT be used as a serialization
format for an output or fault message (HTTP Response).
	HTTPSerialization-2113	If not all elements from the instance data are cited
in the {http
location} property, or if the property is not present on the

Binding Operation component, then additional serialization
rules apply.
	HTTPSerialization-2114	For elements of the instance data not
cited in the {http location}
property, a query string is constructed as follows.
	HTTPSerialization-2117	If the HTTP request method used does
not allow HTTP message body (e.g. "GET" and "DELETE"), and if the
value of the {http
location ignore uncited} property is "false", then the
following rules apply.
	HTTPSerialization-2118	If the HTTP request method used does
allow an HTTP message body (e.g. "POST" and "PUT"), then the
following rules apply.
	HTTPSerialization-2119	The Content-Type HTTP
header field must have the value
application/x-www-form-urlencoded.
	HTTPSerialization-2120	The Content-Type HTTP
header MUST have the value application/xml
[IETF RFC 3023], or a media
type compatible with application/xml as specified in
section 6.4.3.1 Serialization
rules for XML messages.
	HTTPSerialization-2121	this serialization format may only be
used to serialize the HTTP request corresponding to the initial
message of an interface operation.
	HTTPSerialization-2122	Specifically, for the HTTP binding
defined in this section (6. WSDL
HTTP Binding Extension), "multipart/form-data" MAY be
used as a serialization format for an input
message (HTTP Request), but MUST NOT be used as a serialization
format for an output or fault message (HTTP Response).
	HTTPSerialization-2123	The Content-Disposition
header MUST have the value form-data, and its
name parameter is the local name of the element.
	HTTPSerialization-2124	The Content-Type header
MUST have the value:
	HTTPSerialization-2125	The instance data MUST NOT contain elements with
an xs:nil attribute whose value is "true".
	IRIStyle-2051	When using this style, the value of the
{message
content model} property of the
Interface Message Reference component corresponding to the
initial message of the message exchange pattern MUST be
"#element".
	IRIStyle-2052	The sequence MUST only contain
elements.
	IRIStyle-2053	The sequence MUST contain only local
element children.
	IRIStyle-2054	The localPart of the element's QName
MUST be the same as the
Interface Operation component's {name}.
	IRIStyle-2055	The complex type that defines the body
of the element or its children elements MUST NOT contain any
attributes.
	IRIStyle-2056	The children elements of the sequence
MUST derive from xs:simpleType, and MUST NOT be of the
type or derive from xs:QName,
xs:NOTATION, xs:hexBinary or
xs:base64Binary.
	InOnlyComposition-2012	The in-only message
exchange pattern consists of exactly one message as follows:
	InOutComposition-2015	The in-out message
exchange pattern consists of exactly two messages, in order, as
follows:
	InterfaceOperation-2096	202 when the MEP is
"http://www.w3.org/ns/wsdl/in-only"
	InterfaceOperation-2097	204 when the MEP is
"http://www.w3.org/ns/wsdl/robust-in-only"
	MultipartStyle-2057	When using this style, the value of the
{message
content model} property of the
Interface Message Reference component corresponding to the
initial message of the message exchange pattern MUST be
"#element".
	MultipartStyle-2058	The sequence MUST only contain
elements.
	MultipartStyle-2059	The sequence MUST contain only local
element children.
	MultipartStyle-2060	The attributes minOccurs
and maxOccurs for these child elements MUST have a
value 1.
	MultipartStyle-2061	The localPart of the element's QName
MUST be the same as the
Interface Operation component's {name}.
	MultipartStyle-2062	The complex type that defines the body
of the element or its children elements MUST NOT contain any
attributes.
	MultipartStyle-2063	The sequence MUST NOT contain multiple
children element declared with the same local name.
	OperationSafety-2027	However, an operation SHOULD be marked
safe if it meets the criteria for a safe interaction defined in
Section 3.4 of [Web
Architecture].
	RPCStyle-2029	If the RPC style is used by an
Interface Operation component then its {message
exchange pattern} property MUST have the value either
"http://www.w3.org/ns/wsdl/in-only" or
"http://www.w3.org/ns/wsdl/in-out".
	RPCStyle-2030	The value of the {message
content model} property for the
Interface Message Reference components of the {interface
message references} property MUST be "#element".
	RPCStyle-2031	The content model of input and output
{element
declaration} elements MUST be defined using a complex type that
contains a sequence from XML Schema.
	RPCStyle-2032	The input sequence MUST only contain
elements and element wildcards.
	RPCStyle-2033	The input sequence MUST NOT contain
more than one element wildcard.
	RPCStyle-2034	The element wildcard, if present, MUST
appear after any elements.
	RPCStyle-2035	The output sequence MUST only contain
elements.
	RPCStyle-2036	Both the input and output sequences
MUST contain only local element children.
	RPCStyle-2037	The local name of input element's QName
MUST be the same as the
Interface Operation component's name.
	RPCStyle-2038	Input and output elements MUST both be
in the same namespace.
	RPCStyle-2039	The complex type that defines the body
of an input or an output element MUST NOT contain any local
attributes.
	RPCStyle-2040	If elements with the same qualified
name appear as children of both the input and output elements, then
they MUST both be declared using the same named type.
	RPCStyle-2041	The input or output sequence MUST NOT
contain multiple children elements declared with the same
name.
	RobustInOnlyComposition-2013	The robust-in-only message
exchange pattern consists of exactly one message as follows:
	SOAPAction-2075	A xs:anyURI, which is an
absolute IRI as defined by [IETF RFC
3987], to the
Binding Operation component.
	SOAPBinding-2065	When formulating the SOAP envelope to
be transmitted, the contents of the payload (i.e., the contents of
the SOAP Body element information item of the SOAP
envelope) MUST be what is defined by the corresponding
Interface Message Reference component.
	SOAPBinding-2068	If the
Interface Message Reference component is declared using a
non-XML type system (as considered in the Types section of
[WSDL 2.0 Core Language]),
then additional binding rules MUST be defined to indicate how to
map those components into the SOAP envelope.
	SOAPBinding-2069	Every SOAP binding MUST indicate what
version of SOAP is in use for the operations of the interface that
this binding applies to.
	SOAPBinding-2070	Every SOAP binding MUST indicate what
underlying protocol is in use.
	SOAPBindingFault-2071	For every
Interface Fault component contained in an
Interface component, a mapping to a SOAP Fault MUST be
described.
	SOAPBindingFault-2072	when the value of the {soap version} is "1.2", the
allowed QNames MUST be the ones defined by [SOAP 1.2 Part 1: Messaging Framework (Second
Edition)], section 5.4.6
	SOAPHTTPProperties-2064	These properties MUST NOT be used
unless the underlying protocol is HTTP.
	SOAPHTTPSelection-2082	This default binding rule is applicable
when the value of the {soap underlying
protocol} property of the Binding
component is "http://www.w3.org/2003/05/soap/bindings/HTTP/". If
the SOAP MEP selected as specified above has the value
"http://www.w3.org/2003/05/soap/mep/request-response/" then the
HTTP method used is "POST". If the SOAP MEP selected has the value
"http://www.w3.org/2003/05/soap/mep/soap-response/" then the HTTP
method used is "GET".
	SOAPHeaderBlock-2077	When its value is "true", the SOAP
header block MUST be decorated with a SOAP
mustUnderstand attribute information item
with a value of "true"; if so, the XML element declaration
referenced by the {element
declaration} property MUST allow this SOAP
mustUnderstand attribute information
item.
	SOAPHeaderBlock-2078	If the value is "true", then the SOAP
header block MUST be included in the message.
	SOAPHeaderBlock-2079	The value of the element
attribute information item MUST resolve to a global
element declaration from the {element
declarations} property of the
Description component.
	SOAPMEP-2074	A xs:anyURI, which is an
absolute IRI as defined by [IETF RFC
3987], to the
Binding Operation component.
	SOAPMEPDefault-2073	A xs:anyURI, which is an
absolute IRI as defined by [IETF RFC
3987], to the Binding
component.
	SOAPMEPSelection-2080	For a given
Interface Operation component, if there is a
Binding Operation component whose {interface
operation} property matches the component in question and its
{soap mep}
property has a value, then the SOAP MEP is the value of the
{soap mep}
property. Otherwise, the SOAP MEP is the value of the Binding
component's {soap mep
default}, if any. Otherwise, the
Interface Operation component's {message
exchange pattern} property MUST have the value
"http://www.w3.org/ns/wsdl/in-out", and the SOAP MEP is the URI
"http://www.w3.org/2003/05/soap/mep/request-response/" identifying
the SOAP Request-Response Message Exchange Pattern as defined in
[SOAP 1.2 Part 2: Adjuncts (Second
Edition)].
	SOAPModule-2076	A xs:anyURI, which is an
absolute IRI as defined by [IETF RFC
3987].
	WRPC-2042	OPTIONAL, but MUST be present when the
style is RPC
	WRPC-2043	Values for the second component MUST be
chosen among the following four: "#in", "#out", "#inout"
"#return".
	WRPC-2044	The value of the first component of
each pair (q, t) MUST be unique within the list.
	WRPC-2045	For each child element of the input and
output messages of the operation, a pair (q, t), whose
first component q is equal to the qualified name of that
element, MUST be present in the list, with the caveat that elements
that appear with cardinality greater than one MUST be treated as a
single element.
	WRPC-2046	For each pair (q, #in), there
MUST be a child element of the input element with a name of
q. There MUST NOT be a child element of the output element
with the name of q.
	WRPC-2047	For each pair (q, #out), there
MUST be a child element of the output element with a name of
q. There MUST NOT be a child element of the input element
with the name of q.
	WRPC-2048	For each pair (q, #inout),
there MUST be a child element of the input element with a name of
q. There MUST also be a child element of the output
element with the name of q.
	WRPC-2049	For each pair (q, #return),
there MUST be a child element of the output element with a name of
q. There MUST NOT be a child element of the input element
with the name of q.

Table C-3. Summary of Assertions about Messages	Id	Assertion
	HTTPSerialization-2110	Cited elements (i.e. elements
referenced in templates) MUST NOT carry an xs:nil
attribute whose value is "true"
	SOAP12Binding-SOAPDetail-2081	If any, the value of the SOAP "Detail"
element MUST be the element information item identified by
the {element
declaration} property of the
Interface Fault component.
	SOAPBinding-2066	If the value is "#none", then the
payload MUST be empty.
	SOAPBinding-2067	If the value is "#element", then the
payload MUST be the element information item identified by
the {element
declaration} property of the
Interface Message Reference component.

Table C-4. Summary of Assertions about Message
Exchanges	Id	Assertion
	FaultDelivery-2008	The fault message MUST be delivered to
the same target node as the message it replaces, unless otherwise
specified by an extension or binding extension. If there is no path
to this node, the fault MUST be discarded.
	FaultDelivery-2010	The fault message MUST be delivered to
the originator of the triggering message, unless otherwise
specified by an extension or binding extension. Any node MAY
propagate a fault message, and MUST NOT do so more than once for
each triggering message. If there is no path to the originator, the
fault MUST be discarded.
	FaultPropagation-2003	Nodes that generate faults MUST attempt
to propagate the faults in accordance with the governing ruleset,
but it is understood that any delivery of a network message is best
effort, not guaranteed.
	FaultPropagation-2004	When a fault is generated, the
generating node MUST attempt to propagate the fault, and MUST do so
in the direction and to the recipient specified by the
ruleset.
	FaultReplacesMessage-2007	When the Fault Replaces Message
propagation rule is in effect, any message after the first in the
pattern MAY be replaced with a fault message, which MUST have
identical direction.
	InOnlyFaults-2013	The in-only message
exchange pattern uses the rule 2.2.3 No
Faults propagation rule.
	InOutFaults-2016	The in-out message
exchange pattern uses the rule 2.2.1 Fault Replaces Message
propagation rule.
	MEPDescriptiveness-2002	by some prior agreement, another node
and/or the service MAY send messages (to each other or to other
nodes) that are not described by the pattern.
	MEPTermination-2006	Generation of a fault, regardless of
ruleset, terminates the exchange.
	MessageTriggersFault-2009	When the Message Triggers Fault
propagation rule is in effect, any message, including the first in
the pattern, MAY trigger a fault message, which MUST have opposite
direction.
	NoFaults-2011	When the No Faults propagation rule is
in effect, faults MUST NOT be propagated.
	NodeIdentity-2001	A node MAY be accessible via more than
one physical address or transport.
	RobustInOnlyFaults-2014	The robust in-only message
exchange pattern uses the rule 2.2.2 Message Triggers Fault propagation
rule.

