

 JSON-LD 1.1 Framing

 W3C Recommendation
 16 July 2020

 Dave Longley, Digital Bazaar; Gregg Kellogg; Pierre-Antoine Champin, LIRIS - Université de Lyon

 [image: W3C main logo]

 Note: this EPUB edition does not represent the authoritative text of the specification; please consult the original document on the W3C Web Site.

 Copyright
 © of the original documents: 16 July 2020 W3C® (MIT, ERCIM,
 Keio, Beihang).

 All right reserved. W3C liability,
 trademark,
 and document use rules apply.

 [image: W3C] JSON-LD 1.1 Framing

 An Extension to the Application Programming Interface for the JSON-LD Syntax

 W3C Recommendation
 16 July 2020

 	This version:
	
 https://www.w3.org/TR/2020/REC-json-ld11-framing-20200716/

	Latest published version:
	
 https://www.w3.org/TR/json-ld11-framing/

 	Latest editor's draft:
	https://w3c.github.io/json-ld-framing/

 	Test suite:
	https://w3c.github.io/json-ld-framing/tests/

 	Implementation report:
	
 https://w3c.github.io/json-ld-api/reports/

 	Previous version:
	https://www.w3.org/TR/2020/PR-json-ld11-framing-20200507/

 	Editors:

 	Dave Longley
 (Digital Bazaar)
 (v1.0 and v1.1)
	Gregg Kellogg (v1.0 and v1.1)
	Pierre-Antoine Champin
 (LIRIS - Université de Lyon)
 (v1.1)

 	
 Former editors:

	Manu Sporny
 (Digital Bazaar)
 (v1.0)
	Markus Lanthaler
 (Google)
 (v1.0)

 	
 Authors:

	Dave Longley
 (Digital Bazaar)
 (v1.0)
	Manu Sporny
 (Digital Bazaar)
 (v1.0)
	Gregg Kellogg (v1.0 and v1.1)
	Markus Lanthaler
 (Google)
 (v1.0)
	Niklas Lindström (v1.0)

 	Participate:
	
 GitHub w3c/json-ld-framing

	
 File a bug

	
 Commit history

	
 Pull requests

 Please check the
 errata for any errors or
 issues reported since publication.

 See also

 translations.

 This document is also available in this non-normative format:
 EPUB

 Copyright
 ©
 2010-2020

 W3C® (MIT,
 ERCIM, Keio,
 Beihang).
 W3C liability,
 trademark and permissive document license rules
 apply.

Abstract

JSON-LD Framing allows developers to query by example and
 force a specific tree layout to a JSON-LD document.

 This specification describes a superset of the features defined in
 JSON-LD Framing 1.0 [JSON-LD10-FRAMING]
 and, except where noted,
 the algorithms described in this specification are fully compatible
 with documents created using the previous community standard.

Status of This Document
This section describes the status of this
 document at the time of its publication. Other documents may supersede
 this document. A list of current W3C publications and the latest revision
 of this technical report can be found in the
 W3C technical reports index at
 https://www.w3.org/TR/.

 This document has been developed by the
 JSON-LD Working Group and was derived from the JSON-LD Community Group's Final Report.

 There is a
 live JSON-LD playground that is capable
 of demonstrating the features described in this document.

 This document was published by the JSON-LD Working Group as a
 Recommendation.

 GitHub Issues are preferred for
 discussion of this specification.

 Alternatively, you can send comments to our mailing list.
 Please send them to
 public-json-ld-wg@w3.org
 (archives).

 Please see the Working Group's
 implementation report.

 This document has been reviewed by W3C Members, by software developers, and
 by other W3C groups and interested parties, and is endorsed by the Director
 as a W3C Recommendation. It is a stable document and may be used as
 reference material or cited from another document. W3C's role in making the
 Recommendation is to draw attention to the specification and to promote its
 widespread deployment. This enhances the functionality and interoperability
 of the Web.

 This document was produced by a group
 operating under the
 W3C Patent Policy.

 W3C maintains a
 public list of any patent disclosures
 made in connection with the deliverables of
 the group; that page also includes
 instructions for disclosing a patent. An individual who has actual
 knowledge of a patent which the individual believes contains
 Essential Claim(s)
 must disclose the information in accordance with
 section 6 of the W3C Patent Policy.

 This document is governed by the
 1 March 2019 W3C Process Document.

 Set of Documents

 This document is one of three JSON-LD 1.1 Recommendations produced by the
 JSON-LD Working Group:

 	JSON-LD 1.1

 	JSON-LD 1.1 Processing Algorithms and API

 	JSON-LD 1.1 Framing

Table of Contents
	1. Introduction	1.1 How to Read this Document
	1.2 Contributing
	1.3 Typographical conventions
	1.4 Terminology	1.4.1 Algorithm Terms

	1.5 Syntax Tokens and Keywords

	2. Features	2.1 Framing	2.1.1 Matching on Properties
	2.1.2 Wildcard Matching
	2.1.3 Match on the Absence of a Property
	2.1.4 Matching on Values
	2.1.5 Matching on @id
	2.1.6 Empty Frame

	2.2 Default content
	2.3 Framing Flags	2.3.1 Object Embed Flag
	2.3.2 Explicit inclusion flag
	2.3.3 Omit default flag
	2.3.4 Omit graph flag
	2.3.5 Require all flag

	2.4 Reverse Framing
	2.5 Framing Named Graphs

	3. Conformance
	4. Framing	4.1 Framing Algorithm	4.1.1 Overview
	4.1.2 Algorithm

	4.2 Frame Matching Algorithm
	4.3 Value Pattern Matching Algorithm

	5. The Application Programming Interface	5.1 JsonLdProcessor
	5.2 Error Handling
	5.3 Data Structures	5.3.1 JsonLdContext
	5.3.2 JsonLdOptions

	6. Security Considerations
	7. Privacy Considerations
	8. Internationalization Considerations
	A. IANA Considerations
	B. IDL Index
	C. Open Issues
	D. Changes since 1.0 Draft of 30 August 2012
	E. Changes since JSON-LD Community Group Final Report
	F. Changes since Candidate Release of 12 December 2019
	G. Changes since Proposed Recommendation Release of 7 May 2020
	H. Acknowledgements
	I. References	I.1
 Normative references

	I.2
 Informative references

1. Introduction
This section is non-normative.

JSON-LD is a lightweight syntax to serialize Linked Data [LINKED-DATA] in JSON [RFC8259].
 Its design allows existing JSON to be interpreted as Linked Data with minimal changes.
 As with other representations of Linked Data which describe directed graphs,
 a single directed graph can have many different serializations, each expressing
 exactly the same information. Developers typically work with trees, represented as
 JSON objects. While mapping a graph to
 a tree can be done, the layout of the end result must be specified in advance.
 A Frame can be used by a developer on a JSON-LD document to
 specify a deterministic layout for a graph.

Using delimiters around a chunk of data is known as "framing".
 JSON-LD uses JSON delimiters such as { and } to
 separate statements about a particular subject. JSON-LD also allows subjects
 to reference other subjects through the use of their identifiers, expressed
 as strings.

However, given that JSON-LD represents one or more graphs of information,
 there is more than one way to frame the statements about several related
 subjects into a whole document. In fact, a graph of information can be
 thought of as a long list of independent statements (aka triples) that are not bundled together in any way.

The
 JSON-LD Framing API
 enables a developer to specify exactly how they would like data to be framed,
 such that statements about a particular subject are bundled together,
 delimited via { and }, and such that the subjects
 they relate to "nest" into a particular tree structure that matches what
 their application expects.

 1.1 How to Read this Document
This section is non-normative.

 This document is a detailed specification for a serialization of Linked
 Data in JSON. The document is primarily intended for the following audiences:

 	Authors who want to query JSON-LD documents to create representations
 more appropriate for a given use case.

 	Software developers that want to implement processors and APIs for JSON-LD.

 A companion document, the JSON-LD 1.1 specification
 [JSON-LD11], specifies the grammar of JSON-LD documents.

 To understand the basics in this specification you must first be familiar with
 JSON, which is detailed in [RFC8259].
 You must also understand the JSON-LD 1.1 Syntax specification [JSON-LD11],
 which is the base syntax used by all of the algorithms in this document,
 and the JSON-LD 1.1 API [JSON-LD11-API].
 To understand the API and how it is intended to operate in a programming environment,
 it is useful to have working knowledge of
 the JavaScript programming language [ECMASCRIPT]
 and WebIDL [WEBIDL].
 To understand how JSON-LD maps to RDF, it is helpful to be
 familiar with the basic RDF concepts [RDF11-CONCEPTS].

 This document can highlight changes since the JSON-LD 1.0 version.
 Select to changes.

 1.2 Contributing
This section is non-normative.

 There are a number of ways that one may participate in the development of
 this specification:

 	Technical discussion typically occurs on the public mailing list:
 public-json-ld-wg@w3.org

 	The working group uses #json-ld
 IRC channel is available for real-time discussion on irc.w3.org.

 	The #json-ld
 IRC channel is also available for real-time discussion on irc.freenode.net.

 1.3 Typographical conventions
This section is non-normative.

 The following typographic conventions are used in this specification:

 	markup
	
 Markup (elements, attributes, properties),
 machine processable values (string, characters, media types),
 property name,
 or a file name is in red-orange monospace font.

 	variable
	
 A variable in pseudo-code or in an algorithm description is in italics.

 	definition
	
 A definition of a term, to be used elsewhere in this or other specifications,
 is in bold and italics.

 	definition reference
	
 A reference to a definition in this document
 is underlined and is also an active link to the definition itself.

 	markup definition reference
	
 A references to a definition in this document,
 when the reference itself is also a markup, is underlined,
 red-orange monospace font, and is also an active link to the definition itself.

 	external definition reference
	
 A reference to a definition in another document
 is underlined, in italics, and is also an active link to the definition itself.

 	 markup external definition reference
	
 A reference to a definition in another document,
 when the reference itself is also a markup,
 is underlined, in italics red-orange monospace font,
 and is also an active link to the definition itself.

 	hyperlink
	
 A hyperlink is underlined and in blue.

 	[reference]
	
 A document reference (normative or informative) is enclosed in square brackets
 and links to the references section.

 	Changes from Recommendation
	
 Sections or phrases changed from the previous Recommendation
 may be highlighted using a control
 in § 1.1 How to Read this Document.

Note
Notes are in light green boxes with a green left border and with a "Note" header in green.
 Notes are always informative.

 Example 1

 Examples are in light khaki boxes, with khaki left border,
and with a numbered "Example" header in khaki.
Examples are always informative. The content of the example is in monospace font and may be syntax colored.

Examples may have tabbed navigation buttons
to show the results of transforming an example into other representations.

 1.4 Terminology

 This document uses the following terms as defined in external specifications
 and defines terms specific to JSON-LD.

 Terms imported from Other Specifications

Terms imported from ECMAScript Language Specification [ECMASCRIPT], The JavaScript Object Notation (JSON) Data Interchange Format [RFC8259], Infra Standard [INFRA], and Web IDL [WEBIDL]

	array
	
 In the JSON serialization,
 an array structure is represented as square brackets surrounding zero or more values.
 Values are separated by commas.
 In the internal representation,
 a list (also called an array) is an ordered collection of zero or more values.
 While JSON-LD uses the same array representation as JSON,
 the collection is unordered by default.
 While order is preserved in regular JSON arrays,
 it is not in regular JSON-LD arrays unless specifically defined
 (see the Sets and Lists section of JSON-LD 1.1.

 	boolean
	
 The values true and false that are used
 to express one of two possible states.

 	JSON object
	
 In the JSON serialization,
 an object structure
 is represented as a pair of curly brackets surrounding zero or more name/value pairs (or members).
 A name is a string.
 A single colon comes after each name,
 separating the name from the value.
 A single comma separates a value from a following name.
 In JSON-LD the names in an object must be unique.
 In the internal representation a JSON object is described as a
 map (see [INFRA]),
 composed of entries with key/value pairs.

 In the Application Programming Interface,
 a map is described using a [WEBIDL] record.

 	null
	
 The use of the null value within JSON-LD
 is used to ignore or reset values.
 A map entry in the @context where the value,
 or the @id of the value, is null,
 explicitly decouples a term's association with an IRI.
 A map entry in the body of a JSON-LD document
 whose value is null
 has the same meaning as if the map entry was not defined.
 If @value, @list, or @set is set to null in expanded form,
 then the entire JSON object is ignored.

 	number
	
 In the JSON serialization, a number
 is similar to that used in most programming languages,
 except that the octal and hexadecimal formats are not used and that leading zeros are not allowed.
 In the internal representation,
 a number is equivalent to either a long
 or double,
 depending on if the number has a non-zero fractional part (see [WEBIDL]).

 	scalar
	
 A scalar is either a string, number, true, or false.

 	string
	
 A string
 is a sequence of zero or more Unicode (UTF-8) characters,
 wrapped in double quotes, using backslash escapes (if necessary).
 A character is represented as a single character string.

Terms imported from Internationalized Resource Identifiers (IRIs) [RFC3987]

	IRI
	
 The absolute form of an IRI containing a scheme along with a path
 and optional query and fragment segments.

 	IRI reference
	
 Denotes the common usage of an Internationalized Resource Identifier.
 An IRI reference may be absolute or
 relative.
 However, the "IRI" that results from such a reference only includes absolute IRIs;
 any relative IRI references are resolved to their absolute form.

 	relative IRI reference
	
 A relative IRI reference is an IRI reference that is relative to some other IRI,
 typically the base IRI of the document.
 Note that properties,
 values of @type,
 and values of terms defined to be vocabulary relative
 are resolved relative to the vocabulary mapping,
 not the base IRI.

Terms imported from RDF 1.1 Concepts and Abstract Syntax [RDF11-CONCEPTS], RDF Schema 1.1 [RDF-SCHEMA], and Linked Data Design Issues [LINKED-DATA]

	base IRI
	
 The base IRI is an IRI established in the context,
 or is based on the JSON-LD document location.
 The base IRI is used to turn relative IRI references into IRIs.

 	blank node
	
 A node in a graph that is neither an IRI,
 nor a literal.
 A blank node does not contain
 a de-referenceable identifier because it is either ephemeral in nature
 or does not contain information that needs to be linked to from outside of the linked data graph.
 In JSON-LD,
 a blank node is assigned an identifier starting with the prefix _:.

 	blank node identifier
	
 A blank node identifier
 is a string that can be used as an identifier for a blank node within the scope of a JSON-LD document.
 Blank node identifiers begin with _:.

 	dataset
	
 A dataset
 representing a collection of RDF graphs
 including exactly one default graph and zero or more named graphs.

 	datatype IRI
	
 A datatype IRI is an IRI identifying a datatype that determines how the lexical form maps to a
 literal value.

 	default graph
	
 The default graph of a dataset is an RDF graph having no name, which may be empty.

 	graph name
	
 The IRI or blank node identifying a named graph.

 	language-tagged string
	
 A language-tagged string
 consists of a string and a non-empty language tag
 as defined by [BCP47].
 The language tag must be well-formed
 according to section 2.2.9 Classes of Conformance of [BCP47].
 Processors may normalize language tags to lowercase.

 	Linked Data
	
 A set of documents, each containing a representation of a linked data graph or dataset.

 	list
	
 A list is an ordered sequence of IRIs, blank nodes, and literals.

 	literal
	
 An object expressed as a value such as a string or number.
 Implicitly or explicitly includes a datatype IRI and, if the datatype is rdf:langString, an optional language tag.

 	named graph
	
 A named graph
 is a linked data graph that is identified by an IRI or blank node.

 	node
	
 A node in an RDF graph, either the subject and object of at least one triple.
 Note that a node can play both roles (subject and object) in a graph, even in the same triple.

 	object
	
 An object is a node in a linked data graph
 with at least one incoming edge.

 	property
	
 The name of a directed-arc in a linked data graph.
 Every property is directional
 and is labeled with an IRI or a blank node identifier.
 Whenever possible, a property should be labeled with an IRI.
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD.

 Also, see predicate in [RDF11-CONCEPTS].

 	RDF graph
	
 A labeled directed graph,
 i.e., a set of nodes connected by directed-arcs.
 Also called linked data graph.

 	resource
	
 A resource denoted by an IRI, a blank node or literal representing something in the world (the "universe of discourse").

 	subject
	
 A subject is a node in a linked data graph
 with at least one outgoing edge,
 related to an object node through a property.
	triple
	
 A component of an RDF graph including a subject, predicate, and object, which represents
 a node-arc-node segment of an RDF graph.

JSON-LD Specific Term Definitions

	active context
	
 A context that is used to resolve terms
 while the processing algorithm is running.

 	base direction
	
 The base direction is the direction used when a string does not have a direction associated with it directly.
 It can be set in the context using the @direction key
 whose value must be one of the strings "ltr", "rtl", or null.
 See the Context Definitions section of JSON-LD 1.1 for a normative description.

 	context
	
 A set of rules for interpreting a JSON-LD document
 as described in the The Context section of JSON-LD 1.1,
 and normatively specified in the Context Definitions section of JSON-LD 1.1.

 	default object
	
 A default object is a map that has a @default key.

 	frame
	
 A JSON-LD document,
 which describes the form for transforming another JSON-LD document
 using matching and embedding rules.
 A frame document allows additional keywords and certain map entries
 to describe the matching and transforming process.

 	frame object
	
 A frame object is a map element within a frame
 which represents a specific portion of the frame matching either
 a node object or a value object
 in the input.
 See the Frame Objects section of JSON-LD 1.1 for a normative description.

 	JSON-LD document
	
 A JSON-LD document is a serialization of
 an RDF dataset.
 See the JSON-LD Grammar section in JSON-LD 1.1 for a formal description.

 	JSON-LD internal representation
	
 The JSON-LD internal representation
 is the result of transforming a JSON syntactic structure
 into the core data structures suitable for direct processing:
 arrays, maps, strings, numbers, booleans, and null.

 	JSON-LD Processor
	
 A JSON-LD Processor is a system which can perform the algorithms defined in JSON-LD 1.1 Processing Algorithms and API.
 See the Conformance section in JSON-LD 1.1 API for a formal description.

 	JSON-LD value
	
 A JSON-LD value is a string,
 a number,
 true or false,
 a typed value,
 or a language-tagged string.
 It represents an RDF literal.

 	keyword
	
 A string that is specific to JSON-LD,
 described in the Syntax Tokens and Keywords section of JSON-LD 1.1,
 and normatively specified in the Keywords section of JSON-LD 1.1,

 	node object
	
 A node object represents zero or more properties of a node in the graph
 serialized by the JSON-LD document.
 A map is a node object
 if it exists outside of the JSON-LD context and:

 	it does not contain the @value, @list, or @set keywords, or

 	it is not the top-most map in the JSON-LD document
 consisting of no other entries than @graph and @context.

 The entries of a node object whose keys are not keywords are also called properties of the node object.
 See the Node Objects section of JSON-LD 1.1 for a normative description.

 	node reference
	
 A node object used to reference a node having only the @id key.

 	processing mode
	
 The processing mode defines how a JSON-LD document is processed.
 By default, all documents are assumed to be conformant with this specification.
 By defining a different version using the @version entry in a context,
 publishers can ensure that processors conformant with JSON-LD 1.0 [JSON-LD10]
 will not accidentally process JSON-LD 1.1 documents, possibly creating a different output.
 The API provides an option for setting the processing mode to json-ld-1.0,
 which will prevent JSON-LD 1.1 features from being activated,
 or error if @version entry in a context is explicitly set to 1.1.
 This specification extends JSON-LD 1.0
 via the json-ld-1.1 processing mode.

 	scoped context
	
 A scoped context is part of an expanded term definition using the
 @context entry. It has the same form as an embedded context.
 When the term is used as a type, it defines a type-scoped context,
 when used as a property it defines a property-scoped context.

 	typed value
	
 A typed value consists of a value,
 which is a string,
 and a type,
 which is an IRI.

 	value object
	
 A value object is a map that has an @value entry.
 See the Value Objects section of JSON-LD 1.1 for a normative description.

 	vocabulary mapping
	
 The vocabulary mapping is set in the context using the @vocab key
 whose value must be an IRI, a compact IRI, a term, or null.
 See the Context Definitions section of JSON-LD 1.1 for a normative description.

 1.4.1 Algorithm Terms

 The Following terms are used within specific algorithms.

 	active property
	
 The currently active property or keyword that the processor should use when processing.
 The active property is represented in the original lexical form,
 which is used for finding coercion mappings in the active context.

 	explicit inclusion flag
	
 A flag specifying that for properties to be included in the output,
 they must be explicitly declared in the matching frame.

 	framing state
	
 A map containing values for
 the object embed flag,
 the require all flag,
 the embedded flag,
 used internally to help determine if object embedding is appropriate,
 the explicit inclusion flag,
 and the omit default flag.

 	input frame
	
 The initial Frame provided to the framing algorithm.

 	IRI compacting

 	
 Used as a macro within various algorithms as to reduce the language used to describe
 the process of compacting a string var representing an IRI or keyword
 using an active context either specified directly, or coming from the scope of
 the algorithm step using this term.
 An optional value is used, if explicitly provided.
 Unless specified, the vocab flag defaults to true,
 and the reverse flag defaults to false.

 	Return the result of using the IRI Compaction algorithm,
 passing active context,
 var,
 value (if supplied),
 vocab,
 and result.

 	JSON-LD input
	
 The JSON-LD data structure that is provided as input to the algorithm.

 	map of flattened subjects
	
 A map of subjects that is the result of the
 Node Map Generation algorithm.

 	object embed flag
	
 A flag specifying that node objects should be directly embedded in the output,
 instead of being referred to by their IRI.

 	omit default flag
	
 A flag specifying that properties that are missing from the JSON-LD input,
 but present in the input frame,
 should be omitted from the output.

 	omit graph flag
	
 A flag that determines if framing output is always contained within a @graph entry,
 or only if required to represent multiple node objects.

 	require all flag
	
 A flag specifying that all properties present in the input frame
 must either have a default value
 or be present in the JSON-LD input
 for the frame to match.

 1.5 Syntax Tokens and Keywords

 This specification adds a number of keywords (framing keywords) to
 the ones defined in the JSON-LD 1.1 Syntax specification [JSON-LD11]:

 	@default

 	Used in Framing to set the default value for
 an output property when the framed node object does not include such a property.

 	@embed

 	Used in Framing to override the
 value of object embed flag within a specific frame. Valid values for
 @embed as the following:

 	@always
	
 Always embed node objects as property values, unless this would
 cause a circular reference.

 	@once
	
 Just a single value within a given node object should be embedded,
 other values of other properties use a node reference. This is the
 default value if neither @embed nor object embed flag
 is specified.
 Note
The specific node object chosen to embed depends on
 ordering. If the ordered flag is true,
 this will be the first node object encountered,
 otherwise, it may be any node object.

 	@never
	
 Always use a node reference when serializing matching values.

 Any other value for @embed is invalid and indicates that an
 invalid @embed value
 error has been detected and processing is aborted.

 	@explicit

 	Used in Framing to override the
 value of explicit inclusion flag within a specific frame.

 	@null

 	Used in Framing when a value of null
 should be returned, which would otherwise be removed when
 Compacting.

 	@omitDefault

 	Used in Framing to override the
 value of omit default flag within a specific frame.

 	@requireAll

 	Used in Framing to override the
 value of require all flag within a specific frame.

 All JSON-LD tokens and keywords are case-sensitive.

2. Features
This section is non-normative.

 JSON-LD 1.1 introduces new features that are
 compatible with JSON-LD 1.0 [JSON-LD10],
 but if processed by a JSON-LD 1.0 processor may produce different results.
 Processors default to json-ld-1.1, unless the
 processingMode API option
 is explicitly set to json-ld-1.0.
 Publishers are encouraged to use the @version map entry within a context
 set to 1.1 to ensure that JSON-LD 1.0 processors will not misinterpret JSON-LD 1.1 features.

 2.1 Framing
This section is non-normative.

 Framing is used to shape the data in a JSON-LD document,
 using an example frame document which is used to both match the
 flattened
 data and show an example of how the resulting data should be shaped.
 Matching is performed by using properties present in in the frame
 to find objects in the data that share common values. Matching can be done
 either using all properties present in the frame, or any property in the frame.
 By chaining together objects using matched property values, objects can be embedded
 within one another.

 A frame also includes a context, which is used for compacting the resulting
 framed output.

 For example, assume the following JSON-LD frame:

 Example 2: Sample library frame

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "contains": {
 "@type": "Book",
 "contains": {
 "@type": "Chapter"
 }
 }
}

 This frame document describes an embedding structure that would place
 objects with type Library at the top, with objects of
 type Book that were linked to the library object using
 the contains property embedded as property values. It also
 places objects of type Chapter within the referencing Book object
 as embedded values of the Book object.

 When using a flattened set of objects that match the frame components:

 Example 3: Flattened library objects

 {
 "@context": {
 "@vocab": "http://example.org/",
 "contains": {"@type": "@id"}
 },
 "@graph": [{
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": "http://example.org/library/the-republic"
 }, {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": "http://example.org/library/the-republic#introduction"
 }, {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }]
}

 The Frame Algorithm can create a new document which follows the structure
 of the frame:

 Example 4: Framed library objects

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 If processing mode is not json-ld-1.0, or the omit graph flag is true,
 the top-level @graph entry may be omitted.

 Example 5: Framed library objects

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 The Framing Algorithm does this by
 first expanding both the input frame and document. It then creates
 a map of flattened subjects. The outer-most node object within the frame
 is used to match objects in the map, in this case looking for node objects
 which have an @type of Library, and a
 contains property with another
 frame used to match values of that property. The input document contains
 exactly one such node object. The value of contains also has
 a node object, which is then treated as a frame to match the set of subjects
 which are contains values of the Library object, and so forth.

 2.1.1 Matching on Properties
This section is non-normative.

 In addition to matching on types, a frame can match on
 one or more properties.

 For example, the following frame selects object based on property
 values, rather than @type.

 Example 6: Library frame with property matching

 {
 "@context": {"@vocab": "http://example.org/"},
 "location": "Athens",
 "contains": {
 "title": "The Republic",
 "contains": {
 "title": "The Introduction"
 }
 }
}

 This will generate the same framed results as when selecting on @type,
 as the property values are unique to each node object.

 Example 7: Framed library objects with property matching

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 See § 2.3.5 Require all flag
 to see how matching can be restricted to match node objects containing
 all, versus any such listed property.

 2.1.2 Wildcard Matching
This section is non-normative.

 The empty map ({}) is used as a wildcard, which will
 match a property if it exists in a target node object, independent of any specific value.

 For example, the following frame selects object based on property
 wildcarding, rather than @type.

 Example 8: Library frame with wildcard matching

 {
 "@context": {"@vocab": "http://example.org/"},
 "location": {},
 "contains": {
 "creator": {},
 "contains": {
 "description": {}
 }
 }
}

 This will generate the same framed results as when selecting on @type,
 as the matched properties are distinct to each node object.

 Example 9: Framed library objects with wildcard matching

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 2.1.3 Match on the Absence of a Property
This section is non-normative.

 The empty array ([]) is used for match none, which will
 match a node object only if a property does not exist in a target node object.

 For example, the following frame selects object based on the absence of properties,
 rather than @type.

 Example 10: Library frame with absent matching

 {
 "@context": {"@vocab": "http://example.org/"},
 "creator": [],
 "title": [],
 "contains": {
 "location": [],
 "description": [],
 "contains": {
 "location": []
 }
 }
}

 This will generate the same framed results as when selecting on @type,
 the property that is excluded uniquely identifies each node object.
 Note that additional properties with the value null are added
 for those properties explicitly excluded.

 Example 11: Framed library objects with wildcard matching

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "creator": null, ← This property is added
 "title": null, ← This property is added
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "description": null, ← This property is added
 "location": null, ← This property is added
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "location": null, ← This property is added
 "title": "The Introduction"
 }
 }
}

 2.1.4 Matching on Values
This section is non-normative.

 Frames can be matched based on the presence of specific property values.
 These values can themselves use wildcards, to match on a specific
 or set of values, language tags, types, or base direction.

 For an example, we'll use an multilingual version of the library example
 with more complex value representations.

 Example 12: Multilingual library objects

 {
 "@context": {
 "@vocab": "http://example.org/",
 "contains": {"@type": "@id"}
 },
 "@graph": [{
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": [
 {"@value": "Athens", "@language": "en"},
 {"@value": "Αθήνα", "@language": "grc"},
 {"@value": "Athína", "@language": "el-Latn"}
],
 "contains": "http://example.org/library/the-republic"
 }, {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": [
 {"@value": "Plato", "@language": "en"},
 {"@value": "Πλάτων", "@language": "grc"},
 {"@value": "Plátōn", "@language": "el-Latn"}
],
 "title": [
 {"@value": "The Republic", "@language": "en"},
 {"@value": "Πολιτεία", "@language": "grc"},
 {"@value": "Res Publica", "@language": "el-Latn"}
],
 "contains": "http://example.org/library/the-republic#introduction"
 }, {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }]
}

 By matching on an attribute of a value, we can match frames
 having that attribute, and limit results to property values
 that match. In this case, we'll frame the Library and Book objects
 on values only in latinized Greek (el-Latn):

 Example 13: Library frame with language matching

 {
 "@context": {"@vocab": "http://example.org/"},
 "location": {"@value": {}, "@language": "el-Latn"},
 "contains": {
 "creator": {"@value": {}, "@language": "el-Latn"},
 "title": {"@value": {}, "@language": "el-Latn"},
 "contains": {
 "title": "The Introduction"
 }
 }
}

 This generates the following framed results:

 Example 14: Framed library objects with wildcard matching

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": {"@value": "Athína", "@language": "el-Latn"},
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": {"@value": "Plátōn", "@language": "el-Latn"},
 "title": {"@value": "Res Publica", "@language": "el-Latn"},
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 2.1.5 Matching on @id
This section is non-normative.

 Frames can be matched if they match a specific
 identifier (@id). This can be illustrated with the original
 Flattened library objects
 input using a frame which matches on specific @id values:

 Example 15: Library frame with @id matching

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction"
 }
 }
}

 This generates the following framed results:

 Example 16: Framed library objects with @id matching

 Open in playground

 {
 "@context": {
 "@vocab": "http://example.org/"
 },
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 Frames can also be matched from an array of identifiers.
 Within a frame, it is acceptable for @id to have an array value,
 where the individual values are treated as IRIs.

 Example 17: Library frame with array @id matching

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": ["http://example.org/home", "http://example.org/library"],
 "contains": {
 "@id": ["http://example.org/library/the-republic"],
 "contains": {
 "@id": ["http://example.org/library/the-republic#introduction"]
 }
 }
}

 This generates the following framed results:

 Example 18: Framed library objects with @id matching

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 2.1.6 Empty Frame
This section is non-normative.

 An empty frame matches any node object, even if those
 objects are embedded elsewhere, causing them to be serialized at the top level.

 Example 19: Empty frame

 {
 "@context": {"@vocab": "http://example.org/"}
}

 This generates the following framed results:

 Example 20: Framed library objects with empty frame

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@graph": [{
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
 }, {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }, {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }]
}

 2.2 Default content
This section is non-normative.

 A frame may specify properties that don't exist in an input file. If the
 explicit inclusion flag is false, the framing algorithm
 will add a property and value to the result. The @default property
 in a node object or value object,
 or as a value of @type,
 provides a default value to use in the resulting
 output document. If there is no @default value, the property will be output
 with a null value. (See § 2.3.3 Omit default flag
 for ways to avoid this).

 Note
The value of the property in the frame is not otherwise
 used in the output document. It's purpose is for frame matching and
 finding default values. Note the description value for Library in the following example.

 Example 21: Sample library frame with @default value

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "description": "A great Library.",
 "contains": {
 "@type": "Book",
 "description": {"@default": "A great book."},
 "contains": {
 "@type": "Chapter"
 }
 }
}

 Example 22: Sample library output with @default value

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "description": null,
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "description": "A great book.",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 Default values may also be used for @type, similar to other properties.
 In this case, a matched node object without an @type will take the
 value of the default object from the frame.
 The default object has a value which is a single IRI.
 If multiple IRIs are specified, only the first will be used as the default type.

 The frame matches objects having specific property values,
 and provides defaults for @type for matched objects.

 Example 23: Sample library frame with @default type

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "contains": {
 "@type": {"@default": "Book"},
 "creator": "Plato",
 "contains": {
 "@type": {"@default": "Chapter"},
 "description": "An introductory chapter on The Republic."
 }
 }
}

 Data missing specific values for @type, but which matches based on
 other property values.

 Example 24: Typeless library objects

 {
 "@context": {
 "@vocab": "http://example.org/",
 "contains": {"@type": "@id"}
 },
 "@graph": [{
 "@id": "http://example.org/library",
 "@type": "Library",
 "contains": "http://example.org/library/the-republic"
 }, {
 "@id": "http://example.org/library/the-republic",
 "creator": "Plato",
 "title": "The Republic",
 "contains": "http://example.org/library/the-republic#introduction"
 }, {
 "@id": "http://example.org/library/the-republic#introduction",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }]
}

 Example 25: Sample library output with @default type

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@graph": [{
 "@id": "http://example.org/library",
 "@type": "Library",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 },
 "creator": "Plato",
 "description": "A great book.",
 "title": "The Republic"
 }
 }]
}

 2.3 Framing Flags
This section is non-normative.

 Framing can be controlled using API options,
 or by adding framing keywords within the frame as
 described in § 1.5 Syntax Tokens and Keywords.

 Note
Framing flags set using keywords have effect only for the
 frame in which they appear, and for implicit frames which are created
 for objects where no frame object exists.

 2.3.1 Object Embed Flag
This section is non-normative.

 The object embed flag determines if a referenced
 node object is embedded as a property value of a referencing
 object, or kept as a node reference.
 The initial value for the object embed flag is set using the
 embed option.
 Consider the following frame
 based on the default @once value of the object embed flag:

 Example 26: Sample library frame with implicit @embed set to @once

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library"
}

 Example 27: Framed library objects with @embed set to @once

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 Because, the default for the object embed flag is @once
 (in addition to the explicit inclusion flag being false),
 non-listed properties are added to the output, and implicitly embedded
 using a default empty frame. As a result, the same output used in the
 Framed library objects above is generated,
 assuming that the ordered flag is true.

 However, if the @embed property is added explicitly with a
 value of @never, the values for Book and Chapter will be excluded.

 Example 28: Sample library frame with explicit @embed set to @never

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "contains": {
 "@type": "Book",
 "@embed": "@never"
 }
}

 Example 29: Framed library objects with @embed set to @never

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic"
 }
}

 To illustrate the case where @once does not expand values,
 consider an alternate library example where books are doubly indexed.

 Example 30: Flattened library objects with double index

 {
 "@context": {
 "@vocab": "http://example.org/",
 "books": {"@type": "@id"},
 "contains": {"@type": "@id"}
 },
 "@graph": [{
 "@id": "http://example.org/library",
 "@type": "Library",
 "books": "http://example.org/library/the-republic",
 "contains": "http://example.org/library/the-republic"
 }, {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": "http://example.org/library/the-republic#introduction"
 }, {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }]
}

 Example 31: Framed library objects with double index

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "contains": {"@id": "http://example.org/library/the-republic"},
 "books": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 When framed using the same frame with the default @embed of @once,
 only the "books" property will have content,
 if the ordered flag is true,
 and the "contains" property will use a reference.

 If we use a frame using "@embed": "@always",
 both properties will include expanded values.

 Example 32: Sample library frame with explicit @embed set to @always

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "@embed": "@always"
}

 Example 33: Framed library objects with double index and @always

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "books": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 },
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 2.3.2 Explicit inclusion flag
This section is non-normative.

 The explicit inclusion flag used to determine
 properties which will be included in the output document.
 The default value is false, which means that properties
 present in an input node object that are not in the associated frame will be
 included in the output object.
 If true, only properties present in
 the input frame will be placed into the output.
 The initial value for the explicit inclusion flag is set using the
 explicit option.

 For example, take an expanded version of the library frame which include
 some properties from the input, but omit others.

 Example 34: Sample library frame with @explicit set to true

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "description": {},
 "contains": {
 "@type": "Book",
 "@explicit": true,
 "title": {},
 "contains": {
 "@type": "Chapter"
 }
 }
}

 The resulting output will exclude properties for Book which are not explicitly
 listed in the frame object:

 Example 35: Framed library objects with @explicit set to true

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "description": null ← This property is explicit,
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato", ← This property is omitted
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 Note that the Library object contains a null
 description property, as it is explicitly called for in the frame
 using "description": {}. The creator property does
 not exist in the output, because it is not explicit.

 2.3.3 Omit default flag
This section is non-normative.

 The omit default flag changes the way framing generates output when a property
 described in the frame is not present in the input document.
 The initial value for the omit default flag is set using the
 omitDefault option.
 See § 2.2 Default content for a further discussion.

 Consider the following input document:

 Example 36: Sample parent/child relationship data

 {
 "@context": {
 "@vocab": "http://example.org/",
 "child": {"@type": "@id"}
 },
 "@graph": [{
 "@id": "http://example.org#John",
 "@type": "Person",
 "name": "John",
 "child": "http://example.org#Jane"
 }, {
 "@id": "http://example.org#Jane",
 "@type": "Person",
 "name": "Jane"
 }]
}

 To illustrate where the omit default flag is useful, consider the following
 frame, which does not use @omitDefault:

 Example 37: Sample parent/child relationship frame without @omitDefault

 {
 "@context": {
 "@vocab": "http://example.org/",
 "child": {"@type": "@id"}
 },
 "@type": "Person",
 "child": {
 "@embed": "@always"
 }
}

 The resulting output will include a "child" property with the value
 null, which may not always be desired:

 Example 38: Sample parent/child relationship output without @omitDefault

 Open in playground

 {
 "@context": {
 "@vocab": "http://example.org/",
 "child": {"@type": "@id"}
 },
 "@graph": [{
 "@id": "http://example.org#John",
 "@type": "Person",
 "name": "John",
 "child": {
 "@id": "http://example.org#Jane",
 "@type": "Person",
 "name": "Jane"
 }
 }, {
 "@id": "http://example.org#Jane",
 "@type": "Person",
 "name": "Jane",
 "child": null
 }]
}

 Note that because the option "@embed": "@always" is specified in the frame
 under the child property, that "child": null appears in the output
 for matches that do not have that property, which may be undesirable.
 To prevent this default null output from occurring,
 the @omitDefault may be set to true like so:

 Example 39: Sample parent/child relationship frame with @omitDefault

 {
 "@context": {
 "@vocab": "http://example.org/",
 "child": {"@type": "@id"}
 },
 "@type": "Person",
 "child": {
 "@embed": "@always",
 "@omitDefault": true
 }
}

 Which yields this (desirable) output:

 Example 40: Sample parent/child relationship output with @omitDefault

 Open in playground

 {
 "@context": {
 "@vocab": "http://example.org/",
 "child": {"@type": "@id"}
 },
 "@graph": [{
 "@id": "http://example.org#John",
 "@type": "Person",
 "name": "John",
 "child": {
 "@id": "http://example.org#Jane",
 "@type": "Person",
 "name": "Jane"
 }
 }, {
 "@id": "http://example.org#Jane",
 "@type": "Person",
 "name": "Jane"
 ↑ Does not include "child" property
 }]
}

 2.3.4 Omit graph flag
This section is non-normative.

 The omit graph flag determines if framed output containing a single
 node object is contained within @graph, or not.
 The initial value for the omit graph flag is set using the
 omitGraph option, or based on
 the processing mode; if processing mode is json-ld-1.0, the output
 always includes a @graph entry, otherwise, the @graph entry is used only
 to describe multiple node objects, consistent with compaction.
 See § 4.1 Framing Algorithm for a further discussion.

 The result is the same as the original Flattened library objects example,
 but a @graph at the top-level.
 Example 5 shows the results
 with the omit graph flag set to true, which is the default value when
 the processing mode is set to the default json-ld-1.1.
 The top-level object can be enclosed within @graph by setting the processing mode to json-ld-1.0,
 or by setting the omit graph flag to false.

 Example 41: Framed library objects with @omitGraph set to false

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@graph": [{
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
 }]
}

 2.3.5 Require all flag
This section is non-normative.

 The require all flag is used in frame matching to determine when a
 node object from an input document matches a frame. When
 matching, an object may include @type and other
 properties, a match is made when any property value in the
 object matches the node pattern in the frame object if
 the value of the require all flag is false (the
 default). If the flag value is true, then all
 properties in the frame object must be present in the node
 object for the node to match.

 The following frame matches on multiple properties, including the absence of a property.
 Using the Flattened library objects example,
 we can match on an object containing both the title and description or title and creator
 properties.
 If we were to use @requireAll set to false, then we could match on the presence
 of any property, not all properties.

 Example 42: Frame with @requireAll

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "contains": {
 "@requireAll": true,
 "creator": {},
 "title": {},
 "contains": {
 "@requireAll": true,
 "description": {},
 "title": {}
 }
 }
}

 This will, again, reproduce the desired framed output:

 Example 43: Framed library objects with @requireAll set to true

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 2.4 Reverse Framing
This section is non-normative.

 A frame may include @reverse, or a value of a term defined using @reverse
 to invert the relationships in the output object. For example, the
 Library example can be inverted using the following frame:

 Example 44: Inverted library frame

 {
 "@context": {
 "@vocab": "http://example.org/",
 "within": {"@reverse": "contains"}
 },
 "@type": "Chapter",
 "within": {
 "@type": "Book",
 "within": {
 "@type": "Library"
 }
 }
}

 Using the flattened library example above, results in the following:

 Example 45: Inverted library output

 Open in playground

 {
 "@context": {
 "@vocab": "http://example.org/",
 "within": {"@reverse": "contains"}
 },
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction",
 "within": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "contains": {"@id": "http://example.org/library/the-republic#introduction"},
 "creator": "Plato",
 "title": "The Republic",
 "within": {
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {"@id": "http://example.org/library/the-republic"}
 }
 }
}

 Note

 There is an asymmetry between regular properties and reverse properties.
 Normally, when framing a node object, unless the explicit inclusion flag is set,
 all properties of the node are included in the output, but reverse
 properties are not, as they are not actually properties of the node.

 To include reverse properties in the output, add them explicitly to the frame.
 Note that if the reverse relationship does not exist, it will simply be
 left out of the output.

 2.5 Framing Named Graphs
This section is non-normative.

 Frames can include @graph, which allows information from named graphs
 contained within a JSON-LD document to be exposed within it's proper
 graph context. By default, framing uses a merged graph, composed of all
 the node objects across all graphs within the input. By using @graph
 within a frame, the output document can include information specifically
 from named graphs contained within the input document.

 The following example uses a variation on our library theme where information
 is split between the default graph, and a graph named http://example.org/graphs/books:

 Example 46: Frame with named graphs

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "contains": {
 "@id": "http://example.org/graphs/books",
 "@graph": {
 "@type": "Book"
 }
 }
}

 Example 47: Flattened Input with named graphs

 [{
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/graphs/books",
 "@graph": [{
 "@id": "http://example.org/library/the-republic",
 "@type": "http://example.org/Book",
 "http://example.org/contains": {
 "@id": "http://example.org/library/the-republic#introduction"
 },
 "http://example.org/creator": "Plato",
 "http://example.org/title": "The Republic"
 }, {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "http://example.org/Chapter",
 "http://example.org/description": "An introductory chapter on The Republic.",
 "http://example.org/title": "The Introduction"
 }]
}, {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "http://example.org/Library",
 "http://example.org/contains": {"@id": "http://example.org/graphs/books"},
 "http://example.org/name": "Library"
}]

 Example 48: Framed output with named graphs

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "name": "Library",
 "contains": {
 "@id": "http://example.org/graphs/books",
 "@graph": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
 }
}

3. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative. Everything else in this specification is normative.

 The key words MAY, MUST, MUST NOT, SHOULD, and SHOULD NOT in this document
 are to be interpreted as described in
 BCP 14
 [RFC2119] [RFC8174]
 when, and only when, they appear in all capitals, as shown here.

 There is one class of products that can claim conformance to this
 specification: JSON-LD Processors.

 A conforming JSON-LD Processor is a system which can perform the
 Framing operation in a manner consistent with
 the algorithms defined in this specification.

 JSON-LD Processors MUST NOT
 attempt to correct malformed IRIs or language tags;
 however, they MAY issue validation warnings. IRIs are not modified other
 than conversion between
 relative and absolute IRIs.

 Unless specified using
 processingMode API option,
 the processing mode is set using the @version entry
 in a local context and
 affects the behavior of algorithms including expansion and compaction.
 Once set, it is an error to attempt to change to a different processing mode,
 and processors MUST generate,
 a processing mode conflict
 error and abort further processing.

 The algorithms in this specification are generally written with more concern for clarity
 than efficiency. Thus, JSON-LD Processors MAY
 implement the algorithms given in this specification in any way desired,
 so long as the end result is indistinguishable from the result that would
 be obtained by the specification's algorithms.

 In algorithm steps that describe operations on keywords, those steps
 also apply to keyword aliases.

 Note
Implementers can partially check their level of conformance to
 this specification by successfully passing the test cases of the
 JSON-LD framing test suite.
 Note, however, that passing all the tests in the test
 suite does not imply complete conformance to this specification. It only implies
 that the implementation conforms to aspects tested by the test suite.

4. Framing

The following sections describe algorithms for framing JSON-LD documents.
 Framing is the process of taking a JSON-LD document, which expresses a
 graph of information, and applying a specific graph layout
 (called a Frame).

Framing makes use of the Node Map Generation algorithm
 to place each object defined in the JSON-LD document into a map of flattened subjects, allowing
 them to be operated upon by the Framing algorithm.

All algorithms described in this section are intended to operate on
 language-native data structures. That is, the serialization to a text-based
 JSON document isn't required as input or output to any of these algorithms.

Reference to JSON data structures are interpreted using their internal representation for the purpose
 of describing algorithms.

4.1 Framing Algorithm

4.1.1 Overview

A valid JSON-LD Frame is a superset of a valid JSON-LD document,
 allowing additional content, which is preserved through expansion.
 The Grammar defined in the JSON-LD 1.1 Syntax specification [JSON-LD11]
 is extended as follows:

 	Framing adds framing keywords which may be used as entries of a node object, which MUST be preserved when expanding.

	Values of entries in a frame object that are not keyword MAY also include a default object.
 Values of @default MAY include the value @null,
 or an array containing only @null, in addition to other values
 allowed in the grammar for values of entry keys expanding to IRIs.
 Processors MUST preserve this value when expanding. All other entries of
 a default object MUST be ignored.

 	The values of @id and @type may also be an empty map,
 an IRI reference,
 array containing only an empty map,
 or an array of IRI references.
 Values of @type MAY also be a map with
 a @default entry, whose values are restricted by be IRIs.
 Processors MUST preserve this value when expanding.

 	Framing either operates on the merged node definitions contained in
 the input document, or on the default graph depending on if the
 input frame contains the @graph entry at the top level.
 Nodes with a subject that is also a named graph, where
 the frame object contains @graph, extend framing
 to node objects from the associated named graph.

4.1.2 Algorithm

The framing algorithm takes
 five required input variables and one optional input variable.
 The required inputs are
 a framing state (state),
 a list of subjects to frame,
 an input frame (expanded frame),
 a parent used to collect partial frame results,
 and an active property.
 The optional input variable is the ordered flag.

The algorithm adds elements to parent either by appending
 the element to parent, if it is an array, or by appending it
 to an array associated with active property in parent, if it is a map.
 Note that if parent is an array, active property MUST be null,
 and if it is a map, it MUST NOT be null.

 	If frame is an array, set frame to the value of the array, which MUST be a valid frame.
 If frame is determined to be invalid,
 an invalid frame
 error has been detected and processing is aborted.

 	Frame MUST be a map.

 	If frame has an @id entry, its value MUST be
 either an array containing a single empty map as a value,
 a valid IRI
 or an array where all values are valid IRIs.

 	If frame has a @type entry, its value MUST be
 either an array containing a single empty map as a value,
 an array containing a map with a entry whose key is @default,
 a valid IRI
 or an array where all values are valid IRIs.

 	Initialize flags embed, explicit, and requireAll from
 object embed flag, explicit inclusion flag, and
 require all flag in state overriding from any property values
 for @embed, @explicit, and @requireAll in frame.

 	Create a list of matched subjects by filtering subjects against frame
 using the Frame Matching algorithm
 with state, subjects, frame, and requireAll.

 	For each id and associated node object node
 from the set of matched subjects, ordered lexicographically by id
 if the optional ordered flag is true:

 	Initialize output to a new map with @id and id.

 	If the embedded flag in state is false
 and there is an existing embedded node in parent associated with
 graph name and id in state,
 do not perform additional processing for this node.

 	Otherwise, if the embedded flag in state is true
 and either embed is @never or if a
 circular reference would be created by an embed,
 add output to parent
 and do not perform additional processing for this node.

 	Otherwise, if the embedded flag in state is true,
 embed is @once,
 and there is an existing embedded node in parent associated with
 graph name and id in state,
 add output to parent
 and do not perform additional processing for this node.

 	If graph map in state has an entry for id:

 	If frame does not have a @graph entry,
 set recurse to true, unless graph name in state is @merged
 and set subframe to a new empty map.

 	Otherwise, set subframe to the first entry for @graph in frame,
 or a new empty map, if it does not exist, and
 set recurse to true, unless id
 is @merged or @default.

 	If recurse is true:

 	Set the value of graph name in state to id.

 	Set the value of embedded flag in state to false.

 	Invoke the algorithm
 using a copy of state
 with the value of graph name set to id
 and the value of embedded flag set to false,
 the keys from the graph map in state associated with id as subjects,
 subframe as frame,
 output as parent, and @graph as active property.

 	
 If frame has an @included entry,
 invoke the algorithm
 using a copy of state with the value of embedded flag set to false,
 subjects, frame,
 output as parent, and @included as active property.

 	For each property and objects in node, ordered lexicographically by property
 if the optional ordered flag is true:

 	If property is a keyword, add property and objects
 to output.

 	Otherwise, if property is not in frame, and explicit is true,
 processors MUST NOT add any values for property to output, and the following
 steps are skipped.

 	For each item in objects:

 	If item is a map with the property @list, then each
 listitem in the list is processed in sequence and added to a new list map
 in output:

 	If listitem is a node reference,
 invoke the algorithm
 using a copy of state with the value of embedded flag set to true,
 the value of @id from listitem
 as the sole item in a new subjects array,
 the first value from @list in frame as frame,
 list as parent, and @list as active property.
 If frame does not exist, create a new frame using a new map
 with properties for @embed, @explicit and @requireAll
 taken from embed, explicit and requireAll.

 	Otherwise, append a copy of listitem to @list in list.

 	If item is a node reference,
 invoke the algorithm
 using a copy of state with the value of embedded flag set to true,
 the value of @id from item
 as the sole item in a new subjects array,
 the first value from property in frame as frame,
 output as parent, and property as active property.
 If frame does not exist, create a new frame using a new map
 with properties for @embed, @explicit and @requireAll
 taken from embed, explicit and requireAll.

 	Otherwise, append a copy of item to active property in
 output.

 	For each non-keyword property and objects in frame
 (other than `@type)
 that is not in output:

 	Let item be the first value in objects, which MUST be a frame object.

 	Set property frame to the first value in objects or a newly created frame object if value is objects.
 property frame MUST be a map.

 	Skip property and property frame if property frame contains
 @omitDefault with a value of true,
 or does not contain @omitDefault and the value of
 the omit default flag in state is true.

 	Add property to output with a
 new map having a property @preserve and
 a value that is a copy of the value of @default in
 frame if it exists, or the string @null
 otherwise.

 	If frame has the property @reverse, then
 for each reverse property and sub frame that are the values of @reverse in frame:

 	Create a @reverse property in output with a new map reverse dict as its value.

 	For each reverse id and node in the map of flattened subjects that has the property
 reverse property containing a node reference with an @id of id:

 	Add reverse property to reverse dict with a new empty array as its value.

 	Invoke the algorithm
 using a copy of state with the value of embedded flag set to true,
 the reverse id
 as the sole item in a new subjects array,
 sub frame as frame,
 null as active property,
 and the array value of reverse property in reverse dict as parent.

 	Once output has been set are required in the previous steps,
 add output to parent.

 4.2 Frame Matching Algorithm

 The Frame Matching Algorithm is used as part of the Framing algorithm
 to determine if a particular node object matches the criteria set in a frame.
 In general, a node object matches a frame if it meets the matches on @type,
 @id,
 or if it matches given one of several different properties.
 If the require all flag is true, all properties must have defaults
 or match for the frame to match.

 Note
As matching is performed on expanded node objects, all values will be in the form of an array.

 Node matching uses a combination of JSON constructs to match any, zero, or some specific values:

 	[] (match none)

 	An empty array matches no values, or a value which is, itself, an empty array.

 	[frame object] (node pattern)

 	A non-empty frame object, used to match specific values using recursive node matching.

 	[IRI+]

 	One or more strings in the form of an IRI, used for matching on @type and @id,
 which allows a match on any of the listed IRIs.

 	[value object] (value pattern)

 	A value object, used to match a specific value. Within a value object,
 the values for @value, @type, and @language
 may also be an array of one or more string values,
 values of @language are compared without regard to case..
	{} (wildcard)

 	An array containing an empty object
 (after excluding any properties which are framing keywords)
 matches any value that is present, and does not match if there are no values.

The frame matching algorithm takes the framing state (state),
 a list of subjects to match from the map of flattened subjects (subjects),
 a frame to match against (frame), and the requireAll flag
 and returns a list of matched subjects by filtering each node in subjects as follows:

All properties, including @id and @type, but no other keywords are considered
 when matching a frame.

 	node matches if frame has no properties.

 	If requireAll is true, node matches if all properties (property)
 in frame match any of the following conditions.
 Or, if requireAll is false, if any of the properties (property)
 in frame match any of the following conditions.
 For the values of each property from frame in node:

 	If property is @id:

 	property matches if the @id property in frame includes any IRI in values.

 	Otherwise, property matches if the @type property in frame is wildcard or match none.

 Note
Framing works on map of flattened subjects,
 and the act of flattening ensures that all subjects have an
 @id property; thus the "@id": [] pattern would
 never match any node object. The "@id": [{}] pattern would
 match any node object and is equivalent to not specifying a
 @id property in frame at all

 	Otherwise, if property is @type:

 	property matches if the @type property in frame includes any IRI in values.

 	Otherwise, property matches if values is not empty and the @type property in frame is wildcard.

 	Otherwise, property matches if values is empty and the @type property in frame is match none.

 	Otherwise, property matches if the @type property in frame is a default object.

 	Otherwise, property does not match.

 	If property is @id or @type and does not match,
 node does not match, and processing is terminated.

 	Otherwise, the value of property in frame MUST be empty, or an array
 containing a valid frame.

 	property matches if values is empty, or non existent,
 the value of property in frame
 is a map containing only the @default entry with any value,
 and any other property in node has a non-default match.

 	node does not match if values is not empty and the value of property in frame is match none, and further matching is aborted.

 	Otherwise, property matches if values is not empty and the value of property in frame is wildcard.

 	Otherwise, if the value of property in frame is a value pattern (value pattern):
 property matching is determined using the Value matching algorithm.

 	Otherwise, for any node pattern (node pattern) which is one of the values of property in frame:

 	Let value subjects be the list of subjects from the map of flattened subjects matching the node object values from values.

 	Let matched subjects be the result of calling this algorithm recursively using
 state, value subjects for subjects,
 node pattern for frame, and the requireAll flag.

 	property matches if matched subjects is not empty.

 	Otherwise, property does not match.

 4.3 Value Pattern Matching Algorithm

 The Value Pattern Matching Algorithm is used as part of the Framing
 and Frame Matching algorithms. A value object
 matches a value pattern using the match none and wildcard
 patterns on @value, @type, and
 @language, in addition to allowing a specific value to match a
 set of values defined using the array form for each value
 object property.

 The algorithm takes a value pattern (pattern) and value object (value) as parameters.
 Value matches pattern using the following algorithm:

 	Let v1, t1, and l1 be the values of @value, @type, and @language in value, or null if none exists,
 where values of @language are normalized to lower case..

 	Let v2, t2, and l2 be the values of @value, @type, and @language in value pattern, or null if none exists,
 where string values of @language are normalized to lower case..

 	Value matches pattern when pattern is wildcard, or:

 	v1 is in v2, or v1 is not null and v2 is wildcard, and

 	t1 is in t2, or t1 is not null and t2 is wildcard, or null, or t1 is null and t2 is null or match none, and

 	l1 is in l2, or l1 is not null and l2 is wildcard, or null, or l1 is null and l2 is null or match none.

 5. The Application Programming Interface

 This API provides a clean mechanism that enables developers to convert
 JSON-LD data into a variety of output formats that are easier to work with in
 various programming languages. If a JSON-LD API is provided in a programming
 environment, the entirety of the following API MUST be implemented.

 The JSON-LD API uses Promises to represent
 the result of the various deferred operations.
 Promises are defined in [ECMASCRIPT].
 General use within specifications can be found in [promises-guide].
 Implementations MAY chose to implement in an appropriate way for their native environments
 as long as they generally use the same methods, arguments, and options
 and return the same results.

 Note
Interfaces are marked [Exposed=JsonLd],
 which creates a global interface.
 The use of WebIDL in JSON-LD, while appropriate for use within browsers,
 is not limited to such use.

 5.1 JsonLdProcessor

 The JSON-LD Processor interface is the high-level programming structure that developers
 use to access the JSON-LD transformation methods. The definition below is an experimental
 extension of the interface defined in the JSON-LD 1.1 API [JSON-LD11-API].

 It is important to highlight that implementations do not modify the input parameters.
 If an error is detected, the Promise is
 rejected with a JsonLdFramingError having an appropriate code
 and processing is stopped.

 WebIDL/*
 * The JsonLd interface is created to expose the JsonLdProcessor interface.
 */
[Global=JsonLd, Exposed=JsonLd]
interface JsonLd {};

[Exposed=JsonLd]
interface JsonLdProcessor {
 constructor();
 static Promise<JsonLdRecord> frame(
 JsonLdInput input,
 JsonLdInput frame,
 optional JsonLdOptions options = {});
};

 The JsonLdProcessor interface
 frame() method
 Frames
 the given input using frame
 according to the steps in the Framing
 Algorithm:

 	Create a new Promise promise and return it. The
 following steps are then executed asynchronously.

 	If the provided input
 is a RemoteDocument,
 initialize remote document to input.

 	Otherwise, if the provided input
 is a string representing the IRI of a remote document, await and dereference it as remote document
 using LoadDocumentCallback, passing input
 for url,
 and the extractAllScripts option from options
 for extractAllScripts.

 	Set expanded input to the result of using the
 expand
 method either remote document
 or input
 if there is no remote document
 for input
 and options
 with ordered set to false.

 	If the provided frame
 is a RemoteDocument,
 initialize remote frame to frame.

 	Otherwise, if the provided frame
 is a string representing the IRI of a remote document, await and dereference it as remote frame
 using LoadDocumentCallback, passing frame
 for url,
 and the extractAllScripts option from options
 for extractAllScripts.

 	Set expanded frame to the result of using the
 expand
 method either remote frame
 or frame
 if there is no remote frame
 for input
 options
 the frameExpansion option set to true,
 and theordered set to false.

 	Set context to the value of @context
 from remote frame or frame, if it exists, or to
 a new empty context, otherwise.

 	Set context base to the documentUrl
 from remote frame, if available, otherwise to the base option
 from options.

 	Initialize active context
 to the result of the Context Processing algorithm
 passing a new empty context as active context
 context as local context,
 and context base as base URL.

 	Initialize an active context using context;
 the base IRI is set to
 the base option from
 options, if set;
 otherwise, if the
 compactToRelative option is
 true, to the IRI of the currently being processed
 document, if available; otherwise to null.

 	Initialize inverse context to the result of performing the
 Inverse Context Creation algorithm.

 	If frame has a top-level
 property which expands to @graph set the frameDefault
 option to options with the
 value true.

 	Initialize a new framing state (state) to an empty map.

 	Set object embed flag in state to
 embed
 with the default value @once.

 	Set the embedded flag in state to false

 	Set explicit inclusion flag in state to
 explicit
 with the default value false.

 	Set require all flag in state to
 requireAll
 with the default value false.

 	Set omit default flag in state to
 omitDefault
 with the default value false.

 	Set the graph name in state to
 either @default if frameDefault is true,
 otherwise to false.

 	Set the graph map in state to the result of performing the
 Node Map Generation algorithm on
 expanded input.

 	If graph name in state is @merged,
 add en entry for @merged in graph map set
 to the result of the Merge Node Maps algorithm
 passing graph map.

 	Set subject map in state
 to the map of flattened subjects which is the value of graph name
 in graph map.

 	

 	Initialize results as an empty array.

 	Invoke the
 Framing algorithm, passing
 state,
 the keys from subject map in state for subjects,
 expanded frame,
 results for parent,
 and null as active property.

 	If the processing mode is not json-ld-1.0,
 remove the @id entry of each node object in results
 where the entry value is a blank node identifier which appears only once
 in any property value within results.

 	Recursively, replace all entries in results
 where the key is @preserve with the first value of that entry.
 Note
The value of the entry will be an array with a single value;
 this will effectively replace the map containing @preserve with that value.

 	Set compacted results to the result of using the
 compact
 method using
 active context,
 inverse context,
 null for active property,
 results as element,,
 and the compactArrays
 and ordered
 flags from options.

 	If compacted results is an empty array,
 replace it with a new map.

 	Otherwise, if compacted results is an array,
 replace it with a new map with a single entry
 whose key is the result of
 IRI compacting @graph
 and value is compacted results.

 	Add an @context entry to compacted results and set its value
 to the provided context.

 	Recursively, replace all @null values in compacted results with null.
 If, after replacement, an array contains only the value null remove that value, leaving
 an empty array.

 	If omitGraph is false and
 compacted results does not have a top-level @graph entry, or its value is
 not an array, modify compacted results to place the non @context entry
 of compacted results into a map contained within the array value of
 @graph. If omitGraph is true, a
 top-level @graph entry is used only to contain multiple node objects.

 	Resolve the promise with compacted results,
 transforming compacted results from the internal representation to a JSON serialization.

 	input

 	The JSON-LD object or array of JSON-LD objects to perform the framing upon or an
 IRI referencing the JSON-LD document to frame.

 	frame

 	The frame to use when re-arranging the data of input; either
 in the form of an map or as IRI.

 	options

 	A set of options that MAY affect the framing algorithm such as, e.g., the
 input document's base IRI.
 The JsonLdOptions type defines default option values.

 WebIDLtypedef record<USVString, any> JsonLdRecord;

 The JsonLdRecord is the definition of a map
 used to contain arbitrary map entries
 which are the result of parsing a JSON Object.

WebIDLtypedef (JsonLdRecord or sequence<JsonLdRecord> or USVString or RemoteDocument) JsonLdInput;

 The JsonLdInput interface is used to refer to an input value
 that that may be a JsonLdRecord,
 a sequence of JsonLdRecords,
 a string representing an IRI,
 which can be dereferenced to retrieve a valid JSON document,
 or an already dereferenced RemoteDocument.

 When the value is a JsonLdRecord or sequence of JsonLdRecords,
 the values are taken as their equivalent internal representation values,
 where a JsonLdRecord is equivalent to a map,
 and a sequence of JsonLdRecords is equivalent to an array
 of maps. The map entries are converted to their equivalents
 in [INFRA].

 5.2 Error Handling

 The JsonLdFramingError type is used to report processing errors.

 WebIDLdictionary JsonLdFramingError {
 JsonLdFramingErrorCode code;
 USVString? message = null;
};
enum JsonLdFramingErrorCode {
 "invalid frame",
 "invalid @embed value"
};

 JSON-LD Framing extends the error interface and codes defined in
 JSON-LD 1.1 Processing Algorithms and API the JSON-LD 1.1 API [JSON-LD11-API].

 	code

 	a string representing the particular error type, as described in
 the various algorithms in this document.

 	message

 	an optional error message containing additional debugging information.
 The specific contents of error messages are outside the scope of this
 specification.

 The JsonLdFramingErrorCode represents the collection of valid JSON-LD Framing error
 codes.

 	invalid @embed value
	
 The value for @embed is not one recognized for the object embed flag.

	invalid frame
	
 The frame is invalid.

 5.3 Data Structures

 This section describes datatype definitions used within the JSON-LD API.

 5.3.1 JsonLdContext

 The JsonLdContext type is used to refer to a value that
 that may be a map, a string representing an
 IRI, or an array of maps
 and strings.

 See JsonLdContext definition in the JSON-LD 1.1 API [JSON-LD11-API].

 5.3.2 JsonLdOptions

 The JsonLdOptions type is used to pass various options to the
 JsonLdProcessor methods.

 WebIDLdictionary JsonLdOptions {
 (JsonLdEmbed or boolean) embed = "@once";
 boolean explicit = false;
 boolean omitDefault = false;
 boolean omitGraph;
 boolean requireAll = false;
 boolean frameDefault = false;
 boolean ordered = false;
};

enum JsonLdEmbed {
 "@always",
 "@once",
 "@never"
};

 In addition to those options defined in the JSON-LD 1.1 API [JSON-LD11-API], framing defines these
 additional options:

 	embed

 	Sets the value object embed flag used in the
 Framing Algorithm.
 A boolean value of true sets the flag to
 @once, while a value of false sets the flag
 to @never.

 	explicit

 	Sets the value explicit inclusion flag used in the
 Framing Algorithm.

 	frameDefault

 	Instead of framing a merged graph, frame only the default graph.

 	omitDefault

 	Sets the value omit default flag used in the
 Framing Algorithm

 	omitGraph

 	Sets the value omit graph flag used in the
 Framing Algorithm. If not set explicitly,
 it is set to false if processing mode is json-ld-1.0, true otherwise.

 	ordered

 	If set to true, certain algorithm
 processing steps where indicated are ordered lexicographically.
 If false, order
 is not considered in processing.
	requireAll

 	Sets the value require all flag used in the
 Framing Algorithm.

 JsonLdEmbed enumerates the values of the embed option:

 	@always
	
 Always embed node objects as property values, unless this would
 cause a circular reference.

 	@never
	
 Always use a node reference when serializing matching values.
	@once
	
 Only a single value within a given node object should be embedded,
 other values of other properties use a node reference. This is the
 default value if neither @embed nor object embed flag
 is specified.

 See JsonLdOptions definition in the JSON-LD 1.1 API [JSON-LD11-API].

 6. Security Considerations

 See, Security Considerations in § A. IANA Considerations.

 7. Privacy Considerations

 See, Privacy Considerations in [JSON-LD11].

 8. Internationalization Considerations

 See, Internationalization Considerations in [JSON-LD11].

A. IANA Considerations

This section is included merely for standards community review and will be
submitted to the Internet Engineering Steering Group if this specification
becomes a W3C Recommendation.

A JSON-LD Frame uses the same MIME media type described in [JSON-LD11]
 along with a required profile parameter.

application/ld+json

 	Type name:

 	application

 	Subtype name:

 	ld+json

 	Required parameters:

 	None

 	Optional parameters:

 	

 	profile

 	
 A single URI identifying the resource as a JSON-LD Frame.
 A profile does not change the semantics of the resource representation
 when processed without profile knowledge, so that clients both with
 and without knowledge of a profiled resource can safely use the same
 representation.

 	http://www.w3.org/ns/json-ld#framed

 	To specify a JSON-LD Frame.

 The http://www.w3.org/ns/json-ld#framed SHOULD
 be used when serving and requesting a JSON-LD frame document.

 	Encoding considerations:

 	See RFC 8259, section 11.

 	Security considerations:

 	See RFC 8259, section 12 [RFC8259]
 Since JSON-LD is intended to be a pure data exchange format for
 directed graphs, the serialization SHOULD NOT be passed through a
 code execution mechanism such as JavaScript's eval()
 function to be parsed. An (invalid) document may contain code that,
 when executed, could lead to unexpected side effects compromising
 the security of a system.

 When processing JSON-LD documents, links to remote contexts are
 typically followed automatically, resulting in the transfer of files
 without the explicit request of the user for each one. If remote
 contexts are served by third parties, it may allow them to gather
 usage patterns or similar information leading to privacy concerns.
 Specific implementations, such as the API defined in the
 JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API],
 may provide fine-grained mechanisms to control this behavior.

 JSON-LD contexts that are loaded from the Web over non-secure connections,
 such as HTTP, run the risk of being altered by an attacker such that
 they may modify the JSON-LD active context in a way that
 could compromise security. It is advised that any application that
 depends on a remote context for mission critical purposes vet and
 cache the remote context before allowing the system to use it.

 Given that JSON-LD allows the substitution of long IRIs with short terms,
 JSON-LD documents may expand considerably when processed and, in the worst case,
 the resulting data might consume all of the recipient's resources. Applications
 should treat any data with due skepticism.

 As JSON-LD places no limits on the IRI schemes that may be used,
 and vocabulary-relative IRIs use string concatenation rather than
 IRI resolution, it is possible to construct IRIs that may be
 used maliciously, if dereferenced.

 	Interoperability considerations:

 	Not Applicable

 	Published specification:

 	https://www.w3.org/TR/json-ld11-framing

 	Applications that use this media type:

 	Any programming environment that requires the exchange of
 directed graphs. Implementations of JSON-LD have been created for
 JavaScript, Python, Ruby, PHP, and C++.

 	Additional information:

 	

 	Magic number(s):

 	Not Applicable

 	File extension(s):

 	.jsonld

 	Macintosh file type code(s):

 	TEXT

 	Person & email address to contact for further information:

 	Ivan Herman <ivan@w3.org>

 	Intended usage:

 	Common

 	Restrictions on usage:

 	None

 	Author(s):

 	Manu Sporny, Gregg Kellogg, Markus Lanthaler, Dave Longley

 	Change controller:

 	W3C

Fragment identifiers used with application/ld+json
 are treated as in RDF syntaxes, as per
 RDF 1.1 Concepts and Abstract Syntax
 [RDF11-CONCEPTS].

B. IDL Index
This section is non-normative.

WebIDL/*
 * The JsonLd interface is created to expose the JsonLdProcessor interface.
 */
[Global=JsonLd, Exposed=JsonLd]
interface JsonLd {};

[Exposed=JsonLd]
interface JsonLdProcessor {
 constructor();
 static Promise<JsonLdRecord> frame(
 JsonLdInput input,
 JsonLdInput frame,
 optional JsonLdOptions options = {});
};

typedef record<USVString, any> JsonLdRecord;

typedef (JsonLdRecord or sequence<JsonLdRecord> or USVString or RemoteDocument) JsonLdInput;

dictionary JsonLdFramingError {
 JsonLdFramingErrorCode code;
 USVString? message = null;
};
enum JsonLdFramingErrorCode {
 "invalid frame",
 "invalid @embed value"
};

dictionary JsonLdOptions {
 (JsonLdEmbed or boolean) embed = "@once";
 boolean explicit = false;
 boolean omitDefault = false;
 boolean omitGraph;
 boolean requireAll = false;
 boolean frameDefault = false;
 boolean ordered = false;
};

enum JsonLdEmbed {
 "@always",
 "@once",
 "@never"
};

 C. Open Issues
This section is non-normative.

 The following is a list of issues open at the time of publication.

 Issue 29: Allow class-scoped framing defer-future-versionspec:enhancement
Allow class-scoped framing.

 Issue 38: Several frames in the same frame document? defer-future-versionspec:enhancementspec:substantive
Several frames in the same frame document?

 Issue 73: Reframing Relationships defer-future-version
Reframing Relationships.

 D. Changes since 1.0 Draft of 30 August 2012
This section is non-normative.

 	There are numerous formatting and terminology changes intended to align with
 the 1.0 Recommendations of JSON-LD and JSON-LD-API in addition to the use
 of common term definition sections.

 	The object embed flag (@embed) can take on different
 values to better control object embedding.

 	Framing supports More specific frame matching, where
 general wildcard and match none
 can be used for type and property values.

 	Frame matching also supports value object matching, where
 values for @value, @type, and @language
 can use wildcard and match none
 and may also use a set of specific strings to match (e.g., a set of specific
 languages).

 	Framing allows specific graphs to be matched, and the outer-most frame
 can either come from the merged graph or the default graph.

 	Framing supports @reverse.

 	Through the use of scoped contexts, parts of a frame can be
 compacted using a different context than is used for the outer-most
 object.

 	Frames can use one or more values for @id to allow for matching
 specific objects in a frame.

 	If processing mode is not json-ld-1.0,
 @id entries with blank node identifiers
 used only for that @id are removed.

 	The JSON syntax has been abstracted into an internal representation
 to allow for other serialization formats that are functionally equivalent
 to JSON.

 	Preserved values are compacted using the properties of the referencing term.

 	Removed support for @link and in-memory object linking.

 	Added the omit default flag, controlled via the
 omitDefault API option and/or
 the current processing mode.

 	The API now adds an ordered
 option, defaulting to false This is used in algorithms to
 control iteration of map entry keys. Previously, the
 algorithms always required such an order. The instructions for
 evaluating test results have been updated accordingly.

 	Frames may include reverse properties using @reverse, or a term
 defined with @reverse, which can cause nodes referencing a
 node targeted by a frame to have a reverse reference created.

 E. Changes since JSON-LD Community Group Final Report
This section is non-normative.

 	The API now adds an ordered
 option, defaulting to false This is used in algorithms to
 control iteration of map entry keys. Previously, the
 algorithms always required such an order. The instructions for
 evaluating test results have been updated accordingly.

 	The IANA registration is changed from application/ld-frame+json to
 application/ld+json with a required profile parameter.

 	The require all flag now needs all properties to be present, including
 @id and @type.

 	Removed @first and @last values for the
 object embed flag in favor of @once.

 	The processing mode is now implicitly json-ld-1.1, unless set
 explicitly to json-ld-1.0.

 	In a frame @type can have a default value, which is not used for
 frame matching purposes.

 F. Changes since Candidate Release of 12 December 2019
This section is non-normative.

 	Removed duplicate § 1.1 How to Read this Document.
 This is in response to Issue 92.

 	Improved algorithms in
 § 4.1 Framing Algorithm.

 	Moved non-recursive portions algorithms
 into the JsonLdProcessor processing steps.

 	Remove the graph stack from framing state
 as being unnecessary.

 G. Changes since Proposed Recommendation Release of 7 May 2020
This section is non-normative.

 	Changed [Exposed=(Window,Worker)] to [Exposed=JsonLd],
 which is declared as a global interface in order to expose the JsonLdProcessor interface
 for non-browser usage to address review suggestions.

 H. Acknowledgements
This section is non-normative.

 The editors would like to specially thank the following individuals for making significant
 contributions to the authoring and editing of this specification:

 	Timothy Cole (University of Illinois at Urbana-Champaign)

 	Gregory Todd Williams (J. Paul Getty Trust)

 	Ivan Herman (W3C Staff)

 	Jeff Mixter (OCLC (Online Computer Library Center, Inc.))

 	David Lehn (Digital Bazaar)

 	David Newbury (J. Paul Getty Trust)

 	Robert Sanderson (J. Paul Getty Trust, chair)

 	Harold Solbrig (Johns Hopkins Institute for Clinical and Translational Research)

 	Simon Steyskal (WU (Wirschaftsuniversität Wien) - Vienna University of Economics and Business)

 	A Soroka (Apache Software Foundation)

 	Ruben Taelman (Imec vzw)

 	Benjamin Young (Wiley, chair)

 Additionally, the following people were members of the Working Group at the time of publication:

 	Steve Blackmon (Apache Software Foundation)

 	Dan Brickley (Google, Inc.)

 	Newton Calegari (NIC.br - Brazilian Network Information Center)

 	Victor Charpenay (Siemens AG)

 	Sebastian Käbisch (Siemens AG)

 	Axel Polleres (WU (Wirschaftsuniversität Wien) - Vienna University of Economics and Business)

 	Leonard Rosenthol (Adobe)

 	Jean-Yves ROSSI (CANTON CONSULTING)

 	Antoine Roulin (CANTON CONSULTING)

 	Manu Sporny (Digital Bazaar)

 	Clément Warnier de Wailly (CANTON CONSULTING)

 A large amount of thanks goes out to the JSON-LD Community Group participants who worked through many of the technical issues on the mailing list and the weekly telecons: Chris Webber, David Wood, Drummond Reed, Eleanor Joslin, Fabien Gandon, Herm Fisher, Jamie Pitts, Kim Hamilton Duffy, Niklas Lindström, Paolo Ciccarese, Paul Frazze, Paul Warren, Reto Gmür, Rob Trainer, Ted Thibodeau Jr., and Victor Charpenay.

I. References

 I.1
 Normative references

 	[BCP47]
	Tags for Identifying Languages. A. Phillips; M. Davis. IETF. September 2009. IETF Best Current Practice. URL: https://tools.ietf.org/html/bcp47
	[ECMASCRIPT]
	ECMAScript Language Specification. Ecma International. URL: https://tc39.es/ecma262/
	[INFRA]
	Infra Standard. Anne van Kesteren; Domenic Denicola. WHATWG. Living Standard. URL: https://infra.spec.whatwg.org/
	[JSON-LD10]
	JSON-LD 1.0. Manu Sporny; Gregg Kellogg; Marcus Langhaler. W3C. 16 January 2014. W3C Recommendation. URL: https://www.w3.org/TR/2014/REC-json-ld-20140116/
	[JSON-LD11]
	JSON-LD 1.1. Gregg Kellogg; Pierre-Antoine Champin; Dave Longley. W3C. 7 May 2020. W3C Proposed Recommendation. URL: https://www.w3.org/TR/json-ld11/
	[JSON-LD11-API]
	JSON-LD 1.1 Processing Algorithms and API. Gregg Kellogg; Dave Longley; Pierre-Antoine Champin. W3C. 7 May 2020. W3C Proposed Recommendation. URL: https://www.w3.org/TR/json-ld11-api/
	[LINKED-DATA]
	Linked Data Design Issues. Tim Berners-Lee. W3C. 27 July 2006. W3C-Internal Document. URL: https://www.w3.org/DesignIssues/LinkedData.html
	[promises-guide]
	Writing Promise-Using Specifications. Domenic Denicola. W3C. 9 November 2018. TAG Finding. URL: https://www.w3.org/2001/tag/doc/promises-guide
	[RDF-SCHEMA]
	RDF Schema 1.1. Dan Brickley; Ramanathan Guha. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf-schema/
	[RDF11-CONCEPTS]
	RDF 1.1 Concepts and Abstract Syntax. Richard Cyganiak; David Wood; Markus Lanthaler. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf11-concepts/
	[RFC2119]
	Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119
	[RFC3987]
	Internationalized Resource Identifiers (IRIs). M. Duerst; M. Suignard. IETF. January 2005. Proposed Standard. URL: https://tools.ietf.org/html/rfc3987
	[RFC8174]
	Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017. Best Current Practice. URL: https://tools.ietf.org/html/rfc8174
	[RFC8259]
	The JavaScript Object Notation (JSON) Data Interchange Format. T. Bray, Ed.. IETF. December 2017. Internet Standard. URL: https://tools.ietf.org/html/rfc8259
	[WEBIDL]
	Web IDL. Boris Zbarsky. W3C. 15 December 2016. W3C Editor's Draft. URL: https://heycam.github.io/webidl/

 I.2
 Informative references

 	[JSON-LD10-FRAMING]
	JSON-LD Framing 1.0. Manu Sporny; Gregg Kellogg; David Longley; Marcus Langhaler. W3C. 30 August 2012. Unofficial Draft. URL: https://json-ld.org/spec/ED/json-ld-framing/20120830/

 ↑

nav.xhtml

Table of Contents

		1. Introduction		1.1 How to Read this Document

		1.2 Contributing

		1.3 Typographical conventions

		1.4 Terminology		1.4.1 Algorithm Terms

		1.5 Syntax Tokens and Keywords

		2. Features		2.1 Framing		2.1.1 Matching on Properties

		2.1.2 Wildcard Matching

		2.1.3 Match on the Absence of a Property

		2.1.4 Matching on Values

		2.1.5 Matching on @id

		2.1.6 Empty Frame

		2.2 Default content

		2.3 Framing Flags		2.3.1 Object Embed Flag

		2.3.2 Explicit inclusion flag

		2.3.3 Omit default flag

		2.3.4 Omit graph flag

		2.3.5 Require all flag

		2.4 Reverse Framing

		2.5 Framing Named Graphs

		3. Conformance

		4. Framing		4.1 Framing Algorithm		4.1.1 Overview

		4.1.2 Algorithm

		4.2 Frame Matching Algorithm

		4.3 Value Pattern Matching Algorithm

		5. The Application Programming Interface		5.1 JsonLdProcessor

		5.2 Error Handling

		5.3 Data Structures		5.3.1 JsonLdContext

		5.3.2 JsonLdOptions

		6. Security Considerations

		7. Privacy Considerations

		8. Internationalization Considerations

		A. IANA Considerations

		B. IDL Index

		C. Open Issues

		D. Changes since 1.0 Draft of 30 August 2012

		E. Changes since JSON-LD Community Group Final Report

		F. Changes since Candidate Release of 12 December 2019

		G. Changes since Proposed Recommendation Release of 7 May 2020

		H. Acknowledgements

		I. References		I.1
 Normative references

		I.2
 Informative references

Icons/w3c_main.png

scripts/TR/2016/fixup.js
/**
 * JS Extension for the W3C Spec Style Sheet *
 * *
 * This code handles: *
 * - some fixup to improve the table of contents *
 * - the obsolete warning on outdated specs *
 **/
(function() {
 "use strict";
 var ESCAPEKEY = 27;
 var collapseSidebarText = '← '
 + 'Collapse Sidebar';
 var expandSidebarText = '→ '
 + 'Pop Out Sidebar';
 var tocJumpText = '↑ '
 + 'Jump to Table of Contents';

 var sidebarMedia = window.matchMedia('screen and (min-width: 78em)');
 var autoToggle = function(e){ toggleSidebar(e.matches) };
 if(sidebarMedia.addListener) {
 sidebarMedia.addListener(autoToggle);
 }

 function toggleSidebar(on, skipScroll) {
 if (on == undefined) {
 on = !document.body.classList.contains('toc-sidebar');
 }

 if (!skipScroll) {
 /* Don't scroll to compensate for the ToC if we're above it already. */
 var headY = 0;
 var head = document.querySelector('.head');
 if (head) {
 // terrible approx of "top of ToC"
 headY += head.offsetTop + head.offsetHeight;
 }
 skipScroll = window.scrollY < headY;
 }

 var toggle = document.getElementById('toc-toggle');
 var tocNav = document.getElementById('toc');
 if (on) {
 var tocHeight = tocNav.offsetHeight;
 document.body.classList.add('toc-sidebar');
 document.body.classList.remove('toc-inline');
 toggle.innerHTML = collapseSidebarText;
 if (!skipScroll) {
 window.scrollBy(0, 0 - tocHeight);
 }
 tocNav.focus();
 sidebarMedia.addListener(autoToggle); // auto-collapse when out of room
 }
 else {
 document.body.classList.add('toc-inline');
 document.body.classList.remove('toc-sidebar');
 toggle.innerHTML = expandSidebarText;
 if (!skipScroll) {
 window.scrollBy(0, tocNav.offsetHeight);
 }
 if (toggle.matches(':hover')) {
 /* Unfocus button when not using keyboard navigation,
 because I don't know where else to send the focus. */
 toggle.blur();
 }
 }
 }

 function createSidebarToggle() {
 /* Create the sidebar toggle in JS; it shouldn't exist when JS is off. */
 var toggle = document.createElement('a');
 /* This should probably be a button, but appearance isn't standards-track.*/
 toggle.id = 'toc-toggle';
 toggle.class = 'toc-toggle';
 toggle.href = '#toc';
 toggle.innerHTML = collapseSidebarText;

 sidebarMedia.addListener(autoToggle);
 var toggler = function(e) {
 e.preventDefault();
 sidebarMedia.removeListener(autoToggle); // persist explicit off states
 toggleSidebar();
 return false;
 }
 toggle.addEventListener('click', toggler, false);

 /* Get <nav id=toc-nav>, or make it if we don't have one. */
 var tocNav = document.getElementById('toc-nav');
 if (!tocNav) {
 tocNav = document.createElement('p');
 tocNav.id = 'toc-nav';
 /* Prepend for better keyboard navigation */
 document.body.insertBefore(tocNav, document.body.firstChild);
 }
 /* While we're at it, make sure we have a Jump to Toc link. */
 var tocJump = document.getElementById('toc-jump');
 if (!tocJump) {
 tocJump = document.createElement('a');
 tocJump.id = 'toc-jump';
 tocJump.href = '#toc';
 tocJump.innerHTML = tocJumpText;
 tocNav.appendChild(tocJump);
 }

 tocNav.appendChild(toggle);
 }

 var toc = document.getElementById('toc');
 if (toc) {
 if (!document.getElementById('toc-toggle')) {
 createSidebarToggle();
 }
 toggleSidebar(sidebarMedia.matches, true);

 /* If the sidebar has been manually opened and is currently overlaying the text
 (window too small for the MQ to add the margin to body),
 then auto-close the sidebar once you click on something in there. */
 toc.addEventListener('click', function(e) {
 if(document.body.classList.contains('toc-sidebar') && !sidebarMedia.matches) {
 var el = e.target;
 while (el != toc) { // find closest <a>
 if (el.tagName.toLowerCase() == "a") {
 toggleSidebar(false);
 return;
 }
 el = el.parentElement;
 }
 }
 }, false);
 }
 else {
 console.warn("Can't find Table of Contents. Please use <nav id='toc'> around the ToC.");
 }

 /* Wrap tables in case they overflow */
 var tables = document.querySelectorAll(':not(.overlarge) > table.data, :not(.overlarge) > table.index');
 var numTables = tables.length;
 for (var i = 0; i < numTables; i++) {
 var table = tables[i];
 if (!table.matches('.example *, .note *, .advisement *, .def *, .issue *')) {
 /* Overflowing colored boxes looks terrible, and also
 the kinds of tables inside these boxes
 are less likely to need extra space. */
 var wrapper = document.createElement('div');
 wrapper.className = 'overlarge';
 table.parentNode.insertBefore(wrapper, table);
 wrapper.appendChild(table);
 }
 }

 /* Deprecation warning */
 if (document.location.hostname === "www.w3.org" && /^\/TR\/\d{4}\//.test(document.location.pathname)) {
 var request = new XMLHttpRequest();

 request.open('GET', 'https://www.w3.org/TR/tr-outdated-spec');
 request.onload = function() {
 if (request.status < 200 || request.status >= 400) {
 return;
 }
 try {
 var currentSpec = JSON.parse(request.responseText);
 } catch (err) {
 console.error(err);
 return;
 }
 document.body.classList.add("outdated-spec");
 var node = document.createElement("p");
 node.classList.add("outdated-warning");
 node.tabIndex = -1;
 node.setAttribute("role", "dialog");
 node.setAttribute("aria-modal", "true");
 node.setAttribute("aria-labelledby", "outdatedWarning");
 if (currentSpec.style) {
 node.classList.add(currentSpec.style);
 }

 var frag = document.createDocumentFragment();
 var heading = document.createElement("strong");
 heading.id = "outdatedWarning";
 heading.innerHTML = currentSpec.header;
 frag.appendChild(heading);

 var anchor = document.createElement("a");
 anchor.id = "outdated-note";
 anchor.href = currentSpec.latestUrl;
 anchor.innerText = currentSpec.latestUrl + ".";

 var warning = document.createElement("span");
 warning.innerText = currentSpec.warning;
 warning.appendChild(anchor);
 frag.appendChild(warning);

 var button = document.createElement("button");
 var handler = makeClickHandler(node);
 button.addEventListener("click", handler);
 button.innerHTML = "▾ collapse";
 frag.appendChild(button);
 node.appendChild(frag);

 function makeClickHandler(node) {
 var isOpen = true;
 return function collapseWarning(event) {
 var button = event.target;
 isOpen = !isOpen;
 node.classList.toggle("outdated-collapsed");
 document.body.classList.toggle("outdated-spec");
 button.innerText = (isOpen) ? '\u25BE collapse' : '\u25B4 expand';
 }
 }

 document.body.appendChild(node);
 button.focus();
 window.onkeydown = function (event) {
 var isCollapsed = node.classList.contains("outdated-collapsed");
 if (event.keyCode === ESCAPEKEY && !isCollapsed) {
 button.click();
 }
 }

 window.addEventListener("click", function(event) {
 if (!node.contains(event.target) && !node.classList.contains("outdated-collapsed")) {
 button.click();
 }
 });

 document.addEventListener("focus", function(event) {
 var isCollapsed = node.classList.contains("outdated-collapsed");
 var containsTarget = node.contains(event.target);
 if (!isCollapsed && !containsTarget) {
 event.stopPropagation();
 node.focus();
 }
 }, true); // use capture to enable event delegation as focus doesn't bubble up
 };

 request.onerror = function() {
 console.error("Request to https://www.w3.org/TR/tr-outdated-spec failed.");
 };

 request.send();
 }
})();

