
Document Object Model (DOM) Level 2 Events
Specification

Version 1.0

W3C Recommendation 13 November, 2000
This version:

http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113
(PostScript file , PDF file , plain text , ZIP file)

Latest version:
http://www.w3.org/TR/DOM-Level-2-Events

Previous version:
http://www.w3.org/TR/2000/PR-DOM-Level-2-Events-20000927

Editors:
Tom Pixley, Netscape Communications Corp.

Copyright © 2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability , trademark, document
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Level 2 Events, a platform- and language-neutral
interface that gives to programs and scripts a generic event system. The Document Object Model Level 2
Events builds on the Document Object Model Level 2 Core [DOM Level 2 Core] and on Document
Object Model Level 2 Views [DOM Level 2 Views].

Status of this document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. The latest status of this document series is maintained at the W3C.

This document has been reviewed by W3C Members and other interested parties and has been endorsed
by the Director as a W3C Recommendation. It is a stable document and may be used as reference material
or cited as a normative reference from another document. W3C’s role in making the Recommendation is
to draw attention to the specification and to promote its widespread deployment. This enhances the
functionality and interoperability of the Web.

1

Document Object Model (DOM) Level 2 Events Specification

http://www.w3.org/Consortium/Process/Process-19991111/tr.html#RecsW3C
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/TR/2000/PR-DOM-Level-2-Events-20000927
http://www.w3.org/TR/DOM-Level-2-Events
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/DOM2-Events.zip
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/DOM2-Events.txt
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/DOM2-Events.pdf
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/DOM2-Events.ps
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113
http://www.w3.org/

This document has been produced as part of the W3C DOM Activity . The authors of this document are
the DOM Working Group members. Different modules of the Document Object Model have different
editors.

Please send general comments about this document to the public mailing list www-dom@w3.org. An
archive is available at http://lists.w3.org/Archives/Public/www-dom/.

The English version of this specification is the only normative version. Information about translations of
this document is available at http://www.w3.org/2000/11/DOM-Level-2-translations.

The list of known errors in this document is available at http://www.w3.org/2000/11/DOM-Level-2-errata

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Table of contents
................ 3Expanded Table of Contents
................... 5Copyright Notice

............... 91. Document Object Model Events

................ 31Appendix A: IDL Definitions

.............. 35Appendix B: Java Language Binding

............ 39Appendix C: ECMAScript Language Binding

............... 43Appendix D: Acknowledgements

.................... 45Glossary

.................... 47References

..................... 49Index

2

Table of contents

http://www.w3.org/TR/
http://www.w3.org/2000/11/DOM-Level-2-errata
http://www.w3.org/2000/11/DOM-Level-2-translations
http://lists.w3.org/Archives/Public/www-dom/
http://www.w3.org/DOM/Activity.html

Expanded Table of Contents
................ 3Expanded Table of Contents
................... 5Copyright Notice
........... 5W3C Document Copyright Notice and License
........... 6W3C Software Copyright Notice and License

............... 91. Document Object Model Events

.......... 91.1. Overview of the DOM Level 2 Event Model

................ 91.1.1. Terminology

............... 101.2. Description of event flow

............... 101.2.1. Basic event flow

................ 101.2.2. Event capture

............... 111.2.3. Event bubbling

............... 111.2.4. Event cancelation

............... 121.3. Event listener registration

............. 121.3.1. Event registration interfaces

.......... 141.3.2. Interaction with HTML 4.0 event listeners

................. 151.4. Event interface

............... 171.5. DocumentEvent interface

............... 181.6. Event module definitions

............. 191.6.1. User Interface event types

............... 201.6.2. Mouse event types

................ 241.6.3. Key events

.............. 241.6.4. Mutation event types

............... 281.6.5. HTML event types

................ 31Appendix A: IDL Definitions

.............. 35Appendix B: Java Language Binding

............ 39Appendix C: ECMAScript Language Binding

............... 43Appendix D: Acknowledgements

................ 43D.1. Production Systems

.................... 45Glossary

.................... 47References

................ 471. Normative references

..................... 49Index

3

Expanded Table of Contents

4

Expanded Table of Contents

Copyright Notice
Copyright © 2000 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.

This document is published under the W3C Document Copyright Notice and License [p.5] . The bindings
within this document are published under the W3C Software Copyright Notice and License [p.6] . The
software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no longer be
’w3c.org’; in the case of the Java Language binding, the package names can no longer be in the ’org.w3c’
package.

W3C Document Copyright Notice and License
Note: This section is a copy of the W3C Document Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-documents-19990405.

Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
Software Notice. By using and/or copying this document, or the W3C document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice of the form:

"Copyright © [$date-of-document] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

5

Copyright Notice

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C Software Copyright Notice and License
Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/."

6

W3C Software Copyright Notice and License

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/IPR-FAQ.html

3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

7

W3C Software Copyright Notice and License

8

W3C Software Copyright Notice and License

1. Document Object Model Events
Editors

Tom Pixley, Netscape Communications Corp.

1.1. Overview of the DOM Level 2 Event Model
The DOM Level 2 Event Model is designed with two main goals. The first goal is the design of a generic
event system which allows registration of event handlers, describes event flow through a tree structure,
and provides basic contextual information for each event. Additionally, the specification will provide
standard modules of events for user interface control and document mutation notifications, including
defined contextual information for each of these event modules.

The second goal of the event model is to provide a common subset of the current event systems used in
DOM Level 0 [p.45] browsers. This is intended to foster interoperability of existing scripts and content. It
is not expected that this goal will be met with full backwards compatibility. However, the specification
attempts to achieve this when possible.

The following sections of the Event Model specification define both the specification for the DOM Event
Model and a number of conformant event modules designed for use within the model. The Event Model
consists of the two sections on event propagation and event listener registration and the Event interface.

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "Events" and "2.0" (respectively) to determine
whether or not the event module is supported by the implementation. In order to fully support this module,
an implementation must also support the "Core" feature defined in the DOM Level 2 Core specification
[DOM Level 2 Core]. Please, refer to additional information about conformance in the DOM Level 2 Core
specification [DOM Level 2 Core].

Each event module describes its own feature string in the event module listing.

1.1.1. Terminology

UI events
User interface events. These events are generated by user interaction through an external device
(mouse, keyboard, etc.)

UI Logical events
Device independent user interface events such as focus change messages or element triggering
notifications.

Mutation events
Events caused by any action which modifies the structure of the document.

Capturing
The process by which an event can be handled by one of the event’s target’s ancestors [p.45] before
being handled by the event’s target.

9

1. Document Object Model Events

http://www.w3.org/TR/DOM-Level-2-Core/introduction.html#ID-Conformance

Bubbling
The process by which an event propagates upward through its ancestors [p.45] after being handled by
the event’s target.

Cancelable
A designation for events which indicates that upon handling the event the client may choose to
prevent the DOM implementation from processing any default action associated with the event.

1.2. Description of event flow
Event flow is the process through which the an event originates from the DOM implementation and is
passed into the Document Object Model. The methods of event capture and event bubbling, along with
various event listener registration techniques, allow the event to then be handled in a number of ways. It
can be handled locally at the EventTarget level or centrally from an EventTarget [p.12] higher in
the document tree.

1.2.1. Basic event flow

Each event has an EventTarget [p.12] toward which the event is directed by the DOM
implementation. This EventTarget is specified in the Event [p.15] ’s target attribute. When the
event reaches the target, any event listeners registered on the EventTarget are triggered. Although all
EventListeners [p.14] on the EventTarget are guaranteed to be triggered by any event which is
received by that EventTarget, no specification is made as to the order in which they will receive the
event with regards to the other EventListeners [p.14] on the EventTarget. If neither event
capture or event bubbling are in use for that particular event, the event flow process will complete after all
listeners have been triggered. If event capture or event bubbling is in use, the event flow will be modified
as described in the sections below.

Any exceptions thrown inside an EventListener [p.14] will not stop propagation of the event. It will
continue processing any additional EventListener in the described manner.

It is expected that actions taken by EventListener [p.14] s may cause additional events to fire.
Additional events should be handled in a synchronous manner and may cause reentrancy into the event
model.

1.2.2. Event capture

Event capture is the process by which an EventListener registered on an ancestor [p.45] of the event’s
target can intercept events of a given type before they are received by the event’s target. Capture operates
from the top of the tree, generally the Document, downward, making it the symmetrical opposite of
bubbling which is described below. The chain of EventTarget [p.12] s from the top of the tree to the
event’s target is determined before the initial dispatch of the event. If modifications occur to the tree
during event processing, event flow will proceed based on the initial state of the tree.

An EventListener [p.14] being registered on an EventTarget [p.12] may choose to have that
EventListener capture events by specifying the useCapture parameter of the
addEventListener method to be true. Thereafter, when an event of the given type is dispatched

10

1.2. Description of event flow

toward a descendant [p.45] of the capturing object, the event will trigger any capturing event listeners of
the appropriate type which exist in the direct line between the top of the document and the event’s target.
This downward propagation continues until the event’s target is reached. A capturing EventListener
will not be triggered by events dispatched directly to the EventTarget upon which it is registered.

If the capturing EventListener [p.14] wishes to prevent further processing of the event from
occurring it may call the stopProgagation method of the Event [p.15] interface. This will prevent
further dispatch of the event, although additional EventListeners registered at the same hierarchy
level will still receive the event. Once an event’s stopPropagation method has been called, further
calls to that method have no additional effect. If no additional capturers exist and stopPropagation
has not been called, the event triggers the appropriate EventListeners on the target itself.

Although event capture is similar to the delegation based event model in which all interested parties
register their listeners directly on the target about which they wish to receive notifications, it is different in
two important respects. First, event capture only allows interception of events which are targeted at
descendants [p.45] of the capturing EventTarget [p.12] . It does not allow interception of events
targeted to the capturer’s ancestors [p.45] , its siblings [p.45] , or its sibling’s descendants [p.45] .
Secondly, event capture is not specified for a single EventTarget, it is specified for a specific type of
event. Once specified, event capture intercepts all events of the specified type targeted toward any of the
capturer’s descendants [p.45] .

1.2.3. Event bubbling

Events which are designated as bubbling will initially proceed with the same event flow as non-bubbling
events. The event is dispatched to its target EventTarget [p.12] and any event listeners found there are
triggered. Bubbling events will then trigger any additional event listeners found by following the
EventTarget’s parent chain upward, checking for any event listeners registered on each successive
EventTarget. This upward propagation will continue up to and including the Document.
EventListener [p.14] s registered as capturers will not be triggered during this phase. The chain of
EventTargets from the event target to the top of the tree is determined before the initial dispatch of the
event. If modifications occur to the tree during event processing, event flow will proceed based on the
initial state of the tree.

Any event handler may choose to prevent further event propagation by calling the stopPropagation
method of the Event [p.15] interface. If any EventListener [p.14] calls this method, all additional
EventListeners on the current EventTarget [p.12] will be triggered but bubbling will cease at
that level. Only one call to stopPropagation is required to prevent further bubbling.

1.2.4. Event cancelation

Some events are specified as cancelable. For these events, the DOM implementation generally has a
default action associated with the event. An example of this is a hyperlink in a web browser. When the
user clicks on the hyperlink the default action is generally to active that hyperlink. Before processing these
events, the implementation must check for event listeners registered to receive the event and dispatch the
event to those listeners. These listeners then have the option of canceling the implementation’s default
action or allowing the default action to proceed. In the case of the hyperlink in the browser, canceling the
action would have the result of not activating the hyperlink.

11

1.2.3. Event bubbling

Cancelation is accomplished by calling the Event [p.15] ’s preventDefault method. If one or more
EventListeners [p.14] call preventDefault during any phase of event flow the default action
will be canceled.

Different implementations will specify their own default actions, if any, associated with each event. The
DOM does not attempt to specify these actions.

1.3. Event listener registration

1.3.1. Event registration interfaces

Interface EventTarget (introduced in DOM Level 2)

The EventTarget interface is implemented by all Nodes in an implementation which supports
the DOM Event Model. Therefore, this interface can be obtained by using binding-specific casting
methods on an instance of the Node interface. The interface allows registration and removal of
EventListeners [p.14] on an EventTarget and dispatch of events to that EventTarget.

IDL Definition

// Introduced in DOM Level 2:
interface EventTarget {
 void addEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture);
 void removeEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture);
 boolean dispatchEvent(in Event evt)
 raises(EventException);
};

Methods
addEventListener

This method allows the registration of event listeners on the event target. If an
EventListener [p.14] is added to an EventTarget while it is processing an event, it
will not be triggered by the current actions but may be triggered during a later stage of
event flow, such as the bubbling phase.
If multiple identical EventListener [p.14] s are registered on the same
EventTarget with the same parameters the duplicate instances are discarded. They do
not cause the EventListener to be called twice and since they are discarded they do
not need to be removed with the removeEventListener method.
Parameters
type of type DOMString

The event type for which the user is registering
listener of type EventListener [p.14]

The listener parameter takes an interface implemented by the user which contains
the methods to be called when the event occurs.

12

1.3. Event listener registration

useCapture of type boolean
If true, useCapture indicates that the user wishes to initiate capture. After initiating
capture, all events of the specified type will be dispatched to the registered
EventListener before being dispatched to any EventTargets beneath them in
the tree. Events which are bubbling upward through the tree will not trigger an
EventListener designated to use capture.

No Return Value
No Exceptions

dispatchEvent
This method allows the dispatch of events into the implementations event model. Events
dispatched in this manner will have the same capturing and bubbling behavior as events
dispatched directly by the implementation. The target of the event is the EventTarget
on which dispatchEvent is called.
Parameters
evt of type Event [p.15]

Specifies the event type, behavior, and contextual information to be used in processing
the event.

Return Value

boolean The return value of dispatchEvent indicates whether any of the
listeners which handled the event called preventDefault. If
preventDefault was called the value is false, else the value is true.

Exceptions

EventException
[p.17]

UNSPECIFIED_EVENT_TYPE_ERR: Raised if the Event
[p.15] ’s type was not specified by initializing the event before
dispatchEvent was called. Specification of the Event’s
type as null or an empty string will also trigger this
exception.

removeEventListener
This method allows the removal of event listeners from the event target. If an
EventListener [p.14] is removed from an EventTarget while it is processing an
event, it will not be triggered by the current actions. EventListeners can never be
invoked after being removed.
Calling removeEventListener with arguments which do not identify any currently
registered EventListener [p.14] on the EventTarget has no effect.
Parameters
type of type DOMString

Specifies the event type of the EventListener [p.14] being removed.
listener of type EventListener [p.14]

The EventListener parameter indicates the EventListener to be removed.

13

1.3.1. Event registration interfaces

useCapture of type boolean
Specifies whether the EventListener being removed was registered as a capturing
listener or not. If a listener was registered twice, one with capture and one without,
each must be removed separately. Removal of a capturing listener does not affect a
non-capturing version of the same listener, and vice versa.

No Return Value
No Exceptions

Interface EventListener (introduced in DOM Level 2)

The EventListener interface is the primary method for handling events. Users implement the
EventListener interface and register their listener on an EventTarget [p.12] using the
AddEventListener method. The users should also remove their EventListener from its
EventTarget after they have completed using the listener.

When a Node is copied using the cloneNode method the EventListeners attached to the
source Node are not attached to the copied Node. If the user wishes the same EventListeners to
be added to the newly created copy the user must add them manually.

IDL Definition

// Introduced in DOM Level 2:
interface EventListener {
 void handleEvent(in Event evt);
};

Methods
handleEvent

This method is called whenever an event occurs of the type for which the
EventListener interface was registered.
Parameters
evt of type Event [p.15]

The Event contains contextual information about the event. It also contains the
stopPropagation and preventDefault methods which are used in
determining the event’s flow and default action.

No Return Value
No Exceptions

1.3.2. Interaction with HTML 4.0 event listeners

In HTML 4.0, event listeners were specified as attributes of an element. As such, registration of a second
event listener of the same type would replace the first listener. The DOM Event Model allows registration
of multiple event listeners on a single EventTarget [p.12] . To achieve this, event listeners are no
longer stored as attribute values.

In order to achieve compatibility with HTML 4.0, implementors may view the setting of attributes which
represent event handlers as the creation and registration of an EventListener on the EventTarget
[p.12] . The value of useCapture defaults to false. This EventListener [p.14] behaves in the
same manner as any other EventListeners which may be registered on the EventTarget. If the

14

1.3.2. Interaction with HTML 4.0 event listeners

attribute representing the event listener is changed, this may be viewed as the removal of the previously
registered EventListener and the registration of a new one. No technique is provided to allow HTML
4.0 event listeners access to the context information defined for each event.

1.4. Event interface
Interface Event (introduced in DOM Level 2)

The Event interface is used to provide contextual information about an event to the handler
processing the event. An object which implements the Event interface is generally passed as the
first parameter to an event handler. More specific context information is passed to event handlers by
deriving additional interfaces from Event which contain information directly relating to the type of
event they accompany. These derived interfaces are also implemented by the object passed to the
event listener.

IDL Definition

// Introduced in DOM Level 2:
interface Event {

 // PhaseType
 const unsigned short CAPTURING_PHASE = 1;
 const unsigned short AT_TARGET = 2;
 const unsigned short BUBBLING_PHASE = 3;

 readonly attribute DOMString type;
 readonly attribute EventTarget target;
 readonly attribute EventTarget currentTarget;
 readonly attribute unsigned short eventPhase;
 readonly attribute boolean bubbles;
 readonly attribute boolean cancelable;
 readonly attribute DOMTimeStamp timeStamp;
 void stopPropagation();
 void preventDefault();
 void initEvent(in DOMString eventTypeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg);
};

Definition group PhaseType

An integer indicating which phase of event flow is being processed.

Defined Constants
AT_TARGET

The event is currently being evaluated at the target EventTarget [p.12] .
BUBBLING_PHASE

The current event phase is the bubbling phase.
CAPTURING_PHASE

The current event phase is the capturing phase.

15

1.4. Event interface

Attributes
bubbles of type boolean, readonly

Used to indicate whether or not an event is a bubbling event. If the event can bubble the
value is true, else the value is false.

cancelable of type boolean, readonly
Used to indicate whether or not an event can have its default action prevented. If the
default action can be prevented the value is true, else the value is false.

currentTarget of type EventTarget [p.12] , readonly
Used to indicate the EventTarget [p.12] whose EventListeners [p.14] are
currently being processed. This is particularly useful during capturing and bubbling.

eventPhase of type unsigned short, readonly
Used to indicate which phase of event flow is currently being evaluated.

target of type EventTarget [p.12] , readonly
Used to indicate the EventTarget [p.12] to which the event was originally dispatched.

timeStamp of type DOMTimeStamp, readonly
Used to specify the time (in milliseconds relative to the epoch) at which the event was
created. Due to the fact that some systems may not provide this information the value of
timeStamp may be not available for all events. When not available, a value of 0 will be
returned. Examples of epoch time are the time of the system start or 0:0:0 UTC 1st January
1970.

type of type DOMString, readonly
The name of the event (case-insensitive). The name must be an XML name [p.45] .

Methods
initEvent

The initEvent method is used to initialize the value of an Event created through the
DocumentEvent [p.17] interface. This method may only be called before the Event has
been dispatched via the dispatchEvent method, though it may be called multiple times
during that phase if necessary. If called multiple times the final invocation takes
precedence. If called from a subclass of Event interface only the values specified in the
initEvent method are modified, all other attributes are left unchanged.
Parameters
eventTypeArg of type DOMString

Specifies the event type. This type may be any event type currently defined in this
specification or a new event type.. The string must be an XML name [p.45] .
Any new event type must not begin with any upper, lower, or mixed case version of
the string "DOM". This prefix is reserved for future DOM event sets. It is also
strongly recommended that third parties adding their own events use their own prefix
to avoid confusion and lessen the probability of conflicts with other new events.

canBubbleArg of type boolean
Specifies whether or not the event can bubble.

cancelableArg of type boolean
Specifies whether or not the event’s default action can be prevented.

No Return Value
No Exceptions

preventDefault
If an event is cancelable, the preventDefault method is used to signify that the event

16

1.4. Event interface

is to be canceled, meaning any default action normally taken by the implementation as a
result of the event will not occur. If, during any stage of event flow, the
preventDefault method is called the event is canceled. Any default action associated
with the event will not occur. Calling this method for a non-cancelable event has no effect.
Once preventDefault has been called it will remain in effect throughout the remainder
of the event’s propagation. This method may be used during any stage of event flow.
No Parameters
No Return Value
No Exceptions

stopPropagation
The stopPropagation method is used prevent further propagation of an event during
event flow. If this method is called by any EventListener [p.14] the event will cease
propagating through the tree. The event will complete dispatch to all listeners on the
current EventTarget [p.12] before event flow stops. This method may be used during
any stage of event flow.
No Parameters
No Return Value
No Exceptions

Exception EventException introduced in DOM Level 2

Event operations may throw an EventException [p.17] as specified in their method descriptions.

IDL Definition

// Introduced in DOM Level 2:
exception EventException {
 unsigned short code;
};
// EventExceptionCode
const unsigned short UNSPECIFIED_EVENT_TYPE_ERR = 0;

Definition group EventExceptionCode

An integer indicating the type of error generated.

Defined Constants
UNSPECIFIED_EVENT_TYPE_ERR

If the Event [p.15] ’s type was not specified by initializing the event before the
method was called. Specification of the Event’s type as null or an empty string will
also trigger this exception.

1.5. DocumentEvent interface
Interface DocumentEvent (introduced in DOM Level 2)

The DocumentEvent interface provides a mechanism by which the user can create an Event of a
type supported by the implementation. It is expected that the DocumentEvent interface will be
implemented on the same object which implements the Document interface in an implementation

17

1.5. DocumentEvent interface

which supports the Event model.

IDL Definition

// Introduced in DOM Level 2:
interface DocumentEvent {
 Event createEvent(in DOMString eventType)
 raises(DOMException);
};

Methods
createEvent

Parameters
eventType of type DOMString

The eventType parameter specifies the type of Event [p.15] interface to be
created. If the Event interface specified is supported by the implementation this
method will return a new Event of the interface type requested. If the Event is to be
dispatched via the dispatchEvent method the appropriate event init method must
be called after creation in order to initialize the Event’s values. As an example, a
user wishing to synthesize some kind of UIEvent [p.19] would call createEvent
with the parameter "UIEvents". The initUIEvent method could then be called on
the newly created UIEvent to set the specific type of UIEvent to be dispatched and
set its context information.
The createEvent method is used in creating Event [p.15] s when it is either
inconvenient or unnecessary for the user to create an Event themselves. In cases
where the implementation provided Event is insufficient, users may supply their own
Event implementations for use with the dispatchEvent method.

Return Value

Event [p.15] The newly created Event

Exceptions

DOMException NOT_SUPPORTED_ERR: Raised if the implementation does not
support the type of Event [p.15] interface requested

1.6. Event module definitions
The DOM Level 2 Event Model allows a DOM implementation to support multiple modules of events.
The model has been designed to allow addition of new event modules as is required. The DOM will not
attempt to define all possible events. For purposes of interoperability, the DOM will define a module of
user interface events including lower level device dependent events, a module of UI logical events, and a
module of document mutation events. Any new event types defined by third parties must not begin with
any upper, lower, or mixed case version of the string "DOM". This prefix is reserved for future DOM
event modules. It is also strongly recommended that third parties adding their own events use their own
prefix to avoid confusion and lessen the probability of conflicts with other new events.

18

1.6. Event module definitions

1.6.1. User Interface event types

The User Interface event module is composed of events listed in HTML 4.0 and additional events which
are supported in DOM Level 0 [p.45] browsers.

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "UIEvents" and "2.0" (respectively) to
determine whether or not the User Interface event module is supported by the implementation. In order to
fully support this module, an implementation must also support the "Events" feature defined in this
specification and the "Views" feature defined in the DOM Level 2 Views specification [DOM Level 2
Views]. Please, refer to additional information about conformance in the DOM Level 2 Core specification
[DOM Level 2 Core].

Note: To create an instance of the UIEvent [p.19] interface, use the feature string "UIEvents" as the
value of the input parameter used with the createEvent method of the DocumentEvent [p.17]
interface.

Interface UIEvent (introduced in DOM Level 2)

The UIEvent interface provides specific contextual information associated with User Interface
events.

IDL Definition

// Introduced in DOM Level 2:
interface UIEvent : Event {
 readonly attribute views::AbstractView view;
 readonly attribute long detail;
 void initUIEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg);
};

Attributes
detail of type long, readonly

Specifies some detail information about the Event [p.15] , depending on the type of event.
view of type views::AbstractView, readonly

The view attribute identifies the AbstractView from which the event was generated.
Methods

initUIEvent
The initUIEvent method is used to initialize the value of a UIEvent created through
the DocumentEvent [p.17] interface. This method may only be called before the
UIEvent has been dispatched via the dispatchEvent method, though it may be called
multiple times during that phase if necessary. If called multiple times, the final invocation
takes precedence.
Parameters

19

1.6.1. User Interface event types

http://www.w3.org/TR/DOM-Level-2-Core/introduction.html#ID-Conformance

typeArg of type DOMString
Specifies the event type.

canBubbleArg of type boolean
Specifies whether or not the event can bubble.

cancelableArg of type boolean
Specifies whether or not the event’s default action can be prevented.

viewArg of type views::AbstractView
Specifies the Event [p.15] ’s AbstractView.

detailArg of type long
Specifies the Event [p.15] ’s detail.

No Return Value
No Exceptions

The different types of such events that can occur are:

DOMFocusIn
The DOMFocusIn event occurs when an EventTarget [p.12] receives focus, for instance via a
pointing device being moved onto an element or by tabbing navigation to the element. Unlike the
HTML event focus, DOMFocusIn can be applied to any focusable EventTarget, not just FORM
controls.

Bubbles: Yes
Cancelable: No
Context Info: None

DOMFocusOut
The DOMFocusOut event occurs when a EventTarget [p.12] loses focus, for instance via a
pointing device being moved out of an element or by tabbing navigation out of the element. Unlike
the HTML event blur, DOMFocusOut can be applied to any focusable EventTarget, not just
FORM controls.

Bubbles: Yes
Cancelable: No
Context Info: None

DOMActivate
The activate event occurs when an element is activated, for instance, thru a mouse click or a
keypress. A numerical argument is provided to give an indication of the type of activation that
occurs: 1 for a simple activation (e.g. a simple click or Enter), 2 for hyperactivation (for instance a
double click or Shift Enter).

Bubbles: Yes
Cancelable: Yes
Context Info: detail (the numerical value)

1.6.2. Mouse event types

The Mouse event module is composed of events listed in HTML 4.0 and additional events which are
supported in DOM Level 0 [p.45] browsers. This event module is specifically designed for use with mouse
input devices.

20

1.6.2. Mouse event types

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "MouseEvents" and "2.0" (respectively) to
determine whether or not the Mouse event module is supported by the implementation. In order to fully
support this module, an implementation must also support the "UIEvents" feature defined in this
specification. Please, refer to additional information about conformance in the DOM Level 2 Core
specification [DOM Level 2 Core].

Note: To create an instance of the MouseEvent [p.21] interface, use the feature string "MouseEvents" as
the value of the input parameter used with the createEvent method of the DocumentEvent [p.17]
interface.

Interface MouseEvent (introduced in DOM Level 2)

The MouseEvent interface provides specific contextual information associated with Mouse events.

The detail attribute inherited from UIEvent [p.19] indicates the number of times a mouse button
has been pressed and released over the same screen location during a user action. The attribute value
is 1 when the user begins this action and increments by 1 for each full sequence of pressing and
releasing. If the user moves the mouse between the mousedown and mouseup the value will be set to
0, indicating that no click is occurring.

In the case of nested elements mouse events are always targeted at the most deeply nested element.
Ancestors of the targeted element may use bubbling to obtain notification of mouse events which
occur within its descendent elements.

IDL Definition

// Introduced in DOM Level 2:
interface MouseEvent : UIEvent {
 readonly attribute long screenX;
 readonly attribute long screenY;
 readonly attribute long clientX;
 readonly attribute long clientY;
 readonly attribute boolean ctrlKey;
 readonly attribute boolean shiftKey;
 readonly attribute boolean altKey;
 readonly attribute boolean metaKey;
 readonly attribute unsigned short button;
 readonly attribute EventTarget relatedTarget;
 void initMouseEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg,
 in long screenXArg,
 in long screenYArg,
 in long clientXArg,
 in long clientYArg,
 in boolean ctrlKeyArg,
 in boolean altKeyArg,
 in boolean shiftKeyArg,

21

1.6.2. Mouse event types

http://www.w3.org/TR/DOM-Level-2-Core/introduction.html#ID-Conformance

 in boolean metaKeyArg,
 in unsigned short buttonArg,
 in EventTarget relatedTargetArg);
};

Attributes
altKey of type boolean, readonly

Used to indicate whether the ’alt’ key was depressed during the firing of the event. On
some platforms this key may map to an alternative key name.

button of type unsigned short, readonly
During mouse events caused by the depression or release of a mouse button, button is
used to indicate which mouse button changed state. The values for button range from
zero to indicate the left button of the mouse, one to indicate the middle button if present,
and two to indicate the right button. For mice configured for left handed use in which the
button actions are reversed the values are instead read from right to left.

clientX of type long, readonly
The horizontal coordinate at which the event occurred relative to the DOM
implementation’s client area.

clientY of type long, readonly
The vertical coordinate at which the event occurred relative to the DOM implementation’s
client area.

ctrlKey of type boolean, readonly
Used to indicate whether the ’ctrl’ key was depressed during the firing of the event.

metaKey of type boolean, readonly
Used to indicate whether the ’meta’ key was depressed during the firing of the event. On
some platforms this key may map to an alternative key name.

relatedTarget of type EventTarget [p.12] , readonly
Used to identify a secondary EventTarget [p.12] related to a UI event. Currently this
attribute is used with the mouseover event to indicate the EventTarget which the
pointing device exited and with the mouseout event to indicate the EventTarget which
the pointing device entered.

screenX of type long, readonly
The horizontal coordinate at which the event occurred relative to the origin of the screen
coordinate system.

screenY of type long, readonly
The vertical coordinate at which the event occurred relative to the origin of the screen
coordinate system.

shiftKey of type boolean, readonly
Used to indicate whether the ’shift’ key was depressed during the firing of the event.

Methods
initMouseEvent

The initMouseEvent method is used to initialize the value of a MouseEvent created
through the DocumentEvent [p.17] interface. This method may only be called before the
MouseEvent has been dispatched via the dispatchEvent method, though it may be
called multiple times during that phase if necessary. If called multiple times, the final
invocation takes precedence.
Parameters

22

1.6.2. Mouse event types

typeArg of type DOMString
Specifies the event type.

canBubbleArg of type boolean
Specifies whether or not the event can bubble.

cancelableArg of type boolean
Specifies whether or not the event’s default action can be prevented.

viewArg of type views::AbstractView
Specifies the Event [p.15] ’s AbstractView.

detailArg of type long
Specifies the Event [p.15] ’s mouse click count.

screenXArg of type long
Specifies the Event [p.15] ’s screen x coordinate

screenYArg of type long
Specifies the Event [p.15] ’s screen y coordinate

clientXArg of type long
Specifies the Event [p.15] ’s client x coordinate

clientYArg of type long
Specifies the Event [p.15] ’s client y coordinate

ctrlKeyArg of type boolean
Specifies whether or not control key was depressed during the Event [p.15] .

altKeyArg of type boolean
Specifies whether or not alt key was depressed during the Event [p.15] .

shiftKeyArg of type boolean
Specifies whether or not shift key was depressed during the Event [p.15] .

metaKeyArg of type boolean
Specifies whether or not meta key was depressed during the Event [p.15] .

buttonArg of type unsigned short
Specifies the Event [p.15] ’s mouse button.

relatedTargetArg of type EventTarget [p.12]
Specifies the Event [p.15] ’s related EventTarget.

No Return Value
No Exceptions

The different types of Mouse events that can occur are:

click
The click event occurs when the pointing device button is clicked over an element. A click is defined
as a mousedown and mouseup over the same screen location. The sequence of these events is:

 mousedown
 mouseup
 click

If multiple clicks occur at the same screen location, the sequence repeats with the detail attribute
incrementing with each repetition. This event is valid for most elements.

Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey, button,

23

1.6.2. Mouse event types

detail
mousedown

The mousedown event occurs when the pointing device button is pressed over an element. This event
is valid for most elements.

Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey, button,
detail

mouseup
The mouseup event occurs when the pointing device button is released over an element. This event is
valid for most elements.

Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey, button,
detail

mouseover
The mouseover event occurs when the pointing device is moved onto an element. This event is valid
for most elements.

Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey,
relatedTarget indicates the EventTarget [p.12] the pointing device is exiting.

mousemove
The mousemove event occurs when the pointing device is moved while it is over an element. This
event is valid for most elements.

Bubbles: Yes
Cancelable: No
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey

mouseout
The mouseout event occurs when the pointing device is moved away from an element. This event is
valid for most elements..

Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey,
relatedTarget indicates the EventTarget [p.12] the pointing device is entering.

1.6.3. Key events

The DOM Level 2 Event specification does not provide a key event module. An event module designed
for use with keyboard input devices will be included in a later version of the DOM specification.

24

1.6.3. Key events

1.6.4. Mutation event types

The mutation event module is designed to allow notification of any changes to the structure of a
document, including attr and text modifications. It may be noted that none of the mutation events listed
are designated as cancelable. This stems from the fact that it is very difficult to make use of existing DOM
interfaces which cause document modifications if any change to the document might or might not take
place due to cancelation of the related event. Although this is still a desired capability, it was decided that
it would be better left until the addition of transactions into the DOM.

Many single modifications of the tree can cause multiple mutation events to be fired. Rather than attempt
to specify the ordering of mutation events due to every possible modification of the tree, the ordering of
these events is left to the implementation.

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "MutationEvents" and "2.0" (respectively) to
determine whether or not the Mutation event module is supported by the implementation. In order to fully
support this module, an implementation must also support the "Events" feature defined in this
specification. Please, refer to additional information about conformance in the DOM Level 2 Core
specification [DOM Level 2 Core].

Note: To create an instance of the MutationEvent [p.25] interface, use the feature string
"MutationEvents" as the value of the input parameter used with the createEvent method of the
DocumentEvent [p.17] interface.

Interface MutationEvent (introduced in DOM Level 2)

The MutationEvent interface provides specific contextual information associated with Mutation
events.

IDL Definition

// Introduced in DOM Level 2:
interface MutationEvent : Event {

 // attrChangeType
 const unsigned short MODIFICATION = 1;
 const unsigned short ADDITION = 2;
 const unsigned short REMOVAL = 3;

 readonly attribute Node relatedNode;
 readonly attribute DOMString prevValue;
 readonly attribute DOMString newValue;
 readonly attribute DOMString attrName;
 readonly attribute unsigned short attrChange;
 void initMutationEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in Node relatedNodeArg,
 in DOMString prevValueArg,

25

1.6.4. Mutation event types

http://www.w3.org/TR/DOM-Level-2-Core/introduction.html#ID-Conformance

 in DOMString newValueArg,
 in DOMString attrNameArg,
 in unsigned short attrChangeArg);
};

Definition group attrChangeType

An integer indicating in which way the Attr was changed.

Defined Constants
ADDITION

The Attr was just added.
MODIFICATION

The Attr was modified in place.
REMOVAL

The Attr was just removed.
Attributes

attrChange of type unsigned short, readonly
attrChange indicates the type of change which triggered the DOMAttrModified event.
The values can be MODIFICATION, ADDITION, or REMOVAL.

attrName of type DOMString, readonly
attrName indicates the name of the changed Attr node in a DOMAttrModified event.

newValue of type DOMString, readonly
newValue indicates the new value of the Attr node in DOMAttrModified events, and of
the CharacterData node in DOMCharDataModified events.

prevValue of type DOMString, readonly
prevValue indicates the previous value of the Attr node in DOMAttrModified events,
and of the CharacterData node in DOMCharDataModified events.

relatedNode of type Node, readonly
relatedNode is used to identify a secondary node related to a mutation event. For
example, if a mutation event is dispatched to a node indicating that its parent has changed,
the relatedNode is the changed parent. If an event is instead dispatched to a subtree
indicating a node was changed within it, the relatedNode is the changed node. In the
case of the DOMAttrModified event it indicates the Attr node which was modified,
added, or removed.

Methods
initMutationEvent

The initMutationEvent method is used to initialize the value of a
MutationEvent created through the DocumentEvent [p.17] interface. This method
may only be called before the MutationEvent has been dispatched via the
dispatchEvent method, though it may be called multiple times during that phase if
necessary. If called multiple times, the final invocation takes precedence.
Parameters
typeArg of type DOMString

Specifies the event type.
canBubbleArg of type boolean

Specifies whether or not the event can bubble.

26

1.6.4. Mutation event types

cancelableArg of type boolean
Specifies whether or not the event’s default action can be prevented.

relatedNodeArg of type Node
Specifies the Event [p.15] ’s related Node.

prevValueArg of type DOMString
Specifies the Event [p.15] ’s prevValue attribute. This value may be null.

newValueArg of type DOMString
Specifies the Event [p.15] ’s newValue attribute. This value may be null.

attrNameArg of type DOMString
Specifies the Event [p.15] ’s attrName attribute. This value may be null.

attrChangeArg of type unsigned short
Specifies the Event [p.15] ’s attrChange attribute

No Return Value
No Exceptions

The different types of Mutation events that can occur are:

DOMSubtreeModified
This is a general event for notification of all changes to the document. It can be used instead of the
more specific events listed below. It may be fired after a single modification to the document or, at
the implementation’s discretion, after multiple changes have occurred. The latter use should
generally be used to accomodate multiple changes which occur either simultaneously or in rapid
succession. The target of this event is the lowest common parent of the changes which have taken
place. This event is dispatched after any other events caused by the mutation have fired.

Bubbles: Yes
Cancelable: No
Context Info: None

DOMNodeInserted
Fired when a node has been added as a child [p.45] of another node. This event is dispatched after the
insertion has taken place. The target of this event is the node being inserted.

Bubbles: Yes
Cancelable: No
Context Info: relatedNode holds the parent node

DOMNodeRemoved
Fired when a node is being removed from its parent node. This event is dispatched before the node is
removed from the tree. The target of this event is the node being removed.

Bubbles: Yes
Cancelable: No
Context Info: relatedNode holds the parent node

DOMNodeRemovedFromDocument
Fired when a node is being removed from a document, either through direct removal of the Node or
removal of a subtree in which it is contained. This event is dispatched before the removal takes place.
The target of this event is the Node being removed. If the Node is being directly removed the
DOMNodeRemoved event will fire before the DOMNodeRemovedFromDocument event.

Bubbles: No
Cancelable: No

27

1.6.4. Mutation event types

Context Info: None
DOMNodeInsertedIntoDocument

Fired when a node is being inserted into a document, either through direct insertion of the Node or
insertion of a subtree in which it is contained. This event is dispatched after the insertion has taken
place. The target of this event is the node being inserted. If the Node is being directly inserted the
DOMNodeInserted event will fire before the DOMNodeInsertedIntoDocument event.

Bubbles: No
Cancelable: No
Context Info: None

DOMAttrModified
Fired after an Attr has been modified on a node. The target of this event is the Node whose Attr
changed. The value of attrChange indicates whether the Attr was modified, added, or removed. The
value of relatedNode indicates the Attr node whose value has been affected. It is expected that
string based replacement of an Attr value will be viewed as a modification of the Attr since its
identity does not change. Subsequently replacement of the Attr node with a different Attr node is
viewed as the removal of the first Attr node and the addition of the second.

Bubbles: Yes
Cancelable: No
Context Info: attrName, attrChange, prevValue, newValue, relatedNode

DOMCharacterDataModified
Fired after CharacterData within a node has been modified but the node itself has not been inserted or
deleted. This event is also triggered by modifications to PI elements. The target of this event is the
CharacterData node.

Bubbles: Yes
Cancelable: No
Context Info: prevValue, newValue

1.6.5. HTML event types

The HTML event module is composed of events listed in HTML 4.0 and additional events which are
supported in DOM Level 0 [p.45] browsers.

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "HTMLEvents" and "2.0" (respectively) to
determine whether or not the HTML event module is supported by the implementation. In order to fully
support this module, an implementation must also support the "Events" feature defined in this
specification. Please, refer to additional information about conformance in the DOM Level 2 Core
specification [DOM Level 2 Core].

Note: To create an instance of the Event [p.15] interface for the HTML event module, use the feature
string "HTMLEvents" as the value of the input parameter used with the createEvent method of the
DocumentEvent [p.17] interface.

The HTML events use the base DOM Event interface to pass contextual information.

28

1.6.5. HTML event types

http://www.w3.org/TR/DOM-Level-2-Core/introduction.html#ID-Conformance

The different types of such events that can occur are:

load
The load event occurs when the DOM implementation finishes loading all content within a
document, all frames within a FRAMESET, or an OBJECT element.

Bubbles: No
Cancelable: No
Context Info: None

unload
The unload event occurs when the DOM implementation removes a document from a window or
frame. This event is valid for BODY and FRAMESET elements.

Bubbles: No
Cancelable: No
Context Info: None

abort
The abort event occurs when page loading is stopped before an image has been allowed to
completely load. This event applies to OBJECT elements.

Bubbles: Yes
Cancelable: No
Context Info: None

error
The error event occurs when an image does not load properly or when an error occurs during script
execution. This event is valid for OBJECT elements, BODY elements, and FRAMESET element.

Bubbles: Yes
Cancelable: No
Context Info: None

select
The select event occurs when a user selects some text in a text field. This event is valid for INPUT
and TEXTAREA elements.

Bubbles: Yes
Cancelable: No
Context Info: None

change
The change event occurs when a control loses the input focus and its value has been modified since
gaining focus. This event is valid for INPUT, SELECT, and TEXTAREA. element.

Bubbles: Yes
Cancelable: No
Context Info: None

submit
The submit event occurs when a form is submitted. This event only applies to the FORM element.

Bubbles: Yes
Cancelable: Yes
Context Info: None

29

1.6.5. HTML event types

reset
The reset event occurs when a form is reset. This event only applies to the FORM element.

Bubbles: Yes
Cancelable: No
Context Info: None

focus
The focus event occurs when an element receives focus either via a pointing device or by tabbing
navigation. This event is valid for the following elements: LABEL, INPUT, SELECT, TEXTAREA,
and BUTTON.

Bubbles: No
Cancelable: No
Context Info: None

blur
The blur event occurs when an element loses focus either via the pointing device or by tabbing
navigation. This event is valid for the following elements: LABEL, INPUT, SELECT, TEXTAREA,
and BUTTON.

Bubbles: No
Cancelable: No
Context Info: None

resize
The resize event occurs when a document view is resized.

Bubbles: Yes
Cancelable: No
Context Info: None

scroll
The scroll event occurs when a document view is scrolled.

Bubbles: Yes
Cancelable: No
Context Info: None

30

1.6.5. HTML event types

Appendix A: IDL Definitions
This appendix contains the complete OMG IDL [OMGIDL] for the Level 2 Document Object Model
Events definitions.

The IDL files are also available as:
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/idl.zip

events.idl:
// File: events.idl

#ifndef _EVENTS_IDL_
#define _EVENTS_IDL_

#include "dom.idl"
#include "views.idl"

#pragma prefix "dom.w3c.org"
module events
{

 typedef dom::DOMString DOMString;
 typedef dom::DOMTimeStamp DOMTimeStamp;
 typedef dom::Node Node;

 interface EventListener;
 interface Event;

 // Introduced in DOM Level 2:
 exception EventException {
 unsigned short code;
 };
 // EventExceptionCode
 const unsigned short UNSPECIFIED_EVENT_TYPE_ERR = 0;

 // Introduced in DOM Level 2:
 interface EventTarget {
 void addEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture);
 void removeEventListener(in DOMString type,
 in EventListener listener,
 in boolean useCapture);
 boolean dispatchEvent(in Event evt)
 raises(EventException);
 };

 // Introduced in DOM Level 2:
 interface EventListener {
 void handleEvent(in Event evt);
 };

31

Appendix A: IDL Definitions

 // Introduced in DOM Level 2:
 interface Event {

 // PhaseType
 const unsigned short CAPTURING_PHASE = 1;
 const unsigned short AT_TARGET = 2;
 const unsigned short BUBBLING_PHASE = 3;

 readonly attribute DOMString type;
 readonly attribute EventTarget target;
 readonly attribute EventTarget currentTarget;
 readonly attribute unsigned short eventPhase;
 readonly attribute boolean bubbles;
 readonly attribute boolean cancelable;
 readonly attribute DOMTimeStamp timeStamp;
 void stopPropagation();
 void preventDefault();
 void initEvent(in DOMString eventTypeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg);
 };

 // Introduced in DOM Level 2:
 interface DocumentEvent {
 Event createEvent(in DOMString eventType)
 raises(dom::DOMException);
 };

 // Introduced in DOM Level 2:
 interface UIEvent : Event {
 readonly attribute views::AbstractView view;
 readonly attribute long detail;
 void initUIEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg);
 };

 // Introduced in DOM Level 2:
 interface MouseEvent : UIEvent {
 readonly attribute long screenX;
 readonly attribute long screenY;
 readonly attribute long clientX;
 readonly attribute long clientY;
 readonly attribute boolean ctrlKey;
 readonly attribute boolean shiftKey;
 readonly attribute boolean altKey;
 readonly attribute boolean metaKey;
 readonly attribute unsigned short button;
 readonly attribute EventTarget relatedTarget;
 void initMouseEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in views::AbstractView viewArg,
 in long detailArg,
 in long screenXArg,

32

events.idl:

 in long screenYArg,
 in long clientXArg,
 in long clientYArg,
 in boolean ctrlKeyArg,
 in boolean altKeyArg,
 in boolean shiftKeyArg,
 in boolean metaKeyArg,
 in unsigned short buttonArg,
 in EventTarget relatedTargetArg);
 };

 // Introduced in DOM Level 2:
 interface MutationEvent : Event {

 // attrChangeType
 const unsigned short MODIFICATION = 1;
 const unsigned short ADDITION = 2;
 const unsigned short REMOVAL = 3;

 readonly attribute Node relatedNode;
 readonly attribute DOMString prevValue;
 readonly attribute DOMString newValue;
 readonly attribute DOMString attrName;
 readonly attribute unsigned short attrChange;
 void initMutationEvent(in DOMString typeArg,
 in boolean canBubbleArg,
 in boolean cancelableArg,
 in Node relatedNodeArg,
 in DOMString prevValueArg,
 in DOMString newValueArg,
 in DOMString attrNameArg,
 in unsigned short attrChangeArg);
 };
};

#endif // _EVENTS_IDL_

33

events.idl:

34

events.idl:

Appendix B: Java Language Binding
This appendix contains the complete Java [Java] bindings for the Level 2 Document Object Model Events.

The Java files are also available as
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113/java-binding.zip

org/w3c/dom/events/EventException.java:
package org.w3c.dom.events;

public class EventException extends RuntimeException {
 public EventException(short code, String message) {
 super(message);
 this.code = code;
 }
 public short code;
 // EventExceptionCode
 public static final short UNSPECIFIED_EVENT_TYPE_ERR = 0;

}

org/w3c/dom/events/EventTarget.java:
package org.w3c.dom.events;

public interface EventTarget {
 public void addEventListener(String type,
 EventListener listener,
 boolean useCapture);

 public void removeEventListener(String type,
 EventListener listener,
 boolean useCapture);

 public boolean dispatchEvent(Event evt)
 throws EventException;

}

org/w3c/dom/events/EventListener.java:
package org.w3c.dom.events;

public interface EventListener {
 public void handleEvent(Event evt);

}

35

Appendix B: Java Language Binding

org/w3c/dom/events/Event.java:
package org.w3c.dom.events;

public interface Event {
 // PhaseType
 public static final short CAPTURING_PHASE = 1;
 public static final short AT_TARGET = 2;
 public static final short BUBBLING_PHASE = 3;

 public String getType();

 public EventTarget getTarget();

 public EventTarget getCurrentTarget();

 public short getEventPhase();

 public boolean getBubbles();

 public boolean getCancelable();

 public long getTimeStamp();

 public void stopPropagation();

 public void preventDefault();

 public void initEvent(String eventTypeArg,
 boolean canBubbleArg,
 boolean cancelableArg);

}

org/w3c/dom/events/DocumentEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.DOMException;

public interface DocumentEvent {
 public Event createEvent(String eventType)
 throws DOMException;

}

org/w3c/dom/events/UIEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.views.AbstractView;

public interface UIEvent extends Event {
 public AbstractView getView();

36

org/w3c/dom/events/Event.java:

 public int getDetail();

 public void initUIEvent(String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 AbstractView viewArg,
 int detailArg);

}

org/w3c/dom/events/MouseEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.views.AbstractView;

public interface MouseEvent extends UIEvent {
 public int getScreenX();

 public int getScreenY();

 public int getClientX();

 public int getClientY();

 public boolean getCtrlKey();

 public boolean getShiftKey();

 public boolean getAltKey();

 public boolean getMetaKey();

 public short getButton();

 public EventTarget getRelatedTarget();

 public void initMouseEvent(String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 AbstractView viewArg,
 int detailArg,
 int screenXArg,
 int screenYArg,
 int clientXArg,
 int clientYArg,
 boolean ctrlKeyArg,
 boolean altKeyArg,
 boolean shiftKeyArg,
 boolean metaKeyArg,
 short buttonArg,
 EventTarget relatedTargetArg);

}

37

org/w3c/dom/events/MouseEvent.java:

org/w3c/dom/events/MutationEvent.java:
package org.w3c.dom.events;

import org.w3c.dom.Node;

public interface MutationEvent extends Event {
 // attrChangeType
 public static final short MODIFICATION = 1;
 public static final short ADDITION = 2;
 public static final short REMOVAL = 3;

 public Node getRelatedNode();

 public String getPrevValue();

 public String getNewValue();

 public String getAttrName();

 public short getAttrChange();

 public void initMutationEvent(String typeArg,
 boolean canBubbleArg,
 boolean cancelableArg,
 Node relatedNodeArg,
 String prevValueArg,
 String newValueArg,
 String attrNameArg,
 short attrChangeArg);

}

38

org/w3c/dom/events/MutationEvent.java:

Appendix C: ECMAScript Language Binding
This appendix contains the complete ECMAScript [ECMAScript] binding for the Level 2 Document
Object Model Events definitions.

Note: Exceptions handling is only supported by ECMAScript implementation conformant with the
Standard ECMA-262 3rd. Edition ([ECMAScript]).

Object EventTarget
The EventTarget object has the following methods:

addEventListener(type, listener, useCapture)
This method has no return value.
The type parameter is of type String.
The listener parameter is a EventListener object.
The useCapture parameter is of type Boolean.

removeEventListener(type, listener, useCapture)
This method has no return value.
The type parameter is of type String.
The listener parameter is a EventListener object.
The useCapture parameter is of type Boolean.

dispatchEvent(evt)
This method returns a Boolean.
The evt parameter is a Event object.
This method can raise a EventException object.

Object EventListener
This is an ECMAScript function reference. This method has no return value. The parameter is a
Event object.

Prototype Object Event
The Event class has the following constants:

Event.CAPTURING_PHASE
This constant is of type Number and its value is 1.

Event.AT_TARGET
This constant is of type Number and its value is 2.

Event.BUBBLING_PHASE
This constant is of type Number and its value is 3.

Object Event
The Event object has the following properties:

type
This read-only property is of type String.

target
This read-only property is a EventTarget object.

currentTarget
This read-only property is a EventTarget object.

eventPhase
This read-only property is of type Number.

39

Appendix C: ECMAScript Language Binding

bubbles
This read-only property is of type Boolean.

cancelable
This read-only property is of type Boolean.

timeStamp
This read-only property is a Date object.

The Event object has the following methods:
stopPropagation()

This method has no return value.
preventDefault()

This method has no return value.
initEvent(eventTypeArg, canBubbleArg, cancelableArg)

This method has no return value.
The eventTypeArg parameter is of type String.
The canBubbleArg parameter is of type Boolean.
The cancelableArg parameter is of type Boolean.

Prototype Object EventException
The EventException class has the following constants:

EventException.UNSPECIFIED_EVENT_TYPE_ERR
This constant is of type Number and its value is 0.

Object EventException
The EventException object has the following properties:

code
This property is of type Number.

Object DocumentEvent
The DocumentEvent object has the following methods:

createEvent(eventType)
This method returns a Event object.
The eventType parameter is of type String.
This method can raise a DOMException object.

Object UIEvent
UIEvent has the all the properties and methods of the Event object as well as the properties and
methods defined below.
The UIEvent object has the following properties:

view
This read-only property is a AbstractView object.

detail
This read-only property is a long object.

The UIEvent object has the following methods:
initUIEvent(typeArg, canBubbleArg, cancelableArg, viewArg, detailArg)

This method has no return value.
The typeArg parameter is of type String.
The canBubbleArg parameter is of type Boolean.
The cancelableArg parameter is of type Boolean.
The viewArg parameter is a AbstractView object.
The detailArg parameter is a long object.

40

Appendix C: ECMAScript Language Binding

Object MouseEvent
MouseEvent has the all the properties and methods of the UIEvent object as well as the properties
and methods defined below.
The MouseEvent object has the following properties:

screenX
This read-only property is a long object.

screenY
This read-only property is a long object.

clientX
This read-only property is a long object.

clientY
This read-only property is a long object.

ctrlKey
This read-only property is of type Boolean.

shiftKey
This read-only property is of type Boolean.

altKey
This read-only property is of type Boolean.

metaKey
This read-only property is of type Boolean.

button
This read-only property is of type Number.

relatedTarget
This read-only property is a EventTarget object.

The MouseEvent object has the following methods:
initMouseEvent(typeArg, canBubbleArg, cancelableArg, viewArg, detailArg, screenXArg,
screenYArg, clientXArg, clientYArg, ctrlKeyArg, altKeyArg, shiftKeyArg, metaKeyArg,
buttonArg, relatedTargetArg)

This method has no return value.
The typeArg parameter is of type String.
The canBubbleArg parameter is of type Boolean.
The cancelableArg parameter is of type Boolean.
The viewArg parameter is a AbstractView object.
The detailArg parameter is a long object.
The screenXArg parameter is a long object.
The screenYArg parameter is a long object.
The clientXArg parameter is a long object.
The clientYArg parameter is a long object.
The ctrlKeyArg parameter is of type Boolean.
The altKeyArg parameter is of type Boolean.
The shiftKeyArg parameter is of type Boolean.
The metaKeyArg parameter is of type Boolean.
The buttonArg parameter is of type Number.
The relatedTargetArg parameter is a EventTarget object.

Prototype Object MutationEvent

41

Appendix C: ECMAScript Language Binding

The MutationEvent class has the following constants:
MutationEvent.MODIFICATION

This constant is of type Number and its value is 1.
MutationEvent.ADDITION

This constant is of type Number and its value is 2.
MutationEvent.REMOVAL

This constant is of type Number and its value is 3.
Object MutationEvent

MutationEvent has the all the properties and methods of the Event object as well as the properties
and methods defined below.
The MutationEvent object has the following properties:

relatedNode
This read-only property is a Node object.

prevValue
This read-only property is of type String.

newValue
This read-only property is of type String.

attrName
This read-only property is of type String.

attrChange
This read-only property is of type Number.

The MutationEvent object has the following methods:
initMutationEvent(typeArg, canBubbleArg, cancelableArg, relatedNodeArg,
prevValueArg, newValueArg, attrNameArg, attrChangeArg)

This method has no return value.
The typeArg parameter is of type String.
The canBubbleArg parameter is of type Boolean.
The cancelableArg parameter is of type Boolean.
The relatedNodeArg parameter is a Node object.
The prevValueArg parameter is of type String.
The newValueArg parameter is of type String.
The attrNameArg parameter is of type String.
The attrChangeArg parameter is of type Number.

The following example will add an ECMAScript based EventListener to the Node ’exampleNode’:

 // Given the Node ’exampleNode’

 // Define the EventListener function
 function clickHandler(evt)
 {
 // Function contents
 }

 // The following line will add a non-capturing ’click’ listener
 // to ’exampleNode’.
 exampleNode.addEventListener("click", clickHandler, false);

42

Appendix C: ECMAScript Language Binding

Appendix D: Acknowledgements
Many people contributed to this specification, including members of the DOM Working Group and the
DOM Interest Group. We especially thank the following:

Lauren Wood (SoftQuad Software Inc., chair), Andrew Watson (Object Management Group), Andy
Heninger (IBM), Arnaud Le Hors (W3C and IBM), Ben Chang (Oracle), Bill Smith (Sun), Bill Shea
(Merrill Lynch), Bob Sutor (IBM), Chris Lovett (Microsoft), Chris Wilson (Microsoft), David Brownell
(Sun), David Singer (IBM), Don Park (invited), Eric Vasilik (Microsoft), Gavin Nicol (INSO), Ian Jacobs
(W3C), James Clark (invited), James Davidson (Sun), Jared Sorensen (Novell), Joe Kesselman (IBM), Joe
Lapp (webMethods), Joe Marini (Macromedia), Johnny Stenback (Netscape), Jonathan Marsh
(Microsoft), Jonathan Robie (Texcel Research and Software AG), Kim Adamson-Sharpe (SoftQuad
Software Inc.), Laurence Cable (Sun), Mark Davis (IBM), Mark Scardina (Oracle), Martin Dürst (W3C),
Mick Goulish (Software AG), Mike Champion (Arbortext and Software AG), Miles Sabin (Cromwell
Media), Patti Lutsky (Arbortext), Paul Grosso (Arbortext), Peter Sharpe (SoftQuad Software Inc.), Phil
Karlton (Netscape), Philippe Le Hégaret (W3C, W3C team contact), Ramesh Lekshmynarayanan (Merrill
Lynch), Ray Whitmer (iMall, Excite@Home and Netscape), Rich Rollman (Microsoft), Rick Gessner
(Netscape), Scott Isaacs (Microsoft), Sharon Adler (INSO), Steve Byrne (JavaSoft), Tim Bray (invited),
Tom Pixley (Netscape), Vidur Apparao (Netscape), Vinod Anupam (Lucent).

Thanks to all those who have helped to improve this specification by sending suggestions and corrections.

D.1: Production Systems
This specification was written in XML. The HTML, OMG IDL, Java and ECMA Script bindings were all
produced automatically.

Thanks to Joe English, author of cost, which was used as the basis for producing DOM Level 1. Thanks
also to Gavin Nicol, who wrote the scripts which run on top of cost. Arnaud Le Hors and Philippe Le
Hégaret maintained the scripts.

For DOM Level 2, we used Xerces as the basis DOM implementation and wish to thank the authors.
Philippe Le Hégaret and Arnaud Le Hors wrote the Java programs which are the DOM application.

Thanks also to Jan Kärrman, author of html2ps, which we use in creating the PostScript version of the
specification.

43

Appendix D: Acknowledgements

http://www.tdb.uu.se/~jan/html2ps.html
http://dev.w3.org/cvsweb/java/classes/org/w3c/tools/specgenerator/
http://xml.apache.org/xerces-j
http://www.flightlab.com/cost

44

D.1: Production Systems

Glossary
Editors

Arnaud Le Hors, IBM
Lauren Wood, SoftQuad Software Inc.
Robert S. Sutor, IBM (for DOM Level 1)

Several of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions for more information.

ancestor
An ancestor node of any node A is any node above A in a tree model of a document, where "above"
means "toward the root."

child
A child is an immediate descendant node of a node.

descendant
A descendant node of any node A is any node below A in a tree model of a document, where "above"
means "toward the root."

DOM Level 0
The term "DOM Level 0" refers to a mix (not formally specified) of HTML document functionalities
offered by Netscape Navigator version 3.0 and Microsoft Internet Explorer version 3.0. In some
cases, attributes or methods have been included for reasons of backward compatibility with "DOM
Level 0".

sibling
Two nodes are siblings if and only if they have the same parent node.

tokenized
The description given to various information items (for example, attribute values of various types,
but not including the StringType CDATA) after having been processed by the XML processor. The
process includes stripping leading and trailing white space, and replacing multiple space characters
by one. See the definition of tokenized type.

XML name
See XML name in the XML specification [XML].

45

Glossary

http://www.w3.org/TR/1998/REC-xml-19980210#NT-Name

46

Glossary

References
For the latest version of any W3C specification please consult the list of W3C Technical Reports available
at http://www.w3.org/TR.

F.1: Normative references
DOM Level 2 Core

W3C (World Wide Web Consortium) Document Object Model Level 2 Core Specification,
November 2000. Available at http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

ECMAScript
ECMA (European Computer Manufacturers Association) ECMAScript Language Specification.
Available at http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM

Java
Sun Microsystems Inc. The Java Language Specification, James Gosling, Bill Joy, and Guy Steele,
September 1996. Available at http://java.sun.com/docs/books/jls

OMGIDL
OMG (Object Management Group) IDL (Interface Definition Language) defined in The Common
Object Request Broker: Architecture and Specification, version 2.3.1, October 1999. Available from
http://www.omg.org/

DOM Level 2 Views
W3C (World Wide Web Consortium) Document Object Model Level 2 Views Specification,
November 2000. Available at http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113

XML
W3C (World Wide Web Consortium) Extensible Markup Language (XML) 1.0, February 1998.
Available at http://www.w3.org/TR/1998/REC-xml-19980210

47

References

http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113
http://www.omg.org/
http://java.sun.com/docs/books/jls
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR

48

F.1: Normative references

Index
addEventListener ADDITION altKey

ancestor 9, 10, 45 AT_TARGET attrChange

attrName

bubbles BUBBLING_PHASE button

cancelable CAPTURING_PHASE child 24, 45

clientX clientY createEvent

ctrlKey currentTarget

descendant 10, 45 detail dispatchEvent

DocumentEvent DOM Level 0 9, 19, 20, 28, 45
DOM Level 2 Core 9, 19, 20,
24, 28, 47

DOM Level 2 Views 19,
47

ECMAScript Event EventException

EventListener eventPhase EventTarget

handleEvent

initEvent initMouseEvent initMutationEvent

initUIEvent

Java

metaKey MODIFICATION MouseEvent

49

Index

MutationEvent

newValue

OMGIDL

preventDefault prevValue

relatedNode relatedTarget REMOVAL

removeEventListener

screenX screenY shiftKey

sibling 10, 45 stopPropagation

target timeStamp tokenized

type

UIEvent UNSPECIFIED_EVENT_TYPE_ERR

view

XML 45, 47 XML name 16, 16, 45

50

Index

	Document Object Model †DOM‡ Level 2 Events Specification
	Version 1.0
	W3C Recommendation 13 November, 2000
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	1. Document Object Model Events
	1.1. Overview of the DOM Level 2 Event Model
	1.1.1. Terminology

	1.2. Description of event flow
	1.2.1. Basic event flow
	1.2.2. Event capture
	1.2.3. Event bubbling
	1.2.4. Event cancelation

	1.3. Event listener registration
	1.3.1. Event registration interfaces
	1.3.2. Interaction with HTML 4.0 event listeners

	1.4. Event interface
	1.5. DocumentEvent interface
	1.6. Event module definitions
	1.6.1. User Interface event types
	1.6.2. Mouse event types
	1.6.3. Key events
	1.6.4. Mutation event types
	1.6.5. HTML event types

	Appendix A: IDL Definitions
	
	events.idl:

	Appendix B: Java Language Binding
	
	org/w3c/dom/events/EventException.java:
	org/w3c/dom/events/EventTarget.java:
	org/w3c/dom/events/EventListener.java:
	org/w3c/dom/events/Event.java:
	org/w3c/dom/events/DocumentEvent.java:
	org/w3c/dom/events/UIEvent.java:
	org/w3c/dom/events/MouseEvent.java:
	org/w3c/dom/events/MutationEvent.java:

	Appendix C: ECMAScript Language Binding
	Appendix D: Acknowledgements
	D.1: Production Systems

	Glossary
	References
	F.1: Normative references

	Index

