
Document Object Model (DOM) Level 2 Core
Specification

Version 1.0

W3C Recommendation 13 November, 2000
This version:

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
(PostScript file , PDF file , plain text , ZIP file)

Latest version:
http://www.w3.org/TR/DOM-Level-2-Core

Previous version:
http://www.w3.org/TR/2000/PR-DOM-Level-2-Core-20000927

Editors:
Arnaud Le Hors, W3C team contact until October 1999, then IBM
Philippe Le Hégaret, W3C, team contact (from November 1999)
Lauren Wood, SoftQuad Software Inc., WG Chair
Gavin Nicol, Inso EPS (for DOM Level 1)
Jonathan Robie, Texcel Research and Software AG (for DOM Level 1)
Mike Champion, ArborText and Software AG (for DOM Level 1 from November 20, 1997)
Steve Byrne, JavaSoft (for DOM Level 1 until November 19, 1997)

Copyright © 2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability , trademark, document
use and software licensing rules apply.

Abstract
This specification defines the Document Object Model Level 2 Core, a platform- and language-neutral
interface that allows programs and scripts to dynamically access and update the content and structure of
documents. The Document Object Model Level 2 Core builds on the Document Object Model Level 1
Core.

The DOM Level 2 Core is made of a set of core interfaces to create and manipulate the structure and
contents of a document. The Core also contains specialized interfaces dedicated to XML.

1

Document Object Model (DOM) Level 2 Core Specification

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/TR/2000/PR-DOM-Level-2-Core-20000927
http://www.w3.org/TR/DOM-Level-2-Core
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/DOM2-Core.zip
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/DOM2-Core.txt
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/DOM2-Core.pdf
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/DOM2-Core.ps
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/

Status of this document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. The latest status of this document series is maintained at the W3C.

This document has been reviewed by W3C Members and other interested parties and has been endorsed
by the Director as a W3C Recommendation. It is a stable document and may be used as reference material
or cited as a normative reference from another document. W3C’s role in making the Recommendation is
to draw attention to the specification and to promote its widespread deployment. This enhances the
functionality and interoperability of the Web.

This document has been produced as part of the W3C DOM Activity . The authors of this document are
the DOM Working Group members. Different modules of the Document Object Model have different
editors.

Please send general comments about this document to the public mailing list www-dom@w3.org. An
archive is available at http://lists.w3.org/Archives/Public/www-dom/.

The English version of this specification is the only normative version. Information about translations of
this document is available at http://www.w3.org/2000/11/DOM-Level-2-translations.

The list of known errors in this document is available at http://www.w3.org/2000/11/DOM-Level-2-errata

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Table of contents
................ 3Expanded Table of Contents
................... 5Copyright Notice
.............. 9What is the Document Object Model?

............... 151. Document Object Model Core

................. 67Appendix A: Changes

............ 69Appendix B: Accessing code point boundaries

................ 71Appendix C: IDL Definitions

.............. 77Appendix D: Java Language Binding

............ 85Appendix E: ECMAScript Language Binding

............... 95Appendix F: Acknowledgements

.................... 97Glossary

.................... 101References

..................... 105Index

2

Status of this document

http://www.w3.org/TR/
http://www.w3.org/2000/11/DOM-Level-2-errata
http://www.w3.org/2000/11/DOM-Level-2-translations
http://lists.w3.org/Archives/Public/www-dom/
http://www.w3.org/DOM/Activity.html
http://www.w3.org/Consortium/Process/Process-19991111/tr.html#RecsW3C

Expanded Table of Contents
................ 3Expanded Table of Contents
................... 5Copyright Notice
........... 5W3C Document Copyright Notice and License
........... 6W3C Software Copyright Notice and License
.............. 9What is the Document Object Model?
................... 9Introduction
............. 9What the Document Object Model is
............ 11What the Document Object Model is not
........... 11Where the Document Object Model came from
............... 12Entities and the DOM Core
.................. 12Conformance
............ 13DOM Interfaces and DOM Implementations

............... 151. Document Object Model Core

............ 151.1. Overview of the DOM Core Interfaces

............. 151.1.1. The DOM Structure Model

.............. 161.1.2. Memory Management

.............. 171.1.3. Naming Conventions

......... 171.1.4. Inheritance vs. Flattened Views of the API

.............. 171.1.5. The DOMString type

............. 181.1.6. The DOMTimeStamp type

............ 181.1.7. String comparisons in the DOM

............... 191.1.8. XML Namespaces

............... 201.2. Fundamental Interfaces

................ 611.3. Extended Interfaces

................. 67Appendix A: Changes

...... 67A.1. Changes between DOM Level 1 Core and DOM Level 2 Core

...... 67A.1.1. Changes to DOM Level 1 Core interfaces and exceptions

................ 68A.1.2. New features

............ 69Appendix B: Accessing code point boundaries

.................. 69B.1. Introduction

.................. 69B.2. Methods

................ 71Appendix C: IDL Definitions

.............. 77Appendix D: Java Language Binding

............ 85Appendix E: ECMAScript Language Binding

............... 95Appendix F: Acknowledgements

................ 95F.1. Production Systems

.................... 97Glossary

.................... 101References

................ 1011. Normative references

3

Expanded Table of Contents

................ 1012. Informative references

..................... 105Index

4

Expanded Table of Contents

Copyright Notice
Copyright © 2000 World Wide Web Consortium, (Massachusetts Institute of Technology, Institut
National de Recherche en Informatique et en Automatique, Keio University). All Rights Reserved.

This document is published under the W3C Document Copyright Notice and License [p.5] . The bindings
within this document are published under the W3C Software Copyright Notice and License [p.6] . The
software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no longer be
’w3c.org’; in the case of the Java Language binding, the package names can no longer be in the ’org.w3c’
package.

W3C Document Copyright Notice and License
Note: This section is a copy of the W3C Document Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-documents-19990405.

Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
Software Notice. By using and/or copying this document, or the W3C document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn’t exist, a notice of the form:

"Copyright © [$date-of-document] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any portion thereof.

5

Copyright Notice

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented in the Copyright FAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

W3C Software Copyright Notice and License
Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-2000 World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-software] World Wide Web Consortium, (Massachusetts Institute of
Technology, Institut National de Recherche en Informatique et en Automatique, Keio University).
All Rights Reserved. http://www.w3.org/Consortium/Legal/."

6

W3C Software Copyright Notice and License

http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/IPR-FAQ.html

3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

7

W3C Software Copyright Notice and License

8

W3C Software Copyright Notice and License

What is the Document Object Model?
Editors

Philippe Le Hégaret, W3C
Lauren Wood, SoftQuad Software Inc., WG Chair
Jonathan Robie, Texcel (for DOM Level 1)

Introduction
The Document Object Model (DOM) is an application programming interface (API [p.97]) for valid
HTML [p.98] and well-formed XML [p.99] documents. It defines the logical structure of documents and
the way a document is accessed and manipulated. In the DOM specification, the term "document" is used
in the broad sense - increasingly, XML is being used as a way of representing many different kinds of
information that may be stored in diverse systems, and much of this would traditionally be seen as data
rather than as documents. Nevertheless, XML presents this data as documents, and the DOM may be used
to manage this data.

With the Document Object Model, programmers can build documents, navigate their structure, and add,
modify, or delete elements and content. Anything found in an HTML or XML document can be accessed,
changed, deleted, or added using the Document Object Model, with a few exceptions - in particular, the
DOM interfaces [p.98] for the XML internal and external subsets have not yet been specified.

As a W3C specification, one important objective for the Document Object Model is to provide a standard
programming interface that can be used in a wide variety of environments and applications [p.97] . The
DOM is designed to be used with any programming language. In order to provide a precise,
language-independent specification of the DOM interfaces, we have chosen to define the specifications in
Object Management Group (OMG) IDL [OMGIDL], as defined in the CORBA 2.3.1 specification
[CORBA]. In addition to the OMG IDL specification, we provide language bindings [p.98] for Java
[Java] and ECMAScript [ECMAScript] (an industry-standard scripting language based on JavaScript
[JavaScript] and JScript [JScript]).

Note: OMG IDL is used only as a language-independent and implementation-neutral way to specify
interfaces [p.98] . Various other IDLs could have been used ([COM], [JavaIDL], [MIDL], ...). In general,
IDLs are designed for specific computing environments. The Document Object Model can be
implemented in any computing environment, and does not require the object binding runtimes generally
associated with such IDLs.

What the Document Object Model is
The DOM is a programming API [p.97] for documents. It is based on an object structure that closely
resembles the structure of the documents it models [p.98] . For instance, consider this table, taken from an
HTML document:

9

What is the Document Object Model?

 <TABLE>
 <TBODY>
 <TR>
 <TD>Shady Grove</TD>
 <TD>Aeolian</TD>
 </TR>
 <TR>
 <TD>Over the River, Charlie</TD>
 <TD>Dorian</TD>
 </TR>
 </TBODY>
 </TABLE>

A graphical representation of the DOM of the example table is:

graphical representation of the DOM of the example table

In the DOM, documents have a logical structure which is very much like a tree; to be more precise, which
is like a "forest" or "grove", which can contain more than one tree. Each document contains zero or one
doctype nodes, one root element node, and zero or more comments or processing instructions; the root
element serves as the root of the element tree for the document. However, the DOM does not specify that
documents must be implemented as a tree or a grove, nor does it specify how the relationships among
objects be implemented. The DOM is a logical model that may be implemented in any convenient manner.
In this specification, we use the term structure model to describe the tree-like representation of a
document. We also use the term "tree" when referring to the arrangement of those information items
which can be reached by using "tree-walking" methods; (this does not include attributes). One important
property of DOM structure models is structural isomorphism: if any two Document Object Model
implementations are used to create a representation of the same document, they will create the same
structure model, in accordance with the XML Information Set [Infoset].

Note: There may be some variations depending on the parser being used to build the DOM. For instance,
the DOM may not contain whitespaces in element content if the parser discards them.

10

What the Document Object Model is

The name "Document Object Model" was chosen because it is an "object model [p.99] " in the traditional
object oriented design sense: documents are modeled using objects, and the model encompasses not only
the structure of a document, but also the behavior of a document and the objects of which it is composed.
In other words, the nodes in the above diagram do not represent a data structure, they represent objects,
which have functions and identity. As an object model, the DOM identifies:

the interfaces and objects used to represent and manipulate a document
the semantics of these interfaces and objects - including both behavior and attributes
the relationships and collaborations among these interfaces and objects

The structure of SGML documents has traditionally been represented by an abstract data model [p.97] ,
not by an object model. In an abstract data model [p.97] , the model is centered around the data. In object
oriented programming languages, the data itself is encapsulated in objects that hide the data, protecting it
from direct external manipulation. The functions associated with these objects determine how the objects
may be manipulated, and they are part of the object model.

What the Document Object Model is not
This section is designed to give a more precise understanding of the DOM by distinguishing it from other
systems that may seem to be like it.

The Document Object Model is not a binary specification. DOM programs written in the same
language binding will be source code compatible across platforms, but the DOM does not define any
form of binary interoperability.
The Document Object Model is not a way of persisting objects to XML or HTML. Instead of
specifying how objects may be represented in XML, the DOM specifies how XML and HTML
documents are represented as objects, so that they may be used in object oriented programs.
The Document Object Model is not a set of data structures; it is an object model [p.99] that specifies
interfaces. Although this document contains diagrams showing parent/child relationships, these are
logical relationships defined by the programming interfaces, not representations of any particular
internal data structures.
The Document Object Model does not define what information in a document is relevant or how
information in a document is structured. For XML, this is specified by the W3C XML Information
Set [Infoset]. The DOM is simply an API [p.97] to this information set.
The Document Object Model, despite its name, is not a competitor to the Component Object Model
(COM). COM, like CORBA, is a language independent way to specify interfaces and objects; the
DOM is a set of interfaces and objects designed for managing HTML and XML documents. The
DOM may be implemented using language-independent systems like COM or CORBA; it may also
be implemented using language-specific bindings like the Java or ECMAScript bindings specified in
this document.

11

What the Document Object Model is not

Where the Document Object Model came from
The DOM originated as a specification to allow JavaScript scripts and Java programs to be portable
among Web browsers. "Dynamic HTML" was the immediate ancestor of the Document Object Model,
and it was originally thought of largely in terms of browsers. However, when the DOM Working Group
was formed at W3C, it was also joined by vendors in other domains, including HTML or XML editors and
document repositories. Several of these vendors had worked with SGML before XML was developed; as a
result, the DOM has been influenced by SGML Groves and the HyTime standard. Some of these vendors
had also developed their own object models for documents in order to provide an API for SGML/XML
editors or document repositories, and these object models have also influenced the DOM.

Entities and the DOM Core
In the fundamental DOM interfaces, there are no objects representing entities. Numeric character
references, and references to the pre-defined entities in HTML and XML, are replaced by the single
character that makes up the entity’s replacement. For example, in:

 <p>This is a dog & a cat</p>

the "&" will be replaced by the character "&", and the text in the P element will form a single
continuous sequence of characters. Since numeric character references and pre-defined entities are not
recognized as such in CDATA sections, or in the SCRIPT and STYLE elements in HTML, they are not
replaced by the single character they appear to refer to. If the example above were enclosed in a CDATA
section, the "&" would not be replaced by "&"; neither would the <p> be recognized as a start tag.
The representation of general entities, both internal and external, are defined within the extended (XML)
interfaces of DOM Level 1 [DOM Level 1].

Note: When a DOM representation of a document is serialized as XML or HTML text, applications will
need to check each character in text data to see if it needs to be escaped using a numeric or pre-defined
entity. Failing to do so could result in invalid HTML or XML. Also, implementations [p.98] should be
aware of the fact that serialization into a character encoding ("charset") that does not fully cover ISO
10646 may fail if there are characters in markup or CDATA sections that are not present in the encoding.

Conformance
This section explains the different levels of conformance to DOM Level 2. DOM Level 2 consists of 14
modules. It is possible to conform to DOM Level 2, or to a DOM Level 2 module.

An implementation is DOM Level 2 conformant if it supports the Core module defined in this document
(see Fundamental Interfaces [p.20]). An implementation conforms to a DOM Level 2 module if it
supports all the interfaces for that module and the associated semantics.

Here is the complete list of DOM Level 2.0 modules and the features used by them. Feature names are
case-insensitive.

12

Where the Document Object Model came from

Core module
defines the feature "Core" [p.20] .

XML module
defines the feature "XML" [p.61] .

HTML module
defines the feature "HTML". (see [DOM Level 2 HTML]).

Note: At time of publication, this DOM Level 2 module is not yet a W3C Recommendation.

Views module
defines the feature "Views" in [DOM Level 2 Views].

Style Sheets module
defines the feature "StyleSheets" in [DOM Level 2 Style Sheets].

CSS module
defines the feature "CSS" in [DOM Level 2 CSS].

CSS2 module
defines the feature "CSS2" in [DOM Level 2 CSS].

Events module
defines the feature "Events" in [DOM Level 2 Events].

User interface Events module
defines the feature "UIEvents" in [DOM Level 2 Events].

Mouse Events module
defines the feature "MouseEvents" in [DOM Level 2 Events].

Mutation Events module
defines the feature "MutationEvents" in [DOM Level 2 Events].

HTML Events module
defines the feature "HTMLEvents" in [DOM Level 2 Events].

Range module
defines the feature "Range" in [DOM Level 2 Range].

Traversal module
defines the feature "Traversal" in [DOM Level 2 Traversal].

A DOM implementation must not return "true" to the hasFeature(feature, version)
method [p.98] of the DOMImplementation [p.22] interface for that feature unless the implementation
conforms to that module. The version number for all features used in DOM Level 2.0 is "2.0".

DOM Interfaces and DOM Implementations
The DOM specifies interfaces which may be used to manage XML or HTML documents. It is important
to realize that these interfaces are an abstraction - much like "abstract base classes" in C++, they are a
means of specifying a way to access and manipulate an application’s internal representation of a
document. Interfaces do not imply a particular concrete implementation. Each DOM application is free to
maintain documents in any convenient representation, as long as the interfaces shown in this specification
are supported. Some DOM implementations will be existing programs that use the DOM interfaces to
access software written long before the DOM specification existed. Therefore, the DOM is designed to
avoid implementation dependencies; in particular,

13

DOM Interfaces and DOM Implementations

http://www.w3.org/TR/DOM-Level-2-Traversal-Range/traversal.html
http://www.w3.org/TR/DOM-Level-2-Traversal-Range/ranges.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html
http://www.w3.org/TR/DOM-Level-2-Style/css.html
http://www.w3.org/TR/DOM-Level-2-Style/css.html
http://www.w3.org/TR/DOM-Level-2-Style/stylesheets.html
http://www.w3.org/TR/DOM-Level-2-Views/views.html

1. Attributes defined in the IDL do not imply concrete objects which must have specific data members -
in the language bindings, they are translated to a pair of get()/set() functions, not to a data member.
Read-only attributes have only a get() function in the language bindings.

2. DOM applications may provide additional interfaces and objects not found in this specification and
still be considered DOM conformant.

3. Because we specify interfaces and not the actual objects that are to be created, the DOM cannot know
what constructors to call for an implementation. In general, DOM users call the createX() methods on
the Document class to create document structures, and DOM implementations create their own
internal representations of these structures in their implementations of the createX() functions.

The Level 1 interfaces were extended to provide both Level 1 and Level 2 functionality.

DOM implementations in languages other than Java or ECMAScript may choose bindings that are
appropriate and natural for their language and run time environment. For example, some systems may
need to create a Document2 class which inherits from Document and contains the new methods and
attributes.

DOM Level 2 does not specify multithreading mechanisms.

14

DOM Interfaces and DOM Implementations

1. Document Object Model Core
Editors

Arnaud Le Hors, IBM
Gavin Nicol, Inso EPS (for DOM Level 1)
Lauren Wood, SoftQuad, Inc. (for DOM Level 1)
Mike Champion, ArborText (for DOM Level 1 from November 20, 1997)
Steve Byrne, JavaSoft (for DOM Level 1 until November 19, 1997)

1.1. Overview of the DOM Core Interfaces
This section defines a set of objects and interfaces for accessing and manipulating document objects. The
functionality specified in this section (the Core functionality) is sufficient to allow software developers
and web script authors to access and manipulate parsed HTML and XML content inside conforming
products. The DOM Core API also allows creation and population of a Document [p.25] object using
only DOM API calls; loading a Document and saving it persistently is left to the product that
implements the DOM API.

1.1.1. The DOM Structure Model

The DOM presents documents as a hierarchy of Node [p.34] objects that also implement other, more
specialized interfaces. Some types of nodes may have child [p.97] nodes of various types, and others are
leaf nodes that cannot have anything below them in the document structure. For XML and HTML, the
node types, and which node types they may have as children, are as follows:

Document [p.25] -- Element [p.52] (maximum of one), ProcessingInstruction [p.66] ,
Comment [p.61] , DocumentType [p.62] (maximum of one)
DocumentFragment [p.24] -- Element [p.52] , ProcessingInstruction [p.66] ,
Comment [p.61] , Text [p.60] , CDATASection [p.62] , EntityReference [p.65]
DocumentType [p.62] -- no children
EntityReference [p.65] -- Element [p.52] , ProcessingInstruction [p.66] , Comment
[p.61] , Text [p.60] , CDATASection [p.62] , EntityReference
Element [p.52] -- Element, Text [p.60] , Comment [p.61] , ProcessingInstruction
[p.66] , CDATASection [p.62] , EntityReference [p.65]
Attr [p.51] -- Text [p.60] , EntityReference [p.65]
ProcessingInstruction [p.66] -- no children
Comment [p.61] -- no children
Text [p.60] -- no children
CDATASection [p.62] -- no children
Entity [p.64] -- Element [p.52] , ProcessingInstruction [p.66] , Comment [p.61] ,
Text [p.60] , CDATASection [p.62] , EntityReference [p.65]
Notation [p.64] -- no children

15

1. Document Object Model Core

The DOM also specifies a NodeList [p.43] interface to handle ordered lists of Nodes [p.34] , such as
the children of a Node [p.34] , or the elements [p.98] returned by the getElementsByTagName
method of the Element [p.52] interface, and also a NamedNodeMap [p.44] interface to handle
unordered sets of nodes referenced by their name attribute, such as the attributes of an Element.
NodeList [p.43] and NamedNodeMap [p.44] objects in the DOM are live; that is, changes to the
underlying document structure are reflected in all relevant NodeList and NamedNodeMap objects. For
example, if a DOM user gets a NodeList object containing the children of an Element [p.52] , then
subsequently adds more children to that element [p.98] (or removes children, or modifies them), those
changes are automatically reflected in the NodeList, without further action on the user’s part. Likewise,
changes to a Node [p.34] in the tree are reflected in all references to that Node in NodeList and
NamedNodeMap objects.

Finally, the interfaces Text [p.60] , Comment [p.61] , and CDATASection [p.62] all inherit from the
CharacterData [p.47] interface.

1.1.2. Memory Management

Most of the APIs defined by this specification are interfaces rather than classes. That means that an
implementation need only expose methods with the defined names and specified operation, not implement
classes that correspond directly to the interfaces. This allows the DOM APIs to be implemented as a thin
veneer on top of legacy applications with their own data structures, or on top of newer applications with
different class hierarchies. This also means that ordinary constructors (in the Java or C++ sense) cannot be
used to create DOM objects, since the underlying objects to be constructed may have little relationship to
the DOM interfaces. The conventional solution to this in object-oriented design is to define factory
methods that create instances of objects that implement the various interfaces. Objects implementing some
interface "X" are created by a "createX()" method on the Document [p.25] interface; this is because all
DOM objects live in the context of a specific Document.

The DOM Level 2 API does not define a standard way to create DOMImplementation [p.22] objects;
DOM implementations must provide some proprietary way of bootstrapping these DOM interfaces, and
then all other objects can be built from there.

The Core DOM APIs are designed to be compatible with a wide range of languages, including both
general-user scripting languages and the more challenging languages used mostly by professional
programmers. Thus, the DOM APIs need to operate across a variety of memory management
philosophies, from language bindings that do not expose memory management to the user at all, through
those (notably Java) that provide explicit constructors but provide an automatic garbage collection
mechanism to automatically reclaim unused memory, to those (especially C/C++) that generally require
the programmer to explicitly allocate object memory, track where it is used, and explicitly free it for
re-use. To ensure a consistent API across these platforms, the DOM does not address memory
management issues at all, but instead leaves these for the implementation. Neither of the explicit language
bindings defined by the DOM API (for ECMAScript [p.98] and Java) require any memory management
methods, but DOM bindings for other languages (especially C or C++) may require such support. These
extensions will be the responsibility of those adapting the DOM API to a specific language, not the DOM
Working Group.

16

1.1.2. Memory Management

1.1.3. Naming Conventions

While it would be nice to have attribute and method names that are short, informative, internally
consistent, and familiar to users of similar APIs, the names also should not clash with the names in legacy
APIs supported by DOM implementations. Furthermore, both OMG IDL and ECMAScript have
significant limitations in their ability to disambiguate names from different namespaces that make it
difficult to avoid naming conflicts with short, familiar names. So, DOM names tend to be long and
descriptive in order to be unique across all environments.

The Working Group has also attempted to be internally consistent in its use of various terms, even though
these may not be common distinctions in other APIs. For example, the DOM API uses the method name
"remove" when the method changes the structural model, and the method name "delete" when the method
gets rid of something inside the structure model. The thing that is deleted is not returned. The thing that is
removed may be returned, when it makes sense to return it.

1.1.4. Inheritance vs. Flattened Views of the API

The DOM Core APIs [p.97] present two somewhat different sets of interfaces to an XML/HTML
document: one presenting an "object oriented" approach with a hierarchy of inheritance [p.98] , and a
"simplified" view that allows all manipulation to be done via the Node [p.34] interface without requiring
casts (in Java and other C-like languages) or query interface calls in COM [p.97] environments. These
operations are fairly expensive in Java and COM, and the DOM may be used in performance-critical
environments, so we allow significant functionality using just the Node interface. Because many other
users will find the inheritance [p.98] hierarchy easier to understand than the "everything is a Node"
approach to the DOM, we also support the full higher-level interfaces for those who prefer a more
object-oriented API [p.97] .

In practice, this means that there is a certain amount of redundancy in the API [p.97] . The Working Group
considers the "inheritance [p.98] " approach the primary view of the API, and the full set of functionality
on Node [p.34] to be "extra" functionality that users may employ, but that does not eliminate the need for
methods on other interfaces that an object-oriented analysis would dictate. (Of course, when the O-O
analysis yields an attribute or method that is identical to one on the Node interface, we don’t specify a
completely redundant one.) Thus, even though there is a generic nodeName attribute on the Node
interface, there is still a tagName attribute on the Element [p.52] interface; these two attributes must
contain the same value, but the it is worthwhile to support both, given the different constituencies the
DOM API [p.97] must satisfy.

1.1.5. The DOMString type

To ensure interoperability, the DOM specifies the following:

Type Definition DOMString

A DOMString [p.17] is a sequence of 16-bit units [p.97] .

17

1.1.3. Naming Conventions

IDL Definition

valuetype DOMString sequence<unsigned short>;

Applications must encode DOMString [p.17] using UTF-16 (defined in [Unicode] and Amendment
1 of [ISO/IEC 10646]).
The UTF-16 encoding was chosen because of its widespread industry practice. Note that for both
HTML and XML, the document character set (and therefore the notation of numeric character
references) is based on UCS [ISO-10646]. A single numeric character reference in a source
document may therefore in some cases correspond to two 16-bit units in a DOMString [p.17] (a
high surrogate and a low surrogate).

Note: Even though the DOM defines the name of the string type to be DOMString [p.17] , bindings
may use different names. For example for Java, DOMString is bound to the String type because
it also uses UTF-16 as its encoding.

Note: As of August 2000, the OMG IDL specification ([OMGIDL]) included a wstring type. However,
that definition did not meet the interoperability criteria of the DOM API [p.97] since it relied on
negotiation to decide the width and encoding of a character.

1.1.6. The DOMTimeStamp type

To ensure interoperability, the DOM specifies the following:

Type Definition DOMTimeStamp

A DOMTimeStamp [p.18] represents a number of milliseconds.

IDL Definition

typedef unsigned long long DOMTimeStamp;

Note: Even though the DOM uses the type DOMTimeStamp [p.18] , bindings may use different
types. For example for Java, DOMTimeStamp is bound to the long type. In ECMAScript,
TimeStamp is bound to the Date type because the range of the integer type is too small.

1.1.7. String comparisons in the DOM

The DOM has many interfaces that imply string matching. HTML processors generally assume an
uppercase (less often, lowercase) normalization of names for such things as elements [p.98] , while XML
is explicitly case sensitive. For the purposes of the DOM, string matching is performed purely by binary
comparison [p.99] of the 16-bit units [p.97] of the DOMString [p.17] . In addition, the DOM assumes
that any case normalizations take place in the processor, before the DOM structures are built.

Note: Besides case folding, there are additional normalizations that can be applied to text. The W3C I18N
Working Group is in the process of defining exactly which normalizations are necessary, and where they
should be applied. The W3C I18N Working Group expects to require early normalization, which means
that data read into the DOM is assumed to already be normalized. The DOM and applications built on top

18

1.1.6. The DOMTimeStamp type

of it in this case only have to assure that text remains normalized when being changed. For further details,
please see [Charmod].

1.1.8. XML Namespaces

The DOM Level 2 supports XML namespaces [Namespaces] by augmenting several interfaces of the
DOM Level 1 Core to allow creating and manipulating elements [p.98] and attributes associated to a
namespace.

As far as the DOM is concerned, special attributes used for declaring XML namespaces [p.100] are still
exposed and can be manipulated just like any other attribute. However, nodes are permanently bound to
namespace URIs [p.99] as they get created. Consequently, moving a node within a document, using the
DOM, in no case results in a change of its namespace prefix [p.99] or namespace URI. Similarly, creating
a node with a namespace prefix and namespace URI, or changing the namespace prefix of a node, does
not result in any addition, removal, or modification of any special attributes for declaring the appropriate
XML namespaces. Namespace validation is not enforced; the DOM application is responsible. In
particular, since the mapping between prefixes and namespace URIs is not enforced, in general, the
resulting document cannot be serialized naively. For example, applications may have to declare every
namespace in use when serializing a document.

DOM Level 2 doesn’t perform any URI normalization or canonicalization. The URIs given to the DOM
are assumed to be valid (e.g., characters such as whitespaces are properly escaped), and no lexical
checking is performed. Absolute URI references are treated as strings and compared literally [p.99] . How
relative namespace URI references are treated is undefined. To ensure interoperability only absolute
namespace URI references (i.e., URI references beginning with a scheme name and a colon) should be
used. Note that because the DOM does no lexical checking, the empty string will be treated as a real
namespace URI in DOM Level 2 methods. Applications must use the value null as the namespaceURI
parameter for methods if they wish to have no namespace.

Note: In the DOM, all namespace declaration attributes are by definition bound to the namespace URI:
"http://www.w3.org/2000/xmlns/". These are the attributes whose namespace prefix [p.99] or qualified
name [p.99] is "xmlns". Although, at the time of writing, this is not part of the XML Namespaces
specification [Namespaces], it is planned to be incorporated in a future revision.

In a document with no namespaces, the child [p.97] list of an EntityReference [p.65] node is always
the same as that of the corresponding Entity [p.64] . This is not true in a document where an entity
contains unbound namespace prefixes [p.99] . In such a case, the descendants [p.97] of the corresponding
EntityReference nodes may be bound to different namespace URIs [p.99] , depending on where the
entity references are. Also, because, in the DOM, nodes always remain bound to the same namespace
URI, moving such EntityReference nodes can lead to documents that cannot be serialized. This is
also true when the DOM Level 1 method createEntityReference of the Document [p.25]
interface is used to create entity references that correspond to such entities, since the descendants [p.97] of
the returned EntityReference are unbound. The DOM Level 2 does not support any mechanism to
resolve namespace prefixes. For all of these reasons, use of such entities and entity references should be
avoided or used with extreme care. A future Level of the DOM may include some additional support for
handling these.

19

1.1.8. XML Namespaces

http://www.w3.org/2000/xmlns/

The new methods, such as createElementNS and createAttributeNS of the Document [p.25]
interface, are meant to be used by namespace aware applications. Simple applications that do not use
namespaces can use the DOM Level 1 methods, such as createElement and createAttribute.
Elements and attributes created in this way do not have any namespace prefix, namespace URI, or local
name.

Note: DOM Level 1 methods are namespace ignorant. Therefore, while it is safe to use these methods
when not dealing with namespaces, using them and the new ones at the same time should be avoided.
DOM Level 1 methods solely identify attribute nodes by their nodeName. On the contrary, the DOM
Level 2 methods related to namespaces, identify attribute nodes by their namespaceURI and
localName. Because of this fundamental difference, mixing both sets of methods can lead to
unpredictable results. In particular, using setAttributeNS, an element [p.98] may have two attributes
(or more) that have the same nodeName, but different namespaceURIs. Calling getAttribute
with that nodeName could then return any of those attributes. The result depends on the implementation.
Similarly, using setAttributeNode, one can set two attributes (or more) that have different
nodeNames but the same prefix and namespaceURI. In this case getAttributeNodeNS will
return either attribute, in an implementation dependent manner. The only guarantee in such cases is that all
methods that access a named item by its nodeName will access the same item, and all methods which
access a node by its URI and local name will access the same node. For instance, setAttribute and
setAttributeNS affect the node that getAttribute and getAttributeNS, respectively, return.

1.2. Fundamental Interfaces
The interfaces within this section are considered fundamental, and must be fully implemented by all
conforming implementations of the DOM, including all HTML DOM implementations [DOM Level 2
HTML], unless otherwise specified.

A DOM application may use the hasFeature(feature, version) method of the
DOMImplementation [p.22] interface with parameter values "Core" and "2.0" (respectively) to
determine whether or not this module is supported by the implementation. Any implementation that
conforms to DOM Level 2 or a DOM Level 2 module must conform to the Core module. Please refer to
additional information about conformance in this specification.

Exception DOMException

DOM operations only raise exceptions in "exceptional" circumstances, i.e., when an operation is
impossible to perform (either for logical reasons, because data is lost, or because the implementation
has become unstable). In general, DOM methods return specific error values in ordinary processing
situations, such as out-of-bound errors when using NodeList [p.43] .

Implementations should raise other exceptions under other circumstances. For example,
implementations should raise an implementation-dependent exception if a null argument is passed.

Some languages and object systems do not support the concept of exceptions. For such systems, error
conditions may be indicated using native error reporting mechanisms. For some bindings, for
example, methods may return error codes similar to those listed in the corresponding method
descriptions.

20

1.2. Fundamental Interfaces

http://www.w3.org/TR/DOM-Level-2-Core/introduction.html#ID-Conformance

IDL Definition

exception DOMException {
 unsigned short code;
};
// ExceptionCode
const unsigned short INDEX_SIZE_ERR = 1;
const unsigned short DOMSTRING_SIZE_ERR = 2;
const unsigned short HIERARCHY_REQUEST_ERR = 3;
const unsigned short WRONG_DOCUMENT_ERR = 4;
const unsigned short INVALID_CHARACTER_ERR = 5;
const unsigned short NO_DATA_ALLOWED_ERR = 6;
const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;
const unsigned short NOT_FOUND_ERR = 8;
const unsigned short NOT_SUPPORTED_ERR = 9;
const unsigned short INUSE_ATTRIBUTE_ERR = 10;
// Introduced in DOM Level 2:
const unsigned short INVALID_STATE_ERR = 11;
// Introduced in DOM Level 2:
const unsigned short SYNTAX_ERR = 12;
// Introduced in DOM Level 2:
const unsigned short INVALID_MODIFICATION_ERR = 13;
// Introduced in DOM Level 2:
const unsigned short NAMESPACE_ERR = 14;
// Introduced in DOM Level 2:
const unsigned short INVALID_ACCESS_ERR = 15;

Definition group ExceptionCode

An integer indicating the type of error generated.

Note: Other numeric codes are reserved for W3C for possible future use.

Defined Constants
DOMSTRING_SIZE_ERR

If the specified range of text does not fit into a DOMString
HIERARCHY_REQUEST_ERR

If any node is inserted somewhere it doesn’t belong
INDEX_SIZE_ERR

If index or size is negative, or greater than the allowed value
INUSE_ATTRIBUTE_ERR

If an attempt is made to add an attribute that is already in use elsewhere
INVALID_ACCESS_ERR, introduced in DOM Level 2.

If a parameter or an operation is not supported by the underlying object.
INVALID_CHARACTER_ERR

If an invalid or illegal character is specified, such as in a name. See production 2 in
the XML specification for the definition of a legal character, and production 5 for the
definition of a legal name character.

INVALID_MODIFICATION_ERR, introduced in DOM Level 2.
If an attempt is made to modify the type of the underlying object.

21

1.2. Fundamental Interfaces

http://www.w3.org/TR/1998/REC-xml-19980210#NT-Name
http://www.w3.org/TR/1998/REC-xml-19980210#NT-Char

INVALID_STATE_ERR, introduced in DOM Level 2.
If an attempt is made to use an object that is not, or is no longer, usable.

NAMESPACE_ERR, introduced in DOM Level 2.
If an attempt is made to create or change an object in a way which is incorrect with
regard to namespaces.

NOT_FOUND_ERR
If an attempt is made to reference a node in a context where it does not exist

NOT_SUPPORTED_ERR
If the implementation does not support the requested type of object or operation.

NO_DATA_ALLOWED_ERR
If data is specified for a node which does not support data

NO_MODIFICATION_ALLOWED_ERR
If an attempt is made to modify an object where modifications are not allowed

SYNTAX_ERR, introduced in DOM Level 2.
If an invalid or illegal string is specified.

WRONG_DOCUMENT_ERR
If a node is used in a different document than the one that created it (that doesn’t
support it)

Interface DOMImplementation

The DOMImplementation interface provides a number of methods for performing operations that
are independent of any particular instance of the document object model.

IDL Definition

interface DOMImplementation {
 boolean hasFeature(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 DocumentType createDocumentType(in DOMString qualifiedName,
 in DOMString publicId,
 in DOMString systemId)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Document createDocument(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DocumentType doctype)
 raises(DOMException);
};

Methods
createDocument introduced in DOM Level 2

Creates an XML Document [p.25] object of the specified type with its document element.
HTML-only DOM implementations do not need to implement this method.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.99] of the document element to create.
qualifiedName of type DOMString

The qualified name [p.99] of the document element to be created.

22

1.2. Fundamental Interfaces

doctype of type DocumentType [p.62]
The type of document to be created or null.
When doctype is not null, its Node.ownerDocument [p.38] attribute is set to
the document being created.

Return Value

Document [p.25] A new Document object.

Exceptions

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified
qualified name contains an illegal character.

NAMESPACE_ERR: Raised if the qualifiedName is
malformed, if the qualifiedName has a prefix and the
namespaceURI is null, or if the qualifiedName has a
prefix that is "xml" and the namespaceURI is different from
"http://www.w3.org/XML/1998/namespace" [Namespaces].

WRONG_DOCUMENT_ERR: Raised if doctype has already
been used with a different document or was created from a
different implementation.

createDocumentType introduced in DOM Level 2
Creates an empty DocumentType [p.62] node. Entity declarations and notations are not
made available. Entity reference expansions and default attribute additions do not occur. It
is expected that a future version of the DOM will provide a way for populating a
DocumentType.
HTML-only DOM implementations do not need to implement this method.
Parameters
qualifiedName of type DOMString [p.17]

The qualified name [p.99] of the document type to be created.
publicId of type DOMString

The external subset public identifier.
systemId of type DOMString

The external subset system identifier.
Return Value

DocumentType
[p.62]

A new DocumentType node with
Node.ownerDocument [p.38] set to null.

Exceptions

23

1.2. Fundamental Interfaces

http://www.w3.org/XML/1998/namespace

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified
qualified name contains an illegal character.

NAMESPACE_ERR: Raised if the qualifiedName is
malformed.

hasFeature
Test if the DOM implementation implements a specific feature.
Parameters
feature of type DOMString [p.17]

The name of the feature to test (case-insensitive). The values used by DOM features
are defined throughout the DOM Level 2 specifications and listed in the Conformance
[p.12] section. The name must be an XML name [p.99] . To avoid possible conflicts,
as a convention, names referring to features defined outside the DOM specification
should be made unique by reversing the name of the Internet domain name of the
person (or the organization that the person belongs to) who defines the feature,
component by component, and using this as a prefix. For instance, the W3C SVG
Working Group defines the feature "org.w3c.dom.svg".

version of type DOMString
This is the version number of the feature to test. In Level 2, the string can be either
"2.0" or "1.0". If the version is not specified, supporting any version of the feature
causes the method to return true.

Return Value

boolean true if the feature is implemented in the specified version, false
otherwise.

No Exceptions
Interface DocumentFragment

DocumentFragment is a "lightweight" or "minimal" Document [p.25] object. It is very common
to want to be able to extract a portion of a document’s tree or to create a new fragment of a
document. Imagine implementing a user command like cut or rearranging a document by moving
fragments around. It is desirable to have an object which can hold such fragments and it is quite
natural to use a Node for this purpose. While it is true that a Document object could fulfill this role,
a Document object can potentially be a heavyweight object, depending on the underlying
implementation. What is really needed for this is a very lightweight object. DocumentFragment
is such an object.

Furthermore, various operations -- such as inserting nodes as children of another Node [p.34] -- may
take DocumentFragment objects as arguments; this results in all the child nodes of the
DocumentFragment being moved to the child list of this node.

The children of a DocumentFragment node are zero or more nodes representing the tops of any
sub-trees defining the structure of the document. DocumentFragment nodes do not need to be
well-formed XML documents [p.99] (although they do need to follow the rules imposed upon

24

1.2. Fundamental Interfaces

well-formed XML parsed entities, which can have multiple top nodes). For example, a
DocumentFragment might have only one child and that child node could be a Text [p.60] node.
Such a structure model represents neither an HTML document nor a well-formed XML document.

When a DocumentFragment is inserted into a Document [p.25] (or indeed any other Node
[p.34] that may take children) the children of the DocumentFragment and not the
DocumentFragment itself are inserted into the Node. This makes the DocumentFragment
very useful when the user wishes to create nodes that are siblings [p.99] ; the DocumentFragment
acts as the parent of these nodes so that the user can use the standard methods from the Node
interface, such as insertBefore and appendChild.

IDL Definition

interface DocumentFragment : Node {
};

Interface Document

The Document interface represents the entire HTML or XML document. Conceptually, it is the root
[p.99] of the document tree, and provides the primary access to the document’s data.

Since elements, text nodes, comments, processing instructions, etc. cannot exist outside the context
of a Document, the Document interface also contains the factory methods needed to create these
objects. The Node [p.34] objects created have a ownerDocument attribute which associates them
with the Document within whose context they were created.

IDL Definition

interface Document : Node {
 readonly attribute DocumentType doctype;
 readonly attribute DOMImplementation implementation;
 readonly attribute Element documentElement;
 Element createElement(in DOMString tagName)
 raises(DOMException);
 DocumentFragment createDocumentFragment();
 Text createTextNode(in DOMString data);
 Comment createComment(in DOMString data);
 CDATASection createCDATASection(in DOMString data)
 raises(DOMException);
 ProcessingInstruction createProcessingInstruction(in DOMString target,
 in DOMString data)
 raises(DOMException);
 Attr createAttribute(in DOMString name)
 raises(DOMException);
 EntityReference createEntityReference(in DOMString name)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString tagname);
 // Introduced in DOM Level 2:
 Node importNode(in Node importedNode,
 in boolean deep)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Element createElementNS(in DOMString namespaceURI,

25

1.2. Fundamental Interfaces

 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr createAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Element getElementById(in DOMString elementId);
};

Attributes
doctype of type DocumentType [p.62] , readonly

The Document Type Declaration (see DocumentType [p.62]) associated with this
document. For HTML documents as well as XML documents without a document type
declaration this returns null. The DOM Level 2 does not support editing the Document
Type Declaration. docType cannot be altered in any way, including through the use of
methods inherited from the Node [p.34] interface, such as insertNode or
removeNode.

documentElement of type Element [p.52] , readonly
This is a convenience [p.97] attribute that allows direct access to the child node that is the
root element of the document. For HTML documents, this is the element with the tagName
"HTML".

implementation of type DOMImplementation [p.22] , readonly
The DOMImplementation [p.22] object that handles this document. A DOM
application may use objects from multiple implementations.

Methods
createAttribute

Creates an Attr [p.51] of the given name. Note that the Attr instance can then be set on
an Element [p.52] using the setAttributeNode method.
To create an attribute with a qualified name and namespace URI, use the
createAttributeNS method.
Parameters
name of type DOMString [p.17]

The name of the attribute.
Return Value

Attr
[p.51]

A new Attr object with the nodeName attribute set to name, and
localName, prefix, and namespaceURI set to null. The value of
the attribute is the empty string.

Exceptions

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified name
contains an illegal character.

26

1.2. Fundamental Interfaces

createAttributeNS introduced in DOM Level 2
Creates an attribute of the given qualified name and namespace URI. HTML-only DOM
implementations do not need to implement this method.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.99] of the attribute to create.
qualifiedName of type DOMString

The qualified name [p.99] of the attribute to instantiate.
Return Value

Attr
[p.51]

A new Attr object with the following attributes:

Attribute Value

Node.nodeName [p.37] qualifiedName

Node.namespaceURI
[p.37]

namespaceURI

Node.prefix [p.38] prefix, extracted from qualifiedName,
or null if there is no prefix

Node.localName [p.37] local name, extracted from
qualifiedName

Attr.name [p.52] qualifiedName

Node.nodeValue [p.37] the empty string

Exceptions

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified qualified
name contains an illegal character.

NAMESPACE_ERR: Raised if the qualifiedName is
malformed, if the qualifiedName has a prefix and the
namespaceURI is null, if the qualifiedName has a prefix
that is "xml" and the namespaceURI is different from
"http://www.w3.org/XML/1998/namespace", or if the
qualifiedName is "xmlns" and the namespaceURI is
different from "http://www.w3.org/2000/xmlns/".

createCDATASection
Creates a CDATASection [p.62] node whose value is the specified string.
Parameters

27

1.2. Fundamental Interfaces

http://www.w3.org/2000/xmlns/
http://www.w3.org/XML/1998/namespace

data of type DOMString [p.17]
The data for the CDATASection [p.62] contents.

Return Value

CDATASection [p.62] The new CDATASection object.

Exceptions

DOMException
[p.20]

NOT_SUPPORTED_ERR: Raised if this document is an
HTML document.

createComment
Creates a Comment [p.61] node given the specified string.
Parameters
data of type DOMString [p.17]

The data for the node.
Return Value

Comment [p.61] The new Comment object.

No Exceptions
createDocumentFragment

Creates an empty DocumentFragment [p.24] object.
Return Value

DocumentFragment [p.24] A new DocumentFragment.

No Parameters
No Exceptions

createElement
Creates an element of the type specified. Note that the instance returned implements the
Element [p.52] interface, so attributes can be specified directly on the returned object.
In addition, if there are known attributes with default values, Attr [p.51] nodes
representing them are automatically created and attached to the element.
To create an element with a qualified name and namespace URI, use the
createElementNS method.
Parameters
tagName of type DOMString [p.17]

The name of the element type to instantiate. For XML, this is case-sensitive. For
HTML, the tagName parameter may be provided in any case, but it must be mapped
to the canonical uppercase form by the DOM implementation.

Return Value

28

1.2. Fundamental Interfaces

Element
[p.52]

A new Element object with the nodeName attribute set to
tagName, and localName, prefix, and namespaceURI set to
null.

Exceptions

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified name
contains an illegal character.

createElementNS introduced in DOM Level 2
Creates an element of the given qualified name and namespace URI. HTML-only DOM
implementations do not need to implement this method.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.99] of the element to create.
qualifiedName of type DOMString

The qualified name [p.99] of the element type to instantiate.
Return Value

Element
[p.52]

A new Element object with the following attributes:

Attribute Value

Node.nodeName [p.37] qualifiedName

Node.namespaceURI
[p.37]

namespaceURI

Node.prefix [p.38] prefix, extracted from
qualifiedName, or null if there is
no prefix

Node.localName [p.37] local name, extracted from
qualifiedName

Element.tagName
[p.54]

qualifiedName

Exceptions

29

1.2. Fundamental Interfaces

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified
qualified name contains an illegal character.

NAMESPACE_ERR: Raised if the qualifiedName is
malformed, if the qualifiedName has a prefix and the
namespaceURI is null, or if the qualifiedName has a
prefix that is "xml" and the namespaceURI is different from
"http://www.w3.org/XML/1998/namespace" [Namespaces].

createEntityReference
Creates an EntityReference [p.65] object. In addition, if the referenced entity is
known, the child list of the EntityReference node is made the same as that of the
corresponding Entity [p.64] node.

Note: If any descendant of the Entity [p.64] node has an unbound namespace prefix
[p.99] , the corresponding descendant of the created EntityReference [p.65] node is
also unbound; (its namespaceURI is null). The DOM Level 2 does not support any
mechanism to resolve namespace prefixes.

Parameters
name of type DOMString [p.17]

The name of the entity to reference.
Return Value

EntityReference [p.65] The new EntityReference object.

Exceptions

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified name
contains an illegal character.

NOT_SUPPORTED_ERR: Raised if this document is an
HTML document.

createProcessingInstruction
Creates a ProcessingInstruction [p.66] node given the specified name and data
strings.
Parameters
target of type DOMString [p.17]

The target part of the processing instruction.
data of type DOMString

The data for the node.
Return Value

30

1.2. Fundamental Interfaces

http://www.w3.org/XML/1998/namespace

ProcessingInstruction
[p.66]

The new ProcessingInstruction
object.

Exceptions

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified target
contains an illegal character.

NOT_SUPPORTED_ERR: Raised if this document is an
HTML document.

createTextNode
Creates a Text [p.60] node given the specified string.
Parameters
data of type DOMString [p.17]

The data for the node.
Return Value

Text [p.60] The new Text object.

No Exceptions
getElementById introduced in DOM Level 2

Returns the Element [p.52] whose ID is given by elementId. If no such element
exists, returns null. Behavior is not defined if more than one element has this ID.

Note: The DOM implementation must have information that says which attributes are of
type ID. Attributes with the name "ID" are not of type ID unless so defined.
Implementations that do not know whether attributes are of type ID or not are expected to
return null.

Parameters
elementId of type DOMString [p.17]

The unique id value for an element.
Return Value

Element [p.52] The matching element.

No Exceptions
getElementsByTagName

Returns a NodeList [p.43] of all the Elements [p.52] with a given tag name in the
order in which they are encountered in a preorder traversal of the Document tree.
Parameters
tagname of type DOMString [p.17]

The name of the tag to match on. The special value "*" matches all tags.
Return Value

31

1.2. Fundamental Interfaces

NodeList
[p.43]

A new NodeList object containing all the matched Elements
[p.52] .

No Exceptions
getElementsByTagNameNS introduced in DOM Level 2

Returns a NodeList [p.43] of all the Elements [p.52] with a given local name [p.98]
and namespace URI in the order in which they are encountered in a preorder traversal of
the Document tree.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.99] of the elements to match on. The special value "*"
matches all namespaces.

localName of type DOMString
The local name [p.98] of the elements to match on. The special value "*" matches all
local names.

Return Value

NodeList
[p.43]

A new NodeList object containing all the matched Elements
[p.52] .

No Exceptions
importNode introduced in DOM Level 2

Imports a node from another document to this document. The returned node has no parent;
(parentNode is null). The source node is not altered or removed from the original
document; this method creates a new copy of the source node.
For all nodes, importing a node creates a node object owned by the importing document,
with attribute values identical to the source node’s nodeName and nodeType, plus the
attributes related to namespaces (prefix, localName, and namespaceURI). As in the
cloneNode operation on a Node [p.34] , the source node is not altered.
Additional information is copied as appropriate to the nodeType, attempting to mirror the
behavior expected if a fragment of XML or HTML source was copied from one document
to another, recognizing that the two documents may have different DTDs in the XML case.
The following list describes the specifics for each type of node.
ATTRIBUTE_NODE

The ownerElement attribute is set to null and the specified flag is set to
true on the generated Attr [p.51] . The descendants [p.97] of the source Attr are
recursively imported and the resulting nodes reassembled to form the corresponding
subtree.
Note that the deep parameter has no effect on Attr [p.51] nodes; they always carry
their children with them when imported.

DOCUMENT_FRAGMENT_NODE
If the deep option was set to true, the descendants [p.97] of the source element are
recursively imported and the resulting nodes reassembled to form the corresponding
subtree. Otherwise, this simply generates an empty DocumentFragment [p.24] .

32

1.2. Fundamental Interfaces

DOCUMENT_NODE
Document nodes cannot be imported.

DOCUMENT_TYPE_NODE
DocumentType [p.62] nodes cannot be imported.

ELEMENT_NODE
Specified attribute nodes of the source element are imported, and the generated Attr
[p.51] nodes are attached to the generated Element [p.52] . Default attributes are not
copied, though if the document being imported into defines default attributes for this
element name, those are assigned. If the importNode deep parameter was set to
true, the descendants [p.97] of the source element are recursively imported and the
resulting nodes reassembled to form the corresponding subtree.

ENTITY_NODE
Entity [p.64] nodes can be imported, however in the current release of the DOM the
DocumentType [p.62] is readonly. Ability to add these imported nodes to a
DocumentType will be considered for addition to a future release of the DOM.
On import, the publicId, systemId, and notationName attributes are copied.
If a deep import is requested, the descendants [p.97] of the the source Entity
[p.64] are recursively imported and the resulting nodes reassembled to form the
corresponding subtree.

ENTITY_REFERENCE_NODE
Only the EntityReference [p.65] itself is copied, even if a deep import is
requested, since the source and destination documents might have defined the entity
differently. If the document being imported into provides a definition for this entity
name, its value is assigned.

NOTATION_NODE
Notation [p.64] nodes can be imported, however in the current release of the DOM
the DocumentType [p.62] is readonly. Ability to add these imported nodes to a
DocumentType will be considered for addition to a future release of the DOM.
On import, the publicId and systemId attributes are copied.
Note that the deep parameter has no effect on Notation [p.64] nodes since they
never have any children.

PROCESSING_INSTRUCTION_NODE
The imported node copies its target and data values from those of the source
node.

TEXT_NODE, CDATA_SECTION_NODE, COMMENT_NODE
These three types of nodes inheriting from CharacterData [p.47] copy their data
and length attributes from those of the source node.

Parameters
importedNode of type Node [p.34]

The node to import.
deep of type boolean

If true, recursively import the subtree under the specified node; if false, import
only the node itself, as explained above. This has no effect on Attr [p.51] ,
EntityReference [p.65] , and Notation [p.64] nodes.

Return Value

33

1.2. Fundamental Interfaces

Node [p.34] The imported node that belongs to this Document.

Exceptions

DOMException
[p.20]

NOT_SUPPORTED_ERR: Raised if the type of node being
imported is not supported.

Interface Node

The Node interface is the primary datatype for the entire Document Object Model. It represents a
single node in the document tree. While all objects implementing the Node interface expose methods
for dealing with children, not all objects implementing the Node interface may have children. For
example, Text [p.60] nodes may not have children, and adding children to such nodes results in a
DOMException [p.20] being raised.

The attributes nodeName, nodeValue and attributes are included as a mechanism to get at
node information without casting down to the specific derived interface. In cases where there is no
obvious mapping of these attributes for a specific nodeType (e.g., nodeValue for an Element
[p.52] or attributes for a Comment [p.61]), this returns null. Note that the specialized
interfaces may contain additional and more convenient mechanisms to get and set the relevant
information.

IDL Definition

interface Node {

 // NodeType
 const unsigned short ELEMENT_NODE = 1;
 const unsigned short ATTRIBUTE_NODE = 2;
 const unsigned short TEXT_NODE = 3;
 const unsigned short CDATA_SECTION_NODE = 4;
 const unsigned short ENTITY_REFERENCE_NODE = 5;
 const unsigned short ENTITY_NODE = 6;
 const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
 const unsigned short COMMENT_NODE = 8;
 const unsigned short DOCUMENT_NODE = 9;
 const unsigned short DOCUMENT_TYPE_NODE = 10;
 const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
 const unsigned short NOTATION_NODE = 12;

 readonly attribute DOMString nodeName;
 attribute DOMString nodeValue;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned short nodeType;
 readonly attribute Node parentNode;
 readonly attribute NodeList childNodes;
 readonly attribute Node firstChild;
 readonly attribute Node lastChild;
 readonly attribute Node previousSibling;

34

1.2. Fundamental Interfaces

 readonly attribute Node nextSibling;
 readonly attribute NamedNodeMap attributes;
 // Modified in DOM Level 2:
 readonly attribute Document ownerDocument;
 Node insertBefore(in Node newChild,
 in Node refChild)
 raises(DOMException);
 Node replaceChild(in Node newChild,
 in Node oldChild)
 raises(DOMException);
 Node removeChild(in Node oldChild)
 raises(DOMException);
 Node appendChild(in Node newChild)
 raises(DOMException);
 boolean hasChildNodes();
 Node cloneNode(in boolean deep);
 // Modified in DOM Level 2:
 void normalize();
 // Introduced in DOM Level 2:
 boolean isSupported(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 readonly attribute DOMString namespaceURI;
 // Introduced in DOM Level 2:
 attribute DOMString prefix;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute DOMString localName;
 // Introduced in DOM Level 2:
 boolean hasAttributes();
};

Definition group NodeType

An integer indicating which type of node this is.

Note: Numeric codes up to 200 are reserved to W3C for possible future use.

Defined Constants
ATTRIBUTE_NODE

The node is an Attr [p.51] .
CDATA_SECTION_NODE

The node is a CDATASection [p.62] .
COMMENT_NODE

The node is a Comment [p.61] .
DOCUMENT_FRAGMENT_NODE

The node is a DocumentFragment [p.24] .
DOCUMENT_NODE

The node is a Document [p.25] .
DOCUMENT_TYPE_NODE

The node is a DocumentType [p.62] .

35

1.2. Fundamental Interfaces

ELEMENT_NODE
The node is an Element [p.52] .

ENTITY_NODE
The node is an Entity [p.64] .

ENTITY_REFERENCE_NODE
The node is an EntityReference [p.65] .

NOTATION_NODE
The node is a Notation [p.64] .

PROCESSING_INSTRUCTION_NODE
The node is a ProcessingInstruction [p.66] .

TEXT_NODE
The node is a Text [p.60] node.

The values of nodeName, nodeValue, and attributes vary according to the node type as
follows:

Interface nodeName nodeValue attributes

Attr name of attribute value of attribute null

CDATASection #cdata-section content of the CDATA
Section

null

Comment #comment content of the comment null

Document #document null null

DocumentFragment #document-fragment null null

DocumentType document type name null null

Element tag name null NamedNodeMap

Entity entity name null null

EntityReference name of entity
referenced

null null

Notation notation name null null

ProcessingInstructiontarget entire content excluding
the target

null

Text #text content of the text node null

Attributes
attributes of type NamedNodeMap [p.44] , readonly

A NamedNodeMap [p.44] containing the attributes of this node (if it is an Element
[p.52]) or null otherwise.

36

1.2. Fundamental Interfaces

childNodes of type NodeList [p.43] , readonly
A NodeList [p.43] that contains all children of this node. If there are no children, this is
a NodeList containing no nodes.

firstChild of type Node [p.34] , readonly
The first child of this node. If there is no such node, this returns null.

lastChild of type Node [p.34] , readonly
The last child of this node. If there is no such node, this returns null.

localName of type DOMString [p.17] , readonly, introduced in DOM Level 2
Returns the local part of the qualified name [p.99] of this node.
For nodes of any type other than ELEMENT_NODE and ATTRIBUTE_NODE and nodes
created with a DOM Level 1 method, such as createElement from the Document
[p.25] interface, this is always null.

namespaceURI of type DOMString [p.17] , readonly, introduced in DOM Level 2
The namespace URI [p.99] of this node, or null if it is unspecified.
This is not a computed value that is the result of a namespace lookup based on an
examination of the namespace declarations in scope. It is merely the namespace URI given
at creation time.
For nodes of any type other than ELEMENT_NODE and ATTRIBUTE_NODE and nodes
created with a DOM Level 1 method, such as createElement from the Document
[p.25] interface, this is always null.

Note: Per the Namespaces in XML Specification [Namespaces] an attribute does not inherit
its namespace from the element it is attached to. If an attribute is not explicitly given a
namespace, it simply has no namespace.

nextSibling of type Node [p.34] , readonly
The node immediately following this node. If there is no such node, this returns null.

nodeName of type DOMString [p.17] , readonly
The name of this node, depending on its type; see the table above.

nodeType of type unsigned short, readonly
A code representing the type of the underlying object, as defined above.

nodeValue of type DOMString [p.17]
The value of this node, depending on its type; see the table above. When it is defined to be
null, setting it has no effect.
Exceptions on setting

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised when the
node is readonly.

Exceptions on retrieval

DOMException
[p.20]

DOMSTRING_SIZE_ERR: Raised when it would return more
characters than fit in a DOMString [p.17] variable on the
implementation platform.

37

1.2. Fundamental Interfaces

ownerDocument of type Document [p.25] , readonly, modified in DOM Level 2
The Document [p.25] object associated with this node. This is also the Document object
used to create new nodes. When this node is a Document or a DocumentType [p.62]
which is not used with any Document yet, this is null.

parentNode of type Node [p.34] , readonly
The parent [p.99] of this node. All nodes, except Attr [p.51] , Document [p.25] ,
DocumentFragment [p.24] , Entity [p.64] , and Notation [p.64] may have a
parent. However, if a node has just been created and not yet added to the tree, or if it has
been removed from the tree, this is null.

prefix of type DOMString [p.17] , introduced in DOM Level 2
The namespace prefix [p.99] of this node, or null if it is unspecified.
Note that setting this attribute, when permitted, changes the nodeName attribute, which
holds the qualified name [p.99] , as well as the tagName and name attributes of the
Element [p.52] and Attr [p.51] interfaces, when applicable.
Note also that changing the prefix of an attribute that is known to have a default value, does
not make a new attribute with the default value and the original prefix appear, since the
namespaceURI and localName do not change.
For nodes of any type other than ELEMENT_NODE and ATTRIBUTE_NODE and nodes
created with a DOM Level 1 method, such as createElement from the Document
[p.25] interface, this is always null.
Exceptions on setting

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified prefix
contains an illegal character.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

NAMESPACE_ERR: Raised if the specified prefix is
malformed, if the namespaceURI of this node is null, if the
specified prefix is "xml" and the namespaceURI of this node is
different from "http://www.w3.org/XML/1998/namespace", if
this node is an attribute and the specified prefix is "xmlns" and
the namespaceURI of this node is different from
"http://www.w3.org/2000/xmlns/", or if this node is an attribute
and the qualifiedName of this node is "xmlns"
[Namespaces].

previousSibling of type Node [p.34] , readonly
The node immediately preceding this node. If there is no such node, this returns null.

Methods
appendChild

Adds the node newChild to the end of the list of children of this node. If the newChild
is already in the tree, it is first removed.
Parameters

38

1.2. Fundamental Interfaces

http://www.w3.org/2000/xmlns/
http://www.w3.org/XML/1998/namespace

newChild of type Node [p.34]
The node to add.
If it is a DocumentFragment [p.24] object, the entire contents of the document
fragment are moved into the child list of this node

Return Value

Node [p.34] The node added.

Exceptions

DOMException
[p.20]

HIERARCHY_REQUEST_ERR: Raised if this node is of a type
that does not allow children of the type of the newChild node,
or if the node to append is one of this node’s ancestors [p.97] .

WRONG_DOCUMENT_ERR: Raised if newChild was
created from a different document than the one that created this
node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

cloneNode
Returns a duplicate of this node, i.e., serves as a generic copy constructor for nodes. The
duplicate node has no parent; (parentNode is null.).
Cloning an Element [p.52] copies all attributes and their values, including those
generated by the XML processor to represent defaulted attributes, but this method does not
copy any text it contains unless it is a deep clone, since the text is contained in a child
Text [p.60] node. Cloning an Attribute directly, as opposed to be cloned as part of an
Element cloning operation, returns a specified attribute (specified is true). Cloning
any other type of node simply returns a copy of this node.
Note that cloning an immutable subtree results in a mutable copy, but the children of an
EntityReference [p.65] clone are readonly [p.99] . In addition, clones of unspecified
Attr [p.51] nodes are specified. And, cloning Document [p.25] , DocumentType
[p.62] , Entity [p.64] , and Notation [p.64] nodes is implementation dependent.
Parameters
deep of type boolean

If true, recursively clone the subtree under the specified node; if false, clone only
the node itself (and its attributes, if it is an Element [p.52]).

Return Value

Node [p.34] The duplicate node.

No Exceptions

39

1.2. Fundamental Interfaces

hasAttributes introduced in DOM Level 2
Returns whether this node (if it is an element) has any attributes.
Return Value

boolean true if this node has any attributes, false otherwise.

No Parameters
No Exceptions

hasChildNodes
Returns whether this node has any children.
Return Value

boolean true if this node has any children, false otherwise.

No Parameters
No Exceptions

insertBefore
Inserts the node newChild before the existing child node refChild. If refChild is
null, insert newChild at the end of the list of children.
If newChild is a DocumentFragment [p.24] object, all of its children are inserted, in
the same order, before refChild. If the newChild is already in the tree, it is first
removed.
Parameters
newChild of type Node [p.34]

The node to insert.
refChild of type Node

The reference node, i.e., the node before which the new node must be inserted.
Return Value

Node [p.34] The node being inserted.

Exceptions

40

1.2. Fundamental Interfaces

DOMException
[p.20]

HIERARCHY_REQUEST_ERR: Raised if this node is of a type
that does not allow children of the type of the newChild node,
or if the node to insert is one of this node’s ancestors [p.97] .

WRONG_DOCUMENT_ERR: Raised if newChild was
created from a different document than the one that created this
node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly or if the parent of the node being inserted is readonly.

NOT_FOUND_ERR: Raised if refChild is not a child of this
node.

isSupported introduced in DOM Level 2
Tests whether the DOM implementation implements a specific feature and that feature is
supported by this node.
Parameters
feature of type DOMString [p.17]

The name of the feature to test. This is the same name which can be passed to the
method hasFeature on DOMImplementation [p.22] .

version of type DOMString
This is the version number of the feature to test. In Level 2, version 1, this is the string
"2.0". If the version is not specified, supporting any version of the feature will cause
the method to return true.

Return Value

boolean Returns true if the specified feature is supported on this node, false
otherwise.

No Exceptions
normalize modified in DOM Level 2

Puts all Text [p.60] nodes in the full depth of the sub-tree underneath this Node,
including attribute nodes, into a "normal" form where only structure (e.g., elements,
comments, processing instructions, CDATA sections, and entity references) separates
Text nodes, i.e., there are neither adjacent Text nodes nor empty Text nodes. This can
be used to ensure that the DOM view of a document is the same as if it were saved and
re-loaded, and is useful when operations (such as XPointer [XPointer] lookups) that depend
on a particular document tree structure are to be used.

Note: In cases where the document contains CDATASections [p.62] , the normalize
operation alone may not be sufficient, since XPointers do not differentiate between Text
[p.60] nodes and CDATASection [p.62] nodes.

No Parameters
No Return Value

41

1.2. Fundamental Interfaces

No Exceptions
removeChild

Removes the child node indicated by oldChild from the list of children, and returns it.
Parameters
oldChild of type Node [p.34]

The node being removed.
Return Value

Node [p.34] The node removed.

Exceptions

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

NOT_FOUND_ERR: Raised if oldChild is not a child of
this node.

replaceChild
Replaces the child node oldChild with newChild in the list of children, and returns the
oldChild node.
If newChild is a DocumentFragment [p.24] object, oldChild is replaced by all of
the DocumentFragment children, which are inserted in the same order. If the
newChild is already in the tree, it is first removed.
Parameters
newChild of type Node [p.34]

The new node to put in the child list.
oldChild of type Node

The node being replaced in the list.
Return Value

Node [p.34] The node replaced.

Exceptions

42

1.2. Fundamental Interfaces

DOMException
[p.20]

HIERARCHY_REQUEST_ERR: Raised if this node is of a type
that does not allow children of the type of the newChild node,
or if the node to put in is one of this node’s ancestors [p.97] .

WRONG_DOCUMENT_ERR: Raised if newChild was
created from a different document than the one that created this
node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node
or the parent of the new node is readonly.

NOT_FOUND_ERR: Raised if oldChild is not a child of this
node.

Interface NodeList

The NodeList interface provides the abstraction of an ordered collection of nodes, without
defining or constraining how this collection is implemented. NodeList objects in the DOM are live
[p.16] .

The items in the NodeList are accessible via an integral index, starting from 0.

IDL Definition

interface NodeList {
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
};

Attributes
length of type unsigned long, readonly

The number of nodes in the list. The range of valid child node indices is 0 to length-1
inclusive.

Methods
item

Returns the indexth item in the collection. If index is greater than or equal to the
number of nodes in the list, this returns null.
Parameters
index of type unsigned long

Index into the collection.
Return Value

Node
[p.34]

The node at the indexth position in the NodeList, or null if that is
not a valid index.

No Exceptions

43

1.2. Fundamental Interfaces

Interface NamedNodeMap

Objects implementing the NamedNodeMap interface are used to represent collections of nodes that
can be accessed by name. Note that NamedNodeMap does not inherit from NodeList [p.43] ;
NamedNodeMaps are not maintained in any particular order. Objects contained in an object
implementing NamedNodeMap may also be accessed by an ordinal index, but this is simply to allow
convenient enumeration of the contents of a NamedNodeMap, and does not imply that the DOM
specifies an order to these Nodes.

NamedNodeMap objects in the DOM are live [p.16] .

IDL Definition

interface NamedNodeMap {
 Node getNamedItem(in DOMString name);
 Node setNamedItem(in Node arg)
 raises(DOMException);
 Node removeNamedItem(in DOMString name)
 raises(DOMException);
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
 // Introduced in DOM Level 2:
 Node getNamedItemNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Node setNamedItemNS(in Node arg)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Node removeNamedItemNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
};

Attributes
length of type unsigned long, readonly

The number of nodes in this map. The range of valid child node indices is 0 to length-1
inclusive.

Methods
getNamedItem

Retrieves a node specified by name.
Parameters
name of type DOMString [p.17]

The nodeName of a node to retrieve.
Return Value

Node
[p.34]

A Node (of any type) with the specified nodeName, or null if it does
not identify any node in this map.

No Exceptions

44

1.2. Fundamental Interfaces

getNamedItemNS introduced in DOM Level 2
Retrieves a node specified by local name and namespace URI. HTML-only DOM
implementations do not need to implement this method.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.99] of the node to retrieve.
localName of type DOMString

The local name [p.98] of the node to retrieve.
Return Value

Node
[p.34]

A Node (of any type) with the specified local name and namespace URI,
or null if they do not identify any node in this map.

No Exceptions
item

Returns the indexth item in the map. If index is greater than or equal to the number of
nodes in this map, this returns null.
Parameters
index of type unsigned long

Index into this map.
Return Value

Node
[p.34]

The node at the indexth position in the map, or null if that is not a
valid index.

No Exceptions
removeNamedItem

Removes a node specified by name. When this map contains the attributes attached to an
element, if the removed attribute is known to have a default value, an attribute immediately
appears containing the default value as well as the corresponding namespace URI, local
name, and prefix when applicable.
Parameters
name of type DOMString [p.17]

The nodeName of the node to remove.
Return Value

Node [p.34] The node removed from this map if a node with such a name exists.

Exceptions

45

1.2. Fundamental Interfaces

DOMException
[p.20]

NOT_FOUND_ERR: Raised if there is no node named name
in this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map
is readonly.

removeNamedItemNS introduced in DOM Level 2
Removes a node specified by local name and namespace URI. A removed attribute may be
known to have a default value when this map contains the attributes attached to an element,
as returned by the attributes attribute of the Node [p.34] interface. If so, an attribute
immediately appears containing the default value as well as the corresponding namespace
URI, local name, and prefix when applicable.
HTML-only DOM implementations do not need to implement this method.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.99] of the node to remove.
localName of type DOMString

The local name [p.98] of the node to remove.
Return Value

Node
[p.34]

The node removed from this map if a node with such a local name and
namespace URI exists.

Exceptions

DOMException
[p.20]

NOT_FOUND_ERR: Raised if there is no node with the
specified namespaceURI and localName in this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map
is readonly.

setNamedItem
Adds a node using its nodeName attribute. If a node with that name is already present in
this map, it is replaced by the new one.
As the nodeName attribute is used to derive the name which the node must be stored
under, multiple nodes of certain types (those that have a "special" string value) cannot be
stored as the names would clash. This is seen as preferable to allowing nodes to be aliased.
Parameters
arg of type Node [p.34]

A node to store in this map. The node will later be accessible using the value of its
nodeName attribute.

Return Value

46

1.2. Fundamental Interfaces

Node
[p.34]

If the new Node replaces an existing node the replaced Node is returned,
otherwise null is returned.

Exceptions

DOMException
[p.20]

WRONG_DOCUMENT_ERR: Raised if arg was created from
a different document than the one that created this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map is
readonly.

INUSE_ATTRIBUTE_ERR: Raised if arg is an Attr [p.51]
that is already an attribute of another Element [p.52] object.
The DOM user must explicitly clone Attr nodes to re-use them
in other elements.

setNamedItemNS introduced in DOM Level 2
Adds a node using its namespaceURI and localName. If a node with that namespace
URI and that local name is already present in this map, it is replaced by the new one.
HTML-only DOM implementations do not need to implement this method.
Parameters
arg of type Node [p.34]

A node to store in this map. The node will later be accessible using the value of its
namespaceURI and localName attributes.

Return Value

Node
[p.34]

If the new Node replaces an existing node the replaced Node is returned,
otherwise null is returned.

Exceptions

DOMException
[p.20]

WRONG_DOCUMENT_ERR: Raised if arg was created from
a different document than the one that created this map.

NO_MODIFICATION_ALLOWED_ERR: Raised if this map is
readonly.

INUSE_ATTRIBUTE_ERR: Raised if arg is an Attr [p.51]
that is already an attribute of another Element [p.52] object.
The DOM user must explicitly clone Attr nodes to re-use them
in other elements.

Interface CharacterData

47

1.2. Fundamental Interfaces

The CharacterData interface extends Node with a set of attributes and methods for accessing
character data in the DOM. For clarity this set is defined here rather than on each object that uses
these attributes and methods. No DOM objects correspond directly to CharacterData, though
Text [p.60] and others do inherit the interface from it. All offsets in this interface start from 0.

As explained in the DOMString [p.17] interface, text strings in the DOM are represented in
UTF-16, i.e. as a sequence of 16-bit units. In the following, the term 16-bit units [p.97] is used
whenever necessary to indicate that indexing on CharacterData is done in 16-bit units.

IDL Definition

interface CharacterData : Node {
 attribute DOMString data;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned long length;
 DOMString substringData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void appendData(in DOMString arg)
 raises(DOMException);
 void insertData(in unsigned long offset,
 in DOMString arg)
 raises(DOMException);
 void deleteData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void replaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg)
 raises(DOMException);
};

Attributes
data of type DOMString [p.17]

The character data of the node that implements this interface. The DOM implementation
may not put arbitrary limits on the amount of data that may be stored in a
CharacterData node. However, implementation limits may mean that the entirety of a
node’s data may not fit into a single DOMString [p.17] . In such cases, the user may call
substringData to retrieve the data in appropriately sized pieces.
Exceptions on setting

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised when the
node is readonly.

Exceptions on retrieval

48

1.2. Fundamental Interfaces

DOMException
[p.20]

DOMSTRING_SIZE_ERR: Raised when it would return more
characters than fit in a DOMString [p.17] variable on the
implementation platform.

length of type unsigned long, readonly
The number of 16-bit units [p.97] that are available through data and the
substringData method below. This may have the value zero, i.e., CharacterData
nodes may be empty.

Methods
appendData

Append the string to the end of the character data of the node. Upon success, data
provides access to the concatenation of data and the DOMString [p.17] specified.
Parameters
arg of type DOMString [p.17]

The DOMString to append.
Exceptions

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value
deleteData

Remove a range of 16-bit units [p.97] from the node. Upon success, data and length
reflect the change.
Parameters
offset of type unsigned long

The offset from which to start removing.
count of type unsigned long

The number of 16-bit units to delete. If the sum of offset and count exceeds
length then all 16-bit units from offset to the end of the data are deleted.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified offset is negative
or greater than the number of 16-bit units in data, or if the
specified count is negative.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

No Return Value
insertData

Insert a string at the specified 16-bit unit [p.97] offset.
Parameters

49

1.2. Fundamental Interfaces

offset of type unsigned long
The character offset at which to insert.

arg of type DOMString [p.17]
The DOMString to insert.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node
is readonly.

No Return Value
replaceData

Replace the characters starting at the specified 16-bit unit [p.97] offset with the specified
string.
Parameters
offset of type unsigned long

The offset from which to start replacing.
count of type unsigned long

The number of 16-bit units to replace. If the sum of offset and count exceeds
length, then all 16-bit units to the end of the data are replaced; (i.e., the effect is the
same as a remove method call with the same range, followed by an append method
invocation).

arg of type DOMString [p.17]
The DOMString with which the range must be replaced.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified offset is negative
or greater than the number of 16-bit units in data, or if the
specified count is negative.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

No Return Value
substringData

Extracts a range of data from the node.
Parameters
offset of type unsigned long

Start offset of substring to extract.
count of type unsigned long

The number of 16-bit units to extract.
Return Value

50

1.2. Fundamental Interfaces

DOMString
[p.17]

The specified substring. If the sum of offset and count exceeds
the length, then all 16-bit units to the end of the data are
returned.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified offset is
negative or greater than the number of 16-bit units in data, or
if the specified count is negative.

DOMSTRING_SIZE_ERR: Raised if the specified range of text
does not fit into a DOMString [p.17] .

Interface Attr

The Attr interface represents an attribute in an Element [p.52] object. Typically the allowable
values for the attribute are defined in a document type definition.

Attr objects inherit the Node [p.34] interface, but since they are not actually child nodes of the
element they describe, the DOM does not consider them part of the document tree. Thus, the Node
attributes parentNode, previousSibling, and nextSibling have a null value for Attr
objects. The DOM takes the view that attributes are properties of elements rather than having a
separate identity from the elements they are associated with; this should make it more efficient to
implement such features as default attributes associated with all elements of a given type.
Furthermore, Attr nodes may not be immediate children of a DocumentFragment [p.24] .
However, they can be associated with Element [p.52] nodes contained within a
DocumentFragment. In short, users and implementors of the DOM need to be aware that Attr
nodes have some things in common with other objects inheriting the Node interface, but they also
are quite distinct.

The attribute’s effective value is determined as follows: if this attribute has been explicitly assigned
any value, that value is the attribute’s effective value; otherwise, if there is a declaration for this
attribute, and that declaration includes a default value, then that default value is the attribute’s
effective value; otherwise, the attribute does not exist on this element in the structure model until it
has been explicitly added. Note that the nodeValue attribute on the Attr instance can also be used
to retrieve the string version of the attribute’s value(s).

In XML, where the value of an attribute can contain entity references, the child nodes of the Attr
node may be either Text [p.60] or EntityReference [p.65] nodes (when these are in use; see
the description of EntityReference for discussion). Because the DOM Core is not aware of
attribute types, it treats all attribute values as simple strings, even if the DTD or schema declares
them as having tokenized [p.99] types.

IDL Definition

51

1.2. Fundamental Interfaces

interface Attr : Node {
 readonly attribute DOMString name;
 readonly attribute boolean specified;
 attribute DOMString value;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute Element ownerElement;
};

Attributes
name of type DOMString [p.17] , readonly

Returns the name of this attribute.
ownerElement of type Element [p.52] , readonly, introduced in DOM Level 2

The Element [p.52] node this attribute is attached to or null if this attribute is not in
use.

specified of type boolean, readonly
If this attribute was explicitly given a value in the original document, this is true;
otherwise, it is false. Note that the implementation is in charge of this attribute, not the
user. If the user changes the value of the attribute (even if it ends up having the same value
as the default value) then the specified flag is automatically flipped to true. To
re-specify the attribute as the default value from the DTD, the user must delete the
attribute. The implementation will then make a new attribute available with specified
set to false and the default value (if one exists).
In summary:

If the attribute has an assigned value in the document then specified is true, and
the value is the assigned value.
If the attribute has no assigned value in the document and has a default value in the
DTD, then specified is false, and the value is the default value in the DTD.
If the attribute has no assigned value in the document and has a value of #IMPLIED in
the DTD, then the attribute does not appear in the structure model of the document.
If the ownerElement attribute is null (i.e. because it was just created or was set to
null by the various removal and cloning operations) specified is true.

value of type DOMString [p.17]
On retrieval, the value of the attribute is returned as a string. Character and general entity
references are replaced with their values. See also the method getAttribute on the
Element [p.52] interface.
On setting, this creates a Text [p.60] node with the unparsed contents of the string. I.e.
any characters that an XML processor would recognize as markup are instead treated as
literal text. See also the method setAttribute on the Element [p.52] interface.
Exceptions on setting

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised when the
node is readonly.

Interface Element

52

1.2. Fundamental Interfaces

The Element interface represents an element [p.98] in an HTML or XML document. Elements may
have attributes associated with them; since the Element interface inherits from Node [p.34] , the
generic Node interface attribute attributes may be used to retrieve the set of all attributes for an
element. There are methods on the Element interface to retrieve either an Attr [p.51] object by
name or an attribute value by name. In XML, where an attribute value may contain entity references,
an Attr object should be retrieved to examine the possibly fairly complex sub-tree representing the
attribute value. On the other hand, in HTML, where all attributes have simple string values, methods
to directly access an attribute value can safely be used as a convenience [p.97] .

Note: In DOM Level 2, the method normalize is inherited from the Node [p.34] interface where
it was moved.

IDL Definition

interface Element : Node {
 readonly attribute DOMString tagName;
 DOMString getAttribute(in DOMString name);
 void setAttribute(in DOMString name,
 in DOMString value)
 raises(DOMException);
 void removeAttribute(in DOMString name)
 raises(DOMException);
 Attr getAttributeNode(in DOMString name);
 Attr setAttributeNode(in Attr newAttr)
 raises(DOMException);
 Attr removeAttributeNode(in Attr oldAttr)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString name);
 // Introduced in DOM Level 2:
 DOMString getAttributeNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 void setAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DOMString value)
 raises(DOMException);
 // Introduced in DOM Level 2:
 void removeAttributeNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr getAttributeNodeNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Attr setAttributeNodeNS(in Attr newAttr)
 raises(DOMException);
 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 boolean hasAttribute(in DOMString name);

53

1.2. Fundamental Interfaces

 // Introduced in DOM Level 2:
 boolean hasAttributeNS(in DOMString namespaceURI,
 in DOMString localName);
};

Attributes
tagName of type DOMString [p.17] , readonly

The name of the element. For example, in:

<elementExample id="demo">
 ...
</elementExample> ,

tagName has the value "elementExample". Note that this is case-preserving in XML,
as are all of the operations of the DOM. The HTML DOM returns the tagName of an
HTML element in the canonical uppercase form, regardless of the case in the source
HTML document.

Methods
getAttribute

Retrieves an attribute value by name.
Parameters
name of type DOMString [p.17]

The name of the attribute to retrieve.
Return Value

DOMString
[p.17]

The Attr [p.51] value as a string, or the empty string if that
attribute does not have a specified or default value.

No Exceptions
getAttributeNS introduced in DOM Level 2

Retrieves an attribute value by local name and namespace URI. HTML-only DOM
implementations do not need to implement this method.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.99] of the attribute to retrieve.
localName of type DOMString

The local name [p.98] of the attribute to retrieve.
Return Value

DOMString
[p.17]

The Attr [p.51] value as a string, or the empty string if that
attribute does not have a specified or default value.

No Exceptions
getAttributeNode

Retrieves an attribute node by name.
To retrieve an attribute node by qualified name and namespace URI, use the
getAttributeNodeNS method.

54

1.2. Fundamental Interfaces

Parameters
name of type DOMString [p.17]

The name (nodeName) of the attribute to retrieve.
Return Value

Attr
[p.51]

The Attr node with the specified name (nodeName) or null if there
is no such attribute.

No Exceptions
getAttributeNodeNS introduced in DOM Level 2

Retrieves an Attr [p.51] node by local name and namespace URI. HTML-only DOM
implementations do not need to implement this method.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.99] of the attribute to retrieve.
localName of type DOMString

The local name [p.98] of the attribute to retrieve.
Return Value

Attr
[p.51]

The Attr node with the specified attribute local name and namespace
URI or null if there is no such attribute.

No Exceptions
getElementsByTagName

Returns a NodeList [p.43] of all descendant [p.97] Elements with a given tag name, in
the order in which they are encountered in a preorder traversal of this Element tree.
Parameters
name of type DOMString [p.17]

The name of the tag to match on. The special value "*" matches all tags.
Return Value

NodeList [p.43] A list of matching Element nodes.

No Exceptions
getElementsByTagNameNS introduced in DOM Level 2

Returns a NodeList [p.43] of all the descendant [p.97] Elements with a given local
name and namespace URI in the order in which they are encountered in a preorder traversal
of this Element tree.
HTML-only DOM implementations do not need to implement this method.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.99] of the elements to match on. The special value "*"
matches all namespaces.

55

1.2. Fundamental Interfaces

localName of type DOMString
The local name [p.98] of the elements to match on. The special value "*" matches all
local names.

Return Value

NodeList
[p.43]

A new NodeList object containing all the matched
Elements.

No Exceptions
hasAttribute introduced in DOM Level 2

Returns true when an attribute with a given name is specified on this element or has a
default value, false otherwise.
Parameters
name of type DOMString [p.17]

The name of the attribute to look for.
Return Value

boolean true if an attribute with the given name is specified on this element or
has a default value, false otherwise.

No Exceptions
hasAttributeNS introduced in DOM Level 2

Returns true when an attribute with a given local name and namespace URI is specified
on this element or has a default value, false otherwise. HTML-only DOM
implementations do not need to implement this method.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.99] of the attribute to look for.
localName of type DOMString

The local name [p.98] of the attribute to look for.
Return Value

boolean true if an attribute with the given local name and namespace URI is
specified or has a default value on this element, false otherwise.

No Exceptions
removeAttribute

Removes an attribute by name. If the removed attribute is known to have a default value,
an attribute immediately appears containing the default value as well as the corresponding
namespace URI, local name, and prefix when applicable.
To remove an attribute by local name and namespace URI, use the
removeAttributeNS method.
Parameters

56

1.2. Fundamental Interfaces

name of type DOMString [p.17]
The name of the attribute to remove.

Exceptions

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value
removeAttributeNS introduced in DOM Level 2

Removes an attribute by local name and namespace URI. If the removed attribute has a
default value it is immediately replaced. The replacing attribute has the same namespace
URI and local name, as well as the original prefix.
HTML-only DOM implementations do not need to implement this method.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.99] of the attribute to remove.
localName of type DOMString

The local name [p.98] of the attribute to remove.
Exceptions

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

No Return Value
removeAttributeNode

Removes the specified attribute node. If the removed Attr [p.51] has a default value it is
immediately replaced. The replacing attribute has the same namespace URI and local
name, as well as the original prefix, when applicable.
Parameters
oldAttr of type Attr [p.51]

The Attr node to remove from the attribute list.
Return Value

Attr [p.51] The Attr node that was removed.

Exceptions

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised if this
node is readonly.

NOT_FOUND_ERR: Raised if oldAttr is not an attribute
of the element.

57

1.2. Fundamental Interfaces

setAttribute
Adds a new attribute. If an attribute with that name is already present in the element, its
value is changed to be that of the value parameter. This value is a simple string; it is not
parsed as it is being set. So any markup (such as syntax to be recognized as an entity
reference) is treated as literal text, and needs to be appropriately escaped by the
implementation when it is written out. In order to assign an attribute value that contains
entity references, the user must create an Attr [p.51] node plus any Text [p.60] and
EntityReference [p.65] nodes, build the appropriate subtree, and use
setAttributeNode to assign it as the value of an attribute.
To set an attribute with a qualified name and namespace URI, use the setAttributeNS
method.
Parameters
name of type DOMString [p.17]

The name of the attribute to create or alter.
value of type DOMString

Value to set in string form.
Exceptions

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified name
contains an illegal character.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node
is readonly.

No Return Value
setAttributeNS introduced in DOM Level 2

Adds a new attribute. If an attribute with the same local name and namespace URI is
already present on the element, its prefix is changed to be the prefix part of the
qualifiedName, and its value is changed to be the value parameter. This value is a
simple string; it is not parsed as it is being set. So any markup (such as syntax to be
recognized as an entity reference) is treated as literal text, and needs to be appropriately
escaped by the implementation when it is written out. In order to assign an attribute value
that contains entity references, the user must create an Attr [p.51] node plus any Text
[p.60] and EntityReference [p.65] nodes, build the appropriate subtree, and use
setAttributeNodeNS or setAttributeNode to assign it as the value of an
attribute.
HTML-only DOM implementations do not need to implement this method.
Parameters
namespaceURI of type DOMString [p.17]

The namespace URI [p.99] of the attribute to create or alter.
qualifiedName of type DOMString

The qualified name [p.99] of the attribute to create or alter.
value of type DOMString

The value to set in string form.
Exceptions

58

1.2. Fundamental Interfaces

DOMException
[p.20]

INVALID_CHARACTER_ERR: Raised if the specified qualified
name contains an illegal character.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

NAMESPACE_ERR: Raised if the qualifiedName is
malformed, if the qualifiedName has a prefix and the
namespaceURI is null, if the qualifiedName has a prefix
that is "xml" and the namespaceURI is different from
"http://www.w3.org/XML/1998/namespace", or if the
qualifiedName is "xmlns" and the namespaceURI is
different from "http://www.w3.org/2000/xmlns/".

No Return Value
setAttributeNode

Adds a new attribute node. If an attribute with that name (nodeName) is already present in
the element, it is replaced by the new one.
To add a new attribute node with a qualified name and namespace URI, use the
setAttributeNodeNS method.
Parameters
newAttr of type Attr [p.51]

The Attr node to add to the attribute list.
Return Value

Attr
[p.51]

If the newAttr attribute replaces an existing attribute, the replaced
Attr node is returned, otherwise null is returned.

Exceptions

DOMException
[p.20]

WRONG_DOCUMENT_ERR: Raised if newAttr was created
from a different document than the one that created the element.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

INUSE_ATTRIBUTE_ERR: Raised if newAttr is already an
attribute of another Element object. The DOM user must
explicitly clone Attr [p.51] nodes to re-use them in other
elements.

setAttributeNodeNS introduced in DOM Level 2
Adds a new attribute. If an attribute with that local name and that namespace URI is
already present in the element, it is replaced by the new one.
HTML-only DOM implementations do not need to implement this method.
Parameters

59

1.2. Fundamental Interfaces

http://www.w3.org/2000/xmlns/
http://www.w3.org/XML/1998/namespace

newAttr of type Attr [p.51]
The Attr node to add to the attribute list.

Return Value

Attr
[p.51]

If the newAttr attribute replaces an existing attribute with the same local
name [p.98] and namespace URI [p.99] , the replaced Attr node is
returned, otherwise null is returned.

Exceptions

DOMException
[p.20]

WRONG_DOCUMENT_ERR: Raised if newAttr was created
from a different document than the one that created the element.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is
readonly.

INUSE_ATTRIBUTE_ERR: Raised if newAttr is already an
attribute of another Element object. The DOM user must
explicitly clone Attr [p.51] nodes to re-use them in other
elements.

Interface Text

The Text interface inherits from CharacterData [p.47] and represents the textual content
(termed character data in XML) of an Element [p.52] or Attr [p.51] . If there is no markup inside
an element’s content, the text is contained in a single object implementing the Text interface that is
the only child of the element. If there is markup, it is parsed into the information items [p.98]
(elements, comments, etc.) and Text nodes that form the list of children of the element.

When a document is first made available via the DOM, there is only one Text node for each block
of text. Users may create adjacent Text nodes that represent the contents of a given element without
any intervening markup, but should be aware that there is no way to represent the separations
between these nodes in XML or HTML, so they will not (in general) persist between DOM editing
sessions. The normalize() method on Node [p.34] merges any such adjacent Text objects into
a single node for each block of text.

IDL Definition

interface Text : CharacterData {
 Text splitText(in unsigned long offset)
 raises(DOMException);
};

Methods
splitText

Breaks this node into two nodes at the specified offset, keeping both in the tree as
siblings [p.99] . After being split, this node will contain all the content up to the offset

60

1.2. Fundamental Interfaces

http://www.w3.org/TR/1998/REC-xml-19980210#syntax

point. A new node of the same type, which contains all the content at and after the
offset point, is returned. If the original node had a parent node, the new node is inserted
as the next sibling [p.99] of the original node. When the offset is equal to the length of
this node, the new node has no data.
Parameters
offset of type unsigned long

The 16-bit unit [p.97] offset at which to split, starting from 0.
Return Value

Text [p.60] The new node, of the same type as this node.

Exceptions

DOMException
[p.20]

INDEX_SIZE_ERR: Raised if the specified offset is negative or
greater than the number of 16-bit units in data.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node
is readonly.

Interface Comment

This interface inherits from CharacterData [p.47] and represents the content of a comment, i.e.,
all the characters between the starting ’<!--’ and ending ’-->’. Note that this is the definition of a
comment in XML, and, in practice, HTML, although some HTML tools may implement the full
SGML comment structure.

IDL Definition

interface Comment : CharacterData {
};

1.3. Extended Interfaces
The interfaces defined here form part of the DOM Core specification, but objects that expose these
interfaces will never be encountered in a DOM implementation that deals only with HTML. As such,
HTML-only DOM implementations [DOM Level 2 HTML] do not need to have objects that implement
these interfaces.

The interfaces found within this section are not mandatory. A DOM application may use the
hasFeature(feature, version) method of the DOMImplementation [p.22] interface with
parameter values "XML" and "2.0" (respectively) to determine whether or not this module is supported by
the implementation. In order to fully support this module, an implementation must also support the "Core"
feature defined in Fundamental Interfaces [p.20] . Please refer to additional information about
Conformance [p.12] in this specification.

61

1.3. Extended Interfaces

Interface CDATASection

CDATA sections are used to escape blocks of text containing characters that would otherwise be
regarded as markup. The only delimiter that is recognized in a CDATA section is the "]]>" string that
ends the CDATA section. CDATA sections cannot be nested. Their primary purpose is for including
material such as XML fragments, without needing to escape all the delimiters.

The DOMString [p.17] attribute of the Text [p.60] node holds the text that is contained by the
CDATA section. Note that this may contain characters that need to be escaped outside of CDATA
sections and that, depending on the character encoding ("charset") chosen for serialization, it may be
impossible to write out some characters as part of a CDATA section.

The CDATASection interface inherits from the CharacterData [p.47] interface through the
Text [p.60] interface. Adjacent CDATASection nodes are not merged by use of the normalize
method of the Node [p.34] interface.

Note: Because no markup is recognized within a CDATASection, character numeric references
cannot be used as an escape mechanism when serializing. Therefore, action needs to be taken when
serializing a CDATASection with a character encoding where some of the contained characters
cannot be represented. Failure to do so would not produce well-formed XML.
One potential solution in the serialization process is to end the CDATA section before the character,
output the character using a character reference or entity reference, and open a new CDATA section
for any further characters in the text node. Note, however, that some code conversion libraries at the
time of writing do not return an error or exception when a character is missing from the encoding,
making the task of ensuring that data is not corrupted on serialization more difficult.

IDL Definition

interface CDATASection : Text {
};

Interface DocumentType

Each Document [p.25] has a doctype attribute whose value is either null or a DocumentType
object. The DocumentType interface in the DOM Core provides an interface to the list of entities
that are defined for the document, and little else because the effect of namespaces and the various
XML schema efforts on DTD representation are not clearly understood as of this writing.

The DOM Level 2 doesn’t support editing DocumentType nodes.

IDL Definition

62

1.3. Extended Interfaces

interface DocumentType : Node {
 readonly attribute DOMString name;
 readonly attribute NamedNodeMap entities;
 readonly attribute NamedNodeMap notations;
 // Introduced in DOM Level 2:
 readonly attribute DOMString publicId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString systemId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString internalSubset;
};

Attributes
entities of type NamedNodeMap [p.44] , readonly

A NamedNodeMap [p.44] containing the general entities, both external and internal,
declared in the DTD. Parameter entities are not contained. Duplicates are discarded. For
example in:

<!DOCTYPE ex SYSTEM "ex.dtd" [
 <!ENTITY foo "foo">
 <!ENTITY bar "bar">
 <!ENTITY bar "bar2">
 <!ENTITY % baz "baz">
]>
<ex/>

the interface provides access to foo and the first declaration of bar but not the second
declaration of bar or baz. Every node in this map also implements the Entity [p.64]
interface.
The DOM Level 2 does not support editing entities, therefore entities cannot be altered
in any way.

internalSubset of type DOMString [p.17] , readonly, introduced in DOM Level 2
The internal subset as a string.

Note: The actual content returned depends on how much information is available to the
implementation. This may vary depending on various parameters, including the XML
processor used to build the document.

name of type DOMString [p.17] , readonly
The name of DTD; i.e., the name immediately following the DOCTYPE keyword.

notations of type NamedNodeMap [p.44] , readonly
A NamedNodeMap [p.44] containing the notations declared in the DTD. Duplicates are
discarded. Every node in this map also implements the Notation [p.64] interface.
The DOM Level 2 does not support editing notations, therefore notations cannot be
altered in any way.

publicId of type DOMString [p.17] , readonly, introduced in DOM Level 2
The public identifier of the external subset.

systemId of type DOMString [p.17] , readonly, introduced in DOM Level 2
The system identifier of the external subset.

63

1.3. Extended Interfaces

Interface Notation

This interface represents a notation declared in the DTD. A notation either declares, by name, the
format of an unparsed entity (see section 4.7 of the XML 1.0 specification [XML]), or is used for
formal declaration of processing instruction targets (see section 2.6 of the XML 1.0 specification
[XML]). The nodeName attribute inherited from Node [p.34] is set to the declared name of the
notation.

The DOM Level 1 does not support editing Notation nodes; they are therefore readonly [p.99] .

A Notation node does not have any parent.

IDL Definition

interface Notation : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
};

Attributes
publicId of type DOMString [p.17] , readonly

The public identifier of this notation. If the public identifier was not specified, this is
null.

systemId of type DOMString [p.17] , readonly
The system identifier of this notation. If the system identifier was not specified, this is
null.

Interface Entity

This interface represents an entity, either parsed or unparsed, in an XML document. Note that this
models the entity itself not the entity declaration. Entity declaration modeling has been left for a
later Level of the DOM specification.

The nodeName attribute that is inherited from Node [p.34] contains the name of the entity.

An XML processor may choose to completely expand entities before the structure model is passed to
the DOM; in this case there will be no EntityReference [p.65] nodes in the document tree.

XML does not mandate that a non-validating XML processor read and process entity declarations
made in the external subset or declared in external parameter entities. This means that parsed entities
declared in the external subset need not be expanded by some classes of applications, and that the
replacement value of the entity may not be available. When the replacement value is available, the
corresponding Entity node’s child list represents the structure of that replacement text. Otherwise,
the child list is empty.

The DOM Level 2 does not support editing Entity nodes; if a user wants to make changes to the
contents of an Entity, every related EntityReference [p.65] node has to be replaced in the
structure model by a clone of the Entity’s contents, and then the desired changes must be made to
each of those clones instead. Entity nodes and all their descendants [p.97] are readonly [p.99] .

64

1.3. Extended Interfaces

http://www.w3.org/TR/1998/REC-xml-19980210#sec-pi
http://www.w3.org/TR/1998/REC-xml-19980210#Notations

An Entity node does not have any parent.

Note: If the entity contains an unbound namespace prefix [p.99] , the namespaceURI of the
corresponding node in the Entity node subtree is null. The same is true for
EntityReference [p.65] nodes that refer to this entity, when they are created using the
createEntityReference method of the Document [p.25] interface. The DOM Level 2 does
not support any mechanism to resolve namespace prefixes.

IDL Definition

interface Entity : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 readonly attribute DOMString notationName;
};

Attributes
notationName of type DOMString [p.17] , readonly

For unparsed entities, the name of the notation for the entity. For parsed entities, this is
null.

publicId of type DOMString [p.17] , readonly
The public identifier associated with the entity, if specified. If the public identifier was not
specified, this is null.

systemId of type DOMString [p.17] , readonly
The system identifier associated with the entity, if specified. If the system identifier was
not specified, this is null.

Interface EntityReference

EntityReference objects may be inserted into the structure model when an entity reference is in
the source document, or when the user wishes to insert an entity reference. Note that character
references and references to predefined entities are considered to be expanded by the HTML or XML
processor so that characters are represented by their Unicode equivalent rather than by an entity
reference. Moreover, the XML processor may completely expand references to entities while
building the structure model, instead of providing EntityReference objects. If it does provide
such objects, then for a given EntityReference node, it may be that there is no Entity [p.64]
node representing the referenced entity. If such an Entity exists, then the subtree of the
EntityReference node is in general a copy of the Entity node subtree. However, this may not
be true when an entity contains an unbound namespace prefix [p.99] . In such a case, because the
namespace prefix resolution depends on where the entity reference is, the descendants [p.97] of the
EntityReference node may be bound to different namespace URIs [p.99] .

As for Entity [p.64] nodes, EntityReference nodes and all their descendants [p.97] are
readonly [p.99] .

IDL Definition

interface EntityReference : Node {
};

65

1.3. Extended Interfaces

Interface ProcessingInstruction

The ProcessingInstruction interface represents a "processing instruction", used in XML as a
way to keep processor-specific information in the text of the document.

IDL Definition

interface ProcessingInstruction : Node {
 readonly attribute DOMString target;
 attribute DOMString data;
 // raises(DOMException) on setting

};

Attributes
data of type DOMString [p.17]

The content of this processing instruction. This is from the first non white space character
after the target to the character immediately preceding the ?>.
Exceptions on setting

DOMException
[p.20]

NO_MODIFICATION_ALLOWED_ERR: Raised when the
node is readonly.

target of type DOMString [p.17] , readonly
The target of this processing instruction. XML defines this as being the first token [p.99]
following the markup that begins the processing instruction.

66

1.3. Extended Interfaces

Appendix A: Changes
Editors

Arnaud Le Hors, IBM
Philippe Le Hégaret, W3C

A.1: Changes between DOM Level 1 Core and DOM Level 2
Core
OMG IDL

The DOM Level 2 specifications are now using Corba 2.3.1 instead of Corba 2.2.
Type DOMString [p.17]

The definition of DOMString [p.17] in IDL is now a valuetype.

A.1.1: Changes to DOM Level 1 Core interfaces and exceptions

Interface Attr [p.51]
The Attr [p.51] interface has one new attribute: ownerElement.

Interface Document [p.25]
The Document [p.25] interface has five new methods: importNode, createElementNS,
createAttributeNS, getElementsByTagNameNS and getElementById.

Interface NamedNodeMap [p.44]
The NamedNodeMap [p.44] interface has three new methods: getNamedItemNS,
setNamedItemNS, removeNamedItemNS.

Interface Node [p.34]
The Node [p.34] interface has two new methods: isSupported and hasAttributes.
normalize, previously in the Element [p.52] interface, has been moved in the Node [p.34]
interface.
The Node [p.34] interface has three new attributes: namespaceURI, prefix and localName.
The ownerDocument attribute was specified to be null when the node is a Document [p.25] . It
now is also null when the node is a DocumentType [p.62] which is not used with any
Document yet.

Interface DocumentType [p.62]
The DocumentType [p.62] interface has three attributes: publicId, systemId and
internalSubset.

Interface DOMImplementation [p.22]
The DOMImplementation [p.22] interface has two new methods: createDocumentType and
createDocument.

Interface Element [p.52]
The Element [p.52] interface has eight new methods: getAttributeNS, setAttributeNS,
removeAttributeNS, getAttributeNodeNS, setAttributeNodeNS,
getElementsByTagNameNS, hasAttribute and hasAttributeNS.
The method normalize is now inherited from the Node [p.34] interface where it was moved.

67

Appendix A: Changes

Exception DOMException [p.20]
The DOMException [p.20] has five new exception codes: INVALID_STATE_ERR,
SYNTAX_ERR, INVALID_MODIFICATION_ERR, NAMESPACE_ERR and
INVALID_ACCESS_ERR.

A.1.2: New features

A.1.2.1: New types

DOMTimeStamp [p.18]
The DOMTimeStamp [p.18] type was added to the Core module.

68

A.1.2: New features

Appendix B: Accessing code point boundaries
Mark Davis, IBM
Lauren Wood, SoftQuad Software Inc.

B.1: Introduction
This appendix is an informative, not a normative, part of the Level 2 DOM specification.

Characters are represented in Unicode by numbers called code points (also called scalar values). These
numbers can range from 0 up to 1,114,111 = 10FFFF16 (although some of these values are illegal). Each

code point can be directly encoded with a 32-bit code unit. This encoding is termed UCS-4 (or UTF-32).
The DOM specification, however, uses UTF-16, in which the most frequent characters (which have values
less than FFFF16) are represented by a single 16-bit code unit, while characters above FFFF16 use a

special pair of code units called a surrogate pair. For more information, see [Unicode] or the Unicode
Web site.

While indexing by code points as opposed to code units is not common in programs, some specifications
such as XPath (and therefore XSLT and XPointer) use code point indices. For interfacing with such
formats it is recommended that the programming language provide string processing methods for
converting code point indices to code unit indices and back. Some languages do not provide these
functions natively; for these it is recommended that the native String type that is bound to DOMString
[p.17] be extended to enable this conversion. An example of how such an API might look is supplied
below.

Note: Since these methods are supplied as an illustrative example of the type of functionality that is
required, the names of the methods, exceptions, and interface may differ from those given here.

B.2: Methods
Interface StringExtend

Extensions to a language’s native String class or interface

IDL Definition

interface StringExtend {
 int findOffset16(in int offset32)
 raises(StringIndexOutOfBoundsException);
 int findOffset32(in int offset16)
 raises(StringIndexOutOfBoundsException);
};

Methods
findOffset16

Returns the UTF-16 offset that corresponds to a UTF-32 offset. Used for random access.

69

Appendix B: Accessing code point boundaries

Note: You can always round-trip from a UTF-32 offset to a UTF-16 offset and back. You
can round-trip from a UTF-16 offset to a UTF-32 offset and back if and only if the offset16
is not in the middle of a surrogate pair. Unmatched surrogates count as a single UTF-16
value.

Parameters
offset32 of type int

UTF-32 offset.
Return Value

int UTF-16 offset

Exceptions

StringIndexOutOfBoundsException if offset32 is out of bounds.

findOffset32
Returns the UTF-32 offset corresponding to a UTF-16 offset. Used for random access. To
find the UTF-32 length of a string, use:

len32 = findOffset32(source, source.length());

Note: If the UTF-16 offset is into the middle of a surrogate pair, then the UTF-32 offset of
the end of the pair is returned; that is, the index of the char after the end of the pair. You
can always round-trip from a UTF-32 offset to a UTF-16 offset and back. You can
round-trip from a UTF-16 offset to a UTF-32 offset and back if and only if the offset16 is
not in the middle of a surrogate pair. Unmatched surrogates count as a single UTF-16
value.

Parameters
offset16 of type int

UTF-16 offset
Return Value

int UTF-32 offset

Exceptions

StringIndexOutOfBoundsException if offset16 is out of bounds.

70

B.2: Methods

Appendix C: IDL Definitions
This appendix contains the complete OMG IDL [OMGIDL] for the Level 2 Document Object Model Core
definitions.

The IDL files are also available as:
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/idl.zip

dom.idl:
// File: dom.idl

#ifndef _DOM_IDL_
#define _DOM_IDL_

#pragma prefix "w3c.org"
module dom
{

 valuetype DOMString sequence<unsigned short>;

 typedef unsigned long long DOMTimeStamp;

 interface DocumentType;
 interface Document;
 interface NodeList;
 interface NamedNodeMap;
 interface Element;

 exception DOMException {
 unsigned short code;
 };
 // ExceptionCode
 const unsigned short INDEX_SIZE_ERR = 1;
 const unsigned short DOMSTRING_SIZE_ERR = 2;
 const unsigned short HIERARCHY_REQUEST_ERR = 3;
 const unsigned short WRONG_DOCUMENT_ERR = 4;
 const unsigned short INVALID_CHARACTER_ERR = 5;
 const unsigned short NO_DATA_ALLOWED_ERR = 6;
 const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;
 const unsigned short NOT_FOUND_ERR = 8;
 const unsigned short NOT_SUPPORTED_ERR = 9;
 const unsigned short INUSE_ATTRIBUTE_ERR = 10;
 // Introduced in DOM Level 2:
 const unsigned short INVALID_STATE_ERR = 11;
 // Introduced in DOM Level 2:
 const unsigned short SYNTAX_ERR = 12;
 // Introduced in DOM Level 2:
 const unsigned short INVALID_MODIFICATION_ERR = 13;
 // Introduced in DOM Level 2:
 const unsigned short NAMESPACE_ERR = 14;
 // Introduced in DOM Level 2:
 const unsigned short INVALID_ACCESS_ERR = 15;

71

Appendix C: IDL Definitions

 interface DOMImplementation {
 boolean hasFeature(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 DocumentType createDocumentType(in DOMString qualifiedName,
 in DOMString publicId,
 in DOMString systemId)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Document createDocument(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DocumentType doctype)
 raises(DOMException);
 };

 interface Node {

 // NodeType
 const unsigned short ELEMENT_NODE = 1;
 const unsigned short ATTRIBUTE_NODE = 2;
 const unsigned short TEXT_NODE = 3;
 const unsigned short CDATA_SECTION_NODE = 4;
 const unsigned short ENTITY_REFERENCE_NODE = 5;
 const unsigned short ENTITY_NODE = 6;
 const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
 const unsigned short COMMENT_NODE = 8;
 const unsigned short DOCUMENT_NODE = 9;
 const unsigned short DOCUMENT_TYPE_NODE = 10;
 const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
 const unsigned short NOTATION_NODE = 12;

 readonly attribute DOMString nodeName;
 attribute DOMString nodeValue;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned short nodeType;
 readonly attribute Node parentNode;
 readonly attribute NodeList childNodes;
 readonly attribute Node firstChild;
 readonly attribute Node lastChild;
 readonly attribute Node previousSibling;
 readonly attribute Node nextSibling;
 readonly attribute NamedNodeMap attributes;
 // Modified in DOM Level 2:
 readonly attribute Document ownerDocument;
 Node insertBefore(in Node newChild,
 in Node refChild)
 raises(DOMException);
 Node replaceChild(in Node newChild,
 in Node oldChild)
 raises(DOMException);
 Node removeChild(in Node oldChild)
 raises(DOMException);
 Node appendChild(in Node newChild)
 raises(DOMException);

72

dom.idl:

 boolean hasChildNodes();
 Node cloneNode(in boolean deep);
 // Modified in DOM Level 2:
 void normalize();
 // Introduced in DOM Level 2:
 boolean isSupported(in DOMString feature,
 in DOMString version);
 // Introduced in DOM Level 2:
 readonly attribute DOMString namespaceURI;
 // Introduced in DOM Level 2:
 attribute DOMString prefix;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute DOMString localName;
 // Introduced in DOM Level 2:
 boolean hasAttributes();
 };

 interface NodeList {
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
 };

 interface NamedNodeMap {
 Node getNamedItem(in DOMString name);
 Node setNamedItem(in Node arg)
 raises(DOMException);
 Node removeNamedItem(in DOMString name)
 raises(DOMException);
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
 // Introduced in DOM Level 2:
 Node getNamedItemNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Node setNamedItemNS(in Node arg)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Node removeNamedItemNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 };

 interface CharacterData : Node {
 attribute DOMString data;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval

 readonly attribute unsigned long length;
 DOMString substringData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void appendData(in DOMString arg)
 raises(DOMException);
 void insertData(in unsigned long offset,
 in DOMString arg)

73

dom.idl:

 raises(DOMException);
 void deleteData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void replaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg)
 raises(DOMException);
 };

 interface Attr : Node {
 readonly attribute DOMString name;
 readonly attribute boolean specified;
 attribute DOMString value;
 // raises(DOMException) on setting

 // Introduced in DOM Level 2:
 readonly attribute Element ownerElement;
 };

 interface Element : Node {
 readonly attribute DOMString tagName;
 DOMString getAttribute(in DOMString name);
 void setAttribute(in DOMString name,
 in DOMString value)
 raises(DOMException);
 void removeAttribute(in DOMString name)
 raises(DOMException);
 Attr getAttributeNode(in DOMString name);
 Attr setAttributeNode(in Attr newAttr)
 raises(DOMException);
 Attr removeAttributeNode(in Attr oldAttr)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString name);
 // Introduced in DOM Level 2:
 DOMString getAttributeNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 void setAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName,
 in DOMString value)
 raises(DOMException);
 // Introduced in DOM Level 2:
 void removeAttributeNS(in DOMString namespaceURI,
 in DOMString localName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr getAttributeNodeNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Attr setAttributeNodeNS(in Attr newAttr)
 raises(DOMException);
 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 boolean hasAttribute(in DOMString name);

74

dom.idl:

 // Introduced in DOM Level 2:
 boolean hasAttributeNS(in DOMString namespaceURI,
 in DOMString localName);
 };

 interface Text : CharacterData {
 Text splitText(in unsigned long offset)
 raises(DOMException);
 };

 interface Comment : CharacterData {
 };

 interface CDATASection : Text {
 };

 interface DocumentType : Node {
 readonly attribute DOMString name;
 readonly attribute NamedNodeMap entities;
 readonly attribute NamedNodeMap notations;
 // Introduced in DOM Level 2:
 readonly attribute DOMString publicId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString systemId;
 // Introduced in DOM Level 2:
 readonly attribute DOMString internalSubset;
 };

 interface Notation : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 };

 interface Entity : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 readonly attribute DOMString notationName;
 };

 interface EntityReference : Node {
 };

 interface ProcessingInstruction : Node {
 readonly attribute DOMString target;
 attribute DOMString data;
 // raises(DOMException) on setting

 };

 interface DocumentFragment : Node {
 };

 interface Document : Node {
 readonly attribute DocumentType doctype;
 readonly attribute DOMImplementation implementation;
 readonly attribute Element documentElement;
 Element createElement(in DOMString tagName)

75

dom.idl:

 raises(DOMException);
 DocumentFragment createDocumentFragment();
 Text createTextNode(in DOMString data);
 Comment createComment(in DOMString data);
 CDATASection createCDATASection(in DOMString data)
 raises(DOMException);
 ProcessingInstruction createProcessingInstruction(in DOMString target,
 in DOMString data)
 raises(DOMException);
 Attr createAttribute(in DOMString name)
 raises(DOMException);
 EntityReference createEntityReference(in DOMString name)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString tagname);
 // Introduced in DOM Level 2:
 Node importNode(in Node importedNode,
 in boolean deep)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Element createElementNS(in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 Attr createAttributeNS(in DOMString namespaceURI,
 in DOMString qualifiedName)
 raises(DOMException);
 // Introduced in DOM Level 2:
 NodeList getElementsByTagNameNS(in DOMString namespaceURI,
 in DOMString localName);
 // Introduced in DOM Level 2:
 Element getElementById(in DOMString elementId);
 };
};

#endif // _DOM_IDL_

76

dom.idl:

Appendix D: Java Language Binding
This appendix contains the complete Java Language [Java] binding for the Level 2 Document Object
Model Core.

The Java files are also available as
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/java-binding.zip

org/w3c/dom/DOMException.java:
package org.w3c.dom;

public class DOMException extends RuntimeException {
 public DOMException(short code, String message) {
 super(message);
 this.code = code;
 }
 public short code;
 // ExceptionCode
 public static final short INDEX_SIZE_ERR = 1;
 public static final short DOMSTRING_SIZE_ERR = 2;
 public static final short HIERARCHY_REQUEST_ERR = 3;
 public static final short WRONG_DOCUMENT_ERR = 4;
 public static final short INVALID_CHARACTER_ERR = 5;
 public static final short NO_DATA_ALLOWED_ERR = 6;
 public static final short NO_MODIFICATION_ALLOWED_ERR = 7;
 public static final short NOT_FOUND_ERR = 8;
 public static final short NOT_SUPPORTED_ERR = 9;
 public static final short INUSE_ATTRIBUTE_ERR = 10;
 public static final short INVALID_STATE_ERR = 11;
 public static final short SYNTAX_ERR = 12;
 public static final short INVALID_MODIFICATION_ERR = 13;
 public static final short NAMESPACE_ERR = 14;
 public static final short INVALID_ACCESS_ERR = 15;

}

org/w3c/dom/DOMImplementation.java:
package org.w3c.dom;

public interface DOMImplementation {
 public boolean hasFeature(String feature,
 String version);

 public DocumentType createDocumentType(String qualifiedName,
 String publicId,
 String systemId)
 throws DOMException;

 public Document createDocument(String namespaceURI,
 String qualifiedName,

77

Appendix D: Java Language Binding

 DocumentType doctype)
 throws DOMException;

}

org/w3c/dom/DocumentFragment.java:
package org.w3c.dom;

public interface DocumentFragment extends Node {
}

org/w3c/dom/Document.java:
package org.w3c.dom;

public interface Document extends Node {
 public DocumentType getDoctype();

 public DOMImplementation getImplementation();

 public Element getDocumentElement();

 public Element createElement(String tagName)
 throws DOMException;

 public DocumentFragment createDocumentFragment();

 public Text createTextNode(String data);

 public Comment createComment(String data);

 public CDATASection createCDATASection(String data)
 throws DOMException;

 public ProcessingInstruction createProcessingInstruction(String target,
 String data)
 throws DOMException;

 public Attr createAttribute(String name)
 throws DOMException;

 public EntityReference createEntityReference(String name)
 throws DOMException;

 public NodeList getElementsByTagName(String tagname);

 public Node importNode(Node importedNode,
 boolean deep)
 throws DOMException;

 public Element createElementNS(String namespaceURI,
 String qualifiedName)
 throws DOMException;

 public Attr createAttributeNS(String namespaceURI,

78

org/w3c/dom/DocumentFragment.java:

 String qualifiedName)
 throws DOMException;

 public NodeList getElementsByTagNameNS(String namespaceURI,
 String localName);

 public Element getElementById(String elementId);

}

org/w3c/dom/Node.java:
package org.w3c.dom;

public interface Node {
 // NodeType
 public static final short ELEMENT_NODE = 1;
 public static final short ATTRIBUTE_NODE = 2;
 public static final short TEXT_NODE = 3;
 public static final short CDATA_SECTION_NODE = 4;
 public static final short ENTITY_REFERENCE_NODE = 5;
 public static final short ENTITY_NODE = 6;
 public static final short PROCESSING_INSTRUCTION_NODE = 7;
 public static final short COMMENT_NODE = 8;
 public static final short DOCUMENT_NODE = 9;
 public static final short DOCUMENT_TYPE_NODE = 10;
 public static final short DOCUMENT_FRAGMENT_NODE = 11;
 public static final short NOTATION_NODE = 12;

 public String getNodeName();

 public String getNodeValue()
 throws DOMException;
 public void setNodeValue(String nodeValue)
 throws DOMException;

 public short getNodeType();

 public Node getParentNode();

 public NodeList getChildNodes();

 public Node getFirstChild();

 public Node getLastChild();

 public Node getPreviousSibling();

 public Node getNextSibling();

 public NamedNodeMap getAttributes();

 public Document getOwnerDocument();

 public Node insertBefore(Node newChild,
 Node refChild)

79

org/w3c/dom/Node.java:

 throws DOMException;

 public Node replaceChild(Node newChild,
 Node oldChild)
 throws DOMException;

 public Node removeChild(Node oldChild)
 throws DOMException;

 public Node appendChild(Node newChild)
 throws DOMException;

 public boolean hasChildNodes();

 public Node cloneNode(boolean deep);

 public void normalize();

 public boolean isSupported(String feature,
 String version);

 public String getNamespaceURI();

 public String getPrefix();
 public void setPrefix(String prefix)
 throws DOMException;

 public String getLocalName();

 public boolean hasAttributes();

}

org/w3c/dom/NodeList.java:
package org.w3c.dom;

public interface NodeList {
 public Node item(int index);

 public int getLength();

}

org/w3c/dom/NamedNodeMap.java:
package org.w3c.dom;

public interface NamedNodeMap {
 public Node getNamedItem(String name);

 public Node setNamedItem(Node arg)
 throws DOMException;

 public Node removeNamedItem(String name)
 throws DOMException;

80

org/w3c/dom/NodeList.java:

 public Node item(int index);

 public int getLength();

 public Node getNamedItemNS(String namespaceURI,
 String localName);

 public Node setNamedItemNS(Node arg)
 throws DOMException;

 public Node removeNamedItemNS(String namespaceURI,
 String localName)
 throws DOMException;

}

org/w3c/dom/CharacterData.java:
package org.w3c.dom;

public interface CharacterData extends Node {
 public String getData()
 throws DOMException;
 public void setData(String data)
 throws DOMException;

 public int getLength();

 public String substringData(int offset,
 int count)
 throws DOMException;

 public void appendData(String arg)
 throws DOMException;

 public void insertData(int offset,
 String arg)
 throws DOMException;

 public void deleteData(int offset,
 int count)
 throws DOMException;

 public void replaceData(int offset,
 int count,
 String arg)
 throws DOMException;

}

81

org/w3c/dom/CharacterData.java:

org/w3c/dom/Attr.java:
package org.w3c.dom;

public interface Attr extends Node {
 public String getName();

 public boolean getSpecified();

 public String getValue();
 public void setValue(String value)
 throws DOMException;

 public Element getOwnerElement();

}

org/w3c/dom/Element.java:
package org.w3c.dom;

public interface Element extends Node {
 public String getTagName();

 public String getAttribute(String name);

 public void setAttribute(String name,
 String value)
 throws DOMException;

 public void removeAttribute(String name)
 throws DOMException;

 public Attr getAttributeNode(String name);

 public Attr setAttributeNode(Attr newAttr)
 throws DOMException;

 public Attr removeAttributeNode(Attr oldAttr)
 throws DOMException;

 public NodeList getElementsByTagName(String name);

 public String getAttributeNS(String namespaceURI,
 String localName);

 public void setAttributeNS(String namespaceURI,
 String qualifiedName,
 String value)
 throws DOMException;

 public void removeAttributeNS(String namespaceURI,
 String localName)
 throws DOMException;

 public Attr getAttributeNodeNS(String namespaceURI,

82

org/w3c/dom/Attr.java:

 String localName);

 public Attr setAttributeNodeNS(Attr newAttr)
 throws DOMException;

 public NodeList getElementsByTagNameNS(String namespaceURI,
 String localName);

 public boolean hasAttribute(String name);

 public boolean hasAttributeNS(String namespaceURI,
 String localName);

}

org/w3c/dom/Text.java:
package org.w3c.dom;

public interface Text extends CharacterData {
 public Text splitText(int offset)
 throws DOMException;

}

org/w3c/dom/Comment.java:
package org.w3c.dom;

public interface Comment extends CharacterData {
}

org/w3c/dom/CDATASection.java:
package org.w3c.dom;

public interface CDATASection extends Text {
}

org/w3c/dom/DocumentType.java:
package org.w3c.dom;

public interface DocumentType extends Node {
 public String getName();

 public NamedNodeMap getEntities();

 public NamedNodeMap getNotations();

 public String getPublicId();

 public String getSystemId();

83

org/w3c/dom/Text.java:

 public String getInternalSubset();

}

org/w3c/dom/Notation.java:
package org.w3c.dom;

public interface Notation extends Node {
 public String getPublicId();

 public String getSystemId();

}

org/w3c/dom/Entity.java:
package org.w3c.dom;

public interface Entity extends Node {
 public String getPublicId();

 public String getSystemId();

 public String getNotationName();

}

org/w3c/dom/EntityReference.java:
package org.w3c.dom;

public interface EntityReference extends Node {
}

org/w3c/dom/ProcessingInstruction.java:
package org.w3c.dom;

public interface ProcessingInstruction extends Node {
 public String getTarget();

 public String getData();
 public void setData(String data)
 throws DOMException;

}

84

org/w3c/dom/Notation.java:

Appendix E: ECMAScript Language Binding
This appendix contains the complete ECMAScript [ECMAScript] binding for the Level 2 Document
Object Model Core definitions.

Note: Exceptions handling is only supported by ECMAScript implementation conformant with the
Standard ECMA-262 3rd. Edition ([ECMAScript]).

Prototype Object DOMException
The DOMException class has the following constants:

DOMException.INDEX_SIZE_ERR
This constant is of type Number and its value is 1.

DOMException.DOMSTRING_SIZE_ERR
This constant is of type Number and its value is 2.

DOMException.HIERARCHY_REQUEST_ERR
This constant is of type Number and its value is 3.

DOMException.WRONG_DOCUMENT_ERR
This constant is of type Number and its value is 4.

DOMException.INVALID_CHARACTER_ERR
This constant is of type Number and its value is 5.

DOMException.NO_DATA_ALLOWED_ERR
This constant is of type Number and its value is 6.

DOMException.NO_MODIFICATION_ALLOWED_ERR
This constant is of type Number and its value is 7.

DOMException.NOT_FOUND_ERR
This constant is of type Number and its value is 8.

DOMException.NOT_SUPPORTED_ERR
This constant is of type Number and its value is 9.

DOMException.INUSE_ATTRIBUTE_ERR
This constant is of type Number and its value is 10.

DOMException.INVALID_STATE_ERR
This constant is of type Number and its value is 11.

DOMException.SYNTAX_ERR
This constant is of type Number and its value is 12.

DOMException.INVALID_MODIFICATION_ERR
This constant is of type Number and its value is 13.

DOMException.NAMESPACE_ERR
This constant is of type Number and its value is 14.

DOMException.INVALID_ACCESS_ERR
This constant is of type Number and its value is 15.

Object DOMException
The DOMException object has the following properties:

code
This property is of type Number.

85

Appendix E: ECMAScript Language Binding

Object DOMImplementation
The DOMImplementation object has the following methods:

hasFeature(feature, version)
This method returns a Boolean.
The feature parameter is of type String.
The version parameter is of type String.

createDocumentType(qualifiedName, publicId, systemId)
This method returns a DocumentType object.
The qualifiedName parameter is of type String.
The publicId parameter is of type String.
The systemId parameter is of type String.
This method can raise a DOMException object.

createDocument(namespaceURI, qualifiedName, doctype)
This method returns a Document object.
The namespaceURI parameter is of type String.
The qualifiedName parameter is of type String.
The doctype parameter is a DocumentType object.
This method can raise a DOMException object.

Object DocumentFragment
DocumentFragment has the all the properties and methods of the Node object as well as the
properties and methods defined below.

Object Document
Document has the all the properties and methods of the Node object as well as the properties and
methods defined below.
The Document object has the following properties:

doctype
This read-only property is a DocumentType object.

implementation
This read-only property is a DOMImplementation object.

documentElement
This read-only property is a Element object.

The Document object has the following methods:
createElement(tagName)

This method returns a Element object.
The tagName parameter is of type String.
This method can raise a DOMException object.

createDocumentFragment()
This method returns a DocumentFragment object.

createTextNode(data)
This method returns a Text object.
The data parameter is of type String.

createComment(data)
This method returns a Comment object.
The data parameter is of type String.

createCDATASection(data)
This method returns a CDATASection object.

86

Appendix E: ECMAScript Language Binding

The data parameter is of type String.
This method can raise a DOMException object.

createProcessingInstruction(target, data)
This method returns a ProcessingInstruction object.
The target parameter is of type String.
The data parameter is of type String.
This method can raise a DOMException object.

createAttribute(name)
This method returns a Attr object.
The name parameter is of type String.
This method can raise a DOMException object.

createEntityReference(name)
This method returns a EntityReference object.
The name parameter is of type String.
This method can raise a DOMException object.

getElementsByTagName(tagname)
This method returns a NodeList object.
The tagname parameter is of type String.

importNode(importedNode, deep)
This method returns a Node object.
The importedNode parameter is a Node object.
The deep parameter is of type Boolean.
This method can raise a DOMException object.

createElementNS(namespaceURI, qualifiedName)
This method returns a Element object.
The namespaceURI parameter is of type String.
The qualifiedName parameter is of type String.
This method can raise a DOMException object.

createAttributeNS(namespaceURI, qualifiedName)
This method returns a Attr object.
The namespaceURI parameter is of type String.
The qualifiedName parameter is of type String.
This method can raise a DOMException object.

getElementsByTagNameNS(namespaceURI, localName)
This method returns a NodeList object.
The namespaceURI parameter is of type String.
The localName parameter is of type String.

getElementById(elementId)
This method returns a Element object.
The elementId parameter is of type String.

Prototype Object Node
The Node class has the following constants:

Node.ELEMENT_NODE
This constant is of type Number and its value is 1.

Node.ATTRIBUTE_NODE
This constant is of type Number and its value is 2.

87

Appendix E: ECMAScript Language Binding

Node.TEXT_NODE
This constant is of type Number and its value is 3.

Node.CDATA_SECTION_NODE
This constant is of type Number and its value is 4.

Node.ENTITY_REFERENCE_NODE
This constant is of type Number and its value is 5.

Node.ENTITY_NODE
This constant is of type Number and its value is 6.

Node.PROCESSING_INSTRUCTION_NODE
This constant is of type Number and its value is 7.

Node.COMMENT_NODE
This constant is of type Number and its value is 8.

Node.DOCUMENT_NODE
This constant is of type Number and its value is 9.

Node.DOCUMENT_TYPE_NODE
This constant is of type Number and its value is 10.

Node.DOCUMENT_FRAGMENT_NODE
This constant is of type Number and its value is 11.

Node.NOTATION_NODE
This constant is of type Number and its value is 12.

Object Node
The Node object has the following properties:

nodeName
This read-only property is of type String.

nodeValue
This property is of type String, can raise a DOMException object on setting and can raise
a DOMException object on retrieval.

nodeType
This read-only property is of type Number.

parentNode
This read-only property is a Node object.

childNodes
This read-only property is a NodeList object.

firstChild
This read-only property is a Node object.

lastChild
This read-only property is a Node object.

previousSibling
This read-only property is a Node object.

nextSibling
This read-only property is a Node object.

attributes
This read-only property is a NamedNodeMap object.

ownerDocument
This read-only property is a Document object.

88

Appendix E: ECMAScript Language Binding

namespaceURI
This read-only property is of type String.

prefix
This property is of type String and can raise a DOMException object on setting.

localName
This read-only property is of type String.

The Node object has the following methods:
insertBefore(newChild, refChild)

This method returns a Node object.
The newChild parameter is a Node object.
The refChild parameter is a Node object.
This method can raise a DOMException object.

replaceChild(newChild, oldChild)
This method returns a Node object.
The newChild parameter is a Node object.
The oldChild parameter is a Node object.
This method can raise a DOMException object.

removeChild(oldChild)
This method returns a Node object.
The oldChild parameter is a Node object.
This method can raise a DOMException object.

appendChild(newChild)
This method returns a Node object.
The newChild parameter is a Node object.
This method can raise a DOMException object.

hasChildNodes()
This method returns a Boolean.

cloneNode(deep)
This method returns a Node object.
The deep parameter is of type Boolean.

normalize()
This method has no return value.

isSupported(feature, version)
This method returns a Boolean.
The feature parameter is of type String.
The version parameter is of type String.

hasAttributes()
This method returns a Boolean.

Object NodeList
The NodeList object has the following properties:

length
This read-only property is of type Number.

The NodeList object has the following methods:
item(index)

This method returns a Node object.
The index parameter is of type Number.

89

Appendix E: ECMAScript Language Binding

Note: This object can also be dereferenced using square bracket notation (e.g. obj[1]).
Dereferencing with an integer index is equivalent to invoking the item method with that
index.

Object NamedNodeMap
The NamedNodeMap object has the following properties:

length
This read-only property is of type Number.

The NamedNodeMap object has the following methods:
getNamedItem(name)

This method returns a Node object.
The name parameter is of type String.

setNamedItem(arg)
This method returns a Node object.
The arg parameter is a Node object.
This method can raise a DOMException object.

removeNamedItem(name)
This method returns a Node object.
The name parameter is of type String.
This method can raise a DOMException object.

item(index)
This method returns a Node object.
The index parameter is of type Number.
Note: This object can also be dereferenced using square bracket notation (e.g. obj[1]).
Dereferencing with an integer index is equivalent to invoking the item method with that
index.

getNamedItemNS(namespaceURI, localName)
This method returns a Node object.
The namespaceURI parameter is of type String.
The localName parameter is of type String.

setNamedItemNS(arg)
This method returns a Node object.
The arg parameter is a Node object.
This method can raise a DOMException object.

removeNamedItemNS(namespaceURI, localName)
This method returns a Node object.
The namespaceURI parameter is of type String.
The localName parameter is of type String.
This method can raise a DOMException object.

Object CharacterData
CharacterData has the all the properties and methods of the Node object as well as the properties
and methods defined below.
The CharacterData object has the following properties:

data
This property is of type String, can raise a DOMException object on setting and can raise
a DOMException object on retrieval.

90

Appendix E: ECMAScript Language Binding

length
This read-only property is of type Number.

The CharacterData object has the following methods:
substringData(offset, count)

This method returns a String.
The offset parameter is of type Number.
The count parameter is of type Number.
This method can raise a DOMException object.

appendData(arg)
This method has no return value.
The arg parameter is of type String.
This method can raise a DOMException object.

insertData(offset, arg)
This method has no return value.
The offset parameter is of type Number.
The arg parameter is of type String.
This method can raise a DOMException object.

deleteData(offset, count)
This method has no return value.
The offset parameter is of type Number.
The count parameter is of type Number.
This method can raise a DOMException object.

replaceData(offset, count, arg)
This method has no return value.
The offset parameter is of type Number.
The count parameter is of type Number.
The arg parameter is of type String.
This method can raise a DOMException object.

Object Attr
Attr has the all the properties and methods of the Node object as well as the properties and methods
defined below.
The Attr object has the following properties:

name
This read-only property is of type String.

specified
This read-only property is of type Boolean.

value
This property is of type String and can raise a DOMException object on setting.

ownerElement
This read-only property is a Element object.

Object Element
Element has the all the properties and methods of the Node object as well as the properties and
methods defined below.
The Element object has the following properties:

tagName
This read-only property is of type String.

91

Appendix E: ECMAScript Language Binding

The Element object has the following methods:
getAttribute(name)

This method returns a String.
The name parameter is of type String.

setAttribute(name, value)
This method has no return value.
The name parameter is of type String.
The value parameter is of type String.
This method can raise a DOMException object.

removeAttribute(name)
This method has no return value.
The name parameter is of type String.
This method can raise a DOMException object.

getAttributeNode(name)
This method returns a Attr object.
The name parameter is of type String.

setAttributeNode(newAttr)
This method returns a Attr object.
The newAttr parameter is a Attr object.
This method can raise a DOMException object.

removeAttributeNode(oldAttr)
This method returns a Attr object.
The oldAttr parameter is a Attr object.
This method can raise a DOMException object.

getElementsByTagName(name)
This method returns a NodeList object.
The name parameter is of type String.

getAttributeNS(namespaceURI, localName)
This method returns a String.
The namespaceURI parameter is of type String.
The localName parameter is of type String.

setAttributeNS(namespaceURI, qualifiedName, value)
This method has no return value.
The namespaceURI parameter is of type String.
The qualifiedName parameter is of type String.
The value parameter is of type String.
This method can raise a DOMException object.

removeAttributeNS(namespaceURI, localName)
This method has no return value.
The namespaceURI parameter is of type String.
The localName parameter is of type String.
This method can raise a DOMException object.

getAttributeNodeNS(namespaceURI, localName)
This method returns a Attr object.
The namespaceURI parameter is of type String.
The localName parameter is of type String.

92

Appendix E: ECMAScript Language Binding

setAttributeNodeNS(newAttr)
This method returns a Attr object.
The newAttr parameter is a Attr object.
This method can raise a DOMException object.

getElementsByTagNameNS(namespaceURI, localName)
This method returns a NodeList object.
The namespaceURI parameter is of type String.
The localName parameter is of type String.

hasAttribute(name)
This method returns a Boolean.
The name parameter is of type String.

hasAttributeNS(namespaceURI, localName)
This method returns a Boolean.
The namespaceURI parameter is of type String.
The localName parameter is of type String.

Object Text
Text has the all the properties and methods of the CharacterData object as well as the properties
and methods defined below.
The Text object has the following methods:

splitText(offset)
This method returns a Text object.
The offset parameter is of type Number.
This method can raise a DOMException object.

Object Comment
Comment has the all the properties and methods of the CharacterData object as well as the
properties and methods defined below.

Object CDATASection
CDATASection has the all the properties and methods of the Text object as well as the properties
and methods defined below.

Object DocumentType
DocumentType has the all the properties and methods of the Node object as well as the properties
and methods defined below.
The DocumentType object has the following properties:

name
This read-only property is of type String.

entities
This read-only property is a NamedNodeMap object.

notations
This read-only property is a NamedNodeMap object.

publicId
This read-only property is of type String.

systemId
This read-only property is of type String.

internalSubset
This read-only property is of type String.

93

Appendix E: ECMAScript Language Binding

Object Notation
Notation has the all the properties and methods of the Node object as well as the properties and
methods defined below.
The Notation object has the following properties:

publicId
This read-only property is of type String.

systemId
This read-only property is of type String.

Object Entity
Entity has the all the properties and methods of the Node object as well as the properties and
methods defined below.
The Entity object has the following properties:

publicId
This read-only property is of type String.

systemId
This read-only property is of type String.

notationName
This read-only property is of type String.

Object EntityReference
EntityReference has the all the properties and methods of the Node object as well as the properties
and methods defined below.

Object ProcessingInstruction
ProcessingInstruction has the all the properties and methods of the Node object as well as the
properties and methods defined below.
The ProcessingInstruction object has the following properties:

target
This read-only property is of type String.

data
This property is of type String and can raise a DOMException object on setting.

94

Appendix E: ECMAScript Language Binding

Appendix F: Acknowledgements
Many people contributed to this specification, including members of the DOM Working Group and the
DOM Interest Group. We especially thank the following:

Lauren Wood (SoftQuad Software Inc., chair), Andrew Watson (Object Management Group), Andy
Heninger (IBM), Arnaud Le Hors (W3C and IBM), Ben Chang (Oracle), Bill Smith (Sun), Bill Shea
(Merrill Lynch), Bob Sutor (IBM), Chris Lovett (Microsoft), Chris Wilson (Microsoft), David Brownell
(Sun), David Singer (IBM), Don Park (invited), Eric Vasilik (Microsoft), Gavin Nicol (INSO), Ian Jacobs
(W3C), James Clark (invited), James Davidson (Sun), Jared Sorensen (Novell), Joe Kesselman (IBM), Joe
Lapp (webMethods), Joe Marini (Macromedia), Johnny Stenback (Netscape), Jonathan Marsh
(Microsoft), Jonathan Robie (Texcel Research and Software AG), Kim Adamson-Sharpe (SoftQuad
Software Inc.), Laurence Cable (Sun), Mark Davis (IBM), Mark Scardina (Oracle), Martin Dürst (W3C),
Mick Goulish (Software AG), Mike Champion (Arbortext and Software AG), Miles Sabin (Cromwell
Media), Patti Lutsky (Arbortext), Paul Grosso (Arbortext), Peter Sharpe (SoftQuad Software Inc.), Phil
Karlton (Netscape), Philippe Le Hégaret (W3C, W3C team contact), Ramesh Lekshmynarayanan (Merrill
Lynch), Ray Whitmer (iMall, Excite@Home and Netscape), Rich Rollman (Microsoft), Rick Gessner
(Netscape), Scott Isaacs (Microsoft), Sharon Adler (INSO), Steve Byrne (JavaSoft), Tim Bray (invited),
Tom Pixley (Netscape), Vidur Apparao (Netscape), Vinod Anupam (Lucent).

Thanks to all those who have helped to improve this specification by sending suggestions and corrections.

F.1: Production Systems
This specification was written in XML. The HTML, OMG IDL, Java and ECMA Script bindings were all
produced automatically.

Thanks to Joe English, author of cost, which was used as the basis for producing DOM Level 1. Thanks
also to Gavin Nicol, who wrote the scripts which run on top of cost. Arnaud Le Hors and Philippe Le
Hégaret maintained the scripts.

For DOM Level 2, we used Xerces as the basis DOM implementation and wish to thank the authors.
Philippe Le Hégaret and Arnaud Le Hors wrote the Java programs which are the DOM application.

Thanks also to Jan Kärrman, author of html2ps, which we use in creating the PostScript version of the
specification.

95

Appendix F: Acknowledgements

http://www.tdb.uu.se/~jan/html2ps.html
http://dev.w3.org/cvsweb/java/classes/org/w3c/tools/specgenerator/
http://xml.apache.org/xerces-j
http://www.flightlab.com/cost

96

F.1: Production Systems

Glossary
Editors

Arnaud Le Hors, IBM
Lauren Wood, SoftQuad Software Inc.
Robert S. Sutor, IBM (for DOM Level 1)

Several of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions for more information.

16-bit unit
The base unit of a DOMString [p.17] . This indicates that indexing on a DOMString occurs in
units of 16 bits. This must not be misunderstood to mean that a DOMString can store arbitrary
16-bit units. A DOMString is a character string encoded in UTF-16; this means that the restrictions
of UTF-16 as well as the other relevant restrictions on character strings must be maintained. A single
character, for example in the form of a numeric character reference, may correspond to one or two
16-bit units.
For more information, see [Unicode] and [ISO/IEC 10646].

ancestor
An ancestor node of any node A is any node above A in a tree model of a document, where "above"
means "toward the root."

API
An API is an application programming interface, a set of functions or methods used to access some
functionality.

child
A child is an immediate descendant node of a node.

client application
A [client] application is any software that uses the Document Object Model programming interfaces
provided by the hosting implementation to accomplish useful work. Some examples of client
applications are scripts within an HTML or XML document.

COM
COM is Microsoft’s Component Object Model [COM], a technology for building applications from
binary software components.

convenience
A convenience method is an operation on an object that could be accomplished by a program
consisting of more basic operations on the object. Convenience methods are usually provided to
make the API easier and simpler to use or to allow specific programs to create more optimized
implementations for common operations. A similar definition holds for a convenience property.

data model
A data model is a collection of descriptions of data structures and their contained fields, together
with the operations or functions that manipulate them.

descendant
A descendant node of any node A is any node below A in a tree model of a document, where "above"
means "toward the root."

97

Glossary

ECMAScript
The programming language defined by the ECMA-262 standard [ECMAScript]. As stated in the
standard, the originating technology for ECMAScript was JavaScript [JavaScript]. Note that in the
ECMAScript Language binding, the word "property" is used in the same sense as the IDL term
"attribute."

element
Each document contains one or more elements, the boundaries of which are either delimited by
start-tags and end-tags, or, for empty elements by an empty-element tag. Each element has a type,
identified by name, and may have a set of attributes. Each attribute has a name and a value. See
Logical Structures in XML [XML].

information item
An information item is an abstract representation of some component of an XML document. See the
[Infoset] for details.

hosting implementation
A [hosting] implementation is a software module that provides an implementation of the DOM
interfaces so that a client application can use them. Some examples of hosting implementations are
browsers, editors and document repositories.

HTML
The HyperText Markup Language (HTML) is a simple markup language used to create hypertext
documents that are portable from one platform to another. HTML documents are SGML documents
with generic semantics that are appropriate for representing information from a wide range of
applications. [HTML4.0]

inheritance
In object-oriented programming, the ability to create new classes (or interfaces) that contain all the
methods and properties of another class (or interface), plus additional methods and properties. If class
(or interface) D inherits from class (or interface) B, then D is said to be derived from B. B is said to
be a base class (or interface) for D. Some programming languages allow for multiple inheritance, that
is, inheritance from more than one class or interface.

interface
An interface is a declaration of a set of methods with no information given about their
implementation. In object systems that support interfaces and inheritance, interfaces can usually
inherit from one another.

language binding
A programming language binding for an IDL specification is an implementation of the interfaces in
the specification for the given language. For example, a Java language binding for the Document
Object Model IDL specification would implement the concrete Java classes that provide the
functionality exposed by the interfaces.

local name
A local name is the local part of a qualified name. This is called the local part in Namespaces in
XML [Namespaces].

method
A method is an operation or function that is associated with an object and is allowed to manipulate
the object’s data.

model
A model is the actual data representation for the information at hand. Examples are the structural
model and the style model representing the parse structure and the style information associated with a

98

Glossary

http://www.w3.org/TR/1998/REC-xml-19980210#sec-logical-struct

document. The model might be a tree, or a directed graph, or something else.
namespace prefix

A namespace prefix is a string that associates an element or attribute name with a namespace URI in
XML. See namespace prefix in Namespaces in XML [Namespaces].

namespace URI
A namespace URI is a URI that identifies an XML namespace. Strictly speaking, this actually is a
namespace URI reference. This is called the namespace name in Namespaces in XML [Namespaces].

object model
An object model is a collection of descriptions of classes or interfaces, together with their member
data, member functions, and class-static operations.

parent
A parent is an immediate ancestor node of a node.

qualified name
A qualified name is the name of an element or attribute defined as the concatenation of a local name
(as defined in this specification), optionally preceded by a namespace prefix and colon character. See
Qualified Names in Namespaces in XML [Namespaces].

readonly node
A readonly node is a node that is immutable. This means its list of children, its content, and its
attributes, when it is an element, cannot be changed in any way. However, a readonly node can
possibly be moved, when it is not itself contained in a readonly node.

root node
The root node is the unique node that is not a child of any other node. All other nodes are children or
other descendants of the root node.

sibling
Two nodes are siblings if and only if they have the same parent node.

string comparison
When string matching is required, it is to occur as though the comparison was between 2 sequences
of code points from the Unicode 3.0 standard [Unicode].

token
An information item such as an XML Name which has been tokenized [p.99] .

tokenized
The description given to various information items (for example, attribute values of various types,
but not including the StringType CDATA) after having been processed by the XML processor. The
process includes stripping leading and trailing white space, and replacing multiple space characters
by one. See the definition of tokenized type.

well-formed document
A document is well-formed if it is tag valid and entities are limited to single elements (i.e., single
sub-trees). See Well-Formed XML Documents in XML [XML].

XML
Extensible Markup Language (XML) is an extremely simple dialect of SGML. The goal is to enable
generic SGML to be served, received, and processed on the Web in the way that is now possible with
HTML. XML [XML] has been designed for ease of implementation and for interoperability with
both SGML and HTML.

XML name
See XML name in the XML specification [XML].

99

Glossary

http://www.w3.org/TR/1998/REC-xml-19980210#NT-Name
http://www.w3.org/TR/1998/REC-xml-19980210#sec-well-formed
http://www.w3.org/TR/1999/REC-xml-names-19990114/#ns-qualnames

XML namespace
An XML namespace is a collection of names, identified by a URI reference [RFC2396], which are
used in XML documents as element types and attribute names. [Namespaces]

100

Glossary

References
For the latest version of any W3C specification please consult the list of W3C Technical Reports available
at http://www.w3.org/TR.

H.1: Normative references
Charmod

W3C (World Wide Web Consortium) Character Model for the World Wide Web, November 1999.
Available at http://www.w3.org/TR/1999/WD-charmod-19991129

ECMAScript
ECMA (European Computer Manufacturers Association) ECMAScript Language Specification.
Available at http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM

HTML4.0
W3C (World Wide Web Consortium) HTML 4.0 Specification, April 1998. Available at
http://www.w3.org/TR/1998/REC-html40-19980424

ISO/IEC 10646
ISO (International Organization for Standardization). ISO/IEC 10646-1:2000 (E). Information
technology - Universal Multiple-Octet Coded Character Set (UCS) - Part 1: Architecture and Basic
Multilingual Plane. [Geneva]: International Organization for Standardization.

Java
Sun Microsystems Inc. The Java Language Specification, James Gosling, Bill Joy, and Guy Steele,
September 1996. Available at http://java.sun.com/docs/books/jls

Namespaces
W3C (World Wide Web Consortium) Namespaces in XML , January 1999. Available at
http://www.w3.org/TR/1999/REC-xml-names-19990114

OMGIDL
OMG (Object Management Group) IDL (Interface Definition Language) defined in The Common
Object Request Broker: Architecture and Specification, version 2.3.1, October 1999. Available from
http://www.omg.org/

RFC2396
IETF (Internet Engineering Task Force) RFC 2396: Uniform Resource Identifiers (URI): Generic
Syntax, eds. T. Berners-Lee, R. Fielding, L. Masinter. August 1998. Available at
http://www.ietf.org/rfc/rfc2396.txt

Unicode
The Unicode Consortium. The Unicode Standard, Version 3.0., February 2000. Available at
http://www.unicode.org/unicode/standard/versions/Unicode3.0.html.

XML
W3C (World Wide Web Consortium) Extensible Markup Language (XML) 1.0, February 1998.
Available at http://www.w3.org/TR/1998/REC-xml-19980210

101

References

http://www.w3.org/TR/1998/REC-xml-19980210
http://www.unicode.org/unicode/standard/versions/Unicode3.0.html
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.omg.org/
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://java.sun.com/docs/books/jls
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR/1999/WD-charmod-19991129
http://www.w3.org/TR

H.2: Informative references
DOM Level 2 CSS

W3C (World Wide Web Consortium) Document Object Model Level 2 CSS. Available at
http://www.w3.org/TR/DOM-Level-2-Style/css

COM
Microsoft Corp. The Component Object Model. Available at http://www.microsoft.com/com

CORBA
OMG (Object Management Group) The Common Object Request Broker: Architecture and
Specification, version 2.3.1, October 1999. Available from http://www.omg.org/

DOM Level 1
W3C (World Wide Web Consortium) DOM Level 1 Specification, October 1998. Available at
http://www.w3.org/TR/REC-DOM-Level-1

DOM Level 2 HTML
W3C (World Wide Web Consortium) Document Object Model Level 2 HTML Specification.
Available at http://www.w3.org/TR/DOM-Level-2-HTML

DOM Level 2 Events
W3C (World Wide Web Consortium) Document Object Model Level 2 Events Specification.
Available at http://www.w3.org/TR/DOM-Level-2-Events

Infoset
W3C (World Wide Web Consortium) XML Information Set, December 1999. Available at
http://www.w3.org/TR/xml-infoset

JavaIDL
Sun Microsystems Inc. Java IDL. Available at http://java.sun.com/products/jdk/1.2/docs/guide/idl

JavaScript
Netscape Communications Corp. JavaScript Resources. Available at
http://developer.netscape.com/tech/javascript/resources.html

JScript
Microsoft Corp. JScript Resources. Available at http://msdn.microsoft.com/scripting/default.htm

MIDL
Microsoft Corp. MIDL Language Reference. Available at
http://msdn.microsoft.com/library/psdk/midl/mi-laref_1r1h.htm

DOM Level 2 Style Sheets
W3C (World Wide Web Consortium) Document Object Model Level 2 Style Sheets. Available at
http://www.w3.org/TR/DOM-Level-2-Style/stylesheets

DOM Level 2 Traversal
W3C (World Wide Web Consortium) Document Object Model Level 2 Traversal. Available at
http://www.w3.org/TR/DOM-Level-2-Traversal-Range/traversal

DOM Level 2 Range
W3C (World Wide Web Consortium) Document Object Model Level 2 Range. Available at
http://www.w3.org/TR/DOM-Level-2-Traversal-Range/ranges

DOM Level 2 Views
W3C (World Wide Web Consortium) Document Object Model Level 2 Views Specification.
Available at http://www.w3.org/TR/DOM-Level-2-Views

102

H.2: Informative references

http://www.w3.org/TR/DOM-Level-2-Views
http://www.w3.org/TR/DOM-Level-2-Traversal-Range/ranges.html
http://www.w3.org/TR/DOM-Level-2-Traversal-Range/traversal
http://www.w3.org/TR/DOM-Level-2-Style/stylesheets
http://msdn.microsoft.com/library/psdk/midl/mi-laref_1r1h.htm
http://msdn.microsoft.com/scripting/default.htm
http://developer.netscape.com/tech/javascript/resources.html
http://java.sun.com/products/jdk/1.2/docs/guide/idl
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/DOM-Level-2-Events
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/REC-DOM-Level-1
http://www.omg.org/
http://www.microsoft.com/com
http://www.w3.org/TR/DOM-Level-2-Style/css

XPointer
W3C (World Wide Web Consortium) XML Pointer Language (XPointer), June 2000. Available at
http://www.w3.org/TR/xptr

103

H.2: Informative references

http://www.w3.org/TR/xptr

104

H.2: Informative references

Index
16-bit unit 17, 18, 47, 49, 49, 49, 50, 60,
97

ancestor 40, 42, 38, 97 API 9, 9, 11, 17, 17, 97 appendChild

appendData Attr ATTRIBUTE_NODE

attributes

CDATA_SECTION_NODE CDATASection CharacterData

Charmod 18, 101 child 15, 19, 97 childNodes

client application 9, 97 cloneNode COM 9, 17, 97, 102

Comment COMMENT_NODE convenience 26, 52, 97

CORBA 9, 102 createAttribute createAttributeNS

createCDATASection createComment createDocument

createDocumentFragment createDocumentType createElement

createElementNS createEntityReference createProcessingInstruction

createTextNode

data 48, 66 data model 9, 97 deleteData

descendant 19, 32, 55, 55, 64, 65, 97 doctype Document

DOCUMENT_FRAGMENT_NODE DOCUMENT_NODE DOCUMENT_TYPE_NODE

documentElement DocumentFragment DocumentType

DOM Level 1 12, 102 DOM Level 2 CSS 12, 102 DOM Level 2 Events 12, 102

DOM Level 2 HTML 12, 20, 61, 102 DOM Level 2 Range 12, 102
DOM Level 2 Style Sheets 12,
102

DOM Level 2 Traversal 12, 102 DOM Level 2 Views 12, 102 DOMException

DOMImplementation DOMString DOMSTRING_SIZE_ERR

DOMTimeStamp

ECMAScript 9, 16, 98, 101 Element 52, 15, 16, 18, 19, 98 ELEMENT_NODE

entities Entity ENTITY_NODE

ENTITY_REFERENCE_NODE EntityReference

firstChild

105

Index

getAttribute getAttributeNode getAttributeNodeNS

getAttributeNS getElementById getElementsByTagName 31, 55

getElementsByTagNameNS 32, 55 getNamedItem getNamedItemNS

hasAttribute hasAttributeNS hasAttributes

hasChildNodes hasFeature HIERARCHY_REQUEST_ERR

hosting implementation 12, 98 HTML 9, 98 HTML4.0 98, 101

implementation importNode INDEX_SIZE_ERR

information item 60, 98 Infoset 9, 11, 98, 102 inheritance 17, 98

insertBefore insertData interface 9, 98

internalSubset INUSE_ATTRIBUTE_ERR INVALID_ACCESS_ERR

INVALID_CHARACTER_ERR INVALID_MODIFICATION_ERR INVALID_STATE_ERR

ISO/IEC 10646 17, 97, 101 isSupported item 43, 45

Java 9, 101 JavaIDL 9, 102 JavaScript 9, 98, 102

JScript 9, 102

language binding 9, 98 lastChild length 43, 44, 49

live 16, 43, 44
local name 29, 27, 32, 45, 46, 54, 57, 55,
59, 55, 56, 98

localName

method 12, 98 MIDL 9, 102 model 9, 98

name 52, 63 NamedNodeMap
namespace prefix 19, 30, 38, 64,
65, 99

namespace URI 19, 22, 29, 27, 32, 37, 45,
46, 54, 58, 57, 55, 59, 55, 56, 65, 99

NAMESPACE_ERR
Namespaces 19, 22, 29, 37, 38,
98, 99, 99, 99, 100, 101

namespaceURI nextSibling NO_DATA_ALLOWED_ERR

NO_MODIFICATION_ALLOWED_ERR Node NodeList

nodeName nodeType nodeValue

normalize NOT_FOUND_ERR NOT_SUPPORTED_ERR

Notation NOTATION_NODE notationName

notations

106

Index

object model 9, 11, 99 OMGIDL 9, 17, 101 ownerDocument

ownerElement

parent 38, 99 parentNode prefix

previousSibling PROCESSING_INSTRUCTION_NODE ProcessingInstruction

publicId 63, 64, 65

qualified name 19, 23, 22, 29, 27, 38, 37,
58, 99

readonly node 39, 64, 64, 65, 99 removeAttribute removeAttributeNode

removeAttributeNS removeChild removeNamedItem

removeNamedItemNS replaceChild replaceData

RFC2396 100, 101 root node 25, 99

setAttribute setAttributeNode setAttributeNodeNS

setAttributeNS setNamedItem setNamedItemNS

sibling 24, 60, 99 specified splitText

string comparison 18, 19, 99 substringData SYNTAX_ERR

systemId 63, 64, 65

tagName target Text

TEXT_NODE token 66, 99 tokenized 51, 99

Unicode 17, 97, 99, 101

value

well-formed document 24, 99 WRONG_DOCUMENT_ERR

XML 9, 64, 99, 98, 99, 99, 101 XML name 24, 99 XML namespace 19, 100

XPointer 41, 103

107

Index

	Document Object Model †DOM‡ Level 2 Core Specification
	Version 1.0
	W3C Recommendation 13 November, 2000
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	What is the Document Object Model?
	Introduction
	What the Document Object Model is
	What the Document Object Model is not
	Where the Document Object Model came from
	Entities and the DOM Core
	Conformance
	DOM Interfaces and DOM Implementations

	1. Document Object Model Core
	1.1. Overview of the DOM Core Interfaces
	1.1.1. The DOM Structure Model
	1.1.2. Memory Management
	1.1.3. Naming Conventions
	1.1.4. Inheritance vs. Flattened Views of the API
	1.1.5. The DOMString type
	1.1.6. The DOMTimeStamp type
	1.1.7. String comparisons in the DOM
	1.1.8. XML Namespaces

	1.2. Fundamental Interfaces
	1.3. Extended Interfaces

	Appendix A: Changes
	A.1: Changes between DOM Level 1 Core and DOM Level 2 Core
	A.1.1: Changes to DOM Level 1 Core interfaces and exceptions
	A.1.2: New features
	A.1.2.1: New types

	Appendix B: Accessing code point boundaries
	B.1: Introduction
	B.2: Methods

	Appendix C: IDL Definitions
	
	dom.idl:

	Appendix D: Java Language Binding
	
	org/w3c/dom/DOMException.java:
	org/w3c/dom/DOMImplementation.java:
	org/w3c/dom/DocumentFragment.java:
	org/w3c/dom/Document.java:
	org/w3c/dom/Node.java:
	org/w3c/dom/NodeList.java:
	org/w3c/dom/NamedNodeMap.java:
	org/w3c/dom/CharacterData.java:
	org/w3c/dom/Attr.java:
	org/w3c/dom/Element.java:
	org/w3c/dom/Text.java:
	org/w3c/dom/Comment.java:
	org/w3c/dom/CDATASection.java:
	org/w3c/dom/DocumentType.java:
	org/w3c/dom/Notation.java:
	org/w3c/dom/Entity.java:
	org/w3c/dom/EntityReference.java:
	org/w3c/dom/ProcessingInstruction.java:

	Appendix E: ECMAScript Language Binding
	Appendix F: Acknowledgements
	F.1: Production Systems

	Glossary
	References
	H.1: Normative references
	H.2: Informative references

	Index

