
Document Object Model (DOM) Level 3 Load and Save
Specification

Version 1.0

W3C Recommendation 07 April 2004
This version:

http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407
Latest version:

http://www.w3.org/TR/DOM-Level-3-LS
Previous version:

http://www.w3.org/TR/2004/PR-DOM-Level-3-LS-20040205/

Editors:
Johnny Stenback, Netscape
Andy Heninger, IBM (until March 2001)

Please refer to the errata for this document, which may include some normative corrections.

This document is also available in these non-normative formats: XML file, plain text, PostScript file, PDF
file, single HTML file, and ZIP file.

See also translations of this document.

Copyright ©2004 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability , trademark, document
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Load and Save Level 3, a platform- and
language-neutral interface that allows programs and scripts to dynamically load the content of an XML
document into a DOM document and serialize a DOM document into an XML document; DOM
documents being defined in [DOM Level 2 Core] or newer, and XML documents being defined in [XML
1.0] or newer. It also allows filtering of content at load time and at serialization time.

1

Document Object Model (DOM) Level 3 Load and Save Specification

http://www.w3.org/
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407
http://www.w3.org/TR/DOM-Level-3-LS
http://www.w3.org/TR/2004/PR-DOM-Level-3-LS-20040205/
http://www.w3.org/2004/01/DOM-Level-3-errata
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407/xml-source.xml
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407/DOM3-LS.txt
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407/DOM3-LS.ps
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407/DOM3-LS.pdf
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407/DOM3-LS.pdf
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407/DOM3-LS.html
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407/DOM3-LS.zip
http://www.w3.org/2004/01/DOM-Level-3-translations
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-software

Status of this document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical report
can be found in the W3C technical reports index at http://www.w3.org/TR/.

This document contains the Document Object Model Level 3 Load and Save specification and is a W3C
Recommendation. It has been produced as part of the W3C DOM Activity. The authors of this document
are the DOM Working Group participants. For more information about DOM, readers can also refer to
DOM FAQ and DOM Conformance Test Suites.

It is based on the feedback received during the Proposed Recommendation period. Changes since the
Proposed Recommendation version and an implementation report are available. Please refer to the errata
for this document, which may include some normative corrections.

Comments on this document should be sent to the public mailing list www-dom@w3.org (public archive).

This is a stable document and has been endorsed by the W3C Membership and the participants of the
DOM working group. The English version of this specification is the only normative version. See also
translations.

Patent disclosures relevant to this specification may be found on the Working Group’s patent disclosure
page. This document has been produced under the 24 January 2002 CPP as amended by the W3C Patent
Policy Transition Procedure. An individual who has actual knowledge of a patent which the individual
believes contains Essential Claim(s) with respect to this specification should disclose the information in
accordance with section 6 of the W3C Patent Policy.

Table of contents
................ 3Expanded Table of Contents
.............. 5W3C Copyright Notices and Licenses

............. 91. Document Object Model Load and Save

................ 39Appendix A: IDL Definitions

.............. 43Appendix B: Java Language Binding

............ 49Appendix C: ECMAScript Language Binding

............... 53Appendix D: Acknowledgements

.................... 55Glossary

.................... 57References

..................... 61Index

2

Status of this document

http://www.w3.org/TR/
http://www.w3.org/2004/02/Process-20040205/tr.html#RecsW3C
http://www.w3.org/2004/02/Process-20040205/tr.html#RecsW3C
http://www.w3.org/DOM/Activity.html
http://www.w3.org/DOM/
http://www.w3.org/DOM/faq.html
http://www.w3.org/DOM/Test/
http://www.w3.org/2004/02/19-dom-level-3-issues/issues.html
http://www.w3.org/2004/03/DOM-Level-3-LS-changes.html
http://www.w3.org/2004/03/DOM-Level-3-LS-changes.html
http://www.w3.org/2003/10/DOM-Level-3-LS-implementations.html
http://www.w3.org/2004/01/DOM-Level-3-errata
http://lists.w3.org/Archives/Public/www-dom/
http://www.w3.org/2004/01/DOM-Level-3-translations
http://www.w3.org/2002/08/02-DOM-Disclosures.html
http://www.w3.org/2002/08/02-DOM-Disclosures.html
http://www.w3.org/TR/2002/NOTE-patent-practice-20020124
http://www.w3.org/2004/02/05-pp-transition
http://www.w3.org/2004/02/05-pp-transition
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

Expanded Table of Contents
................ 3Expanded Table of Contents
.............. 5W3C Copyright Notices and Licenses
.......... 5W3C® Document Copyright Notice and License
........... 6W3C® Software Copyright Notice and License
............... 7W3C® Short Software Notice

............. 91 Document Object Model Load and Save

............... 91.1 Overview of the Interfaces

.................. 91.2 Basic Types

............. 91.2.1 The LSInputStream Type

............. 101.2.2 The LSOutputStream Type

.............. 101.2.3 The LSReader Type

............... 101.2.4 The LSWriter Type

............... 111.3 Fundamental Interfaces

................ 39Appendix A: IDL Definitions

.............. 43Appendix B: Java Language Binding

............ 49Appendix C: ECMAScript Language Binding

............... 53Appendix D: Acknowledgements

................ 53D.1 Production Systems

.................... 55Glossary

.................... 57References

................ 571 Normative References

................ 582 Informative References

..................... 61Index

3

Expanded Table of Contents

4

Expanded Table of Contents

W3C Copyright Notices and Licenses
Copyright © 2004 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

This document is published under the W3C® Document Copyright Notice and License [p.5] . The
bindings within this document are published under the W3C® Software Copyright Notice and License
[p.6] . The software license requires "Notice of any changes or modifications to the W3C files, including
the date changes were made." Consequently, modified versions of the DOM bindings must document that
they do not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no
longer be ’w3c.org’; in the case of the Java language binding, the package names can no longer be in the
’org.w3c’ package.

W3C ® Document Copyright Notice and License
Note: This section is a copy of the W3C® Document Notice and License and could be found at
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231.

Copyright © 2004 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231

Public documents on the W3C site are provided by the copyright holders under the following license. By
using and/or copying this document, or the W3C document from which this statement is linked, you (the
licensee) agree that you have read, understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the W3C document from which this
statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, provided
that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice (hypertext is

preferred, but a textual representation is permitted) of the form: "Copyright © [$date-of-document]
World Wide Web Consortium, (Massachusetts Institute of Technology, European Research
Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231"

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those

5

W3C Copyright Notices and Licenses

http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231
http://www.w3.org/Consortium/Legal/IPR-FAQ

requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C ® Software Copyright Notice and License
Note: This section is a copy of the W3C® Software Copyright Notice and License and could be found at
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Copyright © 2004 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

This work (and included software, documentation such as READMEs, or other related items) is being
provided by the copyright holders under the following license. By obtaining, using and/or copying this
work, you (the licensee) agree that you have read, understood, and will comply with the following terms
and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without
modification, for any purpose and without fee or royalty is hereby granted, provided that you include the
following on ALL copies of the software and documentation or portions thereof, including modifications:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the

W3C® Short Software Notice [p.7] should be included (hypertext is preferred, text is permitted)
within the body of any redistributed or derivative code.

3. Notice of any changes or modifications to the files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

6

W3C® Software Copyright Notice and License

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

W3C ® Short Software Notice
Note: This section is a copy of the W3C® Short Software Notice and could be found at
http://www.w3.org/Consortium/Legal/2002/copyright-software-short-notice-20021231

Copyright © 2004 World Wide Web Consortium, (Massachusetts Institute of Technology, European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.

Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of Technology,
European Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.
This work is distributed under the W3C® Software License [1] in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.

[1] http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

7

W3C® Short Software Notice

http://www.w3.org/Consortium/Legal/2002/copyright-software-short-notice-20021231
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/

8

W3C® Short Software Notice

1. Document Object Model Load and Save
Editors:

Johnny Stenback, Netscape
Andy Heninger, IBM (until March 2001)

This section defines a set of interfaces for loading and saving document objects as defined in [DOM Level
2 Core] or newer. The functionality specified in this section (the Load and Save functionality) is sufficient
to allow software developers and Web script authors to load and save XML content inside conforming
products. The DOM Load and Save API [p.55] also allows filtering of XML content using only DOM API
calls; access and manipulation of the Document is defined in [DOM Level 2 Core] or newer.

The proposal for loading is influenced by the Java APIs for XML Processing [JAXP] and by SAX2 [SAX].

1.1 Overview of the Interfaces
The interfaces involved with the loading and saving of XML documents are:

DOMImplementationLS [p.12] -- An extended DOMImplementation interface that provides
the factory methods for creating the objects required for loading and saving.
LSParser [p.14] -- An interface for parsing data into DOM documents.
LSInput [p.22] -- Encapsulates information about the data to be loaded.
LSResourceResolver [p.24] -- Provides a way for applications to redirect references to external
resources when parsing.
LSParserFilter [p.25] -- Provides the ability to examine and optionally remove nodes as they
are being processed while parsing.
LSSerializer [p.29] -- An interface for serializing DOM documents or nodes.
LSOutput [p.36] -- Encapsulates information about the destination for the data to be output.
LSSerializerFilter [p.37] -- Provides the ability to examine and filter DOM nodes as they are
being processed for the serialization.

1.2 Basic Types
To ensure interoperability, this specification specifies the following basic types used in various DOM
modules. Even though the DOM uses the basic types in the interfaces, bindings may use different types
and normative bindings are only given for Java and ECMAScript in this specification.

1.2.1 The LSInputStream Type

This type is used to represent a sequence of input bytes.

Type Definition LSInputStream

9

1. Document Object Model Load and Save

A LSInputStream [p.9] represents a reference to a byte stream source of an XML input.
IDL Definition

typedef Object LSInputStream;

Note: For Java, LSInputStream [p.9] is bound to the java.io.InputStream type. For
ECMAScript, LSInputStream is bound to Object.

1.2.2 The LSOutputStream Type

This type is used to represent a sequence of output bytes.

Type Definition LSOutputStream

A LSOutputStream [p.10] represents a byte stream destination for the XML output.
IDL Definition

typedef Object LSOutputStream;

Note: For Java, LSOutputStream [p.10] is bound to the java.io.OutputStream type. For
ECMAScript, LSOutputStream is bound to Object.

1.2.3 The LSReader Type

This type is used to represent a sequence of input characters in 16-bit units [p.55] . The encoding used for
the characters is UTF-16, as defined in [Unicode] and in [ISO/IEC 10646]).

Type Definition LSReader

A LSReader [p.10] represents a character stream for the XML input.
IDL Definition

typedef Object LSReader;

Note: For Java, LSReader [p.10] is bound to the java.io.Reader type. For ECMAScript,
LSReader is not bound, and therefore has no recommended meaning in ECMAScript.

1.2.4 The LSWriter Type

This type is used to represent a sequence of output characters in 16-bit units [p.55] . The encoding used
for the characters is UTF-16, as defined in [Unicode] and in [ISO/IEC 10646]).

Type Definition LSWriter

A LSWriter [p.10] represents a character stream for the XML output.
IDL Definition

10

1.2.2 The LSOutputStream Type

typedef Object LSWriter;

Note: For Java, LSWriter [p.10] is bound to the java.io.Writer type. For ECMAScript,
LSWriter is not bound, and therefore has no recommended meaning in ECMAScript.

1.3 Fundamental Interfaces
The interfaces within this section are considered fundamental, and must be fully implemented by all
conforming implementations of the DOM Load and Save module.

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "LS" (or "LS-Async") and "3.0"
(respectively) to determine whether or not these interfaces are supported by the implementation. In order
to fully support them, an implementation must also support the "Core" feature defined in [DOM Level 2
Core].

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "LS-Async" and "3.0" (respectively) to
determine whether or not the asynchronous mode is supported by the implementation. In order to fully
support the asynchronous mode, an implementation must also support the "LS" feature defined in this
section.

For additional information about conformance, please see the DOM Level 3 Core specification [DOM
Level 3 Core].

Exception LSException

Parser or write operations may throw an LSException [p.11] if the processing is stopped. The
processing can be stopped due to a DOMError with a severity of
DOMError.SEVERITY_FATAL_ERROR or a non recovered DOMError.SEVERITY_ERROR, or
if DOMErrorHandler.handleError() returned false.

Note: As suggested in the definition of the constants in the DOMError interface, a DOM
implementation may choose to continue after a fatal error, but the resulting DOM tree is then
implementation dependent.

IDL Definition

exception LSException {
 unsigned short code;
};
// LSExceptionCode
const unsigned short PARSE_ERR = 81;
const unsigned short SERIALIZE_ERR = 82;

Definition group LSExceptionCode

11

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/introduction.html#ID-Conformance

An integer indicating the type of error generated.
Defined Constants

PARSE_ERR
If an attempt was made to load a document, or an XML Fragment, using LSParser
[p.14] and the processing has been stopped.

SERIALIZE_ERR
If an attempt was made to serialize a Node using LSSerializer [p.29] and the
processing has been stopped.

Interface DOMImplementationLS

DOMImplementationLS contains the factory methods for creating Load and Save objects.

The expectation is that an instance of the DOMImplementationLS interface can be obtained by
using binding-specific casting methods on an instance of the DOMImplementation interface or, if
the Document supports the feature "Core" version "3.0" defined in [DOM Level 3 Core], by
using the method DOMImplementation.getFeature with parameter values "LS" (or
"LS-Async") and "3.0" (respectively).
IDL Definition

interface DOMImplementationLS {

 // DOMImplementationLSMode
 const unsigned short MODE_SYNCHRONOUS = 1;
 const unsigned short MODE_ASYNCHRONOUS = 2;

 LSParser createLSParser(in unsigned short mode,
 in DOMString schemaType)
 raises(DOMException);
 LSSerializer createLSSerializer();
 LSInput createLSInput();
 LSOutput createLSOutput();
};

Definition group DOMImplementationLSMode

Integer parser mode constants.
Defined Constants

MODE_ASYNCHRONOUS
Create an asynchronous LSParser [p.14] .

MODE_SYNCHRONOUS
Create a synchronous LSParser [p.14] .

Methods
createLSInput

Create a new empty input source object where LSInput.characterStream [p.23] ,
LSInput.byteStream [p.23] , LSInput.stringData [p.24]
LSInput.systemId [p.24] , LSInput.publicId [p.24] , LSInput.baseURI
[p.23] , and LSInput.encoding [p.23] are null, and LSInput.certifiedText
[p.23] is false.
Return Value

12

1.3 Fundamental Interfaces

LSInput [p.22] The newly created input object.

No Parameters
No Exceptions

createLSOutput
Create a new empty output destination object where LSOutput.characterStream
[p.37] , LSOutput.byteStream [p.37] , LSOutput.systemId [p.37] ,
LSOutput.encoding [p.37] are null.
Return Value

LSOutput [p.36] The newly created output object.

No Parameters
No Exceptions

createLSParser
Create a new LSParser [p.14] . The newly constructed parser may then be configured by
means of its DOMConfiguration object, and used to parse documents by means of its
parse method.
Parameters
mode of type unsigned short

The mode argument is either MODE_SYNCHRONOUS or MODE_ASYNCHRONOUS, if
mode is MODE_SYNCHRONOUS then the LSParser [p.14] that is created will
operate in synchronous mode, if it’s MODE_ASYNCHRONOUS then the LSParser
that is created will operate in asynchronous mode.

schemaType of type DOMString
An absolute URI representing the type of the schema [p.55] language used during the
load of a Document using the newly created LSParser [p.14] . Note that no lexical
checking is done on the absolute URI. In order to create a LSParser for any kind of
schema types (i.e. the LSParser will be free to use any schema found), use the value
null.

Note: For W3C XML Schema [XML Schema Part 1], applications must use the value
"http://www.w3.org/2001/XMLSchema". For XML DTD [XML 1.0],
applications must use the value "http://www.w3.org/TR/REC-xml". Other
Schema languages are outside the scope of the W3C and therefore should recommend
an absolute URI in order to use this method.

Return Value

13

1.3 Fundamental Interfaces

LSParser
[p.14]

The newly created LSParser object. This LSParser is either
synchronous or asynchronous depending on the value of the mode
argument.

Note: By default, the newly created LSParser does not contain a
DOMErrorHandler, i.e. the value of the "error-handler"
configuration parameter is null. However, implementations may
provide a default error handler at creation time. In that case, the initial
value of the "error-handler" configuration parameter on the new
LSParser object contains a reference to the default error handler.

Exceptions

DOMException NOT_SUPPORTED_ERR: Raised if the requested mode or
schema type is not supported.

createLSSerializer
Create a new LSSerializer [p.29] object.
Return Value

LSSerializer
[p.29]

The newly created LSSerializer object.

Note: By default, the newly created LSSerializer has no
DOMErrorHandler, i.e. the value of the
"error-handler" configuration parameter is null.
However, implementations may provide a default error handler at
creation time. In that case, the initial value of the
"error-handler" configuration parameter on the new
LSSerializer object contains a reference to the default error
handler.

No Parameters
No Exceptions

Interface LSParser

An interface to an object that is able to build, or augment, a DOM tree from various input sources.

LSParser provides an API for parsing XML and building the corresponding DOM document
structure. A LSParser instance can be obtained by invoking the
DOMImplementationLS.createLSParser() [p.13] method.

As specified in [DOM Level 3 Core], when a document is first made available via the LSParser:
there will never be two adjacent nodes of type NODE_TEXT, and there will never be empty text
nodes.
it is expected that the value and nodeValue attributes of an Attr node initially return the
XML 1.0 normalized value. However, if the parameters "validate-if-schema" and

14

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-error-handler
http://www.w3.org/TR/2004/REC-xml-20040204#AVNormalize
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-validate-if-schema

"datatype-normalization" are set to true, depending on the attribute normalization used, the
attribute values may differ from the ones obtained by the XML 1.0 attribute normalization. If
the parameters "datatype-normalization" is set to false, the XML 1.0 attribute normalization
is guaranteed to occur, and if the attributes list does not contain namespace declarations, the
attributes attribute on Element node represents the property [attributes] defined in
[XML Information Set].

Asynchronous LSParser objects are expected to also implement the events::EventTarget
interface so that event listeners can be registered on asynchronous LSParser objects.

Events supported by asynchronous LSParser objects are:
load

The LSParser finishes to load the document. See also the definition of the LSLoadEvent
[p.29] interface.

progress
The LSParser signals progress as data is parsed.
This specification does not attempt to define exactly when progress events should be dispatched.
That is intentionally left as implementation-dependent. Here is one example of how an
application might dispatch progress events: Once the parser starts receiving data, a progress
event is dispatched to indicate that the parsing starts. From there on, a progress event is
dispatched for every 4096 bytes of data that is received and processed. This is only one
example, though, and implementations can choose to dispatch progress events at any time while
parsing, or not dispatch them at all.
See also the definition of the LSProgressEvent [p.28] interface.

Note: All events defined in this specification use the namespace URI
"http://www.w3.org/2002/DOMLS".

While parsing an input source, errors are reported to the application through the error handler
(LSParser.domConfig [p.17] ’s "error-handler" parameter). This specification does in no way
try to define all possible errors that can occur while parsing XML, or any other markup, but some
common error cases are defined. The types (DOMError.type) of errors and warnings defined by
this specification are:
"check-character-normalization-failure" [error]

Raised if the parameter "check-character-normalization" is set to true and a string is
encountered that fails normalization checking.

"doctype-not-allowed" [fatal]
Raised if the configuration parameter "disallow-doctype [p.18] " is set to true and a doctype is
encountered.

"no-input-specified" [fatal]
Raised when loading a document and no input is specified in the LSInput [p.22] object.

"pi-base-uri-not-preserved" [warning]
Raised if a processing instruction is encountered in a location where the base URI of the
processing instruction can not be preserved.
One example of a case where this warning will be raised is if the configuration parameter
"entities" is set to false and the following XML file is parsed:

15

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-datatype-normalization
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-datatype-normalization
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-error-handler
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-check-character-normalization
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-entities

<!DOCTYPE root [
<!ENTITY e SYSTEM ’subdir/myentity.ent’
]>

<root>
&e;
</root>

And subdir/myentity.ent contains:

<one>
 <two/>
</one>
<?pi 3.14159?>
<more/>

"unbound-prefix-in-entity" [warning]
An implementation dependent warning that may be raised if the configuration parameter
"namespaces" is set to true and an unbound namespace prefix is encountered in an entity’s
replacement text. Raising this warning is not enforced since some existing parsers may not
recognize unbound namespace prefixes in the replacement text of entities.

"unknown-character-denormalization" [fatal]
Raised if the configuration parameter "ignore-unknown-character-denormalizations [p.18] " is
set to false and a character is encountered for which the processor cannot determine the
normalization properties.

"unsupported-encoding" [fatal]
Raised if an unsupported encoding is encountered.

"unsupported-media-type" [fatal]
Raised if the configuration parameter "supported-media-types-only [p.19] " is set to true and
an unsupported media type is encountered.

In addition to raising the defined errors and warnings, implementations are expected to raise
implementation specific errors and warnings for any other error and warning cases such as IO errors
(file not found, permission denied,...), XML well-formedness errors, and so on.
IDL Definition

interface LSParser {
 readonly attribute DOMConfiguration domConfig;
 attribute LSParserFilter filter;
 readonly attribute boolean async;
 readonly attribute boolean busy;
 Document parse(in LSInput input)
 raises(DOMException,
 LSException);
 Document parseURI(in DOMString uri)
 raises(DOMException,
 LSException);

 // ACTION_TYPES
 const unsigned short ACTION_APPEND_AS_CHILDREN = 1;
 const unsigned short ACTION_REPLACE_CHILDREN = 2;
 const unsigned short ACTION_INSERT_BEFORE = 3;
 const unsigned short ACTION_INSERT_AFTER = 4;

16

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-namespaces

 const unsigned short ACTION_REPLACE = 5;

 Node parseWithContext(in LSInput input,
 in Node contextArg,
 in unsigned short action)
 raises(DOMException,
 LSException);
 void abort();
};

Definition group ACTION_TYPES

A set of possible actions for the parseWithContext method.
Defined Constants

ACTION_APPEND_AS_CHILDREN
Append the result of the parse operation as children of the context node. For this
action to work, the context node must be an Element or a DocumentFragment.

ACTION_INSERT_AFTER
Insert the result of the parse operation as the immediately following sibling of the
context node. For this action to work the context node’s parent must be an Element
or a DocumentFragment.

ACTION_INSERT_BEFORE
Insert the result of the parse operation as the immediately preceding sibling of the
context node. For this action to work the context node’s parent must be an Element
or a DocumentFragment.

ACTION_REPLACE
Replace the context node with the result of the parse operation. For this action to
work, the context node must have a parent, and the parent must be an Element or a
DocumentFragment.

ACTION_REPLACE_CHILDREN
Replace all the children of the context node with the result of the parse operation. For
this action to work, the context node must be an Element, a Document, or a
DocumentFragment.

Attributes
async of type boolean, readonly

true if the LSParser is asynchronous, false if it is synchronous.
busy of type boolean, readonly

true if the LSParser is currently busy loading a document, otherwise false.
domConfig of type DOMConfiguration, readonly

The DOMConfiguration object used when parsing an input source. This
DOMConfiguration is specific to the parse operation. No parameter values from this
DOMConfiguration object are passed automatically to the DOMConfiguration
object on the Document that is created, or used, by the parse operation. The DOM
application is responsible for passing any needed parameter values from this
DOMConfiguration object to the DOMConfiguration object referenced by the
Document object.
In addition to the parameters recognized in on the DOMConfiguration interface defined in
[DOM Level 3 Core], the DOMConfiguration objects for LSParser add or modify
the following parameters:

17

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/core.html#DOMConfiguration

"charset-overrides-xml-encoding"
true

[optional] (default)
If a higher level protocol such as HTTP [IETF RFC 2616] provides an indication
of the character encoding of the input stream being processed, that will override
any encoding specified in the XML declaration or the Text declaration (see also
section 4.3.3, "Character Encoding in Entities", in [XML 1.0]). Explicitly setting
an encoding in the LSInput [p.22] overrides any encoding from the protocol.

false
[required]
The parser ignores any character set encoding information from higher-level
protocols.

"disallow-doctype"
true

[optional]
Throw a fatal "doctype-not-allowed" error if a doctype node is found while
parsing the document. This is useful when dealing with things like SOAP
envelopes where doctype nodes are not allowed.

false
[required] (default)
Allow doctype nodes in the document.

"ignore-unknown-character-denormalizations"
true

[required] (default)
If, while verifying full normalization when [XML 1.1] is supported, a processor
encounters characters for which it cannot determine the normalization properties,
then the processor will ignore any possible denormalizations caused by these
characters.
This parameter is ignored for [XML 1.0].

false
[optional]
Report an fatal "unknown-character-denormalization" error if a character is
encountered for which the processor cannot determine the normalization
properties.

"infoset"
See the definition of DOMConfiguration for a description of this parameter.
Unlike in [DOM Level 3 Core], this parameter will default to true for LSParser.

"namespaces"
true

[required] (default)
Perform the namespace processing as defined in [XML Namespaces] and [XML
Namespaces 1.1].

false
[optional]
Do not perform the namespace processing.

18

1.3 Fundamental Interfaces

"resource-resolver"
[required]
A reference to a LSResourceResolver [p.24] object, or null. If the value of this
parameter is not null when an external resource (such as an external XML entity or an
XML schema location) is encountered, the implementation will request that the
LSResourceResolver referenced in this parameter resolves the resource.

"supported-media-types-only"
true

[optional]
Check that the media type of the parsed resource is a supported media type. If an
unsupported media type is encountered, a fatal error of type
"unsupported-media-type" will be raised. The media types defined in [IETF
RFC 3023] must always be accepted.

false
[required] (default)
Accept any media type.

"validate"
See the definition of DOMConfiguration for a description of this parameter.
Unlike in [DOM Level 3 Core], the processing of the internal subset is always
accomplished, even if this parameter is set to false.

"validate-if-schema"
See the definition of DOMConfiguration for a description of this parameter.
Unlike in [DOM Level 3 Core], the processing of the internal subset is always
accomplished, even if this parameter is set to false.

"well-formed"
See the definition of DOMConfiguration for a description of this parameter.
Unlike in [DOM Level 3 Core], this parameter cannot be set to false.

filter of type LSParserFilter [p.25]
When a filter is provided, the implementation will call out to the filter as it is constructing
the DOM tree structure. The filter can choose to remove elements from the document being
constructed, or to terminate the parsing early.
The filter is invoked after the operations requested by the DOMConfiguration
parameters have been applied. For example, if "validate" is set to true, the validation is
done before invoking the filter.

Methods
abort

Abort the loading of the document that is currently being loaded by the LSParser. If the
LSParser is currently not busy, a call to this method does nothing.
No Parameters
No Return Value
No Exceptions

parse
Parse an XML document from a resource identified by a LSInput [p.22] .
Parameters
input of type LSInput [p.22]

The LSInput from which the source of the document is to be read.

19

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-validate

Return Value

Document If the LSParser is a synchronous LSParser, the newly created and
populated Document is returned. If the LSParser is asynchronous,
null is returned since the document object may not yet be constructed
when this method returns.

Exceptions

DOMException INVALID_STATE_ERR: Raised if the LSParser’s
LSParser.busy [p.17] attribute is true.

LSException
[p.11]

PARSE_ERR: Raised if the LSParser was unable to load the
XML document. DOM applications should attach a
DOMErrorHandler using the parameter "error-handler" if
they wish to get details on the error.

parseURI
Parse an XML document from a location identified by a URI reference [IETF RFC 2396].
If the URI contains a fragment identifier (see section 4.1 in [IETF RFC 2396]), the
behavior is not defined by this specification, future versions of this specification may
define the behavior.
Parameters
uri of type DOMString

The location of the XML document to be read.
Return Value

Document If the LSParser is a synchronous LSParser, the newly created and
populated Document is returned, or null if an error occured. If the
LSParser is asynchronous, null is returned since the document
object may not yet be constructed when this method returns.

Exceptions

DOMException INVALID_STATE_ERR: Raised if the LSParser.busy
[p.17] attribute is true.

LSException
[p.11]

PARSE_ERR: Raised if the LSParser was unable to load the
XML document. DOM applications should attach a
DOMErrorHandler using the parameter "error-handler" if
they wish to get details on the error.

parseWithContext
Parse an XML fragment from a resource identified by a LSInput [p.22] and insert the
content into an existing document at the position specified with the context and

20

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-error-handler
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-error-handler

action arguments. When parsing the input stream, the context node (or its parent,
depending on where the result will be inserted) is used for resolving unbound namespace
prefixes. The context node’s ownerDocument node (or the node itself if the node of type
DOCUMENT_NODE) is used to resolve default attributes and entity references.
As the new data is inserted into the document, at least one mutation event is fired per new
immediate child or sibling of the context node.
If the context node is a Document node and the action is
ACTION_REPLACE_CHILDREN, then the document that is passed as the context node
will be changed such that its xmlEncoding, documentURI, xmlVersion,
inputEncoding, xmlStandalone, and all other such attributes are set to what they
would be set to if the input source was parsed using LSParser.parse() [p.19] .
This method is always synchronous, even if the LSParser is asynchronous
(LSParser.async [p.17] is true).
If an error occurs while parsing, the caller is notified through the ErrorHandler
instance associated with the "error-handler" parameter of the DOMConfiguration.
When calling parseWithContext, the values of the following configuration parameters
will be ignored and their default values will always be used instead: "validate",
"validate-if-schema", and "element-content-whitespace". Other parameters will be treated
normally, and the parser is expected to call the LSParserFilter [p.25] just as if a
whole document was parsed.
Parameters
input of type LSInput [p.22]

The LSInput from which the source document is to be read. The source document
must be an XML fragment, i.e. anything except a complete XML document (except in
the case where the context node of type DOCUMENT_NODE, and the action is
ACTION_REPLACE_CHILDREN), a DOCTYPE (internal subset), entity
declaration(s), notation declaration(s), or XML or text declaration(s).

contextArg of type Node
The node that is used as the context for the data that is being parsed. This node must
be a Document node, a DocumentFragment node, or a node of a type that is
allowed as a child of an Element node, e.g. it cannot be an Attribute node.

action of type unsigned short
This parameter describes which action should be taken between the new set of nodes
being inserted and the existing children of the context node. The set of possible
actions is defined in ACTION_TYPES above.

Return Value

Node Return the node that is the result of the parse operation. If the result is more
than one top-level node, the first one is returned.

Exceptions

21

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-error-handler
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-validate
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-validate-if-schema
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-element-content-whitespace

DOMException HIERARCHY_REQUEST_ERR: Raised if the content cannot
replace, be inserted before, after, or as a child of the context node
(see also Node.insertBefore or Node.replaceChild
in [DOM Level 3 Core]).

NOT_SUPPORTED_ERR: Raised if the LSParser doesn’t
support this method, or if the context node is of type Document
and the DOM implementation doesn’t support the replacement of
the DocumentType child or Element child.

NO_MODIFICATION_ALLOWED_ERR: Raised if the context
node is a read only node [p.55] and the content is being appended
to its child list, or if the parent node of the context node is read
only node [p.55] and the content is being inserted in its child list.

INVALID_STATE_ERR: Raised if the LSParser.busy
[p.17] attribute is true.

LSException
[p.11]

PARSE_ERR: Raised if the LSParser was unable to load the
XML fragment. DOM applications should attach a
DOMErrorHandler using the parameter "error-handler" if
they wish to get details on the error.

Interface LSInput

This interface represents an input source for data.

This interface allows an application to encapsulate information about an input source in a single
object, which may include a public identifier, a system identifier, a byte stream (possibly with a
specified encoding), a base URI, and/or a character stream.

The exact definitions of a byte stream and a character stream are binding dependent.

The application is expected to provide objects that implement this interface whenever such objects
are needed. The application can either provide its own objects that implement this interface, or it can
use the generic factory method DOMImplementationLS.createLSInput() [p.12] to create
objects that implement this interface.

The LSParser [p.14] will use the LSInput object to determine how to read data. The LSParser
will look at the different inputs specified in the LSInput in the following order to know which one
to read from, the first one that is not null and not an empty string will be used:

1. LSInput.characterStream [p.23]
2. LSInput.byteStream [p.23]
3. LSInput.stringData [p.24]
4. LSInput.systemId [p.24]
5. LSInput.publicId [p.24]

22

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-error-handler

If all inputs are null, the LSParser [p.14] will report a DOMError with its DOMError.type set
to "no-input-specified" and its DOMError.severity set to
DOMError.SEVERITY_FATAL_ERROR.

LSInput objects belong to the application. The DOM implementation will never modify them
(though it may make copies and modify the copies, if necessary).
IDL Definition

interface LSInput {
 // Depending on the language binding in use,
 // this attribute may not be available.
 attribute LSReader characterStream;
 attribute LSInputStream byteStream;
 attribute DOMString stringData;
 attribute DOMString systemId;
 attribute DOMString publicId;
 attribute DOMString baseURI;
 attribute DOMString encoding;
 attribute boolean certifiedText;
};

Attributes
baseURI of type DOMString

The base URI to be used (see section 5.1.4 in [IETF RFC 2396]) for resolving a relative
systemId to an absolute URI.
If, when used, the base URI is itself a relative URI, an empty string, or null, the behavior is
implementation dependent.

byteStream of type LSInputStream [p.9]
An attribute of a language and binding dependent type that represents a stream of bytes.
If the application knows the character encoding of the byte stream, it should set the
encoding attribute. Setting the encoding in this way will override any encoding specified in
an XML declaration in the data.

certifiedText of type boolean
If set to true, assume that the input is certified (see section 2.13 in [XML 1.1]) when parsing
[XML 1.1].

characterStream of type LSReader [p.10]
Depending on the language binding in use, this attribute may not be available.

An attribute of a language and binding dependent type that represents a stream of 16-bit
units [p.55] . The application must encode the stream using UTF-16 (defined in [Unicode]
and in [ISO/IEC 10646]). It is not a requirement to have an XML declaration when using
character streams. If an XML declaration is present, the value of the encoding attribute will
be ignored.

encoding of type DOMString
The character encoding, if known. The encoding must be a string acceptable for an XML
encoding declaration ([XML 1.0] section 4.3.3 "Character Encoding in Entities").
This attribute has no effect when the application provides a character stream or string data.
For other sources of input, an encoding specified by means of this attribute will override
any encoding specified in the XML declaration or the Text declaration, or an encoding
obtained from a higher level protocol, such as HTTP [IETF RFC 2616].

23

1.3 Fundamental Interfaces

publicId of type DOMString
The public identifier for this input source. This may be mapped to an input source using an
implementation dependent mechanism (such as catalogues or other mappings). The public
identifier, if specified, may also be reported as part of the location information when errors
are reported.

stringData of type DOMString
String data to parse. If provided, this will always be treated as a sequence of 16-bit units
[p.55] (UTF-16 encoded characters). It is not a requirement to have an XML declaration
when using stringData. If an XML declaration is present, the value of the encoding
attribute will be ignored.

systemId of type DOMString
The system identifier, a URI reference [IETF RFC 2396], for this input source. The system
identifier is optional if there is a byte stream, a character stream, or string data. It is still
useful to provide one, since the application will use it to resolve any relative URIs and can
include it in error messages and warnings. (The LSParser will only attempt to fetch the
resource identified by the URI reference if there is no other input available in the input
source.)
If the application knows the character encoding of the object pointed to by the system
identifier, it can set the encoding using the encoding attribute.
If the specified system ID is a relative URI reference (see section 5 in [IETF RFC 2396]),
the DOM implementation will attempt to resolve the relative URI with the baseURI as
the base, if that fails, the behavior is implementation dependent.

Interface LSResourceResolver

LSResourceResolver provides a way for applications to redirect references to external
resources.

Applications needing to implement custom handling for external resources can implement this
interface and register their implementation by setting the "resource-resolver" parameter of
DOMConfiguration objects attached to LSParser [p.14] and LSSerializer [p.29] . It can
also be register on DOMConfiguration objects attached to Document if the "LS" feature is
supported.

The LSParser [p.14] will then allow the application to intercept any external entities, including the
external DTD subset and external parameter entities, before including them. The top-level document
entity is never passed to the resolveResource method.

Many DOM applications will not need to implement this interface, but it will be especially useful for
applications that build XML documents from databases or other specialized input sources, or for
applications that use URNs.

Note: LSResourceResolver is based on the SAX2 [SAX] EntityResolver interface.

IDL Definition

24

1.3 Fundamental Interfaces

interface LSResourceResolver {
 LSInput resolveResource(in DOMString type,
 in DOMString namespaceURI,
 in DOMString publicId,
 in DOMString systemId,
 in DOMString baseURI);
};

Methods
resolveResource

Allow the application to resolve external resources.
The LSParser [p.14] will call this method before opening any external resource,
including the external DTD subset, external entities referenced within the DTD, and
external entities referenced within the document element (however, the top-level document
entity is not passed to this method). The application may then request that the LSParser
resolve the external resource itself, that it use an alternative URI, or that it use an entirely
different input source.
Application writers can use this method to redirect external system identifiers to secure
and/or local URI, to look up public identifiers in a catalogue, or to read an entity from a
database or other input source (including, for example, a dialog box).
Parameters
type of type DOMString

The type of the resource being resolved. For XML [XML 1.0] resources (i.e. entities),
applications must use the value "http://www.w3.org/TR/REC-xml". For
XML Schema [XML Schema Part 1], applications must use the value
"http://www.w3.org/2001/XMLSchema". Other types of resources are
outside the scope of this specification and therefore should recommend an absolute
URI in order to use this method.

namespaceURI of type DOMString
The namespace of the resource being resolved, e.g. the target namespace of the XML
Schema [XML Schema Part 1] when resolving XML Schema resources.

publicId of type DOMString
The public identifier of the external entity being referenced, or null if no public
identifier was supplied or if the resource is not an entity.

systemId of type DOMString
The system identifier, a URI reference [IETF RFC 2396], of the external resource
being referenced, or null if no system identifier was supplied.

baseURI of type DOMString
The absolute base URI of the resource being parsed, or null if there is no base URI.

Return Value

LSInput
[p.22]

A LSInput object describing the new input source, or null to
request that the parser open a regular URI connection to the resource.

No Exceptions
Interface LSParserFilter

25

1.3 Fundamental Interfaces

LSParserFilters provide applications the ability to examine nodes as they are being constructed
while parsing. As each node is examined, it may be modified or removed, or the entire parse may be
terminated early.

At the time any of the filter methods are called by the parser, the owner Document and
DOMImplementation objects exist and are accessible. The document element is never passed to the
LSParserFilter methods, i.e. it is not possible to filter out the document element. Document,
DocumentType, Notation, Entity, and Attr nodes are never passed to the acceptNode
method on the filter. The child nodes of an EntityReference node are passed to the filter if the
parameter "entities" is set to false. Note that, as described by the parameter "entities", unexpanded
entity reference nodes are never discarded and are always passed to the filter.

All validity checking while parsing a document occurs on the source document as it appears on the
input stream, not on the DOM document as it is built in memory. With filters, the document in
memory may be a subset of the document on the stream, and its validity may have been affected by
the filtering.

All default attributes must be present on elements when the elements are passed to the filter methods.
All other default content must be passed to the filter methods.

DOM applications must not raise exceptions in a filter. The effect of throwing exceptions from a
filter is DOM implementation dependent.
IDL Definition

interface LSParserFilter {

 // Constants returned by startElement and acceptNode
 const short FILTER_ACCEPT = 1;
 const short FILTER_REJECT = 2;
 const short FILTER_SKIP = 3;
 const short FILTER_INTERRUPT = 4;

 unsigned short startElement(in Element elementArg);
 unsigned short acceptNode(in Node nodeArg);
 readonly attribute unsigned long whatToShow;
};

Definition group Constants returned by startElement and acceptNode

Constants returned by startElement and acceptNode.
Defined Constants

FILTER_ACCEPT
Accept the node.

FILTER_INTERRUPT
Interrupt the normal processing of the document.

FILTER_REJECT
Reject the node and its children.

FILTER_SKIP
Skip this single node. The children of this node will still be considered.

26

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-entities
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-entities

Attributes
whatToShow of type unsigned long, readonly

Tells the LSParser [p.14] what types of nodes to show to the method
LSParserFilter.acceptNode [p.27] . If a node is not shown to the filter using this
attribute, it is automatically included in the DOM document being built. See NodeFilter
for definition of the constants. The constants SHOW_ATTRIBUTE, SHOW_DOCUMENT,
SHOW_DOCUMENT_TYPE, SHOW_NOTATION, SHOW_ENTITY, and
SHOW_DOCUMENT_FRAGMENT are meaningless here. Those nodes will never be passed
to LSParserFilter.acceptNode.
The constants used here are defined in [DOM Level 2 Traversal and Range].

Methods
acceptNode

This method will be called by the parser at the completion of the parsing of each node. The
node and all of its descendants will exist and be complete. The parent node will also exist,
although it may be incomplete, i.e. it may have additional children that have not yet been
parsed. Attribute nodes are never passed to this function.
From within this method, the new node may be freely modified - children may be added or
removed, text nodes modified, etc. The state of the rest of the document outside this node is
not defined, and the affect of any attempt to navigate to, or to modify any other part of the
document is undefined.
For validating parsers, the checks are made on the original document, before any
modification by the filter. No validity checks are made on any document modifications
made by the filter.
If this new node is rejected, the parser might reuse the new node and any of its
descendants.
Parameters
nodeArg of type Node

The newly constructed element. At the time this method is called, the element is
complete - it has all of its children (and their children, recursively) and attributes, and
is attached as a child to its parent.

Return Value

unsigned
short

FILTER_ACCEPT if this Node should be included in the DOM
document being built.
FILTER_REJECT if the Node and all of its children should be
rejected.
FILTER_SKIP if the Node should be skipped and the Node
should be replaced by all the children of the Node.
FILTER_INTERRUPT if the filter wants to stop the processing
of the document. Interrupting the processing of the document
does no longer guarantee that the resulting DOM tree is XML
well-formed [p.55] . The Node is accepted and will be the last
completely parsed node.

27

1.3 Fundamental Interfaces

No Exceptions
startElement

The parser will call this method after each Element start tag has been scanned, but before
the remainder of the Element is processed. The intent is to allow the element, including
any children, to be efficiently skipped. Note that only element nodes are passed to the
startElement function.
The element node passed to startElement for filtering will include all of the Element’s
attributes, but none of the children nodes. The Element may not yet be in place in the
document being constructed (it may not have a parent node.)
A startElement filter function may access or change the attributes for the Element.
Changing Namespace declarations will have no effect on namespace resolution by the
parser.
For efficiency, the Element node passed to the filter may not be the same one as is actually
placed in the tree if the node is accepted. And the actual node (node object identity) may be
reused during the process of reading in and filtering a document.
Parameters
elementArg of type Element

The newly encountered element. At the time this method is called, the element is
incomplete - it will have its attributes, but no children.

Return Value

unsigned
short

FILTER_ACCEPT if the Element should be included in the
DOM document being built.
FILTER_REJECT if the Element and all of its children should
be rejected.
FILTER_SKIP if the Element should be skipped. All of its
children are inserted in place of the skipped Element node.
FILTER_INTERRUPT if the filter wants to stop the processing
of the document. Interrupting the processing of the document
does no longer guarantee that the resulting DOM tree is XML
well-formed [p.55] . The Element is rejected.

Returning any other values will result in unspecified behavior.

No Exceptions
Interface LSProgressEvent

This interface represents a progress event object that notifies the application about progress as a
document is parsed. It extends the Event interface defined in [DOM Level 3 Events].

The units used for the attributes position and totalSize are not specified and can be
implementation and input dependent.
IDL Definition

28

1.3 Fundamental Interfaces

interface LSProgressEvent : events::Event {
 readonly attribute LSInput input;
 readonly attribute unsigned long position;
 readonly attribute unsigned long totalSize;
};

Attributes
input of type LSInput [p.22] , readonly

The input source that is being parsed.
position of type unsigned long, readonly

The current position in the input source, including all external entities and other resources
that have been read.

totalSize of type unsigned long, readonly
The total size of the document including all external resources, this number might change
as a document is being parsed if references to more external resources are seen. A value of
0 is returned if the total size cannot be determined or estimated.

Interface LSLoadEvent

This interface represents a load event object that signals the completion of a document load.
IDL Definition

interface LSLoadEvent : events::Event {
 readonly attribute Document newDocument;
 readonly attribute LSInput input;
};

Attributes
input of type LSInput [p.22] , readonly

The input source that was parsed.
newDocument of type Document, readonly

The document that finished loading.
Interface LSSerializer

A LSSerializer provides an API for serializing (writing) a DOM document out into XML. The
XML data is written to a string or an output stream. Any changes or fixups made during the
serialization affect only the serialized data. The Document object and its children are never altered
by the serialization operation.

During serialization of XML data, namespace fixup is done as defined in [DOM Level 3 Core],
Appendix B. [DOM Level 2 Core] allows empty strings as a real namespace URI. If the
namespaceURI of a Node is empty string, the serialization will treat them as null, ignoring the
prefix if any.

LSSerializer accepts any node type for serialization. For nodes of type Document or Entity,
well-formed XML will be created when possible (well-formedness is guaranteed if the document or
entity comes from a parse operation and is unchanged since it was created). The serialized output for
these node types is either as a XML document or an External XML Entity, respectively, and is
acceptable input for an XML parser. For all other types of nodes the serialized form is
implementation dependent.

29

1.3 Fundamental Interfaces

Within a Document, DocumentFragment, or Entity being serialized, Nodes are processed as
follows

Document nodes are written, including the XML declaration (unless the parameter
"xml-declaration [p.33] " is set to false) and a DTD subset, if one exists in the DOM. Writing
a Document node serializes the entire document.
Entity nodes, when written directly by LSSerializer.write [p.34] , outputs the entity
expansion but no namespace fixup is done. The resulting output will be valid as an external
entity.
If the parameter "entities" is set to true, EntityReference nodes are serialized as an
entity reference of the form "&entityName;" in the output. Child nodes (the expansion) of
the entity reference are ignored. If the parameter "entities" is set to false, only the children of
the entity reference are serialized. EntityReference nodes with no children (no
corresponding Entity node or the corresponding Entity nodes have no children) are always
serialized.
CDATAsections containing content characters that cannot be represented in the specified
output encoding are handled according to the "split-cdata-sections" parameter.
If the parameter is set to true, CDATAsections are split, and the unrepresentable characters
are serialized as numeric character references in ordinary content. The exact position and
number of splits is not specified.
If the parameter is set to false, unrepresentable characters in a CDATAsection are reported
as "wf-invalid-character" errors if the parameter "well-formed" is set to true. The
error is not recoverable - there is no mechanism for supplying alternative characters and
continuing with the serialization.
DocumentFragment nodes are serialized by serializing the children of the document
fragment in the order they appear in the document fragment.
All other node types (Element, Text, etc.) are serialized to their corresponding XML source
form.

Note: The serialization of a Node does not always generate a well-formed [p.55] XML document,
i.e. a LSParser [p.14] might throw fatal errors when parsing the resulting serialization.

Within the character data of a document (outside of markup), any characters that cannot be
represented directly are replaced with character references. Occurrences of ’<’ and ’&’ are replaced
by the predefined entities < and &. The other predefined entities (>, ', and ")
might not be used, except where needed (e.g. using > in cases such as ’]]>’). Any characters that
cannot be represented directly in the output character encoding are serialized as numeric character
references (and since character encoding standards commonly use hexadecimal representations of
characters, using the hexadecimal representation when serializing character references is
encouraged).

To allow attribute values to contain both single and double quotes, the apostrophe or single-quote
character (’) may be represented as "'", and the double-quote character (") as """. New
line characters and other characters that cannot be represented directly in attribute values in the
output character encoding are serialized as a numeric character reference.

30

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-entities
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-entities
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-split-cdata-sections
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-well-formed

Within markup, but outside of attributes, any occurrence of a character that cannot be represented in
the output character encoding is reported as a DOMError fatal error. An example would be
serializing the element <LaCañada/> with encoding="us-ascii". This will result with a
generation of a DOMError "wf-invalid-character-in-node-name" (as proposed in "well-formed").

When requested by setting the parameter "normalize-characters" on LSSerializer to true,
character normalization is performed according to the definition of fully normalized characters
included in appendix E of [XML 1.1] on all data to be serialized, both markup and character data. The
character normalization process affects only the data as it is being written; it does not alter the
DOM’s view of the document after serialization has completed.

Implementations are required to support the encodings "UTF-8", "UTF-16", "UTF-16BE", and
"UTF-16LE" to guarantee that data is serializable in all encodings that are required to be supported
by all XML parsers. When the encoding is UTF-8, whether or not a byte order mark is serialized, or
if the output is big-endian or little-endian, is implementation dependent. When the encoding is
UTF-16, whether or not the output is big-endian or little-endian is implementation dependent, but a
Byte Order Mark must be generated for non-character outputs, such as LSOutput.byteStream
[p.37] or LSOutput.systemId [p.37] . If the Byte Order Mark is not generated, a
"byte-order-mark-needed" warning is reported. When the encoding is UTF-16LE or UTF-16BE, the
output is big-endian (UTF-16BE) or little-endian (UTF-16LE) and the Byte Order Mark is not be
generated. In all cases, the encoding declaration, if generated, will correspond to the encoding used
during the serialization (e.g. encoding="UTF-16" will appear if UTF-16 was requested).

Namespaces are fixed up during serialization, the serialization process will verify that namespace
declarations, namespace prefixes and the namespace URI associated with elements and attributes are
consistent. If inconsistencies are found, the serialized form of the document will be altered to remove
them. The method used for doing the namespace fixup while serializing a document is the algorithm
defined in Appendix B.1, "Namespace normalization", of [DOM Level 3 Core].

While serializing a document, the parameter "discard-default-content [p.32] " controls whether or not
non-specified data is serialized.

While serializing, errors and warnings are reported to the application through the error handler
(LSSerializer.domConfig [p.32] ’s "error-handler" parameter). This specification does in no
way try to define all possible errors and warnings that can occur while serializing a DOM node, but
some common error and warning cases are defined. The types (DOMError.type) of errors and
warnings defined by this specification are:
"no-output-specified" [fatal]

Raised when writing to a LSOutput [p.36] if no output is specified in the LSOutput.
"unbound-prefix-in-entity-reference" [fatal]

Raised if the configuration parameter "namespaces" is set to true and an entity whose
replacement text contains unbound namespace prefixes is referenced in a location where there
are no bindings for the namespace prefixes.

"unsupported-encoding" [fatal]
Raised if an unsupported encoding is encountered.

31

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-well-formed
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-normalize-characters
http://www.w3.org/TR/2004/REC-xml11-20040204/#dt-fullnorm
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-error-handler
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-namespaces

In addition to raising the defined errors and warnings, implementations are expected to raise
implementation specific errors and warnings for any other error and warning cases such as IO errors
(file not found, permission denied,...) and so on.
IDL Definition

interface LSSerializer {
 readonly attribute DOMConfiguration domConfig;
 attribute DOMString newLine;
 attribute LSSerializerFilter filter;
 boolean write(in Node nodeArg,
 in LSOutput destination)
 raises(LSException);
 boolean writeToURI(in Node nodeArg,
 in DOMString uri)
 raises(LSException);
 DOMString writeToString(in Node nodeArg)
 raises(DOMException,
 LSException);
};

Attributes
domConfig of type DOMConfiguration, readonly

The DOMConfiguration object used by the LSSerializer when serializing a DOM
node.
In addition to the parameters recognized by the DOMConfiguration interface defined in
[DOM Level 3 Core], the DOMConfiguration objects for LSSerializer adds, or
modifies, the following parameters:
"canonical-form"

true
[optional]
Writes the document according to the rules specified in [Canonical XML]. In
addition to the behavior described in "canonical-form" [DOM Level 3 Core],
setting this parameter to true will set the parameters "format-pretty-print [p.33]
", "discard-default-content [p.32] ", and "xml-declaration [p.33] ", to false.
Setting one of those parameters to true will set this parameter to false.
Serializing an XML 1.1 document when "canonical-form" is true will generate
a fatal error.

false
[required] (default)
Do not canonicalize the output.

"discard-default-content"
true

[required] (default)
Use the Attr.specified attribute to decide what attributes should be
discarded. Note that some implementations might use whatever information
available to the implementation (i.e. XML schema, DTD, the
Attr.specified attribute, and so on) to determine what attributes and
content to discard if this parameter is set to true.

32

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/core.html#DOMConfiguration
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-canonical-form

false
[required]
Keep all attributes and all content.

"format-pretty-print"
true

[optional]
Formatting the output by adding whitespace to produce a pretty-printed,
indented, human-readable form. The exact form of the transformations is not
specified by this specification. Pretty-printing changes the content of the
document and may affect the validity of the document, validating
implementations should preserve validity.

false
[required] (default)
Don’t pretty-print the result.

"ignore-unknown-character-denormalizations"
true

[required] (default)
If, while verifying full normalization when [XML 1.1] is supported, a character is
encountered for which the normalization properties cannot be determined, then
raise a "unknown-character-denormalization" warning (instead of
raising an error, if this parameter is not set) and ignore any possible
denormalizations caused by these characters.

false
[optional]
Report a fatal error if a character is encountered for which the processor cannot
determine the normalization properties.

"normalize-characters"
This parameter is equivalent to the one defined by DOMConfiguration in [DOM
Level 3 Core]. Unlike in the Core, the default value for this parameter is true. While
DOM implementations are not required to support fully normalizing the characters in
the document according to appendix E of [XML 1.1], this parameter must be activated
by default if supported.

"xml-declaration"
true

[required] (default)
If a Document, Element, or Entity node is serialized, the XML declaration,
or text declaration, should be included. The version (Document.xmlVersion
if the document is a Level 3 document and the version is non-null, otherwise use
the value "1.0"), and the output encoding (see LSSerializer.write [p.34]
for details on how to find the output encoding) are specified in the serialized
XML declaration.

false
[required]
Do not serialize the XML and text declarations. Report a
"xml-declaration-needed" warning if this will cause problems (i.e. the
serialized data is of an XML version other than [XML 1.0], or an encoding would

33

1.3 Fundamental Interfaces

http://www.w3.org/TR/2004/REC-xml11-20040204/#dt-fullnorm

be needed to be able to re-parse the serialized data).
filter of type LSSerializerFilter [p.37]

When the application provides a filter, the serializer will call out to the filter before
serializing each Node. The filter implementation can choose to remove the node from the
stream or to terminate the serialization early.
The filter is invoked after the operations requested by the DOMConfiguration
parameters have been applied. For example, CDATA sections won’t be passed to the filter
if "cdata-sections" is set to false.

newLine of type DOMString
The end-of-line sequence of characters to be used in the XML being written out. Any string
is supported, but XML treats only a certain set of characters sequence as end-of-line (See
section 2.11, "End-of-Line Handling" in [XML 1.0], if the serialized content is XML 1.0 or
section 2.11, "End-of-Line Handling" in [XML 1.1], if the serialized content is XML 1.1).
Using other character sequences than the recommended ones can result in a document that
is either not serializable or not well-formed).
On retrieval, the default value of this attribute is the implementation specific default
end-of-line sequence. DOM implementations should choose the default to match the usual
convention for text files in the environment being used. Implementations must choose a
default sequence that matches one of those allowed by XML 1.0 or XML 1.1, depending on
the serialized content. Setting this attribute to null will reset its value to the default value.

Methods
write

Serialize the specified node as described above in the general description of the
LSSerializer interface. The output is written to the supplied LSOutput [p.36] .
When writing to a LSOutput [p.36] , the encoding is found by looking at the encoding
information that is reachable through the LSOutput and the item to be written (or its
owner document) in this order:

1. LSOutput.encoding [p.37] ,
2. Document.inputEncoding,
3. Document.xmlEncoding.

If no encoding is reachable through the above properties, a default encoding of "UTF-8"
will be used. If the specified encoding is not supported an "unsupported-encoding" fatal
error is raised.
If no output is specified in the LSOutput [p.36] , a "no-output-specified" fatal error is
raised.
The implementation is responsible of associating the appropriate media type with the
serialized data.
When writing to a HTTP URI, a HTTP PUT is performed. When writing to other types of
URIs, the mechanism for writing the data to the URI is implementation dependent.
Parameters
nodeArg of type Node

The node to serialize.
destination of type LSOutput [p.36]

The destination for the serialized DOM.
Return Value

34

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-cdata-sections

boolean Returns true if node was successfully serialized. Return false in
case the normal processing stopped but the implementation kept
serializing the document; the result of the serialization being
implementation dependent then.

Exceptions

LSException
[p.11]

SERIALIZE_ERR: Raised if the LSSerializer was unable to
serialize the node. DOM applications should attach a
DOMErrorHandler using the parameter "error-handler" if they
wish to get details on the error.

writeToString
Serialize the specified node as described above in the general description of the
LSSerializer interface. The output is written to a DOMString that is returned to the
caller. The encoding used is the encoding of the DOMString type, i.e. UTF-16. Note that
no Byte Order Mark is generated in a DOMString object.
Parameters
nodeArg of type Node

The node to serialize.
Return Value

DOMString Returns the serialized data.

Exceptions

DOMException DOMSTRING_SIZE_ERR: Raised if the resulting string is too
long to fit in a DOMString.

LSException
[p.11]

SERIALIZE_ERR: Raised if the LSSerializer was unable
to serialize the node. DOM applications should attach a
DOMErrorHandler using the parameter "error-handler" if
they wish to get details on the error.

writeToURI
A convenience method that acts as if LSSerializer.write [p.34] was called with a
LSOutput [p.36] with no encoding specified and LSOutput.systemId [p.37] set to
the uri argument.
Parameters
nodeArg of type Node

The node to serialize.
uri of type DOMString

The URI to write to.
Return Value

35

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-error-handler
http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-error-handler

boolean Returns true if node was successfully serialized. Return false in
case the normal processing stopped but the implementation kept
serializing the document; the result of the serialization being
implementation dependent then.

Exceptions

LSException
[p.11]

SERIALIZE_ERR: Raised if the LSSerializer was unable to
serialize the node. DOM applications should attach a
DOMErrorHandler using the parameter "error-handler" if they
wish to get details on the error.

Interface LSOutput

This interface represents an output destination for data.

This interface allows an application to encapsulate information about an output destination in a single
object, which may include a URI, a byte stream (possibly with a specified encoding), a base URI,
and/or a character stream.

The exact definitions of a byte stream and a character stream are binding dependent.

The application is expected to provide objects that implement this interface whenever such objects
are needed. The application can either provide its own objects that implement this interface, or it can
use the generic factory method DOMImplementationLS.createLSOutput() [p.13] to create
objects that implement this interface.

The LSSerializer [p.29] will use the LSOutput object to determine where to serialize the
output to. The LSSerializer will look at the different outputs specified in the LSOutput in the
following order to know which one to output to, the first one that is not null and not an empty string
will be used:

1. LSOutput.characterStream [p.37]
2. LSOutput.byteStream [p.37]
3. LSOutput.systemId [p.37]

LSOutput objects belong to the application. The DOM implementation will never modify them
(though it may make copies and modify the copies, if necessary).
IDL Definition

interface LSOutput {
 // Depending on the language binding in use,
 // this attribute may not be available.
 attribute LSWriter characterStream;
 attribute LSOutputStream byteStream;
 attribute DOMString systemId;
 attribute DOMString encoding;
};

36

1.3 Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-3-Core/core.html#parameter-error-handler

Attributes
byteStream of type LSOutputStream [p.10]

An attribute of a language and binding dependent type that represents a writable stream of
bytes.

characterStream of type LSWriter [p.10]
Depending on the language binding in use, this attribute may not be available.

An attribute of a language and binding dependent type that represents a writable stream to
which 16-bit units [p.55] can be output.

encoding of type DOMString
The character encoding to use for the output. The encoding must be a string acceptable for
an XML encoding declaration ([XML 1.0] section 4.3.3 "Character Encoding in Entities"),
it is recommended that character encodings registered (as charsets) with the Internet
Assigned Numbers Authority [IANA-CHARSETS] should be referred to using their
registered names.

systemId of type DOMString
The system identifier, a URI reference [IETF RFC 2396], for this output destination.
If the system ID is a relative URI reference (see section 5 in [IETF RFC 2396]), the
behavior is implementation dependent.

Interface LSSerializerFilter

LSSerializerFilters provide applications the ability to examine nodes as they are being
serialized and decide what nodes should be serialized or not. The LSSerializerFilter
interface is based on the NodeFilter interface defined in [DOM Level 2 Traversal and Range].

Document, DocumentType, DocumentFragment, Notation, Entity, and children of
Attr nodes are not passed to the filter. The child nodes of an EntityReference node are only
passed to the filter if the EntityReference node is skipped by the method
LSParserFilter.acceptNode() [p.27] .

When serializing an Element, the element is passed to the filter before any of its attributes are
passed to the filter. Namespace declaration attributes, and default attributes (except in the case when
"discard-default-content [p.32] " is set to false), are never passed to the filter.

The result of any attempt to modify a node passed to a LSSerializerFilter is implementation
dependent.

DOM applications must not raise exceptions in a filter. The effect of throwing exceptions from a
filter is DOM implementation dependent.

For efficiency, a node passed to the filter may not be the same as the one that is actually in the tree.
And the actual node (node object identity) may be reused during the process of filtering and
serializing a document.
IDL Definition

interface LSSerializerFilter : traversal::NodeFilter {
 readonly attribute unsigned long whatToShow;
};

37

1.3 Fundamental Interfaces

Attributes
whatToShow of type unsigned long, readonly

Tells the LSSerializer [p.29] what types of nodes to show to the filter. If a node is not
shown to the filter using this attribute, it is automatically serialized. See NodeFilter for
definition of the constants. The constants SHOW_DOCUMENT, SHOW_DOCUMENT_TYPE,
SHOW_DOCUMENT_FRAGMENT, SHOW_NOTATION, and SHOW_ENTITY are
meaningless here, such nodes will never be passed to a LSSerializerFilter.
Unlike [DOM Level 2 Traversal and Range], the SHOW_ATTRIBUTE constant indicates
that the Attr nodes are shown and passed to the filter.
The constants used here are defined in [DOM Level 2 Traversal and Range].

38

1.3 Fundamental Interfaces

Appendix A: IDL Definitions
This appendix contains the complete OMG IDL [OMG IDL] for the Level 3 Document Object Model
Abstract Schemas and Load and Save definitions.

The IDL files are also available as: http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407/idl.zip

ls.idl:
// File: ls.idl

#ifndef _LS_IDL_
#define _LS_IDL_

#include "dom.idl"
#include "events.idl"
#include "traversal.idl"

#pragma prefix "dom.w3c.org"
module ls
{

 typedef Object LSInputStream;

 typedef Object LSOutputStream;

 typedef Object LSReader;

 typedef Object LSWriter;

 typedef dom::DOMString DOMString;
 typedef dom::DOMConfiguration DOMConfiguration;
 typedef dom::Node Node;
 typedef dom::Document Document;
 typedef dom::Element Element;

 interface LSParser;
 interface LSSerializer;
 interface LSInput;
 interface LSOutput;
 interface LSParserFilter;
 interface LSSerializerFilter;

 exception LSException {
 unsigned short code;
 };
 // LSExceptionCode
 const unsigned short PARSE_ERR = 81;
 const unsigned short SERIALIZE_ERR = 82;

 interface DOMImplementationLS {

 // DOMImplementationLSMode

39

Appendix A: IDL Definitions

 const unsigned short MODE_SYNCHRONOUS = 1;
 const unsigned short MODE_ASYNCHRONOUS = 2;

 LSParser createLSParser(in unsigned short mode,
 in DOMString schemaType)
 raises(dom::DOMException);
 LSSerializer createLSSerializer();
 LSInput createLSInput();
 LSOutput createLSOutput();
 };

 interface LSParser {
 readonly attribute DOMConfiguration domConfig;
 attribute LSParserFilter filter;
 readonly attribute boolean async;
 readonly attribute boolean busy;
 Document parse(in LSInput input)
 raises(dom::DOMException,
 LSException);
 Document parseURI(in DOMString uri)
 raises(dom::DOMException,
 LSException);

 // ACTION_TYPES
 const unsigned short ACTION_APPEND_AS_CHILDREN = 1;
 const unsigned short ACTION_REPLACE_CHILDREN = 2;
 const unsigned short ACTION_INSERT_BEFORE = 3;
 const unsigned short ACTION_INSERT_AFTER = 4;
 const unsigned short ACTION_REPLACE = 5;

 Node parseWithContext(in LSInput input,
 in Node contextArg,
 in unsigned short action)
 raises(dom::DOMException,
 LSException);
 void abort();
 };

 interface LSInput {
 // Depending on the language binding in use,
 // this attribute may not be available.
 attribute LSReader characterStream;
 attribute LSInputStream byteStream;
 attribute DOMString stringData;
 attribute DOMString systemId;
 attribute DOMString publicId;
 attribute DOMString baseURI;
 attribute DOMString encoding;
 attribute boolean certifiedText;
 };

 interface LSResourceResolver {
 LSInput resolveResource(in DOMString type,
 in DOMString namespaceURI,
 in DOMString publicId,
 in DOMString systemId,
 in DOMString baseURI);

40

ls.idl:

 };

 interface LSParserFilter {

 // Constants returned by startElement and acceptNode
 const short FILTER_ACCEPT = 1;
 const short FILTER_REJECT = 2;
 const short FILTER_SKIP = 3;
 const short FILTER_INTERRUPT = 4;

 unsigned short startElement(in Element elementArg);
 unsigned short acceptNode(in Node nodeArg);
 readonly attribute unsigned long whatToShow;
 };

 interface LSSerializer {
 readonly attribute DOMConfiguration domConfig;
 attribute DOMString newLine;
 attribute LSSerializerFilter filter;
 boolean write(in Node nodeArg,
 in LSOutput destination)
 raises(LSException);
 boolean writeToURI(in Node nodeArg,
 in DOMString uri)
 raises(LSException);
 DOMString writeToString(in Node nodeArg)
 raises(dom::DOMException,
 LSException);
 };

 interface LSOutput {
 // Depending on the language binding in use,
 // this attribute may not be available.
 attribute LSWriter characterStream;
 attribute LSOutputStream byteStream;
 attribute DOMString systemId;
 attribute DOMString encoding;
 };

 interface LSProgressEvent : events::Event {
 readonly attribute LSInput input;
 readonly attribute unsigned long position;
 readonly attribute unsigned long totalSize;
 };

 interface LSLoadEvent : events::Event {
 readonly attribute Document newDocument;
 readonly attribute LSInput input;
 };

 interface LSSerializerFilter : traversal::NodeFilter {
 readonly attribute unsigned long whatToShow;
 };
};

#endif // _LS_IDL_

41

ls.idl:

42

ls.idl:

Appendix B: Java Language Binding
This appendix contains the complete Java [Java] bindings for the Level 3 Document Object Model Load
and Save.

The Java files are also available as
http://www.w3.org/TR/2004/REC-DOM-Level-3-LS-20040407/java-binding.zip

org/w3c/dom/ls/LSException.java:
package org.w3c.dom.ls;

public class LSException extends RuntimeException {
 public LSException(short code, String message) {
 super(message);
 this.code = code;
 }
 public short code;
 // LSExceptionCode
 public static final short PARSE_ERR = 81;
 public static final short SERIALIZE_ERR = 82;

}

org/w3c/dom/ls/DOMImplementationLS.java:
package org.w3c.dom.ls;

import org.w3c.dom.DOMException;

public interface DOMImplementationLS {
 // DOMImplementationLSMode
 public static final short MODE_SYNCHRONOUS = 1;
 public static final short MODE_ASYNCHRONOUS = 2;

 public LSParser createLSParser(short mode,
 String schemaType)
 throws DOMException;

 public LSSerializer createLSSerializer();

 public LSInput createLSInput();

 public LSOutput createLSOutput();

}

43

Appendix B: Java Language Binding

org/w3c/dom/ls/LSParser.java:
package org.w3c.dom.ls;

import org.w3c.dom.Document;
import org.w3c.dom.DOMConfiguration;
import org.w3c.dom.Node;
import org.w3c.dom.DOMException;

public interface LSParser {
 public DOMConfiguration getDomConfig();

 public LSParserFilter getFilter();
 public void setFilter(LSParserFilter filter);

 public boolean getAsync();

 public boolean getBusy();

 public Document parse(LSInput input)
 throws DOMException, LSException;

 public Document parseURI(String uri)
 throws DOMException, LSException;

 // ACTION_TYPES
 public static final short ACTION_APPEND_AS_CHILDREN = 1;
 public static final short ACTION_REPLACE_CHILDREN = 2;
 public static final short ACTION_INSERT_BEFORE = 3;
 public static final short ACTION_INSERT_AFTER = 4;
 public static final short ACTION_REPLACE = 5;

 public Node parseWithContext(LSInput input,
 Node contextArg,
 short action)
 throws DOMException, LSException;

 public void abort();

}

org/w3c/dom/ls/LSInput.java:
package org.w3c.dom.ls;

public interface LSInput {
 public java.io.Reader getCharacterStream();
 public void setCharacterStream(java.io.Reader characterStream);

 public java.io.InputStream getByteStream();
 public void setByteStream(java.io.InputStream byteStream);

 public String getStringData();
 public void setStringData(String stringData);

 public String getSystemId();

44

org/w3c/dom/ls/LSParser.java:

 public void setSystemId(String systemId);

 public String getPublicId();
 public void setPublicId(String publicId);

 public String getBaseURI();
 public void setBaseURI(String baseURI);

 public String getEncoding();
 public void setEncoding(String encoding);

 public boolean getCertifiedText();
 public void setCertifiedText(boolean certifiedText);

}

org/w3c/dom/ls/LSResourceResolver.java:
package org.w3c.dom.ls;

public interface LSResourceResolver {
 public LSInput resolveResource(String type,
 String namespaceURI,
 String publicId,
 String systemId,
 String baseURI);

}

org/w3c/dom/ls/LSParserFilter.java:
package org.w3c.dom.ls;

import org.w3c.dom.Node;
import org.w3c.dom.Element;

public interface LSParserFilter {
 // Constants returned by startElement and acceptNode
 public static final short FILTER_ACCEPT = 1;
 public static final short FILTER_REJECT = 2;
 public static final short FILTER_SKIP = 3;
 public static final short FILTER_INTERRUPT = 4;

 public short startElement(Element elementArg);

 public short acceptNode(Node nodeArg);

 public int getWhatToShow();

}

45

org/w3c/dom/ls/LSResourceResolver.java:

org/w3c/dom/ls/LSProgressEvent.java:
package org.w3c.dom.ls;

import org.w3c.dom.events.Event;

public interface LSProgressEvent extends Event {
 public LSInput getInput();

 public int getPosition();

 public int getTotalSize();

}

org/w3c/dom/ls/LSLoadEvent.java:
package org.w3c.dom.ls;

import org.w3c.dom.Document;
import org.w3c.dom.events.Event;

public interface LSLoadEvent extends Event {
 public Document getNewDocument();

 public LSInput getInput();

}

org/w3c/dom/ls/LSSerializer.java:
package org.w3c.dom.ls;

import org.w3c.dom.DOMConfiguration;
import org.w3c.dom.Node;
import org.w3c.dom.DOMException;

public interface LSSerializer {
 public DOMConfiguration getDomConfig();

 public String getNewLine();
 public void setNewLine(String newLine);

 public LSSerializerFilter getFilter();
 public void setFilter(LSSerializerFilter filter);

 public boolean write(Node nodeArg,
 LSOutput destination)
 throws LSException;

 public boolean writeToURI(Node nodeArg,
 String uri)
 throws LSException;

46

org/w3c/dom/ls/LSProgressEvent.java:

 public String writeToString(Node nodeArg)
 throws DOMException, LSException;

}

org/w3c/dom/ls/LSOutput.java:
package org.w3c.dom.ls;

public interface LSOutput {
 public java.io.Writer getCharacterStream();
 public void setCharacterStream(java.io.Writer characterStream);

 public java.io.OutputStream getByteStream();
 public void setByteStream(java.io.OutputStream byteStream);

 public String getSystemId();
 public void setSystemId(String systemId);

 public String getEncoding();
 public void setEncoding(String encoding);

}

org/w3c/dom/ls/LSSerializerFilter.java:
package org.w3c.dom.ls;

import org.w3c.dom.traversal.NodeFilter;

public interface LSSerializerFilter extends NodeFilter {
 public int getWhatToShow();

}

47

org/w3c/dom/ls/LSOutput.java:

48

org/w3c/dom/ls/LSSerializerFilter.java:

Appendix C: ECMAScript Language Binding
This appendix contains the complete ECMAScript [ECMAScript] binding for the Level 3 Document
Object Model Load and Save definitions.

Properties of the LSException Constructor function:
LSException.PARSE_ERR

The value of the constant LSException.PARSE_ERR is 81.
LSException.SERIALIZE_ERR

The value of the constant LSException.SERIALIZE_ERR is 82.
Objects that implement the LSException interface:

Properties of objects that implement the LSException interface:
code

This property is a Number.
Properties of the DOMImplementationLS Constructor function:

DOMImplementationLS.MODE_SYNCHRONOUS
The value of the constant DOMImplementationLS.MODE_SYNCHRONOUS is 1.

DOMImplementationLS.MODE_ASYNCHRONOUS
The value of the constant DOMImplementationLS.MODE_ASYNCHRONOUS is 2.

Objects that implement the DOMImplementationLS interface:
Functions of objects that implement the DOMImplementationLS interface:

createLSParser(mode, schemaType)
This function returns an object that implements the LSParser interface.
The mode parameter is a Number.
The schemaType parameter is a String.
This function can raise an object that implements the DOMException interface.

createLSSerializer()
This function returns an object that implements the LSSerializer interface.

createLSInput()
This function returns an object that implements the LSInput interface.

createLSOutput()
This function returns an object that implements the LSOutput interface.

Properties of the LSParser Constructor function:
LSParser.ACTION_APPEND_AS_CHILDREN

The value of the constant LSParser.ACTION_APPEND_AS_CHILDREN is 1.
LSParser.ACTION_REPLACE_CHILDREN

The value of the constant LSParser.ACTION_REPLACE_CHILDREN is 2.
LSParser.ACTION_INSERT_BEFORE

The value of the constant LSParser.ACTION_INSERT_BEFORE is 3.
LSParser.ACTION_INSERT_AFTER

The value of the constant LSParser.ACTION_INSERT_AFTER is 4.
LSParser.ACTION_REPLACE

The value of the constant LSParser.ACTION_REPLACE is 5.
Objects that implement the LSParser interface:

49

Appendix C: ECMAScript Language Binding

Properties of objects that implement the LSParser interface:
domConfig

This read-only property is an object that implements the DOMConfiguration interface.
filter

This property is an object that implements the LSParserFilter interface.
async

This read-only property is a Boolean.
busy

This read-only property is a Boolean.
Functions of objects that implement the LSParser interface:

parse(input)
This function returns an object that implements the Document interface.
The input parameter is an object that implements the LSInput interface.
This function can raise an object that implements the DOMException interface or the
LSException interface.

parseURI(uri)
This function returns an object that implements the Document interface.
The uri parameter is a String.
This function can raise an object that implements the DOMException interface or the
LSException interface.

parseWithContext(input, contextArg, action)
This function returns an object that implements the Node interface.
The input parameter is an object that implements the LSInput interface.
The contextArg parameter is an object that implements the Node interface.
The action parameter is a Number.
This function can raise an object that implements the DOMException interface or the
LSException interface.

abort()
This function has no return value.

Objects that implement the LSInput interface:
Properties of objects that implement the LSInput interface:

byteStream
This property is an object that implements the Object interface.

stringData
This property is a String.

systemId
This property is a String.

publicId
This property is a String.

baseURI
This property is a String.

encoding
This property is a String.

certifiedText
This property is a Boolean.

50

Appendix C: ECMAScript Language Binding

LSResourceResolver function:
This function returns an object that implements the LSInput interface. The first parameter is a
String. The second parameter is a String. The third parameter is a String. The fourth parameter is a
String. The fifth parameter is a String.

Properties of the LSParserFilter Constructor function:
LSParserFilter.FILTER_ACCEPT

The value of the constant LSParserFilter.FILTER_ACCEPT is 1.
LSParserFilter.FILTER_REJECT

The value of the constant LSParserFilter.FILTER_REJECT is 2.
LSParserFilter.FILTER_SKIP

The value of the constant LSParserFilter.FILTER_SKIP is 3.
LSParserFilter.FILTER_INTERRUPT

The value of the constant LSParserFilter.FILTER_INTERRUPT is 4.
Objects that implement the LSParserFilter interface:

Properties of objects that implement the LSParserFilter interface:
whatToShow

This read-only property is a Number.
Functions of objects that implement the LSParserFilter interface:

startElement(elementArg)
This function returns a Number.
The elementArg parameter is an object that implements the Element interface.

acceptNode(nodeArg)
This function returns a Number.
The nodeArg parameter is an object that implements the Node interface.

Objects that implement the LSProgressEvent interface:
Objects that implement the LSProgressEvent interface have all properties and functions of the
Event interface as well as the properties and functions defined below.
Properties of objects that implement the LSProgressEvent interface:

input
This read-only property is an object that implements the LSInput interface.

position
This read-only property is a Number.

totalSize
This read-only property is a Number.

Objects that implement the LSLoadEvent interface:
Objects that implement the LSLoadEvent interface have all properties and functions of the Event
interface as well as the properties and functions defined below.
Properties of objects that implement the LSLoadEvent interface:

newDocument
This read-only property is an object that implements the Document interface.

input
This read-only property is an object that implements the LSInput interface.

Objects that implement the LSSerializer interface:
Properties of objects that implement the LSSerializer interface:

domConfig
This read-only property is an object that implements the DOMConfiguration interface.

51

Appendix C: ECMAScript Language Binding

newLine
This property is a String.

filter
This property is an object that implements the LSSerializerFilter interface.

Functions of objects that implement the LSSerializer interface:
write(nodeArg, destination)

This function returns a Boolean.
The nodeArg parameter is an object that implements the Node interface.
The destination parameter is an object that implements the LSOutput interface.
This function can raise an object that implements the LSException interface.

writeToURI(nodeArg, uri)
This function returns a Boolean.
The nodeArg parameter is an object that implements the Node interface.
The uri parameter is a String.
This function can raise an object that implements the LSException interface.

writeToString(nodeArg)
This function returns a String.
The nodeArg parameter is an object that implements the Node interface.
This function can raise an object that implements the DOMException interface or the
LSException interface.

Objects that implement the LSOutput interface:
Properties of objects that implement the LSOutput interface:

byteStream
This property is an object that implements the Object interface.

systemId
This property is a String.

encoding
This property is a String.

Objects that implement the LSSerializerFilter interface:
Objects that implement the LSSerializerFilter interface have all properties and functions of the
NodeFilter interface as well as the properties and functions defined below.
Properties of objects that implement the LSSerializerFilter interface:

whatToShow
This read-only property is a Number.

52

Appendix C: ECMAScript Language Binding

Appendix D: Acknowledgements
Many people contributed to the DOM specifications (Level 1, 2 or 3), including participants of the DOM
Working Group and the DOM Interest Group. We especially thank the following:

Andrew Watson (Object Management Group), Andy Heninger (IBM), Angel Diaz (IBM), Arnaud Le
Hors (W3C and IBM), Ashok Malhotra (IBM and Microsoft), Ben Chang (Oracle), Bill Smith (Sun), Bill
Shea (Merrill Lynch), Bob Sutor (IBM), Chris Lovett (Microsoft), Chris Wilson (Microsoft), David
Brownell (Sun), David Ezell (Hewlett-Packard Company), David Singer (IBM), Dimitris Dimitriadis
(Improve AB and invited expert), Don Park (invited), Elena Litani (IBM), Eric Vasilik (Microsoft), Gavin
Nicol (INSO), Ian Jacobs (W3C), James Clark (invited), James Davidson (Sun), Jared Sorensen (Novell),
Jeroen van Rotterdam (X-Hive Corporation), Joe Kesselman (IBM), Joe Lapp (webMethods), Joe Marini
(Macromedia), Johnny Stenback (Netscape/AOL), Jon Ferraiolo (Adobe), Jonathan Marsh (Microsoft),
Jonathan Robie (Texcel Research and Software AG), Kim Adamson-Sharpe (SoftQuad Software Inc.),
Lauren Wood (SoftQuad Software Inc., former Chair), Laurence Cable (Sun), Mark Davis (IBM), Mark
Scardina (Oracle), Martin Dürst (W3C), Mary Brady (NIST), Mick Goulish (Software AG), Mike
Champion (Arbortext and Software AG), Miles Sabin (Cromwell Media), Patti Lutsky (Arbortext), Paul
Grosso (Arbortext), Peter Sharpe (SoftQuad Software Inc.), Phil Karlton (Netscape), Philippe Le Hégaret
(W3C, W3C Team Contact and former Chair), Ramesh Lekshmynarayanan (Merrill Lynch), Ray
Whitmer (iMall, Excite@Home, and Netscape/AOL, Chair), Rezaur Rahman (Intel), Rich Rollman
(Microsoft), Rick Gessner (Netscape), Rick Jelliffe (invited), Rob Relyea (Microsoft), Scott Isaacs
(Microsoft), Sharon Adler (INSO), Steve Byrne (JavaSoft), Tim Bray (invited), Tim Yu (Oracle), Tom
Pixley (Netscape/AOL), Vidur Apparao (Netscape), Vinod Anupam (Lucent).

Thanks to all those who have helped to improve this specification by sending suggestions and corrections
(Please, keep bugging us with your issues!).

Many thanks to Elliotte Rusty Harold, Andrew Clover, Anjana Manian, Christian Parpart, Mikko
Honkala, and François Yergeau for their review and comments of this document.

Special thanks to the DOM Conformance Test Suites contributors: Fred Drake, Mary Brady (NIST), Rick
Rivello (NIST), Robert Clary (Netscape), with a special mention to Curt Arnold.

D.1 Production Systems
This specification was written in XML. The HTML, OMG IDL, Java and ECMAScript bindings were all
produced automatically.

Thanks to Joe English, author of cost, which was used as the basis for producing DOM Level 1. Thanks
also to Gavin Nicol, who wrote the scripts which run on top of cost. Arnaud Le Hors and Philippe Le
Hégaret maintained the scripts.

After DOM Level 1, we used Xerces as the basis DOM implementation and wish to thank the authors.
Philippe Le Hégaret and Arnaud Le Hors wrote the Java programs which are the DOM application.

53

Appendix D: Acknowledgements

http://www.w3.org/DOM/Test
http://www.flightlab.com/cost
http://xml.apache.org/xerces-j
http://dev.w3.org/cvsweb/java/classes/org/w3c/tools/specgenerator/

Thanks also to Jan Kärrman, author of html2ps, which we use in creating the PostScript version of the
specification.

54

D.1 Production Systems

http://user.it.uu.se/~jan/html2ps.html

Glossary
Editors:

Arnaud Le Hors, W3C
Robert S. Sutor, IBM Research (for DOM Level 1)

Some of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions for more information.

16-bit unit
The base unit of a DOMString. This indicates that indexing on a DOMString occurs in units of 16
bits. This must not be misunderstood to mean that a DOMString can store arbitrary 16-bit units. A
DOMString is a character string encoded in UTF-16; this means that the restrictions of UTF-16 as
well as the other relevant restrictions on character strings must be maintained. A single character, for
example in the form of a numeric character reference, may correspond to one or two 16-bit units.

API
An API is an Application Programming Interface, a set of functions or methods used to access some
functionality.

namespace well-formed
A node is a namespace well-formed XML node if it is a well-formed [p.55] node, and follows the
productions and namespace constraints. If [XML 1.0] is used, the constraints are defined in [XML
Namespaces]. If [XML 1.1] is used, the constraints are defined in [XML Namespaces 1.1].

read only node
A read only node is a node that is immutable. This means its list of children, its content, and its
attributes, when it is an element, cannot be changed in any way. However, a read only node can
possibly be moved, when it is not itself contained in a read only node.

schema
A schema defines a set of structural and value constraints applicable to XML documents. Schemas
can be expressed in schema languages, such as DTD, XML Schema, etc.

well-formed
A node is a well-formed XML node if its serialized form, without doing any transformation during its
serialization, matches its respective production in [XML 1.0] or [XML 1.1] (depending on the XML
version in use) with all well-formedness constraints related to that production, and if the entities
which are referenced within the node are also well-formed. If namespaces for XML are in use, the
node must also be namespace well-formed [p.55] .

55

Glossary

56

Glossary

References
For the latest version of any W3C specification please consult the list of W3C Technical Reports available
at http://www.w3.org/TR.

F.1 Normative References
[DOM Level 2 Core]

Document Object Model Level 2 Core Specification, A. Le Hors, et al., Editors. World Wide Web
Consortium, 13 November 2000. This version of the DOM Level 2 Core Recommendation is
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113. The latest version of DOM Level
2 Core is available at http://www.w3.org/TR/DOM-Level-2-Core.

[DOM Level 3 Core]
Document Object Model Level 3 Core Specification, A. Le Hors, et al., Editors. World Wide Web
Consortium, 7 April 2004. This version of the Document Object Model Level 3 Core
Recommendation is http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407. The latest
version of DOM Level 3 Core is available at http://www.w3.org/TR/DOM-Level-3-Core.

[DOM Level 2 Traversal and Range]
Document Object Model Level 2 Traversal and Range Specification, J. Kesselman, J. Robie, M.
Champion, P. Sharpe, V. Apparao, L. Wood, Editors. World Wide Web Consortium, 13 November
2000. This version of the Document Object Model Level 2 Traversal and Range Recommendation is
http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113. The latest version of
Document Object Model Level 2 Traversal and Range is available at
http://www.w3.org/TR/DOM-Level-2-Traversal-Range.

[ECMAScript]
ECMAScript Language Specification, Third Edition. European Computer Manufacturers Association,
Standard ECMA-262, December 1999. This version of the ECMAScript Language is available from
http://www.ecma-international.org/.

[IANA-CHARSETS]
Official Names for Character Sets, K. Simonsen, et al., Editors. Internet Assigned Numbers
Authority. Available at ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets.

[ISO/IEC 10646]
ISO/IEC 10646-2000 (E). Information technology - Universal Multiple-Octet Coded Character Set
(UCS) - Part 1: Architecture and Basic Multilingual Plane, as, from time to time, amended, replaced
by a new edition or expanded by the addition of new parts. [Geneva]: International Organization for
Standardization, 2000. See also International Organization for Standardization, available at
http://www.iso.ch, for the latest version.

[Java]
The Java Language Specification, J. Gosling, B. Joy, and G. Steele, Authors. Addison-Wesley,
September 1996. Available at http://java.sun.com/docs/books/jls

[OMG IDL]
"OMG IDL Syntax and Semantics" defined in The Common Object Request Broker: Architecture and
Specification, version 2, Object Management Group. The latest version of CORBA version 2.0 is
available at http://www.omg.org/technology/documents/formal/corba_2.htm.

57

References

http://www.w3.org/TR
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113
http://www.w3.org/TR/DOM-Level-2-Traversal-Range
http://www.w3.org/TR/DOM-Level-2-Traversal-Range
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets
http://www.iso.ch/
http://java.sun.com/docs/books/jls
http://www.omg.org/technology/documents/formal/corba_2.htm
http://www.omg.org/technology/documents/formal/corba_2.htm

[IETF RFC 2396]
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter,
Authors. Internet Engineering Task Force, August 1998. Available at
http://www.ietf.org/rfc/rfc2396.txt.

[IETF RFC 3023]
XML Media Types, M. Murata, S. St.Laurent, and D. Kohn, Editors. Internet Engineering Task Force,
January 2001. Available at http://www.ietf.org/rfc/rfc3023.txt.

[SAX]
Simple API for XML, D. Megginson and D. Brownell, Maintainers. Available at
http://www.saxproject.org/.

[Unicode]
The Unicode Standard, Version 4, ISBN 0-321-18578-1, as updated from time to time by the
publication of new versions. The Unicode Consortium, 2000. See also Versions of the Unicode
Standard, available at http://www.unicode.org/unicode/standard/versions, for latest version and
additional information on versions of the standard and of the Unicode Character Database.

[XML 1.0]
Extensible Markup Language (XML) 1.0 (Third Edition), T. Bray, J. Paoli, C. M.
Sperberg-McQueen, E. Maler, and F. Yergeau, Editors. World Wide Web Consortium, 4 February
2004, revised 10 February 1998 and 6 October 2000. This version of the XML 1.0 Recommendation
is http://www.w3.org/TR/2004/REC-xml-20040204. The latest version of XML 1.0 is available at
http://www.w3.org/TR/REC-xml.

[XML 1.1]
XML 1.1, T. Bray, and al., Editors. World Wide Web Consortium, 4 February 2004. This version of
the XML 1.1 Recommendation is http://www.w3.org/TR/2004/REC-xml11-20040204. The latest
version of XML 1.1 is available at http://www.w3.org/TR/xml11.

[XML Information Set]
XML Information Set (Second Edition), J. Cowan and R. Tobin, Editors. World Wide Web
Consortium, 4 February 2004, revised 24 October 2001. This version of the XML Information Set
Recommendation is http://www.w3.org/TR/2004/REC-xml-infoset-20040204. The latest version of
XML Information Set is available at http://www.w3.org/TR/xml-infoset.

[XML Namespaces]
Namespaces in XML, T. Bray, D. Hollander, and A. Layman, Editors. World Wide Web Consortium,
14 January 1999. This version of the Namespaces in XML Recommendation is
http://www.w3.org/TR/1999/REC-xml-names-19990114. The latest version of Namespaces in XML
is available at http://www.w3.org/TR/REC-xml-names.

[XML Namespaces 1.1]
Namespaces in XML 1.1, T. Bray, D. Hollander, A. Layman, and R. Tobin, Editors. World Wide
Web Consortium, 4 February 2004. This version of the Namespaces in XML 1.1 Recommendation is
http://www.w3.org/TR/2004/REC-xml-names11-20040204. The latest version of Namespaces in
XML 1.1 is available at http://www.w3.org/TR/xml-names11/.

F.2 Informative References
[Canonical XML]

Canonical XML Version 1.0, J. Boyer, Editor. World Wide Web Consortium, 15 March 2001. This
version of the Canonical XML Recommendation is

58

F.2 Informative References

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.saxproject.org/
http://www.unicode.org/unicode/standard/versions
http://www.unicode.org/unicode/standard/versions
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/2004/REC-xml-names11-20040204/
http://www.w3.org/TR/xml-names11/
http://www.w3.org/TR/xml-names11/
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

http://www.w3.org/TR/2001/REC-xml-c14n-20010315. The latest version of Canonical XML is
available at http://www.w3.org/TR/xml-c14n.

[DOM Level 3 Events]
Document Object Model Level 3 Events Specification, P. Le Hégaret, T. Pixley, Editors. World Wide
Web Consortium, November 2003. This version of the Document Object Model Level 3 Events
specification is http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107. The latest
version of Document Object Model Level 3 Events is available at
http://www.w3.org/TR/DOM-Level-3-Events.

[JAXP]
Java API for XML Processing (JAXP). Sun Microsystems. Available at
http://java.sun.com/xml/jaxp/.

[IETF RFC 2616]
Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, et al., Authors. Internet Engineering Task
Force, June 1999. Available at http://www.ietf.org/rfc/rfc2616.txt.

[XML Schema Part 1]
XML Schema Part 1: Structures, H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, Editors.
World Wide Web Consortium, 2 May 2001. This version of the XML Part 1 Recommendation is
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502. The latest version of XML Schema Part
1 is available at http://www.w3.org/TR/xmlschema-1.

59

F.2 Informative References

http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/2003/NOTE-DOM-Level-3-Events-20031107
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/DOM-Level-3-Events
http://java.sun.com/xml/jaxp/
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/

60

F.2 Informative References

Index
"ignore-unknown-character-denormalizations"

"canonical-form" "charset-overrides-xml-encoding" "disallow-doctype" 14, 18

"discard-default-content" 29, 32, 37, 32 "format-pretty-print" 32, 33
"ignore-unknown-character-denormalizations"
14, 18

"infoset" "namespaces" "normalize-characters"

"resource-resolver"
"supported-media-types-only" 14,
19

"validate"

"validate-if-schema" "well-formed" "xml-declaration" 29, 32, 33

16-bit unit 10, 10, 23, 24, 37, 55

[attributes]

abort acceptNode ACTION_APPEND_AS_CHILDREN

ACTION_INSERT_AFTER ACTION_INSERT_BEFORE ACTION_REPLACE

ACTION_REPLACE_CHILDREN API 9, 55 async

baseURI busy byteStream 23, 37

Canonical XML 32, 58 certifiedText characterStream 23, 37

createLSInput createLSOutput createLSParser

createLSSerializer

DOM Level 2 Core 9, 11, 29, 57
DOM Level 2 Traversal and
Range 27, 37, 38, 57

DOM Level 3 Core 11, 12, 14, 17, 20, 29, 32,
57

DOM Level 3 Events 28, 59 domConfig 17, 32 DOMImplementationLS

ECMAScript encoding 23, 37

filter 19, 34 FILTER_ACCEPT FILTER_INTERRUPT

FILTER_REJECT FILTER_SKIP

IANA-CHARSETS 37, 57
IETF RFC 2396 20, 24, 23, 25,
37, 58

IETF RFC 2616 17, 23, 59

IETF RFC 3023 17, 58 input 29, 29 ISO/IEC 10646 10, 10, 23, 57

61

Index

Java JAXP 9, 59

load LSException LSInput

LSInputStream LSLoadEvent LSOutput

LSOutputStream LSParser LSParserFilter

LSProgressEvent LSReader LSResourceResolver

LSSerializer LSSerializerFilter LSWriter

MODE_ASYNCHRONOUS MODE_SYNCHRONOUS

namespace well-formed newDocument newLine

OMG IDL

parse PARSE_ERR parseURI

parseWithContext position progress

publicId

read only node 20, 55 resolveResource

SAX 9, 24, 58 schema 13, 55 SERIALIZE_ERR

startElement stringData systemId 24, 37

totalSize

Unicode 10, 10, 23, 58

well-formed 28, 27, 29, 55 whatToShow 27, 38 write

writeToString writeToURI

XML 1.0 13, 17, 23, 25, 32, 34, 37, 55, 55, 58
XML 1.1 17, 23, 29, 32, 34, 55,
55, 58

XML Information Set 15, 58

XML Namespaces 17, 55, 58 XML Namespaces 1.1 17, 55, 58 XML Schema Part 1 13, 25, 59

62

Index

	Document Object Model †DOM‡ Level 3 Load and Save Specification
	Version 1.0
	W3C Recommendation 07 April 2004
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	W3C Copyright Notices and Licenses
	W3C® Document Copyright Notice and License
	W3C® Software Copyright Notice and License
	W3C® Short Software Notice

	1. Document Object Model Load and Save
	1.1 Overview of the Interfaces
	1.2 Basic Types
	1.2.1 The LSInputStream Type
	1.2.2 The LSOutputStream Type
	1.2.3 The LSReader Type
	1.2.4 The LSWriter Type

	1.3 Fundamental Interfaces

	Appendix A: IDL Definitions
	
	ls.idl:

	Appendix B: Java Language Binding
	
	org/w3c/dom/ls/LSException.java:
	org/w3c/dom/ls/DOMImplementationLS.java:
	org/w3c/dom/ls/LSParser.java:
	org/w3c/dom/ls/LSInput.java:
	org/w3c/dom/ls/LSResourceResolver.java:
	org/w3c/dom/ls/LSParserFilter.java:
	org/w3c/dom/ls/LSProgressEvent.java:
	org/w3c/dom/ls/LSLoadEvent.java:
	org/w3c/dom/ls/LSSerializer.java:
	org/w3c/dom/ls/LSOutput.java:
	org/w3c/dom/ls/LSSerializerFilter.java:

	Appendix C: ECMAScript Language Binding
	Appendix D: Acknowledgements
	D.1 Production Systems

	Glossary
	References
	F.1 Normative References
	F.2 Informative References

	Index

