next contents properties index

W&C Scalable Vector Graphics (SVG)
1.0 Specification

W3C Working Draft 03 December 1999

Thisversion: http://www.w3.org/TR/1999/12/\WD-SV G-19991203/
Latest version: http://www.w3.ora/TR/SVG
Previous version: http://www.w3.0rg/1999/08/WD-SV G-19990812/

Editor: Jon Ferraiolo <jferraio@adobe.com>

Authors: John Bowler, Microsoft Corporation <johnbo@microsoft.com>
Milt Capsimalis, Autodesk Inc. <milt@autodesk.com>
Richard Cohn, Adobe Systems Incorporated <cohn@adobe.com>
David Dodds, Open Text <ddodds@opentext.com>
Andrew Donoho, IBM <awd@us.ibm.com>
David Duce, RAL (CCLRC) <d.a.duce@rl.ac.uk>
Jerry Evans, Sun Microsystems <jerry.evans@Eng.sun.com>
Jon Ferraiolo, Adobe Systems Incorporated <jferraio@adobe.com>
Scott Furman, Netscape Communications Corporation <fur@netscape.com>
Peter Graffagnino, Apple <pgraff @apple.com>
Rick Graham, BitFlash Graphics Inc. <rick@bitflash.com>
L ofton Henderson, OA SIS, <lofton@qgwestinternet.net>
Alan Hester, Xerox Corporation <Alan.Hester @usa.xerox.com>
Bob Hopgood, RAL (CCLRC) <frah@inf.rl.ac.uk>
Christophe Jolif, ILOG <jolif @ilog.fr>
Kelvin Lawrence, IBM <klawrenc@us.ibm.com>
ChrisLilley, W3C <chris@w3.org>
Philip Mansfield, Inso Corporation <philipm@schemasoft.com>
Kevin McCluskey, Netscape Communications Corporation <kmcclusk @netscape.com>
Tuan Nguyen, Microsoft Corporation <tuann@microsoft.com>
Troy Sandal, Visio Corporation <TroyS@visio.com>
Peter Santangeli, Macromedia <psantangeli @macromedia.com>
Haroon Sheikh, Corel Corporation <haroons@corel.ca>
Gavriel State, Corel Corporation <gavriel SQCOREL.CA>
Robert Stevahn, Hewlett-Packard Company <rstevahn@boi.hp.com>
Shenxue Zhou, Quark <szhou@quark.com>

http://www.w3.org/
http://www.w3.org/TR/1999/12/WD-SVG-19991203/
http://www.w3.org/TR/SVG
http://www.w3.org/1999/08/WD-SVG-19990812/
mailto:jferraio@adobe.com
mailto:johnbo@microsoft.com
mailto:milt@autodesk.com
mailto:cohn@adobe.com
mailto:ddodds@opentext.com
mailto:awd@us.ibm.com
mailto:d.a.duce@rl.ac.uk
mailto:jerry.evans@Eng.sun.com
mailto:jferraio@adobe.com
mailto:fur@netscape.com
mailto:pgraff@apple.com
mailto:rick@bitflash.com
mailto:lofton@qwestinternet.net
mailto:Alan.Hester@usa.xerox.com
mailto:frah@inf.rl.ac.uk
mailto:jolif@ilog.fr
mailto:klawrenc@us.ibm.com
mailto:chris@w3.org
mailto:philipm@schemasoft.com
mailto:kmcclusk@netscape.com
mailto:tuann@microsoft.com
mailto:TroyS@visio.com
mailto:psantangeli@macromedia.com
mailto:haroons@corel.ca
mailto:gavriels@COREL.CA
mailto:rstevahn@boi.hp.com
mailto:szhou@quark.com

Abstract

This specification defines the features and syntax for Scalable Vector Graphics (SVG), alanguage for
describing two-dimensional vector and mixed vector/raster graphicsin XML.

Status of this document

This document is a public review draft version of the SV G specification. This working draft attempts to
address Last Call review comments from the previous public working draft (the "Last Call" draft of 12
August 1999) plus modifications resulting from continuing collaboration with other working groups and
continuing work within the SV G working group.

An accumulative list of changes to the specification since the first public working draft of SVG (05
February 1999) is supplied in Appendix |: Change History.

One area of current activity where some changes are expected is the detailed definition of some of
SVG'sDOM interfaces.

Thisisadraft document and might be updated, replaced or obsoleted by other documents at any time.
While we do not anticipate substantial changes, we still caution that further changes are possible. It is
inappropriate to use this document as reference material or to cite it as other than "work in progress".

We explicitly invite comments on this specification. Please send them to svg-comments@w3.org.

The SV G working group has been using a staged approach. Initially, the working group developed a
detailed set of SVG Requirements, which are listed in SV G Requirements. These requirements were

posted for public review initially in October 1998. For the most part, the specification has been
developed to provide the feature set listed in the requirements document. At some point, an updated
version of SVG Requirements might be posted which contains detailed editorial comments about which
requirements have been addressed in this draft (along with hyperlinks to the relevant sections of the
specification) and notes about which requirements have not been addressed yet and why.

Public discussion of SV G features takes place on www-svg@wa3.org, which is an automatically archived

email list. Information on how to subscribe to public W3C email lists can be found at
http://www.w3.org/Mail/Request.

The home page for the W3C graphics activity is http://www.w3.org/Graphics/Activity.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.0rg/TR.

Available formats

The SVG specification is available in the following formats. (In future versions, the specification's
vector drawings will be available in both SV G and raster image formats. For now, only raster image
formats are available.)

HTML 4.0:

file:///d|/jon/svgspec/reqts.html
file:///d|/jon/svgspec/reqts.html
http://www.w3.org/Mail/Lists.html#www-svg
http://lists.w3.org/Archives/Public/www-svg/
http://www.w3.org/Mail/Lists
http://www.w3.org/Graphics/Activity
http://www.w3.org/TR

http://www.w3.0rg/TR/1999/12/WD-SV G-19991203/index.html
azipfile
http://www.w3.0rg/TR/1999/12/WD-SV G-19991203.zip

and aPDF file:
http://www.w3.0org/TR/1999/12/WD-SV G-19991203.pdf.

In case of adiscrepancy between the various forms of the specification, the HTML is considered the
definitive version.

Available languages

The English version of this specification is the only normative version. However, for translations in
other languages see http://www.w3.org/Graphics/SV G/svg-updates/trangl ations.html.

Quick Table of Contents

« 1 Introduction

o 2 3SVG Concepts

» 3Basic Data Types and Interfaces

o 4 SVG Rendering Model

« 5Styling

o 6 SVG Document Structure

7 Coordinate Systems, Transformations and Units
« 8Paths

« 9 Basic Shapes

o+ 10 Text

11 Painting: Filling, Stroking and Marker Symbols
e 12 Color

» 13 Gradients and Patterns

14 Clipping, Masking and Compositing
« 15 Filter Effects

« 16 Interactivity

o 17 Linking

» 18 Scripting

o 19 Animation

« 20 Fonts

o 21 Metadata

http://www.w3.org/TR/1999/12/WD-SVG-19991203.zip
http://www.w3.org/TR/1999/12/WD-SVG-19991203.pdf
http://www.w3.org/Graphics/SVG/svg-updates/translations.html

o 22 Backwards Compatibility

« 23 Extensibility

« Appendix A: Document Type Definition

« Appendix B: SVG's Document Object Model (DOM)
« Appendix C: Implementation Requirements

e Appendix D: Conformance Criteria

o Appendix E: Accessibility Support

o Appendix F: Internationalization Support

e Appendix G: Minimizing SVG File Sizes

o Appendix |: References

o Appendix |: Change History

The following sections have not been written yet, but are expected to be be present in later versions of
this specification:

« Appendix J. Element, attribute and property index

o Appendix K: Index

Full Table of Contents

« 1 Introduction
o 1.1 About SVG
o 1.2SVG MIME Type
o 1.3 Compatibility with Other Standards Efforts
o 1.4 Terminology
o 1.5 Definitions
o 1.6 Error processing
o 2 SVG Concepts
o 3 Basic Data Types and Interfaces

o 3.1 Basic datatypes
o 3.2Basic DOM interfaces

» 3.2.1 Overview

s 3.2.2 Interface SVGAngle

= 3.2.3 Interface SV GInteger

» 3.2.4 Interface SV GL ength
3.2.5 Interface SV GL engthL st
3.2.6 Interface SV GNumber

s 3.2.7 Interface SV GRect
e 4 SVG Rendering Model
o 4.1 Introduction

o 4.2 The painters model
0 4.3 Rendering Order

o 4.4 Grouping
o 4.5 Types of graphics elements

= 4.5.1 Painting shapes and text

s 4.5.2 Painting raster images

o 4.6 Filtering painted regions

o 4.7 Clipping, masking and object opacity

o 4.8 Parent Compositing
o 5Styling

o 5.1 SVG'sUse of Cascading Style Sheets

o 5.2 Referencing External Style Sheets

o 5.3 The'style' element

o 5.4 The class attribute

o 5.5 The style attribute

o 5.6 Cascading and Inheritance of CSS Properties

o 5.7 The Scope/Range of CSS Styles

o 5.8 The'display’ property

o 5.9 Default style sheet for SVG

o 5.10 DOM interfaces

= 5.10.1 Interface SV GStyleElement

o 6 SVG Document Structure

o 6.1 Defining an SV G document fragment: the 'svg' e ement

s 6.1.1 Overview
s 6.1.2 The'svg' element
o 6.2 Grouping and Naming Collections of Drawing Elements: the 'g' e ement

= 6.2.1 Overview
s 6.2.2The'g element
0 6.3 References and the 'defs element
= 6.3.1 Overview
= 6.3.2 URI reference attributes

s 6.3.3 The'defs element
0 6.4 The'desc' and 'title' elements

o 6.5 The'symbol' element

0 6.6 The'use' element

o 6.7 The'image' e ement

o 6.8 Conditional processing

= 6.8.1 Conditional processing overview
= 6.8.2 The 'switch' element
= 6.8.3 The system-required attribute
= 6.8.4 The system-language attribute
0 6.9 DOM interfaces
= 6.9.1 Overview
= 6.9.2 Interface SV GDocument
= 6.9.3 The getSV GDocument method
= 6.9.4 Interface SV GElement
= 6.9.5 Interface SV GStyledElement
= 6.9.6 Interface SV GTransformedElement
= 6.9.7 Interface SV GStyledAndTransformedElement
= 6.9.8 Interface SVGSV GElement
= 6.9.9 Interface SV GGElement
= 6.9.10 Interface SV GDefsElement
= 6.9.11 Interface SV GDescElement
= 6.9.12 Interface SV GTitleElement
= 6.9.13 Interface SV GUseElement
= 6.9.14 Interface SV GlmageElement
= 6.9.15 Interface SV GSymbol Element
« 7 Coordinate Systems, Transformations and Units

o 7.1 Introduction

o 7.2 Theinitia viewport

o 7.3 Theinitia coordinate system

o 7.4 Coordinate system transformations
o 7.5 Nested transformations

o 7.6 Thetransform attribute

o 7.7 The viewBox attribute

0 7.8 The preserveAspectRatio attribute

o 7.9 Establishing a new viewport

o 7.10 Units

o 7.11 Redefining the meaning of CSS unit specifiers

o 7.12 Processing rules for CSS units and percentages
o 7.13DOM interfaces
= 7.13.1 Overview
7.13.2 Interface SV GPoint
7.13.3 Interface SVGMatrix
n 7.13.4 Interfaces SVGTransformList and SV GTransform
7.13.5 Interface SV GPreserveAspectRatio

- 8Paths
o 8.1 Introduction
o 8.2 The'path' element
o 8.3 Path Data
= 8.3.1 Genera information about path data
= 8.3.2 The "moveto" commands

s 8.3.3 The"closepath" command

s 8.3.4 The"lineto" commands

= 8.3.5 The curve commands
= 8.3.6 The grammar for path data
o 8.4 Distance along a path
o 8.5 DOM interfaces
= 8.5.1 Interface SV GPathElement
= 8.5.2 Interface SV GPathSeg
« 9 Basic Shapes

o 9.1 Introduction

o 9.2 The'rect' element

o 9.3 The'circle element
o 9.4 The'dlipse element
o 9.5The'line element

o 9.6 The'polyline' e ement

o 9.7 The'polygon' element

o 9.8 The grammar for points specifications in 'polyline' and 'polygon' elements

o 9.9 DOM interfaces
= 9.9.1 Interface SV GRectElement
= 9.9.2 Interface SV GCircleElement
= 9.9.3 Interface SV GEllipseElement
= 9.9.4 Interface SV GLineElement
= 9.9.5 Interface SV GPointList
= 9.9.6 Interface SV GPolylineElement
= 9.9.7 Interface SV GPolygonElement

o 10 Text
o 10.1 Introduction

o 10.2 Characters and their corresponding glyphs
o 10.3 The 'text' element
o 10.4 The 'tspan' element
o 10.5 The 'tref' element
o 10.6 Text layout
= 10.6.1 Text layout introduction

s 10.6.2 Setting the primary text advance direction

» 10.6.3 Glyph orientation with atext run
= 10.6.4 Relationship with bi-directionality
o 10.7 Text dignment properties

o 10.8 Font selection properties

o 10.9 Spacing properties
o 10.10 Text decoration
o 10.11 Text on apath
= 10.11.1 Introduction to text on a path
= 10.11.2 The 'textPath' element
= 10.11.3 Text on a path layout rules
o 10.12 Alternate glyphs
o 10.13 White space handling
0 10.14 Text selection
o 10.15 DOM interfaces
= 10.15.1 Interface SV GTextContentElement
» 10.15.2 Interface SV GTextElement
= 10.15.3 Interface SV GTextPositioningElement

= 10.15.4 Interface SV GT SpanElement

» 10.15.5 Interface SV GTRefElement

= 10.15.6 Interface SV GTextpathElement

» 10.15.7 Interface SV GAItGlyphElement

= 10.15.8 Interface SV GAItGlyphDefElement
= 10.15.9 Interface SVGSV GGlyphSubElement

o 11 Painting: Filling, Stroking and Marker Symbols

O

O

O

O

11.1 Introduction

11.2 Specifying paint

11.3 Fill Properties

11.4 Stroke Properties

11.5 Markers

= 11.5.1 Introduction
s 11.5.2 The 'marker' element
s 11.5.3 Marker properties

s 11.5.4 Details on how markers are rendered

11.6 Rendering properties

11.7 Inheritance of painting properties

11.8 DOM interfaces

= 11.8.1 Interface SV GICCColor

» 11.8.2 Interface SV GColor

= 11.8.3 Interface SV GPaint

= 11.8.4 Interface SV GMarkerElement

e 12 Color

O

O

12.1 Introduction

12.2 Color profile descriptions and @color-profile

o 13 Gradients and Patterns

O

O

O

13.1 Introduction

13.2 Gradients

= 13.2.1 Introduction

= 13.2.2 Linear gradients
» 13.2.3 Radial gradients
= 13.2.4 Gradient stops

13.3 Patterns

o 13.4 DOM interfaces
» 13.4.1 Interface SV GGradientElement
» 13.4.2 Interface SV GLinearGradientElement
s 13.4.3 Interface SV GRadia GradientElement
» 13.4.4 Interface SV GStopElement
= 13.4.5 Interface SV GPatternElement
14 Clipping, Masking and Compositing

o 14.1 Introduction

o 14.2 Simple alpha blending/compositing
o 14.3 Clipping paths
= 14.3.1 Introduction
= 14.3.2 Theinitia clipping path
» 14.3.3 The'overflow' and 'clip' properties

= 14.3.4 Clip to viewport vs. clip to viewBox
= 14.3.5 Establishing a new clipping path
o 14.4 Masking
o 14.5 Object and group opacity: the 'opacity’ property
0 14.6 DOM interfaces
= 14.6.1 Interface SVGClipPath
= 14.6.2 Interface SVGMask
15 Filter Effects
o 15.1 Introduction
o 15.2 Background
o 15.3 Basic Model
o 15.4 Defining and invoking afilter effect
o 15.5 Filter effects region
o 15.6 Common attributes

o 15.7 Accessing the background image

o 15.8 Filter processing nodes
o 15.9 DOM interfaces
= 15.9.1 Interface SV GFilterElement
» 15.9.2 Interface SV GStandardFilterNodeElement

e 16 Interactivity

o 16.1 Introduction

o 16.2 User interface events

o 16.3 Pointer events

o 16.4 Processing order for user interface events

o 16.5 The 'pointer-events property

o 16.6 Zooming panning and magnification
o 16.7 Cursors
= 16.7.1 Introduction to cursors

s 16.7.2 The 'cursor' property

= 16.7.3 The 'cursor' element
o 16.8 DOM interfaces
» 16.8.1 Interface SV GCursorElement
= 16.8.2 Interface SVGViewElement
e 17Linking
o 17.1 Links out of SV G contents: the 'a element

o 17.2 Linking into SVG content: URI fragments and SV G views

s 17.2.1 Introduction: URI fragments and SV G views
» 17.2.2 SVG fragment identifiers
» 17.2.3 Predefined views:. the 'view' element

o 17.3 DOM interfaces
» 17.3.1 Interface SV GAElement
= 17.3.2 Interface SVGViewSpec

» 18 Scripting
o 18.1 Specifying the scripting language

» 18.1.1 Specifying the default scripting lanquage

s 18.1.2 Local declaration of a scripting language

o 18.2 The 'script' element

o 18.3 Event handling

o 18.4 Event attributes

o 18.5 DOM interfaces
= 18.5.1 Interface SV GScriptElement
= 18.5.2 Interface SVGZoomEvent

o 19 Animation
o 19.1 Introduction

o 19.2 Animation elements

19.2.1 Relationship to SMIL Animation

19.2.2 Animation € ements example

19.2.3 Attributes to identify the target of an animation

19.2.4 Attributes to control the timing of the animation

19.2.5 Attributes that define animation values over time

19.2.6 Combining animations

19.2.7 Attributes that control whether animations are additive

19.2.8 Inheritance

19.2.9 The 'animate' element

19.2.10 The 'set' element

19.2.11 The 'animateM otion' € ement

19.2.12 The 'animateColor' e ement

19.2.13 The 'animateTransform' element

19.2.14 Elements, attributes and properties that can be animated

o 19.3 Animation using the SVG DOM

o 19.4 DOM interfaces

« 20 Fonts

o 20.1 Introduction

o 20.2 SVG fonts

20.2.1 Overview of SVG fonts

20.2.2 The 'font' element

20.2.3 The 'glyph' element

20.2.4 The 'missing-glyph' element

20.2.5 The 'hkern' and 'vkern' elements

o 20.3 DOM interfaces

o 21 Metadata

20.3.1 Interface SV GFontElement

20.3.2 Interface SV GGlyphBaseElement

20.3.3 Interface SV GGlyphElement

20.3.4 Interface SV GMissingGlyphElement

20.3.5 Interface SV GK ernBaseEl ement

20.3.6 Interface SV GHK ernElement

20.3.7 Interface SV GV KernElement

o 21.1 Introduction

o 21.2 The SVG Metadata Schema
o 21.3 Anexample
o 22 Backwards Compatibility
« 23 Extensbility
o 23.1 Foreign namespaces and private data

o 23.2 Embedding foreign object types

« Appendix A: Document Type Definition
Appendix B: SVG's Document Object Model (DOM)
o B.1SVG DOM Overview
o B.2 Naming Conventions
o B.3 Interface SV GException
o B.4 Interface SV GDOM I mplementation
o B.5 Feature strings for the hasFeatur e method call
o B.6 Relationship with DOM2 CSS object model
= B.6.1 Introduction
= B.6.2 Aural media
= B.6.3Visual media
o B.7 Relationship with DOM2 events
« Appendix C: Implementation Requirements
o C.1 Introduction
o C.2Version control

o C.3 Forward and undefined references

o C.4 Referenced objects are "pinned" to their own coordinate systems

o C.5 Clamping values which are restricted to a particular range

o C.6 'path' element implementation notes

o C.7 Elliptical arc implementation notes

s C.7.1 Elliptical arc syntax

s C.7.2 Out-of-range parameters
s C.7.3 Parameterization alternatives

s C.7.4 Conversion from center to endpoint parameterization

s C.7.5 Conversion from endpoint to center parameterization

s C.7.6 Correction of out-of-range radii

o C.8 Text selection implementation notes

o Appendix D: Conformance Criteria

o D.1 Introduction

o D.2 Conforming SVG Document Fragments

o D.3 Conforming SVG Stand-Alone Files

o D.4 Conforming SV G Included Document Fragments
o D.5 Conforming SVG Generators

o D.6 Conforming SVG Interpreters

o D.7 Conforming SVG Viewers

Appendix E: Accessibility Support
o E.1 Accessibility and SVG
o E.2 Aurdl style sheets
o E.3 SVG Accessibility guidelines
« Appendix F: Internationalization Support
o E.1Internationalization and SVG
o F.2 SVG Internationalization Guidelines
« Appendix G: Minimizing SVG File Sizes

o Appendix |: References

o H.1 Normative references

o H.2 Informative references

o Appendix |: Change History

The following sections have not been written yet, but are expected to be be present in later versions of
this specification:

« Appendix J. Element, attribute and property index

o Appendix K: Index

Copyright © 1999 W3C (MIT, INRIA, Keio), All Rights Reserved.

next contents properties index

WiC 40 «

http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://validator.w3.org/

previous next contents properties index

1 Introduction

Contents

e 1.1About SVG

e« 1.2SVG MIME Type

o 1.3 Compatibility with Other Standards Efforts
o 1.4 Terminology

o 1.5 Definitions

e 1.6 Error processing

1.1 About SVG

This specification defines the features and syntax for Scalable Vector Graphics (SVG).

SVG isalanguage for describing two-dimensional graphicsin XML. SVG allows for three types of
graphic objects: vector graphic shapes (e.g., paths consisting of straight lines and curves), images and
text. Graphical objects can be grouped, styled, transformed and composited into previously rendered
objects. The feature set includes nested transformations, clipping paths, alpha masks, filter effects and
template objects.

SV G drawings can be interactive and dynamic. Animations can be defined and triggered either
declaratively (i.e., by embedding SV G animation elementsin SV G content) or via scripting.

Sophisticated applications of SVG are possible by use of supplemental scripting language with access to
SVG's Document Object Model (DOM), which provides complete access to all elements, attributes and
properties. A rich set of event handlers such as onmouseover and onclick can be assigned to any SVG
graphical object. Because of its compatibility and leveraging of other Web standards, features like
scripting can be done on XHTML and SV G el ements simultaneously within the same Web page.

SV G isalanguage for rich graphical content. For accessibility reasons, if there is an original source
document containing higher-level structure and semantics, it is recommended that that higher-level
information be made available somehow, either by making the origina source document available, or
making an alternative version available in an alternative format which conveys the higher-level
information, or by using SVG's facilities to include the higher-level information within the SV G content.
For suggested techniques in achieving greater accessibility, see Accessibility.

http://www.w3.org/Graphics/SVG

1.2 SVG MIME Type

The MIME type for SVG will be"i mage/ svg". The W3C will register this MIME type around the
time when SVG is approved as a W3C Recommendation.

1.3 Compatibility with Other Standards Efforts

SVG leverages and integrates with other W3C specifications and standards efforts. By leveraging and
conforming to other standards, SV G becomes more powerful and makes it easier for users to learn how
to incorporate SV G into their Web sites.

The following describes some of the ways in which SV G maintains compatibility with, leverages and
integrates with other W3C efforts:

SVGisan application of XML and is compatible with the "Extensible Markup Language (XML)
1.0" Recommendation [XML 10]

SV G is compatible with the "Namespaces in XML" Recommendation [XML-NS]
SVGistracking and will conform with "XML Linking Language (XLink)" [XLINK].

SVG's syntax for referencing element 1Ds is compatible with the ID referencing syntax in "XML
Pointer Language (XPointer)" [XPTR].

SV G content can be styled by either CSS (see "Cascading Style Sheets (CSS) level 2"
specification [CSS2]) or XSL (see"XSL Transformations (XSLT) Version 1.0" [XSLT1]).

SV G supports relevant properties and approaches common to CSS and XSL, plus selected
semantics and features of CSS (see SVG's Use of Cascading Style Sheets).

SV G can be used with "XSL Transformations (XSLT) Version 1.0" [XSLT1]. In particular,
XSLT can style XML documents, with SV G output being a possible result of XSLT
transformations.

Externa style sheets are referenced using the mechanism documented in "Associating Style
Sheets with XML documents Version 1.0" [ESS].

SV G includes a complete Document Object Model (DOM) and conforms to the "Document
Object Model (DOM) level 1" Recommendation [DOM1]. The SVG DOM has a high level of

compatibility and consistency with the HTML DOM that is defined in the DOM level 1
specification. Additionally, the SVG DOM supports and incorporates many of the facilities
described in "Document Object Model (DOM) level 2" [DOM 2], including support for the CSS

object model and event handling.

SV G incorporates some features and approaches that are part of the " Synchronized Multimedia
Integration Language (SMIL) 1.0 Specification" [SMIL 1], including the 'switch' element, the
system-required attribute and the system-language attribute.

SVG's animation features (see Animation) were developed in collaboration with the W3C

Synchronized Multimedia (SY MM) Working Group, developers of the Synchronized
Multimedia Integration Language (SMIL) 1.0 Specification [SMIL1]. SVG's animation features

incorporate and extend the general-purpose XML animation capabilities described in the "SMIL
Animation" specification [SMILAnim].

SV G has been designed to allow future versions of SMIL to use animated or static SV G content

as media components.

« SVG attempts to achieve maximum compatibility with both the "HTML 4.0 Specification”
[HTML40] and the most recent working drafts of "XHTML (tm) 1.0: The Extensible HyperText
Markup Language”" [XHTML10]. Many of SVG'sfacilities are modeled directly after HTML,
including its use of CSS[CSS2], its approach to event handling, its approach to its Document
Object Model [DOM1].

o SVG iscompatibility with W3C work on internationalization. References (W3C and otherwise)
include: [UNICODE], [UNICODEZ21] and [CHARMOD]. Also, see Internationalization Support.

o SVG iscompatible with W3C work on Web Accessibility [WAI]. Also, see Accessibility
Support.

In environments which support [DOM 2] for other XML grammars (e.g., XHTML [XHTML 10]) and

which also support SV G and the SVG DOM, a single scripting approach can be used simultaneously for
both XML documents and SV G graphics, in which case interactive and dynamic effects will be possible
on multiple XML namespaces using the same set of scripts.

1.4 Terminology

Within this specification, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be
interpreted as described in RFC 2119 (see [REC2119]). However, for readability, these words do not

appear in all uppercase lettersin this specification.

At times, this specification recommends good practice for authors and user agents. These
recommendations are not normative and conformance with this specification does not depend on their
realization. These recommendations contain the expression "We recommend ...", "This specification
recommends ...", or some similar wording.

1.5 Definitions

basic shape

Standard shapes which are predefined in SV G as a convenience for common graphical
operations. Specifically: 'rect', 'circle, 'dlipse, 'lin€, 'polyling, 'polygon'.

canvas

asurface onto which graphics elements are drawn, which can be real physical mediasuch asa
display or paper or an abstract surface such as a allocated region of computer memory. See the
discussion of the SV G canvasin the chapter on Coordinate Systems, Transformations and Units.

clipping path
a combination of 'path’, 'text' and basic shapes which serve as the outline of a (in the absense of

antialiasing) 1-bit mask, where everything on the "inside" of the outline is alowed to show
through but everything on the outside is masked out. See Clipping paths.

container element
An element which can have graphics elements and other container elements as child elements.

Specificaly: 'svg', 'd, 'defs 'symbol’, ‘clipPath’, 'mask’, 'pattern’, 'marker’, 'a’ and 'switch'.

current SVG document fragment

The XML document sub-tree which starts with the most immediate ancestor 'svg' element of a
given SVG element

current transformation matrix (CTM)

Transformation matrices define the mathematical mapping from one coordinate system into
another using a 3x3 matrix using the equation [X' y' 1] =[x y 1] * matrix. The current
transformation matrix (CTM) defines the mapping from the user coordinate system into the
viewport coordinate system. See Coordinate system transformations

fill
The operation of painting the interior of a shape or the interior of the character glyphsin atext
string.

font

A font represents an organized collection of glyphsin which the various glyph representations

will share acommon look or styling such that, when a string of charactersis rendered together,
the result is highly legible, conveys a particular artistic style and provides consistent
inter-character alignment and spacing.

glyph
A glyph represents a unit of rendered content within afont. Often, there is a one-to-one

correspondence between characters to be drawn and corresponding glyphs (e.g., often, the
character "A" isrendered using a single glyph), but other times multiple glyphs are used to
render a single character (e.g., use of accents) or asingle glyph can be used to render multiple
characters (e.g., ligatures). Typicaly, aglyph is defined by one or more shapes such as a path,
possibly with additional information such as rendering hints that help afont engine to produce
legible text in small sizes.

graphics element

One of the element types that can cause graphics to be drawn onto the target canvas.
Specificaly: 'path’, 'text', 'rect’, 'circle, 'ellipse, 'lin€, 'polyling, 'polygon’, ‘image’ and 'use’.

graphics referencing element

A graphics element which uses areference to a different document or element as the source of its
graphical content. Specifically: 'use’ and 'image’.

local URI reference

A Uniform Resource Identifier [URI] that does not include an <absoluteURI> or <relativeURI>

and thus represents a reference to an element/fragment within the current document. See
References and the 'defs element.

mask

a container e ement which can contain graphics elements or other container elements which

define a set of graphics that is to be used as a semi-transparent mask for compositing foreground
objectsinto the current background. See Masks.

non-local URI reference

A Uniform Resource Identifier [URI] that includes an <absoluteURI> or <relativeURI> and thus
(usually) represents areference to a different document or an element/fragment within a different

paint

shape

stroke

document. See References and the 'defs' element.

A paint represents away of putting color values onto the canvas. A paint might consists of both
color values and associated alpha values which control the blending of colors against aready
existing color values on the canvas. SV G supports three types of built-in paint: color, gradients

and patterns.

A graphics element that is defined by some combination of straight lines and curves.
Specifically: 'path’, 'rect’, ‘circl€, 'elipse, 'lin€, 'polyline, 'polygon’,

The operation of painting the outline of a shape or the outline of character glyphsin atext string.

SV G canvas

the canvas onto which the SV G content is rendered. See the discussion of the SV G canvasin the
chapter on Coordinate Systems, Transformations and Units.

SV G document fragment

The XML document sub-tree which starts with an 'svg' element. An SV G document fragment

can consist of a stand-alone SV G document, or afragment of a parent XML document enclosed
by an 'svg' element. When an 'svg' element is an descendant of another 'svg' element, there are

two SV G document fragments, one for each 'svg’ element. (One SV G document fragment is
contained within another SV G document fragment.)

SVG viewport

the viewport within the SV G canvas which defines the rectangular region into which SVG
content is rendered. See the discussion of the SV G viewport in the chapter on Coordinate
Systems, Transformations and Units.

transformation

A modification of the current transformation matrix (CTM) by providing a supplemental

transformation in the form of a set of simple transformations specifications (such as scaling,
rotation or trangation) and/or one or more transformation matrices. See Coordinate system

transformations

transformation matrix

Transformation matrices define the mathematical mapping from one coordinate system into
another using a 3x3 matrix using the equation [x'y' 1] =[x y 1] * matrix. See current
transformation matrix (CTM) and Coordinate system transformations

URI Reference

A Uniform Resource Identifier [URI] which serves as areferenceto afile or to an
element/fragment within afile. See References and the 'defs element.

user coordinate system

In general, a coordinate system defines locations and distances on the current canvas. The current
user coordinate system is the coordinate system that is currently active and which is used to
define how coordinates and lengths are located and computed, respectively, on the current
canvas. Seeinitial user coordinate system and Coordinate system transformations.

user space
A synonym for user coordinate system.

user units

A coordinate value or length expressed in user units represents a coordinate value or length in the
current user coordinate system. Thus, 10 user units represents alength of 10 unitsin the current

user coordinate system.
viewport
arectangular region within the current canvas onto which graphics elements are to be rendered.

See the discussion of the SV G viewport in the chapter on Coordinate Systems, Transformations
and Units.

viewport coordinate system

In general, a coordinate system defines locations and distances on the current canvas. The
viewport coordinate system is the coordinate system that is active at the start of processing of an
'svg' element, before processing the optional viewBox attribute. In the case of an SV G document
fragment that is embedded within a parent document which uses CSS to manage its layout, then
the viewport coordinate system will have the same orientation and lengths asin CSS, with the
origin at the top-left on the viewport. See The initial viewport and Establishing a new viewport.

viewport space
A synonym for viewport coordinate system.

viewport units

A coordinate value or length expressed in viewport units represents a coordinate value or length
in the viewport coordinate system. Thus, 10 viewport units represents alength of 10 unitsin the

viewport coordinate system.

1.6 Error processing

There are various scenarios where an SV G document fragment is technically in error:

« When an element or attribute is encountered in the document which is not part of the SYG DTD
and which is not properly identified as being part of another namespace (see "Namespacesin

XML" [XML-NS))

« When an element has an attribute or property value which is not permissible according to this
specification

« Other situations that are described as being in error in this specification

A document can go in and out of error over time. For example, document changes from the SVG DOM
or from animation can cause a document to become in error and afurther change can cause the
document to become correct again.

The following error processing shall. occur when adocument isin error:

« The document shall. be rendered up to, but not including, the first element which has an error.
(Exception: if a'path’ element isthe first element which has an error and the only errors arein

the path data specification, then render the 'path’ up to the point of the path data error. See 'path’

element implementation notes.) This approach will provide avisual clue to the user/devel oper
about where the error might be in the document.

« If the document has animations, the animations shall stop at the point at which an error is
encountered and the visual presentation of the document shall. reflect the animated status of the
document at the point the error was encountered.

« A highly perceptive indication of error shall. occur. For visual rendering situations, an example
of an indication of error would be to render atranslucent colored pattern such as a checkerboard
on top of the area where the SV G content is rendered.

« If the user agent has accessto an error reporting capability such as status bar, it is recommended
that the user agent provide whatever additional detail it can to enable the devel oper/user to
quickly find the source of the error. For example, the user agent might provide an error message
along with aline number and character number at which the error was encountered.

Because of situations where a block of scripting changes might cause a given SV G document fragment
to go into and out of error, error processing shall. occur only at times when document presentation (e.g.,
rendering to the display device) is updated. In particular, error processing shall. be disabled whenever
redraw has been suspended via DOM calls to suspendRedraw().

previous next contents properties index

previous next contents properties index

2 SVG Concepts
Explaining the name: SVG

SVG stands for Scalable Vector Graphics, an XML grammar for stylable graphics, usable asan XML
Namespace.

Scalable

To be scalable means to increase or decrease uniformly. In terms of graphics, scalable means not being
limited to asingle, fixed, pixel size. On the Web, scalable means that that a particular technology can
grow to alarge number of files, alarge number of users, awide variety of applications. SVG, being a
graphics technology for the Web, is scalable in both senses of the word.

SVG graphics are scalable to different display resolutions, so that for example printed output uses the
full resolution of the printer and can be displayed at the same size on screens of different resolutions.
The same SV G graphic can be placed at different sizes on the same Web page, and re-used at different
sizes on different pages. SV G graphics can be magnified to see fine detail, or to aid those with low
vision.

SV G graphics are scalable because they can be referenced or included inside other SV G graphics,
allowing a complex illustration to be built up in parts, perhaps by several people. The symbol, marker

and font capabilities promote re-use of graphical components, maximise the advantages of HTTP
cacheing and avoid the need for a centralised registry of approved symbols.

Vector

Vector graphics contain geometric objects such as lines and curves. This gives greater flexibility
compared to raster-only formats (such as PNG and JPEG) which have to store information for every
pixel of the graphic. Typically, vector formats can also integrate raster images and can combine them
with vector information such as clipping paths to produce a complete illustration; SV G is no exception.

Since all modern displays are raster-oriented, the difference between raster-only and vector graphics
comes down to where they are rasterised; client sidein the case of vector graphics, as opposed to aready
rasterised on the server. SV G gives control over the rasterisation process, for example to allow
anti-aliased artwork without the ugly aliasing typical of low quality vector implementations. SVG aso
provided client-side raster filter effects, so that moving to avector format does not mean the loss of

popular effects such as soft drop shadows.

Graphics

Most existing XML grammars represent either textual information, or represent raw data such as
financial information. They typically provide only rudimentary graphical capabilities, often less capable
than the HTML 'img' element. SV G fillsagap in the market by providing arich, structured description
of vector and mixed vector/raster graphics; it can be used standalone, or as an XML namespace with

other grammars.

XML

XML, aW3C Recommendation for structured information exchange, has become extremely popular and

is both widely and reliably implemented. By being written in XML, SV G builds on this strong
foundation and gains many advantages such as a sound basis for internationalisation, powerful
structuring capability, an object model, and so on. By building on existing, cleanly-implemented
specifications, XML-based grammars are open to implementation without a huge reverse engineering
effort.

Namespace

It is certainly useful to have a standalone, SV G-only viewer. But SVG is also intended to be used as one
component in a multi-namespace XML application. This multiplies the power of each of the namespaces
used, to alow innovative new content to be created. For example, SVG graphics may beincluded in a
document which uses any text-oriented XML namespace - including XHTML. A scientific document,
for example, might also use MathML [MATHML] for mathematics in the document. The combination

of SVG and SMIL leadsto interesting, time based, graphically rich presentations.

SVG isagood, genera-purpose component for any multi-namespace grammar that needs to use
graphics.

Stylable

The advantages of style sheetsin terms of presentational control, flexibility, faster download and
improved maintenance are now generally accepted, certainly for use with text. SV G extends this control
to the realm of graphics.

The combination of scripting, DOM and CSSis often termed "Dynamic HTML" and iswidely used for
animation, interactivity and presentational effects. SV G allows the same script-based manipulation of
the document tree and the style sheet.

Important SVG Concepts

Graphical Objects

With any XML grammar, consideration has to be given to what exactly is being modelled. For textual
formats, modelling istypically at the level of paragraphs and phrases, rather than individual nouns,
adverbs, or phonemes. Similarly, SVG models graphics at the level of graphical objects rather than
individual points.

SVG provides agenera path element, which can be used to create a huge variety of graphical objects,

file:///TR/REC-xml

and also provides common geometric objects such as rectangles and ellipses. These are convenient for
hand coding and may be used in the same ways as the more general path element. SVG providesfine
control over the coordinate system in which graphical objects are defined and the transformations that
will be applied during rendering.

Symbols

It would have been possible to define some standard symbols that SVG would provide. But which ones?
There would always be additional symbols for electronics, cartography, flowcharts, that people would
need that were not provided until the "next version”. SV G alows usersto create, re-use and share their
own symbols without requiring a centralised registry. Communities of users can create and refine the
symbols that they need, without having to ask a committee. Designers can be sure exactly of the
graphical appearance of the symbols they use and not have to worry about unsupported symbols.

Symbols may be used at different sizes and orientations, and can be restyled to fit in with the rest of the
graphical composition.

Raster Effects

Many existing Web graphics use the filtering operations found in paint packages to create blurs,
shadows, lighting effects and so on. With the client-side rasterisation used with vector formats, such
effects might be thought impossible. SV G allows the declarative specification of filters, either singly or
in combination, which can be applied on the client side when the SV G is rendered. These are specified
in such away that the graphics are still scalable and displayable at different resolutions.

Fonts

Graphically rich material is often highly dependent on the particular font used and the exact spacing of
the glyphs. In many cases, designers convert text to outlines to avoid any font substitution problems.
This means that the original text is not present and thus seachability and accessibility suffer. In response
to feedback from designers, SV G includes font elements so that both text and graphical appearance are
preserved.

Animation

Animation can be produced via script-based manipulation of the document, but scripts are difficult to
edit and interchange between authoring toolsis harder. Again in response to feedback from the design
community, SV G includes declarative animation elements which were designed collaboratively by the
SVG and SYMM working groups. This allows the animated effects common in existing Web graphics to
be expressed in SVG.

previous next contents properties index

previous next contents properties index

3 Basic Data Types and Interfaces

Contents

« 3.1 Basic datatypes
« 3.2Basic DOM interfaces
0 3.2.1 Overview
o 3.2.2 Interface SVGAngle
o 3.2.3 Interface SV Glnteger
o 3.2.4 Interface SV GLength
0 3.2.5 Interface SV GLengthL ist
0 3.2.6 Interface SV GNumber
o 3.2.7 Interface SV GRect

3.1 Basic data types

The common data types for SVG's properties and attributes fall into the following categories:

« <angle>: Anangle value is a<number> optionally followed immediately with an angle unit identifier.
Angle unit identifiers are:

0 deg: degrees
0 grad: grads
o rad: radians

For properties defined in [CSS2], an angle unit identifier must be provided. For SV G-specific
attributes and properties, the angle unit identifier is optional. If not provided, the angle valueis
assumed to be in degrees.

The corresponding SVG DOM interface definition for <angle> is SVGANgle.

« <color>: The basic type <color> is a CSS2-compatible specification for a color in the SRGB color
space [SRGB]. <color> appliesto SVG's use of the 'color' property and is a component of the
definitions of properties 'fill', 'stroke’ and 'stop-color’, which also offer optional 1CC-based color
specifications.

A <color> is either akeyword or anumerical RGB specification. The list of keyword color namesis:
aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white, and
yellow. These 16 colors are defined in HTML 4.0 ({(HTML40Q]). The format of an RGB valuein
hexadecimal notation isa'# immediately followed by either three or six hexadecimal characters. The
three-digit RGB notation (#rgb) is converted into six-digit form (#rrggbb) by replicating digits, not by
adding zeros. For example, #fb0 expands to #fbb00. This ensures that white (#ffffff) can be specified

with the short notation (#fff) and removes any dependencies on the color depth of the display. The
format of an RGB value in the functional notation is'rgb(’ followed by a comma-separated list of
three numerical values (either three integer values or three percentage values) followed by ")'. The
integer value 255 corresponds to 100%, and to F or FF in the hexadecimal notation: rgh(255,255,255)
= rgh(100%,100%,100%) = #FFF. Whitespace characters are allowed around the numerical values.
All RGB colors are specified in the SRGB color space (see [SRGB]). Using SRGB provides an

unambiguous and objectively measurable definition of of the color, which can be related to
international standards (see [COLORIMETRY]).

The corresponding SVG DOM interface definitions for <color> are defined in [DOM2-CSS]; in
particular, see the [DOM2-CSS-RGBCOL OR]. SVG's extension to color, including the ability to
specify |CC-based colors, are represented in DOM interface SV GColor.

« <coordinate>: The format of a <coordinate> is a <number> optionally followed immediately by a
CSS unit identifier.
If the <coordinate> is expressed as a simple number without a CSS unit identifiers (e.g., 48), then the
value represents a coordinate value in the current user coordinate system.
If one of the CSS unit identifier is provided (e.g., 12mm), the <coordinate> represents the

X-coordinate in the user coordinate system that is the given distance (measured in the viewport
coordinate system) from the origin of the user coordinate system. (See Processing rules for CSS units

and percentages.)

If apercentageis provided (e.g., 10%), the <coordinate> represents the X-coordinate in the user
coordinate system that is the given distance (measured as a percentage of the width of the viewport
coordinate system) from the origin of the user coordinate system. (See Processing rules for CSS units

and percentages.)
Within the SYG DOM, a <coordinate> is represented as an SV GL ength since both values have the
same syntax (although the semantics are not identical).

« <frequency>: Frequency values are used with aural cascading style sheets (see [CSS2]). A frequency
value is a<number> immediately followed by afrequency unit identifier. Frequency unit identifiers
are:

o Hz: Hertz
o kHz: kilo Hertz

Frequency values may not be negative.
The corresponding SVG DOM interface definitions for <frequency> are defined in [DOM2-CSS].

« <integer>: An <integer> is specified as an optiona sign character ('+' or '-', with '+' being the default)
followed by one or more digits"0" to "9".
Unless stated otherwise for a particular attribute or property, the range for a <integer> encompasses
(at aminimum) -2147483648 to -2147483647.
Within the SYG DOM, an <integer> is represented as an SV GlInteger.

« <length>: A length is a distance measurement. The format of a <length> is a <number> optionally
followed immediately by a CSS unit identifier. (Note that a <number> has different formulations
depending on whether it is applied to a CSS property or an XML attribute.)

If the <length> is expressed as a value without a CSS unit identifiers (e.g., 48), then the <length>
represents a distance in the current user coordinate system.

If one of the CSS unit identifier is provided (e.g., 12mm), then the <length> represents a width value
in the viewport coordinate system. (See Processing rules for CSS units and percentages.)

If apercentageis provided, (e.g., 10%), then the given percentage represents a percentage of the
width of the viewport. (See Processing rules for CSS units and percentages.)

Within the SVG DOM, a <length> is represented as an SV GL ength.

o <list of xxx> (where xxx represents a value of some type): A list consists of a separated sequence of

values. The specification of listsis different for CSS property values than for XML attribute values.

0 Listsin CSS property values are comma-separated, with optional white space before or after
the comma.
o Listswithin SVG's XML attributes are either comma-separated, with optional white space
before or after the comma, or white space-separated.
White spacein lists is defined as one or more of the following consecutive characters: " space”
(Unicode code 32), "tab" (9), "line feed" (10), "carriage return” (13) and "form-feed" (12).

Within the SVG DOM, a<list of xxx> is represented by various custom interfaces, such as
SVGTransformList.

<number> (real number value): The specification of real number valuesis different for CSS property
values than for XML attribute values.
0 CSS2[CSS2] statesthat a property value which isa<number> is specified in decimal notation
(i.e., a<decimal-number>), which consists of either an <integer>, or an optional sign character

followed by zero or more digits followed by adot (.) followed by zero or more digits with at
least one digit required either before or after the dot. Thus, for conformance with CSS2, any
property in SV G which accepts <number> values is specified in decimal notation only.

0 For SVG's XML attributes, to provide as much scalability in numeric values as possible, real
number values can be provided either in decimal notation or in scientific notation (i.e., a
<scientific-number>), which consists of a <decimal-number> immediately followed by the
letter "€" or "E" immediately followed by an <integer>.

Unless stated otherwise for a particular attribute or property, a <number> has the capacity for at least
asingle-precision floating point number (see [ICC32]) and has arange (at a minimum) of -3.4e+38F
to +3.4e+38F.

It is recommended that higher precision floating point storage and computation be performed on
operations such as coordinate system transformations to provide the best possible precision and to
prevent round-off errors.

Conforming High-Quality SVG Viewers are required to use at least double-precision floating point
(see [ICC32)]) intermediate calcul ations on certain numerical operations.

Within the SYG DOM, a <number> is represented as an SV GNumber.

<paint>: The values for properties 'fill' and 'stroke’ are specifications of the type of paint to use when
filling or stroking a given graphics element. The available options and syntax for <paint> is described
in Specifying paint.

Within the SVG DOM, <paint> is represented as an SV GPaint.

<percentage>: The format of a percentage value is a <number> immediately followed by a'%'.

Percentage values are aways relative to another value, for example alength. Each attribute or
property that allows percentages also defines the reference distance measurement to which the
percentage refers.

Within the SV G DOM, a <percentage> is represented as an SV GL ength.

<time>: A time valueis a <number> immediately followed by atime unit identifier. Time unit
identifiers are:

o ms. milliseconds
0 S seconds

Time values are used in CSS properties and may not be negative.
The corresponding SVG DOM interface definitions for <time> are defined in [DOM2-CSS].

<transform-list> : The detailed description of the possible values for a <transform-list> are detailed in
Modifying the User Coordinate System: the transform attribute.

Within the SVG DOM, <transform-list> is represented as an SV GTransformList.

« <uri> (Uniform Resource Identifiers [URI] references): A URI isthe address of aresource on the
Web. For the specification of URI referencesin SVG, see URI references.

Within the SYG DOM, <uri> is represented as a DOM String.

3.2 Basic DOM interfaces

3.2.1 Overview

The section describes the basic DOM interfaces for SV G's Document Object Model that are common to
multiple parts of the SYG DOM. Many of these interfaces correspond directly with SV G's basic data types.

3.2.2 Interface SVGAngle
This interface corresponds to the <angle> basic data type.

interface SVGAngle {
/1 Unit Types
const unsi gned short kSVG_ANGLETYPE_UNKNOWN
const unsigned short kSVG ANGLETYPE_UNSPECI FI ED
const unsigned short kSVG ANGLETYPE DEG
const unsigned short kSVG ANGLETYPE_RAD
const unsigned short kSVG ANGLETYPE_GRAD
readonly attribute wunsigned short unittype;

[/ invalid, nust be retrieved as a string
/1 no value provided, default kicks in
/1 Degrees or unitless (neans degrees)

nmnononon
RoNPO

/1 Setting any of these causes the other values to

/1 be updated autonmatically.

/1 1f kSVG_ANGLETYPE_UNSPECI FI ED, these reflect the default val ue.
attribute float angle; /1 in degrees

attribute float angl el nSpecifiedUnits;

attribute DOVBtring angl eAsStri ng;

/1 Wility nethods
voi d newAngl eSpeci fiedUnits(in unsigned short unittype, in float angl el nSpecifiedUnits);
voi d convert ToSpeci fi edUnits(in unsigned short unittype);

/1 1f this attribute or style property currently is being ani nated,
/1 ani matedVal ue reflects the current ani mated val ue of the

/1 attribute or style property.

/1 Gtherw se, when not animated, it will equal 'val ue'

readonly attribute float animatedValue; // in user units

3.2.3 Interface SVGinteger

This interface corresponds to the <integer> basic data type.

interface SVA nteger {
attribute | ong val ue;

/1 1f this attribute or style property currently is being ani nated,
/1 ani matedVval ue reflects the current ani mated val ue of the

/1 attribute or style property.

/1 Gtherw se, when not animated, it will equal 'val ue'

readonly attribute float ani matedVal ue;

3.2.4 Interface SVGLength
This interface corresponds to the <length> basic data type.

interface SVGength {
/1 Unit Types
const unsi gned short kSVG_LENGTHTYPE_UNKNOMWN
const unsi gned short kSVG_LENGTHTYPE_UNSPECI FI ED
const unsi gned short kSVG_LENGTHTYPE_NUVBER
const unsigned short kSVG LENGTHTYPE_PERCENTAGE
const unsigned short kSVG _LENGTHTYPE_EMS
const unsigned short kSVG LENGTHTYPE_EXS
const unsigned short kSVG LENGTHTYPE_PX
const unsi gned short kSVG _LENGTHTYPE_CM
const unsigned short kSVG LENGTHTYPE_MM
const unsigned short kSVG _LENGTHTYPE_ | N
const unsigned short kSVG _LENGTHTYPE_PT
const unsi gned short kSVG_LENGTHTYPE_PC
readonly attribute wunsigned short unittype;

[/ invalid, nust be retrieved as a string
/1 no val ue provided, defaults kick in
/1 Unitless, nmeaning user units

RN RONRO

/1 Setting any of these causes the other values to

/'l be updated automatically.

/1 1 f kSVG LENGTHTYPE_UNSPECI FI ED, these reflect the default val ue.
attribute float value; // in user units

attribute float val uel nSpecifiedUnits;

attribute DOVBtring val ueAsStri ng;

/1 Uility methods
voi d newal ueSpeci fi edUnits(in unsigned short unittype, in float val uel nSpecifiedUnits);
voi d convert ToSpecifiedUnits(in unsigned short unittype);

/1 If this attribute or style property currently is being ani mated,
/1 ani mat edVal ue reflects the current animated val ue of the

/] attribute or style property.

/1 Otherw se, when not animated, it will equal 'value'

readonly attribute float ani matedValue; // in user units

3.2.5 Interface SVGLengthList

This interface corresponds to values which represent alist of <length> values.

interface SVG.engthList {

SVGLengt h creat eSVG.engt h(); /'l Returns unattached I ength of O user units
readonly attribute wunsigned | ong nunber_of | engths;
SVGLengt h get SVG.engt h(in unsigned | ong i ndex);
/1 Replace all existing entries with a single entry.
voi d initialize(in SVG.ength newSVG.engt h)
rai ses(DOVExcepti on);
voi d clear(); // Cear all entries, giving an enpty I|ist
SVGL.engt h i nsertBefore(in SVG.ength newSVG.engt h,

in unsigned | ong index)
rai ses(DOVException);
SVGLengt h repl ace(in SVGL.engt h newSVG.engt h,
i n unsigned | ong index)
rai ses(DOVExcepti on);

SVG.engt h renove(in unsigned | ong i ndex)
rai ses(DOVExcepti on);
SVGLengt h append(in SVG.engt h newSVG.engt h)

rai ses(DOVExcepti on);
b

Used to values that can be expressed as an array of SV GLengths.

3.2.6 Interface SVGNumber

This interface corresponds to the <number> basic data type.

interface SVG\unmber {
attribute float value; // in user units

/1 If this attribute or style property currently is being ani mated,
/1 ani mat edVal ue reflects the current animated val ue of the

/] attribute or style property.

/1 Otherw se, when not animated, it will equal 'value'

readonly attribute float ani matedValue; // in user units

3.2.7 Interface SVGRect

Rectangles are defined as consisting of a (x,y) coordinate pair identifying a minimum X value, a minimum Y
value, and awidth and height, which are usually constrained to be non-negative.

interface SVGRect ({
attri bute SV@Wwunber x;
attribute SVGNunber vy;
attribute SVGNunber wi dth;
attribute SVGNunber height;

I

previous next contents properties index

previous next contents properties index

4 SVG Rendering Model

Contents

e 4.1 Introduction

e 4.2 The painters model
e 4.3 Rendering Order

e 4.4 Grouping
e 4.5 Types of graphics elements

o 4.5.1 Painting shapes and text

o 4.5.2 Painting raster images

¢ 4.6 Filtering painted regions

o 4.7 Clipping, masking and object opacity

e 4.8 Parent Compositing

4.1 Introduction

Implementations of SV G are expected to behave as though they implement arendering (or imaging)
model corresponding to the one described in this chapter. A real implementation is not required to
implement the model in thisway, but the result on any device supported by the implementation shall
match that described by this model.

The appendix on conformance requirements describes the extent to which an actual implementation may

deviate from this description. In practice an actual implementation will deviate slightly because of
limitations of the output device (e.g. only alimited range of colors might be supported) and because of
practical limitationsin implementing a precise mathematical model (e.g. for realistic performance curves
are approximated by straight lines, the approximation need only be sufficiently precise to match the
conformance requirements.)

4.2 The painters model

SVG uses a"painters model” of rendering. Paint is applied in successive operations to the output device

such that each operation paints over some area of the output device. When the area overlaps a previously
painted area the new paint partially or completely obscures the old. When the paint is not completely

opague the result on the output device is defined by the (mathematical) rules for compositing described
under Simple Alpha Blending.

4.3 Rendering Order

Elementsin an SVG document fragment have an implicit drawing order, with the first elementsin the
SV G document fragment getting "painted"” first. Subsequent elements are painted on top of previously
painted elements.

4.4 Grouping

Grouping elements such as the 'g' have the effect of producing atemporary separate canvas onto which

child elements are painted. Upon the completion of the group, the effect isasif the group's canvasis
painted onto the ancestors canvas using the standard rendering rules for individual graphic objects.

4.5 Types of graphics elements

SV G supports three fundamental types of graphics elements that can be rendered onto the canvas:

« Shapes, which represent some combination of straight line and curves

« Text, which represents some combination of character glyphs

« Raster images, which represent an array of values that specify the paint color and opacity (often
termed alpha) at a series of points on arectangular grid. (SV G requires support for specified
raster image formats under conformance requirements.)

4.5.1 Painting shapes and text

Shapes and text can befilled (i.e., apply paint to the interior of the shape) and stroked (i.e., apply paint

along the outline of the shape). A stroke operation is centered on the outline of the object; thus, in effect,
half of the paint falls on the interior of the shape and half of the paint falls outside of the shape.

For certain types of shapes, marker symbols (which themselves can consist of any combination of
shapes, text and images) can be drawn at selected vertices. Each marker symbol is painted asiif its
graphical content were expanded into the SV G document tree just above the shape object which isusing
the given marker symbol. The graphical contents of a marker symbol are rendered using the same
methods are graphics elements. Marker symbols are not applicable to text.

Thefill is painted first, then the stroke, and then the marker symbols. The marker symbols are rendered
in order along the outline of the shape, from the start of the shape to the end of the shape.

Each fill and stroke operation has its own opacity settings; thus, you can fill and/or stroke a shape with a
semi-transparently drawn solid color, with different opacity values for the fill and stroke operations.

Thefill and stroke operations are entirely independent painting operations; thus, if you both fill and
stroke a shape, half of the stroke will be painted on top of part of thefill.

SV G supports the following built-in types of paint which can be used in fill and stroke operations:

« Solid color
« Gradients (linear and radial)

o Patterns

4.5.2 Painting raster images

When araster image is rendered, the original samples are "resampled” using standard algorithms to
produce samples at the positions required on the output device. Resampling requirements are discussed
under conformance requirements.

4.6 Filtering painted regions

SVG alows any painting operation to be filtered. (See Filter Effects)
In this case the result must be as though the paint operations had been applied to an intermediate canvas,

of asize determined by the rules given in Filter Effects then filtered by the processes defined in Filter
Effects.

4.7 Clipping, masking and object opacity

SV G dlows any painting operation to be limited to a sub-region of the output device by clipping and
masking. Thisis described in Clipping, Masking and Compositing

Clipping uses a path to define aregion of the output device to which paint can be applied. Any painting
operation executed within the scope of the clipping must be rendered such that only those parts of the
device that fall within the clipping region are affected by the painting operation. "Within" is defined by
the same rules used to determine the interior of a path for painting.

Masking uses the alpha channel or color information in areferenced SVG element to restrict the painting
operation. In this case the opacity information within the alpha channel is used to define the region to
which paint can be applied - any region of the output device that, after resampling the alpha channel
appropriately, has a zero opacity must not be affected by the paint operation. All other regions
composite the paint from the paint operation onto the the output device using the algorithms described in
Clipping, Masking and Compositing.

A supplemental masking operation may also be specified by applying a"global" opacity to a set of
rendering operations. In this case the mask defines an infinite alpha channel with a single opacity. (See
‘opacity’ property.)

In al cases the SV G implementation must behave as though all painting and filtering performed within
the clip or masksis donefirst to an intermediate (imaginary) canvas then filtered through the clip area or
masks. Thusif an area of the output device is painted with a group opacity of 50% using opague red
paint followed by opague green paint the result is as though it had been painted with just 50% opaque
green paint. Thisis because the opagque green paint completely obscures the red paint on the
intermediate canvas before the intermediate as a whole is rendered onto the output device.

4.8 Parent Compositing

SV G document fragments can be semi-opaque. In many environments (e.g., web browsers), the SVG
document fragment has a final compositing step where the document as awhole is blended translucently
into the background canvas.

previous next contents properties index

previous next contents properties index

5 Styling

Contents

o 5.1 Styling SV G content

« 5.2 Referencing external style sheets

o 5.3 SVG'suse of Cascading Style Sheets

e 5.4 The'style' element

o 5.5 The class attribute

« 5.6 The style attribute

« 5.7 Cascading and inheritance of properties

o 5.8 The scope/range of styles

o 5.9 The'display' property
o 5.10 Default style sheet for SVG
« 5.11 DOM interfaces
o 5.11.1 Interface SV GStyleElement

5.1 Styling SVG content

SV G content can be styled by either CSS (see "Cascading Style Sheets (CSS) level 2" specification
[CSS2]) or XSL (see"XSL Transformations (XSLT) Version 1.0" [XSLT1])).

SVG content using CSS or XSL for styling can reference external style sheets (see Referencing external
style sheets) or embed style sheets within an SV G 'style’ element or both.

CSS style declarations can al so be specified within style attributes on particular elements. For many

applications, element-specific styling is convenient and advantageous, but in situations where multiple
elements have common styling, it is usually better to express styling through through the 'style' element

or, even better, through external style sheets which may be shared by several related SV G graphics.

Styling the same document using both CSS and XSL style sheets is not recommended at thistime as the
processing model for thisis not well-defined.

5.2 Referencing external style sheets

Externa style sheets are referenced using the mechanism documented in " Associating Style Sheets with
XML documents Version 1.0" [ESS].

5.3 SVG's use of Cascading Style Sheets

SV G supports various relevant properties and approaches common to CSS and XSL, plus selected
semantics and features of CSS (see the " Cascading Style Sheets (CSS) level 2" Recommendation
[CSS2].

SV G uses styling properties to describe many of its document parameters. In particular, SVG uses
styling properties for the following:

« Parameters which are clearly visual in nature and thus lend themselves to styling. Examples
include al attributes that define how an object is"painted” such asfill and stroke colors,
linewidths and dash styles

« Parameters having to do with text styling such as 'font-family' and 'font-size

« Parameters which impact the way that graphical elements are rendered, such as specifying
clipping paths, masks, arrowheads, markers and filter effects

The following properties from CSS2 [CSS2] are used by SVG:
» Font properties:
o ‘font-family'
o 'font-style
o 'font-variant'
o ‘font-weight'
o 'font-stretch'

o 'font-size

o ‘font-size-adjust'

o 'font'

e Text properties:

0 'text-decoration'
o 'letter-spacing'
o 'word-spacing'
o 'direction’

o 'unicode-bidi'
e Other propertiesfor visua media:
o 'visbility'

'display’
o 'overflow' (Only applicable to e ements which establish a new viewport)

[}

o 'clip' (Only applicable to outermost 'svg’)

o 'color' isused to provide a potential indirect value (currentColor) for the 'fill' and 'stroke’

properties. (The SV G properties which support color allow a color specification which is
extended from CSS2 to accommodate color definitionsin arbitrary color spaces defined

by the 'color-space' property.)
o ‘cursor'

The following facilities from CSS2 are supported in SVG:

o CSS2 syntax rules, including allowable data types

« Style sheet declarations, including selectors.

« SV G supports both external CSS style sheets [ESS] and the inclusion of style rules within SVG
content using 'style' elements and style attributes attached to specific SVG elements.

o CSS2 rulesfor assigning property values, cascading and inheritance

« @font-face, @media, @import and @charset rules within style sheets

o CSS2's dynamic pseudo-classes (i.e., :hover, :active and :focus) [CSS2-DY NPSEUDOQ]. (An
SVG element gains focus when it is selected. See Text selection.)

« For the purposes of aural media, SV G represents a CSS-stylable XML grammar. In user agents
that support aural style sheets, CSS aural style properties [CSS2-AURAL] can be applied as

defined in [CSS2]. (See Aural style sheets.)

One variation SV G offersto CSSis that unit-less lengths and sizes are allowed in SV G properties.
(Refer to the discussion of Units.)

Additionally, SV G defines anew @color-profile at-rule [CSS2-ATRULES] for defining color profiles
to use within SV G content.

5.4 The 'style' element

<! ELEMENT styl e (#PCDATA)* >
<I ATTLI ST style type CDATA "text/css" >

Attribute definitions:
type = content-type

This attribute specifies the style sheet |language of the element's contents and overrides the
default style sheet language. The style sheet language is specified as a content type (e.g.,
"text/css'). Authors must supply avalue for this attribute; there is no default value for this
attribute.

Animatable: no.

The 'style’ element allows authors to put style sheet rules embedded within SV G content. 'style’ elements
are only allowed as children of 'defs elements.

The syntax of style data depends on the style sheet language.

Some style sheet implementations might allow awider variety of rulesin the 'style’ element than in the
style attribute that is available to container elements and graphics elements. For example, with CSS

[CSS2], rules can be declared within a'style’ element that cannot be declared within a style attribute.

The following is an example of defining and using atext style using a CSSinternal style sheet:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVG SVG 19991203. dt d" >
<svg wi dt h="4in" hei ght="3in">
<def s>
<styl e><! [CDATA[
.TitleText { font-size: 16; font-famly: Helvetica }]]>
</style>
</ def s>
<text class="TitleText">Here is ny title</text>
</ svg>

Download this example

Note how the CSS style sheet is placed within a CDATA construct (i.e., <! [CDATA[...]]>),
which is necessary since CSS style sheets are not expressed in XML.

An XSL style sheet ([XSLT1]) can aso be embedded within a'style’ element, in which caseit is not

necessary to enclose the style sheet within a CDATA construct, since XSL style sheets are expressed in
XML.

5.5 The class attribute

Attribute definitions:;
class = list

This attribute assigns a class name or set of class names to an element. Any number of elements
may be assigned the same class name or names. Multiple class names must be separated by white
space characters.

Animatable: yes.

The class attribute assigns one or more class names to an element; the element may be said to belong to
these classes. A class name may be shared by several element instances. The class attribute has several
roles:

« Asastyle sheet selector (when an author wishes to assign style information to a set of elements).
« For general purpose processing by user agents.

In the following example, the 'text’ element is used in conjunction with the class attributes to markup
document messages. Messages appear in both English and French versions.

<!-- English nessages -->

<text class="info" |ang="en">Variabl e decl ared twi ce</text>

<text class="warni ng" |ang="en">Undecl ared vari abl e</ t ext>

<text class="error" lang="en">Bad syntax for variable nane</text>

file:///d|/jon/svgspec/samples/style.xml

<!-- French nessages -->

<text class="info" lang="fr">Variabl e décl arée deux fois</text>
<text class="warning" lang="fr">Variabl e indéfinie</text>

<text class="error" lang="fr">Erreur de syntaxe pour variabl e</text>

The following CSS style rules would tell visual user agents to display informational messages in green,
warning messages in yellow, and error messagesin red:

text.info { color: green}
text.warning { color: yellow}
text.error { color: red }

5.6 The style attribute

Attribute definitions:
style = style

This attribute specifies style information for the current element. The style attribute specifies
style information for a single element. The style sheet language of inline style rules is given by
the default style sheet language. The syntax of style data depends on the style sheet language.
Animatable: yes.

The default style sheet language for the style attribute is "text/css" unless any HTTP headers specify the
"Content-Style-Type", in which case the last one in the character stream determines the default style
sheet language.

This example setsfill and font size information for the text in a specific 'text’ element:

<text style="font-size: 12pt; fill: fuchsia">lsn't styling wonderful ?</text>
In CSS, property declarations have the form "name : value" and are separated by a semi-colon.

The style attribute may be used to apply a particular style to an individual SVG element. If the style will
be reused for several elements, authors should use the 'style’ element to regroup that information. For

optimal flexibility, authors should define stylesin external style sheets.

5.7 Cascading and inheritance of properties

SVG conforms fully to the cascading style rules of CSS (i.e., the rules by which the SV G user agent
decides which property setting appliesto a given element). See the CSS2 specification for a discussion

of these rules.

The definition of each CSS property indicates whether the property can inherit the value of its parent.

file:///TR/REC-CSS2

5.8 The scope/range of styles

The following define the scope/range of style sheets:
Stand-alone SVG document

There is one parse tree. Style sheets defined anywhere within the SV G document (in style
elements or style attributes, or in external style sheets linked with the stylesheet Pl) apply across
the entire SVG document.

Stand-alone SVG document embedded in an HTML or XML document with the'img', 'object’
(HTML) or 'image’ (SVG) elements

There are two completely separate parse trees, one for the HTML/XHTML document, and one
for the SVG document. Style sheets defined anywhere within the HTML/XHTML document (in
style elements or style attributes, or in external style sheets linked with the stylesheet PI) apply
across the entire HTML/XHTML document. Since inheritance is down a parse tree, these styles
do not affect the SV G document. Style sheets defined anywhere within the SV G document (in
style elements or style attributes, or in external style sheets linked with the stylesheet PI) apply
across the entire SVG document. These styles do not affect the containing HTML/XHTML
document. To get the same styling across both HTML/XHTML document and SV G document,
link them both to the same stylesheet.

Stand-alone SVG content textually included in an XML document

Thereis asingle parse tree, using multiple namespaces; one or more subtrees arein the SVG
namespace. Style sheets defined anywhere within the XML document (in style elements or style
attributes, or in external style sheets linked with the stylesheet Pl) apply across the entire
document including those parts of it in the SV G namespace. To get different styling for the SVG
part, use the style attribute, or put an ID on the 'svg' element and use contextual CSS selectors, or
use XSL selectors.

5.9 The 'display' property

‘display"’

Value: inline | block | list-item |
run-in | compact | marker |
table | inline-table | table-row-group | table-header-group |
table-footer-group | table-row | table-column-group | table-column |
table-cell | table-caption | none | inherit

Initial: inline

Appliesto: all elements

Inherited: no

Percentages. N/A

Media: all

Animatable: yes

A value other than display: none indicates that the given element shall be rendered by the SVG user
agent.

5.10 Default style sheet for SVG

The user agent's default style sheet for elementsin the SV G namespace for visual media
[CSS2-VISUAL] must include the following entries:

svg, synbol, marker, pattern, view { overflow hidden }

Refer the description of SVG's use of the 'overflow' property for more information.

Also, refer to the "Cascading Style Sheets (CSS) level 2" specification [CSS2].

5.11 DOM interfaces

5.11.1 Interface SVGStyleElement
The SV GStyleElement interface corresponds to the 'style’ element.

interface SVGStyl eEl enent : SVCEl ement {
attribute DOMString type;

b

previous next contents properties index

previous next contents properties index

6 SVG Document Structure

Contents

o 6.1 Defining an SVG document fragment: the 'svg' element

o 6.1.1 Overview
o 6.1.2 The'svg element

« 6.2 Grouping and Naming Collections of Drawing Elements: the 'q" element
0 6.2.1 Overview
0 6.2.2 The'dg element

» 6.3 References and the 'defs element

0 6.3.1 Overview
o 6.3.2 URI reference attributes
0 6.3.3 The'defs element

» 6.4 The'desc' and 'title' elements

e 6.5 The 'symbol' element

e 6.6 The'use' element

o 6.7 The'image element

« 6.8 Conditional processing

o 6.8.1 Conditional processing overview
o 6.8.2 The 'switch' element
o 6.8.3 The system-required attribute
0 6.8.4 The system-language attribute
« 6.9 DOM interfaces
o 6.9.1 Overview
o 6.9.2 Interface SV GDocument
0 6.9.3 The getSV GDocument method
o 6.9.4 Interface SV GElement
o 6.9.5 Interface SV GStyledElement
0 6.9.6 Interface SV GTransformedElement
o 6.9.7 Interface SV GStyledAndTransformedElement
o 6.9.8 Interface SVGSV GElement
o 6.9.9 Interface SV GGElement
o 6.9.10 Interface SV GDefsElement
o 6.9.11 Interface SV GDescElement
0 6.9.12 Interface SV GTitleElement
o 6.9.13 Interface SV GUseElement
o 6.9.14 Interface SV GlmageElement
o 6.9.15 Interface SV GSymbol Element

6.1 Defining an SVG document fragment: the 'svg' element

6.1.1 Overview

An SV G document fragment consists of any number of SVG elements contained within an 'svg' element.

An SVG document fragment can range from an empty fragment (i.e., no content inside of the 'svg' element), to avery simple SV G document
fragment containing a single SV G graphics element such as a'rect’, to a complex, deeply nested collection of container elements and

graphics elements.

An SVG document fragment can stand by itself as a self-contained file or resource, in which case the SVG document fragment isan SVG
document, or it can be embedded inline as a fragment within a parent XML document.

The following example shows simple SVG content embedded as a fragment within a parent XML document. Note the use of XML
namespaces to indicate that the 'svg' and 'ellipse’ elements bel ong to the SVG namespace:

<?xm version="1.0" standal one="yes" ?>
<parent xm ns="http://sonmepl ace. org"
xm ns: svg="http://ww. w3. or g/ & aphi cs/ SVE SVG 19991203. dt d" >
<!-- parent stuff here -->
<svg:svg wi dt h="5cni" hei ght="8cni' >
<svg:ellipse rx="200" ry="130" />
</ svg: svg>
<l-- 0L -->
</ par ent >

Download this example

This example shows a slightly more complex (i.e., it contains multiple rectangles) stand-alone, self-contained SV G document:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg W dt h="4in" hei ght="3in">
<desc>Four separate rectangles
</ desc>
<rect w dth="20" hei ght="60"/>
<rect w dth="30" hei ght="70"/>
<rect w dth="40" hei ght="80"/>
<rect w dth="50" hei ght="90"/>
</ svg>

Download this example

'svg' elements can appear in the middle of SVG content. This is the mechanism by which SVG document fragments can be embedded within
other SV G document fragments.

Another use for 'svg' elements within the middle of SV G content is to establish a new viewport and alter the meaning of CSS unit specifiers.
See Establishing a new viewport and Redefining the meaning of CSS unit specifiers.

6.1.2 The 'svg' element

<IENTITY % svgExt "" >
<! ELEMENT svg (%lescTitl eDefs;, netadata?,

(path|text|rect|circle|lellipse|line|polyline|polygon|
use| i mage| svg| g| switch|a
% eExt; %svgExt;)*) >

<! ATTLI ST svg
xm ns CDATA #FI XED ' http://ww. wW3. or g/ G aphi cs/ SV@ SVG 19991203. dt d'
id I D # MPLI ED
xm : 1 ang NMIOKEN #| MPLI ED
xm : space (defaul t|preserve) # MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #l MPLI ED
Y%gr aphi csEl enent Event s;
%docunent Event s;
systemrequi red NMIOKEN #| MPLI ED
syst em | anguage CDATA #l MPLI ED
x CDATA #l MPLI ED
y CDATA #l MPLI ED
wi dt h CDATA #REQUI RED
hei ght CDATA #REQUI RED
ref X CDATA #| MPLI ED

file:///d|/jon/svgspec/samples/structure01.xml
file:///d|/jon/svgspec/samples/4rects.xml

refY CDATA #l MPLI ED

vi ewBox CDATA #l MPLI ED

preserveAspect Rati o CDATA ' xM dYM d neet’

enabl eZoomAndPanControls (true | false) "true"
content Scri pt Type CDATA #l MPLI ED >

Attribute definitions:
xmins [:prefix] = "resource-name"

Standard XML attribute for identifying an XML namespace. Refer to the "Namespacesin XML" Recommendation [XML-NS].
Animatable: no.

id = "name"

Standard XML attribute for assigning a unique name to an element. Refer to the the "Extensible Markup Language (XML) 1.0"
Recommendation [XML 10].

Animatable: no.
xml:lang = "languagel D"

Standard XML attribute to specify the language (e.g., English) used in the contents and attribute values of particular elements. Refer
to the "Extensible Markup Language (XML) 1.0" Recommendation [XML 10].
Animatable: no.

xml:space = "{ default | preserve} "

Standard XML attribute to specify whether white space is preserved in character data. The only possible values are default and
preserve. Refer to the "Extensible Markup Language (XML) 1.0" Recommendation [XML 10] and to the discussion white space
handling in SVG.

Animatable: no.

X = "<coordinate>"

(Has no meaning or effect on outermost 'svg' elements.) The x-coordinate of one corner of the rectangular region into which an
embedded 'svg' element is placed. The default x-coordinate is zero. See Coordinate Systems, Transformations and Units.
Animatable: yes.

y = "<coordinate>"

(Has no meaning or effect on outermost 'svg' elements.) The y-coordinate of one corner of the rectangular region into which an
embedded 'svg' element is placed. The default y-coordinate is zero. See Coordinate Systems, Transformations and Units.
Animatable: yes.

width = "<length>"

For outermost 'svg' elements, the intrinsic width of the SV G document fragment, with length being any valid expression for a length
in SVG. For embedded 'svg' elements, the width of the rectangular region into which the 'svg' element is placed.
Animatable: yes.

height = "<length>"

For outermost 'svg' elements, the intrinsic height of the SV G document fragment, with length being any valid expression for alength
in SVG. For embedded 'svg' elements, the height of the rectangular region into which the 'svg' element is placed.
Animatable: yes.

refX ="<coordinate>"

When referenced in the context that requires areference point (e.g., a motion path animation), the x-coordinate of the reference point.
Animatable: yes.

refY ="<coordinate>"

When referenced in the context that requires areference point (e.g., a motion path animation), the y-coordinate of the reference point.
Animatable: yes.

Attributes defined elsewhere:

class, style, %ographicsElementEvents;, %documentEvents;, system-required, system-language, viewBox, preserveAspectRatio,
enableZoomAndPanControls, contentScriptType.

6.2 Grouping and Naming Collections of Drawing Elements: the 'g’
element

6.2.1 Overview

The'g' element is the element for grouping and naming collections of drawing elements. If several drawing elements share similar attributes,
they can be collected together using a'g' element. For example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww.w3. or g/ Graphi cs/ SVG SVG 19991203. dt d" >
<svg w dth="4in" hei ght="3in">
<desc>Two groups, each of two rectangles
</ desc>
<g style="fill:red">
<rect x="100" y="100" wi dth="100" hei ght="100" />
<rect x="300" y="100" wi dth="100" hei ght="100" />
</ g>
<g style="fill:blue">
<rect x="100" y="300" wi dth="100" hei ght="100" />
<rect x="300" y="300" width="100" hei ght="100" />
</ g>
</ svg>

Download this example

A group of drawing elements, aswell asindividual objects, can be given aname. Named groups are needed for several purposes such as
animation and re-usable objects. The following example organizes the drawing elements into two groups and assigns a name to each group:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww.w3. or g/ Graphi cs/ SVG SVG 19991203. dt d" >
<svg w dth="4in" height="3in">
<desc>Two naned groups
</ desc>
<g id="OBJECT1">
<rect x="100" y="100" w dth="100" hei ght="100" />
</ g>
<g id="OBJECT2">
<circle cx="150" cy="300" r="25" />
</ g>
</ svg>

Download this example

A 'g' element can contain other 'g' elements nested within it, to an arbitrary depth. Thus, the following isvalid SVG:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg w dt h="4in" hei ght="3in">
<desc>Groups can nest
</ desc>
<g>
<g>
<g>
</ g>
</ g>
</ g>
</ svg>

Download this example

Any drawing element that is not contained within a'g' istreated (at least conceptually) asif it werein its own group.

6.2.2 The 'g' element

file:///d|/jon/svgspec/samples/group01.xml
file:///d|/jon/svgspec/samples/group02.xml
file:///d|/jon/svgspec/samples/group03.xml

<IENTITY % gExt "" >
<! ELEMENT g (%lescTitl eDefs;,
(path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| swi t ch| aj
ani mat e| set | ani nat eMbt i on| ani mat eCol or | ani mat eTr ansf orm
YgeExt ; YgExt;)*) >

<I ATTLI ST g
id I D # MPLI ED
xm : | ang NMITOKEN #| MPLI ED
xm : space (defaul t|preserve) # MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #l MPLI ED
transf orm CDATA #| MPLI ED
Ygr aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED >

Attributes defined elsewhere:
id, xml:lang, xml:space, class, style, transform, %ographicsElementEvents;, system-required, system-language.

6.3 References and the 'defs' element

6.3.1 Overview

SV G makes extensive use of URI references [URI] to other objects. For example, to fill arectangle with alinear gradient, you first define a
'linearGradient' element and giveitan ID, asin:
<linearGadient id="MyGadient">. ..</linearG adient>

Y ou then reference the linear gradient as the value of the fill' property for the rectangle, asin:
<rect style="fill:url (#WGadient)"/>

In SVG, the following facilities allow URI references:
« the'a eement
« the'dtGlyph' element
« the'animate’ element
« the'animateColor' element
« the'animateMotion' element
« the'animateTransform' element
« the'clip-path' property
« the'cursor' element and 'cursor' property

« the'felmage’ element

« the'fill' property

« thefilter' element and 'filter' property

« the'image' element

« the'linearGradient' element

« the'marker','marker-start','marker-mid' and 'marker-end properties

« the'mask’ property

« the'pattern’ element

« the'radialGradient' element

« the'script’ element

« the'src' descriptor on an @color-profile definition
« the'stroke' property

« the'textpath' element
« the'tref' element

« the'set’' element
o the'use element

URI references are defined in either of the following forms:

<URI -reference> = [<absoluteURI > | <relativeURI>] ["#" <elenment|lD>] -or-
<URI -reference> = [<absoluteURI > | <relativeURI>] ["#xptr(id(" <elenmentID> "))"]

where <elementI D> is the ID of the referenced element.

(Note that the two forms above (i.e., #<elementl D> and #xptr(id(<elementID>))) are formulated in syntaxes compatible with "XML Pointer
Language (XPointer)" [XPTR]. These two formulations of URI references are the only XPointer formulations that are required in SVG 1.0

user agents.)

SV G supports two types of URI references:

« local URI references, where the URI references does not contain an <absoluteURI> or <relativeURI> and thus only contains a
fragment identifier (i.e., #<elementl D> or #xptr(id<element| D>))

« non-local URI references, where the URI references does contain an <absoluteURI> or <relativeURI>

The following rules apply to the processing of URI references:

« All URI referencesto SVG elements (local or non-local) must be to elements which are immediate children of a'defs element.
References to elements which are not immediate children of a'defs element shall be treated asinvalid references. (This requirement
alows SV G user agents to potentially perform optimizations because only those elements defined in a 'defs element need to be
retained as the remainder of the document is processed.)

« All local URI references must be to elements defined earlier in the document. Local URI references to el ements later in the document
(i.e., forward references) shall treated asinvalid references.

« URI referencesto elements that don't exist shall be treated as invalid references.

« URI references to elements which are inappropriate targets for the given reference shall be treated asinvalid references. For example,
the 'clip-path’ property can only refer to <clipPath> elements. The property setting clip-path:url (#MyElement) is an invalid reference
if the referenced element is not a <clipPath>.

Unless a given attribute or property has defined fallback behavior in case areference cannot be resolved, invalid references are treated as
errors (see Error Processing). For example, if there is no element with ID "BogusReference” in the current document, then

fill="url(#BogusReference)" would represent an invalid reference and would be an error.

6.3.2 URI reference attributes

<IENTITY % xl i nkRef Attrs
xm ns: xl i nk CDATA #FI XED "http://ww. w3. or g/ XM/ XLi nk/ 0. 9"
xlink:type (sinple|lextended|locator|arc) #FIXED "sinple"
xlink:role CDATA #| MPLI ED
xlink:title CDATA #l MPLI ED
xl i nk: show (new| enbed| repl ace) #FI XED ' enbed’
xlink:actuate (user|auto) #FIXED 'auto'

xlink: href CDATA #REQUI RED

xmins[:prefix] = "resource-name”
Standard XML attribute for identifying an XML namespace. This attribute makes the XLink [XLink] namespace available to the
current element. Refer to the "Namespacesin XML" Recommendation [XML-NS].
Animatable: no.

xlink:type = 'simplée’
Identifies the type of XLink being used. For hyperlinksin SVG, only simple links are available. Refer to the"XML Linking
Language (XLink)" [XLink].
Animatable: no.

xlink:role = '<string>"'
A generic string used to describe the function of the link's content. Refer to the " XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:title = '<string>'
Human-readable text describing the link. Refer to the "XML Linking Language (XLink)" [XLink].

Animatable: no.
xlink:show = 'embed'

Indicates that upon activation of the link the contents of the referenced object are incorporated appropriately into the current SVG
document fragment. Refer to the "XML Linking Language (XLink)" [XLink].

Animatable: no.
xlink:actuate = 'auto'

Indicates that the contents of the referenced object are incorporated into the current document automatically (i.e., without user
action). Refer to the "XML Linking Language (XLink)" [XLink].

Animatable: no.
xlink:href ="<uri>"

The location of the referenced object, expressed as a URI reference. Each element in SVG which has an xlink:href attribute will
describe the particular usage rules relevant to that element. Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: yes.

6.3.3 The 'defs' element

The 'defs element is used to identify those objects which will be referenced by other objects later in the document. It is arequirement that all
referenced objects be defined within a'defs’ element. (See References and the 'defs element.)

The child el ements within a'defs element are not drawn.

<IENTITY % def sExt "" >

<! ELEMENT defs (script]|style|synbol | marker|clipPath| mask|
linearGadient|radial Gadient|pattern|filter|cursor|font]|
ani mat e| set | ani mat eMdt i on| ani mat eCol or | ani mat eTr ansf or
path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| view| swi tch| al t d yphDef
Y%ceExt ; Ydef sExt;) * >

<I ATTLI ST defs
id |1 D # MPLI ED
xm : 1 ang NMIOKEN #| MPLI ED
xm : space (default|preserve) # MPLI ED
class NMIOKENS #l MPLI ED
styl e CDATA #l MPLI ED >

Attributes defined elsewhere:
id, xml:lang, xml:space, class, style.

To provide some SV G user agents with an opportunity to implement efficient implementationsin streaming environments, creators of SVG
content are encouraged to place all elements which are targets of local URI references within a'defs’ element which is a direct child of one of
the ancestors of the referencing element. For example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN' "http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg w dt h="4in" height="3in">
<desc>Local URI references within ancestor's 'defs' elenent.</desc>
<def s>
<l i near Gradi ent id="Gadi ent01">
<stop of fset="30% style="col or: #39F"/>
</linear Gradi ent >
</ def s>
<g>
<g>
<rect x="0% y="0% w dth="100% hei ght="100%
style="fill:url (#G adient01)" />
</ g>
</ g>
</ svg>

Download this example

In the document above, the linear gradient is defined within a'defs element which isthe direct child of the 'svg' element, whichin turnisan
ancestor of the 'rect' element which references the linear gradient. Thus, the above document conforms to the guideline.

file:///d|/jon/svgspec/samples/defs_ancestor.xml

6.4 The 'desc' and 'title' elements

Each container element or graphics element in an SV G drawing can supply a'desc' and/or a'title' description string where the description is

text-only. For visual presentation, the SV G default stylesheet has 'display:none' for 'desc' and 'title' elements. Thus, they are not drawn as text
in the graphic. User agents may, for example, display the 'title' element as atooltip, as the pointing device moves over particular elements.
Alternate presentations are possible, both visual and aural, which display the 'desc' and 'title' elements but do not display 'path’ elements or

other graphics elements. Thisis readilly achieved by using a different (perhaps user) stylesheet. For deep hierarchies, and for following 'use
element references, it is sometimes desirable to alow the user to control how deep they drill down into descriptive text.

The following is an example. In typical operation, the SVG user agent would not render the 'desc’ and 'title' elements but would render the
remaining contents of the'g' element.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg SYSTEM "http://ww. w3. or g/ G aphi cs/ SV@ SVG 19991203. dt d" >
<svg W dth="4in" hei ght="3in">
<g>
<title>
Conpany sal es by region
</title>
<desc>
This is a bar chart which shows
conpany sal es by region
</ desc>
<l-- Bar chart defined as vector data -->
</ g>
</ svg>

Download this example

Description and title elements can contain marked-up text from other namespaces. Here is an example:

<?xm version="1.0" standal one="yes"?>
<svg w dth="4in" hei ght="3in"
xm ns="http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<desc xm ns: mydoc="http://foo.org/ nmydoc">
<mydoc:title>This is an exanple SVG fil e</nydoc:title>
<mydoc: para>The gl obal description uses narkup fromthe
<mydoc: enph>nmydoc</ nydoc: enph> nanmespace. </ nydoc: par a>
</ desc>
<g>
<!-- the picture goes here -->
</ g>
</ svg>

Download this example

6.5 The 'symbol' element

The 'symbol' element is used to define graphical objects which are meant for any of the following uses:
« A template object which will be used (i.e., instantiated) multiple times within a given document
« A member of astandard drawing symbol library that is referenced by avariety of different SVG content
« Thedefinition of agraphic to use as a custom glyph within a'text' element (e.g., generalize "text-on-a-path" to "SV G-on-a-path")
« Definition of a sprite for an animation

Closely related to the 'symbol' element are the 'marker' and 'pattern’ elements.

file:///d|/jon/svgspec/samples/desc.xml
file:///d|/jon/svgspec/samples/richdesc.xml

< ENTI TY % synbol Ext "" >
<! ELEMENT synbol (%lescTitl eDefs;,
(path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| switch|a
% eExt ; %synbol Ext;)*) >

<! ATTLI ST synbol
id I D # MPLI ED
xm : | ang NMTOKEN #| MPLI ED
xm : space (default|preserve) # MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #l MPLI ED
ref X CDATA #| MPLI ED
refY CDATA #| MPLI ED
vi ewBox CDATA #| MPLI ED
preserveAspect Rati o CDATA ' xM dYM d neet' >

Attributes defined elsewhere:
id, xml:lang, xml:space, class, style, refX, refY, viewBox, preserveAspectRatio.

6.6 The 'use' element

Any 'svg', 'symbal', 'd', or graphics element that is a child of a'defs element and has been assigned an ID is potentially atemplate object that

can bere-used (i.e., "instanced") anywhere in the SVG document via a'use' element. The 'use' element references another element and
indicates that the graphical contents of that element isincluded/drawn at that given point in the document.

The'use' element can reference either:
« an element within the same SV G document whose immediate ancestor is a 'defs' element
« an element within adifferent SVG document whose immediate ancestor is a'defs element

Unlike 'image, the 'use' element cannot reference entire files.

In the example below, the first 'g' element has inline content. After this comes a 'use’ element whose href value indicates which graphics
element isincluded/rendered at that point in the document. Finally, the second 'g' element has both inline and referenced content. In this
case, the referenced content will draw first, followed by the inline content.

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >

<svg w dt h="4in" hei ght="3in">

<def s>
<synbol id="Tenpl at etoj ect 01" >
<!-- synbol definition here -->
</ synbol >
</ def s>

<desc>Exanpl es of inline and referenced content
</ desc>

<l-- <g>wth inline content -->
<g>

<l-- Inline content goes here -->
</ g>

<!-- referenced content -->
<use xlink: href="#Tenpl at eCbj ect 01" />

<l-- <g> with both referenced and inline content -->
<g>
<use xlink: href="#Tenpl at eoj ect 01" />
<!-- Inline content goes here -->
</ g>
</ svg>

Download this example

The 'use’ element has optional attributes x, y, width and height which are used to map the graphical contents of the referenced element onto a
rectangular region within the current coordinate system.

The effect of a'use' element is asif the contents of the referenced element were deeply cloned into a separate non-exposed DOM tree which
had the 'use' element asits parent and all of the 'use’ element's ancestors as its higher-level ancestors. Because the cloned DOM treeis
non-exposed, the SVG Document Object Model (DOM) only contains the 'use’ element and its attributes. The SVG DOM does not show the
referenced element's contents as children of 'use’ element.

file:///d|/jon/svgspec/samples/symbol-use.xml

Property inheritance, however, works as if the referenced element had been textually included as a deeply cloned child of the 'use’ element.
The referenced element inherits properties from the 'use' element and the 'use’ element’s ancestors. An instance of areferenced element does
not inherit properties from its original parents.

The following example illustrates property inheritance with the 'use’ element:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg w dt h="4in" hei ght="3in">
<defs styl e="stroke: green">

<!-- Note that parent's stroke:green will have no effect below -->
<circle id="Tenpl at ebj ect 02" cx="50" cy="50" r="30" style="fill:red" />
</ def s>

<desc>Exanpl es of <use> property inheritance

</ desc>

<g style="fill:yell ow stroke: bl ue" >
<I-- Draws a circle with fill:red and stroke:blue. -->
<l-- Note that the referenced el ement specifies fill:red,

whi ch takes precedence over the inherited fill:yellow. -->

<use xlink: href="#Tenpl at eoj ect 02" />

</ g>

</ svg>

Download this example

In the example above, property inheritance for 'use' element shown aboveis asif the 'use’ element were replaced by a container object whose
contents are the referenced element:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww.w3. or g/ Graphi cs/ SVG SVG 19991203. dt d" >
<svg w dt h="4in" hei ght="3in">
<defs styl e="stroke: green">

<!-- Note that parent's stroke:green will have no effect below -->
<circle id="Tenpl at eQpj ect 02" cx="50" cy="50" r="30" style="fill:red" />
</ def s>

<desc>Exanpl es of <use> property inheritance

</ desc>
<g style="fill:yellow stroke: bl ue" >
<l-- Draws a circle with fill:red and stroke:blue. -->
<l-- Note that the referenced el ement specifies fill:red,
whi ch takes precedence over the inherited fill:yellow -->
<g>
<circle cx="50" cy="50" r="30" style="fill:red" />
</ g>
</ g>
</ svg>

Download this example

<IENTITY % useExt "" >
<! ELEMENT use (%lescTitle;, (animate|set|ani mat eMbti on| ani mat eCol or | ani mat eTr ansf orm

Y%geExt ; YuseExt;)*) >

<! ATTLI ST use
id 1D # MPLI ED
xm : 1 ang NMIOKEN #| MPLI ED
xm : space (default|preserve) # MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #l MPLI ED
transf orm CDATA #| MPLI ED
%gr aphi csEl enent Event s;
systemrequi red NMIOKEN #| MPLI ED
syst em | anguage CDATA #l MPLI ED
x CDATA #| MPLI ED
y CDATA #| MPLI ED
wi dt h CDATA #| MPLI ED
hei ght CDATA #l MPLI ED
%l inkRef Attrs:;
xlink: href CDATA #REQUI RED >

Attribute definitions:

file:///d|/jon/svgspec/samples/symbol-use2a.xml
file:///d|/jon/svgspec/samples/symbol-use2b.xml

X = "<coordinate>"

The x coordinate of one corner of the rectangular region into which the referenced element is placed. The default x coordinate is zero.
See Coordinate Systems, Transformations and Units.

Animatable: yes.

y = "<coordinate>"

They coordinate of one corner of the rectangular region into which the referenced element is placed. The default y coordinate is zero.
See Coordinate Systems, Transformations and Units.

Animatable: yes.
width = "<length>"

The width of the rectangular region into which the referenced element is placed.
Animatable: yes.

height = "<length>"

The height of the rectangular region into which the referenced element is placed.
Animatable: yes.

xlink:href =" <uri>"

A URI reference to an element/fragment within an SV G document.
Animatable: yes.

Attributes defined elsewhere:
id, xml:lang, xml:space, class, style, transform, %ographicsElementEvents;, system-required, system-language, %oxlinkAttrs;.

6.7 The 'image' element

The 'image’ element indicates that the contents of a complete file are to be rendered into a given rectangle within the current user coordinate
system. The 'image’ element can refer to raster image files such as PNG or JPEG or to fileswith MIME type of "image/svg". Conforming
SVG viewers need to support at least PNG, JPEG and SVG format files.

The resource referenced by the 'image’ element represents a separate document which generates its own parse tree and document object
model (if the resource is XML). Thus, thereis no inheritance of propertiesinto the image.

Unlike 'use, the 'image’ element cannot reference elements within an SVG file.

<IENTITY % i mageExt "" >
<! ELEMENT i mage (%lescTitle;, (ani mate|set|ani mat eMdti on| ani mat eCol or | ani mat eTr ansf orm
%geExt ; % mageExt;)*) >

<I ATTLI ST inmage
id 1D # MPLI ED
xm : | ang NMITOKEN #| MPLI ED
xm : space (default|preserve) # MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #l MPLI ED
transf orm CDATA #| MPLI ED
Y%@r aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #l MPLI ED
x CDATA #| MPLI ED
y CDATA #| MPLI ED
wi dt h CDATA #REQUI RED
hei ght CDATA #REQUI RED
%l i nkRef Attrs;
xlink: href CDATA #REQUI RED >

Attribute definitions:
X = "<coordinate>"

The x coordinate of one corner of the rectangular region into which the referenced document is placed. The default x coordinate is
zero. See Coordinate Systems, Transformations and Units.

Animatable: yes.

y = "<coordinate>"

They coordinate of one corner of the rectangular region into which the referenced document is placed. The default y coordinate is
zero. See Coordinate Systems, Transformations and Units.

Animatable: yes.

width = "<length>"
The width of the rectangular region into which the referenced document is placed.
Animatable: yes.

height = "<length>"

The height of the rectangular region into which the referenced document is placed.
Animatable: yes.

xlink:href =" <uri>"

A URI reference.
Animatable: yes.

Attributes defined elsewhere:
id, xml:lang, xml:space, class, style, transform, %graphicsElementEvents;, system-required, system-language, %oxlinkAttrs;.

A valid example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww.w3. or g/ Graphi cs/ SVG SVG 19991203. dt d" >
<svg w dt h="4in" hei ght="3in">
<desc>This graphic links to an external inage
</ desc>
<i mage x="200" y="200" wi dth"100px" hei ght="100px"
x| i nk: hr ef =" nyi mage. png" >
<title>My image</title>
</ i mage>
</ svg>

Download this example

A well-formed example:

<?xm version="1.0" standal one="yes"?>
<svg w dt h="4in" hei ght="3in"
xm ns=" http://ww. w3. or g/ & aphi cs/ SVE SVG 19991203. dtd' >
<desc>This links to an external inage
</ desc>
<i mage x="200" y="200" wi dth"100px" hei ght="100px"
x| ink:type="sinple" xlink:show="enbed" xlink:actuate="auto"
xli nk: hr ef =" nyi nage. png" >
<title>My image</title>
</ i mage>
</ svg>

Download this example

6.8 Conditional processing

6.8.1 Conditional processing overview

SV G contains a'switch' element along with attributes system-required and system-language to provide an ability to specify aternate viewing
depending on the capabilities of a given user agent or the user's language. These features operate with the same semantics as the
corresponding features within the SMIL 1.0 Recommendation [SMIL1].

Attributes system-required and system-language act as tests and return either true or false results. The 'switch' renders the first of its children
for which both attributes test true.

file:///d|/jon/svgspec/samples/image-valid.xml
file:///d|/jon/svgspec/samples/image-wf.xml

6.8.2 The 'switch' element

The 'switch' element evaluates the system-required and system-language attributes on its direct child elements in order, and then processes

and renders the first child for which these two attributes evaluate to true. All others will be bypassed and therefore not rendered. If the child
element is a container element such asa'd’, then the entire subtree is either processed/rendered or bypassed/not rendered.

<IENTITY % sw tchExt "" >
<! ELEMENT swi tch (%lescTitl eDefs;,
(path|text|rect|circle|lellipse|line|polyline|polygon|
use| i mage| svg| g| swi t ch| a| f or ei gnQoj ect |
ani mat e| set | ani nmat eMbt i on| ani mat eCol or | ani mat eTr ansf orm
%ceExt; %sw tchExt;)*) >

<! ATTLI ST swi tch
id 1D # MPLI ED
xm : | ang NMITOKEN #| MPLI ED
xm : space (defaul t|preserve) # MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #l MPLI ED
transf orm CDATA #| MPLI ED
Y%gr aphi csEl enent Events;
systemrequi red NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED >

Attributes defined elsewhere:
id, xml:lang, xml:space, class, style, transform, %graphicsElementEvents;, system-required, system-language.

For more information and an example, see Embedding foreign object types.

6.8.3 The system-required attribute

Definition of system-required:

system-required = list-of-features
The value is acomma-separated list of feature strings. Determines whether all of the named features are supported by the user agent.
If one of the given featuresis not supported, then the current element and its children are processed; otherwise, the current element

and its children are skipped and thus will not be rendered and cannot be referenced by another element.
Animatable: no.

The following are the feature strings for the system-required attribute. These same feature strings apply to the hasFeature method call that is
part of the SVG DOM's support for the DOMImplementation interface defined in [DOM2-CORE] (see Feature strings for the hasFeature
method call).

« Thefeature string "SVG" indicates that the user agent supports at least one of the following (all of which are described

subsequently): "SVGLang", "SVGDynamic", "SVGStatic" or "SVGDOM". (Because this feature string can be ambiguous in some
circumstances, it is recommended that more specific feature strings be used.)

« Thefeature string "SVGLang" indicates that the user agent can parse and process al of the language features defined in this
specification. This value indicates that there is no language feature defined in this specification which will cause the user agent to fail
in its processing.

« Thefeature string "SVGStatic" indicates the availability of all of the language capabililities defined in:
o Basic Data Types and Interfaces

o SVG Document Structure

o Styling

o Coordinate Systems, Transformations and Units
0 Paths

o Basic Shapes

o Text

o Painting: Filling, Stroking and Marker Symbols

o Color
o Gradients and Patterns

o Clipping, Masking and Compositing
o Filter Effects
o Fonts

o The'switch' element
o The system-required attribute

o The system-language attribute
For SVG viewers, "SVGStatic" indicates that the viewer can process and render successfully all of the language features listed above.

« Thefeature string "SVGDOM Static" indicates the availability of all of the DOM interfaces and methods that correspond to the
language features for "SVGStatic".

« Thefeature string "SVGAnimation" includes all of the language capabilities defined for "SVGStatic" plus the availability of al of the
language capabililities and DOM interfaces defined in Animation. For SV G viewers running on media capable of rendering
time-based material, such as displays, "SVGAnimation" indicates that the viewer can process and render successfully al of the
corresponding language features.

« Thefeature string "SVGDOMAnnimation" corresponds to the availability of DOM interfaces and methods that correspond to the
language features for "SV GAnimation".

« Thefeature string "SVGDynamic" includes all of the language capabilities defined for "SVGAnimation™ plus the availability of all of
the language capabililities and DOM interfaces defined in Relationship with DOM2 events, Linking and Interactivity and Scripting.
For SV G viewers running on media capable of rendering time-based material, such as displays, "SVGDynamic" indicates that the
viewer can process and render successfully all of the corresponding language features.

« Thefeature string "SVYGDOMDynamic" corresponds to the availability of DOM interfaces and methods that correspond to the
language features for "SVGDynamic".

« Thefeature string "SVGAII" corresponds to the availability of all of the language capabilities defined in this specification.
« Thefeature string "SVGDOMAII" corresponds to the availability of al of the DOM interfaces defined in this specification.

If the attribute is not present, then itsimplicit return valueis "true”. If anull string or empty string value is given to attribute
system-required, the attribute returns "false".

system-required is often used in conjunction with the 'switch' element. If the system-required is used in other situations, then it represented a
simple switch on the given element whether to render the element or not.

6.8.4 The system-language attribute

The attribute value is a comma-separated list of language names as defined in [RFC1766].

Evauatesto "true" if one of the languages indicated by user preferences exactly equals one of the languages given in the value of this
parameter, or if one of the languages indicated by user preferences exactly equals a prefix of one of the languages given in the value of this
parameter such that the first tag character following the prefix is"-". Evaluatesto "false" otherwise.

Further description of the system-language attribute can be found at [SMIL10-SY SLANG].

If the attribute is not present, then itsimplicit return valueis "true”. If anull string or empty string value is given to attribute
system-required, the attribute returns "false".

6.9 DOM interfaces

6.9.1 Overview

This section describes the SV G-specific DOM interfaces that correspond to the topics described in this chapter.

6.9.2 Interface SVGDocument

When an 'svg' element is embedded inline as a component of a document from another namespace, such as when an 'svg' element is
embedded inline within an XHTML document [XHTML 10], then an SV GDocument object will not exist; instead, the root object in the
document object hierarchy will be a Document object of a different type, such asan HTMLDocument object.

However, an SVGDocument object will indeed exist when the root element of the XML document hierarchy isan 'svg' element, such as
when viewing a standalone SV G file (i.e., afilewith MIME type "image/svg"). In this case, the SV GDocument object will be the the root
object of the document object model hierarchy.

In the case where an SV G document is embedded by reference, such aswhen an XHTML document has an 'object’ element whose href
attribute references an SV G document (i.e., a document whose MIME typeis "image/svg" and whose root element is thus an 'svg' element),
there will exist two distinct DOM hierarchies. The first DOM hierarchy will be for the referencing document (e.g., an XHTML document).
The second DOM hierarchy will be for the referenced SVG document. In this second DOM hierarchy, the root object of the document object
model hierarchy is an SVGDocument object.

The SVGDocument interface contains asimilar list of attributes and methods to the HTM L Document interface described in Document
Object Model (HTML) Level 1 chapter of the [DOM1] specification.

IDL Definition
interface SVGocunent : Document {
attribute DOMVString title;
readonly attribute DOVString referrer;
readonly attribute DOVString domai n;
readonly attribute DOVString URL;
attribute SVGSVCEl enent root El enent ;
El enent get El ement Byl d(in DOVString el ementld);

}s

Attributes
title

Thetitle of a document as specified by the title sub-element of the 'svg' root element (i.e., <svg><title>Hereisthe
title</title>...</svg>)

referrer

Returns the URI of the page that linked to this page. The valueis an empty string if the user navigated to the page directly
(not through alink, but, for example, via a bookmark).

domain
The domain name of the server that served the document, or anull string if the server cannot be identified by a domain name.
URL
The complete URI of the document.
Methods
getElementByld

Returns the Element whose id is given by elementld. If no such element exists, returns null. Behavior is not defined if more
than one element hasthisid.

Parameters
elementld The uniqueid value for an element.

Return Value
The matching element.

This method raises no exceptions.

6.9.3 The getSVGDocument method

In the case where an SV G document is embedded by reference, such aswhen an XHTML document has an 'object’ element whose href (or
equivalent) attribute references an SVG document (i.e., adocument whose MIME typeis "image/svg" and whose root element is thus an
'svg' element), the SV G user agent isrequired to provide getSVGDocument method for the element which references the SVG document
(e.g., the HTML 'object' or comparable referencing elements).

Methods
get SVGocunent

Returns the SV GDocument object for the referenced SV G document.

No Parameters

http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html
http://www.w3.org/TR/REC-DOM-Level-1/level-one-html.html

Return Value
SVGDocunent The SVGDocument object for the referenced SVG document.

Exceptions
DOVExcepti on NO_SVG_DOCUMENT: No SVGDocument object is available.

6.9.4 Interface SVGElement

All of the SVG DOM interfaces that correspond directly to elementsin the SVG language (e.g., the SV GPathElement interface corresponds
directly to the 'path’ element in the language) are derivative from base class SV GElement.

IDL Definition

interface SVGEl enent : Elenent {
attribute DOVString id;
attribute DOVBtring | ang;
attribute DOVString space;
readonly attribute SVGSVGEl enent owner SVGEl enent ;
readonly attribute SVGEl enent viewportEl enent;

Attributes
id
The value of theid attribute on the given element.
lang
The value of the xml:lang attribute on the given element.
lang

The value of the xml:space attribute on the given element.
ownerSV GElement

The nearest ancestor 'svg' element. Null if thisisthe given element is the outermost 'svg' element.
viewportElement

The element which established the current viewport. Often, the nearest ancestor 'svg' element. Null if thisisthe given element
isthe outermost 'svg' element.

6.9.5 Interface SVGStyledElement

Interface SV GStyledElement is the base class for elements which can be styled but not transformed (i.e., elements which have a style
attribute but not a transform attribute).

IDL Definition

interface SVGStyl edEl enent : SVCEl enent {
readonly attribute CSSStyl eDeclaration style;
attribute DOVString cl assNane;

Attributes
style
The value of the style attribute on the given element.
className
The value of the class attribute on the given element.

6.9.6 Interface SVGTransformedElement

Interface SV GTransformedElement is the base class for el ements which can be transformed but not styled (i.e., elements which have a
transform attribute but not a style attribute).

IDL Definition
interface SVGTransformedEl ement : SVGEl ement {
readonly attribute SVGEl enent near est Vi ewport El enent ;
readonly attribute SVGEl enent farthest Vi ewport El ement ;
attribute SVGIransfornlist transform
SVGRect get BBox() ;
SVGMVat ri x getCTM); // returns CTM (userspace to [nearest 'svg'] viewport transform natrix)
SVGMVat ri x get Tr ansf or nifoEl enent (i n SVGTr ansf or medEl ement el enent)

rai ses(SVGException);
/'l returns transform matrix which maps coordi nates from
/] current user space to the user space of "elenent"
SVGWvat ri x get ScreenCTM); // returns CTM (userspace to screen units transformmatrix)

Attributes
nearestViewportElement

The element which established the current viewport. Often, the nearest ancestor 'svg' element. Null if thisisthe given element
isthe outermost 'svg' element.

farthestViewportElement

The farthest ancestor 'svg' element. Null if thisisthe given element is the outermost 'svg' element.
transform

The value of the transform attribute on the given element.

Methods
getBBox
Returns the tight bounding box in current user space (i.e., after application of the transform attribute) on the geometry of all
contained graphics elements, exclusive of stroke-width and filter effects.
No Parameters
Return Value
The bounding box.
Exceptions
SVGExcepti on SV G_NO__GRAPHI CS_ELEMENTS: There are no graphics elements on which to perform the
given action.
getCTM

Returns the transformation matrix from current user units (i.e., after application of the transform attribute) to the viewport
coordinate system for the nearestViewportElement

No Parameters
Return Value
The transformation matrix.
No Exceptions
getTransformToElement

Returns the transformation matrix from the user coordinate system on the current element (after application of the transform
attribute) to the user coordinate system on element (after application of its transform attribute)

Parameters
element
The target element.
Return Value
The transformation matrix.
No Exceptions
getScreenCTM

Returns the transformation matrix from current user units (i.e., after application of the transform attribute) to the parent user
agent's notice of a"pixel”. For display devices, idedlly this represents a physical screen pixel. For other devices or
environments where physical pixel sizes are not know, then an algorithm similar to the CSS2 definition of a"pixel" can be

used instead.
No Parameters
Return Value
The transformation matrix.
No Exceptions

6.9.7 Interface SVGStyledAndTransformedElement

Interface SV GStyledAndTransformedElement is the base class for elements which can be both styled and transformed (i.e., elements which
have both style and transform attributes).

IDL Definition

i nterface SVGStyl edAndTr ansf or nedEl enent : SVGEl enent {
readonly attribute CSSStyl eDeclaration style;
attribute DOVString cl assNane;

readonly attribute SVGEl enent viewport El enent; // elenent that established current viewport
attribute SVGIransfornlist transform

SVGRect get BBox(); // tight bounding box on geonetry of all contained
/1 graphics el ements, in userspace.
/1 Doesn't take into account stroke-width or filter effects, for exanple

SVGwvat ri x get NearestCTM); // returns CTM (userspace to [nearest 'svg'] viewport transform matrix)
SVGWvat ri x get Near est CTM nver se()

rai ses(SVGException); // returns inverse matrix (SVG MATRI X_NOT_| NVERTABLE)
SVGwvat ri x get Furthest CTM); // returns CTM (userspace to [outernost 'svg'] viewport transform matrix)
SVGMVat ri x get Furt hest CTM nver se()

rai ses(SVGException); // returns inverse matrix (SVG MATRI X_NOT_| NVERTABLE)
SVGvat ri x get ScreenCTM); // returns CTM (userspace to screen units transformmatrix)
SVGwvat ri x get Scr eenCTM nver se()

rai ses(SVGException); // returns inverse matrix (SVG MATRI X_NOT_| NVERTABLE)

6.9.8 Interface SVGSVGElement

A key interface definition is the SVGSV GElement interface, which is the interface that corresponds to the 'svg' element. This interface

contains various miscellaneous commonly-used utility methods, such as matrix operations and the ability to control the time of redraw on
visual rendering devices.

IDL Definition

interface SVGSVGEl enent : SVGStyl edEl ement {

/1 Viewport definition in coordinate system of object

/1 containing this 'svg' elenent.

/'l (See coords.htnml for discussion of containing parent.

/1 Values are unitless values in parent's coordinate system

/1 1f parent uses CSS |ayout, then values represent CSS pixels.)
readonly attribute SVGRect viewport;

// Size of a CSS "pixel", using the CSS2 definition of a pixel,

/1 which represents a unit sonewhere in the range of 70dpi to 120dpi,
/1 and, on systens that support this, mght actually natch the

/1 characteristics of the target nedium On systens where it is

/1 inpossible to know the size of a pixel, a suitable default

/1 pixel size is provided.

readonly attribute float CSSPi xel ToMI1ineterX;

readonly attribute float CSSPixel ToMIlineterY;

// Size of a screen "pixel", which is the unit of size

/1 returned to U event handlers by the | evel 2 DOM

/1 (Again, various caveats about reliability of these values...)
readonly attribute float ScreenPixel ToMIIineterX;

readonly attribute float ScreenPixel ToMIlineterY;

/1 1f nost recent user action was hyperlink into docunent

/1 using SVGVi ewSpec, then this is true and the

/1 "currentView' object overrides the standard view ng

// attributes on 'svg' elenent.

/'l OQherwise, if the user nore recently did a "Normal size", then the
/'l bool ean becones false, and the attributes on the 'svg' el enent

// are active, not currentView.
attribute bool ean useCurrent Vi ew,
readonly attribute SVGVi ewSpec current Vi ew,

/] Corresponds to the various viewing attributes on the 'svg' elenent.
// Active only if 'useCurrentView is false.

attribute SVGRect vi ewBox;

attribute SVGPreserveAspectRati o preserveAspectRatio;

attribute bool ean enabl eZoomAndPanControl s;

/1 Information about the current zoom and pan factors

/1 relative to the base view (i.e., either currentView

/1 or viewBox).

/] These attributes are equivalent to the 2x3 natrix

/I [abcdef] =[currentScale 0 O currentScale currentTransl ate.x currentTransl ate.y]
attribute float currentScale;

attribute SVGPoi nt current Transl ate;

/1 XM. attributes on the 'svg' elenent.
attribute SVGength x;

attribute SVG.ength vy;

attribute SVG.ength width;

attribute SVG.ength height;

attribute SVGength refX;

attribute SVG.ength refY;

/1 Methods to elimnate flicker in scripted ani nations.
unsi gned | ong suspendRedraw(i n unsigned |l ong max_wait_ml1liseconds);

voi d unsuspendRedraw(i n unsi gned | ong suspend_handl e_i d)
rai ses(DOVException);

voi d unsuspendRedr awAl | () ;

voi d forceRedraw();

/1 Methods to nanage running ani nations.

voi d pauseAni mati ons()

rai ses(DOVException);
voi d unpauseAni mati ons()

rai ses(DOMVExcepti on);
bool ean ani mati onsPaused() ;
fl oat get Docunent Begi nTi me()

rai ses(DOVException);
fl oat get Current Ti me()

rai ses(DOVException);
voi d setCurrentTime(in float seconds)

rai ses(DOMVExcepti on);

voi d deSelectAll (); // Unselects any text strings that are currently sel ected.

/1 Methods to create unattached standard object types.

/1 Upon creation, these object types are unattached to

/1 the docunent, but they can be assigned to docunent

/] attributes of the sane type. For exanple:

Il /] Create a default SVG.ength (zero user units).

/1 SVGLength nyLength = createSVG.ength();

/1 /1 Set the length to 2.3cm

I nyLengt h. newval ueSpeci fi edUni t s(nyLengt h. kSVG LENGTHTYPE_CM 2. 3);

/1 /1 Change the width of a rectangle to 2.3cm

/1 nyRect.w dth = nyLengt h;

SVGN\unber creat eSVGN\unber () ; /1 Returns unattached nunber 0

SVGLengt h creat eSVG.engt h(); /1 Returns unattached I ength of O user units

SVGLengt hLi st createSVG.engthList(); // Returns unattached enpty Iist

SVGAngl e creat eSVGAngl e() ; /1 Returns unattached angle of 0 degrees

SVGPoi nt creat eSVGPoi nt () ; /1 Returns unattached point (0,0) in user units

SVGPoi nt Li st createSVGPointList(); // Returns unattached enpty list of points

SVGwvat ri x createSVGwatri x(); /1 Returns unattached identity matrix. (e,f)=(0,0) in user units
SVGPr eserveAspect Rati o creat eSVGPreserveAspectRatio(); // Returns unattached object with values 'none' and 'nmeet’
SVGRect creat eSVGRect () ; /] Returns unattached rect x=y=wi dth=height=0 in user units.
SVGTr ansf or mLi st createSVGIransfornlist(); // Returns unattached SVGIransform spec with identity matrix
SVGTr ansf or nLi st creat eSVGIransfornli st Fromvatri x(in SVGvatrix matrix); // Returns unattached SVGIransform spec
SVGTr ansform creat eSVGIransforn(); /1 Returns unattached identity matrix

SVGTr ansf orm creat eSVGIransfornFromvatri x(in SVGvatrix matrix); // Returns unattached transform
SVGLengt hLi st createSVGIransfornList(); // Returns unattached enpty |ist

SVA@ CCCol or creat eSVA CCCol or () ; /! Returns enpty unattached Iist

SVCCol or creat eSVGCol or () ; /1 Returns RGBCol or=bl ack, no I CC col or

SVGPai nt creat eSVGPai nt () ; // Returns paint of 'none'

/'l Generic event creation ability.
Event createEvent (in DOVString type)
rai ses(DOVExcepti on);

El enent get El ement Byl d(in DOVString el ementlD);
b

M ethods
suspendRedraw

Takes atime-out value which indicates that redraw shall not occur until: (&) the corresponding
unsuspendRedraw(suspend_handle_id) call has been made, (b) an unsuspendRedrawAll() call has been made, or (c) itstimer
has timed out. In environments that do not support interactivity (e.g., print media), then redraw shall not be suspended.
suspend_handle_id = suspendRedraw(max_wait_milliseconds) and unsuspendRedraw(suspend_handle_id) must be packaged
as balanced pairs. When you want to suspend redraw actions as a collection of SVG DOM changes occur, then precede the
changes to the SV G DOM with amethod call similar to suspend_handle_id = suspendRedraw(max_wait_milliseconds) and
follow the changes with a method call similar to unsuspendRedraw(suspend_handle_id). Note that multiple suspendRedraw
calls can be used at once and that each such method call is treated independently of the other suspendRedraw method calls.

Parameters

max_wait_milliseconds The amount of time in millisecondsto hold off before redrawing the device. Values greater
than 60 seconds will be truncated down to 60 seconds.

Return Value

A number which acts as a unique identifier for the given suspendRedraw() call. This value must be passed as the
parameter to the corresponding unsuspendRedraw() method call.

This method raises no exceptions.

unsuspendRedraw
Cancels a specified suspendRedraw() by providing a unique suspend_handle id.
Parameters

suspend_handle_id A number which acts as a unique identifier for the desired suspendRedraw() call. The number
supplied must be avalue returned from a previous call to suspendRedraw().

Return Value
None.

This method will raise a DOMException with value NOT_FOUND_ERR if aninvalid value (i.e., no such
suspend_handle _id is active) for suspend_handle id is provided.

unsuspendRedrawAll

Cancels al currently active suspendRedraw() method calls. This method is most useful at the very end of a set of SVG DOM
callsto ensure that all pending suspendRedraw() method calls have been cancelled.

Parameters
None.
Return Value
None.
This method raises no exceptions.

6.9.9 Interface SVGGElement

The SV GGElement interface corresponds to the 'g’ element.

IDL Definition

interface SVGCGEl enent : SVGStyl edAndTr ansf or nedEl enent {
b

6.9.10 Interface SVGDefsElement

The SV GDefsElement interface corresponds to the 'defs element.

IDL Definition

interface SVGDefsEl enent : SVGStyl edEl enent {

6.9.11 Interface SVGDescElement

The SV GDescElement interface corresponds to the 'desc’ element.

IDL Definition

i nterface SV@DescEl enent : SVGStyl edEl ement {
b

6.9.12 Interface SVGTitleElement

The SVGTitleElement interface corresponds to the 'title' element.

IDL Definition

interface SVGTitl eEl ement : SVGStyl edEl ement {
b

6.9.13 Interface SVGUseElement

The SV GUseElement interface corresponds to the 'use’ element.

IDL Definition

interface SVGUseEl enent : SVGStyl edAndTr ansf or medEl ement {

attribute DOVBtring role;

attribute DOVBtring title;

attribute DOVString show,

attribute DOVBtring actuate;

attribute DOVString href;

attribute SVGRect vi ewBox;

attribute SVGPreserveAspectRati o preserveAspectRatio;

/1 XML attributes on the 'use' elenent.
attribute SVGength x;

attribute SVG.ength vy;

attribute SVGength width;

attribute SVGL.ength height;

6.9.14 Interface SVGImageElement

The SV GImageElement interface corresponds to the 'image’ element.

IDL Definition

interface SVA mageEl enment : SVGStyl edAndTr ansf or medEl enent {
attribute DOVString role;
attribute DOVBtring title;
attribute DOVString show,
attribute DOVBtring actuate;
attribute DOVBtring href;

attribute SVGRect vi ewBox;
attribute SVGPreserveAspect Rati o preserveAspectRati o;

/1 XM. attributes on the 'use' elenent.
attribute SVG.ength x;

attribute SVG.ength vy;

attribute SVGength width;

attribute SVG.ength height;

6.9.15 Interface SVGSymbolElement

The SV GSymbol Element interface corresponds to the 'symbol’ element.

IDL Definition

i nterface SVGSynbol El enent : SVGStyl edEl ement {
attribute SVGRect vi ewBox;
attribute SVGPreserveAspect Rati o preserveAspectRati o;

/1 XM. attributes on the 'svg' elenent.
attribute SVG.ength refX;
attribute SVG.ength refY;

previous next contents properties index

previous next contents properties index

/ Coordinate Systems, Transformations and
Units

Contents

e 7.1 Introduction
e 7.2Theinitial viewport

e 7.3 Theinitial coordinate system

7.4 Coordinate system transformations

o 7.5 Nested transformations

« 7.6 Thetransform attribute

« 7.7 TheviewBox attribute

o 7.8 The preserveAspectRatio attribute

o 7.9 Establishing a new viewport

o 7.10 Units

o 7.11 Redefining the meaning of CSS unit specifiers

o 7.12 Processing rules for CSS units and percentages
o 7.13DOM interfaces
o 7.13.1 Overview
o 7.13.2 Interface SV GPoint
o 7.13.3 Interface SVGMatrix
o 7.13.4 Interfaces SVGTransformList and SVGTransform
o 7.13.5 Interface SV GPreserveAspectRatio

7.1 Introduction

For all media, the SV G canvas describes "the space where the SV G content is rendered.” The canvasisinfinite for
each dimension of the space, but rendering occurs relative to a finite rectangular region of the canvas. Thisfinite
rectangular region is called the SV G viewport. For visual media[CSS2-VISUAL], the SVG viewport isthe viewing

areawhere the user sees the SV G content.

The size of the SVG viewport (i.e., its width and height) is determined by a negotiation process (see Establishing the
size of theinitial viewport) between the SVG document fragment and its parent (real or implicit). Once that
negotiation process is completed, the SV G user agent is provided the following information:

« aninteger value that represents the width in "pixels" of the viewport

« aninteger value that represents the height in "pixels' of the viewport

« (highly desirable but not required) areal number value that indicates how many millimeters a" pixel"
represents

Using the above information, the SV G user agent determines the viewport, an initial viewport coordinate system and
an initial user coordinate system such that the two coordinates systems are identical. Both coordinates systems are
established such that the origin matches the origin of the viewport, and one unit in theinitial coordinate system equals
one "pixel" in the viewport. (See Initial coordinate system.) The viewport coordinate system is also called viewport

space and and the user coordinate system is also called user space.

Lengthsin SV G can be specified as:
« (if no unit designator is provided) valuesin user space -- for example, "15"
« (if aCSSunit specifier is provided) alength in CSS units -- for example, "15mm”

The supported CSS length unit specifiers are: em, ex, px, pt, pc, cm, mm, in, and percentages.

A new user space (i.e., anew current coordinate system) can be established at any place within an SV G document
fragment by specifying transformations in the form of transformation matrices or simple transformation operations
such as rotation, skewing, scaling and translation. Establishing new user spaces via coordinate system transformations
are fundamental operationsto 2D graphics and represent the usual method of controlling the size, position, rotation
and skew of graphic objects.

New viewports also can be established. By establishing a new viewport, you can redefine the meaning of some of the
various CSS unit specifiers (px, pt, pc, cm, mm, in, and percentages) and provide a new reference rectangle for
"fitting" a graphic into a particular rectangular area. ("Fit" meansthat a given graphic istransformed in such away
that its bounding box in user space aligns exactly with the edges of a given viewport.)

7.2 The initial viewport

The SVG user agent negotiates with its parent user agent using any CSS positioning parameters on the outermost 'svg'
element and the width= and height= XML attributes that are required on the 'svg' element to determine the viewport
into which the SV G user agent can render the document. In the negotiation process, if the parent document uses CSS
positioning and the outermost 'svg' element contains CSS positioning properties [CSS2-POSN] which are sufficient to
establish the width of the viewport, then the CSS positioning properties establish the viewport's width; otherwise, the
width= attribute on the outermost 'svg' element establishes the viewport's width. Similarly, if the parent document uses
CSS positioning and the outermost 'svg' element contains CSS positioning properties [CSS2-POSN] which are
sufficient to establish the height of the viewport, then the CSS positioning properties establish the viewport's height;
otherwise, the height= attribute on the outermost 'svg' element establishes the viewport's height.

In the following example, an SV G graphic is embedded within a parent XML document which is formatted using CSS
layout rules. The width="100px" and height="200px" attributes are used to determine the initia viewport:

<?xm version="1.0" standal one="yes"?>
<parent xm ns="http://some.url">

<l-- SVG graphic -->

<svg xm ns="http://ww. w3. or g/ G aphi cs/ SVE@ SVG 19991203. dt d'
wi dt h="100px" hei ght ="200px" >
<path d="ML00, 100 @00, 400, 300, 100"/ >
<l-- rest of SVG graphic would go here -->

</ svg>

</ par ent >

Download this example

Theinitia clipping path for the SV G document fragment is established according to the rules described in Theinitial
clipping path.

file:///d|/jon/svgspec/samples/viewport.xml

7.3 The initial coordinate system

For the outermost 'svg' element, the SV G user agent determines an initial viewport coordinate system and an initial
user coordinate system such that the two coordinates systems are identical. The origin of both coordinate systemsis at
the origin of the viewport, and one unit in the initial coordinate system equals one "pixel™ in the viewport. In most
cases, such as stand-alone SV G documents or SV G document fragments embedded within XML parent documents
where the parent's layout is determined by CSS[CSS2] or XSL [XSL], the initial viewport coordinate system (and
therefore the initial user coordinate system) hasits origin at the top/left of the viewport, with the positive X axis
pointing towards the right, the positive Y axis pointing down, and text rendered with an "upright" orientation, which
means glyphs are oriented such that Roman characters and full-size ideographic characters for Asian scripts have the
top edge of the corresponding glyphs oriented upwards and the right edge of the corresponding glyphs oriented to the
right.

Example Initial Coords below shows that the initial coordinate system has the origin at the top/left with the X axis
pointing to theright and the Y axis pointing down. The initia user coordinate system has one user unit equal to the
parent (implicit or explicit) user agent's "pixel".

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. org/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg wi dt h="300px" hei ght ="100px" >
<desc>Exanpl e Initial Coords - SVG s initial coordinate systenx/desc>

<g style="fill:none; stroke:black; stroke-w dth:3">
<line x1="0" y1="1.5" x2="300" y2="1.5" />
<line x1="1.5" yl1="0" x2="1.5" y2="100" />

</ g>

<g style="fill:red; stroke:none">
<rect x="0" y="0" width="3" height="3" />
<rect x="297" y="0" wi dth="3" height="3" />
<rect x="0" y="97" width="3" height="3" />

</ g>

<g style="font-size:14 font-fanily: Verdana">
<text x="10" y="20">(0,0)</text>
<text x="240" y="20">(300,0)</text>
<text x="10" y="90">(0, 100)</text>

</ g>

</ svg>

(0,0) (300,0)

(0,100)

Example Initial Coords

View this example as SV G (SV G-enabled browsers only)

file:///d|/jon/svgspec/images/coords/InitialCoords.svg

7.4 Coordinate system transformations

A new user space (i.e., anew current coordinate system) can be established by specifying transformationsin the form
of atransform attribute on a container element or graphics element. The transform attribute transforms all user space
coordinates and lengths on the given element and all of its ancestors. Transformations can be nested, in which case the
effect of the transformations are cumulative.

The following demonstrates simpl e transformations:

Example OrigCoordSys below shows a document without transformations. The text string is specified in the initial
coordinate system.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVG@ SVG 19991203. dt d" >
<svg wi dt h="400px" hei ght ="150px" >
<desc>Exanpl e Ori gCoordSys - Sinple transformations: original picture</desc>
<g style="fill:none; stroke:black; stroke-wi dth:3">
<l-- Draw the axes of the original coordinate system-->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />
</ g>
<g>
<text x="30" y="30" style="font-size:20 font-famly: Verdana">
ABC (orig coord system
</text>
</ g>
</ svg>

ABC (orig coord system)

Example OrigCoordSys

View this example as SV G (SV G-enabled browsers only)

Example NewCoordSys establishes a new user coordinate system by specifying transform="translate(50,50)" on the
third 'g' element below. The new user coordinate system hasits origin at location (50,50) in the original coordinate
system. The result of this transformation is that the coordinate (30,30) in the new user coordinate system gets mapped
to coordinate (80,80) in the original coordinate system (i.e., the coordinates have been trandated by 50 unitsin X and
50 unitsinY).

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVG@ SVG 19991203. dt d" >
<svg wi dt h="400px" hei ght ="150px" >
<desc>Exanpl e NewCoor dSys - New user coordi nate systenx/desc>
<g style="fill:none; stroke:black; stroke-wi dth:3">
<I-- Draw the axes of the original coordinate system-->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />
</ g>
<g>
<text x="30" y="30" style="font-size:20 font-famly: Verdana">

file:///d|/jon/svgspec/images/coords/OrigCoordSys.svg

ABC (orig coord system
</text>
</ g>
<l-- Establish a new coordinate system which is
shifted (i.e., translated) fromthe initial coordinate
system by 50 user units along each axis. -->
<g transform="transl at e(50, 50) ">
<g style="fill:none; stroke:red; stroke-w dth:3">
<!-- Draw lines of length 50 user units al ong
the axes of the new coordinate system-->
<line x1="0" yl1="0" x2="50" y2="0" style="stroke:red"/>
<line x1="0" y1="0" x2="0" y2="50" />
</ g>
<text x="30" y="30" style="font-size:20 font-fam|y: Verdana">
ABC (transl ated coord system
</text>
</ g>
</ svg>

ABC (orig coord system)

ABC (translated coord system)

Example NewCoordSys

View this example as SV G (SV G-enabled browsers only)

Example RotateScale illustrates simple r otate and scale transformations. The example defines two new coordinate
systems:

« onewhich istheresult of atrandation by 50 unitsin X and 30 unitsin Y, followed by arotation of 30 degrees

« another which isthe result of atranslation by 200 unitsin X and 40 unitsin Y, followed by a scale
transformation of 1.5.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg wi dt h="400px" hei ght ="120px" >
<desc>Exanpl e RotateScale - Rotate and scal e transforns</desc>
<g style="fill:none; stroke:black; stroke-w dth:3">
<!-- Draw the axes of the original coordinate system-->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" yl1="0" x2="1.5" y2="120" />
</ g>
<l-- Establish a new coordi nate system whose origin is at (50, 30)
inthe initial coord. systemand which is rotated by 30 degrees. -->
<g transform="transl at e(50, 30) ">
<g transforn"rotate(30)">
<g style="fill:none; stroke:red; stroke-w dth:3">
<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />

</ g>
<text x="0" y="0" style="font-size:20; font-famly:Verdana; fill:blue">
ABC (rotate)
</text>
</ g>
</ g>
<!-- Establish a new coordi nate system whose origin is at (200, 40)
inthe initial coord. systemand which is scaled by 1.5. -->

<g transforn="transl at e(200, 40)">

file:///d|/jon/svgspec/images/coords/NewCoordSys.svg

<g transform="scal e(1.5)">
<g style="fill:none; stroke:red; stroke-w dth:3">
<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />
</ g>
<text x="0" y="0" style="font-size:20; font-famly:Verdana; fill:blue">
ABC (scal e)
</text>
</ g>
</ g>
</ svg>

scale)

(7, Ly
Q)

Example RotateScale

View this example as SV G (SV G-enabled browsers only)

Example Skew defines two coordinate systems which are skewed relative to the origin coordinate system.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE@ SVG 19991203. dt d" >
<svg wi dt h="400px" hei ght =" 120px" >
<desc>Exanpl e Skew - Show effects of skewX and skewy</desc>
<g style="fill:none; stroke:black; stroke-w dth:3">
<!-- Draw the axes of the original coordinate system-->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" yl1="0" x2="1.5" y2="120" />
</ g>
<!-- Establish a new coordi nate system whose origin is at (30, 30)
inthe initial coord. systemand which is skewed in X by 30 degrees. -->
<g transform="transl at e(30, 30)">
<g transform="skewX(30)">
<g style="fill:none; stroke:red; stroke-w dth:3">
<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />

</ g>
<text x="0" y="0" style="font-size:20; font-famly:Verdana; fill:blue">
ABC (skewxX)
</text>
</ g>
</ g>
<!-- Establish a new coordi nate system whose origin is at (200, 30)
in the initial coord. systemand which is skewed in Y by 30 degrees. -->

<g transfornm="transl at e(200, 30)">
<g transform="skewY(30)">
<g style="fill:none; stroke:red; stroke-w dth:3">
<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />
</ g>
<text x="0" y="0" style="font-size:20; font-famly:Verdana; fill:blue">
ABC (skewy)
</text>
</ g>
</ g>
</ svg>

file:///d|/jon/svgspec/images/coords/RotateScale.svg

TJ&\&E%“R\ FEQ(
Sk QW\,,)

Example Skew
View this example as SV G (SVG-enabled browsers only)

Mathematically, all transformations can be represented as 3x3 transformation matrices of the following form:

oo
oG M
= — (D

Since only six values are used in the above 3x3 matrix, a transformation matrix is also expressed asavector: [abcd e
f].

Transformations map coordinates and lengths from a new coordinate system into a previous coordinate system:

X X

previoord Sys a ¢ € . newCoordSys
I'."I|:-rE1..'C|:-|:|H:I Sys — b d f Y newCoard Cys
1 0 0 1 1

Simple transformations are represented in matrix form as follows:
« Trangdationis equivalent to the matrix

1 0 tx
0 1 ty
0 0 1

or [100 1tx ty], where tx and ty are the distances to trandlate coordinatesin X and Y, respectively.

« Scaling is equivaent to the matrix

sx 0 0O
0 sy O
0 0 1

or [sx 00 sy 00]. One unit inthe X and Y directions in the new coordinate system equals sx and sy unitsin the
previous coordinate system, respectively.

« Rotation is equivalent to the matrix

file:///d|/jon/svgspec/images/coords/Skew.svg

cos(a) -sin{a) 0
sin{a) cos(a) 0
0 0 1

or [cos(a) sin(a) -sin(a) cos(a) 0 0], which has the effect of rotating the coordinate system axes by angle a.

« A skew transformation along the X axisis equivalent to the matrix

1 tan(a) 0
0 1 0
0o 0 1

or [1 0tan(a) 1 0 0], which has the effect of skewing X coordinates by angle a.

« A skew transformation along the Y axisis equivalent to the matrix

1 0 O
tan(a) 1 0
0 0 1

or [1tan(a) 0 1 0 0], which hasthe effect of skewing Y coordinates by angle a.

7.5 Nested transformations

Transformations can be nested to any level. The effect of nested transformations is to post-multiply (i.e., concatenate)
the subsequent transformation matrices onto previously defined transformations:

xl'.'H'E'u' — d1C1 € daCz €3 Xeurr
Yorey | == | D10y fy badafa | * | Yeurr
1 001 001 1

For each given element, the accumulation of all transformations that have been defined on the given element and all of
its ancestors up to and including the element which established the current viewport (usually, the 'svg' element which
is the most immediate ancestor to the given element) is called the current transformation matrix or CTM. The CTM
thus represents the mapping of current user coordinates to viewport coordinates:

—_— d; 61 &y d; &
CTM = [edt || bian
001 001 sew

1

Xviewport — . Auserspace
Yviewport — Yuserspace
1

Example Nested illustrates nested transformations.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww.w3. or g/ G aphi cs/ SVG SVG 19991203. dt d" >
<svg wi dt h="400px" hei ght ="150px" >
<desc>Exanpl e Nested - Nested transformati ons</desc>
<g style="fill:none; stroke: bl ack; stroke-w dth:3">
<l-- Draw the axes of the original coordinate system-->
<line x1="0" y1="1.5" x2="400" y2="1.5" />
<line x1="1.5" y1="0" x2="1.5" y2="150" />
</ g>
<l-- First, a translate -->
<g transform="transl at e(50.90) ">
<g style="fill:none; stroke:red; stroke-w dth:3">
<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />
</ g>
<text x="0" y="0" style="font-size:16; font-famly: Verdana">
....Transl ate(1)

</text>
<!-- Second, a rotate -->
<g transform="rotate(-45)">
<g style="fill:none; stroke:green; stroke-w dth:3">

<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />
</ g>
<text x="0" y="0" style="font-size:16; font-fam|y: Verdana">
....Rotate(2)
</text>
<!-- Third, another translate -->
<g transform="transl ate(130, 160)" >
<g style="fill:none; stroke:blue; stroke-w dth:3">
<line x1="0" y1="0" x2="50" y2="0" />
<line x1="0" y1="0" x2="0" y2="50" />
</ g>
<text x="0" y="0" style="font-size:16; font-famly: Verdana">
....Transl ate(3)
</text>
</ g>
</ g>
</ g>
</ svg>

Example Nested

View this example as SV G (SV G-enabled browsers only)

In the example above, the CTM within the the third nested transformation (i.e,, the transform="translate(130,160)")
consists of the concatenation of the three transformations, as follows:

CTM — translate(50,90), rotate(-45), translate(130,160)

— 0 50 707 707 0 0
— 1 90 - ?D}' ?EI? Cl 1
01 0

707 707 255.03
- 707 707 111.21
0 0 1

Xinitial Xuserspace
Yinitial ?uﬁerﬁ pace
1

oo

7.6 The transform attribute

The value of the transform attribute is a <transform-list>, which is defined as alist of transform definitions, which are
applied in the order provided. Theindividual transform definitions are separated by whitespace and/or acomma. The
available types of transform definitions include:
o matrix(<a> <c> <d> <e> <f>), which specifies a transformation in the form of transformation matrix of
six values. matrix(a,b,c,d,ef) is equivalent to applying the transformation matrix [ab cd ef]. Theeand f
values can be specified with CSS unit specifiers.

« translate(<tx> [<ty>]), which specifies atranslation by tx and ty. tx and ty values can be specified with CSS
unit specifiers.

file:///d|/jon/svgspec/images/coords/Nested.svg

« scale(<sx> [<sy>]), which specifies a scale operation by sx and sy. If <sy> isnot provided, it is assumed to be
equal to <sx>.

« rotate(<rotate-angle>), which specifies arotation by <rotate-angle> about the origin of the current user
coordinate system.

» skewX(<skew-angle>), which specifies a skew transformation along the X axis.

« skewY (<skew-angle>), which specifies a skew transformation along the Y axis.

All numeric values are real numbers. All angle values are expressed according to the rules for basic data type <angle>.

If alist of transformsis provided, then the net effect is asif each transform had been specified separately in the order
provided. For example,

<g transforme"transl ate(-10,-20) scal e(2) rotate(45) translate(5, 10)">
<l-- graphics elenments go here -->
</ g>

is functionally equivalent to:

<g transform="transl ate(-10,-20)">
<g transform="scal e(2)">
<g transform="rotate(45)">
<g transform="transl ate(5, 10)">
<!-- graphics elenents go here -->
</ g>
</ g>
</ g>
</ g>

The transform attribute is applied to an element before processing any other coordinate or length values supplied for
that element. In the element

<rect x="10" y="10" wi dth="20" hei ght="20" transforn¥"scale(2)"/>

the x, y, width and height values are processed after the current coordinate system has been scaled uniformly by a
factor of 2 by the transform attribute. Attributes x, y, width and height (and any other attributes or properties) are
treated as values in the new user coordinate system, not the previous user coordinate system. Thus, the above "rect'
element is functionally equivalent to:

<g transforme"scal e(2)">
<rect x="10" y="10" wi dth="20" hei ght="20"/>

</ g>

The following isthe BNF for values for the transform attribute. The following notation is used:
o *:0o0r more
o +:1o0r more
e 7200rl1
« (): grouping
o |: separates adternatives
« double quotes surround literals

transformlist:
wsp* transforns? wsp*

transforns:
transform

| transform comma-wsp+ transfornms

transform
matri x

| translate

| scale
| rotate
| skewX
| skewY

matri x:

"matrix® wsp* "(" wsp*

nunber
nunber
nunber
nunber
I ength
|l ength

transl ate:

"transl ate" wsp* "(" wsp* length (comm-wsp length)? wsp* ")

scal e:

"scale" wsp* "(" wsp* length (comma-wsp nunber)? wsp* ")"

rotate:

"rotate" wsp* "(

skewX:

"skewX" wsp* "(" wsp* nunmber wsp* ")"

skewy:

"skewY" wsp* "(" wsp* nunber wsp* ")"

| engt h:

nunber unit-specifier?

nunber :

si gn? integer-constant
| sign? floating-point-constant

conmma- wsp:

comma- wsp
conma- wsp
comma- wsp
conma- wsp
comma- wsp
wep*)"

(wsp+ conma? wsp*)

conmma:

i nt eger-constant:
di git-sequence

fl oati ng- poi nt-constant:
fractional -constant exponent?
| digit-sequence exponent

fractional -constant:

digit-sequence? ".
| digit-sequence

exponent :

("e" | "E'") sign? digit-sequence

si gn:
g el

"

di gi t - sequence

di gi t

| digit digit-sequence

digit:
nor | t1n

uni t-specifier
vent| "ex"

I

| x|

(#x20 | #x9 | #xD | #xA)

wsp* nunber wsp* ")

(comma wsp*)

di gi t-sequence

For the transform attribute:
Animatable: yes.

See the 'animateT ransform’ element for information on animating transformations.

7.7 The viewBox attribute

It is often desirable to specify that a given set of graphics stretch to fit a particular container element. The viewBox
attribute provides this capability.

All elements that establish a new viewport (see elements that establish viewports) have attribute viewBox. The value

of the viewBox attribute isalist of four numbers <min-x>, <min-y>, <width> and <height> which specify arectangle
in user space which should be mapped to the bounds of the viewport established by the given element, taking into
account attribute preserveAspectRatio. If specified, an additional transformation is applied to all descendants of the

given element to achieve the specified effect.

Example ViewBox illustrates the use of the viewBox attribute on the outermost 'svg' element to specify that the SVG
content should stretch to fit bounds of the viewport.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww.w3. or g/ G aphi cs/ SVG SVG 19991203. dt d" >
<svg wi dt h="300px" hei ght ="200px" vi ewBox="0 0 1500 1000">
<desc>Exanpl e Vi ewBox - uses the vi ewBox
attribute to autonmtically create an initial user coordinate
system whi ch causes the graphic to scale to fit into the
viewport no natter what size the viewport is.</desc>

<l-- This rectangle goes from(0,0) to (1500,1000) in user space.
Because of the viewBox attribute above,
the rectangle will end up filling the entire area
reserved for the SVG content. -->

<rect x="0" y="0" width="1500" hei ght="1000" style="fill:yellow' />

<l-- Alarge, red triangle -->
<path style="fill:red" d="M 750, 100 L 250,900 L 1250,900 z"/>

<l-- Atext string that spans nost of the viewport -->
<text x="100" y="600" style="font-size:150; font-famly: Verdana">
Stretch to fit

</text>
</ svg>
Rendered into Rendered into
viewport with viewport with
width=300px, width=150px,

height=200px height=200px

Str

Example ViewBox

View this example as SV G (SV G-enabled browsers only)

The effect of the viewBox attribute is that the user agent automatically supplies the appropriate transformation matrix
to map the specified rectangle in user space to the bounds of the viewport. To achieve the effect of the example on the
left, with viewport dimensions of 300 by 200 pixels, the user agent needs to automatically insert a transformation
which scales both X and Y by 0.2. The effect is equivalent to having a viewport of size 300px by 200px and the
following supplemental transformation in the document, as follows:

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SV@ SVG 19991203. dt d" >

<svg wi dt h="300px" hei ght ="200px" >

<g transform="scal e(0.2)">
<I-- Rest of docunent goes here -->

</ g>
</ svg>

To achieve the effect of the example on the right, with viewport dimensions of 150 by 200 pixels, the user agent needs
to automatically insert a transformation which scales X by 0.1 and Y by 0.2. The effect is equivalent to having a
viewport of size 150px by 200px and the following supplemental transformation in the document, as follows:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. org/ G aphi cs/ SVE@ SVG 19991203. dt d" >
<svg wi dt h="150px" hei ght ="200px" >
<g transform="scal e(0.1 0.2)">
<l-- Rest of docunent goes here -->

</ g>
</ svg>

(Note: in some cases the user agent will need to supply atranslate transformation in addition to a scale
transformation. For example, on an outermost 'svg', atrandate transformation will be needed if the viewBox

attributes specifies values other than zero for <min-x> or <min-y>.)
For the viewBox attribute:

Animatable: yes.

file:///d|/jon/svgspec/images/coords/ViewBox.svg

7.8 The preserveAspectRatio attribute

In some cases, it is necessary that force a uniform scaling transform to be used when utilizing viewBox, usually for the
purposes of preserving the aspect ratio of the graphics being rendered in the viewport. A supplemental attribute
preserveA spectRatio="<align> [<meetOrSlice>]", which is available for all elements that establish a new viewport
(see elements that establish viewports), indicates whether or not to force uniform scaling. The <align> parameter
indicates whether to force uniform scaling and, if so, the alignment method to use in case the aspect ratio of the
viewBox doesn't match the aspect ratio of the viewport. The <align> parameter must be one of the following strings:

« hone (the default) - Do not force uniform scaling. Scale the graphic content of the given element
non-uniformly if necessary such that the element's bounding box exactly matches the viewport rectangle.

« XMinYMin - Force uniform scaling.
Align the <min-x> of the element's viewBox with the smallest X value of the viewport.
Align the <min-y> of the element's viewBox with the smallest Y value of the viewport.

o XMidYMin - Force uniform scaling.
Align the midpoint X value of the element's viewBox with the midpoint X value of the viewport.
Align the <min-y> of the element's viewBox with the smallest Y value of the viewport.

o XMaxYMin - Force uniform scaling.
Align the <min-x>+<width> of the element's viewBox with the maximum X value of the viewport.
Align the <min-y> of the element's viewBox with the smallest Y value of the viewport.

o XMinYMid - Force uniform scaling.
Align the <min-x> of the element's viewBox with the smallest X value of the viewport.
Align the midpoint Y value of the element's viewBox with the midpoint Y value of the viewport.

« xMidYMid - Force uniform scaling.
Align the midpoint X value of the element's viewBox with the midpoint X value of the viewport.
Align the midpoint Y value of the element's viewBox with the midpoint Y value of the viewport.

« XMaxYMid - Force uniform scaling.
Align the <min-x>+<width> of the element's viewBox with the maximum X value of the viewport.
Align the midpoint Y value of the element's viewBox with the midpoint Y value of the viewport.

o XMinYMax - Force uniform scaling.
Align the <min-x> of the element's viewBox with the smallest X value of the viewport.
Align the <min-y>+<height> of the element's viewBox with the maximum Y value of the viewport.

o xMidYMax - Force uniform scaling.
Align the midpoint X value of the element's viewBox with the midpoint X value of the viewport.
Align the <min-y>+<height> of the element's viewBox with the maximum Y value of the viewport.

« XMaxYMax - Force uniform scaling.
Align the <min-x>+<width> of the element's viewBox with the maximum X value of the viewport.
Align the <min-y>+<height> of the e ement's viewBox with the maximum Y value of the viewport.

The <meetOrSlice> parameter is optiona and must be one of the following strings:
« meet (the default) - Scale the graphic such that:
0 aspect ratio is preserved
o theentire viewBox is visible within the viewport
o theviewBox is scaled up as much as possible, while still meeting the other criteria

In this case, if the aspect ratio of the graphic does not match the viewport, some of the viewport will extend
beyond the bounds of the viewBox (i.e., the areainto which the viewBox will draw will be smaller than the
viewport).

« dlice- Scale the graphic such that:
0 aspectratiois preserved
o theentire viewport is covered by the viewBox
o theviewBox is scaled down as much as possible, while still meeting the other criteria

Inthis case, if the aspect ratio of the viewBox does not match the viewport, some of the viewBox will extend
beyond the bounds of the viewport (i.e., the areainto which the viewBox will draw is larger than the viewport).

Example PreserveAspectRatio illustrates the various options on preserveAspectRatio. To save space, XML entities
have been defined for the three repeated graphic objects, the rectangle with the smile inside and the outlines of the two
rectangles which have the same dimensions as the target viewports. The example creates several new viewports by
including 'svg' sub-elements embedded inside the outermost 'svg' element (see Establishing a new viewport). The

smileis drawing the text string ":)" rotated 90 degrees.

<?xm version="1.0" standal one="no"?>
<I DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE@ SVG 19991203. dtd" [
<IENTITY Snmile "
<rect x='.5" y='.5" width='29" height="39" style="fill:yellow, stroke:red />
<g transfornm=' rotate(90)' >
<text x='10" y='10"' style='font-famly: Verdana;
font-wei ght:bold; font-size:14'>:)</text>

</ g>">
<IENTITY Viewportl "<rect x='.5" y='".5" width='"49" height='29
style="fill:none; stroke:blue'/>">
<IENTITY Viewport2 "<rect x='.5" y='".5" width='29" height='59
style="fill:none; stroke:blue'/>">
1>

<svg wi dt h="480px" hei ght ="270px" style="font-fani|y: Verdana; font-size:8">
<desc>Exanpl e PreserveAspectRatio - denonstrate avail abl e opti ons</desc>
<text x="10" y="30">SVG to fit</text>
<g transform="transl at e(20, 40) ">&Sm | e; </ g>
<text x="10" y="110">Viewport 1</text>
<g transform="transl at e(10, 120) " >&Vi ewport 1; </ g>
<text x="10" y="180">Viewport 2</text>
<g transform="transl at e(20, 190) " >&Vi ewport 2; </ g>
<text x="100" y="30">--------------- meet --------------- </text>
<g transform="transl at e(100, 60) " ><text y="-10">xM n*</text >&Vi ewport 1;
<svg preserveAspectRati 0="xM nYM n neet" viewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Sni | e; </ svg></ g>
<g transform="transl at e(170, 60) " ><t ext y="-10">xM d*</t ext >&Vi ewport 1;
<svg preserveAspectRati o="xM dYM d neet" viewBox="0 0 30 40"
wi dt h="50" hei ght =" 30" >&Sni | e; </ svg></ g>
<g transform="transl at e(240, 60) "><t ext y="-10">xMax*</text>&Vi ewport 1;
<svg preserveAspect Rati o="xMaxYMax neet" vi ewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Sni | e; </ svg></g>
<text x="330" y="30">---------- meet ---------- </text>
<g transform="transl at e(330, 60) "><text y="-10">*YM n</t ext >&Vi ewport 2;
<svg preserveAspectRati o="xM nYM n neet" viewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sni | e; </ svg></ g>
<g transform="transl at e(380, 60) "><text y="-10">*YM d</t ext >&Vi ewport 2;
<svg preserveAspectRati o="xM dYM d neet" viewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sni | e; </ svg></ g>
<g transform="transl at e(430, 60) "><t ext y="-10">*YMax</text>&Vi ewport 2;
<svg preserveAspect Rati o="xMaxYMax neet" vi ewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Smi | e; </ svg></ g>
<text x="100" y="160">---------- slice ---------- </text>
<g transform="transl ate(100, 190) "><text y="-10">XxM n*</text >&Vi ewport 2;
<svg preserveAspectRati 0="xM nYM n slice" viewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sni | e; </ svg></g>
<g transform="transl at e(150, 190) "><t ext y="-10">xM d*</t ext >&Vi ewport 2;
<svg preserveAspectRati o="xM dYM d slice" viewBox="0 0 30 40"
wi dt h="30" hei ght =" 60">&Sni | e; </ svg></ g>
<g transform="transl at e(200, 190) " ><t ext y="-10">xMax*</t ext >&Vi ewport 2;
<svg preserveAspect Rati o="xMaxYMax slice" viewBox="0 0 30 40"
wi dt h="30" hei ght ="60">&Sni | e; </ svg></ g>
<text x="270" y="160">--------------- slice --------------- </text>
<g transform="transl at e(270, 190) " ><t ext y="-10">*YM n</t ext >&Vi ewport 1;
<svg preserveAspectRati o="xM nYM n slice" viewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Smi | e; </ svg></ g>
<g transform="transl at e(340, 190) "><t ext y="-10">*YM d</t ext >&Vi ewport 1;
<svg preserveAspect Rati o="xM dYM d slice" viewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Sni | e; </ svg></g>
<g transform="transl at e(410, 190) " ><t ext y="-10">* YMax</t ext >&Vi ewport 1;
<svg preserveAspect Rati o="xMaxYMax slice" viewBox="0 0 30 40"
wi dt h="50" hei ght ="30">&Sni | e; </ svg></ g>
</ svg>

SWGtofit - MEet ——mmmmmmmmmmmem e mest ——--—————-

. shin® sl wMax* min *mid *vYmax
= = = ¥ .
L - am
Viewport 1 St
—————————— slice ---—---—-- —mmmmmm e = E|ICE -
vewpor: 2 2Mint wMid* mMax® yMin FyMid R ER

o e’

Example PreserveAspectRatio
View this example as SV G (SV G-enabled browsers only)

For the preserveAspectRatio attribute:

Animatable: yes.

7.9 Establishing a new viewport

At any point in an SV G drawing, you can establish a new viewport into which all contained graphicsis drawn by
including an 'svg' element inside SV G content. By establishing a new viewport, you aso implicitly establish a new
initial user space, new meanings for many of the CSS unit specifiers and, potentially, anew clipping path. The bounds

of the new viewport are defined by the x, y, width and height attributes on the 'svg' element. Here is an example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg wi dt h="4i n" hei ght="3in">
<desc>Thi s SVG drawi ng enbeds anot her one,
thus establishing a new vi ewport
</ desc>
<l-- The followi ng statenment establishing a new vi ewport
and renders SVG drawing B into that viewort -->
<svg x="25% y="25% w dth="50% height="50% >
<l-- drawi ng B goes here -->
</ svg>
</ svg>

For an extensive example of creating new viewports, see Example PreserveAspectRatio.

In addition to the 'svg' element, the following other elements also establish a new viewport:

o A'use or 'imageelement establishes atemporary new viewport for drawing instances of referenced elements
or files

« A 'marker' element establishes atemporary new viewport for drawing arrowheads and polymarkers

« When the text on a path facility triesto draw areferenced 'symbol’ or 'svg' element, it establishes a new
temporary new viewport for the referenced graphic.

« When apattern is used to fill or stroke an object by reference to a'pattern’ element, a temporary new viewport

file:///d|/jon/svgspec/images/coords/PreserveAspectRatio.svg

is established for each drawn instance of the pattern.

« When a'mask’' element is used to establish a mask for an object and maskUnits="objectBoundingBox", a
temporary new viewport is established to draw the elements within the 'mask' element.

Whether anew viewport also establishes a new additional clipping path is determined by the value of the ‘overflow'

property on the element which establishes the new viewport. If aclipping path is created to correspond to the new
viewport, the clipping path's geometry is determined by the value of the 'clip’ property. Also, see Clip to viewport vs.

clip to viewBox.

7.10 Units

All coordinates and lengthsin SV G can be specified in one of the following ways:

o User units. If no unit specifier is provided, a given coordinate or length is assumed to be in user units (i.e., a
value in user space). For example:

<text style="font-size: 50">Text size is 50 user units</text>

o CSSunits. If aCSS unit specifier is provided on a coordinate or length value, then the given value is assumed
to bein CSS units. Available CSS unit specifiers are the absolute and relative unit specifiers from CSS (em,
ex, px, pt, pc, cm, mm, in and percentages). Asin CSS, the em and ex unit specifiers are relative to the current
font's font-size and x-height, respectively. Initially, the various absolute unit specifiers from CSS (i.e., px, pt,
pc, cm, mm, in) represent lengths within the initial user coordinate system and do not change their meaning as
transformations alter the current coordinate system. Thus, "12pt" can be made to represent exactly 12 points on
the actual visual medium even if the user coordinate system has been scaled. For example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SV@ SVG 19991203. dt d" >
<svg wi dt h="4in" hei ght="3in">
<desc>Denpnstrati on of coordinate transforns
</ desc>
<!-- The following tw text elenents will both drawwith a
font height of 12 pixels -->
<text style="font-size: 12">This prints 12 pixels high.</text>
<text style="font-size: 12px">This prints 12 pixels high.</text>

<!-- Now scal e the coordinate systemby 2. -->
<g transform="scal e(2)">

<l-- The following text will actually draw 24 pixels high
because each unit in the new coordinate system equal s
2 units in the previous coordinate system -->

<text style="font-size: 12">This prints 24 pixels high.</text>

<l-- The following text will actually still draw 12 pixels high
because the CSS unit specifier has been provided. -->
<text style="font-size: 12px">This prints 12 pixels high.</text>

</ g>
</ svg>

Download this example

If possible, the SV G user agent must be passed the actual size of a px unit in inches or millimeters by its parent user
agent. (See Conformance Requirements and Recommendations.) If such information is not available from the parent

user agent, then the SV G user agent shall assume a px is defined to be exactly .28mm.

file:///d|/jon/svgspec/samples/transform.xml

7.11 Redefining the meaning of CSS unit specifiers

The process of establishing a new viewport, such aswhen thereis 'svg' element inside of another SVG 'svg', changes
the meaning of the following CSS unit specifiers. px, pt, pc, cm, mm, in, and % (percentages). A "pixel" (the px unit)
becomes equivalent to asingle unit in the user coordinate system for the given 'svg' element. The meaning of the other
absolute unit specifiers (pt, pc, cm, mm, in) are determined as an appropriate multiple of a px unit using the actual size
of px unit (as passed from the parent user agent to the SV G user agent). Any percentage values that are relative to the
current viewport will also represent new values.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVG@ SVG 19991203. dt d" >
<svg wi dt h="300px" hei ght ="300px" >
<desc>Transformati on with establishnent of a new vi ewport
</ desc>
<!-- The following two text elenents will both drawwith a
font height of 12 pixels -->
<text style="font-size: 12">This prints 12 pixels high.</text>
<text style="font-size: 12px">This prints 12 pixels high.</text>

<!-- Now scal e the coordinate systemby 2. -->
<g transform="scal e(2)">

<l-- The following text will actually draw 24 pixels high
because each unit in the new coordinate system equal s
2 units in the previous coordinate system -->

<text style="font-size: 12">This prints 24 pixels high.</text>

<l-- The following text will actually still draw 12 pixels high
because the CSS unit specifier has been provided. -->
<text style="font-size: 12px">This prints 12 pixels high.</text>
</ g>
<l-- This time, scale the coordinate systemby 3. -->
<g transform="scal e(3)">
<!-- Establish a new viewport and thus change the meani ng of
some CSS unit specifiers. -->

<svg style="left:0; top:0; right:100; bottom 100"
wi dt h="100% hei ght ="100% >

<l-- The following two text elenents will both draw with a
font height of 36 screen pixels. The first text el enent
defines its height in user coordinates, which have been
scal ed by 3. The second text elenment defines its height
in CSS px units, which have been redefined to be three tines
as big as screen pixels due the <svg> el enent establishing
a new viewport. -->
<text style="font-size: 12">This prints 36 pixels high.</text>
<text style="font-size: 12px">This prints 36 pixels high.</text>

</ svg>

</ g>
</ svg>

Download this example

7.12 Processing rules for CSS units and percentages

Any values expressed in CSS units or percentages of the current viewport shall be implemented such that these values
map to corresponding valuesin user space as follows:

« For any x-coordinate value or width value (xVauel nV PSpace) expressed using CSS units (other than
percentages), first convert xValuelnVPSpace into viewport pixel units using the SV G user agent's standard
conversion factor from pixelsto real world units (e.g., millimeters) to yield xVauelnVPPixels. Then transform
the points (0,0) and (xValuelnV PPRixels,0), from viewport space to current user space using the inverse of the
current transformation matrix, yielding two points in userspace Q1 and Q2. Do adistance calculation between

file:///d|/jon/svgspec/samples/viewport-transform.xml

Q1 and Q2 (sort((Q2x-Q1x)** 2 + (Q2y-Q1y)**2)) and use that as the value for the given operation.

« For any y-coordinate value or height value (yVauelnVPSpace) expressed using CSS units (other than
percentages), do the same thing as above, but use points (0,0) and (0,yVauelnV PPixels) instead.

« For any x-coordinate value or width value (xValuelnV PSpace) expressed as a percentage of the viewport,
transform the points (0,0) and (percentageV a ue* vpWidthinPixels,0), from viewport space to current user
space using the inverse of the current transformation matrix, yielding two pointsin userspace Q1 and Q2. Do a
distance calculation between Q1 and Q2 (sgrt((Q2x-Q1x)**2 + (Q2y-Qly)**2)) and use that as the vaue for
the given operation.

« For any y-coordinate value or height value (yVauelnVPSpace) expressed as a percentage of the viewport, do
the same thing as above, but use points (0,0) and (O, percentageV alue* vpHeightlnPixel s) instead.

« For any other length value in viewport space (IengthV PSpace), the following approach is used to give
appropriate weighting to the contribution of the two dimensions of the viewport. First, convert lengthV PSpace
into viewport pixel units using the SV G user agent's standard conversion factor from pixelsto to real world
units (e.g., millimeters) to yield lengthV PPixels. Cal cul ate the distance from (0,0) and
(vpWidthlnPixels,vpHeightInPixels) in viewport space using the formula:
vpDiagL engthV PPixels=sgrt(vpWidthinPixels** 2 + vpHeightl nPixels** 2). Using the inverse of the current
transformation matrix, determine the pointsin user space (P1x,Ply) and (P2x,P2y) which correspond to the
points (0,0) and (vpWidthinPixels,vpHeightinPixels) in viewport space. Calculate the distance from (P1x,Ply)
and (P2x,P2y) in user space using the formula: vpDiagL engthUserSpace=sqrt((P2x-P1x)**2 +
(P2y-P1y)**2)). Then, convert the original viewport-relative length into alength in user space using the
formula: lengthUserSpace = lengthV PPixels * (vpDiagL engthUserSpace/vpDiaglL engthV PPixels).

« |f aviewport-relative percentage value is given, then calculate lengthV PPixels as
lengthV PPixel s=percentageV alue* sqrt(vpWidthPixels** 2 + vpHeightPixel s** 2)/sgrt(2).

7.13 DOM interfaces

7.13.1 Overview

This section describes the SV G-specific DOM interfaces that correspond to the topics described in this chapter.

7.13.2 Interface SVGPoint

Many of the SV G DOM interfaces refer to objects of class SV GPoint. An SVGPoint is an (x,y) coordinate pair. When
used in matrix operations, an SV GPoint is treated as a vector of the form:

[x]

[yl

[1]

interface SVGPoint {
attribute SVG.ength x;
attribute SVG.ength vy;

SVGPoi nt matri xTransform(in SVGvatrix matrix); // vector' = matrix * vector

H

7.13.3 Interface SVGMatrix

interface SVGwatrix {
attribute float a;
attribute float b;
attribute float c;
attribute float d;
attribute SVG.ength e;
attribute SVGength f;

/1 Matrix utility functions.
SVGWAt ri x mul tiply(in SVGvatrix secondMatrix); // post-nmultiply secondMatrix
SVGwat ri x i nverse()
rai ses(SvVGException); // returns inverse matrix (SVG_MATRI X_NOT_I NVERTABLE) .

SVGwatri x translate(in SVGength x, in SVGength y); // sane as translate transform
SVGWat ri x scale(in float scal eFactor); // same as scale transform
SVGWat ri x scal eNonOrt hogonal (in float scal eFactorX, in float scal eFactorY);
SVGWAt ri x rotate(in SVGAngle angle); // sane as rotate transform
SVGwat ri x rot at eFronector (in SVGength x, in SVGength y); // atan(y/Xx)
SVGwat ri x flipX(); [/ +x <-> -X
SVGMat ri x flipY(); /1 +y <> -y
SVGwat ri x skewX(in SVGAngl e angle); // sane as skewX transform
SVGWat ri x skewY(in SVGAngl e angle); // same as skewY transform

b

Many of SV G's graphics operations utilize 2x3 matrices of the form:

[a c €]

[bdf]

which, when expanded into a 3x3 matrix for the purposes of matrix arithmetic, become:

[a c €]
[bdf]
[0 0 1]

7.13.4 Interfaces SVGTransformList and SVGTransform

The SVGTransformList and SV GTransforminterfaces correspond to the various attributes which specify a
transformations, such as the transform attribute, which is available for many of SVG's elements.

interface SVGTransforniist {
SVGIr ansform createSVGIransform(); // Returns unattached identify matrix
SVGTIr ansform creat eSVGTransfornfFronmVatri x(in SVGvatrix matrix); // Returns unattached SVGIransform

readonly attribute unsigned | ong nunber_of _transforns;
SVGIransform get Transforn(i n unsi gned | ong i ndex);

/1 Replace all existing entries with a single entry.

voi d initialize(in SVGITansform newSVGIr ansf orm

rai ses(DOVExcepti on);
voi d clear(); // Cear all entries, giving an enpty |ist
SVGIr ansform i nsertBefore(in SVGIransform newSVGTr ansf orm

i n unsigned | ong index)
rai ses(DOVExcepti on);
SVGTr ansform repl ace(i n SVGIransform newSVGIr ansf orm
in unsigned | ong index)
rai ses(DOVExcepti on);

SVGIr ansform renmove(in unsigned | ong index)
rai ses(DOVExcepti on);
SVGIr ansform append(i n SVGIransf or m newSVGIr ansf or m

rai ses(DOVExcepti on);

/1 Consolidate all existing transforns into a single matrix transform
SVGTr ansform consol i date();

interface SVGIransform {
/1 Transform Types
const unsigned short kSVG TRANSFORM_ UNKNOWN
const unsigned short kSVG TRANSFORM MATRI X
const unsigned short kSVG TRANSFORM TRANSLATE
const unsigned short kSVG TRANSFORM SCALE
const unsi gned short kSVG TRANSFORM ROTATE
const unsi gned short kSVG TRANSFORM SKEWK
const unsi gned short kSVG TRANSFORM SKEW
readonly attribute unsigned short type;

[N TR TR TR TR I
SnrONRO

/1 a,b,c,d,e, f represent a matrix that represents the given transformation.

/1 angle is a conveni ence val ue for kSVG TRANSFORM ROTATE,

/1 kSVG_TRANSFORM SKEWK and kSVG_TRANSFORM SKEWY.

/1

/1 For kSVG_TRANSFORM MATRI X, the matrix contains the a, b, ¢, d, e, f values supplied by the user.
I (angl e=0) .

/1 For kSVG_TRANSFORM TRANSLATE, e and f represents the translation anmounts.

I (a=1, b=0, c=0, d=1, angl e=0) .

/1 For kSVG TRANSFORM SCALE, a and d represents the scal e anpunts.

11 (b=0, c=0, e=0, f =0, angl e=0) .

/1 For kSVG_TRANSFORM ROTATE, kSVG TRANSFORM SKEWK and kSVG TRANSFORM SKEWY,

/1 a, b, c and d represent the matrix which will result in the given transformation.
/1 angle contains the angle specified for the operation.

/1 (e=0, f=0).

attribute SVGwatrix matri x;

attribute SVGAngle angl e;

7.13.5 Interface SVGPreserveAspectRatio

The SV GPreserveAspectRatio interface corresponds to the preserveAspectRatio attribute, which is available for some
of SVG's elements.

interface SVGPreserveAspectRatio {
/1 Alignment Types
const unsigned short kSVG PRESERVEASPECTRATI O NONE
const unsigned short kSVG PRESERVEASPECTRATI O XM NYM N
const unsigned short kSVG PRESERVEASPECTRATI O XM DYM N
const unsigned short kSVG PRESERVEASPECTRATI O XMAXYM N
const unsigned short kSVG PRESERVEASPECTRATI O XM NYM D
const unsigned short kSVG PRESERVEASPECTRATI O XM DYM D
const unsigned short kSVG PRESERVEASPECTRATI O XMAXYM D
const unsigned short kSVG PRESERVEASPECTRATI O XM NYMAX
const unsi gned short kSVG PRESERVEASPECTRATI O XM DYMAX
const unsigned short kSVG PRESERVEASPECTRATI O XMAXYMAX
readonly attribute unsigned short align;

eNoahrwNMRO

/1 Meet-or-slice Types

const unsigned short kSVG MEETORSLI CE_MEET = 1;
const unsigned short kSVG MEETORSLI CE_SLI CE = 2;
readonly attribute wunsigned short nmeetOrSlice;

previous next contents properties index

previous next contents properties index

8 Paths

Contents

« 8.1 Introduction

o 8.2 The'path’ element

« 8.3 Path Data
o 8.3.1 General information about path data
o 8.3.2 The "moveto" commands

o 8.3.3 The"closepath" command

0 8.3.4 The"lineto" commands

o 8.3.5 The curve commands
8.3.6 The grammar for path data
» 8.4 Distance along a path
o 85DOM interfaces
o 8.5.1 Interface SV GPathElement
o 8.5.2 Interface SV GPathSeg

[}

8.1 Introduction

Paths represent the outline of a shape which can be filled, stroked, (see Filling, Stroking and Paint
Servers) used as a clipping path (see Clipping, Masking and Compositing), or for any combination of the
three.

A path is described using the concept of a current point. In an analogy with drawing on paper, the
current point can be thought of as the location of the pen. The position of the pen can be changed, and
the outline of a shape (open or closed) can be traced by dragging the pen in either straight lines or
Curves.

Paths represent an outline of an object which is defined in terms of moveto (set a new current point),
lineto (draw astraight line), curveto (draw acurve using a cubic bezier), arc (elliptical or circular arc)
and closepath (close the current shape by drawing a line to the last moveto) elements. Compound paths
(i.e., apath with subpaths, each consisting of a single moveto followed by one or more line or curve
operations) are possible to alow effects such as "donut holes" in objects.

A path is defined in SVG using the 'path’ element.

8.2 The 'path' element

<IENTITY % pat hExt "" >
<! ELEMENT path (%descTitle;, (ani mate| set| ani mat eMbti on| ani mat eCol or | ani mat eTr ansf orm
%geExt ; %pat hExt;)*) >

<! ATTLI ST path
id I D #l MPLI ED
xm : | ang NMIOKEN #| MPLI ED
xm : space (default|preserve) #l MPLI ED
cl ass NMICKENS #l MPLI ED
styl e CDATA #l MPLI ED
transf or m CDATA #| MPLI ED
%gr aphi csEl enent Event s;
systemrequi red NMIOKEN #l MPLI ED
system | anguage CDATA #l| MPLI ED
d CDATA #REQUI RED
nom nal Lengt h CDATA #l MPLI ED >

Attribute definitions:
d ="path data"

The definition of the outline of a shape. See Path data.
Animatable: yes.

nominalLength = "<number>"

The author's computation of the total length of the path, in user units. Thisvalueis used to
calibrate the user agent's own distance-al ong-a-path calculations with that of the author. The user
agent will scale al distance-along-a-path computations by the ratio of nomimal Length to the user
agent's own computed value for total path length. nomimalLength potentially affects calculations
for text on a path, motion animation and various stroke operations.

Animatable: yes.

Attributes defined elsewhere:

id, xml:lang, xml:space, class, style, transform, %graphi csElementEvents;, system-required,
system-language.

8.3 Path data

8.3.1 General information about path data

A path is defined by including a'path’ element which containsad=" (path data)" attribute, where the
d attribute contains the moveto, line, curve (both cubic and quadratic beziers), arc and closepath
instructions. The following example specifies a path in the shape of atriangle. (The M indicates a
moveto, the L'sindicate lineto's, and the z indicates a closepath:

<?xm version="1.0" standal one="yes" ?>
<svg wi dth="4in" hei ght="3in"
xmns = "http://ww. w3. or g/ G aphi cs/ SVE@ SVG 19991203. dtd' >
<path d="M 100 100 L 140 100 L 120 140 z"/>
</ svg>

Download this example

Path data val ues can contain newline characters and thus can be broken up into multiple lines to improve
readability. Because of line length limitations with certain related tools, it is recommended that SVG
generators split long path data strings across multiple lines, with each line not exceeding 255 characters.
Also note that newline characters are only allowed at certain places within a path data value.

The syntax of path datais very abbreviated in order to allow for minimal file size and efficient
downloads, since many SVG fileswill be dominated by their path data. Some of the ways that SVG
attempts to minimize the size of path data are as follows:

« All instructions are expressed as one character (e.g., amoveto is expressed asan M)

« Superfluous white space and separators such as commas can be eliminated (e.g., "M 100 100 L
200 200" contains unnecessary spaces and could be expressed more compactly as "M 100
100L.200 200")

« The command letter can be eliminated on subsequent commands if the same command is used
multiple timesin arow (e.g., you can drop the second "L" in "M 100 200 L 200 100 L -100
-200" and use "M 100 200 L 200 100 -100 -200" instead)

« Relative versions of al commands are available (upper case means absol ute coordinates, lower
case means relative coordinates)

« Alternate forms of lineto are available to optimize the special cases of horizontal and vertical
lines (absolute and relative)

« Alternate forms of curve are available to optimize the specia cases where some of the control
points on the current segment can be determined automatically from the control points on the
previous segment

The path data syntax is a prefix notation (i.e., commands followed by parameters). The only allowable
decimal pointisaperiod (".") and no other delimiter characters are alowed. (For example, the following
isan invalid numeric valuein a path data stream: "13,000.56". Instead, say: "13000.56".)
In the tables below, the following notation is used:

 (): grouping of parameters

« +: 1 0or more of the given parameter(s) is required

The following sections list the commands.

file:///d|/jon/svgspec/samples/path01.xml

8.3.2 The "moveto" commands

The "moveto" commands (M or m) establish anew current point. The effect isasif the "pen" were lifted
and moved to anew location. A path data segment must begin with either one of the "moveto”
commands or one of the "arc" commands. Subsequent "moveto” commands (i.e., when the "moveto” is
not the first command) represent the start of a new subpath:

Command Name | Parameters Description

Start a new sub-path at the given (x,y) coordinate. M
(uppercase) indicates that absolute coordinates will follow;
m (lowercase) indicates that relative coordinates will
follow. If arelative moveto (m) appears as the first element
of the path, then it istreated as a pair of absolute
coordinates. If amoveto is followed by multiple pairs of
coordinates, the subsequent pairs are treated as implicit
lineto commands.

M (absolute)

m (relative) moveto | (xy)+

8.3.3 The "closepath” command

The "closepath” (Z or z) causes an automatic straight line to be drawn from the current point to the
initial point of the current subpath. "Closepath” differsin behavior from what happens when "manually"
closing a subpath viaa"lineto" command in how 'stroke-lingjoin’ and 'stroke-linecap’ are implemented.
With "closepath”, the end of the final segment of the subpath is"joined" with the start of theinitial
segment of the subpath using the current value of 'stroke-lingjoin' . If you instead "manually” close the
subpath viaa"lineto" command, the start of the first segment and the end of the last segment are not
joined but instead are each capped using the current value of 'stroke-linecap':

Command Name | Parameters Description

Close the current subpath by drawing a straight line from
closepath | (none) the current point to current subpath's most recent starting
point (usually, the most recent moveto point).

Zor
z

8.3.4 The "lineto" commands

The various "lineto” commands draw straight lines from the current point to a new point:

Command Name Parameters Description

L (absolute)

| (relative) | ''N€to

(xy)+

Draw aline from the current point to the given
(x,y) coordinate which becomes the new current
point. L (uppercase) indicates that absolute
coordinates will follow; | (lowercase) indicates
that relative coordinates will follow. A number of
coordinates pairs may be specified to draw a
polyline. At the end of the command, the new
current point is set to the final set of coordinates
provided.

H (absolute)

h (relative) horizontal lineto

X+

Draws a horizontal line from the current point
(cpx, cpy) to (X, cpy). H (uppercase) indicates that
absolute coordinates will follow; h (lowercase)
indicates that relative coordinates will follow.
Multiple x values can be provided (although
usually this doesn't make sense). At the end of the
command, the new current point becomes (X, cpy)
for the final value of x.

V (absolute)

v (relative) vertical lineto

y+

Draws avertical line from the current point (cpx,
cpy) to (cpx, y). V (uppercase) indicates that
absolute coordinates will follow; v (lowercase)
indicates that relative coordinates will follow.
Multiple y values can be provided (although
usually this doesn't make sense). At the end of the
command, the new current point becomes (cpx, Y)
for the final value of y.

8.3.5 The curve commands

These three groups of commands that draw curves:

« Cubic bezier commands (C, ¢, Sand s). A cubic bezier segment is defined by a start point, an

end point, and two control points.

o Quadratic bezier commands (Q, g, T and T). A quadratic bezier segment is defined by a start

point, an end point, and one control point.

« Elliptical arc commands (A and a). An eliptical arc segment draws a segment of an ellipse.

The cubic bezier commands are as follows:

Command Name

Parameters

Description

C (absolute)
c (relative)

curveto

(x1ylx2y2xy)+

Draws a cubic bezier curve from
the current point to (X,y) using
(x1,y1) asthe control point at the
beginning of the curve and (x2,y2)
as the control point at the end of
the curve. C (uppercase) indicates
that absolute coordinates will
follow; c (lowercase) indicates that
relative coordinates will follow.
Multiple sets of coordinates may
be specified to draw a polybezier.
At the end of the command, the
new current point becomes the
final (x,y) coordinate pair used in
the polybezier.

S (absolute)
s(relative)

shorthand/smooth curveto

(x2y2xy)+

Draws a cubic bezier curve from
the current point to (x,y). Thefirst
control point is assumed to be the
reflection of the second control
point on the previous command
relative to the current point. (If
there is no previous command or if
the previous command was not an
C, ¢, Sor s, assumethefirst
control point is coincident with the
current point.) (x2,y2) isthe
second control point (i.e., the
control point at the end of the
curve). S (uppercase) indicates that
absolute coordinates will follow; s
(lowercase) indicates that relative
coordinates will follow. Multiple
sets of coordinates may be
specified to draw a polybezier. At
the end of the command, the new
current point becomes the final
(x,y) coordinate pair used in the
polybezier.

The quadratic bezier commands are as follows:

Command

Name

Parameters Description

Q (absolute)
g (relative)

guadratic bezier curveto

(x1ylxy)+

Draws a quadratic bezier
curve from the current
point to (X,y) using (x1,y1)
as the control point. Q
(uppercase) indicates that
absolute coordinates will
follow; q (lowercase)
indicates that relative
coordinates will follow.
Multiple sets of
coordinates may be
Specified to draw a
polybezier. At the end of
the command, the new
current point becomes the
final (x,y) coordinate pair
used in the polybezier.

T (absolute)
t (relative)

Shorthand/smooth quadratic bezier

curveto

(xy)+

Draws a quadratic bezier
curve from the current
point to (X,y). The control
point is assumed to be the
reflection of the control
point on the previous
command relative to the
current point. (If thereis
no previous command or if
the previous command
wasnotanQ, q, T or t,
assume the control point is
coincident with the current
point.) T (uppercase)
indicates that absolute
coordinates will follow; t
(lowercase) indicates that
relative coordinates will
follow. At the end of the
command, the new current
point becomes the final
(x,y) coordinate pair used
in the polybezier.

The elliptical arc commands are as follows:

Command

Name

Parameters

Description

Draws an elliptical arc from the
current point to (X, y). The sizeand
orientation of the ellipse is defined
two radii (rx, ry) and an
x-axis-rotation, which indicates
how the ellipse asawholeis
- - tated relative to the current
(rx ry x-axis-rotation (r:% ordinate

system. The center (cx,
large-arc-flag sweep-flag x y)+ cy) of the éllipseis calculated
automatically to satisfy the
constraints imposed by the other
parameters. lar ge-ar c-flag and
sweep-flag contribute to the
automatic calculations and help
determine how the arc is drawn.

A (absolute)

a (relative) eliptical arc

The elliptical arc command draws a section of an ellipse which meets the following constraints:
« thearc starts at the current point
« thearcendsat point (X, y)
o thedlipse hasthe two radii (rx, ry)

« the X-axis of the ellipseis rotated by x-axis-rotation relative to the X-axis of the current
coordinate system.

For most situations, there are actually four different arcs (two different ellipses, each with two different
arc sweeps) that satisfy these constraints:. (Pictures will be forthcoming in afuture version of the spec)
lar ge-ar c-flag and sweep-flag indicate which one of the four arcs are drawn, as follows:

« Of the four candidate arc sweeps, two will represent an arc sweep of greater than or equal to 180
degrees (the "large-arc"), and two will represent an arc sweep of less than or equal to 180
degrees (the "small-arc"). If large-arc-flagis'l', then one of the two larger arc sweeps will be
chosen; otherwise, if large-arc-flag is'0’, one of the smaller arc sweeps will be chosen,

« If sweep-flagis'l, then the arc will be drawn in a"positive-angle" direction (i.e., the ellipse
formula x=cx+r x* cos(theta) and y=cy+ry* sin(theta) is evaluated such that theta starts at an
angle corresponding to the current point and increases positively until the arc reaches (x,y)). A
value of 0 causes the arc to be drawn in a"negative-angle" direction (i.e., theta starts at an angle
value corresponding to the current point and decreases until the arc reaches (x,y)).

(We need examplesto illustrate all of this! Here is one for the moment. Suppose you have acircle with
center (5,5) and radius 2 and you wish to draw an arc from O degrees to 90 degrees. Then one way to
achievethiswouldbeM 7,5 A 2,2 0 0 1 5, 7. Inthisexample, you move to the "0 degree"
location on the circle, which is (7,5), since the center is at (5,5) and the circle has radius 2. Since we
have circle, the two radii are the same, and in this example both are equal to 2. Since our sweep is 90
degrees, which is less than 180, we set large-arc-flag to 0. We want to draw the sweep in apositive
angle direction, so we set sweep-flag to 1. Since we want to draw the arc to the point which is at the 90
degree location of the circle, we set (x,y) to (5,7).)

8.3.6 The grammar for path data

The following notation is used in the BNF description of the grammar for path data:
e *:0o0r more
e +:10r more
e 2200r1

(): grouping

o |- separates alternatives

« double quotes surround literals

The following isthe BNF for SVG paths.

svg- pat h:
wsp* subpat hs? wsp*

subpat hs:
subpat h
| subpath subpat hs

subpat h:
nmovet o subpat h- el ement s?

subpat h- el ement s
subpat h- el ement
| subpat h-el ement wsp* subpat h-el enents

subpat h- el enent :

cl osepat h
lineto
hori zontal -1i neto
vertical-lineto
curveto

I
I
I
I
| snoot h-curveto
| quadratic-bezier-curveto
| snoot h-quadrati c-bezi er-curveto
| elliptical-arc
novet o
("M | "nmt') wsp* noveto-argunent-sequence

novet o- ar gunent - sequence:
coor di nat e- pai r
| coordinate-pair coma-wsp? |ineto-argunent-sequence

cl osepat h:
("z' | "z
i neto:
(¢ "L" | "I) wsp* lineto-argunent-sequence

| i net o- ar gunent - sequence
coordi nate-pair
| coordinate-pair coma-wsp? |ineto-argunent-sequence

hori zontal -1i neto:
("H | "h") wsp* horizontal -1ineto-argunent-sequence
hori zont al -1 i net o- ar gunent - sequence

coordi nat e
| coordinate comra-wsp? horizontal -1i neto-argunent-sequence

vertical -1ineto:
("V' | "v") wsp* vertical-Ilineto-argument-sequence

vertical -1ineto-argunent - sequence
coordi nate
| coordinate comma-wsp? vertical -1ineto-argunment-sequence

curveto:
("C | "c") wsp* curveto-argunent-sequence

curvet o- ar gunent - sequence
cur vet o- ar gurrent
| curveto-argument comma-wsp? curvet o-ar gunent - sequence

curvet o- ar gunent :
coordi nate-pair conmma-wsp? coordi nate-pair comma-wsp? coordi nate-pair

snoot h- curvet o:
("S" | "s") wsp* snooth-curveto-argunent - sequence

snoot h- cur vet o- ar gunent - sequence
snoot h- cur vet o- ar gunent
| snoot h-curvet o-argunent conmme-wsp? snoot h- cur vet o- ar gunent - sequence

snoot h- cur vet o- ar gunent :
coordi nat e-pair comma-wsp? coordi nate-pair

quadr ati c-bezi er-curveto
("Q | "q") wsp* quadratic-bezier-curveto-argunent-sequence

quadr ati c- bezi er-curvet o- argunent - sequence
quadr at i c- bezi er - curvet o- ar gunent
| quadratic-bezier-curveto-argument comma-wsp?
quadr ati c- bezi er-curvet o- argunent - sequence

quadr at i c- bezi er-curvet o-argunent :
coordi nate-pair conma-wsp? coordi nate-pair

snoot h- quadr ati c- bezi er-curvet o:
("T" | "t") wsp* snpoth-quadratic-bezier-curveto-argunent-sequence

snoot h- quadr ati c- bezi er - curvet o- ar gunent - sequence
coordi nate-pair
| coordinate-pair comma-wsp? snoot h-quadrati c-bezi er-curvet o-ar gunent - sequence

elliptical-arc:
("A" | "a") wsp* elliptical-arc-argunment-sequence

el l'i ptical-arc-argunent -sequence
el l'i ptical-arc-argunent
| elliptical-arc-argunent conma-wsp? elliptical-arc-argunment-sequence

el liptical-arc-argunent:
nonnegati ve- nunber comma-wsp? nonnegati ve- nunber comra-wsp?
nunber comma-wsp? flag comma-wsp? flag comma-wsp? coordi nate-pair

coordi nate-pair:
coordi nate comma-wsp? coordi nate

coordi nat e:
nunber

nonnegat i ve- nunber:
i nt eger - const ant
| floating-point-constant

nunber :
sign? integer-constant

| sign? floating-point-constant
flag:
" Oll | " 1"
commra- Wsp:
(wsp+ comma? wsp*) | (comma wsp*)

conma:

i nt eger-constant:
di gi t - sequence

fl oati ng- poi nt - const ant :
fractional -constant exponent?
| digit-sequence exponent

fractional -constant:
di gi t-sequence? "." digit-sequence
| digit-sequence "."

exponent :
("e" | "E") sign? digit-sequence

si gn:
g

di gi t - sequence:

digit

| digit digit-sequence
digit:

"o" | "1 | "2" | "3" | "4" | "5" | "€6" | "7 | "8" | "9"
wsp:
(#x20 | #x9 | #xD | #xA)

The processing of the BNF must consume as much of a given BNF production as possible, stopping at
the point when a character is encountered which no longer satisfies the production. Thus, in the string
"M 100-200", the first coordinate for the "moveto" consumes the characters *100" and stops upon
encountering the minus sign because the minus sign cannot follow a digit in the production of a
"coordinate”. The result isthat the first coordinate will be "100" and the second coordinate will be
"-200".

Similarly, for the string "M 0.6.5", the first coordinate of the "moveto” consumes the characters"0.6"
and stops upon encountering the second decimal point because the production of a"coordinate” only
allows one decimal point. The result is that the first coordinate will be "0.6" and the second coordinate
will be".5".

8.4 Distance along a path

Various operations, including text on a path and motion animation and various stroke operations, require
that the user agent compute the distance along the geometry of a graphics element, such as a 'path'.

Exact mathematics exist for computing distance along a path, but the formulas are highly complex and
require substantial computation. It is recommended that authoring products and user agents employ
algorithms that produce as precise results as possible; however, to accommodate implementation
differences and to help distance cal culations produce results that approximate author intent, the
nomimal L ength attribute can be used to provide the author's computation of the total length of the path

so that the user agent can scal e distance-along-a-path computations by the ratio of nomimalLength to the
user agent's own computed value for total path length.

A "moveto" operation within a'path’ element is defined to have zero length. Only the various "lineto",
"curveto” and "arcto” commands contribute to path length calculations.

8.5 DOM interfaces

8.5.1 Interface SVGPathElement
The SV GPathElement interface corresponds to the 'path’ element.

i nterface SVGPat hEl enent : SVGStyl edAndTr ansf or redEl enent {
attribute SVG.ength nom nal Lengt h;

/1l Create an enpty SVGPat hSeg, specifying the type via a nunber.
I/ Al values initialized to zero.
SVGPat hSeg creat eSVGPat hSeg(i n unsi gned short pat hsegType)

rai ses(DOVExcepti on);

/1 Create an enpty SVGPat hSeg, specifying the type via a single character.

/1 Al values initialized to zero.

SVGPat hSeg creat eSVGPat hSegFromLetter (in DOVString pat hsegTypeAsLetter)
rai ses(DOVExcepti on);

/1l Create an SVGPat hSeg, specifying the path segnent as a string.

/1 For exanple, "M 100 200". Al irrelevant values are set to zero.

SVGPat hSeg creat eSVGPat hSegFronttri ng(in DOVBtri ng pat hsegStri ng)
rai ses(DOVExcepti on);

/1 This set of nethods allows retrieval and nodification
/1 to the path segnents attached to this path object.

/1 Al 20 defined types of path segments are avail able
/1 through these attributes and net hods.

readonly attribute unsigned | ong nunber_of _pat hsegs;

SVGPat hSeg get SVGPat hSeg(i n unsi gned | ong index);
DOVBt ri ng get SVGPat hSegAsString(in unsigned | ong index);
/1l Replace all existing entries with a single entry.
voi d initialize(in SVGPat hSeg newSVGPat hSeq)
rai ses(DOVExcepti on);
voi d clear(); // dear all entries, giving an enpty |ist
SVGPat hSeg i nsertBefore(in SVGPat hSeg newSVGPat hSeg,

i n unsigned | ong index)
rai ses(DOVExcepti on);
SVGPat hSeg repl ace(i n SVGPat hSeg newSVGPat hSeg,
i n unsigned | ong index)
rai ses(DOVExcepti on);

SVGPat hSeg remove(in unsigned | ong index)
rai ses(DOVExcepti on);
SVGPat hSeg append(i n SVGPat hSeg newSVGPat hSeg)

rai ses(DOVExcepti on);

/1 This alternate set of nmethods also allows retrieval and nodification
/1 to the path segnents attached to this path object.

/1 These attributes and nethods provide a "normalized" view of

/1 the path segnments where the path is expressed in terns of

/'l the follow ng subset of SVGPat hSeg types:

/'l kSVG_PATHSEG MOVETO ABS (M, kSVG PATHSEG LI NETO ABS (L),

/'] kSVG_PATHSEG CURVETO CUBI C_ABS (C) and kSVG PATHSEG CLOSEPATH (z).
/1 Note that nunber_of _pathsegs and nunber_of _nornmal i zed_pat hsegs

/1l are not always the sanme. In particular, elenents such as arcs nay
/1 be expanded into multiple kSVG PATHSEG CURVETO CUBI C_ABS (Q)

/1 pieces when retrieved in the "nornalized" view of the path object.

readonly attribute unsigned | ong nunber_of normalized_pat hsegs;

SVGPat hSeg get Nor mal i zedSVGPat hSeg(i n unsi gned | ong i ndex);
DOVBt ri ng get Nor mal i zedSVGPat hSegAsString(i n unsigned | ong index);
SVGPat hSeg i nsert Normal i zedBefore(in SVGPat hSeg newSVGPat hSeg,

i n unsigned | ong index)
rai ses(DOVExcepti on);
SVGPat hSeg repl aceNornal i zed(i n SVGPat hSeg newSVGPat hSeg,
i n unsigned | ong index)
rai ses(DOVException);

SVGPat hSeg renmoveNor mal i zed(i n unsi gned | ong i ndex)
rai ses(DOVExcepti on);
SVGPat hSeg appendNor mal i zed(i n SVGPat hSeg newSVGPat hSeq)

rai ses(DOVExcepti on);

/1l This set of methods perforns various distance-al ong-a-path cal cul ati ons.

fl oat get Tot al Lengt h();
SVGPoi nt get Poi nt At Length(in float distance);
SVGPat hSeg get Pat hSegAt Lengt h(in float distance);

8.5.2 Interface SVGPathSeg
The SV GPathSeg interface corresponds to a single command within a path data specification.

i nterface SVGPat hSeg {
/1l Path Segnment Types

const unsigned short kSVG PATHSEG UNKNOMWN =0;, /I 7
const unsigned short kSVG PATHSEG CLOSEPATH =1, /Il z
const unsigned short kSVG PATHSEG MOVETO_ABS =2, /I M
const unsigned short kSVG PATHSEG MOVETO REL =3, // m
const unsigned short kSVG PATHSEG LI NETO ABS =4; [l L
const unsigned short kSVG_PATHSEG LI NETO REL =5 /1

const unsigned short kSVG PATHSEG CURVETO_CUBI C_ABS =6, /I C
const unsigned short kSVG PATHSEG CURVETO CUBI C_REL =7, Il c
const unsigned short kSVG PATHSEG CURVETO QUADRATI C_ABS =8, I/l Q
const unsigned short kSVG PATHSEG CURVETO QUADRATI C_REL =9, [/l ¢q
const unsigned short kSVG PATHSEG ARC_ABS = 10; /1 A
const unsigned short kSVG _PATHSEG ARC REL =11; /] a
const unsigned short kSVG PATHSEG LI NETO HORI ZONTAL_ABS =12; // H
const unsigned short kSVG PATHSEG LI NETO HORI ZONTAL_REL =13; // h
const unsigned short kSVG PATHSEG LI NETO VERTI CAL_ABS =14; /Il V
const unsigned short kSVG PATHSEG LI NETO_VERTI CAL_REL =15; /Il v
const unsigned short kSVG PATHSEG CURVETO CUBI C_SMOOTH ABS =16; // S
const unsigned short kSVG PATHSEG CURVETO_CUBI C_SMOOTH_REL =17; /Il s
const unsigned short kSVG PATHSEG CURVETO QUADRATI C_SMOOTH ABS = 18; // T
const unsigned short kSVG PATHSEG CURVETO QUADRATI C_SMOOTH REL = 19; // t

readonly attribute unsigned short pathsegType;
readonly attribute DOVString pat hsegTypeAsLetter;

/'l Attribute values for a path segment.

/1l Each pathseg has slots for any possible path seg type.
attribute float X; /'l end point for pathseg

attribute float y; /1 end point for pathseg

attribute float x0, y0; /1 for bezier control points

attribute
attribute
attribute
attribute
attribute

readonly
readonly
readonl y
r eadonly

fl oat
fl oat
fl oat
bool ean
bool ean

attribute
attribute
attribute
attribute

x1,y1; /1 for bezier control points
ri, r2; [l radii for Aa

angl e; I/ A a

largeArcFlag; // for Aa

sweepFl ag; [l for Aa

Pat h par ent Pat h;

SVGocunent owner SVGDocunent ;
SVGPat hSeg previ ousSi bl i ng;
SVGPat hSeg next Si bl i ng;

previous next contents properties index

previous next contents properties index

9 Basic Shapes

Contents

« 9.1 Introduction

e 9.2 The'rect' element
o 9.3The'circle' element
e 9.4 The'dlipse’ element
o 9.5The'line element

e 9.6 The 'polyline' e ement

e 9.7 The 'polygon' e ement

« 9.8 The grammar for points specificationsin 'polyline’ and ‘polygon’ elements
o 9.9DOM interfaces

o 9.9.1 Interface SV GRectElement

o 9.9.2 Interface SV GCircleElement

o 9.9.3 Interface SV GEllipseElement

o 9.9.4 Interface SV GLineElement

o 9.9.5 Interface SVGPointList

o 9.9.6 Interface SV GPolylineElement

o 9.9.7 Interface SV GPolygonElement

9.1 Introduction

SV G contains the following set of basic shape elements:
« rectangles (rectangle, including optional rounded corners)

« circles

o dlipses
o lines

o polylines

« polygons

Mathematically, these shape elements are equivalent to a 'path’ element that would construct the same

shape. The basic shapes may be stroked, filled and used as clip paths. All of the properties available for
'path’ elements also apply to the basic shapes.

9.2 The 'rect' element

The 'rect’ element defines arectangle which is axis-aligned with the current user coordinate system.
Rounded rectangles can be achieved by setting appropriate values for attributes rx and ry.

<IENTITY %rectExt "" >
<I ELEMENT rect (%descTitle;, (animate|set|ani mateMtion| ani mat eCol or | ani mat eTr ansf orm
%geExt; WectExt;)*) >

<! ATTLI ST rect
id I D #l MPLI ED
xm : | ang NMIOKEN #| MPLI ED
xm : space (default|preserve) #l MPLI ED
cl ass NMICKENS #l MPLI ED
styl e CDATA #l MPLI ED
transf or m CDATA #| MPLI ED
%gr aphi csEl enent Event s;
systemrequi red NMIOKEN #l MPLI ED
system | anguage CDATA #l| MPLI ED
x CDATA #| MPLI ED
y CDATA #l MPLI ED
wi dt h CDATA #REQUI RED
hei ght CDATA #REQUI RED
rx CDATA #l MPLI ED
ry CDATA #l MPLI ED >

Attribute definitions:
X = "<coordinate>"

The X-axis coordinate of the side of the rectangle which has the smaller X-axis coordinate value
in the current user coordinate system.

The default valueis"0".

Animatable: yes.

y = "<coordinate>"

The Y -axis coordinate of the side of the rectangle which has the smaller Y -axis coordinate value
in the current user coordinate system.

The default valueis"0".

Animatable: yes.

width = "<length>"

The width of the rectangle.
Animatable: yes.

height = "<length>"
The height of the rectangle.

Animatable: yes.

rx = "<length>"

For rounded rectangles, the x-axis radius of the ellipse used to round off the corners of the
rectangle.

The default valueis"0".

Animatable: yes.

ry = "<length>"

For rounded rectangles, the y-axis radius of the ellipse used to round off the corners of the
rectangle.

The default valueis"0".

Animatable: yes.

Attributes defined elsewhere:

id, xml:lang, xml:space, class, style, transform, %graphi csElementEvents;, system-required,
system-language.

If aproperly specified valueis provided for rx but not for ry, then the user agent processes the 'rect’
element with the effective value for ry as equal to rx. If a properly specified value is provided for ry but
not for rx, then the user agent processes the 'rect’ element with the effective value for rx as equal to ry. If
neither rx nor ry has a properly specified value, then the user agent processes the 'rect’ element asif no
rounding had been specified, resulting in square corners. If rx is greater than half of the width of the
rectangle, then the user agent processes the 'rect’ element with the effective value for rx as half of the
width of the rectangle. If ry is greater than half of the height of the rectangle, then the user agent
processes the 'rect’ element with the effective value for ry as haf of the height of the rectangle. If rx or
ry is negative, then the user agent processes the 'rect’ element as if the given attribute had a value of
zero.

Mathematically, a'rect' element can be mapped to an equivalent 'path’ element as follows.

« perform an absolute moveto absolute location (x+rx,y), where x is the value of the 'rect’ element's
X attribute converted to user space, rx is the effective value of the rx attribute converted to user
space and y is the value of they attribute converted to user space

« perform ahorizontal lineto to location (x+width-rx,y), where width is the 'rect’ element's width
attribute converted to user space

« perform an arcto to coordinate (x+width,y+ry), where the effective values for the rx and ry
attributes on the 'rect’ element converted to user space are used as the rx and ry attributes on the
relative arcto commands, respectively, the x-axis-rotation is set to zero, the large-arc-flag is set
to zero, and the sweep-flag is set to one

« perform avertical lineto to location (x+width,y+height-ry), where height is the 'rect' element's
height attribute converted to user space

« perform an arcto to coordinate (x+width-rx,y+ height)

« perform ahorizontal lineto to location (x+rx,y+height)
« perform an arcto to coordinate (x,y+height-ry)

« perform avertical lineto to location (X,y+ry)

« perform an arcto to coordinate (x+rx,y)

Example rectO1 below expresses all values in physical units (centimeters, in this case). The 'rect' element
isfilled with yellow and stroked with navy.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG Decenber 1999//EN"
"http://ww. w3. or g/ G aphi cs/ SVG SVG 19991203. dt d" >
<svg wi dt h="12cnm' hei ght="4cni' >
<desc>Exanpl e rect01 - rectangl e expressed i n physical units</desc>

<rect x="4cnf y="1lcm' w dt h="4cn? hei ght ="2cnt
style="fill:yellow, stroke:navy; stroke-w dth:0.1lcm />
</ svg>

Example rectO1

View this example as SV G (SV G-enabled browsers only)

Example rect02 below specifies the coordinates of the two rounded rectangles in the user coordinate
system established by the viewBox attribute on the 'svg' element and the transform attribute on the 'g'

element. The rx specifies how to round the corners of the rectangles. Note that since no value has been
specified for the ry attribute, it will be assigned the same value as the rx attribute.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG Decenber 1999//EN"
"http://ww. w3. or g/ G aphi cs/ SVG SVG 19991203. dt d" >
<svg wi dt h="12cm' hei ght="4cnm' vi ewBox="0 0 1200 400">
<desc>Exanpl e rect02 - rounded rectangl es expressed in user coordi nates</desc>

<rect x="100" y="100" w dth="400" hei ght="200" rx="50"
style="fill:green;" />

<g transform="transl ate(700 300); rotate(-30)">
<rect x="0" y="0" wi dth="400" hei ght="200" rx="50"
style="fill:none; stroke:purple; stroke-w dth:30" />
</ g>
</ svg>

file:///d|/jon/svgspec/images/shapes/rect01.svg

Example rect02

View this example as SV G (SV G-enabled browsers only)

9.3 The 'circle' element

The 'circle’ element defines a circle based on a center point and a radius.

<IENTITY %circlekxt "" >

<! ELEMENT circle (%lescTitle;, (aninmate|set|ani mat eMdti on| ani mat eCol or | ani mat eTr ansf orm
%geExt; %ircl eExt;)*) >
<I ATTLIST circle

id I D # MPLI ED

xm : | ang NMIOKEN #| MPLI ED

xm : space (defaul t|preserve) #l MPLIED
cl ass NMICKENS #| MPLI ED

styl e CDATA #l MPLI ED

t ransf or m CDATA #| MPLI ED

%@r aphi csEl enent Event s;
systemrequi red NMIOKEN #l MPLI ED
syst em | anguage CDATA #| MPLI ED
cx CDATA "0"

cy CDATA "0"

r CDATA #REQUI RED >

Attribute definitions:
cx = "<coordinate>"

The X-axis coordinate of the center of the circle.
The default valueis"0".
Animatable: yes.

cy = "<coordinate>"

The Y -axis coordinate of the center of the circle.
The default valueis"0".
Animatable: yes.

r = "<length>"

The radius of the circle.
Animatable: yes.

file:///d|/jon/svgspec/images/shapes/rect02.svg

Attributes defined elsewhere:
id, xml:lang, xml:space, class, style, transform, %graphicsElementEvents;, system-required,
system-language.

Mathematically, a'circle’ element can be mapped to an equivalent 'path’ element as follows.

« perform an absolute moveto absolute location (cx,cy+r), where cx is the value of the 'circle
element's cx attribute converted to user space, r is the effective value of ther attribute converted
to user space and cy is the value of the cy attribute converted to user space

« perform an absolute arcto to location (cx,cy+r), where the the effective values for the r attribute
on the 'circle’ element converted to user spaceis used asthe rx and ry attributes on the relative
arcto commands, the x-axis-rotation is set to zero, the large-arc-flag is set to one, and the
sweep-flag is set to one

Example circle01 below expresses al valuesin physical units (centimeters, in this case). The 'circle
element isfilled with red and stroked with blue.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG Decenber 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg wi dt h="12cm' hei ght="4cni' >
<desc>Exanpl e circle0l - circle expressed in physical units</desc>

<circle cx="6cm cy="2cn' r="1cnf
style="fill:red; stroke:blue; stroke-w dth:0.1lcn />
</ svg>

Example circle01

View this example as SV G (SV G-enabled browsers only)

9.4 The 'ellipse' element

The'dllipse’ element defines an ellipse which is axis-aligned with the current user coordinate system
based on a center point and two radii.

file:///d|/jon/svgspec/images/shapes/circle01.svg

<IENTITY %ellipseExt "" >
<! ELEMENT el lipse (%lescTitle;, (animte| set|ani nat eMdti on| ani mat eCol or | ani mat eTr ansf orm

YgeExt; %l | i pseExt;)*) >

<I ATTLI ST el lipse

id I D #l MPLI ED

xm : 1 ang NMIOKEN #1 MPLI ED

xm : space (defaul t|preserve) #l MPLIED

cl ass NMIOKENS #| MPLI ED

styl e CDATA #l MPLI ED

t ransf or m CDATA #| MPLI ED

%gr aphi csEl enent Event s;

systemrequi red NMIOKEN #l MPLI ED

syst em | anguage CDATA #| MPLI ED

cx CDATA "O"

cy CDATA "O"

rx CDATA #REQUI RED

ry CDATA #REQUI RED >

Attribute definitions:
cx = "<coordinate>"

The X-axis coordinate of the center of the ellipse.
The default valueis"0".
Animatable: yes.

cy = "<coordinate>"

The Y -axis coordinate of the center of the ellipse.
The default valueis"0".
Animatable: yes.
rx = "<length>"
The X-axis radius of the ellipse.
Animatable: yes.
ry = "<length>"

The Y-axis radius of the ellipse.
Animatable: yes.

Attributes defined elsewhere:

id, xml:lang, xml:space, class, style, transform, %graphi csElementEvents;, system-required,
system-language.

Mathematically, an 'ellipse’ element can be mapped to an equivalent 'path’ element as follows.

« perform an absolute moveto absolute location (cx,cy+ry), where cx is the value of the 'ellipse
element's cx attribute converted to user space, ry is the effective value of the ry attribute
converted to user space and cy isthe value of the cy attribute converted to user space

» perform an absolute arcto to location (cx,cy+ry), where the the effective values for the rx and ry
attributes on the 'ellipse’ element converted to user space are used as the rx and ry attributes on
the relative arcto commands, respectively, the x-axis-rotation is set to zero, the large-arc-flag is

set to one, and the sweep-flag is set to one

Example ellipse01 below specifies the coordinates of the two ellipses in the user coordinate system
established by the viewBox attribute on the 'svg' element and the transform attribute on the 'q’ 'ellipse’
elements. Both ellipses uses the default values of zero for the cx and cy attributes (the center of the

ellipse). The second ellipse is rotated.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG Decenber 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg wi dt h="12cm' hei ght="4cn' vi ewBox="0 0 1200 400">
<desc>Exanpl e el lipse0l - ellipses expressed in user coordi nates</desc>

<g transfornm="transl ate(300 200)">
<el li pse rx="250" ry="100"
style="fill:red" />
</ g>

<ellipse transfornm="transl ate(900 200); rotate(30)"
rx="250" ry="100"
style="fill:none; stroke:blue; stroke-w dth: 20" />

</ svg>

Example ellipse01
View this example as SV G (SV G-enabled browsers only)

9.5 The 'line' element

The 'line' element defines aline segment that starts at one point and ends at another.

file:///d|/jon/svgspec/images/shapes/ellipse01.svg

<IENTITY %I ineExt "" >
<l ELEMENT line (%lescTitle;, (ani mte|set]|ani mat eMdti on| ani mat eCol or | ani mat eTr ansform

YgeExt; % ineExt;)*) >

<I ATTLI ST Line
id I D # MPLI ED
xm : 1 ang NMIOKEN #1 MPLI ED
xm : space (defaul t|preserve) #l MPLIED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #l MPLI ED
t ransf or m CDATA #| MPLI ED
%gr aphi csEl enent Event s;
systemrequi red NMIOKEN #l MPLI ED
syst em | anguage CDATA #| MPLI ED
x1 CDATA "O"
y1l CDATA "0"
x2 CDATA "O0O"
y2 CDATA "0" >

Attribute definitions:
x1 = "<coordinate>"

The X-axis coordinate of the start of theline.
The default valueis"0".
Animatable: yes.

y1 = "<coordinate>"

The Y -axis coordinate of the start of theline.
The default valueis"0".
Animatable: yes.

X2 = "<coordinate>"

The X-axis coordinate of the end of the line.
The default valueis"0".
Animatable: yes.

y2 = "<coordinate>"

The Y -axis coordinate of the end of the line.
The default valueis"0".
Animatable: yes.

Attributes defined el sewhere:
id, xml:lang, xml:space, class, style, transform, %graphicsElementEvents;, system-required,
system-language.

Mathematically, an 'line' element can be mapped to an equivalent 'path’ element as follows.

« perform an absolute moveto absolute location (x1,y1), where x1 and y1 are the values of the'line
element's x1 and y1 attribute converted to user space, respectively

« perform an absolute lineto absolute location (x2,y2), where x2 and y2 are the values of the 'line
element's x2 and y2 attribute converted to user space, respectively

Example line01 below specifies the coordinates of the five linesin the user coordinate system
established by the viewBox attribute on the 'svg' element. The lines have different thicknesses.

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN"
"http://ww. w3. or g/ G aphi cs/ SVG SVG 19991203. dt d" >

<svg wi dth="12cm' hei ght="4cn vi ewBox="0 0 1200 400" >
<desc>Exanpl e 1ine0l - lines expressed in user coordinates</desc>

<g style="fill:none; stroke:green">
<line x1="100" y1="300" x2="300" y2="100"
styl e="stroke-w dth: 5" />
<l'ine x1="300" yl1l="300" x2="500" y2="100"
styl e="stroke-w dth: 10" />
<line x1="500" y1="300" x2="700" y2="100"
styl e="stroke-w dth: 15" />
<line x1="700" y1="300" x2="900" y2="100"
styl e="stroke-w dt h: 20" />
<line x1="900" y1="300" x2="1100" y2="100"
styl e="stroke-w dt h: 25" />
</ g>
</ svg>

S S

Example line0l1

View this example as SV G (SV G-enabled browsers only)

9.6 The 'polyline' element

The 'polyline’ element defines a set of connected straight line segments. Typically, 'polyline' elements
define open shapes.

<IENTITY % pol yl i neExt "" >
<! ELEMENT polyline (%lescTitle;, (animte|set]|ani mateMtion|ani mat eCol or | ani mat eTr ansf orm
%geExt ; %ol yli neExt;)*) >
<I ATTLI ST pol yline
id I D # MPLI ED
xm : | ang NMIOKEN #| MPLI ED
xm : space (defaul t|preserve) #l MPLIED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #l MPLI ED
t ransf or m CDATA #| MPLI ED
%gyr aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
system | anguage CDATA #| MPLI ED
poi nt s CDATA #REQUI RED >

file:///d|/jon/svgspec/images/shapes/line01.svg

Attribute definitions:
points = "<list-of -points>"

The points that make up the polyline. All coordinate values are in the user coordinate system.
Animatable: yes.

Attributes defined elsewhere:

id, xml:lang, xml:space, class, style, transform, %graphicsElementEvents;, system-required,
system-language.

If an odd number of pointsis provided, then the element isin error, with the same user agent behavior as
occurs with an incorrectly specified 'path’ element.
Mathematically, a'polyline' element can be mapped to an equivalent 'path’ element as follows.

« perform an absolute moveto to the first coordinate pair in the list of points

« for each subsequent coordinate pair, perform an absolute lineto to that coordinate pair.

Example polylineO1 below specifies a polyline in the user coordinate system established by the viewBox
attribute on the 'svg' element.

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >

<svg wi dth="12cn' hei ght ="4cnf" vi ewBox="0 0 1200 400">
<desc>Exanpl e polylineOl1 - increasingly |arger bars</desc>

<polyline style="fill:none; stroke:blue; stroke-w dth:10cnt
poi nt s="50, 375
150, 375 150, 325 250, 325 250, 375
350, 375 350, 250 450, 250 450, 375
550, 375 550, 175 650, 175 650, 375
750, 375 750, 100 850, 100 850, 375
950, 375 950, 25 1050, 25 1050, 375
1150, 375" />
</ svg>

— I

Example polyline0l

View this example as SV G (SV G-enabled browsers only)

file:///d|/jon/svgspec/images/shapes/polyline01.svg

9.7 The 'polygon' element

The 'polygon’ element defines a closed shape consisting of a set of connected straight line segments.

<IENTITY % pol ygonExt "" >
<! ELEMENT pol ygon (%lescTitle;, (animate| set | ani nat eMdti on| ani mat eCol or | ani mat eTr ansf orm
%geExt ; %pol ygonExt;)*) >
<! ATTLI ST pol ygon
id I D #l MPLI ED
xm : 1 ang NMIOKEN #| MPLI ED
xm : space (defaul t|preserve) #l MPLIED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #| MPLI ED
transf orm CDATA #| MPLI ED
%gr aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
system | anguage CDATA #| MPLI ED
poi nts CDATA #REQUI RED >

Attribute definitions:
points = "<list-of -poi nts>"

The points that make up the polygon. All coordinate values are in the user coordinate system.
Animatable: yes.

Attributes defined elsewhere:

id, xml:lang, xml:space, class, style, transform, %graphi csElementEvents;, system-required,
system-language.

If an odd number of pointsis provided, then the element isin error, with the same user agent behavior as
occurs with an incorrectly specified 'path’ element.

Mathematically, a'polygon' element can be mapped to an equivalent 'path’ element as follows.
« perform an absolute moveto to the first coordinate pair in the list of points
« for each subsequent coordinate pair, perform an absolute lineto to that coordinate pair
« perform aclosepath command

Example polygon01 below specifies two polygons (a star and a hexagon) in the user coordinate system
established by the viewBox attribute on the 'svg' element.

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG Decenber 1999//EN'
"http://ww wW3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >

<svg wi dt h="12cm' hei ght="4cn' vi ewBox="0 0 1200 400">
<desc>Exanpl e pol ygon01 - star and hexagon</ desc>

<pol ygon style="fill:red; stroke:blue; stroke-w dth: 10"
poi nts="350,75 379,161 469, 161 397, 215
423, 301 350, 250 277,301 303, 215
231, 161 321, 161" />
<pol ygon style="fill:lime; stroke:blue; stroke-wi dth:10"
poi nts="850, 75 958, 137.5 958, 262.5

850, 325 742,262.6 742,137.5" />
</ svg>

Example polygon01
View this example as SV G (SV G-enabled browsers only)

9.8 The grammar for points specifications in '‘polyline’ and 'polygon’
elements

The following isthe BNF for points specificationsin ‘polyline’ and 'polygon’ elements. The following
notation is used:

e *:0o0r more

o +:10rmore

e 200rl

e (): grouping

o |: separates alternatives

« double quotes surround literals
l'ist-of-points:

wsp* coordi nat e- pai rs?

coordi nat e-pai rs:
coordi nate-pair
| coordinate-pair comm-wsp coordinate-pairs

coordi nate-pair:
coordi nate comma-wsp coordinate

coordi nat e:
nunber - wsp

nunber - wsp:
nunber wsp*

nunber :
sign? integer-constant
| sign? floating-point-constant

conma- wsp:
comma? wsp*

conma:

file:///d|/jon/svgspec/images/shapes/polygon01.svg

i nteger-constant:
di gi t - sequence

fl oati ng- poi nt-constant:
fractional -constant exponent?
| digit-sequence exponent

fractional -constant:
di git-sequence? "." digit-sequence
| digit-sequence "."

exponent :
("e" | "E") sign? digit-sequence

sign:
n +Il | ll_ll

di gi t - sequence:
digit
| digit digit-sequence

digit:
" 0I| | " 1I| | " 2" | " 3" | " 4I| | " 5I| | " 6" | " 7I| | " 8" | " 9"

wsp:
(#x20 | #x9 | #xD | #xA)+

9.9 DOM Iinterfaces

9.9.1 Interface SVGRectElement

The SV GRectElement interface corresponds to the 'rect’ element.

i nterface SVGRect El enent : SVGStyl edAndTr ansf or redEl enent {
attribute SVGength x;
attribute SVG.ength vy;
attribute SVG.ength wi dth;
attribute SVG.ength height;
attribute SVG.ength rx;
attribute SVG.ength ry;

9.9.2 Interface SVGCircleElement
The SV GCircleElement interface corresponds to the 'circle’ element.

interface SVGCircl eEl ement : SVGStyl edAndTr ansf or medEl enent
attribute SVG.ength cx;
attribute SVG.ength cy;
attribute SVGA.ength r;

b

9.9.3 Interface SVGEllipseElement
The SV GEllipseElement interface corresponds to the 'ellipse’ element.

interface SVCElIlipseEl enment : SVGStyl edAndTr ansf or nedEl ement {
attribute SVG.ength cx;
attribute SVG.ength cy;
attribute SVG.ength rx;
attribute SVG.ength ry;

9.9.4 Interface SVGLIineElement

The SVGLineElement interface corresponds to the 'line’ element.

i nterface SVGLi neEl enent : SVGStyl edAndTr ansf or nedEl enent {
attribute SVG.ength x1;
attribute SVG.ength y1;
attribute SVG.ength x2;
attribute SVGA.ength y2;

9.9.5 Interface SVGPointList

The SV GPointList interface is a base interface used by SV GPolylineElement and SV GPolygonElement.

i nterface SVGPoi ntList {

SVGPoi nt creat eSVGPoi nt () ; /1 Returns unattached point (0,0)
readonly attribute unsigned | ong nunber_of _| engths;
SVGPoi nt get SVGPoi nt (i n unsi gned | ong i ndex);
/1 Replace all existing entries with a single entry.
voi d initialize(in SVGPoi nt newSVGPoi nt)
rai ses(DOVExcepti on);
voi d clear(); // Cear all entries, giving an enpty |ist
SVGPoi nt i nsertBefore(in SVGPoi nt newSVGPoi nt,

i n unsigned | ong index)
rai ses(DOVExcepti on);
SVGPoi nt repl ace(i n SVGPoi nt newSVGPoi nt,
i n unsigned | ong index)
rai ses(DOVExcepti on);

SVGPoi nt remove(in unsigned | ong index)
rai ses(DOVExcepti on);
SVGPoi nt append(i n SVGPoi nt newSVGLengt h)

rai ses(DOVException);
3

9.9.6 Interface SVGPolylineElement

The SV GPolylineElement interface corresponds to the 'polyline’ element.

interface SVGPol ylineEl ement : SVGStyl edAndTr ansf or nedEl enent {
attribute SVGPoi ntList points;
b

9.9.7 Interface SVGPolygonElement

The SV GPolygonElement interface corresponds to the ‘polygon’ element.

i nterface SVGPol ygonEl ement : SVGStyl edAndTr ansf or medEl enent {
attribute SVGPoi ntList points;
b

previous next contents properties index

previous next contents properties index

10 Text

Contents

« 10.1 Introduction
« 10.2 Characters and their corresponding glyphs
« 10.3 The 'text' element
« 10.4 The 'tspan’ element
o 10.5 The 'tref* element
o 10.6 Text layout
o 10.6.1 Text layout introduction
o 10.6.2 Setting the primary text advance direction
o 10.6.3 Glyph orientation with atext run
o 10.6.4 Relationship with bi-directionality
« 10.7 Text alignment properties

« 10.8 Font selection properties

« 10.9 Spacing properties
« 10.10 Text decoration
o 10.11 Text on apath
o 10.11.1 Introduction to text on a path
o 10.11.2 The 'textPath’ element
o 10.11.3 Text on apath layout rules
« 10.12 Alternate glyphs
« 10.13 White space handling
o 10.14 Text selection
« 10.15 DOM interfaces
o 10.15.1 Interface SV GTextContentElement
o 10.15.2 Interface SV GTextElement
o 10.15.3 Interface SV GTextPositioningElement
o 10.15.4 Interface SV GT SpanElement
o 10.15.5 Interface SV GTRefElement
o 10.15.6 Interface SV GTextpathElement
o 10.15.7 Interface SV GAItGlyphElement
o 10.15.8 Interface SV GAItGlyphDefElement
o 10.15.9 Interface SVGSV GGlyphSubElement

10.1 Introduction

Text that isto be rendered as part of an SV G document fragment is specified using the 'text' element. The charactersto be
drawn are expressed as XML character data [XML 10] inside the 'text’ element.

SVG's 'text' elements are rendered like other graphics elements. Thus, coordinate system transformations, painting, clipping
and masking features apply to 'text’ elements in the same way as they apply to shapes such as paths and rectangles.

Each 'text’ element causes asingle string of text to be rendered. SV G performs no automatic line breaking or word wrapping.
To achieve the effect of multiple lines of text:

« Theauthor or authoring package needs to pre-compute the line breaks and use multiple 'text' elements (one for each
line of text).

« Theauthor or authoring package needs to pre-compute the line breaks and use a single 'text' element with one or more
‘tspan’ child elements with appropriate values for attributes x, y, dx and dy to set new start positions for those
characters which start new lines. (This approach allows user text selection across multiple lines of text -- see Text
selection and clipboard operations.)

« Expressthe text to be rendered in another XML namespace such as XHTML [XHTML 10] embedded inline within a
‘foreignObject’ element. (Note: the exact semantics of this approach are not completely defined at thistime.)

The text strings within 'text’ elements can be rendered in a straight line or rendered along the outline of a'path’ element. SVG
supports the following international text processing features for both straight line text and text on a path:

« horizontal and vertical orientation of text

« |€eft-to-right, right-to-left and bi-directional text (e.g., for mixing Roman scripts with Arabic or Hebrew scripts)

« when SVG fonts are used, automatic selection of the correct glyph corresponding to the current form for Arabic and
Han text

(The layout rules for straight line text are described in Text layout. The layout rules for text on a path are described in Text on
apath layout rules.)

Because SVG text is packaged as XML character data[XML 10]:
o Textdatain SVG content is readily accessible to the visually impaired (see Accessibility Support)

« In many viewing scenarios, the user will be able to search for and select text strings and copy selected text stringsto
the system clipboard (see Text selection)

« XML-compatible web search engines will find text stringsin SV G content with no additional effort over what they
need to do to find text stringsin other XML documents

Multi-language SV G content is possible by substituting different text strings based on the user's preferred language.

For accessibility reasons, it is recommended that text which is included in a document have appropriate semantic markup to
indicate its function. See SV G accessibility guidelines for more information.

10.2 Characters and their corresponding glyphs

In XML [XML10], textua content is defined in terms of XML characters, where each character is defined by a particular
character (i.e., code point) in Unicode [UNICODE]. Fonts, on the other hand, consists of a collection of glyphs, where each
glyph consists of some sort of identifier (in some cases a string, in other cases a number) along with drawing instructions for
rendering that particular glyph.

In many cases, there is a one-to-one mapping of Unicode characters (i.e., Unicode code points) to glyphsin afont. For
example, it is common for a Roman font to contain a single glyph for each of the standard ASCII characters (i.e., A-to-Z,
ato-z, 0-to-9, plus the various punctuation characters found in ASCII). Thus, in most situations, the string "XML", which
consists of three Unicode characters, would be rendered by the three glyphs corresponding to " X", "M" and "L", respectively.

In various other cases, however, there is not a strict one-to-one mapping of Unicode characters to glyphs. Some of the
circumstances when the mapping is not one-to-one;

« Ligatures - For best looking typesetting, it is often desirable that particular sequences of characters are rendered asa
single glyph. An exampleisthe word "office". Many fonts will define an "ffi" ligature. When the word "office" is
rendered, sometimes the user agent will render the glyph for the "ffi" ligature instead of rendering distinct glyphs (i.e.,
"f","f" and "i") for each of the three characters. Thus, for ligatures, multiple Unicode characters map to a single glyph.

« Composite characters - In various situations, commonly used adornments such as diacritical marks will be stored once
in afont as a particular glyph and then composed with one or more other glyphs to result in the desired character. For
example, it is possible that afont engine might render the é character by first rendering the glyph for e and then
rendering the glyph for ~ (the accent mark) such that the accent mark will appear over the e. In this situation, asingle
Unicode character map to multiple glyphs.

« Glyph substitution - Some typography systems examine the nature of the textual content and utilize different glyphsin
different circumstances. For example, in Arabic, the same Unicode character might render as any of four different
glyphs, depending on such factors as whether the character appears at the start, the end or the middle of atext string. In
these situations, a single Unicode character might map to one of several alternative glyphs.

« Alternative glyph specification - SVG contains afacility for the author to explicitly specify that a particular sequence
of Unicode charactersisto be rendered using a particular glyph. (See Alternate glyphs.) When this facility is used,
multiple Unicode characters map to a single glyph.

In many situations, the algorithms for mapping from characters to glyphs are system-dependent, resulting in the possibility
that the rendering of text might be (usualy slightly) different when viewed in different user environments. If the author of
SV G content requires precise selection of fonts and glyphs, then the recommendation is that the necessary fonts (potentially
subsetted to only include only the glyphs needed for the given document) be available either as SV G fonts embedded within

the SV G content or as web fonts posted at the same web location as the SV G content.

10.3 The 'text' element

The 'text' element defines a graphics element consisting of text. The XML [XML10] character data within the 'text’ element,
along with relevant attributes and properties and character-to-glyph mapping tables within the font itself, define the glyphsto
be rendered. (See Characters and their corresponding glyphs.) The attributes and properties on the 'text’ element indicate such
things as the writing direction, font specification and painting attributes which describe how exactly to render the characters.
Subsequent sections of this chapter describe the relevant text-specific attributes and properties.

Since 'text' elements are rendered using the same rendering methods as other graphics element, al of the same coordinate
system transformations, painting, clipping and masking features that apply to shapes such as paths and rectangles also apply to
‘text’ elements.

The 'text' rendersitsfirst character at theinitial current text position, which is established by the x and y attributes. After the
glyph(s) corresponding to the given character is(are) rendered, the current text position is updated for the next character. In the
simplest case, the new current text position is the previous current text position plus the glyphs' text advance value (horizontal
or vertical). See text layout for adescription of glyph placement and glyph advance.

<IENTITY %textExt "" >
<! ELEMENT text (#PCDATA|tspan|tref]|textPath|altglyph|use|aninate|set]|animatelbtion|ani mateCol or| ani mateTransform
YgeExt ; % ext Ext;)* >
<! ATTLI ST text
id 1D # MPLI ED
xm : | ang NMIOKEN #| MPLI ED
xm : space (default|preserve) # MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #l MPLI ED
transf orm CDATA #l MPLI ED
%gr aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
system | anguage CDATA #| MPLI ED
x CDATA #| MPLI ED
y CDATA #l MPLI ED >

Attribute definitions:
X = "<coordinate>"

The X-coordinate for theinitia current text position for the text to be drawn. If the value is expressed as asimple
<number> without a unit identifier (e.g., 48), then the value represents a coordinate in the current user coordinate

system.
If one of the CSS unit identifiersis provided (e.g., 12pt or 10%), then the value represents a distance in viewport units

relative to the origin of the user coordinate system. (See Processing rules for CSS units and percentages.) The default
velueis"0".
Animatable: yes.

y = "<coordinate>"

The corresponding Y -coordinate for the initial current text position. The default valueis"0".
Animatable: yes.

Attributes defined elsewhere:
id, xml:lang, xml:space, class, style, transform, %graphicsElementEvents;, system-required, system-language.

Example textO1 below expresses all valuesin physical units such as centimeters and points. The 'text' element contains the
text string "Hello, out there" which will be rendered onto the canvas using the Verdanafont family with font size of 12 points
with the glyphs filled with the color blue.

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >

<svg w dt h="10cni' hei ght ="3cni' >
<desc>Exanpl e text0l1 - '"Hello, out there' in blue</desc>

<text x="2.5cn y="1.5cnt

style="font-fam |y: Verdana; font-size:16pt; fill:blue">
Hel 1 o, out there
</text>

</ svg>

Hello, out there

Example textOl1
View this example as SV G (SV G-enabled browsers only)

Example text02 below expresses the x and y attributes and the 'font-size' property in the user coordinate system set up by the
viewBox attribute on the 'svg' element. The 'text' element contains the text string "Text in user space.”

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >

<svg wi dt h="10cnt hei ght="3cn{ vi ewBox="0 0 1000 300">
<desc>Exanpl e text02 - Text in user space</desc>

<text x="250" y="150"
style="font-fam|y: Verdana; font-size:42.333; fill:blue">
Text in user space
</text>
</ svg>

Text in user space

Example text02

file:///d|/jon/svgspec/images/text/text01.svg

View this example as SV G (SVG-enabled browsers only)

10.4 The 'tspan’' element

Within a'text' element, text and font properties and the current text position can be adjusted with absolute or relative
coordinate values by including a 'tspan’ element.

<IENTITY % tspanExt "" >
<! ELEMENT tspan (#PCDATA|tspan|tref|altglyph|aninate|set]|ani mateCol or
% spanExt;)* >

<! ATTLI ST tspan
id I D # MPLI ED
xm : 1 ang NMIOKEN #| MPLI ED
xm : space (default|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #l MPLI ED
%gr aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
system | anguage CDATA #l MPLI ED
x CDATA #| MPLI ED
y CDATA #l MPLI ED
dx CDATA #| MPLI ED
dy CDATA #| MPLI ED
rotate CDATA #l MPLI ED >

Attribute definitions:
X = "<coordinate>+"

If asingle <coordinate> is provided, this value represents the new absolute X coordinate for the current text position
for the first character within the 'tspan’ element. If acomma- or space-separated list of <n> <coordinate>sis provided,
then the values represent new absolute X coordinates for the current text position for the first <n> characters within the
'tspan’ element. If more <coordinate>s are provided than characters, then the extra <coordinate>s will have no effect
on glyph positioning. If more characters exist than <coordinate>s, then the starting X coordinate of each extra
character is positioned at the X coordinate of the resulting current text position from rendering the previous character
within the 'text' element.

CSS unit identifiers, such as cm, pt or %, can be provided for any <coordinate>. If a <coordinate> is provided without

aunit identifier (e.g., 48), then the value represents a coordinate in the current user coordinate system. If a CSS unit
identifier is provided (e.g., 12pt or 10%), then the value represents a distance in viewport units relative to the origin of
the user coordinate system. (Processing rules for CSS units and percentages.) The default valueis"0".

Animatable: yes.

y = "<coordinate>+"

The corresponding list of absolute Y coordinates for the characters within the 'tspan’ element. The default valueis"0".
Animatable: yes.

dx ="<coordinate>+"

If asingle <coordinate> is provided, this value represents the new relative X coordinate for the current text position for
the first character within the ‘tspan’ element. Thus, the current text position is shifted along the X axis of the current
user coordinate system by <coordinate>. If acomma- or space-separated list of <n> <coordinate>sis provided, then
the values represent new relative X coordinates for the current text position for the first <n> characters within the
‘tspan’ element. Thus, before each character is rendered, the current text position resulting from drawing the previous
character (or, for the first character in a'text' element, the initial current text position) is shifted along the X axis of the

current user coordinate system by <coordinate>. If more <coordinate>s are provided than characters, then any extra
<coordinate>s will have no effect on glyph positioning. If more characters exist than <coordinate>s, then the starting
X coordinate of each extra character is positioned at the X coordinate of the resulting current text position from
rendering the previous character within the 'text' element.

CSS unit identifiers, such as cm, pt or %, can be provided for any <coordinate>. If a <coordinate> is provided without

aunit identifier (e.g., 48), then the value represents a length aong the X axisin the current user coordinate system. If
one of the CSS unit identifiersis provided (e.g., 12pt or 10%), then the value represents a distance in the viewport
coordinate system. (Processing rules for CSS units and percentages.) The default valueis"0".

file:///d|/jon/svgspec/images/text/text02.svg

Animatable: yes.
dy = "<coordinate>+"

The corresponding list of relative Y coordinates for the characters within the 'tspan’ element. The default valueis"0".
Animatable: yes.

rotate = "auto | <number>+"

A value of auto causes all characters to be oriented as specified by other text attributes without any supplemental
rotation.

If asingle <number> is provided, then this value represents a supplemental rotation about the current text position that
will be applied to each glyph corresponding to each character within the ‘tspan' element.

If acomma- or space-separated list of <number>sis provided, then the first <number> represents the supplemental
rotation of the first character, the second <number> represents the supplemental rotation of the second character, and
so on. If more <number>s are provided than there are characters, then the extra <number>s will be ignored. If more
characters are provided than <number>s, then the extra characters will be rotated by the last <number> in the list.
This supplemental rotation has no impact on the rules by which current text position is modified as glyphs get
rendered.

The default value is "auto".

Animatable: yes (non-additive, 'set' and 'animate’ elements only).

Attributes defined elsewhere:
id, xml:lang, xml:space, class, style, transform, %graphicsElementEvents;, system-required, system-language.

Thex, y, dx, dy and rotate on the 'tspan’ element are useful in high-end typography scenarios where individual glyphs requires
exact placement. These attributes are useful for minor positioning adjustments between characters or for major positioning
adjustments, such as moving the current text position to a new location to achieve the visual effect of anew line of text.
Multi-line 'text' elements are possible by defining different 'tspan’ elements for each line of text, with attributes x, y, dx and/or

dy defining the position of each 'tspan’. (An advantage of such an approach is that users will be able to perform multi-line text
selection.)

In situations where advanced typographic control is required and micro-level positioning adjustment are necessary, the SVG
content designer needs to ensure that the necessary font will be available for all viewers of the document (e.g., package up the
necessary font datain the form of an SV G font or an aternative web font format which is stored at the same web site asthe
SVG content) and that the viewing software will process the font in the expected way (the capabilities, characteristics and font
layout mechanisms vary greatly from system to system). If the SV G content contains x, y, dx or dy attribute values which are

meant to correspond to a particular font processed by a particular set of viewing software and either of these requirementsis
not met, then the text might display with poor quality.

The following additional rules apply to attributes x, y, dx, dy, rotate when they contain alist of numbers:

« Required behavior when multiple XML characters map to asingle glyph (e.g., when aligature is used) - Assume that
thei-th and (i+1)-th XML characters map to asingle glyph. In this case, the i-th value for the x, y, dx, dy and rotate

attributes all apply when rendering the glyph. For the (i+1)-th values, however, the x, y and rotate value are not applied
(although the final rotate value would still apply to subsegquent characters), whereas the dx and dy are applied to the
subsequent XML character (i.e., the (i+2)-th character), if one exists.

« Relationship to right-to-left text and bi-directionality - Text islaid out in atwo-step process, where any right-to-left
and bi-directional text isfirst re-ordered into aleft-to-right string, and then text layout occurs with the re-ordered text
string. Whenever the character data within a'tspan’ el ement is re-ordered, the corresponding elements within the x, v,
dx, dy and rotate are also re-ordered to maintain the correspondence. For example, suppose that you have the
following 'tspan’ element:
<tspan dx="11 12 13 14 15 0 21 22 23 0 31 32 33 34 35 36">Roman and Arabi c

and that the word "Arabic" will be drawn right-to-left. First, the character data and the corresponding values in the dx
list will be reordered, such that the text string will be "Roman and cibarA" and the list of valuesfor the dx attribute
will be"1112 131415021 22 23 0 36 35 34 33 32 31". After this re-ordering, the characters will be positioned using
standard left-to-right layout rules.

« Nested 'tspan’ elements - The x, y, dx, dy and rotate attributes on a given 'tspan’ element apply only to the character

datathat is directly within that 'tspan’ element and do not apply to the character data within child (i.e., nested) ‘tspan’
elements. If the child/nested 'tspan’ elements require positioning adjustments or rotation values, the child/nested 'tspan’
elements need to specify x, y, dx, dy and rotate values for their own character data.

The following examples show basic use of the 'tspan’ element.

Example tspan01 uses a 'tspan’ element to indicate that the word "not" is to use a bold font and have red fill.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg w dt h="10cni hei ght ="3cni >
<desc>Exanpl e tspan0l - using tspan to change visual attributes</desc>

<g style="font-fanmily: Verdana; font-size:12pt">

<text x="2cm' y="1.5cn' style="fill:blue">
You are
<tspan styl e="font-wei ght:bold; fill:red">not</tspan>
a banana.
</ text>
</ g>
</ svg>

You are not 2 banana.

Example tspan01
View this example as SV G (SV G-enabled browsers only)

Example tspan02 uses the dx and dy attributes on the 'tspan’ to adjust the current text position horizontally and vertically for
particular text strings within a'text' element.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg W dt h="10cni' hei ght ="3cni' >
<desc>Exanpl e tspan02 - using tspan's dx and dy attributes
for increnmental positioning adjustnents</desc>

<g style="font-famly: Verdana; font-size:12pt">

<text x="2cnml y="1.5cm style="fill:blue">
But you
<tspan dx="2enm' dy="-.5cni style="font-weight:bold; fill:red">
are
</t span>
<t span dy="1cni>
a peach!
</t span>
</text>
</ g>
</ svg>
are
But vou
a peach!
Example tspan02

View this example as SV G (SV G-enabled browsers only)

Example tspan03 uses the x and y attributes on the 'tspan’ to establish a new absolute current text position for each glyph to be
rendered. The example shows two lines of text within asingle 'text' element. Because both lines of text are within the same
'text’ element, the user will be able to select through both lines of text and copy the text to the system clipboard in user agents

file:///d|/jon/svgspec/images/text/tspan01.svg
file:///d|/jon/svgspec/images/text/tspan02.svg

that support text selection and clipboard operations,

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVG SVG 19991203. dt d" >
<svg w dt h="10cni' hei ght ="3cni' >
<desc>Exanpl e tspan03 - using tspan's x and y attributes
for multiline text and precise glyph positioning</desc>

<g style="font-fanily: Verdana; font-size:12pt">
<text style="fill:rgb(255, 164,0)">
<tspan x="3.0cm 3.5cm 4.0cm 4.5cm 5. 5cm 6. Ocm 6. 5cni y="1cni >
Cute and
</t span>
<tspan x="3.75cm 4. 25cm 4. 75cm 5. 25cm 5. 75cn’ y="2cni' >
fuzzy
</t span>
</text>
</ g>
</ svg>

Example tspan03

View this example as SVG (SV G-enabled browsers only)

10.5 The 'tref' element

The textual content for a'text' can be either character data directly embedded within the 'text' element or the character data
content of areferenced element, where the referencing is specified with a 'tref' element.

<IENTITY %trefExt "" >
<! ELEMENT tref (animate]|set]|animteCol or
Yiref Ext;)* >

<! ATTLI ST tref
id I D #l MPLI ED
xm : | ang NMIOKEN #| MPLI ED
xm : space (default|preserve) #l MPLI ED
cl ass NMICKENS #l MPLI ED
styl e CDATA #l MPLI ED
Y%gr aphi csEl enent Event s;
systemrequi red NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED
X CDATA #| MPLI ED
y CDATA #| MPLI ED
dx CDATA #l MPLI ED
dy CDATA #l MPLI ED
rotate CDATA #l MPLI ED
%Il i nkRef Attrs;
xlink: href CDATA #REQUI RED >

Attribute definitions:
xlink:href ="<uri>"
A URI reference to an el ement/fragment within an SV G document fragment whose character data content shall be

used as character datafor this 'tref' element.
Animatable: yes.

Attributes defined elsewhere:

file:///d|/jon/svgspec/images/text/tspan03.svg

id, xml:lang, xml:space, class, style, transform, %graphicsElementEvents;, x, v, dx, dy, rotate, system-required,
system-language, %xlinkAttrs;.

All character data within the referenced element, including character data enclosed within additional markup, will be
rendered.

Thex, y, dx, dy and rotate attributes have the same meanings as for the 'tspan’ element. The attributes are applied as if the 'tref'

element was replaced by a'tspan’ with the referenced character data (stripped of all supplemental markup) embedded within
the hypothetical ‘tspan’ element.

Example tref01 shows how to use character data from a different element as the character datafor a given 'tspan’ element. The
first 'text' element (with id="ReferencedText") will not draw because it is part of a'defs element. The second 'text' element
draws the string "Inline character data”. The third 'text' element draws the string "Reference character data' because it includes

a'tspan’ element which is areference to element "ReferencedText", and that element's character datais "Referenced character
data’.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVG SVG 19991203. dt d" >
<svg w dt h="10cni' hei ght ="3cni' >
<def s>
<t ext id="ReferencedText">
Ref erenced character data

</text>

</ def s>

<desc>Exanple tref0l1 - inline vs reference text content</desc>

<text x="1lcnml' y="1lcmt style="font-size:12pt; fill:Dblue">
Inline character data

</ text>

<text x="lcnl' y="2cm style="font-size:12pt; fill:red">
<tref xlink:href="#ReferencedText"/>

</text>

</ svg>

Inline character data

Referenced character data

Example tref01

View this example as SV G (SV G-enabled browsers only)

10.6 Text layout

10.6.1 Text layout introduction

This section describes the text layout features supported by SV G, which includes support for various international writing
directions, such as left-to-right (e.g., Roman scripts), right-to-left (e.g., Hebrew or Arabic), bi-directional (e.g., mixing Roman
with Arabic) and vertical (e.g., Asian scripts). The descriptions in this section assume straight linetext (i.e., text that is either
strictly horizontal or vertical with respect to the current user coordinate system). Subsequent sections describe the
supplemental layout rules for text on a path.

Because SV G does not provide for automatic line breaks or word wrapping, internationalized text layout issimpler in SVG
than in languages such as XHTML [XHTML 10].

In processing a given 'text' element, the SV G user agent keeps track of the current text position. Theinitial current text
position is established by the x and y attributes on the 'text’ element. The current text position is adjusted after each glyph to

establish a new current text position at which the next glyph shall be rendered. The adjustment to the current text position is
based on the current text advance direction, the glyph orientation relative to the text advance direction, the metrics of the

file:///d|/jon/svgspec/images/text/tref01.svg

glyph just rendered, kerning tables in the font and the current values of various attributes and properties, such as the spacing
properties and any X, y, dx and dy attributes on 'tspan’ elements.

For each glyph to be rendered, the SV G user agent determines an appropriate reference point on the glyph which will be
placed exactly at the current text position. The reference point is determined based on character cell metrics in the glyph itself,
the current text advance direction and the glyph orientation relative to the text advance direction For the most common uses of
Roman text (i.e., 'writing-mode:lr', 'text-anchor:start', and 'glyph-anchor:baseline’) the reference point in the glyph will be the
intersection of left edge of the glyph character cell (or some other glyph-specific X axis coordinate indicating aleft-side origin
point) with the baseline of the glyph. For most cases with top-to-bottom vertical text layout, the reference point will be either
a glyph-specific origin point for top-to-bottom vertical text or the intersection of the center of the glyph with itstop line (see
[CSS2] for adefinition of top line).

The varioustext layout diagramsin this section use the following symbals:

Ex

- wide-cell glyph (e.g. Han) which isthe n-th character in the text run

h
:|- narrow-cell glyph (e.g. Roman) which is the n-th glyph in the text run

cH
:| - connected glyph (e.g. Hebrew or Arabic) which isthe n-th glyph in the text run

The orientation which the above symbols assume in the diagrams corresponds to the orientation that the glyphs they represent
are intended to assume when rendered in the user agent. Spacing between these charactersin the diagramsis usually symboalic,
unless intentionally changed to make a point.

10.6.2 Setting the primary text advance direction

The 'writing-mode' property specifies whether the primary text advance direction for a 'text' element shall be left-to-right,
right-to-left, or top-to-bottom. The ‘writing-mode' property applies only to 'text' elements; the property isignored for 'tspan’,
‘tref' and 'textPath' sub-elements. (Note that even when the primary text advance direction if left-to-right or right-to-left, some
or all of the content within a given 'text' element might advance in the opposite direction because of the Unicode [UNICODE]
bi-directional algorithm or because of explicit text advance overrides due to properties 'direction’ and 'unicode-bidi'. For more
on bi-directional text, see Relationship with bi-directionality.)

'writing-mode

Value: [r-tb | rl-th | tb-rl | Ir | rl | tb | inherit
Initial: [r-th
Appliesto: 'text' elements
Inherited: yes
Percentages. N/A
Media: visual
Animatable: no
Ir-th | Ir

Sets the primary text advance direction to left-to-right, asis common in most Roman-based documents. For most
characters, the current text position is advanced from left to right after each glyph is rendered. (When the character
dataincludes characters which are subject to the Unicode bi-directional agorithm, the text advance rules are more
complex. See Relationship with bi-directionality).

rl-th | rl
Sets the primary text advance direction to right-to-left, asis common in Arabic or Hebrew scripts.
tb-rl | th

Sets the primary text advance direction to top-to-bottom, asis common in Asian scripts. Though hardly as frequent as
horizontal, this type of vertical layout also occursin Latin based documents, particularly in table column or row labels.
In most cases, the vertical baselines running through the middle of each glyph are aligned.

10.6.3 Glyph orientation with a text run

In some cases, it isrequired to ater the orientation of a sequence of characters relative to the primary text advance direction.
The requirement is particularly applicable to vertical layouts of East Asian documents, where sometimes half-width Roman
text isto be displayed horizontally and other times vertically.

Two properties control the glyph orientation relative to the primary text advance direction. 'glyph-orientation-vertical' controls
glyph orientation when the primary text advance direction is vertical. 'glyph-orientation-horizontal' controls glyph orientation
when the primary text advance direction is horizontal.

‘glyph-orientation-vertical’

Value: <angle> | auto | inherit

Initial: auto

Appliesto: 'text’, 'tspan’, 'tref', 'textPath' elements
Inherited: yes

Percentages. N/A

Media: visual

Animatable: no
<angle>

The value of the angleis a <integer> restricted to the range of -360 to +360 in 90-degree increments.

A vaue of Oindicates that al glyphs are oriented with the bottom of the glyphs toward the primary text advance
direction, resulting in glyphs which are stacked vertically on top of each other. A value of 90 indicates a rotation of 90
degrees clockwise from the "0" orientation. Negative angle values are computed modulo 360; thus, avalue of -90 is
equivalent to avalue of 270.

auto

The glyph orientation relative to the primary text advance direction is determined automatically based on the Unicode
character number of the rendered glyph.

Full-width ideographic and full-width Roman glyphs (excluding ideographic punctuation) are oriented asif an <angle>
of "0" had been specified (i.e., glyphs are oriented with the bottom of the glyphs toward the primary text advance
direction, resulting in glyphs which are stacked vertically on top of each other).

| deographic punctuation and other ideographic characters having alternate horizontal and vertical forms shall use the
vertical form of the glyph.

Text which is not full-width will be set as if an <angle> of "90" had been specified; thus, half-width Roman text will
be rotated 90 degree clockwise versus full-width ideographic and full-width Roman text.

Note that avalue of auto will generally produce the expected results in common uses of mixing Japanese with
European characters; however, the exact algorithms are based on complex interactions between many factors,
including font design, and thus different algorithms might be employed in different processing environments. For
precise control, specify explicit <angle> values.

The glyph orientation affects the amount that the current text position advances as each glyph is rendered. When the primary
text advance direction is vertical and the 'glyph-orientation-vertical' results in an orientation angle that is a multiple of 180
degrees, then the current text position is incremented according to the vertical metrics of the glyph. Otherwise, if the
‘glyph-orientation-vertical' results in an orientation angle that is not a multiple of 180 degrees, then the current text position is
incremented according to the horizontal metrics of the glyph.

The diagrams below illustrate different uses of 'glyph-orientation-vertical'. The diagram on the | eft shows the result of the
mixing of full-width ideographic characters with half-width Roman characters when 'glyph-orientation-vertical' for the Roman
charactersis either auto or 90. The diagram on the right show the result of mixing full-width ideographic characters with
half-width Roman characters when Roman characters are specified to have a 'glyph-orientation-vertical' of 0.

Fl

mEFSP | oD

\
/
|

F8

JmES o i o o [

'glyph-orientation-horizontal'

Value: <angle> | inherit

Initial: 0

Appliesto: 'text', 'tspan’, 'tref', 'textPath’ elements
Inherited: yes

Percentages: N/A

Media: visua

Animatable: no
<angle>

The value of the angle is a <integer> restricted to the range of -360 to +360 in 90-degree increments.
A value of O indicates that all glyphs are oriented with the right edge of the glyphs toward the primary text advance
direction, resulting in glyphs which are positioned side by side. A value of 90 indicates an orientation of 90 degrees

clockwise from the "0" orientation. Negative angle vaues are computed modulo 360; thus, a value of -90 is equivalent
to avalue of 270.

The glyph orientation affects the amount that the current text position advances as each glyph is rendered. When the primary
text advance direction is horizontal and the 'glyph-orientation-horizontal' results in an orientation angle that is a multiple of
180 degrees, then the current text position isincremented according to the horizontal metrics of the glyph. Otherwise, if the
‘glyph-orientation-vertical' results in an orientation angle that is not a multiple of 180 degrees, then the current text position is
incremented according to the vertical metrics of the glyph.

10.6.4 Relationship with bi-directionality

The charactersin certain scripts are written from right to left. In some documents, in particular those written with the Arabic
or Hebrew script, and in some mixed-language contexts, text in asingle line may appear with mixed directionality. This
phenomenon is called bidirectionality, or "bidi" for short.

The Unicode standard ([UNICODE], section 3.11) defines a complex algorithm for determining the proper directionality of

text. The algorithm consists of an implicit part based on character properties, as well as explicit controls for embeddings and
overrides. The SVG user agent applies this bidirectional agorithm when determining the layout of characters within a 'text’

element. The 'direction’ and 'unicode-bidi' properties allow authors to override the inherent directionality of the content

characters and thus explicitly control how the elements and attributes of a document language map to this algorithm. These
two properties are only applicable when the primary text advance direction is horizontal.

Because the directionality of atext depends on the structure and semantics of the document language, in most cases these
properties will be used only by designers of document type descriptions (DTDs) or authors of special documents.

A more complete discussion of bi-directionality can be found in the "Cascading Style Sheets (CSS) level 2" specification
[CS32).

The processing model for right-to-left or bi-directional horizontal text is as follows. The user agent processes the characters
which are provided in lexical order and re-orders the characters after processing the Unicode bi-directional algorithm and
properties 'direction’ and 'unicode-bidi', resulting in a potentially re-ordered list of characters which are now in left-to-right
rendering order. Simultaneous with re-ordering of the characters, the x, y, dx, dy and rotate attributes on the 'tspan’ and 'tref’
elements are also re-ordered to maintain the original correspondence between characters and attribute values. While kerning
or ligature processing might be font-specific, the preferred model isthat kerning and ligature processing occurs between
combinations of characters or glyphs after the characters have been re-ordered. Similarly, text selection occurs on the
re-ordered text (i.e., based on visua layout rather than lexical layout).

When included in a'text' element whose primary text advance direction is vertical, Arabic text has a default orientation where

the glyphs are rotated 90 degrees counter-clockwise from standard vertically-oriented glyphs, making the default orientation
of the Arabic glyphs the same as for half-width Roman glyphs.

‘direction’
Value: [tr | rtl | inherit
Initial: Itr
Appliesto: all elements, but see prose
Inherited: yes
Percentages: N/A
Media: visua

Animatable: no

This property specifies the base writing direction of text and the direction of embeddings and overrides (see 'unicode=bidi")
for the Unicode bidirectional agorithm. For the ‘direction’ property to have any effect, the 'unicode=bidi' property's value must
be 'embed’ or 'override’. Refer to the "Cascading Style Sheets (CSS) level 2" specification [CSS2] for the specification for this
property.

The 'direction’ property applies only to text whose glyph orientation has the right edge of the glyphs oriented in the same
direction as the primary text advance direction, which includes the usual case of horizontally-oriented Roman or Arabic text

and the case of half-width Roman or Arabic characters rotated 90 degrees clockwise relative to atop-to-bottom primary text
advance direction.

'unicode-bidi’
Value: normal | embed | bidi-override | inherit
Initial: normal
Appliesto: all elements, but see prose
Inherited: no
Percentages: N/A
Media: visual

Animatable: no

Refer to the "Cascading Style Sheets (CSS) level 2" specification [CSS2] for the specification for this property.

10.7 Text alignment properties

Each text element establishes an initial current text position. The following properties are used to align the contents of a 'text'
element relative to the current text position.

'text-anchor’
Value: start | middle | end | inherit
Initial: start
Appliesto: 'text' elements
Inherited: yes

Percentages: N/A

Media: visud
Animatable: yes

This property, which applies only to 'text' elements and isignored for elements 'tspan’, 'tref' and 'textPath’, describes how the
characters within a'text' element are aligned relative to theinitial current text position for the 'text' element. VValues have the
following meanings:

start

The rendered characters are aligned such that the start of the text string is at the initial current text position. For
standard Roman text, thisis comparable to left alignment. For Asian text with avertical primary text direction, thisis
comparable to top alignment.

middle
The rendered characters are a current text position. For standard Roman text, this is comparable to center alignment.

end
The rendered characters are aligned such that the end of the text string is at the initial current text position. For
standard Roman text, thisis comparable to right alignment.
'glyph-anchor’
Value: text-top | topline | hanging | mathline | centerline |
baseline | ideographic | text-bottom | inherit
Initial: baseline
Appliesto: 'text’, 'tspan’, 'tref' and 'textPath’ elements
Inherited: yes
Percentages. N/A
Media: visual

Animatable: yes

This property, which only appliesto glyphs rendered horizontally (i.e., bottom of the glyph is parallel to the primary text
advance direction), describes the vertical alignment of glyphs relative to the current text position. Vaues have the following
meanings.

text-top

Align the glyph vertically relative such that the top of the glyph is aligned with the current text position. (Refer to the
discussion of text-top under SV G fonts and the "text-top" value for the 'vertical-align' property in [CSS2].)

topline

Align the glyph vertically such that the "topline" of the glyph is aligned with the current text position. (Refer to the
discussion of topline under SV G fonts and the “topline" font descriptor described in [CSS2].)

hanging

Align the glyph vertically such that the "hanging" position of the glyph is aligned with the current text position. (Refer
to the discussion of hanging under SV G fonts.)

mathline

Align the glyph vertically such that the "mathline" of the glyph is aligned with the current text position. (Refer to the
discussion of mathline under SV G fonts and the "mathline" font descriptor described in [CSS2].)

centerline

Align the glyph vertically such that the "centerling” of the glyph is aligned with the current text position. (Refer to the
discussion of centerline under SV G fonts and the "centerline" font descriptor described in [CSS2].)

baseline

Align the glyph vertically such that the "baseline” of the glyph is aligned with the current text position. (Refer to the
discussion of baseline under SV G fonts and the "baseline” font descriptor described in [CSS2].)

ideographic

Align the glyph vertically such that the "ideographic" position of the glyph is aligned with the current text position.
(Refer to the discussion of ideographic under SVG fonts.)

text-bottom

Align the glyph vertically relative such that the bottom of the glyph is aligned with the current text position. (Refer to
the discussion of text-bottom under SV G fonts and the "text-bottom" value for the 'vertical-align' property in [CSS2].)

'baseline-shift'
Value: super | sub | <length> | inherit
Initial: 0
Appliesto: 'text', 'tspan’, 'tref' and 'textPath’ elements
Inherited: no
Percentages. N/A
Media: visual

Animatable: yes (non-additive, 'set' and 'animate’ elements only)

This property, which only appliesto glyphs rendered horizontally (i.e., bottom of the glyph is parallel to the primary text
advance direction), provides for vertical adjustment of the current text position. Property values are cumulative; thus, the
'baseline-shift' value for the current element is added to all of the 'baseline-shift' values for its ancestors up to its parent 'text’
element. Values have the following meanings:

super

Shift the text upward to the appropriate position for superscripts.
sub

Shift the text downward to the appropriate position for subscripts.
<length>

Shift the text vertically by the given distance.

10.8 Font selection properties

SVG uses the following font specification properties from CSS2. Any SV G-specific notes about these properties are contained
in the descriptions below.

'font-family’

Value: [[<family-name> |
<generic-family>],]* [<family-name> |
<generic-family>] | inherit

Initial: depends on user agent

Appliesto: all elements

Inherited: yes

Percentages. N/A

Media: visual

Animatable: yes

This property which font family isto be used to render the text, specified as a prioritized list of font family names and/or
generic family names. Refer to the "Cascading Style Sheets (CSS) level 2" specification [CSS2] for more information about
this property.

'font-style
Value: norma | italic | oblique | inherit
Initial: normal
Appliesto: al elements
Inherited: yes
Percentages: N/A
Media: visua

Animatable: yes
This property specifies whether the text is to be rendered using a normal, italic or oblique face. Refer to the " Cascading Style
Sheets (CSS) level 2" specification [CSS2] for more information about this property.
'font-variant’

Value: normal | small-caps | inherit

Initial:
Appliesto:
Inherited:
Percentages:
Media;
Animatable:

normal

al elements
yes

N/A

visual

yes

This property indicates whether the text is to be rendered using the normal glyphs for lowercase characters or using small-caps
glyphs for lowercase characters. Refer to the "Cascading Style Sheets (CSS) level 2" specification [CSS2] for more

information about this property.

'font-weight'
Value:

Initial:
Appliesto:
Inherited:
Percentages:
Media:
Animatable:

normal | bold | bolder | lighter | 200 | 200 | 300
| 400 | 500 | 600 | 700 | 800 | 900 | inherit
normal

al elements

yes

N/A

visual

yes

This property refersto the boldness or lightness of the glyphs used to render the text, relative to other fontsin the same font
family. Refer to the "Cascading Style Sheets (CSS) level 2" specification [CSS2] for more information about this property.

'font-stretch’
Value:

Initial:
Appliesto:
Inherited:
Percentages:
Media:
Animatable:

normal | wider | narrower |
ultra-condensed | extra-condensed |
condensed | semi-condensed |
semi-expanded | expanded |
extra-expanded | ultra-expanded | inherit
normal

al elements

yes

N/A

visua

yes

This property indicates the desired amount of condensing or expansion in the glyphs used to render the text. Refer to the
"Cascading Style Sheets (CSS) level 2" specification [CSS2] for more information about this property.

'font-size
Value:

Initial:
Appliesto:
Inherited:
Percentages:
Media:
Animatable:

<absolute-size> | <relative-size> |
<length> | <percentage> | inherit
medium

al elements

yes, the computed value isinherited
refer to parent element's font size
visua

yes

This property refersto the size of the font from baseline to baseline when multiple lines of text are set solid in amultiline
layout environment. For SV G, if a<length> is provided without a unit identifier (e.g., an unqualified number such as 128), the
SV G user agent processes the <length> as a height value in the current user coordinate system.

If a<length> is provided with one of the CSS unit identifiers (e.g., 12pt or 10%), then the SV G user agent convertsthe
<length> into a corresponding value in the current user coordinate system by applying the processing rules for CSS units and
percentages. Refer to the "Cascading Style Sheets (CSS) level 2" specification [CSS2] for more information about this

property.
'font-size-adjust'

Value:
Initial:

<number> | none | inherit
none

Appliesto: all elements

Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes (non-additive, 'set' and 'animate’ el ements only)

This property allows authors to specify an aspect value for an element that will preserve the x-height of the first choice font in
a subgtitute font. Refer to the "Cascading Style Sheets (CSS) level 2" specification [CSS2] for more information about this

property.
‘font’

Value: [[<font-style’> || <font-variant’> || <'font-weight'>]?
<'font-size’> [/ <'line-height'>]? <'font-family'>] |
caption | icon | menu | message-box|
small-caption | status-bar | inherit

Initial: seeindividual properties

Appliesto: all elements

Inherited: yes

Percentages: allowed on ‘font-size' and 'line-height'
Media: visua

Animatable: yes (non-additive, 'set' and 'animate’ elements only)

Shorthand property for setting font-styl€, ‘font-variant', ‘font-weight', ‘font-size', 'line-height' and ‘font-family'. The
'line-height' property has no visual effect in SVG. Conforming SV G Viewers are not required to support the various system
font options (caption, icon, menu, message-box, small-caption and status-bar) and can use a system font or one of the generic
fonts instead.

Refer to the "Cascading Style Sheets (CSS) level 2" specification [CSS2] for more information about this property.

10.9 Spacing properties

'letter-spacing'
Value: normal | <length> | inherit
Initial: normal
Appliesto: all elements
Inherited: yes
Percentages. N/A
Media: visual

Animatable: yes

This property specifies spacing behavior between text characters. For SVG, if a<length> is provided without a unit identifier
(e.g., an unqualified number such as 128), the SV G user agent processes the <length> as a width value in the current user
coordinate system.

If a<length> is provided with one of the CSS unit identifiers (e.g., .25em or 1%), then the SV G user agent convertsthe
<length> into a corresponding value in the current user coordinate system by applying the processing rules for CSS units and
percentages. Refer to the "Cascading Style Sheets (CSS) level 2" specification [CSS2] for more information about this
property.

'wor d-spacing'

Value: normal | <length> | inherit
Initial: normal

Appliesto: all elements

Inherited: yes

Percentages: N/A

Media: visua

Animatable: yes

This property specifies spacing behavior between words. For SVG, if a<length> is provided without a unit identifier (e.g., an
unqualified number such as 128), the SV G user agent processes the <length> as awidth value in the current user coordinate

system.

If a<length> is provided with one of the CSS unit identifiers (e.g., .25em or 1%), then the SV G user agent convertsthe
<length> into a corresponding vaue in the current user coordinate system by applying the processing rules for CSS units and
percentages. Refer to the "Cascading Style Sheets (CSS) level 2" specification [CSS2] for more information about this
property.

10.10 Text decoration

'text-decor ation'

Value: none | [underline || overline || line-through || blink] | inherit
Initial: none

Appliesto: all elements

Inherited: Nno (see prose)

Percentages. N/A

Media: visual

Animatable: yes

This property describes decorations that are added to the text of an element. Conforming SVG Viewers are not required to

support the blink value. Refer to the "Cascading Style Sheets (CSS) level 2" specification [CSS2] for more information about
this property.

10.11 Text on a path

10.11.1 Introduction to text on a path

In addition to text drawn in astraight line, SV G a so includes the ability to place text along the shape of a'path’ element. To
specify that a block of text isto be rendered along the shape of a'path’, include the given text within a 'textPath’ element
which includes an xlink:href attribute with a URI reference to a 'path’ element.

10.11.2 The 'textPath' element

<IENTITY %t ext Pat hExt "" >
<! ELEMENT text Path (#PCDATA| tspan|tref]|altglyph|animate|set|animteColor

% ext Pat hExt;)* >
<! ATTLI ST textPath

id I D #l MPLI ED

xm : 1 ang NMIOKEN #1 MPLI ED

xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED

styl e CDATA #l MPLI ED

%gr aphi csEl enent Event s;
systemrequi red NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED
start Of f set CDATA "0"

9l i nkRef Attrs;

xlink: href CDATA #REQUI RED >

Attribute definitions:
startOffset = "<length> | <percentage>"

An offset from the start of the 'path’ for theinitial current text position, calculated using the user agent's distance along
the path algorithm. If a <length> without a percentage is given, then the startOffset represents a distance along the path
measured in the current user coordinate system.

If a<percentage> is given, then the startOffset represents a percentage distance along the entire path. Thus,
startOffset="0%" indicates the start point of the 'path’ and startOffset="100%" indicates the end point of the 'path'.
Animatable: yes.

xlink:href = "<uri>"

A URI reference to the 'path’ element onto which the glyphs will be rendered. If <uri>isan invalid reference (e.g., no
such element exists, or the referenced element is not a 'path’), then the 'textPath’ element isin error and its entire
contents shall not be rendered by the user agent.
Animatable: yes.

Attributes defined el sewhere:

id, xml:lang, xml:space, class, style, %graphicsElementEvents;, system-required, system-language, %xlinkAttrs;.

Example toap01 provides a ssmple example of text on a path:

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVGE SVG 19991203. dt d" >

<svg w dt h="10cn' hei ght="3cn!" vi ewBox="0 0 1000 300">

<def s>
<pat h id="MPath"
d="M 100 200
C 200 100 300 0 400 100
C 500 200 600 300 700 200
C 800 100 900 100 900 100" />
</ def s>

<desc>Exanpl e toap0l - sinple text on a path</desc>

<use xlink:href="#MWPath" style="stroke:red" />
<text style="font-fanily:Verdana; font-size:42. 3333; fill:blue">
<t ext Pat h xl i nk: href ="#MWPat h" >
We go up, then we go down, then up again
</t ext Pat h>

</t ext>
</ svg>
‘Ltl.fjr-
\;&* i A
\y}y/ E .‘;sP :a'g‘ll-
t b
‘I'J':’Qr_q_";\g?’
Example toap01

View this example as SV G (SV G-enabled browsers only)

Example toap02 shows how 'tspan’ elements can be included within 'textPath' elements to adjust styling attributes and adjust

the current text position before rendering a particular glyph. The first occurrence of the word "up” isfilled with the color red.
Attribute dy is used to lift the word "up" from the baseline.

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVG SVG 19991203. dt d" >

<svg wi dt h="10cnt hei ght="3cn{ vi ewBox="0 0 1000 300">

<def s>
<pat h id="MPath"
d="M 100 200
C 200 100 300 0 400 100
C 500 200 600 300 700 200
C 800 100 900 100 900 100" />
</ def s>

<desc>Exanpl e toap02 - tspan within textPath</desc>

<use xlink:href="#MWPath" style="fill:none; stroke:red" />
<text style="font-famly:Verdana; font-size:42. 3333; fill:blue">
<t ext Pat h xlI i nk: href ="#MWPat h" >
W go
<tspan dy="30" style="fill:red">
up
</ tspan>

<tspan dy="-30">

</tspan>

file:///d|/jon/svgspec/images/text/toap01.svg

then we go down, then up again
</t ext Pat h>
</text>
</ svg>

0 then

= . agr‘ll'l:l -
\g\i}y g
Uy _L‘iﬁ?

Example toap02

View this example as SV G (SVG-enabled browsers only)

Example toap03 demonstrates the use of the startOffset attribute on the 'textPath' element to specify the start position of the
text string as a particular position along the path. Notice that glyphs that fall off the end of the path are not rendered (see text

on apath layout rules).

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVG SVG 19991203. dt d" >

<svg w dt h="10cn' hei ght="3cni" vi ewBox="0 0 1000 300">

<def s>
<pat h id="MPath"
d="M 100 200
C 200 100 300 0 400 100
C 500 200 600 300 700 200
C 800 100 900 100 900 100" />
</ def s>

<desc>Exanpl e toap03 - text on a path with startOffset attribute</desc>

<use xlink:href="#MWPath" style="fill:none; stroke:red" />
<text style="font-famly:Verdana; font-size:42. 3333; fill:blue">
<text Path xlink: href="#WPath" startCf fset="80% >
We go up, then we go down, then up again
</t ext Pat h>
</text>
</ svg>

,-""'.--- T
-~ k-
/ \ %ﬁh"'#}
s
.

Example toap03
View this example as SV G (SV G-enabled browsers only)

10.11.3 Text on a path layout rules

Example toap04 will be used to illustrate the particular layout rules for text on a path that supplement the basic text layout
rules for straight line horizontal or vertical text.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
“http://ww. w3. or g/ Graphi cs/ SVE SVG 19991203. dtd" >
<svg wi dt h="10cn hei ght="3cn vi ewBox="0 0 1000 300">
<def s>
<pat h id="MPath"
d="M 100 100
C 150 100 250 200 300 200
C 350 200 450 100 500 100
C 550 100 650 200 700 200

file:///d|/jon/svgspec/images/text/toap02.svg
file:///d|/jon/svgspec/images/text/toap03.svg

C 750 200 850 100 900 100" />
</ def s>
<desc>Exanpl e toap04 = text on a path | ayout rul es</desc>

<use xlink:href="#MWPath" style="fill:none; stroke:red" />
<text style="font-family:Verdana; font-size:63.5; fill:blue">
<t ext Pat h xlI i nk: href="#MWPat h" >
Choose shane or get war
</t ext Pat h>
</ text>
</ svg>

Ch CHoM
QQ“S?E'_. E;{\’rﬁg'(\- HQEET__ _\,T-@&

Example toap04

View this example as SV G (SVG-enabled browsers only)

The following picture does an initial zoom in on the first glyph in the 'text' element.

o

The small dot above shows the point at which the glyph is attached to the path. The box around the glyph shows the glyph is
rotated such that its horizontal axisis parallel to the tangent of the curve at the point at which the glyph is attached to the path.
The box aso shows the glyph's charwidth (i.e., the amount which the current text position advances horizontally when the
glyphisdrawn using horizontal text layout).

The next picture zoomsin further to demonstrate the detailed layout rules.

e

For horizontal text layout along a path, the layout rules are as follows:

« Determine the startpoint-on-the-path for the first glyph using attribute startOffset and, if present, the dx attribute on a
‘tspan’ element. (In the picture above, the startpoint-on-the-path is the leftmost dot on the path.)

« Determine the glyph's charwidth (i.e., the amount which the current text position advances horizontally when the glyph
is drawn using horizontal text layout). (In the picture above, the charwidth is the distance between the two dots at the
side of the box.)

« Determine the point on the curve which is charwidth distance aong the path from the startpoint-on-the-path for this
glyph, calculated using the user agent's distance along the path algorithm. This point is the endpoint-on-the-path for

the glyph. (In the picture above, the endpoint-on-the-path for the glyph is the rightmaost dot on the path.)

file:///d|/jon/svgspec/images/text/toap04.svg

« Determine the midpoint-on-the-path, which is the point on the path which is "halfway" (user agents can choose either a
distance calculation or a parametric calculation) between the startpoint-on-the-path and the endpoint-on-the-path. (In
the picture above, the midpoint-on-the-path is shown as awhite dot.)

« Determine the glyph-midline, which isthe vertical linein the glyph's coordinate system that goes through the glyph's
x-axis midpoint. (In the picture above, the glyph-midline is shown as a dashed line.)

« Position the glyph such that the glyph-midline passes through the midpoint-on-the-path and is perpendicular to the line
through the startpoint-on-the-path and the endpoint-on-the-path.

« Align the glyph vertically relative to the midpoint-on-the-path based on property 'glyph-anchor' and any specified
values for attribute dy on a'tspan’ element. In the example above, the 'glyph-anchor' property is unspecified, so the
initial value of 'glyph-anchor:baseline' will be used. There are no 'tspan’ elements; thus, the baseline of the glyphis
aligned to the midpoint-on-the-path.

« For each subsequent glyph, set a new startpoint-on-the-path as the previous endpoint-on-the-path, but with appropriate
adjustments taking into account kerning tables in the font and current values of various attributes and properties,
including spacing properties and 'tspan’ elements with values provided for attributes dx and dy. All adjustments are
calculated as distance adjustments along the path, calculated using the user agent's distance along the path algorithm.

« Glyphs whose midpoint-on-the-path are off the end of the path are not rendered.
« Continue rendering glyphs until there are no more glyphs.

In the calculations above, if either the startpoint-on-the-path or the endpoint-on-the-path is of f the end of the path, then extend
the path beyond its end points with a straight line that is parallel to the tangent at the path at its end point so that the
midpoint-on-the-path can still be calculated.

For 'tspan’ elements that are children of 'textPath’ elements, x and y attributes on 'tspan’ elements have no effect on text layout.

Vertical, right-to-left and bi-directional text layout rules also apply to text on a path. Conceptually, the target path is stretched
out into either ahorizontal or vertical straight line segment. For horizontal text layout flows, the path is stretched out into a
hypothetical horizontal line segment such that the start of the path is mapped to the left of the line segment. For vertical text
layout flows, the path is stretched out into a hypothetical vertical line segment such that the start of the path is mapped to the
top of the line segment. The standard text layout rules are applied to the hypothetical straight line segment and the result is

mapped back onto the target path.

10.12 Alternate glyphs

There are situations such as ligatures, special-purpose fonts (e.g., afont for music symbols) or alternate glyphs for Asian text
strings whereit is required that a different glyph is used than the glyph which normally corresponds to the given character
data. Also, The W3C Character Model [CHARMOD] encourages creators of XML to normalize character datato facilitate

meaningful exchange of character data and to promote correct comparisons between character strings. This normalization
potentially loses some information about which specific glyph is required to achieve a particular visual result.

The 'altGlyph' element provides control over the glyphs used to render particular character data.

<IENTITY %altd yphExt "" >
<! ELEMENT al td yph (#PCDATA %altd yphExt;)* >

<! ATTLI ST altd yph
id 1D # MPLI ED
%l inkRef Attrs;
xlink: href CDATA #REQUI RED >

Attribute definitions:
xlink:href = "<uri>"

A URI reference either to a'glyph' element in an SV G document fragment or to a 'altGlyphDef' element. If the
reference isto a'glyph' element, then that glyph is rendered instead of the character(s) that are inside of the 'atGlyph'
element. If the reference isto a'dtGlyphDef' element, then if an appropriate alternate glyph is located from processing
the 'altGlyphDef' element, then that alternate glyph is rendered the that glyph is rendered instead of the character(s)
that areinside of the 'altGlyph' element. If the reference does not result in successful identification of an alternate
glyph to use, then the character(s) that are inside of the 'altGlyph' element are rendered.

Animatable: no.

Attributes defined elsewhere:
id, %oxlinkAttrs;.

The 'altGlyphDef' element, which can only appear as a child of a'defs element, defines alist of possible glyph substitutions
which can be referenced from an 'altGlyph' element. Each possible glyph substitution is defined by a'glyphSub' child element.
Thefirst 'glyphSub’ element which locates a substitute glyph will be applied.

<IENTITY % al td yphDef Ext "" >
<! ELEMENT al t d yphDef (glyphSub %ltd yphDef Ext;)* >

<! ATTLI ST al t gl yphDef
id I D # MPLIED >

Attributes defined elsewhere:
id, %oxlinkAttrs,.

The 'glyphSub' element defines a possible glyph substitution, consisting of afont name, a glyph identifier and afont format.

<! ELEMENT gl yphSub EMPTY >
<! ATTLI ST gl yphSub
id I D # MPLI ED
font CDATA #REQUI RED
gl yphRef CDATA #REQUI RED
format CDATA #REQUI RED >

Attribute definitions:

font-family = "<string>"
Theidentifier for a single font which might contain the substitute glyph. The <string> can contain any single font
family name value asis alowed in [CSS2].
Animatable: no.

glyphRef = "<string>"

The glyphidentifier, the format of which is dependent on the format of the given font.
Animatable: no.

format = "<string>"

The format of the given font. If the font isin one of the formats listed in the [CSS2] specification (e.g., TrueDoc™
Portable Font Resource or Embedded OpenType), then the <string> must contain the corresponding font format string
defined in the [CSS2] specification (e.g., truedoc-pfr or embedded-opentype).

Animatable: no.

Attributes defined el sewhere:
id.

10.13 White space handling

SV G supports the standard XML attribute xml: space to specify the handling of white space characters within a given "text'
element's character data. xml:space is an inheritable attribute which can have one of two values:

« default (theinitial/default value for xml:space) - When xmi : space="def aul t ", the SVG user agent will do the
following. First, it will remove al carriage return and linefeed characters. Then it will convert all tab charactersinto
space characters. Then, it will strip off all leading and trailing space characters. Then, al contiguous space characters
will be consolidated.

o preserve- Whenxmnl : space="preserve", the SVG user agent will do the following. It will convert all carriage
returns, linefeeds and tab characters into space characters. Then, it will draw all space characters, including leading,
trailing and multiple contiguous space characters. Thus, when drawn with xm : space="pr eser ve", the string
"a b" (three spaces between "a" and "b") will produce alarger separation between "a" and "b" than"a b" (one
space between "a" and "b").

The following examplesiillustrate that line indentation can be important when using xm : space="defaul t". The
fragments below show two pairs of equivalent ‘text' elements. Each pair consists of two equivalent ‘text' elements, with the

first 'text’ element using xml:space="default' and the second using xml:space="preserve'. For these examples, there is no extra
white space at the end of any of thelines (i.e., the line break occursimmediately after the last visible character).

[01] <text xm :space="default'>

[02] W5 exanpl e

[03] indented |ines

[04] </text>

[05] <text xm:space='preserve' >W8 exanpl e i ndented |ines</text>
[06]

[07] <text xm :space="default'>

[08] WB exanpl e

[09] non-indented |ines

[10] </text>

[11] <text xnl:space='preserve' >W5 exanpl enon-indented |ines</text>

Thefirst pair of 'text’ elements above show the effect of indented character data. The attribute xml:space="default' in the first
'text' element instructs the user agent to:

« convert al tabs (if any) to space characters,
« stripout al line breaks (i.e., strip out the line breaks at the end of lines[01], [02] and [03]),
« strip out al leading space characters (i.e., strip out space characters before "WS exampl€" on line [02]),
« strip out al trailing space characters (i.e., strip out space characters before "</text>" on line [04]),
« consolidate all intermediate space characters (i.e., the space characters before "indented lines' on line[03]) into a
single space character.
The second pair of 'text' elements above show the effect of indented character data. The attribute xml:space="default' in the
third 'text' element instructs the user agent to:
« convert al tabs (if any) to space characters,
« stripout al line breaks (i.e., strip out the line breaks at the end of lines[07], [08] and [09]),
« strip out al leading space characters (there are no |eading space charactersin this example),
« strip out al trailing space characters (i.e., strip out space characters before "</text>" on line [10]),
« consolidate all intermediate space charactersinto a single space character (in this example, there are not intermediate
space characters).
The xml:space attributeis:

Animatable: no.

10.14 Text selection and clipboard operations

Conforming SV G viewers on systems which have the capacity for text selection (e.g., systems which are equipped with a
pointer device such as amouse) and which have system clipboards for copy/paste operations are required to support:

« user selection of text stringsin SV G content
« the ability to copy selected text strings to the system clipboard

A text selection operation starts when al of the following occur:

« the user positions the pointing device over a glyph that has been rendered as part of a'text' element, initiates a select
operation (e.g., pressing the standard system mouse button for select operations) and then moves the pointing device
while continuing the select operation (e.g., continuing to press the standard system mouse button for select operations)

« no other visible graphics element has been painted above the glyph at the point at which the pointing device was
clicked

« holinks or events have been assigned to the 'text' , 'tspan’ or 'textPath' , element(s) (or their ancestors) associated with
the given glyph.

As the text selection operation proceeds (e.g., the user continues to press the given mouse button), all associated events with
other graphics elements are ignored (i.e., the text selection operation is modal) and the SV G user agent shall dynamically
indicate which characters are selected by an appropriate highlighting technique, such as redrawing the selected glyphs with
inverse colors. Asthe pointer is moved during the text selection process, the end glyph for the text selection operation is the
glyph within the same 'text' element whose character cell is closest to the pointer. All characters within the 'text’ element

whose position within the 'text’ element is between the start of selection and end of selection shall be highlighted, regardless of
position on the canvas and regardless of any graphics elements that might be above the end of selection point.

Once the text selection operation ends (e.g., the user rel eases the given mouse button), the selected text will stay highlighted
until an event occurs which cancels text selection, such as a pointer device activation event (e.g., pressing a mouse button).

Detailed rules for determining which characters to highlight during a text selection operation are provided in Text selection
implementation notes.

For systems which have system clipboards, the SVG user agent is required to provide a user interface for initiating a copy of
the currently selected text to the system clipboard. It is sufficient for the SV G user agent to post the selected text string in the
system's appropriate clipboard format for plain text, but preferable if the SV G user agent also posts arich text aternative
which captures the various font properties associated with the given text string.

For bi-directional text, the user agent must support text selection in lexical order, which will result in discontinuous
highlighting of glyphs due to the bi-directional reordering of characters. User agents can provide an alternative ability to select
bi-directional text in visual rendering order (i.e., after bi-directional text layout algorithms have been applied), with the result

that selected character data might be discontinous lexically. In this case, if the user requests that bi-directional text be copied
to the clipboard, then the user agent is required to make appropriate adjustments to copy only the visually selected characters
to the clipboard.

When feasible, it is recommended that generators of SV G attempt to order their text stringsto facilitate properly ordered text
selection within SV G viewing applications such as Web browsers.

10.15 DOM interfaces

10.15.1 Interface SVGTextContentElement

The SV GTextContentElement interface is inherited by various text-related interfaces, such as SV GTextElement,
SVGT SpanElement, SV GTRefElement and SV GTextpathElement.

interface SVGText Content El ement : SVGStyl edEl enent {

| ong get Nunmber O Char s() ; // Nunmber of characters in 'text' elenent

f1 oat getlLength(); // Fromstart of first char to end of last char

f I oat get SubStri ngLengt h(in unsigned | ong charnum in unsigned | ong nchars);
SVGPoi nt get Start Positi onOf Char (i n unsigned |ong charnum; // 0-based indexi ng???
SVGPoi nt get EndPosi ti onOf Char (i n unsigned | ong charnum; // 0-based indexing???
SVGRect get Ext ent O Char (i n unsigned |l ong charnun); // 0-based indexi ng???

f1 oat get Rot ati onOf Char (i n unsigned | ong charnum); // 0-based indexi ng???

| ong get Char NumAt Posi tion(in SVGoint); // Returns -1 is no char found

voi d sel ect SubString(in unsigned I ong charnum in unsigned |ong nchars);

10.15.2 Interface SVGTextElement

The SV GTextElement interface corresponds to the 'text' element.

interface SVGText El ement : SVGText Cont ent El enent {
/1 SVGTr ansf or medEl enent attributes
readonly attribute SVCEl enent viewportEl ement; // element that established current viewport
attribute SVGIransforniist transform

SVGRect get BBox(); // tight bounding box on geonetry of all contained
/1 graphics el ements, in userspace.
/1 Doesn't take into account stroke-width or filter effects, for exanple

SVGvat ri x get Nearest CTM'); // returns CTM (userspace to [nearest 'svg'] viewport transform matrix)
SVGvat ri x get Near est CTM nver se()

rai ses(SVGException); // returns inverse matrix (SVG_MATRI X_NOT_I| NVERTABLE)
SVGMvat ri x get Furthest CTM); // returns CTM (userspace to [outernpst 'svg'] viewport transformmatrix)
SVGMvat ri x get Furt hest CTM nver se()

rai ses(SVGException); // returns inverse matrix (SVG_MATRI X _NOT_| NVERTABLE)
SVGvat ri x get ScreenCTM); // returns CTM (userspace to screen units transformnatri x)
SVGMvat ri x get ScreenCTM nver se()

rai ses(SVGException); // returns inverse matrix (SVG_MATRI X_NOT_| NVERTABLE)

/| Easy access to user units

attribute SVG.ength x;
attribute SVG.ength vy;

10.15.3 Interface SVGTextPositioningElement

The SV GTextPositioningElement interface is inherited by text-related interfaces. SV GT SpanElement, SV GTRefElement and
SV GTextpathElement.

interface SVGText Positioni ngEl ement : SVGText Cont ent El enent {
attribute SVG.engthLi st x;
attri bute SVGA.engthLi st vy;
attribute SVG.engthLi st dx;
attribute SVG.engthLi st dy;
attribute SVG.engthList rotate;

10.15.4 Interface SVGTSpanElement
The SV GT SpanElement interface corresponds to the 'tspan’ element.

interface SVGTSpanEl enent : SVGText Positioni ngEl ement {
b

10.15.5 Interface SVGTRefElement
The SV GTRefElement interface corresponds to the 'tref' element.

interface SVGTRef El ement : SVGText Positioni ngEl ement {
attribute DOVString role;
attribute DOVBtring title;
attribute DOVSBtring show
attribute DOVString actuate;
attribute DOVString href;

10.15.6 Interface SVGTextpathElement
The SV GTextpathElement interface corresponds to the 'textPath' element.

interface SVGTextpat hEl enent : SVGText Positioni ngEl ement {
attribute DOVString role;
attribute DOVString title;
attribute DOVString show,
attribute DOVString actuate;
attribute DOVString href;
attribute SVG.ength start O fset;

10.15.7 Interface SVGAItGlyphElement
The SV GAItGlyphElement interface corresponds to the 'altGlyph' element.

interface SVGAl t A yphEl enent : SVGText Cont ent El ement {
attribute DOVString role;
attribute DOVString title;
attribute DOVString show,
attribute DOVString actuate;
attribute DOVString href;

10.15.8 Interface SVGAItGlyphDefElement
The SV GAItGlyphDefElement interface corresponds to the 'altGlyphDef' element.

interface SVGAl t d yphDef El enment : SVGEl enent {
b

10.15.9 Interface SVGSVGGIlyphSubElement
The SV GSV GGlyphSubElement interface corresponds to the 'SV GGlyphSub' element.

interface SVGd yphSub : SVGEl enent {
attribute DOVString fontFam ly;
attribute DOVString gl yphRef;
attribute DOVString format;

b

previous next contents properties index

previous next contents properties index

11 Painting: Filling, Stroking and Marker
Symbols

Contents

e 11.1 Introduction

« 11.2 Specifying paint

» 11.3Fill Properties

» 11.4 Stroke Properties

o 11.5 Markers
o 11.5.1 Introduction
o 11.5.2 The 'marker' element
o 11.5.3 Marker properties

o 11.5.4 Details on how markers are rendered

o 11.6 Rendering properties

« 11.7 Inheritance of painting properties
» 11.8 DOM interfaces
o 11.8.1 Interface SV GICCColor
o 11.8.2 Interface SV GColor
o 11.8.3 Interface SV GPaint
o 11.8.4 Interface SVGMarkerElement

11.1 Introduction

'path’ elements, 'text' elements and basic shapes can be filled (which means painting the interior of the object) and
stroked (which means painting along the outline of the object). Filling and stroking both can be thought of in more
general terms as painting operations.

Certain elements (i.e., 'path’, 'polyling’, 'polygon’ and 'line' elements) can also have marker symbols drawn at their
vertices.

With SVG, you can paint (i.e., fill or stroke) with:
« asinglecolor
» agradient (linear or radial)
« apattern (vector or image, possibly tiled)

« custom paints available via extensibility

SV G uses the general notion of a paint server. Gradients and patterns are just specific types of paint servers. For
example, first you can define alinear gradient by including a'linearGradient' element within a'defs, assign an ID
to that 'linearGradient' element, and then reference that 1D in a'fill' or 'stroke' property:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg wi dt h="4in" height="3in">
<desc>Li near gradi ent exanple
</ desc>
<g>
<def s>
<linearGadient id="MG adient">
<stop offset="0% style="col or: #F60"/ >
<stop of fset="70% style="col or: #FF6"/ >
</linear G adi ent >
</ def s>
<rect style="fill: url (#WG adient)" w dth="20" height="15.8"/>
</ g>
</ svg>

Download this example

11.2 Specifying paint

Properties fill' and 'stroke' take on avalue of type <paint>, which is specified as follows:

<pant>: none|
currentColor |
<color> [icc-color(<name>,<icccolorvalue>[,<icccolorvalue>]*)] |
<uri>
[none |
currentColor |
<color> [icc-color(<name>,<icccolorvalue>[,<icccolorvalue>]*)]] |
inherit
none
Indicates that the object has nofill (i.e., the interior is transparent).
currentColor

Indicates that the object is. filled with the color specified by the 'color' property. This mechanism is
provided to facilitate sharing of color attributes between parent grammars such as other (non-SVG) XML.
This mechanism alows you to define a style in your HTML which sets the 'color' property and then pass
that style to the SV G user agent so that your SV G text will draw in the same color.

<color>
[icc-color (<name>,<icccolor value>[,<icccolor value>]*)]

<color> isthe explicit color (in the SRGB [SRGB] color space) to be used to fill the current object. SVG
supports al of CSS2's <color> specifications. If an optional 1CC color specification is provided, then the
user agent searches the color profile description database for an @color-profile entry whose name
descriptor matches <name> and uses the last matching entry that isfound. (If no match isfound, then the
ICC color specification isignored.) Thelist of <icccolorvalue>'sis aset of | CC-profile-specific color
values, expressed as <number>s. On platforms which support |CC-based color management, the icc-color
gets precedence over the <color> (which isin the SRGB color space). Percentages are not allowed on
<icccolorvalue>'s. For more on | CC-based colors, refer to Color.

<uri>

file:///d|/jon/svgspec/samples/lin-gradient.xml

[none |
currentColor |
<color> [icc-color (<name>,<icccol or value>[,<icccolorvalue>]*)]]

The <uri> is how you identify afancy paint style such as a gradient, a pattern or a custom paint from
extensibility. The <uri> provides. the ID of the paint server (e.g., agradient or a pattern) to be used to paint
the current object. If the URI referenceis not valid (e.g., it points to an object that doesn't exist or the object
isnot avalid paint server), then the paint method following the <uri> (i.e., none | currentColor |

<color>

[icc-color (<name>,<icccol or value>[,<icccolor value>]*)]|

inherit) isused if provided; otherwise, the document isin error (see Error processing).

11.3 Fill Properties

fill'
Value: <paint> (See Specifying paint)
Initial: currentColor

Appliesto: all elements

Inherited: see | nheritance of Painting Properties bel ow
Percentages: N/A

Media: visuad

Animatable: yes

Note that graphical objects that are not closed (e.g., a ‘path’ without a closepath at the end or a'polyling) till can

befilled. Thefill operation automatically closes al open subpaths by connecting the last point of the subpath with
the first point of the subpath before painting the fill.

fill-rule
Value: evenodd | nonzero | inherit
Initial: evenodd
Appliesto: all elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes
evenodd
nonzero
fill-opacity’
Value: <opacity-vaue> | inherit
Initial: 100%
Appliesto: al elements
Inherited: yes
Percentages: Allowed
Media: visual

Animatable: yes

fill-opacity' specifies the opacity of the painting operation used to paint the interior the current object. (See
Painting shapes and text.)

<opacity-value>
The opacity of the painting operation used to fill the current object. If a<number> is provided, any values

outside the range 0.0 (fully transparent) to 1.0 (fully opague) will be clamped to this range. If a percentage
is provided, any value outside the range of 0% to 100% will be clamped to this range. (See Clamping

values which are restricted to a particular range

Related properties: 'stroke-opacity' and 'opacity’.

11.4 Stroke Properties

The following are the properties which affect how an element is stroked.

In all cases, all stroking properties which are affected by directionality, such as those having to do with dash
patterns, must be rendered such that the stroke operation starts at the same point at which the graphics element
starts. In particular, for 'path’ elements, the start of the path isthe first point of the initial "moveto" command.

For stroking properties such as dash patterns whose computations are dependent on progress along the outline of
the graphics element, distance calculations are required to utilize the SV G user agent's standard Distance along a

path algorithms.

When stroking is performed using a complex paint server, such as a gradient or a pattern, the stroke operation must
be identical to the result that would have occurred if the geometric shape defined by the geometry of the current
graphics element and its associated stroking properties were converted to an equivalent 'path’ element and then

filled using the given paint server.

'stroke’
Value: <paint> (See Specifying paint)
Initial: none

Appliesto: @l elements

Inherited: see | nheritance of Painting Properties below
Percentages: N/A

Media: visuad

Animatable: yes

‘stroke-width'
Value: <width> | inherit
Initial: 1
Appliesto: al elements
Inherited: yes
Percentages. Yes
Media: visual

Animatable: yes

<width>

The width of the stroke on the current object, expressed as a <length>. If a percentageis used, the <width>

is expressed as a percentage of the current viewport
(See Processing rules for CSS units and percentages.)

'stroke-linecap’
Value: butt | round | square | inherit
Initial: butt
Appliesto: all elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: yes

file:///d|/jon/svgspec/DistanceAlongAPath
file:///d|/jon/svgspec/DistanceAlongAPath

'stroke-linecap’ specifies the shape to be used at the end of open subpaths when they are stroked.
butt

See drawing below.
round

See drawing below.
square

See drawing below.
'stroke-lingoin’

Value: miter | round | bevel | inherit

Initial: miter

Appliesto: al elements

Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

'stroke-lingjoin’ specifies the shape to be used at the corners of paths (or other vector shapes) that are stroked. when
they are stroked.

miter

See drawing below.
round

See drawing below.
bevel

See drawing below.

'stroke-miterlimit'

Value: <miterlimit> | inherit
Initial: 8

Appliesto: all elements
Inherited: yes

Percentages: N/A

Media: visual

Animatable: yes

When two line segments meet at a sharp angle and miter joins have been specified for 'stroke-lingjoin', it is

possible for the miter to extend far beyond the thickness of the line stroking the path. The 'stroke-miterlimit’
imposes a limit on the ratio of the miter length to the 'stroke-linewidth'.

<miterlimit>

The limit on the ratio of the miter length to the 'stroke-linewidth'. The value of <miterlimit> must be a
number greater than or equal to 1.

‘stroke-dasharray’'
Value: none | <dasharray> | inherit
Initial: none

Appliesto: al elements

Inherited: yes
Percentages: Yes. See below.
Media: visual
Animatable: yes

'stroke-dasharray' controls the pattern of dashes and gaps used to stroke paths. <dasharray> contains alist of
space- or comma-separated numbers that specify the lengths of alternating dashes and gaps in user units. If an odd

number of valuesis provided, then the list of valuesis repeated to yield an even number of values. Thus,
stroke-dasharray: 5 3 2 is equivalent to stroke-dasharray: 5325 3 2.

none
Indicates that no dashing is used. If stroked, the line is drawn solid.
<dasharray>

A list of space- or comma-separated <length>'s which can bein user units or in any of the CSS units,
including percentages. A percentage represents a distance as a percentage of the current viewport. (See
Processing rules for CSS units and percentages.)

‘stroke-dashoffset'
Value: <dashoffset> | inherit
Initial: 0
Appliesto: @l elements
Inherited: yes
Percentages: Yes. See below.
Media: visual

Animatable: yes

‘stroke-dashoffset' specifies the distance into the dash pattern to start the dash.
<dashoffset>

A <length>. If a percentage is used, the <width> is expressed as a percentage of the current viewport
(See Processing rules for CSS units and percentages.)

'stroke-opacity’
Value: <opacity-vaue> | inherit
Initial: 100%
Appliesto: all elements
Inherited: yes
Percentages: Allowed
Media: visual

Animatable: yes

'stroke-opacity' specifies the opacity of the painting operation used to stroke the current object. (See Painting
shapes and text.)
<opacity-value>

The opacity of the painting operation used to stroke the current object. If a<number> is provided, any

values outside the range 0.0 (fully transparent) to 1.0 (fully opaque) will be clamped to thisrange. If a
percentage is provided, any value outside the range of 0% to 100% will be clamped to this range. (See
Clamping values which are restricted to a particular range

Related properties: 'fill-opacity' and 'opacity'.

11.5 Markers

11.5.1 Introduction

To use amarker symbol for arrowheads or polymarkers, you need to define a'marker' element which defines the
marker symbol and then refer to that 'marker’ element using the various marker properties (i.e., 'marker-start’,
'marker-end’, 'marker-mid' or 'marker") on the given 'path’ element or vector graphic shape. Here is an example
which draws a triangular marker symbol that is drawn as an arrowhead at the end of a path:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. org/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg wi dth="4in" hei ght="4in"
vi ewBox="0 0 4000 4000" >
<def s>
<mar ker id="Triangle"
vi ewBox="0 0 10 10" ref X="0" refY="5"
mar ker W dt h="1. 25" mar ker Hei ght =" 1. 75"
ori ent="auto">
<path d="M 0 O L 10 5L 0 10 z" />

</ mar ker >
</ def s>
<desc>Pl acing an arrowhead at the end of a path.
</ desc>
<path d="M 1000 1000 L 2000 1000 L 3000 2000"
style="fill:none; stroke:black; stroke-w dth:100;

mar ker-end: url (#Triangle)" />
</ svg>

Download this example

11.5.2 The 'marker' element

The 'marker' element defines the graphics that is to be used for drawing arrowheads or polymarkers on a given
'path’ element or vector graphic shape.

<IENTITY % mar ker Ext "" >
<! ELEMENT marker (%dlescTitl eDefs;,

(path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| switch|a
%ceExt ; %rar ker Ext;)*) >

<! ATTLI ST marker
id 1D #l MPLI ED
xm : | ang NMIOKEN #| MPLI ED
xm : space (default|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #l MPLI ED
ref X CDATA #| MPLI ED
refY CDATA #| MPLI ED
vi ewBox CDATA #l| MPLI ED
preserveAspect Rati o CDATA ' xM dYM d neet'
markerUnits (stroke-width | userSpace | userSpaceOnUse) "stroke-w dth"
mar ker Wdth CDATA "3"
mar ker Hei ght CDATA " 3"
orient CDATA "0" >

Attribute definitions:
markerUnits = "strokeWidth | userSpace | userSpaceOnUse"
mar ker Units indicates how to interpret the values of marker Width and markerHeight (described as

file:///d|/jon/svgspec/samples/marker.xml

follows).

If markerUnits=" stroke-width" , then marker Width and marker Height represent scale factorsrelative
to the stroke width in place for graphic object referencing the marker.

If marker Units=" user Space" , then marker Width and marker Height represent values in the user
coordinate system in place for the graphic object referencing the marker.

If marker Units=" user SpaceOnUse" , then markerWidth and marker Height represent valuesin the
current user coordinate system in place at the time when the 'marker' element is referenced (i.e., the user
coordinate system for the element referencing the 'marker’ element via the 'marker’, ‘marker-start',
'marker-mid' or 'marker-end' property). represent values in the user coordinate system in place for the
graphic object referencing the marker.

Animatable: yes.

markerWidth = "<length>"

Represents the width of the temporary viewport that isto be created when drawing the marker. Default
valueis"3".
Animatable: yes.

markerHeight = "<length>"

Represents the height of the temporary viewport that is to be created when drawing the marker. Default
valueis"3".
Animatable: yes.

orient = "auto | <angle>"

Indicates how the marker isrotated. A value of auto indicates that the marker is oriented such that its
positive X-axisis pointing in a direction that is the average of the ending direction of path segment going
into the vertex and the starting direction of the path segment going out of the vertex. (Refer to 'path’
element implementation notes for a more thorough discussion directionality of path segments.) A value of
<angle> represents a particular orient in the user space of the graphic object referencing the marker. For
example, if avalue of "0" is given, then the marker will be drawn such that its X-axis will align with the
X-axis of the user space of the graphic object referencing the marker. The default value is an angle of zero.
Animatable: yes (non-additive, 'set’ and 'animate’ elements only).

Attributes defined elsewhere:
id, xml:lang, xml:space, class, style, refX, refY, viewBox, preserveAspectRatio.

Markers are drawn such that their reference point (i.e., attributes ref-x and ref-y) is positioned at the given vertex.

11.5.3 Marker properties

'marker-start' defines the arrowhead or polymarker that shall be drawn at the first vertex of the given 'path'’
element or vector graphic shape. 'marker-end' defines the arrowhead or polymarker that shall be drawn at the

final vertex. 'marker-mid' defines the arrowhead or polymarker that shall be drawn at every other vertex (i.e.,
every vertex except the first and last).

'marker-start’', 'marker-end', marker-mid'

Value: none |
inherit |
<uri>

Initial: none

Appliesto: all elements

Inherited: see | nheritance of Painting Properties bel ow
Percentages: N/A

Media: visuad

Animatable: yes

none
Indicates that no marker symbol shall be drawn at the given vertex (vertices).

<uri>
The <uri> isa URI reference to the ID of a'marker' element which shall be used as the arrowhead symbol

or polymarker at the given vertex (vertices). If the URI referenceis not valid (e.g., it pointsto an object that
is undefined or the object is not a'marker' element), then the marker(s) shall not be drawn.

The 'marker" property specifies the marker symbol that shall be used for all points on the sets the value for all
vertices on the given 'path’ element or vector graphic shape. It is a short-hand for the three individual marker

properties:

‘'marker’
Value: seeindividual properties
Initial: seeindividual properties

Appliesto: all elements

Inherited: see | nheritance of Painting Properties bel ow
Percentages: N/A

Media: visud

Animatable: yes

11.5.4 Details on how markers are rendered

The following provides details on how markers are rendered:
» Markers are drawn after the given object isfilled and stroked.

« Each marker is drawn on the path by first creating atemporary viewport such that the origin of the viewport
coordinate system is at the given vertex and the axes are aligned according to the orient attribute on the
'marker’ element.

« Thewidth and height of the viewport is established by evaluating the values of <markerUnits>,
<markerWidth> and <markerHeight> and cal cul ating temporary values computed-width and
computed-height in the user coordinate system of the object referencing the markers. computed-width
and computed-height are used to determine the dimensions of the temporary viewport.

» The marker isdrawn into the viewport.

For illustrative purposes, we'll repeat the marker example shown earlier:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC//DTD SVG Decenber 1999//EN'
"http://ww. w3. org/ G aphi cs/ SVG@ SVG 19991203. dt d" >
<svg wi dt h="4i n" hei ght="4i n"
vi ewBox="0 0 4000 4000" >
<def s>
<mar ker id="Triangle"
vi ewBox="0 0 10 10" refX="0" refY="5"
mar ker W dt h="1. 25" mar ker Hei ght =" 1. 75"
ori ent="auto">
<path d="M 0 0L 10 5L 0 10 z" />

</ mar ker >
</ def s>
<desc>Pl aci ng an arrowhead at the end of a path
</ desc>
<path d="M 1000 1000 L 2000 1000 L 3000 2000"
style="fill:none; stroke:black; stroke-wi dth: 100

mar ker-end: url (#Triangle)" />
</ svg></ svg>

Download this example

The rendering effect of the above file will be visualy identical to the following:

file:///d|/jon/svgspec/samples/marker.xml

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. org/ G aphi cs/ SV@ SVG 19991203. dt d" >
<svg wi dt h="4i n" hei ght="4i n"
vi ewBox="0 0 4000 4000" >
<def s>
<l-- Note: to illustrate the effect of "marker",
replace "marker" with "synbol" and renove the various
mar ker -specific attributes -->
<synbol id="Triangle"
vi ewBox="0 0 10 10" ref X="0" refY="5">
<path d="M 0 O L 10 5L 0 10 z" />
</ synbol >
</ def s>
<desc>Fil e which produces the sane effect
as the marker exanple file, but wi thout
usi ng mar kers.

</ desc>
<l-- The path draws as before, but w thout the marker properties -->
<path d="M 1000 1000 L 2000 1000 L 3000 2000"
style="fill:none; stroke:black; stroke-w dth:100" />
<!-- The followi ng logic simulates drawing a narker
at final vertex of the path. -->
<!-- First off, nove the origin of the user coordinate system
so that the origin is now aligned with the end point of the path. -->

<g transform="transl at e(3000 2000)" >

<l-- Now, rotate the coordi nate system 45 degrees because
the nmarker specified orient="auto" and the final segnent
of the path is going in the direction of 45 degrees. -->

<g transforn="rotate(45)" >

<I-- Establish a new viewport with an <svg> el enent.
The wi dth/ hei ght of the viewport are 1.25 and 1.75 tines
the current stroke-wi dth, respectively. Since the
current stroke-width is 100, the viewport's width/height
is 125 by 175. Apply the viewBox attribute
fromthe <marker> el ement onto this <svg> el ement.
Transformthe marker synbol to align (refX refY) with
the origin of the viewort. -->

<svg wi dt h="125" hei ght="175"
vi ewBox="0 0 10 10"
transform="transl ate(0,-5)" >

<!-- Expand out the contents of the <marker> elenent. -->
<path d="M 0 O L 105 L 0 10 z" />
</ svg>
</ g>
</ g>
</ svg>

Download this example

11.6 Rendering properties

The SV G user agent performs color interpolations and compositing in the following cases:
« when rendering gradients
« when performing color animations (see 'animateColor")
« when performing alpha blending/compositing of graphics elements into the current background

» when performing various filter effects

The 'color-interpolation’ property specifies whether color interpolations and compositing shall be performed in the
SRGB [SRGB] color space or in a(light energy linear) linearized RGB color space.

file:///d|/jon/svgspec/samples/marker-effect.xml

The conversion formulas between sRGB color space and linearized RGB color space is can be found in [SRGB].
The following formula shows the conversion from sRGB to linearized RGB:

R [sRGB|
G [sRGH]
B [sRGB|

RIsRGB] / 255
g sRGB] / 255
B[sRGB] / 255

I'f R[SRGB], G[sRGB|], B [sREB] <= 0.04045

R Ii near RGB] =
FlinearREB] =
B[linearRGB] = B

else if R[sRGH,

R Ii nearRGB] = (
F linearREB] = (
B[linearRGB] = (

R [sRGB] / 12.92
G [sRGB] / 12.92

' [sRGB] / 12.92

G [sRGB], B [sRGB] > 0.04045

(R [sRGB] + 0.055) / 1.055) ~ 2.4
(G [sRGB|] + 0.055) / 1.055) ~ 2.4
(B [sRGB] + 0.055) / 1.055) ~ 2.4

Out-of-range color values, if supported by the user agent, also are converted using the above formulas. (See
Clamping values which are restricted to a particular range.)

‘color-interpol ation'

Value:
Initial:
Appliesto:
Inherited:
Percentages:
Media:
Animatable:

auto

auto | SRGB | linearRGB | inherit

SRGB

color interpolation and compositing operations
yes

N/A

visual

no

Indicates that the user agent can choose either the SRGB or linear RGBspaces for color interpolation. This
option indicates that the author doesn't require that color interpolation occur in a particular color space.

SRGB

Indicates that color interpolation should occur in the SRGB color space.

linear RGB

Indicates that color interpolation should occur in the linearized RGB color space as described above.

The creator of SVG
guality tradeoffs asi

content might want to provide a hint to the implementation about how to make speed vs.
t performs color interpolation and compositing. The 'color-rendering' property provides a hint

to the SV G user agent about how to optimize its color interpolation and compositing operations:

‘color-rendering'

Value:
Initial:
Appliesto:
Inherited:
Percentages:
Media:
Animatable:

auto

auto | optimizeSpeed | optimizeQuality | inherit
auto

color interpolation and compositing operations
yes

N/A

visua

no

Indicates that the user agent shall make appropriate tradeoffs to balance speed and quality, but quality shall
be given more importance than speed.

optimizeSpeed

Indicates that the user agent shall emphasize rendering speed over quality. For RGB display devices, this
option will sometimes cause the user agent to perform color interpolation and compositing in the device

RGB color space.
optimizeQuality
Indicates that the user agent shall emphasize quality over rendering speed.
The creator of SV G content might want to provide a hint to the implementation about what tradeoffs to make as it

renders vector graphics elements such as 'path’ elements and basic shapes such as circles and rectangles. The
‘shape-rendering' property provides these hints.

‘shape-rendering'
Value: auto | optimizeSpeed | crispEdges |
geometricPrecision | inherit
Initial: auto
Appliesto: al elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: no

auto

Indicates that the user agent shall make appropriate tradeoffs to balance speed, crisp edges and geometric
precision, but with geometric precision given more importance than speed and crisp edges.

optimizeSpeed

Indicates that the user agent shall emphasize rendering speed over geometric precision and crisp edges.
This option will sometimes cause the user agent to turn off shape anti-aliasing.

crispEdges

Indicates that the user agent shall attempt to emphasize the contrast between clean edges of artwork over
rendering speed and geometric precision. To achieve crisp edges, the user agent might turn off anti-aliasing
for al lines and curves or possibly just for straight lines which are close to vertical or horizontal. Also, the
user agent might adjust line positions and line widths to align edges with device pixels.

geometricPrecision
Indicates that the user agent shall emphasize geometric precision over speed and crisp edges.

The creator of SVG content might want to provide a hint to the implementation about what tradeoffs to make as it
renders text. The 'text-rendering’ property provides these hints.

‘text-rendering'
Value: auto | optimizeSpeed | optimizelL egibility |
geometricPrecision | inherit
Initial: auto
Appliesto: 'text' elements
Inherited: yes
Percentages: N/A
Media: visual

Animatable: no

auto

Indicates that the user agent shall make appropriate tradeoffs to balance speed, legibility and geometric
precision, but with legibility given more importance than speed and geometric precision.

optimizeSpeed

Indicates that the user agent shall emphasize rendering speed over legibility and geometric precision. This
option will sometimes cause the user agent to turn off text anti-aliasing.

optimizeL egibility
Indicates that the user agent shall emphasize legibility over rendering speed and geometric precision. The

user agent will often choose whether to apply anti-aliasing techniques, built-in font hinting or both to
produce the most legible text.

geometricPrecision

Indicates that the user agent shall emphasize geometric precision over legibility and rendering speed. This
option will usually cause the user agent to suspend the use of hinting so that glyph outlines are drawn with
comparable geometric precision to the rendering of path data.

The creator of SV G content might want to provide a hint to the implementation about how to make speed vs.
guality tradeoffs asit performs image processing. The 'image-rendering' property provides a hint to the SVG user
agent about how to optimize itsimage rendering.:

‘image-rendering'

Value: auto | optimizeSpeed | optimizeQuality | inherit
Initial: auto

Appliesto: images

Inherited: yes

Percentages: N/A

Media: visua

Animatable: no
auto

Indicates that the user agent shall make appropriate tradeoffs to balance speed and quality, but quality shall
be given more importance than speed.

optimizeSpeed

Indicates that the user agent shall emphasize rendering speed over quality. This option will sometimes
cause the user agent to use a bilinear image resampling algorithm.

optimizeQuality
Indicates that the user agent shall emphasize quality over rendering speed. This option will sometimes
cause the user agent to use a bicubic image resampling algorithm.

The'visibility' indicates whether a given object shall be rendered at all.

'visibility'
Value: visible | hidden | inherit
Initial: visible
Appliesto: al elements
Inherited: yes
Percentages: N/A
Media: visual
Animatable: yes
visible
The current object is drawn.
hidden

The current object is not drawn.

11.7 Inheritance of painting properties

The values of any of the painting properties described in this chapter can be inherited from a given object's parent.
Painting, however, is always done on each leaf-node individually, never at the 'g' level. Thus, for the following
SVG, two distinct gradients are painted (one for each rectangle):

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'

"http://ww. w3. org/ G aphi cs/ SVE@ SVG 19991203. dt d" >
<svg wi dt h="4i n" height="3in">
<desc>Gradi ents apply to | eaf nodes
</ desc>
<g>
<def s>
<l i near Gradi ent id="MyG adi ent">
<stop offset="0% style="col or: #F60"/ >
<stop offset="70% style="col or: #FF6"/ >
</linear G adi ent >
</ def s>
<g style="fill: url (#WGadient)">
<rect width="20" height="15.8"/>
<rect width="35" height="8"/>
</ g>
</ g>
</svg>

Download this example

11.8 DOM interfaces

11.8.1 Interface SVGICCColor
The SVGICCColor expresses an | CC-based color specification and is a base class for interface SV GColor

interface SVA CCCol or {
readonly attribute wunsigned | ong nunber O Col or Val ues;

fl oat get Col or Val ue(i n unsigned | ong index);
voi d clear(); // Cear all entries, giving an enpty |ist
fl oat insertBefore(in float col orVal ue,

in unsigned | ong index)
rai ses(DOVExcepti on);
fl oat replace(in float col orVal ue,
in unsigned | ong index)
rai ses(DOVException);

fl oat remove(in unsigned | ong index)
rai ses(DOVExcepti on);
fl oat append(in float col orVal ue)

rai ses(DOVExcepti on);

11.8.2 Interface SVGColor

The SVGCaolor corresponds to color value definition for the 'stop-color' property and is a base class for interface
SVGPaint. It incorporates SV G's extended notion of color, which incorporates | CC-based color specifications.

Interface SV GColor does not correspond to the <color> basic data type. For the <color> basic data type, the
applicable DOM interfaces are defined in [DOM2-CSS]; in particular, see the [DOM2-CSS-RGBCOL OR].

file:///d|/jon/svgspec/samples/twin-gradients.xml

interface SVGCol or {
/1 Paint Types
const unsigned short kSVG_COLORTYPE_UNKNOMN
const unsigned short kSVG COLORTYPE_RGBCOLOR
const unsigned short kSVG COLORTYPE_RGBCOLOR | CCCOLOR
readonly attribute unsigned short col orType;

0; // invalid, nust be retrieved as a string

non
V=

readonly attribute RGEBCol or rgbCol or;
readonly attribute SVA CCCol or iccCol or;

voi d set RGBCol or (i n RGBCol or rgbCol or);
voi d set RGBCol or | CCCol or (i n RGBCol or rgbCol or, in SVA CCCol or iccColor);

/1 Conveni ence creation routines.
RGBCol or creat eRGBCol or () ; /'l Returns RGBCol or =bl ack
SVGE CCCol or creat eSVA CCCol or () ; /] Returns enpty unattached Iist

/1 1f this property currently is being ani mated, these properties
/1 reflect the current animated val ue.

/1 Otherwi se, they reflect the static docunment properties.
readonly attribute wunsigned short ani matedCol or Type;

readonly attribute RGEBCol or ani mat edRgbCol or;

readonly attribute SVGE CCCol or ani mat edl ccCol or;

11.8.3 Interface SVGPaint
The SV GPaint interface corresponds to basic type <paint> and represents the values of properties 'fill' and 'stroke'.

interface SVGPaint : SVCCol or {
/1 Paint Types
/'l First three match SVGCol or's col or Types.
const unsi gned short kSVG PAI NTTYPE_ UNKNOMN =0; // invalid, nmust be retrieved as a string

const unsi gned short kSVG_PAI NTTYPE_RGBCOLOR = 1;

const unsigned short kSVG_PAI NTTYPE_RGBCOLOR | CCCOLOR = 2,

const unsi gned short kSVG_PAI NTTYPE_NONE = 101;
const unsigned short kSVG _PAI NTTYPE_CURRENTCOLOR = 102;
const unsigned short kSVG_PAI NTTYPE_URI _NONE = 103;
const unsigned short kSVG PAI NTTYPE_URI _CURRENTCOLOR = 104;
const unsigned short kSVG PAI NTTYPE_URI _RGBCOLOR = 105;
const unsigned short kSVG PAI NTTYPE_URI _RGBCOLOR_| CCCOLOR = 106;

readonly attribute unsigned short paintType;
readonly attribute DOMString uri;

void setUri(in DOMString uri);

voi d set Paint(in unsigned short paintType,
in DOVBtring uri,
i n RGBCol or rghCol or,
in SVA CCCol or iccColor);

/1 1f this property currently is being ani mated, these properties
/1 reflect the current aninated val ue.

/1 Otherwi se, they reflect the static docunent properties.
readonly attribute unsigned short ani matedPai nt Type;

readonly attribute DOVString ani matedUri ;

11.8.4 Interface SVGMarkerElement

The SVGMarkerElement interface corresponds to the 'marker' element.

interface SVGVarker El enent : SVGStyl edEl ement {
/1 markerUnit Types
const unsigned short kSVG_MARKERUNI TS UNKNOWN
const unsigned short kSVG MARKERUNI TS USERSPACE
const unsigned short kSVG MARKERUNI TS USERSPACEONUSE
const unsigned short kSVG MARKERUNI TS _STROKEW DTH
attribute unsigned short markerUnits;

whNk o

attribute SVGLength refX;

attribute SVG.ength refY;

attribute SVGRect vi ewBox;

attribute SVGPreserveAspectRati o preserveAspectRati o;
attribute SVG.ength marker W dt h;

attribute SVG.ength marker Hei ght;

/1 orient Types

const unsigned short kSVG MARKER ORI ENT_UNKNOMN
const unsigned short kSVG_MARKER ORI ENT_AUTO
const unsigned short kSVG MARKER ORI ENT_ANGLE
readonly attribute SVGAngl e orient Angl e;

nonon
NP O

void set Ori ent ToAuto();
voi d set Ori ent ToAngl e(SVGAngl e angl e) ;

previous next contents properties index

previous next contents properties index

12 Color

Contents

e 12.1 Introduction

e 12.2 Color profile descriptions and @color-profile

12.1 Introduction

All SVG colors are specified in the SRGB color space (see [SRGB]). At aminimum, SV G user agents

shall conform to the color behavior requirements specified in the Colors chapter of the CSS2
specification (see [CSS2]).

Additionally, SV G content can specify an alternate color specification using an ICC profiles (see
[ICC32]). If ICC-based colors are provided and the SV G user agent support |CC color, then the

| CC-based color takes precedence over the SRGB color specification.

For more on specifying color properties, refer to the descriptions of the 'fill' property and the 'stroke
property.

The 'color’ property is used to provide a potential indirect value (currentColor) for the 'fill' and 'stroke’
properties.
‘color’

Value: <color> | inherit

Initial: depends on user agent

Appliesto: fill' and 'stroke' properties

Inherited: see Inheritance of Painting Properties
Percentages: N/A

Media: visual

Animatable: yes

For a description of the parameters, refer to [CSS2].

12.2 Color profile descriptions and @color-profile

The International Color Consortium has established a standard, the ICC Profile [ICC32], for

documenting the color characteristics of input and output devices. Using these profiles, it is possible to
build atransform and correct visual datafor viewing on different devices.

A color profile description provides the bridge between an |CC profile and references to that ICC profile
within SV G content. The color profile description is added to the color profile database and then used to
select the relevant profile. The color profile description contains descriptors for the location of the color
profile on the Web, a name to reference the profile and information about rendering intent.

Color profile descriptionsin CSS style sheets are specified via an @color-profile rule. The general form
is:

@olor-profile: { <color-profile-description>}

where the <col or-profile-description> has the form:

descriptor: val ue;

[...]

descriptor: val ue;

Each @color-profile rule specifies avalue for every color profile descriptor, either implicitly or
explicitly. Those not given explicit valuesin the rule take the initial value listed with each descriptor in
this specification. These descriptors apply solely within the context of the @color-profile rule in which
they are defined, and do not apply to document language elements. Thus, there is no notion of which
elements the descriptors apply to, or whether the values are inherited by child elements.

The following are the descriptors for a <color-profile-description>:
'src' (Descriptor)
Values:sRGB | <uri> | inherit
Initial: auto
Media: visual
SRGB
The source profile is assumed to be SRGB [SRGB]. This differsfrom auto in that it overrides an
embedded profile inside an image.
<uri>
The name or location of a standard |CC profile resource. Due to the size of profiles, the <uri>
may specify a special name representing a standard profile. The name sRGB, being the standard

WWW color space, is defined separately because of its significance, although the rules regarding
application of any special profile shall be identical.

‘name’ (Descriptor)
Values.<name>
Initial: undefined
Media: visual
<name>
The name which is used as the first parameter for icc-color specifications within 'fill', 'stroke’ and
'stop-color' property values to identify the color profile to use for the ICC color specification.

http://www.color.org/

Note that if <name> is not provided, it will be impossible to reference the given @color-profile
definition.

‘rendering-intent’ (Descriptor)

auto | perceptual | relative-colorimetric |

saturation | absolute-colorimetric | inherit

Initial: auto

Media: visual

Animatable: no

Values:

This property permits the specification of a color profile rendering intent other than the default. The
behavior of values other than auto and inherent are defined by the International Color Consortium
standard.

auto

Thisisthe default behavior. The user-agent determines the best intent based on the content type.
For image content containing an embedded profile, it shall be assumed that the intent specified
within the profile is the desired intent. Otherwise, the user agent shall use the current profile

(based on the color-profile style) and force the intent, overriding any intent that might be stored
in the profile itself.

previous next contents properties index

previous next contents properties index

13 Gradients and Patterns

Contents

« 13.1 Introduction
« 13.2 Gradients
o 13.2.1 Introduction
o 13.2.2 Linear gradients
o 13.2.3 Radia gradients
o 13.2.4 Gradient stops
» 13.3 Patterns
e 13.4 DOM interfaces
o 13.4.1 Interface SV GGradientElement
o 13.4.2 Interface SV GLinearGradientElement
o 13.4.3 Interface SV GRadial GradientElement
o 13.4.4 Interface SV GStopElement
o 13.4.5 Interface SV GPatternElement

13.1 Introduction

With SVG, you canfill (i.e., paint the interior) or stroke (i.e., paint the outline) of shapes and text using
one of the following:

o color
« gradients (linear or radial)
« patterns (vector or image, possibly tiled)
SV G uses the general notion of apaint server. Gradients and patterns are just specific types of paint

servers. For example, first you define alinear gradient by including a'linearGradient' element within a
'defs, assign an ID to that 'linearGradient' element, and then reference that 1D in a'fill' or 'stroke’

property:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG Decenber 1999//EN'

"http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg wi dth="4in" hei ght="3in">
<desc>Li near gradient exanple
</ desc>
<g>
<def s>
<linearGadient id="MyGadient">
<stop offset="0% style="stop-color:#F60"/>
<stop offset="70% style="stop-col or: #FF6"/ >
</1inear G adi ent >
</ def s>
<rect style="fill: url (#WG adi ent)" wi dth="20" hei ght="15.8"/>
</ g>
</ svg>

Download this example

13.2 Gradients

13.2.1 Introduction

Gradients consist of continuously smooth color transitions along a vector from one color to another,
possibly followed by additional transitions along the same vector to other colors. SVG provides for two
types of gradients, linear gradientsand radial gradients.

Gradients are specified within a'defs element and are then referenced using 'fill' or 'stroke' or properties
on agiven graphics element to indicate that the given element shall be filled or stroked with the
referenced gradient.

13.2.2 Linear gradients

Linear gradients are defined by a'linear Gradient' element.

<IENTITY % |inear Gradi ent Ext "" >
<l ELEMENT linear Gradi ent (stop|ani mate|set|ani mateTransform

% i near Gadi ent Ext;)* >
<! ATTLI ST li near G adi ent

id ID #l MPLI ED

gradientUnits (userSpace | user SpaceOnUse | obj ect Boundi ngBox) 'user Space’
gr adi ent Tr ansf or m CDATA #| MPLI ED

CDATA #1 MPLI ED

CDATA #1 MPLI ED

CDATA #1 MPLI ED

CDATA #1 MPLI ED

spreadMet hod (pad | reflect | repeat) "pad"

%l i nkRef Attrs;

xlink: href CDATA #l MPLI ED >

NI

Attribute definitions:
gradientUnits = "user Space | user paceOnUse | objectBoundingBox™

Defines the coordinate system for attributes x1, y1, x2, y2.
If gradientUnits="userSpace" (the default), x1, y1, X2, y2 represent values in the current user

file:///d|/jon/svgspec/samples/lin-gradient.xml

coordinate system in place at the time when the 'linearGradient’ element is defined.

If gradientUnits="userSpaceOnUse", x1, y1, X2, y2 represent values in the current user
coordinate system in place at the time when the ‘linearGradient’ element is referenced (i.e., the
user coordinate system for the element referencing the 'linearGradient' element viaa fill' or
'stroke’ property).

If gradientUnits="objectBoundingBox", then x1, y1, x2, y2 represent values in an abstract
coordinate system where (0,0) is the (minx,miny) in user space of the bounding box of the object
getting filled with the gradient, and (1,1) is the (maxx,maxy) corner of the bounding box. (Note:
the bounding box represents the maximum extent of the shape of the object in X and Y with
respect to the user coordinate system of the object exclusive of stroke-width.)

Animatable: yes.

gradientTransform = "<transform-list>"

Contains the definitions of an optional additional transformation from the gradient coordinate
system onto the target coordinate system (i.e., userSpace or objectBoundingBox). This allows for
things such as skewing the gradient.

Animatable: yes.

x1 = "<coordinate>"

x1, y1, x2, y2 define a gradient vector for the linear gradient. This gradient vector provides
starting and ending points onto which the gradient stops are mapped. The values of x1, y1, x2, y2
can be either numbers or percentages whose meaning is determined by the value of attribute
gradientUnits, asfollows:

| gradientUnits |Typeof value| M eaning of value

The value represents a coordinate in the current user
coordinate system

The value represents a percent distance along the X-axis
" userSpace” apercentage |of the current viewport (see Processing rulesfor CSS

units and percentages)

"userSpace” a number

The value represents a fractional position within the
bounding box of the given shape, where (0,0) isthe

" objectBoundingBox" [a number (minx,miny) of the shape and (1,1) is the (maxx,maxy)
of the shape. (See discussion of
gradientUnits="objectBoundingBox".)

The value represents a fractional position within the
bounding box of the given shape, where (0%,0%) is the
"objectBoundingBox" |a percentage [(minx,miny) of the shape and (100%,100%) isthe
(maxx,maxy) of the shape. (See discussion of
gradientUnits="objectBoundingBox".)

Default valueis "0%".
Animatable: yes.

y1 = "<coordinate>"

See x1. Default valueis"0%".
Animatable: yes.

X2 = "<coordinate>"

See x1. Default valueis"100%".
Animatable: yes.

y2 = "<coordinate>"

See x1. Default valueis " 0%".
Animatable: yes.

spreadMethod = "pad | reflect | repeat”

Indicates what happensiif the the gradient starts or ends inside the bounds of the target rectangle.
Possible values are: pad, which saysto use the terminal colors of the gradient to fill the
remainder of the target region, reflect, which saysto reflect the gradient pattern start-to-end,
end-to-start, start-to-end, etc. continuously until the target rectangle isfilled, and repeat, which
saysto repeat the gradient pattern start-to-end, start-to-end, start-to-end, etc. continuously until
the target region isfilled.

Animatable: yes.

xlink:href = "<uri>"

A URI referenceto adifferent 'linearGradient’ or 'radial Gradient' element within the current SVG
document fragment. Any 'linearGradient’ attributes which are defined on the referenced element
which are not defined on this element are inherited by this element. If this element has no
defined gradient stops, and the referenced element does (possibly due to its own href attribute),
then this element inherits the gradient stop from the referenced element. Inheritance can be
indirect to an arbitrary level; thus, if the referenced element inherits attribute or gradient stops
due to its own href attribute, then the current element can inherit those attributes or gradient
stops.

Animatable: yes.

Attributes defined elsewhere:
id, %oxlinkAttrs;.

Percentages are allowed for x1, y1, X2, y2. For gradientUnits="userSpace", percentages represent values
relative to the current viewport. For gradientUnits="objectBoundingBox", percentages represent values
relative to the bounding box for the object.

13.2.3 Radial gradients

Radial gradients are defined by a'radialGradient’ element.

<IENTITY % radi al Gradi ent Ext "" >
<! ELEMENT radi al Gradi ent (stop|ani mat e| set| ani mat eTr ansform

% adi al Gadi ent Ext;)* >

<I ATTLI ST radi al G adi ent

id ID #l MPLI ED

gradientUnits (userSpace | user SpaceOnUse | obj ect Boundi ngBox) 'user Space’

gr adi ent Tr ansf or m CDATA #l| MPLI ED

cx CDATA #l MPLI ED

cy CDATA #l MPLI ED

r CDATA #l MPLI ED

f x CDATA #l MPLI ED

fy CDATA #l MPLI ED

%l i nkRef Attrs;

xlink: href CDATA #l MPLI ED >

Attribute definitions:
gradientUnits = "user Space | user oaceOnUse | objectBoundingBox™

Defines the coordinate system for attributes cx, cy, r, fx, fy.

If gradientUnits=" user Space" (the default), cx, cy, r, fx, fy represent values in the current user
coordinate system in place at the time when the 'linearGradient’ element is defined.

If gradientUnits="userSpaceOnUse", cX, cy, I, X, fy represent values in the current user
coordinate system in place at the time when the 'radial Gradient' element is referenced (i.e., the
user coordinate system for the element referencing the ‘radial Gradient' element viaa fill' or
'stroke' property).

If gradientUnits=" objectBoundingBox" , then cx, cy, r, fx, fy represent values in an abstract
coordinate system where (0,0) is the (minx,miny) in user space of the bounding box of the object
getting filled with the gradient, and (1,1) is the (maxx,maxy) corner of the bounding box. (Note:
the bounding box represents the maximum extent of the shape of the object in X and Y with
respect to the user coordinate system of the object exclusive of stroke-width.)

Animatable: yes.

gradientTransform = "<transform-list>"

Contains the definitions of an optional additional transformation from the gradient coordinate
system onto the target coordinate system (i.e., userSpace or objectBoundingBox). This allows for
things such as skewing the gradient.

Animatable: yes.

cx = "<coordinate>"

cX, cy, r define the largest/outermost circle for the radial gradient. The gradient will be drawn
such that the 100% gradient stop is mapped to the perimeter of this largest/outermost circle.

Default valueis "50%".
Animatable: yes.

cy = "<coordinate>"
See cx. Default valueis "50%".
Animatable: yes.

r ="<length>"

See cx. Default value is "50%".
Animatable: yes.

fx ="<coordinate>"

fx, fy define the focal point for the radial gradient. The gradient will be drawn such that the 0%
gradient stop is mapped to (fx, fy). The default value is 50%.

Animatable: yes.
fy = "<coordinate>"

See fx. Default value is "50%".
Animatable: yes.

xlink:href = "<uri>"

A URI reference to adifferent 'linearGradient' or 'radial Gradient' element within the current SVG

document fragment. Any 'radialGradient' attributes which are defined on the referenced element
which are not defined on this element are inherited by this element. If this element has no
defined gradient stops, and the referenced element does (possibly due to its own href attribute),
then this element inherits the gradient stop from the referenced element. Inheritance can be
indirect to an arbitrary level; thus, if the referenced element inherits attribute or gradient stops
due to its own href attribute, then the current element can inherit those attributes or gradient
stops.

Animatable: yes.

Attributes defined elsewhere:
id, %oxlinkAttrs;.

Percentages are allowed for cx, cy, r, fx, fy. For gradientUnits="userSpace", percentages represent
values relative to the current viewport. For gradientUnits="objectBoundingBox", percentages represent
values relative to the bounding box for the object.

13.2.4 Gradient stops

The ramp of colorsto use on agradient is defined by the 'stop’ elements that are child elements to either
the 'linearGradient’ element or the 'radialGradient' element. Here is an example of the definition of a

linear gradient that consists of a smooth transition from white-to-red-to-black:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg wi dth="4in" hei ght="3in">
<desc>Radi al gradient exanple with three gradi ent stops
</ desc>
<g>
<def s>
<radi al G adi ent id="MyGadi ent">
<stop offset="0% style="stop-color:white"/>
<stop offset="50% style="stop-color:red"/>
<stop of fset="100% style="stop-color:black"/>
</ radi al Gradi ent >
</ def s>
<circle style="fill: url(#WG adient)" r="42"/>
</ g>
</ svg>

Download this example

file:///d|/jon/svgspec/samples/rad-gradient.xml

<IENTITY % stopExt "" >
<! ELEMENT stop (ani nate| set| ani nat eCol or

%t opExt;)* >

<! ATTLI ST stop
id ID # MPLI ED
styl e CDATA #| MPLI ED
of f set CDATA #REQUI RED >

Attribute definitions:
offset = "length"

The offset attribute is either a <number> (usually ranging from 0 to 1) or a percentage
(correspondingly usually ranging from 0% to 100%) which indicates where the gradient stop is
placed. For linear gradients, the offset attribute represents a location along the gradient vector.
For radial gradients, it represents a percentage distance from (fx,fy) to the edge of the
outermost/largest circle.

Animatable: yes.

Attributes defined elsewhere:
id, style.

The 'stop-color' property indicates what color to use at that gradient stop. |CC colors can be specified in
the same manner as for the fill' and 'stroke’ properties.

'stop-color’
Value: <color> | inherit
Initial: black

Appliesto: 'stop’ elements
Inherited: no
Percentages: N/A

Media: visual
Animatable: yes

The 'stop-opacity' property defines the opacity of a given gradient stop.

'stop-opacity’
Value: <alphavalue> | inherit
Initial: 1
Appliesto: 'stop' elements
Inherited: no
Percentages. N/A
Media: visual

Animatable: yes

Some notes on gradients:

« Gradient offset values less than O (or less than 0%) are rounded up to 0%. Gradient offset values
greater than 1 (or greater than 100%) are rounded down to 100%.

« There needsto be at least two stops defined to have a gradient effect. If no stops are defined,

then painting shall occur asif 'none’ were specified as the paint style. If one stop is defined, then
paint with the solid color fill using the color defined for that gradient stop.

« Each gradient offset valueis required to be equal to or greater than the previous gradient stop's
offset value. If agiven gradient stop's offset value is not equal to or greater than all previous
offset values, then the offset value is adjusted to be equal to the largest of all previous offset
values.

« If two gradient stops have the same offset value, then the latter gradient stop controls the color
value at the overlap point.

13.3 Patterns

A pattern is used to fill or stroke an object using a pre-defined graphic object which can be replicated
("tiled") at fixed intervalsin x and y to cover the areas to be painted.

Patterns are defined using a'pattern’ element and then referenced by propertiesfill: and stroke:.

<IENTITY % patternExt "" >
<! ELEMENT pattern (%lescTitl eDefs;,

(path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| swi tch|a
%ceExt ; YpatternExt;)*) >

<I ATTLI ST pattern
id I D #l MPLI ED
xm : | ang NMIOKEN #| MPLI ED
xm : space (default|preserve) #l MPLI ED
cl ass NMICKENS #l MPLI ED
styl e CDATA #l MPLI ED
patternUnits (userSpace | userSpaceOnUse | object Boundi ngBox) 'user Space’
patt er nTr ansf or m CDATA #l MPLI ED
x CDATA #| MPLI ED
y CDATA #l| MPLI ED
wi dt h CDATA #REQUI RED
hei ght CDATA #REQUI RED
ref X CDATA #l MPLI ED
refY CDATA #l MPLI ED
vi ewBox CDATA #l MPLI ED
preserveAspect Rati o CDATA ' xM dYM d neet’
Il i nkRef Attrs;
xlink: href CDATA #l MPLI ED >

Attribute definitions:
patternUnits = "user pace | user SpaceOnUse | objectBoundingBox"

Defines the coordinate system for attributes x, y, width, height and the contents of the 'pattern’.

If patternUnits="userSpace" (the default), x, y, width, height and the contents of the 'pattern’
represent values in the current user coordinate system in place at the time when the ‘'mask’
element is defined.

If patternUnits="userSpaceOnUse", X, y, width, height and the contents of the 'pattern’ represent
valuesin the current user coordinate system in place at the time when the 'pattern’ element is
referenced (i.e., the user coordinate system for the element referencing the 'pattern’ element viaa
'fill' or 'stroke’ property).

If patternUnits="objectBoundingBox", X, y, width, height and the contents of the 'pattern’
represent values in the abstract coordinate system where (0,0) is the (minx,miny) in user space of
the tight bounding box of the object referencing the mask, and (1,1) is the (maxx,maxy) corner of
the bounding box. (Note: the bounding box represents the maximum extent of the shape of the
object in X and Y with respect to the user coordinate system of the object exclusive of
stroke-width.)

Animatable: yes.

patternTransform = "<transform-list>"

Contains the definitions of an optional additional transformation from the pattern coordinate
system onto the target coordinate system (i.e., userSpace or objectBoundingBox). This allows for
things such as skewing the pattern tiles.

Animatable: yes.

X = "<coordinate>"

X, ¥, width, height indicate how the pattern tiles are placed and spaced and represent coordinates
and values in the coordinate space specified by patternUnits. Default valueis"0%".
Animatable: yes.

y = "<coordinate>"

See x. Default valueis "0%".
Animatable: yes.

width = "<length>"

See x. Default value is"100%".
Animatable: yes.

height = "<length>"
See x. Default valueis"100%".
Animatable: yes.

xlink:href = "<uri>"

A URI reference to adifferent 'pattern’ element within the current SVG document fragment. Any
attributes which are defined on the referenced element which are not defined on this element are
inherited by this element. If this element has children, and the referenced element does (possibly
due to its own href attribute), then this element inherits the children from the referenced element.
Inheritance can be indirect to an arbitrary level; thus, if the referenced element inherits attributes
or children dueto its own href attribute, then the current element can inherit those attributes or
gradient stops.

Animatable: yes.

Attributes defined el sewhere:
id, xml:lang, xml:space, class, style, refX, refY, viewBox, preserveAspectRatio, Y%oxlinkAttrs,.

An example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG Decenber 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg wi dth="4in" height="3in" >
<def s>

<pattern id="Triangl ePattern”
patternUnits="user Space"
x="0" y="0" wi dth="25" hei ght="25"
patt ernTransf or m=" skewX(45) "
vi ewBox="0 0 10 10" >
<path d="M 0O O L 100 L 5 10 z" />
</ pattern>

</ def s>

<l-- Fill this ellipse with the above pattern -->

<ellipse style="fill: url (#TrianglePattern)" rx="40" ry="27" />
</ svg>

Download this example

13.4 DOM interfaces

13.4.1 Interface SVGGradientElement

The SVGGradientElement interface is a base interface used by SV GLinearGradientElement and
SV GRadia GradientElement.

i nterface SVGH adi ent El enent : SVGEl enent {
/1 gradientUnits Types
const unsigned short kSVG GRADI ENTUNI TS UNKNOAN
const unsigned short kSVG_GRADI ENTUNI TS USERSPACE
const unsigned short kSVG_GRADI ENTUNI TS USERSPACEONUSE
const unsigned short kSVG_GRADI ENTUNI TS _OBJECTBOUNDI NGBOX
attribute unsigned short gradientUnits;
attribute SVGIransfornli st gradi ent Transform

(TRTRRTINT
whNkEe

13.4.2 Interface SVGLinearGradientElement

The SV GLinearGradientElement interface corresponds to the 'linearGradient’ element.

interface SVCLi near G adi ent El ement : SVGGr adi ent El enent {
attribute SVG.ength x1;
attribute SVG.ength y1;
attribute SVG.ength x2;
attribute SVG.ength y2;

/1 spreadMet hod Types

const unsigned short kSVG SPREADMETHCD PAD
const unsigned short kSVG SPREADMETHOD REFLECT
const unsigned short kSVG_SPREADMETHOD REPEAT
attribute unsigned short spreadMet hod;

I n
N~ O

file:///d|/jon/svgspec/samples/patternfill.xml

13.4.3 Interface SVGRadialGradientElement

The SV GRadial GradientElement interface corresponds to the 'radial Gradient' element.

interface SVCRadi al G adi ent El ement : SVGGr adi ent El enent {
attribute SVG.ength cx;
attribute SVG.ength cy;
attribute SVGength r;
attribute SVG.ength fx;
attribute SVG.ength fy;

13.4.4 Interface SVGStopElement
The SV GStopElement interface corresponds to the 'stop’ element.

i nterface SVGSt opEl enent : SVGStyl edEl enent {
attribute fl oat offset;

b

13.4.5 Interface SVGPatternElement
The SV GPatternElement interface corresponds to the 'pattern’ element.

interface SVGPatternEl ement : SVGStyl edEl enent {
/] patternUnits Types
const unsigned short kSVG PATTERNUNI TS_UNKNOWN
const unsigned short kSVG PATTERNUNI TS USERSPACE
const unsigned short kSVG PATTERNUNI TS_USERSPACEONUSE
const unsigned short kSVG PATTERNUNI TS_OBJECTBOUNDI NGBOX
attribute unsigned short patternUnits;
attribute SVGIransfornii st patternTransform
attribute SVG.ength x;
attribute SVG.ength vy;
attribute SVG.ength wi dth;
attribute SVGLength hei ght;
attribute SVG.ength refX;
attribute SVG.ength refY,;
attribute SVGRect vi ewBox;
attribute SVGPreserveAspect Rati o preserveAspect Rati o;

whkho

previous next contents properties index

previous next contents properties index

14 Clipping, Masking and Compositing

Contents

e 14.1 Introduction

« 14.2 Simple apha blending/compositing
« 14.3 Clipping paths
o 14.3.1 Introduction
o 14.3.2 Theinitial clipping path
o 14.3.3 The'overflow' and 'clip' properties

o 14.3.4 Clip to viewport vs. clip to viewBox

o 14.3.5 Establishing a new clipping path
« 14.4 Masking
» 14.5 Object and group opacity: the ‘opacity’ property
« 14.6 DOM interfaces

o 14.6.1 Interface SV GClipPath

o 14.6.2 Interface SVGMask

14.1 Introduction

SV G supports the following clipping/masking features:

« clipping paths, which uses any combination of 'path’, 'text’ and basic shapes to serve as the
outline of a(in the absense of antialiasing) 1-bit mask, where everything on the "inside" of the
outlineis allowed to show through but everything on the outside is masked out

« masks, which are container elements which can contain graphics elements or other contai ner

elements which define a set of graphicsthat isto be used as a semi-transparent mask for
compositing foreground objects into the current background.

One key distinction between a clipping path and a mask is that clipping paths are hard masks (i.e., the
silhouette consists of either fully opague pixels or fully transparent pixels, with the possible exception of
antialiasing along the edge of the silhouette) whereas masks consist of an image where each pixel value
indicates the degree of transparency vs. opacity. In amask, each pixel value can range from fully
transparent to fully opaque.

SV G supports only simple alpha blending compositing (see Simple Alpha Blending/Compositing).

(Insert drawings showing a clipping path, a grayscale imagemask, simple alpha blending and more
complex blending.)

14.2 Simple alpha blending/compositing

Graphics elements are blended into the elements already rendered on the canvas using ssmple alpha
blending/compositing, in which the resulting color and opacity at any given pixel on the canvasisthe
result of the following formulas (all color values use premultiplied apha):

Eg, Eb - El enent col or val ue
- El enent opacity/al pha val ue
Cg, Cb - Canvas col or value (before bl ending)

- Canvas opacity/al pha val ue (before bl ending)
, Cg', Cb' - Canvas color value (after bl ending)
- Canvas opacity/al pha val ue (after bl ending)

1-(1- Ea * (1 - Ca)
(1 - Ea) * Cr + FEr
(1 - Ea) * Cg + Eg
(1 - Ea) * Cb + Eb

889P ROERRFN

The following rendering properties, which provide information about the color space in which to
perform the compositing operations, apply to compositing operations:

« 'color-interpolation'

« 'color-rendering'

14.3 Clipping paths

14.3.1 Introduction

The clipping path restricts the region to which paint can be applied. Conceptually, any parts of the
drawing that lie outside of the region bounded by the currently active clipping path are not drawn. A
clipping path can be thought of as a 1-bit mask.

14.3.2 The initial clipping path

When an 'svg' element is encountered by a CSS user agent, the CSS user agent needs to establish an
initial clipping path for the SV G document fragment. The 'overflow' and ‘clip’ properties from CSS2
along with additional SV G user agent processing rules determine theinitia clipping path which the CSS
user agent establishes for the SV G document fragment:

14.3.3 The 'overflow' and 'clip' properties

‘over flow'
Value: visible | hidden | scroll | auto | inherit
Initial: visible (see notes below)

Appliesto: elements which establish a new viewport
Inherited: no

Percentages: N/A

Media: visual

Animatable: N/A

The 'overflow' property has the same parameter values and has the same meaning as defined in

[CSS2-overflow]; however, the following additional points apply:

The 'overflow' property only applies to elements that establish new viewports, such as'svg'
elements. (See the discussion of the el ements which establish a new viewport.)

When an outermost SV G 'svg' element is embedded inline within a parent XML grammar which
uses CSS layout [CSS2-LAY OUT] or XSL formatting [XSL], if the 'overflow' property has the
value hidden, then the SV G user agent will establish aninitia clipping path equal to the bounds
of theinitial viewport; otherwise, theinitial clipping path is set according to the clipping rules as
defined in [CSS2-overflow].

When an outermost SV G 'svg' element is standalone or embedded inline within a parent XML
grammar which does not use CSS layout [CSS2-LAY OUT] or XSL formatting [XSL], the

‘overflow' property on the outermost 'svg' element isignored for the purposes of visual rendering
and theinitial clipping path is set to the bounds of the initial viewport.

For 'svg' elements that are embedded inside of an ancestor SV G document fragment (i.e., without
a'foreignObject’ element between the inner 'svg' and the nearest ancestor 'svg’) or for any other
elements which establish a new viewport, the ‘overflow' property determines whether an
additional new clipping path is established around the bounds of the viewport established by the
given element. If the value of the the 'overflow' property is hidden, then anew clipping path is
established; otherwise, no new clipping path is established.

Theinitial value for 'overflow' as defined in [CSS2-overflow] is'visible'; however, the Default
styles sheet for SV G specifies that the ‘overflow' property on al elements within an SVG
document fragment has the value "hidden'.

Asaresult of the above, the default behavior of SV G user agentsis to establish a clipping path to the
bounds of the initial viewport and to establish a new clipping path for each element which establishes a

new viewport.

For stand-alone SV G viewers or in situations where an SV G document fragment is embedded inline
within a parent XML grammar which does not use CSS layout or X SL formatting, then the initial
clipping path must be set to the bounds of the viewing region in which the SVG document fragment is
rendered, even if the and the 'overflow' property is set to avalue other than hidden.

For related information, see Clip to viewport vs. clip to viewBox.

‘clip’

Value: <shape> | auto | inherit

Initial: auto

Appliesto: elements which establish a new viewport
Inherited: no

Percentages. N/A

Media: visual

Animatable: N/A

The 'clip’ property only applies to e ements which establish anew viewport. The 'clip’ property has the
same parameter values as defined in [CSS2-clip]. Unitless values, which indicates current user

coordinates, are permitted on the coordinate values on the <shape>. The value of "auto" indicates
defines a clipping path along the bounds of the viewport created by the given element.

14.3.4 Clip to viewport vs. clip to viewBox

It isimportant to note that initial values for the 'overflow' and 'clip' properties and the Default style sheet
for SVG will result in an initial clipping path that is set to the bounds of theinitial viewport. When
attributes viewBox and preserveAspectRatio attributes are specified on a viewport-creating el ement, it is
sometime desirable that the initial viewport be set to the bounds of the viewBox instead of the viewport,
particularly when preserveA spectRatio specifies uniform scaling and the aspect ratio of the viewBox
does not match the aspect ratio of the viewport.

To set theinitial clipping path to the bounds of the viewBox instead of the viewport, set the bounds of
‘clip' property to the same rectangle as specified on the viewBox attribute. (Note that the parameters
don't match. 'clip’ takes values <top>, <right>,<bottom> and <left>, whereas viewBox takes values
<min-x>, <min-y>, <width> and <height>.)

14.3.5 Establishing a new clipping path

A clipping path is defined with a'clipPath’ element. A clipping path is used/referenced using the
‘clip-path’ property.

A 'clipPath' element can contain 'path’ elements, 'text' elements, other vector graphic shapes (such as
‘circle) or a'use element. If a'use’ element isachild of a'clipPath’ element, it must directly reference
path, text or vector graphic shape elements. Indirect references are an error (see Error processing). The

silhouettes of the child elements are logically OR'd together to create a single silhouette which is then
used to restrict the region onto which paint can be applied.

It isan error if the 'clip-path’ property references a non-existent object or if the referenced object isnot a
‘clipPath’ element (see Error processing).

For a given graphics element, the actual clipping path used will be the intersection of the clipping path
specified by its 'clip-path’ property (if any) with any clipping paths on its ancestors, as specified by the
‘clip-path’ property on the ancestor elements.

A couple of notes:
« The'clipPath’ element itself and its child elements do not inherit clipping paths from the

ancesotors of the 'clipPath’ element.

« The'clipPath’ element or any of its children can specify property 'clip-path'.
If avalid 'clip-path’ reference is placed on a'clipPath’ element, the resulting clipping path is the
intersection of the contents of the 'clipPath’ element with the referenced clipping path.
If avalid 'clip-path' reference is placed on one of the children of a'clipPath’ el ement, then the
given child element is clipped by the referenced clipping path before OR'ing the silhouette of the
child element with the silhouettes of the other child elements.

<IENTITY %clipPathExt "" >
<! ELEMENT clipPath (%descTitle;,
(path|text|rect|circle|ellipse|line|polyline|polygon|
use| ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf orm
%eExt; %l i pPat hExt;)*) >

<I ATTLI ST clipPath
id I D #l MPLI ED
xm : 1 ang NMIOKEN #l MPLI ED
xm : space (default|preserve) #l MPLIED
cl ass NMIOKENS #l MPLI ED
styl e CDATA #l MPLI ED
clipPat hUnits (userSpace | userSpaceOnUse | objectBoundi ngBox) "user Space" >

Attribute definitions:
clipPathUnits = "user Space | user SpaceOnUse | objectBoundingBox™

Defines the coordinate system for the contents of the ‘clipPath'.

If clipPathUnits="userSpace" (the default), the contents of the 'clipPath’ represent valuesin the
current user coordinate system in place at the time when the 'clipPath’ element is defined.

If clipPathUnits="userSpaceOnUse", the contents of the 'clipPath’ represent values in the current
user coordinate system in place at the time when the 'clipPath’ element is referenced (i.e., the
user coordinate system for the element referencing the ‘clipPath’ element viathe 'clip-path’
property).

If clipPathUnits="objectBoundingBox", the contents of the 'clipPath’ represent valuesin the
abstract coordinate system where (0,0) is the (minx,miny) in user space of the tight bounding box
of the object referencing the mask, and (1,1) is the (maxx,maxy) corner of the bounding box.
(Note: the bounding box represents the maximum extent of the shape of the object in X and Y
with respect to the user coordinate system of the object exclusive of stroke-width.)

Animatable: yes.

Attributes defined el sewhere:
id, xml:lang, xml:space, class, style.

‘clip-path’
Value: <uri> | none | inherit
Initial: See Theinitial clipping path: 'overflow' and 'clip' properties

Appliesto: all elements
Inherited: no

Percentages. N/A
Media: visual
Animatable: yes

<uri>
A URI reference to another graphical object within the same SV G document fragment which will
be used as the clipping path.
‘clip-rule
Value: evenodd | nonzero | inherit
Initial: evenodd
Appliesto: al elements
Inherited: yes
Percentages: N/A
Media; visual
Animatable: yes
evenodd
nonzero

14.4 Masking

In SVG, you can specify that any other graphics object or 'g' element can be used as an alpha mask for
compositing the current object into the background.

A mask is defined with a'mask’ element. A mask is used/referenced using the 'mask’ property.
A 'mask’ can contain any graphica elements or grouping elementssuch asa'g'.

It isan error if the 'mask’ property references a non-existent object or if the referenced object isnot a
'mask’ element (see Error Processing).

The effect is asif the child elements of the 'mask’ are rendered into an offscreen image. Any graphical
object which uses/references the given 'mask’ element will be painted onto the background through the
mask, thus completely or partially masking out parts of the graphical object.

The following processing rules apply:

« If al of the child elements of the 'mask’ consist of the same type of one-channel image (i.e., a
grayscale image or an image consisting only of an apha channel), then the child elements will be
processed as single channel images into a resulting single channel image result, and that single
channel result will be used as the mask.

« If al of the child elements of the 'mask’ consist of three-channel RGB images, then the child
elements will be processed as RGB images into aresulting RGB image result, and the luminance
from the resulting RGB image will be used as the mask, where the luminance is calculated using
the luminance-to-al pha formulas as defined in the 'feColorMatrix’ filter effect.

« Otherwise, the child elements of the 'mask’ will will be processed and will result in a
four-channel RGBA image, and the alpha channel from this resulting RGBA image will be used
as the mask.

Note that SVG 'path"s, shapes (e.g., 'circle’) and 'text’ are all treated as four-channel RGBA images for

the purposes of masking operations.

In the following example, an image is used to mask arectangle:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg wi dth="4in" hei ght="3in">
<desc>Exanpl e of using a mask
</ desc>
<g>
<def s>
<mask id="MMask">
<i mage xlink: href="transp. png" />
</ mask>
</ def s>
<rect style="nmask: url (#WMask)" wi dth="12.5" hei ght="30" />
</ g>
</ svg>

Download this example

A <mask> element can define aregion on the canvas for the mask using the following attributes:

<IENTITY % maskExt "" >
<! ELEMENT mask (%descTitl eDefs;,

(path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| swi tch| a|
ani_mat e| set | ani mat eMbt i on| ani nat eCol or | ani mat eTr ansf orm
%ceExt ; raskExt;)*) >

<! ATTLI ST nmask
id I D #l MPLI ED
xm : 1 ang NMIOKEN #l MPLI ED
xm : space (defaul t|preserve) #l MPLIED
cl ass NMIOKENS #l MPLI ED
styl e CDATA #l MPLI ED
maskUnits (user Space | userSpaceOnUse | obj ect Boundi ngBox) "user Space"
x CDATA #l MPLI ED
y CDATA #l MPLI ED
wi dt h CDATA #| MPLI ED
hei ght CDATA #| MPLI ED >

Attribute definitions:
maskUnits = "user Space | user oaceOnUse | objectBoundingBox"

Defines the coordinate system for attributes x, y, width, height and the contents of the 'mask’.

If maskUnits="userSpace" (the default), x, y, width, height and the contents of the ‘'mask'’
represent values in the current user coordinate system in place at the time when the 'mask’
element is defined.

If maskUnits="userSpaceOnUse", X, y, width, height and the contents of the 'mask’ represent
valuesin the current user coordinate system in place at the time when the 'mask’ element is
referenced (i.e., the user coordinate system for the element referencing the 'mask’ element via the
'mask’ property).

If maskUnits="objectBoundingBox", X, y, width, height and the contents of the 'mask’ represent
values in the abstract coordinate system where (0,0) is the (minx,miny) in user space of the tight

file:///d|/jon/svgspec/samples/mask.xml

bounding box of the object referencing the mask, and (1,1) is the (maxx,maxy) corner of the
bounding box. (Note: the bounding box represents the maximum extent of the shape of the object
in X and Y with respect to the user coordinate system of the object exclusive of stroke-width.)
Animatable: yes.

X = "<coordinate>"

The x coordinate of one corner of the rectangle for the largest possible offscreen buffer, where
the values are either relative to the current user coordinate system (if maskUnits="userSpace") or
relative to the current object (if maskUnits="objectBoundingBox™). Note that the clipping path
used to render any graphics within the mask will consists of the intersection of the current
clipping path associated with the given object and the rectangle defined by X, y, width, height.
The default value for x is 0%.

Animatable: yes.

y = "<coordinate>"

They coordinate of one corner of the rectangle for the largest possible offscreen buffer.The
default value for y is 0%.
Animatable: yes.

width = "<length>"

The width of the largest possible offscreen buffer, where the values are either relative to the
current user coordinate system (if maskUnits="userSpace") or relative to the current object (if
maskUnits="objectBoundingBox"). Note that the clipping path used to render any graphics
within the mask will consists of the intersection of the current clipping path associated with the
given object and the rectangle defined by X, y, width, height. The default value for width is
100%.

Animatable: yes.

height = "<length>"

The height of the largest possible offscreen buffer. The default value for height is 100%.
Animatable: yes.

Attributes defined el sewhere:
id, xml:lang, xml:space, class, style.

The following is a description of the 'mask’ property.

Im&l
Value: <uri> | none | inherit
Initial: none
Appliesto: all elements
Inherited: no
Percentages. N/A
Media: visual

Animatable: yes
<uri>
A URI reference to another graphical object which will be used as the mask.

14.5 Object and group opacity: the '‘opacity’
property

There are several opacity properties within SVG:
« Fill opacity
« Stroke opacity
» Gradient stop opacity

« Object/group opacity (described here)

Except for object/group opacity (described just below), all other opacity properties are involved in
intermediate rendering operations. Object/group opacity can be thought of conceptually as a
postprocessing operation. Conceptually, after the object/group is rendered into an RGBA offscreen
image, the object/group opacity setting specifies how to blend the offscreen image into the current
background.

‘opacity’
Value: <alphavalue> | inherit
Initial: 1
Appliesto: &l elements
Inherited: no
Percentages. N/A
Media: visual

Animatable: yes

<aphavalue>

The uniform opacity setting to be applied across an entire object. If a<number> is provided, any
values outside the range 0.0 (fully transparent) to 1.0 (fully opague) will be clamped to this
range. If a percentage is provided, any value outside the range of 0% to 100% will be clamped to
this range. (See Clamping values which are restricted to a particular range If the object isa
container element such asa'd', then the effect is asif the contents of the 'g' were blended against
the current background using a mask where the value of each pixel of the mask is <alphavalue>.
(See Simple apha blending/compositing.)

Example opacity01, illustrates various usage of the 'opacity' property on elements and groups.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg wi dt h="12cn' hei ght="3. 5cni' >
<desc>Exanpl e opacity0l - opacity property</desc>

<! -- Background blue rectangle -->
<rect x="1lcnt y="1lcm' w dth="10cm hei ght="1.5cn style="fill:#0000ff" />

<l-- Red circles going fromopaque to nearly transparent -->
<circle cx="2cnm cy="1lcm' r=".5cnm style="fill:red; opacity:1" />
<circle cx="4cm' cy="1cn' r=".5cn style="fill:red; opacity:.8" />
<circle cx="6cm' cy="1lcm' r=".5cnm style="fill:red; opacity:.6" />
<circle cx="8cm cy="1lcnt' r=".5cnm style="fill:red; opacity:.4" />
<circle cx="10cm cy="1cni r=".5cm style="fill:red; opacity:.2" />

<!'-- Opaque group, opaque circles -->

<g style="opacity:1">
<circle cx="1.825cm' cy="2.5cm' r=".5cn style="fill:red; opacity:1" />
<circle cx="2.175cm cy="2.5cn r=".5cn{" style="fill:green; opacity:1" />

</ g>
<I--

Group opacity: .5, opacity circles -->

<g style="opacity:.5">
<circle cx="3.825cm cy="2.5cnm r=".5cn' style="fill:red; opacity:1" />
<circle cx="4.175cm' cy="2.5cnm" r=".5cn style="fill:green; opacity:1" />

</ g>
<l--

Opaque group, senmi-transparent green over red -->

<g style="opacity:1">
<circle cx="5.825cm cy="2.5cm r=".5cn{ style="fill:red; opacity:.5" />
<circle cx="6.175cm cy="2.5cn r=".5cnt' style="fill:green; opacity:.5" />

</ g>
<l--

Opaque group, seni-transparent red over green -->

<g style="opacity:1">
<circle cx="8.175cm cy="2.5cn r=".5cn' style="fill:green; opacity:.5" />
<circle cx="7.825cm cy="2.5cm' r=".5cn{ style="fill:red; opacity:.5" />

</ g>
<I--

Group opacity .5, sem -transparent green over red -->

<g style="opacity:.5">
<circle cx="10.175cm' cy="2.5cm' r=".5cn style="fill:red; opacity:.5" />
<circle cx="9.825cnm cy="2.5cn r=".5cn' style="fill:green; opacity:.5" />

</ g>
</ svg>

Example opacityOl

View this example as SV G (SV G-enabled browsers only)

In the example above, the top row of circles have differing opacities, ranging from 1.0 to 0.2. The
bottom row illustrates five 'q' elements, each of which contains overlapping red and green circles, as

follows:

The first group shows the opague case for reference. The group has opacity of 1, as do the
circles.

The second group shows group opacity when the elements in the group are opague.

The third and fourth group show that opacity is not commutative. In the third group (which has
opacity of 1), asemi-transparent green circle is drawn on top of a semi-transparent red circle,
whereas in the fourth group a semi-transparent red circle is drawn on top of a semi-transparent
green circle. Note that area where the two circles intersect display different colors. The third
group shows more green color in the intersection area, whereas the fourth group shows more red
color.

The fifth group shows the multiplicative effect of opacity settings. Both the circles and the group
itself have opacity settings of .5. The result is that the portion of the red circle which does not
overlap with the green circle (i.e., the top/right of the red circle) will blend into the blue rectangle

file:///d|/jon/svgspec/images/masking/opacity01.svg

with accumulative opacity of .25 (i.e., .5*.5), which, after blending into the blue rectangle,
resultsin a blended color which is 25% red and 75% blue.

14.6 DOM interfaces

14.6.1 Interface SVGClipPath
The SV GClipPath interface corresponds to the clipPath element.

interface SVC&JipPath : SVGStyl edEl enment {
/'l clipPathUnit Types
const unsigned short kSVG CLI PPATHUNI TS UNKNOAN
const unsigned short kSVG_CLI PPATHUNI TS _USERSPACE
const unsigned short kSVG CLI PPATHUNI TS _USERSPACEONUSE
const unsigned short kSVG CLI PPATHUNI TS_OBJECTBOUNDI NGBOX
attribute unsigned short clipPathUnits;

o
whkEe

14.6.2 Interface SVGMask

The SVGMask interface corresponds to the 'mask’ element.

i nterface SVGwask : SVGStyl edEl enent {
/1 maskUnit Types
const unsigned short kSVG MASKUNI TS UNKNOAN
const unsigned short kSVG MASKUNI TS_USERSPACE
const unsigned short kSVG MASKUNI TS USERSPACEONUSE
const unsigned short kSVG MASKUNI TS OBJECTBOUNDI NGBOX
attribute unsigned short nmaskUnits;

wnNkRe

attribute SVGA.ength x;
attribute SVG.ength vy;
attribute SVG.ength w dth;
attribute SVG.ength height;

previous next contents properties index

previous next contents properties index

15 Filter Effects

Contents

« 15.1 Introduction
« 15.2 Background
« 15.3 Basic Model
« 15.4 Defining and invoking afilter effect

« 15.5 Filter effectsregion
« 15.6 Common attributes

o 15.7 Accessing the background image

« 15.8 Filter processing nodes
o 15.9 DOM interfaces
o 15.9.1 Interface SV GFilterElement
o 15.9.2 Interface SV GStandardFilterNodeElement

15.1 Introduction

A model for adding declarative raster-based rendering effects to a 2D graphics environment is presented. As aresult, the
expressiveness of the traditional 2D rendering model is greatly enhanced, while still preserving the device independence,
scalability, and high level geometric description of the underlying graphics.

15.2 Background

On the Web, many graphics are presented as bitmap images in gif, jpg, or png format. Among the many disadvantages of
this approach is the general difficulty of keeping the raster datain sync with the rest of the Web site. Many times, aweb
site designer must resort to a bitmap editor to simply change the title of a button. As the Web gets more dynamic, we desire
away to describe the "piece parts' of asitein amore flexible format. This chapter describes SV G's declarative filter effects
model, which when combined with the 2D power of SV G can describe much of the common artwork on the web in such a
way that client-side generation and alteration can be performed easily.

15.3 Basic Model

Thefilter effects model consists of a set of filtering operations (called "processing nodes" in the descriptions below) on one
or more graphic primitives. Each processing node takes a set of graphics primitives as input, performs some processing,
and generates revised graphics primitives as output. Because nearly all of the filtering operations are some form of image
processing, in almost all cases the output from most processing nodes consists of asingle RGBA image.

For example, asimplefilter could replace one graphic by two -- by adding a black copy of original offset to create a drop
shadow. In effect, there are now two layers of graphics, both with the same original set of graphics primitives. In this
example, the bottommost shadow layer could be blurred and become araster layer, while the topmost layer could remain as

higher-order graphics primitives (e.g., text or vector objects). Ultimately, the two layers are composited together and
rendered into the background.

Filter effects introduce an additional step into the traditional 2D graphics pipeline. Consider the traditional 2D graphics
pipeline:

Traditional 2D graphics pipeline

Vector Graphics Code
<circle ...>

<triangle...>
<rect....>

Vector graphics primitives are specified abstractly and rendered onto the output device through a geometric transformation
called the current transformation matrix, or CTM. The CTM allows the vector graphics code to be specified in adevice
independent coordinate system. At rendering time, the CTM accounts for any differences in resolution or orientation of the
input vector description space and the device coordinate system. According to the "painter's model", areas on the device
which are outside of the vector graphic shapes remain unchanged from their previous contents (in this case the dropl et
pattern).

Consider now, altering this pipeline slightly to allow rendering the graphics to an intermediate continuous tone image
which is then rendered onto the output device in a second pass.

Rendering via Continuous Tone
Intermediate Image

Vector Graphics Code
<triangle...>
<rect....>

Continuous Tone Image

> |CTM!
]

ETM x CTM'=CTM

We introduce a new transformation matrix called the Effect Transformation Matrix, or ETM. Vector primitives are
rendered viathe ETM onto an intermediate continuous tone image. Thisimage is then rendered onto the output device
using the standard 2D imaging path via a modified transform, CTM', such that the net effect of ETM followed by CTM' is
equivalent to the original CTM. It isimportant to note that the intermediate continuous tone image contains coverage
information so that non rendered parts of the original graphic are transparent in the intermediate image and remain
unaffected on the output device, as required by the painter's model. A physical analog to this processis to imagine
rendering the vector primitives onto a sheet of clear acetate and then transforming and overlaying the acetate sheet onto the
output device. The resulting imaging model remains as device-independent as the original one, except we are now using
the 2D imaging model itself to generate images to render.

So far, we really haven't added any new expressiveness to the imaging model. What we have doneis reformulated the
traditional 2D rendering model to allow an intermediate continuous tone rasterization phase. However, now we can extend
this further by allowing the application of image processing operations on the intermediate image, still without sacrificing
device independence. In our model, the intermediate image can be operated on by a number of image processing operations
which can effect both the color and coverage channels. The resulting image(s) are then rendered onto the device in the
same way as above.

Rendering via Continuous Tone
Intermediate Step with Image Processing

Vector Graphics Code

<circle ...>
<triangle...>
<rect....>

Continuous Tone Image

Image Processing

- > Filter Pipeline

[”””. - lcra

ETMx CTM'=CTM

om”

In the picture above, the intermediate set of graphics primitives was processed in two ways. First a simple bump map
lighting calculation was applied to add a 3D ook, then another copy of the original layer was offset, blurred and colored
black to form a shadow. The resulting transparent layers were then rendered via the painter's model onto the output device.

15.4 Defining and invoking a filter effect

Filter effects are defined by a <filter> element with an associated ID. Filter effects are applied to elements which have a
filter: property which reference a <filter> element. Hereis an example:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. wW3. or g/ Graphi cs/ SVE@ SVG 19991203. dt d" >
<svg W dt h="4in" height="3in">
<def s>

<filter id="Cool TextEffect">
<I-- Definition of filter goes here -->
</filter>
</ def s>
<text style="filter:url (#Cool TextEffect)">Text with a cool effect</text>
</ svg>

Download this example

When applied to grouping elements such as'g', the filter: property applies to the contents of the group as awhole. The
effect isasif the group's children did not render to the screen directly but instead just added their resulting graphics
primitives to the group's graphics display list (GDL), which is then passed to the filter for processing. After the group filter
is processed, then the result of the filter is rendered to the target device (or passed onto a parent grouping element for
further processing in cases such as when the parent has its own group filter).

The <filter > element consists of a sequence of processing nodes which take a set of graphics primitives as input, apply

file:///d|/jon/svgspec/samples/filters01.xml

filter effects operations on the graphics primitives, and produce a modified set of graphics primitives as output. The
processing nodes are executed in sequential order. The resulting set of graphics primitives from the final processing node
(feMerge in the example below) represents the result of the filter.

Example filters02 renders some text with a shadowing effect.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ Gaphi cs/ SVE SVG 19991203. dt d" >
<svg W dt h="278px" hei ght ="118px" >
<def s>
<filter id="Shadow'>
<f eGaussi anBl ur i n="Sour ceAl pha"
st dDevi ati on="3"
resul t ="bl urredAl pha" />
<feOf fset in="blurredAl pha"
dx="2" dy="1"
resul t =" of f set Bl urr edAl pha" />
<feDi ffuseLighting in="blurredA pha"
di f fuseConst ant =". 5"
surfaceScal e="5"
resul t Scal e="5"
i ght Col or ="whi te"
resul t ="bunmpMapDi f f use" >
<f eDi st ant Li ght azi nut h="135" el evati on="60"/>
</ feD ffuseLi ghti ng>
<f eConposi te i n="bunpMapDi f f use" i n2="Sour ceG aphi c"
operator="arithnetic" ki="1"
result="litPaint" />
<f eSpecul ar Li ghting i n="bl urredAl pha"
sur f aceScal e="5"
specul ar Const ant =". 5"
specul ar Exponent =" 10"
I'i ght Col or ="whi te"
resul t ="bunmpMapSpecul ar" >
<feDi stant Li ght azi nut h="135" el evati on="60"/>
</ f eSpecul ar Li ghti ng>
<feConposite in="litPaint" in2="bunpMapSpecul ar"
operator="arithnetic" k2="1" k3="1"
result="litPaint" />
<f eConposite in="litPaint"
i n2="Sour ceAl pha"
operator="in"
result="litPaint" />
<f eMer ge>
<f eMer geNode i n="of f set Bl urredAl pha" />
<f eMergeNode in="litPaint" />
</ feMerge>
</filter>
</ def s>
<desc>Exanple filters02 - text with shadowi ng effect</desc>

<text style="font-size:36px; fill:red; filter:url (#Shadow)"
x="10px" y="70px">Shadowed Text</text>
</ svg>

Shadowed Text

Example filters02

View this example as SV G (SV G-enabled browsers only)

For most processing nodes, the in (and sometimesin2) attribute identifies the graphics which serve asinput and the result
attribute gives a name for the resulting output. Thein and in2 attributes can point to either:

file:///d|/jon/svgspec/images/filters/filters02.svg

« A built-in keyword. In the example above, the <feGaussianBlur> processing node specifies keyword
SourceGraphic, which indicates that the original set of graphics primitives available at the start of the filter is used

asinput to the processing node.

« A referenceto an earlier result. In the example above, the <feOffset> processing node refers to the most recent
processing node whose result is blurredAlpha. (In this case, that would be the <feGaussianBlur> processing node.)

The default value for in is the output generated from the previous processing node. In those cases where the output from a
given processing node is used as input only by the next processing node, it is not necessary to specify the result on the
previous processing node or the in attribute on the next processing node. In the example above, there are a few cases (show

highlighted) where result and in did not have to be provided.

Filters do not use XML IDsfor results; instead, results can be any arbitrary attribute string value. results only are
meaningful within a given <filter> element and thus have only local scope. If aresult appears multiple times within a
given <filter> element, then a reference to that result will use the closest preceding processing node with the given result.

Forward references to results areinvalid.

The description of the filter' elementsis as follows:

<IENTITY %filterExt "" >
<l ELEMENT filter (feBlend|feFl ood|
feCol or Matri x| f eConponent Tr ansf er |
f eConposi te| febi ffuseLi ghting|feDi spl acement Map|
f eGaussi anBl ur | f el mage| f eMer ge|
f eMor phol ogy| f ek f set | f eSpecul ar Li ghti ng|
feTil e| feTurbul ence|
ani mat e| set

YWilterExt;)* >

ATTLI ST filter

id | D # MPLI ED

xm : 1 ang NMIOKEN #| MPLI ED

xm : space (defaul t|preserve) #l MPLI ED
filterUnits (userSpace | userSpaceOnUse | object Boundi ngBox)
x CDATA #| MPLI ED

y CDATA #l MPLI ED

wi dt h CDATA #l MPLI ED

hei ght CDATA #| MPLI ED

filterRes CDATA #l MPLI ED

%l inkRef Attrs;

xlink: href CDATA #l MPLI ED >

<

Attribute definitions:

filterUnits = "user Space | user SpaceOnUse | objectBoundingBox"
See Filter effects region.

X = "x-coordinate"
See Filter effects region.

y ="y-coordinate"
See Filter effects region.

width = "length"
See Filter effects region.
height = "length"

See Filter effects region.
filterRes = "<number> [<number>]"

See Filter effects region.
xlink:href ="<uri>"

"user Space"

A URI reference to another 'filter' element within the current SV G document fragment. Any attributes which are
defined on the referenced ‘filter' element which are not defined on this element are inherited by this element. If this

element has no defined filter nodes, and the referenced element has defined filter nodes (possibly due to its own
href attribute), then this element inherits the filter nodes defined from the referenced 'filter' element. Inheritance can
beindirect to an arbitrary level; thus, if the referenced filter' element inherits attribute or its filter node specification
due to its own href attribute, then the current element can inherit those attributes or filter node specifications.
Animatable: yes.

Attributes defined el sewhere:
id, xml:lang, xml:space, YoxlinkAttrs;.

The description of the filter' property is as follows:

filter'
Value: <uri> | none
Initial: none
Appliesto: graphics and container elements
Inherited: no
Percentages. N/A
Media: visual
<uri>

A URI reference to a 'filter' element which defines the filter effects that shall be applied to this element.

15.5 Filter effects region

A <filter> element can define aregion on the canvas on which a given filter effect applies and can provide a resolution for
any intermediate continuous tone images used in to process any raster-based processing nodes. The <filter> element has
the following attributes:

« filterUnits={ user Space | user SpaceOnUse | objectBoundingBox }. Defines the coordinate system for attributes
X, ¥, width, height.
If filter Units=" user Space" (the default), X, y, width, height and any length values within the filter definitions
represent values in the current user coordinate system in place at the time when the filter' element is defined.
If filter Units=" user SpaceOnUse", X, y, width, height and any length values within the filter definitions represent
valuesin the current user coordinate system in place at the time when the ‘filter' element is referenced (i.e., the user
coordinate system for the element referencing the 'filter' element via a filter' property).
If filter Units=" objectBoundingBox", then x, y, width, height and any length values within the filter definitions
represent valuesin an abstract coordinate system where (0,0) is the (minx,miny) in user space of the tight bounding
box of the object referencing the filter, and (1,1) is the (maxx,maxy) corner of the bounding box. (Note: the
bounding box represents the maximum extent of the shape of the object in X and Y with respect to the user
coordinate system of the object exclusive of stroke-width.)

« X, Y, width, height, which indicate the rectangle for the largest possible offscreen buffer, where the values are
either relative to the current user coordinate system (if filterUnits="userSpace") or relative to the current object (if
filterUnits="target-object"). Note that the clipping path used to render any graphics within the filter will consists of
the intersection of the current clipping path associated with the given object and the rectangle defined by X, v,
width, height. The default values for x, y, width, height are 0%, 0%, 100% and 100%, respectively.

« filterRes (which hasthe form x- pi xel s [y- pi xel s]) indicatesthe width/height of the intermediate images
in pixels. If not provided, then areasonable default resolution appropriate for the target device will be used. (For
displays, an appropriate display resolution, preferably the current display's pixel resolution, is the default. For
printing, an appropriate common printer resolution, such as 400dpi, is the default.)

For performance reasons on display devices, it is recommended that the filter effect region is designed to match
pixel-for-pixel with the background.

It is often necessary to provide padding space because the filter effect might impact bits slightly outside the tight-fitting
bounding box on a given object. For these purposes, it is possible to provide negative percentage values for x, y and
percentages values greater than 100% for width, height. For example, x="-10%" y="-10%" width="120%"

height="120%".

15.6 Common attributes

The following two attributes are available for all processing nodes (the exception is feMerge and fel mage, which do not
have an in attribute):

result Assigned name for this node. If supplied, then the GDL resulting after
processing the given node is saved away and can be referenced asinput to a
subsequent processing node.

in If supplied, then indicates that this processing node uses either the output of
previous node as input or use some standard keyword to specify alternate input.
(For thefirst processing node, the default in is SourceGraphic.) Available
keywords representing pseudo image inputs include:

« SourceGraphic. Thisbuilt-in input represents the graphics elements that
were the original input into the <filter> element. For raster effects
processing nodes, the graphics elements will be rasterized into an
initially clear RGBA raster in image space. Pixels|eft untouched by the
original graphic will be left clear. Theimage is specified to be rendered
in linear RGBA pixels. The apha channel of thisimage captures any
anti-aliasing specified by SVG. (Since the raster islinear, the alpha
channel of thisimage will represent the exact percent coverage of each
pixel.)

« SourceAlpha. Same as SourceGraphic except only the alpha channel is
specified. The color channels of thisimage are implicitly black and are
unaffected by any image processing operations. Again, pixels unpainted
by the SourceGraphic will be 0. The SourceAlphaimage will also
reflects any Opacity settings in the SourceGraphic. If thisoption is used,
then some implementations might need to rasterize the graphics elements
in order to extract the alpha channel.

« Backgroundl mage This built-in input represents an image snapshot of
the canvas under the filter region at the time that the <filter> element
was invoked. See Accessing the background image.

« BackgroundAlpha Same as Backgroundl mage except only the alpha
channel is specified. See Accessing the background image.

« FillPaint Thisimage represents the color data specified by the current
SVG rendering state, transformed to image space. The FillPaint image
has conceptually infinite extent in image space. (Sinceit is usually either
just aconstant color, or atile). Frequently thisimage is opaque
everywhere, but it might not beif the "paint” itself has alpha, asin the
case of an alphagradient or transparent pattern. For the simple case
where the source graphic represents asimple filled object, itis
guaranteed that: Sour ceG aphi ¢ =
In(FillPaint, SourceAl pha) whereln(A,B) represents the
resulting image of Porter-Duff compositing operation A in B (see
below).

« StrokePaint Similar to FillPaint, except for the stroke color as specified
in SVG. Again for the simple case where the source graphic represents
stroked path, it is guaranteed that: Sour ceGr aphic =
I n(St rokePai nt, Sour ceAl pha) where In(A,B) represents the
resulting image of Porter-Duff compositing operation A in B (see
below).

Common
Attributes

X, Y, width, heightThe sub-region which restricts cal culation and rendering of the
given filter node. These attributes would be defined according to the same rules
as other filter effects coordinate and length attributes. These subregion attributes
make ‘felmage’ consistent to the 'image’ element and to provide enough

information so that feTile can figure out how to stitch together tiles.
X,y,width,height default to the union of the subregions defined for all referenced
nodes. If there are no referenced nodes (e.g., for felmage or feTurbulence, which
have no "in", or if in="SourceGraphic") or for feTile (which is specid), the
default subregion is 0%,0%,100%,100%, where percentages are relative to the
dimensions of the filter region. x,y,width,height act asa hard clip. All
intermediate offscreens are defined to not exceed the intersection of
X,y,width,height with the filter region. Thefilter region and any of the
X,y,width,height subregions are to be set up such that all offscreens are made big
enough to accommodate any pixels which even partly intersect with either the
filter region of the x,y,width,height subregions. felmage scales the referenced
image to fit exactly into x,y,width,height. feTile references a previous filter node
and then stitches the tiles together based on the x,y,width,height values of the
referenced filter node.

15.7 Accessing the background image

Two possible pseudo input images for filter effects are Backgroundl mage and BackgroundAlpha, which each represent an
image snapshot of the canvas under the filter region at the time that the <filter> element isinvoked. Backgroundimage
represents both the color values and apha channel of the canvas (i.e., RGBA pixel values), whereas BackgroundAlpha
represents only the alpha channel.

Implementations of SV G user agents often will need to maintain supplemental background image buffersin order to
support the Backgroundl mage and BackgroundAlpha pseudo input images. Sometimes, the background image buffers will

contain an in-memory copy of the accumulated painting operations on the current canvas.

Because in-memory image buffers can take up significant system resources, SV G content must explicitly indicate to the
SVG user agent that the document needs access to the background image before Backgroundlmage and BackgroundAlpha
pseudo input images can be used. The property which enables access to the background image is ' enable-background':

‘enable-background'

Value: accumulate | new [(<x> <y> <width> <height>)] | inherit
Initial: accumulate

Appliesto: container elements

Inherited: no

Percentages. N/A

Media: visual

‘enable-background' isonly applicable to container elements and specifies how the SV G user agents manages the
accumulation of the background image.

A value of new indicates two things:
« It enablesthe ability of children of the current container element to access the background image.

« Itindicatesthat anew (i.e., initially fully transparent) background image canvas is established and that (in effect)
all children of the current container element shall be rendered into the new background image canvas in addition to

being rendered onto the target device.

A meaning of enable-background: accumulate (the initial/default value) depends on context:

« If an ancestor container element has a property value of ‘enable-background:new', then all graphics elements within
the current container element are rendered both onto the parent container element's background image canvas and
onto the target device.

« Otherwise, there is no current background image canvas, so it is only necessary to render graphics elements onto
the target device. (No need to render to the background image canvas.)

If afilter effect specifies either the Backgroundlmage or the BackgroundAlpha pseudo input images and no ancestor
container element has a property value of 'enable-background:new’, then the background image request is technically in
error. Processing will proceed without interruption (i.e., no error message) and a fully transparent image shall be provided

in response to the request.

The optional (<x>,<y>,<width>,<height>) parameters on the new value indicate the sub-region of user space where
access to the background image is allowed to happen. These parameters enable the SV G user agent potentially to allocate
smaller temporary image buffers than the default values, which might require the SV G user agent to alocate buffers as
large as the current viewport. Thus, the values <x>,<y> <width>,<height> act as a clipping rectangle on the background

image canvas.

15.8 Filter processing nodes

Thefollowing is acatalog of the individual processing nodes. Unless otherwise stated, all image filters operate on linear
premultiplied RGBA samples. Filters which work more naturally on non premultiplied data (feColorMatrix and
feComponentTransfer) will temporarily undo and redo premultiplication as specified. All raster effect filtering operations
take 1to N input RGBA images, additional attributes as parameters, and produce a single output RGBA image.

NodeType

]feBIend

Processing Node-Specific
Attributes

mode, One of the image blending modes (see table below). Default is: normal

in2, The second image ("B" in the formulas) for the compositing operation.

Description

Thisfilter composites two objects together using commonly used high-end imaging software
blending modes. Performs the combination of the two input images pixel-wise in image
space.

Implementation Notes

The compositing formula, expressed using premultiplied colors:

ar =1 - (1-ga)*(1-gb)

cr = (1-qga)*cb + (1-gb)*ca + ga*qgb*(Bl end(ca/qa, ch/gb))
wher e

Result opacity

Result color (RGB) - prenultiplied

o
[
o nn

Opacity value at a given pixel for image A
gb Opacity value at a given pixel for inmage B
ca = Color (RGB) at a given pixel for inage A - premultiplied
cb = Color (RGB) at a given pixel for image B - prenultiplied
Bl end = | mage conpositing function, depending on the conpositing node

The following table provides the list of available image blending modes:

Image Blending Mode Blend() function

normal Ca

| multiply | (calga)* (cb/gb)

|screen |1—(1—(ca/qa))* (1-(cb/gb))
| darken |(to be provided later)

| lighten |(to be provided later)

NodeType

]feCoIorI\/Iatrix

Processing Node-Specific
Attributes

type, string (one of: matrix, saturate, hueRotate, luminanceToAlpha)

values

« For matrix: space-separated list of 20 element color transform (a00 a0l a02 a03 a04
al0 all ... a34). For example, the identity matrix could be expressed as:

type="matrix"
values="1 0000 01000 00100 00O010"

« For saturate: one real number value (0 to 1) or one percentage value (e.g., 50%)
« For hueRotate: one real number value (degrees)
« Not applicable for luminanceToAlpha

Description

Thisfilter performs

| R | | a00 a0l a02 a03 a04 | | R
G		al0 all al2 al3 al4		G
B	=	a20 a21 a22 a23 a24	*	B
A	a30 a31 a32 a33 a34		A	
1		o o o 0 1		1]

for every pixel. The RGBA and R'G'B'A' values are automatically non-premultiplied
temporarily for this operation.

The following shortcut definitions are provide for compactness. The following tables show
the mapping from the shorthand form to the corresponding longhand (i.e., matrix with 20
values) form:

saturate value (0..1)
(can be expressed as a percentage val ue, such as "50%)

R		0.213+0.787s 0.715-0.715s 0.072-0.072s 0 O		R
G		0.213-0.213s 0.715+0.285s 0.072-0.072s 0 O		G
B	=]0.213-0.213s 0.715-0.715s 0.072+0.928s 0 0	*	B	
A		0 0 0 1 0]	A	
1		0 0 0 0 1		1]
hueRot at e val ue (0..360)				
R		a00 a01 a02 0 O		R
G		al0 all al2 0 O]	G	
B	=] a20 a21 a22 0 O] *	B		
A		O 0 0 1 0		A
1		0 0 0 0 1]	1]	

where the ternms a00, a0l, etc. are calculated as follows:

| a0l a0l a02 | [+0.213 +0.715 +0.072]
| al0 all al2 | = [+0.213 +0.715 +0.072] +
| a20 a21 a22 | [+0.213 +0.715 +0.072]

0.787 -0.715 -0.072]
0.212 +0.285 -0.072] +
0

[
cos(hueRotate value) * [
[-0.213 -0.715 +0.928]

[-0.213 -0.715+0. 928]
sin(hueRotate value) * [+0.143 +0.140-0. 283]
[-0.787 +0.715+0.072]

Thus, the upper left termof the hue matrix turns out to be:

. 213 + cos(hueRotate value)*.787 - sin(hueRotate val ue)*.213

I um nanceToAl pha

| R | | 0 0 0 0 0] | R
| G | [0 0 00 0] | G]J
| B | = | 0 0 0 0 0] *| B
| A | 0.299 0.587 0.114 0 O] | A|

[1 | [0 0 00 1] | 1]

Implementation issues

These matrices often perform an identity mapping in the apha channel. If that is the case, an
implementation can avoid the costly undoing & redoing of the premultiplication for all pixels
with A =1.

’NodeType]feComponentTran sfer
Processing Node-Specific None

Attributes

Processing Node-Specific

Each 'feComponentTransfer' element needs to have at most one each of the following
sub-elements, each of which is an empty element:

'feFuncR, transfer function for red component
'feFuncG', transfer function for green component
‘feFuncB', transfer function for blue component
'feFuncA!, transfer function for alpha component

Each of these sub-elements (i.e., 'feFuncR, ‘feFuncG', ‘feFuncB', 'feFuncA") can have the
following attributes:

Common parametersto al transfer modes:
type, string (one of: identity, table, linear, gamma)

Sub-Elements Parameters specific to particular transfer modes:
For table:
tableValues, list of real number valuesvO,v1,...vn.
For linear:
slope, real number value giving slope of linear equation.
intercept, real number value giving Y -intercept of linear equation.
For gamma (see descriptiong below for descriptions):
amplitude, real number value.
exponent, real number value.
offset, real number value.
This filter performs component-wise remapping of data as follows:
R = feFuncR(R)
G = feFunc G)
B' = feFuncB(B)
A = feFuncA(A)
for every pixel. The RGBA and R'G'B'A' values are automatically non-premultiplied
temporarily for this operation.
When type="table", the transfer function consists of alinearly interpolated lookup table.
Description
kIN <= C < (k+1)/N => C' =vk + (C - k/N)*N * (vk+1 - vk)
When type="linear", the transfer function consists of alinear function describes by the
following equation:
C' = dope*C + offset
When type="gamma", the transfer function consists of the following equation:
C' = amplitude* pow(C, exponent) + offset
Thisfilter allows operations like brightness adjustment, contrast adjustment, color balance or
Comments thresholding. We might want to consider some predefined transfer functions such as identity,

gamma, SRGB [SRGB] transfer, sine-wave, €etc.

Implementation issues

Similar to the feColorMatrix filter, the undoing and redoing of the premultiplication can be
avoided if feFuncA istheidentity transformand A = 1.

NodeType

feComposite

Processing Node-Specific
Attributes

operator, one of (over, in, out, atop, xor, arithmetic). Default is: over.
arithmetic-constants, k1,k2,k3,k4

in2, The second image ("B" in the formulas) for the compositing operation.

Description

Thisfilter performs the combination of the two input images pixel-wise in image space.
over, in, atop, out, xor use the Porter-Duff compositing operations.
For these operations, the extent of the resulting image can be affected.

In other words, even if two images do not overlap in image space, the extent for over will
essentialy include the union of the extents of the two input images.

arithmetic evaluates k1*i1*i2 + k2*i1 + k3*i2 + k4, using componentwise arithmetic with
the result clamped between [0..1].

Comments

arithmetic are useful for combining the output from the feDiffuseLighting and
feSpecularLighting filters with texture data. arithmetic is also useful for implementing

dissolve.

NodeType

feDiffuseLighting

Processing Node-Specific
Attributes

resultScale (Multiplicative scale for the result. This allows the result of the feDiffuselighting
nodeto represent values greater than 1)

surfaceScale height of surface when Ain = 1.

diffuseConstant kd in Phong lighting model. Range 0.0 to 1.0

lightColor RGB

Processing Node-Specific
Sub-Elements

One of

<f eDi st ant Li ght
<f ePoi nt Li ght
<f eSpot Li ght

azi mut h= el evation= >
X= y= z= >
X=y= z=

poi nt sAt X=

poi nt sAt Y=

poi nt sAt Z=

specul ar Exponent =>

Light an image using the alpha channel as a bump map. The resulting image is an RGBA
opaque image based on the light color with alpha= 1.0 everywhere. The lighting caculation
follows the standard diffuse component of the Phong lighting model. The resulting image
depends on the light color, light position and surface geometry of the input bump map. Color
or texture is mean to be applied viaa multiply (mul) composite operation.

Dr = (kd * NL * Lr) / resultScale
Dg = (kd * NL * Lg) / resultScale
Db = (kd * NNL * Lb) / resultScale
Da = 1.0 / resultScale

where

kd = diffuse lighting constant

N = surface normal unit vector, afunction of x and y

L = unit vector pointing from surface to light, a function of x andy in the point and spot light
cases

Lr,Lg,Lb=RGB components of light, a function of x and y in the spot light case

resultScale = overall scaling factor

Description

N isafunction of x and y and depends on the surface gradient as follows:

The surface described by the input alphaimage Ain (X,y) is.
Z (x,y) = surfaceScale * Ain (x,y)

Surface normal is calculated using the Sobel gradient 3x3 filter:

Nx (x,y)= - surfaceScale * 1/4*((| (x+1,y-1) + 2*I(x+1,y)
+ 1 (x+1,y+1))
(1(x-1,y-1) + 2*1(x-1,y)
+1(x-1,y+1)))
Ny (X,y)= - surfaceScale * 1/4*((1 (x-1,y+1) + 2*I(x,y+1) + I (x+1,y+1))

(I(x-1,y-1) + 2*1(x,y-1)
+ 1(x+1,y-1)))
Nz (x,y) = 1.0

N = (Nx, Ny, Nz) / Norn((Nx, Ny, Nz))
L, the unit vector from the image sample to the light is calculated as follows:

For Infinite light sources it is constant:

Lx

Ly
Lz

cos(azi nuth) *cos(el evation)
-sin(azi mut h)*cos(el evati on)
sin(el evation)

For Point and spot lightsit isafunction of position:

Lx

Ly
Lz

Lightx - x
Lighty - vy
Lightz - Z(x,y)

L = (Lx, Ly, Lz) / Nornm(Lx, Ly, Lz)
where Lightx, Lighty, and Lightz are the input light position.

Lr,Lg,Lb, thelight color vector isafunction of position in the spot light case only:

Lr
Lg
Lb

Li ghtr*pow (-L. S), specul ar Exponent)
Li ght g*pow((- L. S), specul ar Exponent)
Li ght b*pow((- L. S), specul ar Exponent)

where Sisthe unit vector pointing from the light to the point (pointsAtX, pointsAtY,
pointsAtZ) in the x-y plane:

Sx poi nt sAt X - Lightx

Sy poi ntsAtY - Lighty

Sz poi ntsAtZ - Lightz

S = (Sx, Sy, Sz) / Norn(Sx, Sy, Sz)

If L.Sispositiveno light ispresent. (Lr=Lg=Lb=0)

Comments

Thisfilter produces alight map, which can be combined with atexture image using the
multiply term of the arithmetic ‘feComposite' compositing method. Multiple light sources can
be simulated by adding several of these light maps together before applying it to the texture
image.

NodeType

feDisplacementMap

Processing Node-Specific
Attributes

scale

xChannel Selector one of R,G,B or A.

yChannel Selector one of R,G,B or A

in2, The second image ("B" in the formulas) for the compositing operation.

Description

Uses Input2 to spatially displace Inputl, (similar to the Photoshop displacement filter). This
is the transformation to be performed:

P (x,y) <- P(x + scale * ((XC(x,y) - .5), y + scale * (YC(x,y) - .5))

where P(X,y) is the source image, Inputl, and P(x,y) isthe destination. XC(x,y) and Y C(x,y)
are the component values of the designated by the xChannel Selector and yChannel Selector.
For example, to use the R component of Image2 to control displacement in x and the G
component of Image2 to control displacement iny, set xChannel Selector to "R" and
yChannel Selector to "G".

|Comments

|The displacement map defines the inverse of the mapping performed.

Implementation issues

Thisfilter can have arbitrary non-localized effect on the input which might require
substantial buffering in the processing pipeline. However with this formulation, any
intermediate buffering needs can be determined by scal e which represents the maximum
displacement in either x or y.

NodeType

feFlood

Processing Node-Specific
Attributes

style, to specify the ‘flood-color' and 'flood-opacity’ properties (both non-inheritable) to
specify an RGBA color

|Description

|Creates an image with infinite extent filled with color

NodeType

feGaussianBlur

Processing Node-Specific
Attributes

stdDeviation.

Description

Perform gaussian blur on the input image.

The Gaussian blur kernel is an appoximation of the normalized convolution:
H(x) = exp(-x2/ (2s2)) [/ sqgrt(2* pi*s2)

where's is the standard deviation specified by stdDeviation.
This can be implemented as a separable convolution.

For larger values of 's' (s >= 2.0), an approximation can be used: Three successive box-blurs
build a piece-wise quadratic convolution kernel, which approximates the gaussian kernel to
within roughly 3%.

let d = floor(s * 3*sqrt(2*pi)/4 + 0.5)

... if disodd, use three box-blurs of size'd’, centered on the output pixel.

... if diseven, two box-blurs of size'd' (the first one centered one pixel to the left, the second
one centered one pixel to the right of the output pixel one box blur of size'd+1' centered on
the output pixel.

Implementation | ssues

Frequently this operation will take place on alpha-only images, such as that produced by the
built-in input, SourceAlpha. The implementation may notice this and optimize the single
channel case. If the input has infinite extent and is constant, this operation has no effect. If
the input has infinite extent and is atile, the filter is evaluated with periodic boundary
conditions.

NodeType

felmage

Processing Node-Specific
Attributes

href, reference to external image data.
transform, supplemental transformation specification

Refers to an external image which isloaded or rendered into an RGBA raster. If
imaging-matrix is not specified, the image takes on its natural width and height and is
positioned at 0,0 in image space.

Attributes

Description
Theimageref could refer to an external image, or just be a reference to another piece of SVG.
This node produces an image similar to the builtin image source SourceGraphic except from
an external source.

NodeType feMerge

Processing Node-Specific none

Processing Node-Specific

Each 'feMerge’ element can have any number of 'feMergeNode' subelements, each of which

Sub-Elements has an in attribute.
Description Composites input image layers on top of each other using the over operator with Inputl on
P the bottom and the last specified input, InputN, on top.
Many effects produce a number of intermediate layersin order to create the final output
Comments image. Thisfilter allows us to collapse those into a single image. Although this could be done

by using n-1 Composite-filters, it is more convenient to have this common operation
availablein thisform, and offers the implementation some additional flexibility (see below).

Implementation issues

The canonical implementation of feMerge is to render the entire effect into one RGBA layer,
and then render the resulting layer on the output device. In certain cases (in particular if the
output device itself is a continuous tone device), and since merging is associative, it might be
a sufficient approximation to evaluate the effect one layer at atime and render each layer
individually onto the output device bottom to top.

NodeType

feMorphology

Processing Node-Specific
Attributes

operator,one of erode or dilate.
radius, extent of operation

Description

Thisfilter isintended to have a similar effect as the min/max filter in Photoshop and the
width layer attribute in ImageStyler. It is useful for "fattening” or "thinning" an alpha
channel,

The dilation (or erosion) kernel is asguare of side 2*radius + 1.

Implementation issues

Frequently this operation will take place on alpha-only images, such as that produced by the
built-in input, SourceAlpha. In that case, the implementation might want to optimize the
single channel case.

If the input has infinite extent and is constant, this operation has no effect. If the input has

infinite extent and is atile, the filter is evaluated with periodic boundary conditions.

’NodeType ’feOffS et
Processing Node-Specific
Attributes dx.ay

|Description

|Offsets an image relative to its current position in the image space by the specified vector.

|Comments

|This isimportant for effects like drop shadow etc.

NodeType

feSpecularLighting

surfaceScale height of surface when Ain = 1.
Processing Node-Specific specular Constant ks in Phong lighting model. Range 0.0to 1.0
Attributes specular Exponent exponent for specular term, larger is more "shiny”. Range 1.0 to 128.0.
lightColor RGB
One of
<feDi st ant Li ght azinmuth= el evati on= >
Processing Node-Specific Sfeforntlight x=y=z=>
Sub-Elements <fespotbignt péi n%/sAtZX=
poi nt sAt Y=
poi nt sAt Z=
specul ar Exponent =>
Light an image using the al pha channel as a bump map. The resulting image is an RGBA
image based on the light color. The lighting caculation follows the standard specular
component of the Phong lighting model. The resulting image depends on the light color, light
position and surface geometry of the input bump map. The result of the lighting calculation is
added. We assume that the viewer is at infinity the z direction (i.e the unit vector in the eye
direction is (0,0,1) everywhere.
Sr = ks * pow(N. H, specul ar Exponent) * Lr
Sg = ks * pow(N. H, specul ar Exponent) * Lg
Sb = ks * pow(N. H, specul ar Exponent) * Lb
Sa = max(Sr, Sg, Sbh)
wher e
ks = specul ar lighting constant
N = surface normal unit vector, a function of x and y
D&cription H = "hal fway" unit vectorbetween eye unit vector and light unit vector
Lr,Lg,Lb = RGB conponents of |ight
See feDiffuselighting for definition of N and (Lr, Lg, Lb).
The definition of H reflects our assumption of the constant eye vector E = (0,0,1):
H= (L + E) / Norn(L+E)
where L isthe light unit vector.
Unlike the feDiffuseLighting, the feSpecularLighting filter produces a non-opague image.
Thisis dueto the fact that specular result (Sr,Sg,Sb,Sa) is meant to be added to the textured
image. The alpha channel of the result is the max of the color components, so that where the
specular light is zero, no additional coverage is added to the image and a fully white
highlight will add opacity.
Thisfilter produces an image which contains the specular reflection part of the lighting
Comments calculation. Such amap isintended to be combined with a texture using the add term of the
arithmetic Composite method. Multiple light sources can be simulated by adding several of
these light maps before applying it to the texture image.
P The feDiffuseLighting and feSpecularLighting filters will often be applied together. An
Implementation issues implementation may detect this and cal culate both maps in one pass, instead of two.

’NodeType]feTiIe
Processing Node-Specific none

Attributes

|Description

|Creates an image with infinite extent by replicating source image in image space.

NodeType

feTurbulence

Processing Node-Specific
Attributes

baseFreguencyX

baseFrequencyY

numOctaves

stitchTiles

type, one offractal Noise or turbulence.

Description

Adds noise to an image using the Perlin turbulence-function. It is possible to create
bandwidth-limited noise by synthesizing only one octave. For a detailed description the of
the Perlin turbulence-function, see " Texturing and Modeling", Ebert et a, AP Professional,
1994.

If the input image isinfinite in extent, as is the case with a constant color or atile, the
resulting image will have maximal size in image space.

If one of baseFrequencyX or baseFrequencyY attributesis not provided but the other is, then
the missing attribute takes on the value from the other attribute.

stitchTiles can take on the values "stitch" or "noStitch”, where "noStitch” is the default. If
dtitchTiles="dtitch", then automatically adjust baseFrequencyX such that the feTurbulence
node's width (i.e., the width of the current subregion) contains an integral number of the
Perlin tile width for the first octave. Do the corresponding adjustment for baseFrequencyY .
The baseFrequency will be adjusted up or down depending on which way has the smallest
relative (not absolute) change. Here's how: Given the frequency, calculate
lowFreg=floor(width* frequency)/width and hiFreg=ceil (width* frequency)/width. If
frequency/lowFreq < hiFreg/frequency then use lowFreq, else use hiFreq. While generating
turbulence values, generate lattice vectors as normal for Perlin Noise, except for those lattice
points that lie on the right or bottom edges of the active area (the size of the resulting tile). In
those cases, copy the lattice vector from the opposite edge of the active area.

|Comments

|This filter alows the synthesis of artificial textures like clouds or marble.

Implementation issues

It might be useful to provide an actual implementation for the turbulence function, so that
consistent results are achievable.

15.9 DOM interfaces

15.9.1 Interface SVGFilterElement

The SV GFilterElement interface corresponds to the filter' element.

interface SVGFilterEl ement : SVGEl enent {

/1 filterUnit Types

const unsigned short kSVG FI LTERUNI TS_UNKNOMN

const unsigned short kSVG FI LTERUNI TS_USERSPACE

const unsigned short kSVG FI LTERUNI TS_USERSPACEONUSE
const unsigned short kSVG FI LTERUNI TS_OBJECTBOUNDI NGBOX

nnonon
whRe

attribute unsigned short filterUnits;

attribute SVGength x;
attribute SVG.ength vy;

attribute SVGength wi dth;
attribute SVGength height;
attribute SVGNunber filterRes;

15.9.2 Interface SVGStandardFilterNodeElement

The SV GStandardFilterNodeElement interface is the base interface for the DOM interfaces for the most of the elements
that can be children of a'filter' element.

interface SVGStandardFilterNodeEl enent : SVGEl ement {
attribute DOVBtring in;
attribute DOVBtring result;

b
??7? Need to do all of thefilter elements

??7? Specia interface for filter property might be necessary. feColorMatrix will be complicated. tableVaueswill be
complicated

previous next contents properties index

previous next contents properties index

16 Interactivity

Contents

e 16.1 Introduction

o 16.2 User interface events

o 16.3 Pointer events

e 16.4 Processing order for user interface events

o 16.5 The 'pointer-events property

e 16.6 Zooming panning and magnification
e 16.7 Cursors
o 16.7.1 Introduction to cursors

o 16.7.2 The'cursor' property

o 16.7.3 The 'cursor' element

« 16.8 DOM interfaces
o 16.8.1 Interface SV GCursorElement
o 16.8.2 Interface SVGViewElement

16.1 Introduction

SV G content can be interactive (i.e., responsive to user-initiated events) by utilizing the following
featuresin the SV G language:

« User-initiated actions such as button presses on the pointing device (e.g., amouse) or keyboard
events can cause animations or scripts to execute.

« Theuser can initiate hyperlinks to new web pages (see Links out of SV G content: the 'a’ element)
by actions such as mouse clicks when the pointing device is positioned over particular graphics
elements.

« Inmany cases, depending on the value of the enableZoomAndPanControls attribute on the 'svg'
element and on the characteristics of the user agent, users are able to zoom into and pan around
SVG content.

« User movements of the pointing device can cause changes to the cursor that shows the current
position of the pointing device.

This chapter describes:

« information about user interface events, including under which circumstances user interface
events are triggered

« how to indicate whether a given document can be zoomed and panned

« how to specify which cursors to use

Related information can be found in other chapters:
« hyperlinks are discussed in Links

« scripting and event attributes are discussed in Scripting
o SVG'sreationship to DOM?2 eventsis discussed in Relationship with DOM 2 event model
« animation isdiscussed in Animation

16.2 User interface events

On user agents which support interactivity, it is common for authors to define SV G document such that
they are responsive to user interface events. Among the set of possible user events are pointer events,

keyboard events, and document events.

In response to user interface (Ul) events, the author might start an animation, perform a hyperlink to
another web page, highlight part of the document (e.g., change the color of the graphics elements which
are under the pointer), initiate a "roll-over" (e,g., cause some previousy hidden graphics elements to
appear near the pointer) or launch a script which communi cates with a remote database.

For all Ul event-related features defined as part of the SV G language via event attributes or animation,
the event model corresponds to the event bubbling model described in DOM2 [DOM2-EVBUBBLE].
The event capture model from DOM2 [DOM2-EV CAPTURE] can only be established from DOM
method calls.

16.3 Pointer events

User interface events that occur because of user actions performed on a pointer device are called pointer
events.

Many systems support pointer devices such as amouse or trackball. On systems which use a mouse,
pointer events consist of actions such as mouse movements and mouse clicks. On systems with a
different pointer device, the pointing device often emulates the behavior of the mouse by providing a
mechanism for equivalent user actions, such as a button to press which is equivalent to a mouse click.

For each pointer event, the SV G user agent determines the target element of a given pointer event. The
target element is the topmost graphics element whose relevant graphics content is under the pointer at
the time of the event. (See property 'pointer-events for a description of how to determine the situations

in which a graphic element receives pointer events.)

The event is either initially dispatched to the target element, to one of the target element's ancestors, or
not dispatched, depending on the following:

« If there are no graphics elements whose relevant graphics content is under the pointer (i.e., there

IS no target element), the event is not dispatched.

« Otherwise, thereisatarget element. If there is an ancestor of the target el ement which has
specified an event handler with event capturing [DOM 2-EV CAPTURE] for the given event, then
the event is dispatched to that ancestor element.

« Otherwisg, if the target element has an appropriate event handler for the given event, the event is
dispatched to the target element.

« Otherwise, each ancestor of the target element (starting with itsimmediate parent) is checked to
seeif it has an appropriate event handler. If an ancestor is found with an appropriate event
handler, the event is dispatched to that ancestor element.

o Otherwise, the event is discarded.

When event bubbling [DOM2-EVBUBBLE] is active, descendant elements receive events before their
ancestors. Thus, if a'path’ element isachild of a'g' element and they both have event listeners for click
events, then the event will be dispatched to the 'path’ element before the 'g’ element.

When event capturing [DOM2-EV CAPTURE] is active, ancestor elements receive events before their
descendants.

After an event isinitially dispatched to a particular element, unless an appropriate action has been taken
to prevent further processing (e.g., by invoking the preventCapture() or preventBubble() DOM method
call), the event will be passed to the appropriate event handlers (if any) for that element's ancestors (in
the case of event bubbling) or that element's descendants (in the case of event capture) for further
processing.

16.4 Processing order for user interface events

The processing order for user interface eventsis as follows:

« Event handlers assigned to the topmost graphics element under the pointer (and the various
ancestors of that graphics element) receive the event first. If none of the activation event handlers
take an explicit action to prevent further processing of the given event (e.g., by invoking the
preventDefault() DOM method), then the event is passed on for:

« Processing of any relevant CSS2's dynamic pseudo-classes (i.e., :hover, :active and :focus)
[CSS2-DYNPSEUDQ], after which the event is passed on for:

« (For those user interface events which invoke hyperlinks, such as mouse clicks in some user
agents) Link processing. If ahyperlink isinvoked in response to a user interface event, the

hyperlink typically will disable further activation event processing (e.g., often, the link will
define a hyperlink to another web page). If link processing does not disable further processing of
the given event, then the event is passed on for:

« (For those user interface events which can select text, such as mouse clicks and drags on 'text’
elements) Text selection processing. When atext selection operation occurs, typically it will
disable further processing of the given event; otherwise, the event is passed on for:

« Document-wide event processing, such as user agent facilities to allow zooming and panning of
an SV G document fragment.

16.5 The 'pointer-events' property

In different circumstances, authors may or may not want events to be triggered when the pointer is over
the unfilled interior of a graphics element or the pointer is over an invisible graphics element. The
'pointer-events property specifies under what circumstances a given graphics element receive pointer
events.

'pointer-events

Value: visiblePainted | visibleFill | visibleStroke | visibleFillStroke | visible |
painted | fill | stroke | fillstroke | &l | none | inherit
Initial: visiblePainted
Appliesto: &l elements
Inherited: yes
Percentages. N/A
Media: visual
Animatable: yes
visiblePainted

The given element receives pointer events when the 'visibility' property is set to visible and when

the pointer isover a"painted” area. The pointer is over apainted areaiif it isover the interior
(i.e., fill) of the element and the fill’ property is set to a value other than 'none’ or it is over the

perimeter (i.e., stroke) of the element and the 'stroke’ property is set to avalue other than 'none'.
visibleFill
The given element receives pointer events when the 'visibility' property is set to visible and when
the pointer isover the interior (i.e., fill) of the element. The value of the fill' property does not
effect event processing.
visibleStroke

The given element receives pointer events when the 'visibility' property is set to visible and when
the pointer is over the perimeter (i.e., stroke) of the element. The value of the 'stroke' property
does not effect event processing.

visibleFillStroke

The given element receives pointer events when the 'visibility' property is set to visible and when

the pointer is over either theinterior (i.e., fill) or the perimeter (i.e., stroke) of the element. The
values of the 'fill' and 'stroke' properties do not effect event processing.

visible
The given element receives pointer in all cases when the 'visibility' property is set to visible. The
values of the 'fill' and 'stroke' do not effect event processing.

painted
The given element receives pointer events when the pointer isover a"painted” area. The pointer
isover apainted areaif it is over theinterior (i.e., fill) of the element and the 'fill' property is set
to avalue other than 'none' or it is over the perimeter (i.e., stroke) of the element and the 'stroke'
property is set to avaue other than 'none’. The value of the 'visibility' property does not effect
event processing.

fill
The given element receives pointer events when the pointer isover the interior (i.e., fill) of the

element. The values of the fill' and 'visibility' properties do not effect event processing.

stroke
The given element receives pointer events when the pointer is over the perimeter (i.e., stroke) of
the element. The values of the 'stroke’ and 'visibility' properties do not effect event processing.
fillStroke

The given element receives pointer events when the pointer is over either the interior (i.e., fill) or
the perimeter (i.e., stroke) of the element. The values of the 'fill', 'stroke’ and 'visibility' properties

do not effect event processing.

all
The given element receives pointer in all cases. The values of the 'fill’, 'stroke’ and 'visibility'
properties do not effect event processing.

none

The given element does not receive pointer events.

For text elements, hit detection is performed on a character cell basis. The values visiblePainted,
visibleFill, visibleStroke and visibleFillStroke are all defined to be equivalent to the value visible, and
the values painted, fill, stroke and fillStroke are al defined to be equivalent to the value al.

For raster elements, hit detection can be defined to be dependent on whether the pixel under the pointer
isfully transparent. For any of the values visiblePainted, visibleFill, visibleStroke and visibleFill Stroke,
the raster element receives the event if the 'visibility' property is set to visible and the pixel under the
pointer is not fully transparent. For avalue of visible, the raster element receives the event if the
'visibility' property is set to visible even if the pixel under the pointer is fully transparent. For any of the
values painted, fill, stroke and fillStroke, the raster element receives the event if the the pixel under the
pointer is not fully transparent, no matter what the value is for the 'visibility' property. For avalue of all,
the raster element receives the event even if the pixel under the pointer is fully transparent, no matter
what the value is for the 'visibility' property.

16.6 Zooming panning and magnification

Zooming represents a (potentially) non-uniform scale transformation on an SVG document fragment in
response to a user interface action. All elements which are specified in user coordinates will scale
uniformly, but elements which use CSS unit identifiers to define coordinates or lengths may be
transformed differently. A zoom operation has the effect of a supplemental scale and translate
transformation inserted into the transformation hierarchy between the outermost 'svg' element and its
children, asif an extra'g' element enclosed all of the children and that 'g' element specified a
transformation to achieve the desired zooming effect.

Panning represents a trandation (i.e., a shift) transformation on an SV G document fragment in response
to auser interface action.

Magnification represents complete, uniform transformation on an an SV G document fragment, where
the magnify operation scales al graphical elements by the same amount. A magnify operation has the
effect of a supplemental scale and trand ate transformation placed at the outermost level on the SVG
document fragment (i.e., outside the outermost 'svg' element)..

Some ability to zoom and pan SV G document fragments are required for SV G user agents that operate

in interaction-capable user environments. Document-level magnification capabilities are recommended
for SV G user agents to enable accessibilty to those who are partially visually impaired.

The outermost 'svg' element in an SV G document fragment has attribute enableZoomAndPanControls,
which takes the possible values of trueand false, with the default being true. If true, in environments that
support user interactivity, the user agent shall provide user interface controlsto allow the user to zoom
in, zoom out and pan around the given document fragment. If false, the user agent shall disable these
controls and not allow the user to zoom and pan on the given document fragment. If a
enableZoomAndPanControls attribute is assigned to an inner 'svg' element, the
enableZoomAndPanControls setting on the inner 'svg' element will have no effect on the SV G user

agent.
Animatable: no.

16.7 Cursors

16.7.1 Introduction to cursors

Some interactive display environments provide the ability to modify the appearance of the pointer,
which is also known as the cursor. Three types of cursors are available:

« Standard built-in cursors
« Platform-specific custom cursors
« Platform-independent custom cursors

The 'cursor' property is used to specify which cursor to use. The ‘cursor' property can be used to

reference standard built-in cursors by specifying a keyword such as crosshair or a custom cursor.
Custom cursors are references via a <uri> and can point to either an external resource such as a
platform-specific cursor file or to a'cursor’ element, which can be used to define a platform-independent

Ccursor.

16.7.2 The 'cursor' property

‘cursor'

Value: [[<uri>]* [auto | crosshair | default | pointer | move)
e-resize | ne-resize | nw-resize | n-resize |
se-resize | sw-resize | s-resize | w-resize|
text | wait | help]] | inherit

Initial: auto

Appliesto: &l elements

Inherited: yes

Percentages: N/A

Media: visual, interactive

Animatable: yes

This property specifies the type of cursor to be displayed for the pointing device. Values have the
following meanings:

auto
The UA determines the cursor to display based on the current context.

crosshair

A simple crosshair (e.g., short line segments resembling a"+" sign).
default

The platform-dependent default cursor. Often rendered as an arrow.
pointer

The cursor is a pointer that indicates alink.
move

Indicates something is to be moved.
e-resize, ne-resize, nw-resize, n-resize, se-resize, Sw-resize, s-resize, w-resize

Indicate that some edge isto be moved. For example, the 'se-resize’ cursor is used when the
movement starts from the south-east corner of the box.

text
Indicates text that can be selected. Often rendered as an |-bar.
wait
Indicates that the program is busy. Often rendered as awatch or hourglass.
help
Help isavailable for the object under the cursor. Often rendered as a question mark or a balloon.
<uri>
The user agent retrieves the cursor from the resource designated by the URI. If the user agent
cannot handle the first cursor of alist of cursors, it shall. attempt to handle the second, etc. If the
:Jizter agent cannot handle any user-defined cursor, it must use the generic cursor at the end of the
Example(s):

P { cursor : url("nything.cur"), url("second.csr"), text; }

The 'cursor' property for SVG isidentical to the 'cursor' property defined in the "Cascading Style Sheets
(CSS) level 2" specification [CSS2], with the exception that SV G user agents must support cursors

defined by the 'cursor’ element.

16.7.3 The 'cursor' element

The 'cursor' element can be used to define a platform-independent custom cursor. A recommended
approach for defining a platform-independent custom cursor isto create a PNG [PNGO01] image and
define a'cursor' element that references the PNG image and identifies the exact position within the
image which is the pointer position (i.e., the hot spot).

<! ELEMENT cursor (%lescTitle;) >
<! ATTLI ST cursor
id | D #l MPLI ED
systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED
x CDATA "O0"
y CDATA "0"
Ul i nkRef Attrs;
xlink: href CDATA #REQUI RED >

Attribute definitions:
x = "<coordinate>"

The x-coordinate of the position in the cursor's coordinate system which represents the precise
position that is being pointed to.
Animatable: yes.

y = "<coordinate>"

The y-coordinate of the position in the cursor's coordinate system which represents the precise
position that is being pointed to.
Animatable: yes.

xlink:href = "<uri>"

A URI reference to the file or element which provides the image of the cursor.
Animatable: yes.

Attributes defined elsewhere:
id, system-required, system-language, %oxlinkAttrs;.

SV G user agents are required to support PNG format images as targets of the xlink:href property.

16.8 DOM interfaces

16.8.1 Interface SVGCursorElement
The SV GCursorElement interface corresponds to the 'cursor' element.

i nterface SVCCursorEl ement : SVCGEl enent {
attribute SVG.ength x;
attribute SVG.ength vy;

attribute DOVBtring role;
attribute DOVBtring title;
attribute DOVBtring show,
attribute DOVBtring actuate;
attribute DOVBtring href;

16.8.2 Interface SVGViewElement
The SVGViewElement interface corresponds to the 'view' element.

interface SVGVi ewEl enent : SVCEl enent {
/1l Object-oriented access
SVGRect vi ewBox;
SVGPr eserveAspect Rati o preserveAspect Rati o;
bool ean enabl eZoomAndPanCont r ol s;
SVGEl enent vi ewTar get ;

previous next contents properties index

previous next contents properties index

17 Linking

Contents

o 17.1Linksout of SVG content: the 'a element
o 17.2 Linking into SVG content: URI fragments and SV G views
o 17.2.1 Introduction: URI fragments and SV G views
o 17.2.2 SVG fragment identifiers
o 17.2.3 Predefined views: the 'view' element
« 17.3DOM interfaces
o 17.3.1 Interface SV GAElement
o 17.3.2 Interface SVGViewSpec

17.1 Links out of SVG content: the 'a' element

SVG providesan 'a’ element, analogousto like HTML's'a element, to indicate hyperlinks; those parts
of the drawing which when clicked on will cause the current browser frame to be replaced by the
contents of the URL specified in the href attribute.

The 'a element uses Xlink. (Note that the XLink specification is currently under development and is
subject to change. The SV G working group will track and rationalize with XLink asit evolves.)

Thefollowing isavalid example of a hyperlink attached to a path (which in this case draws atriangle):

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC/ / DTD SVG Decenber 1999//EN'
"http://ww. wW3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg wi dth="4in" height="3in">
<desc>This valid svg document draws a triangle which is a hyperlink
</ desc>
<a xlink:href="http://ww. w3. org">
<path d="MO0 O L 200 O L 100 200 z"/>
</ a>
</ svg>

Download this example

Thisisthe well-formed equivalent example:

file:///d|/jon/svgspec/samples/a-valid.xml

<?xm version="1.0" standal one="yes"?>
<svg wi dt h="4in" hei ght="3in"
xmns = "http://ww. w3. org/ G aphi cs/ SVE SVG 19991203. dtd' >
<desc>This well formed svg docunent draws a triangle which is a hyperlink
</ desc>
<a xm ns: x|l ink="http://ww.w3. org/ XM/ XLi nk/ 0. 9"
xlink:type="sinple" xlink:show="replace" xlink:actuate="user"
xlink: href="http://ww.w3. org">
<path d="M 0 O L 200 O L 100 200 z"/>
</ a>
</ svg>

Download this example

In both examples, if the path is clicked on, then the current browser frame will be replaced by the W3C
home page.

<IENTITY % aExt "" >
<! ELEMENT a (%descTitl eDefs;,

(path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| swi tch|a
Y%eExt; YaExt;)*) >

<I ATTLI ST a
id I D #l MPLI ED
xm ns: x| i nk CDATA #FI XED "http://ww. w3. or g/ XM/ XLi nk/ 0. 9"
xlink:type (sinple|extended|!|ocator]|arc) #FIXED "sinple"
xlink:rol e CDATA #l MPLI ED
xlink:title CDATA #l MPLI ED
xli nk: show (new enbed| repl ace) 'replace’
xlink:actuate (user|auto) #FIXED 'user’
xlink: href CDATA #REQUI RED
target CDATA #| MPLI ED >

xmins [:prefix] = "resource-name"

Standard XML attribute for identifying an XML namespace. This attribute makes the XLink
[XLink] namespace available to the current element. Refer to the "Namespacesin XML"
Recommendation [XML-NS].

Animatable: no.

xlink:type = 'ssmplée
|dentifies the type of XLink being used. For hyperlinksin SVG, only simple links are available.
Refer to the " XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:role = '<string>'
A generic string used to describe the function of the link's content. Refer to the "XML Linking
Language (XLink)" [XLink].
Animatable: no.

xlink:title = '<string>'

Human-readable text describing the link. Refer to the " XML Linking Language (XLink)"

[XLink].
Animatable: no.

xlink:show = 'replace’

file:///d|/jon/svgspec/samples/a-wf.xml

Indicates that upon activation of the link the referenced document will. replace the entire
contents of the current document. Refer to the "XML Linking Language (XLink)" [XLink].

Animatable: no.

xlink:actuate = 'user'
Indicates that the contents of the referenced object are incorporated into the current document
upon user action. Refer to the "XML Linking Language (XLink)" [XLink].
Animatable: no.

xlink:href = "<uri>"

The location of the referenced object, expressed as a URI reference. Refer to the "XML Linking
Language (XLink)" [XLink].
Animatable: yes.

target = "<frame-target>"
This attribute has applicability when the current SV G document is used as part of an HTML
[HTML40] or XHTML [XHTML10] parent document which defines multiple frames. This

attribute specifies the name of an HTML or XHTML frame into which a document isto be
opened when the hyperlink is activated. For more information, refer to the appropriate HTML or
XHTML specifications.

Animatable: yes.

17.2 Linking into SVG content: URI fragments and
SVG views

17.2.1 Introduction: URI fragments and SVG views

On the Internet, resources are identified using URIs (Uniform Resource Identifiers) [URI]. For example,
an SV G file called MyDrawing.svg located at http://www.MyCompany.com might have the following
URI:

http://ww. MyConpany. com MyDr awi ng. svg

A URI can also address a particular element within an XML document by including a URI fragment
identifier as part of the URI. A URI which includes a URI fragment identifier consists of an optional
base URI, followed by a"#" character, followed by the URI fragment identifier. For example, the
following URI can be used to specify the element whose ID is"Lamppost” within file MyDrawing.svg:

http://ww. MyConpany. coml MyDr awi ng. svg#Lanppost
Because SV G content often represent a picture or drawing of something, acommon need isto link into a

particular view of the document, where aview indicates the initial transformations so as to present a
closeup of a particular section of the document.

17.2.2 SVG fragment identifiers

Tolink into a particular view of an SV G document, the URI fragment identifier needs to be a correctly
formed SV G fragment identifier. An SV G fragment identifier, which defines the meaning of the
"selector” or "fragment identifier" portion of URIsthat locate resources of MIME mediatype
"image/svg".

An SV G fragment identifier can come in three forms:

« Shorthand bare name form of addressing (e.g., MyDrawing.svg#MyView). This form of
addressing, which allows addressing an SV G element by its ID, is compatible with the fragment
addressing mechanism for older versions of HTML and the shorthand bare name formulation in
"XML Pointer Language (XPointer)" [XPTR]. (The bare name form of addressing #MyElement

is equivalent to the X Pointer formulation #xptr(id(MyView").)

« XPointer-compatible ID reference (e.g., MyDrawing.svg#xptr(id('MyView"))). This form of
addressing, which also allows addressing an SV G element by its 1D, is compatible with the
syntax for referencing IDsin "XML Pointer Language (XPointer)" [XPTR].

« SVG view specification (e.g., MyDrawing.svg#svgView(viewBox(0,200,1000,1000))). This
form of addressing specifies the desired view of the document (e.g., the region of the document
to view, the initial zoom level) completely within the SV G fragment specification. The contents
of the SVG view specification are the five parameter specifications, viewBox(...),
preserveAspectRatiof(...), transform(...), enableZoomAndPanControls(...) and viewTarget(...),
whose parameters have the same meaning as the corresponding attributes on a 'view' element.

An SV G fragment identifier is defined as follows:

SVGFragment I dentifier ::= BareNane |

XPoi nt er | DRef |

SVGVi ewSpec
Bar eNane ::= XM._Nane
XPointerl DRef ::= "xptr(id(" XM._Nanme '))'
SVGVi ewSpec ::= 'svgView(' SVGViewAttributes ')’
SVGVi ewAttributes ::= SVGViewAttribute |

SVGVi ewAttribute ';' SVGViewAttributes

SVGVi ewAttribute ::= viewBoxSpec |

preserveAspect Rati oSpec |
transfornSpec |
enabl eZoomAndPanCont r ol sSpec |
vi ewTar get Spec
vi ewBoxSpec ::= "'viewBox(' X ','" Y '," Wdth ',' Height ")’
X 1= Number

Y ::= Nunber

Wdth ::= Nunber
Hei ght ::= Number
preserveAspect Rati oSpec = 'preserveAspect Rati o(' AspectParans ')’

Aspect Paranms ::= Aspect Val ue |
AspectValue ',' MeetOrSlice

AspectValue ::= '"none' | '"xMnYMn' | 'xMnYMd' | 'xMnYMax' |
"XxMdYMn' | 'xMdYMd' | 'xMdYMax' |
"xMaxYM n' | 'xMaxYM d' | ' xMaxYMax'
MeetOrSlice ::= "neet' | 'slice'
Hei ght ::= Number
transfornBSpec ::= "transforn(' TransfornParans ')’
transfornSpec ::= 'enabl eZoomAndPanControl s(' TrueOrFalse ')’
TrueOrFalse ::= "true' | 'false'
vi ewTarget Spec ::= '"viewlTarget (' XM._Nane ')’
where:

XML_Nameisan XML name (i.e., matches the name formulation rulesin XML 1.0).
Number is areal number.

The parameter values for viewBoxSpec corresponds to to the parameter values for the viewBox
attribute on the 'svg' element. For example, viewBo0x(0,0,200,200).

The parameter values for preserveA spectRatioSpec corresponds to to the parameter values for
the preserveA spectRatio attribute on the 'svg' element. For example,

preserveAspectRatio(xMidY Mid).
The parameter values for transformSpec corresponds to to the parameter values for the transform
attribute that is available on many SV G elements. For example, transform(matrix(2 0 0 2 10 15)).

The parameter values for transformSpec corresponds to to the parameter values for the transform
attribute that is available on many SV G elements. For example, transform(matrix(2 0 0 2 10 15)).
The parameter values for enableZoomAndPanControl sSpec corresponds to to the parameter
values for the enableZoomAndPanControls attribute on the 'svg' element. For example,
enableZoomAndPanControl s(false).

The parameter values for viewTargetSpec corresponds to to the parameter values for the
viewTarget attribute on the 'view' element. For example, viewTarget(MyElementI D).

Spaces are not alowed in fragment specifications; thus, commas are. used to separate numeric values
within an SV G view specification (e.g., #svgView(viewBox(0,0,200,200))) and semicolons are. used to
separate attributes (e.g., #svgView(viewBox(0,0,200,200);preserveA spectRatio(none))).

When a source document performs a hyperlink into an SVG document viaan HTML [HTML4Q] linking
element (i.e., <ahref=...> element in HTML) or an XLink specification [XLINK], then the SVG
fragment identifier specifiestheinitia view into the SVG document, as follows:

If no SVG fragment identifier is provided (e.g, the specified URI did not contain a"#" character,
such as MyDrawing.svg), then theinitial view into the SVG document is established using the
view specification attributes (i.e., viewBox, etc.) on the outermost 'svg' element.

If the SV G fragment identifier addresses a'view' element within an SV G document (e.g.,
MyDrawing.svg#MyView or MyDrawing.svg#xptr(id(‘'MyView"))) then the closest ancestor 'svg'
element is displayed in the viewport. Any view specification attributes included on the given
'view' element override the corresponding view specification attributes on the closest ancestor
'svg' element.

« If the SVG fragment identifier addresses any element other than a'view' element, then the
document defined by the closest ancestor 'svg' element is displayed in the viewport using the
view specification attributes on that 'svg' element.

17.2.3 Predefined views: the 'view' element
The 'view' element is defined as follows:

<IENTITY % vi ewext "" >
<! ELEMENT vi ew (%lescTitle; Wi ewext;) >
<I ATTLI ST vi ew
id | D #l MPLI ED
vi ewBox CDATA #| MPLI ED
preserveAspect Rati o CDATA ' xM dYM d neet'
enabl eZoomAndPanControls (true | false) "true"
vi ewTar get CDATA #| MPLI ED >

Attribute definitions:
viewTarget = "XML_Name [XML_NAME]*"

Indicates the target object associated with the view. If provided, then the target element(s) will.
be highlighted.
Animatable: no.

Attributes defined elsewhere:
class, viewBox, preserveAspectRatio, enableZoomAndPanControls.

17.3 DOM interfaces

17.3.1 Interface SVGAElement
The SVGAElement interface corresponds to the 'a’ element.

i nterface SVGAEl enent : SVCEl enent {
attribute DOVBtring role;
attribute DOMString title;
attribute DOVBtring show,
attribute DOVBtring actuate;
attribute DOMString href;
attribute DOVBtring target;

17.3.2 Interface SVGViewSpec

Thisinterface corresponds to an SVG View Specification.

i nterface SVGVi ewSpec {

/1 Object-

oriented access

SVGRect vi ewBox;

SVGPr eserveAspect Rati o preserveAspect Rati o;
SVGIransfornlLi st transform

bool ean enabl eZoomAndPanContr ol s;

SVCGEl enent vi ewTar get ;

/1 String-

ori ented access.

/1 (Necessary because this information is part

/'l of the
/1 in XM
DOVSt ri ng
DOMVSt ri ng
DOVBt ri ng
DOVSt ri ng
DOMVSt ri ng

origi nal docunent and thus not avail abl e
DOM)

vi ewBox St ri ng;

preserveAspect Rati oStri ng;
transfornttring;

enabl eZoomAndPanCont rol sStri ng;

vi ewTar get Stri ng;

previous next contents properties

index

previous next contents properties index

18 Scripting

Contents

« 18.1 Specifying the scripting language

o 18.1.1 Specifying the default scripting language

o 18.1.2 Local declaration of a scripting language
o 18.2 The 'script’ element
» 18.3 Event handling
« 18.4 Event attributes
« 18.5DOM interfaces
o 18.5.1 Interface SV GScriptElement
o 18.5.2 Interface SVGZoomEvent

18.1 Specifying the scripting language

18.1.1 Specifying the default scripting language

The contentScriptType attribute on the 'svg' element specifies the default scripting language for all
scripts in the given document.

. contentScriptType = "<contentType>"

| dentifies the default scripting language for all scriptsin the given document. The term
contentType has the same meaning and usage as the term "content type" hasinthe HTML 4.0
Specification [HTMLA4Q].

Animatable: no.

In the absense of a contentScriptType attribute, the default can be set by a " Content-Script-Type" HTTP
header:

Cont ent - Scri pt - Type: <cont ent Type>
User agents shall determine the default scripting language for an SVG document fragment according to
the following steps (highest to lowest priority):

1. If acontentType attribute is provided on the 'svg' element, then the value of that attribute
determines the default scripting language.

2. Otherwise, if any HTTP headers specify the "Content-Script-Type", the last one in the character
stream determines the default scripting language.

Documents that do not specify a default scripting language shall set the default scripting lanuage to
"text/ecmascript".

18.1.2 Local declaration of a scripting language

It is also possible to specify the scripting language for each individual 'script’ element by specifying a
language attribute on the 'script’ element.

18.2 The 'script' element

A 'script’ element can appear as a subelement to any 'defs element. A 'script’ element is equivalent to
the 'script’ element in HTML and thusis the place for scripts (e.g., ECMAScript). Any functions defined
within any 'script' element have a"global" scope across the entire current document.

The following is an example of defining an ECM A Script function and defining an event handler that
invokes that function:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >
<svg wi dth="4in" hei ght="3in">
<def s>
<scri pt ><! [CDATA]
/* Beep on nouseclick */
MouseCd i ckHandl er () { beep(); }
11>
</script>
</ def s>
<circle onclick="Mused ickHandler()" r="85"/>
</ svg>

Download this example

<! ELEMENT script (#PCDATA)* >
<! ATTLI ST scri pt

| anguage CDATA #l| MPLI ED

Wl i nkRef Attrs;

xlink: href CDATA #l MPLI ED >

Attribute definitions:
language = "<contentType>"

| dentifies the scripting language for the given 'script’ element. The term contentType has the
same meaning and usage as the term "content type" hasin the HTML 4.0 Specification
[HTMLA4Q]. If this attribute is not provided, the default scripting language is set as described
under Specifying the default scripting language.

Animatable: no.

Attributes defined elsewhere:

file:///d|/jon/svgspec/samples/script.xml

%xlinkAttrs;, href.

18.3 Event handling

Events can cause scripts to execute when either of the following has occurred:

« Event attributes such as "onclick" or "onload" are assigned to particular el ements, where the
value of the event attributes contains script which is executed when the given event occurs.

« Event listeners as described in [DOM2-EVENTS] are defined which are invoked when a given
event happens on a given object

Related sections of the spec:

« User interface events describes how an SV G user agent handles events such as pointer
movements events (e.g., mouse movement) and activation events (e.g., mouse click).

« Relationship with DOM2 events describes what parts of DOM are supported by SV G and how to
register event listeners

18.4 Event attributes

The following event attributes are available on many SV G elements, including its graphics elements and
its container elements.

Mouse Events

« onfocusin

« onfocusout

« oOngainselection
« onloseselection
« oOnactivate

« onmousedown
e ONMoOuUSeUp

« onclick

« ondblclick

e ONMouseover
« ONMousemove
« Onmouseout

Animatable: no.

Keyboard Events

« onkeydown
« onkeypress

onkeyup

Animatable: no.

State Change Events

onload (the event istriggered at the point at which the user agent has fully parsed the element
and its descendants and is ready to act appropriately upon that element, such as being ready to
render the element to the target device. Referenced external resources such as images and style
sheets are not necessarily loaded, parsed and ready to render)

onresize (only applicable to outermost 'svg' elements which are to be mapped into a rectangular
region/viewport. Correspondsto DOM level 2 resize event.)

onscroll (only applicable to outermost 'svg' elements which are to be mapped into a rectangular
region/viewport. Correspondsto DOM level 2 scroll event.)

onunload (only applicable to outermost 'svg' elements which are to be mapped into a rectangular
region/viewport)

onzoom (only applicable to outermost 'svg' elements which are to be mapped into a rectangul ar
region/viewport)

onerror (correspondsto DOM level 2 error event)
onabort (correspondsto DOM level 2 abort event)

Animatable: no.

A load event is dispatched only to the element to which the event applies; it is not dispatched to its
ancestors. For example, if an 'image’ element and its parent 'g' element both have event listeners for load

events, when the 'image’ element has been loaded, only its event listener will be invoked. (The'g'
element's event listener will indeed get invoked, but the invocation will happen when the '’ itself has
been loaded.)

Additionally, SV G's scripting engine needs to have the altKey, ctrlKey and shiftKey properties available.

18.5 DOM interfaces

18.5.1 Interface SVGScriptElement

The SV GScriptElement interface corresponds to the 'script’ el ement.

interface SVGScri ptEl ement : SVGEl enent {

attribute DOVBtring | anguage;

attribute DOVBtring role;
attribute DOVBtring title;
attribute DOMString show,
attribute DOVBtring actuate;
attribute DOVBtring href;
attribute DOMString target;

18.5.2 Interface SVGZoomEvent

The zoom event handler occurs before the zoom event is processed. The remainder of the DOM
represents the previous state of the document. The document will be updated upon normal return from
the event handler.

i nterface SV&ZoonEvent : U Event {

b

/1 Information about the specified zoomrectangle in screen units.
attri bute SVGRect zoomRect Screen;

/1 Information about the previous zoom and pan factors
attribute float previousScal e;
attribute SVGPoi nt previousTransl at e;

/1 Information about the new zoom and pan factors which wll
/1 be applied upon normal return fromthe event handler.
attribute float newScal e;

attri bute SVGPoi nt newlr ansl at e;

The Ul event type for azoom event is.
zoom

The zoom event occurs when the user initiates an action which causes the current view of the
SV G document fragment to be rescaled. Event handlers are only recognized on 'svg' elements.

o Bubbles; Yes
o Cancelable: No

o Context Info: zoomRectScreen, previousScale, previousTransate, newScale,
newTrandate, screenX, screenY, clientX, clientY, atKey, ctriKey, shiftKey, metaKey,
relatedNode.

(screenX, screeny, clientX, clientY indicate the center of the zoom area, with clientX,
clientY in viewport coordinates for the corresponding 'svg' element. relatedNode is the

corresponding 'svg' element.)

previous next contents properties index

previous next contents properties index

19 Animation

Contents

e 19.1 Introduction

o 19.2 Animation elements

O

0

0

O

19.2.1 Relationship to SMIL Animation

19.2.2 Animation elements example

19.2.3 Attributes to identify the target of an animation

19.2.4 Attributes to control the timing of the animation

19.2.5 Attributes that define animation values over time

19.2.6 Combining animations

19.2.7 Attributes that control whether animations are additive

19.2.8 Inheritance

19.2.9 The 'animate’ element

19.2.10 The 'set’' element

19.2.11 The 'animateM otion' €l ement

19.2.12 The 'animateColor' element

19.2.13 The 'animateTransform' €l ement

19.2.14 Elements, attributes and properties that can be animated

e 19.3 Animation using the SVG DOM

e 19.4 DOM interfaces

19.1 Introduction

Because the Web is a dynamic medium, SV G supports the ability to change vector graphics over time. SVG
content can be animated in the following ways:

« Using SVG's Animation Elements. SVG document fragments can describe time-based modifications to
the document's elements. Using the various animation elements, you can do motion paths,
fade-in/fade-out effects and objects that grow, shrink, spin or change color.

« Usingthe SVYG DOM. The SVG DOM conforms to key aspects of the "Document Object Model (DOM)
level 1" [DOM1] and "Document Object Model (DOM) level 2" [DOM 2] specifications. Every attribute

and style sheet setting is accessible to scripting, and SV G offers a set of additional DOM interfaces to
support efficient animation via scripting. As aresult, virtually any kind of animation can be achieved.

The timer facilities in scripting languages such as ECMA Script can be used to start up and control the
animations. (See example below.)

« SVG has been designed to allow future versions of SMIL [SMIL1] to use animated or static SVG
content as media components.

« Inthefuture, it isexpected that future versions of SMIL will be modularized and that components of it
could be used in conjunction with SVG and other XML grammars to achieve animation effects.

19.2 Animation elements

19.2.1 Relationship to SMIL Animation

SV G's animation elements were developed in collaboration with the W3C Synchronized Multimedia (SYMM)
Working Group, devel opers of the Synchronized Multimedia Integration Language (SMIL) 1.0 Specification

[SMIL1].

The SY MM working group, in collaboration with the SVG working group, has authored the SMIL Animation
specification [SMILAnNim], which represents a general-purpose XML animation feature set. SV G incorporates

the animation features defined in the SMIL Animation specification and provides some SV G-specific
extensions.

SV G supports the following four animation elements which are defined in the SMIL Animation specification:

‘animate’ allows scalar attributes and properties to be assigned different values over time

'set’ a convenient shorthand for ‘animate’, which is useful for assigning animation values to
non-numeric attributes and properties, such asthe 'visibility' property

‘animateM otion' moves an element along a motion path

‘animateColor’ modifies the color value of particular attributes or properties over time

Additionally, SV G includes the following compatible extensions to SMIL Animation:

‘animateTransform' modifies one of SV G's transformation attributes over time, such as the transform
attribute

path attribute SVG alowsthe any feature from SV G's path data syntax to be specified in a path
attribute to the 'animateMotion’ element. (SMIL Animation only allows a subset of
SVG's path data syntax within a path attribute.)

keyPoints attribute SV G adds a keyPoints attribute to the 'animateMotion' to provide precise control of the
velocity of motion path animations

rotate attribute SVG adds arotate attribute to the 'animateM otion' to control whether an object is

automatically rotated so that its X-axis points in the same direction (or opposite
direction) as the directional tangent vector of the motion path

SMIL Animation requires that the host language define how identify the elements which are to be animated. For
compatibility with other aspects of the language, SV G uses URI references via an xlink:href attribute to identify

the elements which are to be targets of the animations.

SMIL Animation requires that the host language define the meaning for document begin and the document end.
Since an 'svg' is sometimes the root of the XML document tree and other times can be a component of a parent

XML grammar, SVG defines an effective begin and effective end for an SV G document fragment. The effective
begin of an SV G document fragment is the exact time at which the 'svg' element's onload event is triggered. The

effective end of an SVG document fragment is the point at which the document fragment has been released and
isno longer being processed by the user agent.

The term presentation time indicates the effective position in time relative to the effective begin of a document
fragment. Presentation time behaves like the timecode shown on a counter of atape-deck that advances at the
speed of the presentation. It reflects that the presentation can be stopped, and that its speed can be decreased or
increased either by user actions, or by the animation engine itself.

SV G defines more constrained error processing that is defined in the SMIL Animation [SMILANImM]
specification. SMIL Animation defines error processing behavior where the document continuesto run in
certain error situations, whereas al animations within an SVG document fragment will stop in the event of any
error within the document (see Error processing).

The SMIL Animation specification was jointly developed by the SYMM and SVG working groups. SVGisa
host language in terms of SMIL Animation and therefore introduces additional constraints and features as
permitted by that specification. Except as specifically noted, all animation elements and attributes described for
SV G conform to the SMIL Animation [SMILAnNim] specification.

19.2.2 Animation elements example

Example anim01 below demonstrates each of SV G's five animation elements.

<?xm version="1.0" standal one="no"?>

<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d" >

<svg w dt h="8cnli hei ght="3cm' viewBox="0 0 800 300">
<desc>Exanpl e ani nD1 - denonstrate ani mati on el enent s</ desc>

<l-- The following illustrates the use of the '"aninate' elenent
to animate a rectangles x, y, and width attributes so that
the rectangle grows to ultimately fill the viewport. -->
<rect id="RectEl enent" x="300" y="100" w dt h="300" hei ght="100"
style="fill:rgb(255,255,0)" >
<ani mate attributeName="x" attributeType="XW"

begi n="0s" dur="9s" fill="freeze" from="300" to="0" />
<ani mate attributeName="y" attributeType="XW"
begi n="0s" dur="9s" fill="freeze" fronr"100" to="0" />
<ani mate attributeName="w dth" attributeType="XM"
begi n="0s" dur="9s" fill="freeze" from="300" to="800" />
<ani mate attri buteNanme="hei ght" attributeType="XW"
begi n="0s" dur="9s" fill="freeze" from="100" to="300" />
</rect>
<l-- Set up a new user coordinate system so that

the text string's originis at (0,0), allow ng
rotation and scale relative to the neworigin -->
<g transform="transl ate(100, 100)" >

<l-- The following illustrates the use of the 'set', 'aninatelMtion'
"animateCol or' and 'ani mateTransform elenments. The 'text' el ement
bel ow starts of f hidden (i.e., invisible). At 3 seconds, it:

* becones visible
* continuously noves diagonally across the viewport
* changes color fromblue to dark red
* rotates from-30 to zero degrees
* scales by a factor of three. -->
<text id="TextEl ement" x="0" y="0"
style="font-fam |y: Verdana; font-size:35.27; visibility:hidden" >

It's alive

<set attributeNane="visibility" attributeType="CSS" to="visible"
begi n="3s" dur="6s" fill="freeze" />

<ani mat eMbtion path="M 0 0 L 100 100"
begi n="3s" dur="6s" fill="freeze" />

<ani mat eCol or attri buteName="fill" attri buteType="CSS"
from="rgb(0, 0, 255)" to="rgbh(128,0,0)"
begi n="3s" dur="6s" fill="freeze" />

<ani mat eTransform attri but eNane="transfornm' attributeType="XW"

type="rotate" from="-30" to="0"
begi n="3s" dur="6s" fill="freeze" />

<ani mat eTransform attri but eName="transform' attributeType="XW"
type="scal e" fron"1" to="3"

begi n="3s" dur="6s" fill="freeze" />
</text>
</ g>
</ svg>
. :-"-“'“F}
At zero seconds At three seconds
2 _IE.\-
T a‘ﬁ
s .
It's alive!
L]
At six seconds At nine seconds

Example anim01

View this example as SV G (SV G-enabled browsers only)

The sections below describe the various animation attributes and el ements.

19.2.3 Attributes to identify the target of an animation

The following attributes are common to all animation elements and identify the target element and the attribute
or property whose value changes over time.

<IENTITY % ani niTarget Attrs
"l inkRef Attrs;
xlink: href CDATA #l| MPLI ED
attributeNane CDATA #REQUI RED
attributeType CDATA #l WPLIED' >

Attribute definitions:
xlink:href = "<uri>"

A URI reference to the element which is the target of this animation and which therefore will be
modified over time.

The target element must be part of the current SV G document fragment.

<uri> must point to exactly one target element which is capable of being the target of the given
animation. If <uri> points to multiple target elements or the given target element is not capable of being
atarget of the given animation or the given target element is not part of the current SV G document
fragment, then the document isin error (see Error processing).

I the xlink:href attribute is not provided, then the target element will be the immediate parent el ement of
the current animation element.

file:///d|/jon/svgspec/images/animate/anim01.svg

Refer to the descriptions of the individual animation elements for any restrictions on what types of
elements can be targets of particular types of animations.
For more information, see [SMILANIM-TARGET].

attributeName = <attributeName>

Specifies the name of the target attribute. An XMLNS prefix may be used to indicate the XML
namespace for the attribute. The prefix will be interpreted in the scope of the target element.
For more information, see [SMILANIM-TARGET].

atributeType="CSS| XML | auto"

Specifies the namespace in which the target attribute and its associated values are defined. The attribute
value is one of the following:

"XML"

This specifies that the value of "attributeName" is the name of an XML attribute on the target
element. The attribute must be defined as animatable in this specification.

IICSSI
This specifies that the value of "attributeName" is the name of a CSS property defined as
animatable in this specification.

IlaLItoll

This specifies that the user agent will automatically check to determineif there is an animatable
SV G property whose name matches the value of attributeName; if not, the user agent will check
to determineif there is an animatable XML attribute on the target element whose name matches
the value of attributeName.

The default value is "auto".
For more information, see [SMILANIM-TARGET].

Attributes defined el sewhere:
%xlinkRefAttrs;.

19.2.4 Attributes to control the timing of the animation

The following attributes are common to all animation elements and control the timing of the animation,
including what causes the animation to start and end, whether the animation runs repeatedly, and whether to
retain the end state the animation once the animation ends.

<IENTI TY % ani nTi ni ngAttrs
"begi n CDATA #l MPLI ED

end CDATA #| MPLI ED
dur CDATA #| MPLI ED
endActive CDATA #l MPLI ED
restart (always | never | whenNotActive) 'always'
r epeat Count CDATA #l MPLI ED
repeat Dur CDATA #l MPLI ED
fill (renove | freeze) 'renove' " >

Attribute definitions:
begin
Defines when the element begins (i.e. become active).
The attribute value can be one of the following types of values:

dur

end

clock-value

Specifies the presentation time at which the animation begins. The begin is thus defined relative
to the document begin.

syncbase-value: (id-ref ".") ("begin" | "end") ("+"clock-vaue)?

Describes a syncbase and an offset from that syncbase. The element begin is defined relative to
the begin B or active end AE of another animation.

event-value: (id-ref ".")? (event-ref) ("+"clock-value)?

Describes an event and an optional offset that determine the element begin. The animation begin
is defined relative to the time that the event israised. Thelist of event-symbols available for a
given event-base element isthe list of event attributes available for the given element as defined
by the SVG DTD. (See Event handling for a discussion of the various event attributes that can be

used as Event-symbols.) Details of event-based timing are described in [SMILANIM-UNIFY].
"indefinite”
The begin of the animation will be determined by a "beginElement()" method call or a hyperlink

targeted to the animation element.
The SMIL Animation DOM methods are described in DOM interfaces.

Hyperlink-based timing is described in [SMILANIM-LINKS].
For more information, see [SMILANIM-ATTR-BEGIN].

Specifies the simple duration.
The attribute value can be one of the following types of values:

clock-value

Specifies the length of the simple duration in presentation time.
"indefinite"

Specifies the simple duration d as indefinite.
For more information, see [SMILANIM-ATTR-DUR].

Specifies the ssmple duration as the difference between an end time and the begin time of the animation
B.
The attribute value can be one of the following types of values:

clock-value

Specifies the presentation time at which the simple duration ends. The end of the simple duration
isthus defined relative to the document begin.

syncbase-value: (id-ref ".") ("begin" | "end") ("+"clock-value)?

Describes a syncbhase and an offset from that syncbase. The animation end is defined relative to
the begin B or active end AE of another animation.

For more information, see [SMILANIM-ATTR-END].

endActive

Defines the active end AE of the animation (i.e. the end of the active duration).
The attribute value can be one of the following types of values:

clock-value

Specifies the presentation time of the active end. The active end is thus defined relative to the
document begin.

syncbase-value: (id-ref) (".begin" | ".end")? ("+"clock-value)?
Describes a synchase and an offset from that syncbase. The active end is defined relative to the
begin B or active end AE of another animation.

event-value: (id-ref ".")? (event-ref) ("+"clock-value)?
Describes an event and an optional offset that determine the active end. The active end is defined
relative to the time that the event is raised. The event must be raised after the animation begins,
and before the active duration otherwise ends (e.g. as defined by r epeat Dur). Thelist of

event-symbols available for a given event-base element is the list of event attributes available for
the given element as defined by the SVG DTD. (See Event handling for a discussion of the

various event attributes that can be used as Event-symbols.) Details of event-based timing are
described in [SMILANIM-UNIFY].

"indefinite"
The active end of the animation will be determined by an "endElement()" method call. The SMIL
Animation DOM methods are described in the Supported M ethods section.

For more information, see [SMILANIM-ATTR-ENDACTIVE].

restart
aways

The animation can be restarted at any time.
Thisisthe default value.

never
The animation cannot be restarted for the remainder of the document duration.
whenNotActive

The animation can only be restarted when it is not active (i.e. after the active end). Attemptsto
restart the animation during its active duration are ignored.

For more information, see [SMILANIM-ATTR-RESTART].

repeatCount
Specifies the number of iterations of the animation function. It can have the following attribute values:
numeric value

Thisisa(base 10) "floating point" numeric value that specifies the number of iterations. It can
include partial iterations expressed as fraction values. A fractional value describes a portion of
the simple duration d. Vaues must be greater than 0.

"indefinite"
The animation is defined to repeat indefinitely (i.e. until the document ends).
For more information, see [SMILANIM-ATTR-REPEATCOUNT].
repeatDur
Specifies the total duration for repeat. It can have the following attribute values:
clock-value

Specifies the duration in presentation time to repeat the animation functionf (t) .

"indefinite"”
The animation is defined to repeat indefinitely (i.e. until the document ends).
For more information, see [SMILANIM-ATTR-REPEATDUR].

fill

This attribute can have the following values:
freeze

The animation effect F(t) is defined to freeze the effect value at the last value of the active
duration. The animation effect is "frozen" for the remainder of the document duration (or until
the animation is restarted - see Restarting Animations).

remove

The animation effect is removed (no longer applied) when the active duration of the animation is
over. After the active end AE of the animation, the animation no longer affects the target (unless
the animation is restarted - see Restarting Animations).

Thisisthe default value.
For more information, see [SMILANIM-ATTR-FILL].

If bothr epeat Count or r epeat Dur are specified (and the simple duration is not indefinite), the active
duration is defined as the minimum of the specified repeatDur, and the simple duration multiplied by
repeatCount. For the purposes of this comparison, a defined value is considered to be "less than" a value of
"indefinite”. If the simple duration isindefinite, and both r epeat Count or r epeat Dur are specified, the
r epeat Count will beignored, and ther epeat Dur will be used (refer to the examples below describing
r epeat Dur and an indefinite simple duration). These rules are included in [SMILANIM-D].

Timing Attribute Values

In the syntax specifications that follow, allowed white spaceisindicated as"S", defined as follows (taken from
the [XML] definition for "S"):

S ::= (#x20 | #x9 | #xD | #xA)+
Clock values

Clock values have the following syntax:

C ock-val = Full -cl ock-val | Partial -cl ock-val

| Ti nmecount -val
Ful | - cl ock-val = Hours ":" Mnutes ":" Seconds ("." Fraction)?
Partial -clock-val ::= Mnutes ":" Seconds ("." Fraction)?
Ti mecount - val = Timecount ("." Fraction)? (Metric)?
Metric ="h" | "mn" | "s" | "nms"
Hour s = DIA@ T+; any positive nunber
M nut es =2DIGA T, range fromOO to 59
Seconds =2DIA T, range fromOO to 59
Fraction = DdT+
Ti mecount = DdT+
2DA T =DIGATDAT
DAT = [0-9]

For Timecount values, the default metric suffix is"s" (for seconds). No embedded white space is allowed in
clock values, although leading and trailing white space characters will be ignored.

Clock values describe presentation time.

The following are examples of legal clock values:

o Full clock values:
02: 30: 03 = 2 hours, 30 minutes and 3 seconds
50: 00: 10. 25 =50 hours, 10 seconds and 250 milliseconds

o Partial clock value:
02: 33 = 2 minutes and 33 seconds
00: 10. 5 =10.5 seconds = 10 seconds and 500 milliseconds

o Timecount values:

3. 2h = 3.2 hours = 3 hours and 12 minutes

45m n =45 minutes
30s = 30 seconds
5ms =5 milliseconds

12. 467 =12 seconds and 467 milliseconds
Fractional values are just (base 10) floating point definitions of seconds. Thus:

00.5s = 500 mlliseconds
00:00.005 = 5 mlIliseconds

Syncbase values

A syncbase value has the following syntax:

Syncbase- val ue = (Synchase-elenent "." Time-synbol)
(S"+" S dock-value)?

Syncbase- el enent = ld-val ue

Ti me- synbol = "begin" | "end"

A syncbase value starts with a Syncbase-element term defining the value of an "id" attribute of an animation
element referred to as the synchbase element. This element must be another animation element contained in the
host document.

The syncbase element is qualified with one of the following time symbols:
begin

Specifies the begin time of the syncbase element.
end

Specifies the Active End AE of the syncbase element.

The time symbol can be followed by a clock value. The clock value specifies a presentation time offset from the

time (i.e. the begin or end) specified by the syncbase and time symbol. If the clock value is omitted, it defaults
to IIOII-

No embedded white space is allowed between a syncbase element and a time-symbol. White space will be
ignored before and after a"+" for a clock value. Leading and trailing white space characters (i.e. before and after
the entire syncbase value) will be ignored.

Examples:
begi n="x. end+45s" : Begin 45 seconds after "Xx" ends
begi n=" x.begin " :Beginwhen"x" begins

end="x. begin + 1n' :End 1 minute after "X" begins
Event values

An event value has the following syntax:

Event - val ue ::= (Eventbase-elenent ".")? Event-synbol
(S"+" S dock-value)?
Event base-el enent ::= Id-val ue

An Event value starts with an Eventbase-element term that specifies the event-base element. The event-base
element is the element on which the event is observed. Given DOM event bubbling, the event-base element may
be either the element that raised the event, or it may be an ancestor el ement on which the bubbled event can be

observed. Refer to DOM-Level2-Events[DOM2-EVENTS] for details.

The"ld-value" isthe value of an attribute declared to be an "id" in the host language, for the event-base element.
This element must be another animation element contained in the host document.

If the Eventbase-element term is missing, the event-base element defaults to the target element of the

animation.

The event value must specify an Event-symbol. This term specifies the name of the event that is raised on the
Event-base element. . The list of event-symbols available for a given event-base element isthe list of event
attributes available for the given element as defined by the SVG DTD. (See Event handling for a discussion of

the various event attributes that can be used as Event-symbols.)

The last term specifies an optional clock-value that is a presentation time offset from the event. If thistermis
omitted, the offset is 0.

No embedded white space is alowed between an eventbase element and an event-symbol. White space will be
ignored before and after a"+" for a clock value. Leading and trailing white space characters (i.e. before and after
the entire eventbase value) will be ignored.

Note that it is not considered an error to specify an event that cannot be raised on the Event-base element.
Examples:

begi n=" x.onload " : Begin when "onload" is observed on "x"
begi n="x. onf ocus+3s" : Begin 3 seconds after an "onfocus" event on "x"

The defaults for the event and target element syntax make it easy to define simple interactive behavior. The
following example setsther ect element color to be red for 5 seconds, when the user clicks on the element.

<rect ...>
<set begi n="onclick" dur="5s" to="red"
attri buteNane="fill" attributeType="CSS" />
</rect>

19.2.5 Attributes that define animation values over time

The following attributes are common to elements 'animate’, 'animateMotion’, ‘animateColor' and
‘animateTransform'’. These attributes define the values that are assigned to the target attribute or property over

time. The attributes below provide control over the relative timing of keyframes and the interpolation method
between discrete values.

<IENTITY % ani nVal ueAttrs
"cal cMbde (discrete | linear | evenPace | spline) 'linear'

val ues CDATA #l MPLI ED
from CDATA #| MPLI ED
to CDATA #l MPLI ED
by CDATA #| MPLI ED
keyTi mes CDATA #| MPLI ED
keySpl i nes CDATA #| MPLI ED' >

Attribute definitions:

The animation is described either as alist of values, or in asimplified form that describes the from, to and by

values.
from = "<value>"
Specifies the starting value of the animation.

to ="<value>"
Specifies the ending value of the animation.
by ="<value>"

Specifies arelative offset value for the animation.
values = "<list>"

A semicolon-separated list of one or more values. Vector-valued attributes are supported using the vector
syntax of theat t ri but eType domain.

The animation values specified in the animation element must be legal values for the specified attribute. Leading
and trailing white space, and white space before and after semi-colon separators, will be ignored.

All values specified must be legal values for the specified attribute (as defined in the associated namespace). If
any values are not legal, the animation will have no effect.

If alist of valuesis used, the animation will apply the valuesin order over the course of the animation. If alist
of valuesis specified, any from, to and by attribute values are ignored.

The simpler syntax provides for severa variants. Note that f r omis optional, but that one of by or t o must be
used (unless of course alist of val ues isprovided). It isnot legal to specify both by andt o attributes - if both
are specified, only thet o attribute will be used (the by will be ignored). The combinations of attributes yield
the following classes of animation:

from-to animation

Specifying af r omvalue and at o value defines a simple animation, equivalent to aval ues list with 2
values. The animation function is defined to start with the f r omvalue, and to finish with thet o value.

from-by animation

Specifying af r omvalue and a by value defines a ssmple animation in which the animation function is
defined to start with the f r omvalue, and to change this over the course of the simple duration d by a
delta specified with the by attribute. This can only be used with attributes that support addition (e.g.
most numeric attributes).

by animation

Specifying only a by value defines a simple animation in which the animation function is defined to
offset the underlying value for the attribute, using a delta that varies over the course of the smple
duration d, starting from a delta of 0 and ending with the delta specified with the by attribute. This can
only be used with attributes that support addition.

to animation

This describes an animation in which the animation function is defined to start with the underlying value
for the attribute, and finish with the value specified with the t o attribute. Using this form, an author can
describe an animation that will start with whatever value the attribute has originally, and will end up at
thedesired t o value.

For more information on these attributes, see [SMILANIM VALUES].

The last two forms "by animation" and "to animation” have additional semantic constraints when combined with
other animations. The details of this are described in [SMILANIM_FROMTOBY-ADD].

Examples

The following example using the val ues syntax animates the width of a'rect' over the course of 10 seconds

from awidth of 40 to awidth of 100 and back to 40.

<rect ...>
<ani mate attri buteNanme="w dt h" val ues="40; 100; 40" dur="10s"/>
</rect>

The following "from-to animation” example animates the width of a'rect’ over the course of 10 seconds from a
width of 50 to awidth of 100.

<rect ...>
<animate attri buteName="w dth" from"50" to="100" dur="10s"/>
</rect>

The following "from-by animation” example animates the width of a'rect’ over the course of 10 seconds from a
width of 50 to awidth of 75.

<rect ...>
<ani mate attributeName="w dth" from"50" by="25" dur="10s"/>
</rect>

The following "by animation" example animates the width of a'rect' over the course of 10 seconds from the
original width of 40 to awidth of 70.

<rect w dth="40"...>
<ani mate attributeName="w dth" by="30" dur="10s"/>
</rect>

The following "to animation" example animates the width of a'rect’ over the course of 10 seconds from the
original width of 40 to awidth of 100.

<rect w dth="40"...>
<ani mate attri buteName="w dth" to="100" dur="10s"/>
</rect>

By default, asimple linear interpolation is performed over the values, evenly spaced over the duration of the
animation. Additional attributes can be used for finer control over the interpolation and timing of the values.
Thecal cMode attribute defines the basic method of applying values to the attribute. The key Ti mes attribute
provides additional control over the timing of the animation function, associating a time with each value in the
val ues list. Finaly, thekeySpl i nes attribute provides a means of controlling the pacing of interpolation
between the valuesin theval ues list.

cal cMbde ="discrete| linear | paced | spline"

Specifies the interpolation mode for the animation. This can take any of the following values. The
default modeis "linear”, however if the attribute does not support linear interpolation (e.g. for strings),
this attribute isignored and discrete interpolation is aways used.

"di screte"

This specifies that the animation function will jump from one value to the next without any
interpolation.

"linear"

Simple linear interpolation between valuesis used to calculate the animation function. Thisisthe
default cal cMode.

n paCEd"

Defines interpolation to produce an even pace of change across the animation. Thisisonly
supported for values that define alinear numeric range, and for which some notion of "distance”
between points can be calculated (e.g. position, width, height, etc.). If "paced" is specified, any
keyTi mes or keySpl i nes will beignored.

"spline"

Interpolates from one valuein the val ues list to the next according to atime function defined
by acubic Bezier spline. The points of the spline are defined in the key Ti nmes attribute, and the
control points for each interval are defined inthe key Spl i nes attribute.

keyTi mes ="<list>"

A semicolon-separated list of time values used to control the pacing of the animation. Each timein the
list correspondsto avaluein theval ues attribute list, and defines when the valueis used in the
animation function. Each time valueinthekeyTi mes list is specified as a floating point value between
0 and 1 (inclusive), representing a proportional offset into the simple duration of the animation element.
Each successive time value must be greater than or equal to the preceding time value.

Thefirst time valuein the list must be 0, and the last time value in the list must be 1.

If alist of keyTi mes is specified, there must be exactly as many valuesinthekeyTi nes list asin the
val ues list.

If there are any errorsinthekeyTi mes specification (bad values, too many or too few values), the
animation will have no effect.

If the simple duration isindefinite, any key Ti mes specification will be ignored.

keySpl i nes ="<list>"

A set of Bezier control points associated with the key Ti nmes list, defining a cubic Bezier function that
controlsinterval pacing. The attribute value is a semi-colon separated list of control point descriptions.
Each control point descriptionisaset of four values: x1 y1 x2 y2, describing the Bezier control
points for one time segment. Thekey Ti mes values that define the associated segment are the Bezier
"anchor points’, and the key Spl i nes values are the control points.

Thus, there must be one fewer sets of control points than therearekeyTi nes.

The values must al beintherangeOto 1.

This attribute isignored unlessthe cal cMbde isset to "spline”.

If there are any errorsinthe key Spl i nes specification (bad values, too many or too few values), the
animation will have no effect.

If thekeyTi mes attribute is not specified, the valuesin theval ues attribute are assumed to be equally spaced
through the animation duration, according to the calcM ode:

« For discrete animation, the duration is divided into equal time periods, one per value. The animation
function takes on the values in order, one value for each time period.

« For linear and spline animation, the duration is divided into n- 1 even periods, and the animation
function is alinear interpolation between the values at the associated times. Note that alinear animation
will be anicely closed loop if the first value is repeated as the last.

Note that for the shorthand forms to animation and from-to animation, there are only 1 and 2 values
respectively. Thus a discrete to animation will smply set the "to" value for the smple duration. A discrete
from-to animation will set the "from" value for the first half of the simple duration and the "to" value for the
second half of the simple duration.

Note that if thecal cMode isset to "paced”, the keyTi nes attribute isignored, and the valuesin theval ues
attribute are spaced to produce a constant rate of change as the target attribute value is interpolated.

If the argument valuesfor keyTi mes ori nt er Spl i ne arenot legal (including too few or too many values
for either attribute), the animation will have no effect.

Inthecal cMbde, keyTi mes and key Spl i nes attribute values, leading and trailing white space and white
space before and after semi-colon separators will be ignored.

Examples

This example describes a somewhat unusual usage: "from-to animation” with discrete animation. The 'text’
element supports the font-style property, which takes a string, and so impliesacal cMbde of discrete. The
animation will set the font-style to "normal” for 5 seconds (half the simple duration) and then set the font-style
to "italic" for 5 seconds.

<text style="font-style:normal"...>
<animate attributeName="font-style"

frome"normal " to="italic" dur="10s"/>
</text>

Thisexampleillustrates the use of key Ti nes:

<ani mate attri but eNanme="x" dur="10s" val ues="0; 50; 100"
keyTi mes="0; .8; 1" cal cMbde="linear"/>

ThekeyTi mes values causes the "x" attribute to have avalue of "0" at the start of the animation, "50" after 8
seconds (at 80% into the smple duration) and "100" at the end of the animation. The value will change more
slowly in thefirst half of the animation, and more quickly in the second half.

Extending this exampleto usekey Spl i nes:

<ani mate attri but eNanme="x" dur="10s" val ues="0; 50; 100"
keyTi mes="0; .8; 1" cal cMbde="spline"
keySplines=".50 .51; 001 1" />

ThekeyTi nes still causesthe "x" attribute to have avalue of "0" at the start of the animation, "50" after 8
seconds and "100" at the end of the animation. However, the key Spl i nes values define a curve for pacing the
interpolation between values. In the example above, the spline causes an ease-in and ease-out effect between
time 0 and 8 seconds (i.e. between key Ti mes 0 and .8, and val ues "0" and "50"), but a strict linear
interpolation between 8 seconds and the end (i.e. between key Ti mes .8and 1, and val ues "50" and "100").
See the figure below for anillustration of the curvesthat these key Spl i nes values define.

For some attributes, the pace of change might not be easily discernable by viewers. However for animations like
motion, the ability to make the speed of the motion change gradually, and not in abrupt steps can be important.
ThekeySpl i nes attribute provides this control.

The following figure illustrates the interpretation of the key Spl i nes attribute. Each diagram illustrates the
effect of keySpl 1 nes settingsfor asingleinterval (i.e. between the associated pairs of valuesin the

keyTi mes and val ues lists.). The horizontal axis can be thought of as the input value for the unit progress of
interpolation within the interval - i.e. the pace with which interpolation proceeds along the given interval. The
vertical axisisthe resulting value for the unit progress, yielded by the key Spl i nes function.

. (.5,1) (1,1}

(0,0 (.5,0)

s

Mo
g gy

keySplines="0011" (thedefaulyy ~ K&ySPlines=".50.51"

(.25,1) (1,1} (1,1}

o
P

(0.,0]

keySplines="0.75 .25 1" keySplines="10 .25 .25"
Examples of keySplines

To illustrate the calculations, consider the ssimple example:

<ani mat e dur="4s" val ues="10; 20" keyTi nes="0; 1"
cal cMode="spl i ne" keySplines={as in table} />

Using the keySplines values for each of the four cases above, the approximate interpolated values as the
animation proceeds are:

keySplinesvalues | Initial value | After 1s | After 2s | After 3s | Final value
0011 10.0 125 15.0 17.5 20.0
5051 10.0 11.0 15.0 19.0 20.0
0.75.251 10.0 18.0 19.3 19.8 20.0
10.25.25 10.0 101 10.6 16.9 20.0

For aformal definition of Bezier spline calculation, see [FOLEY-VANDAM)].

19.2.6 Combining animations

At a particular moment in time, an attribute can be animated by several animations, i.e. animations can overlap
in time. The effect of this depends on whether the animations combined are additive or non-additive. An
additive animation function will take the initial value of the attribute as defined by the animations that are
already running, and useit asits begin value. A non-additive animation will replace the initial value with a new
begin value

When there are multiple animations defined for a given attribute with complete durations that overlap at any
moment, the two either add together or one overrides the other. The active animations are prioritized according
to their begin. The animation first activated (i.e. begun by scheduled timing or by an event) has lowest priority
and the most recently begun animation has highest priority. Higher priority animations that are not additive will
override all earlier animations, and simply set the attribute value. Animations that are additive apply (i.e. add to)
to the result of the earlier-activated animations. When two animations have the same begin, the first in lexical
order has lower priority.

For more information, see [SMILAnim-ADD] and [SMILAnim-ACCUM].

19.2.7 Attributes that control whether animations are additive

The following attributes are common to elements 'animate’, ‘animateM otion', 'animateColor' and
‘animateTransform'.

It isfrequently useful to define animation as an offset or delta to an attribute's value, rather than as absolute
values. A simple "grow" animation can increase the width of an object by 10 pixels:
<rect w dth="20px" ...>

<animate attributeName="w dth" from="0px" to="10px" dur="10s"

addi tive="sunl'/>
</rect>

The width begins at 20 pixels, and increases to 30 pixels over the course of 10 seconds. If the animation were
declared to be not additive, the same from and to values would make the width go from 0 to 10 pixels over 10
seconds.

When there are multiple animations defined for a given attribute that are active at a given moment, the two
either add together or one overrules the other. The active animations are prioritized according to the activation
time of each. The animation first activated (i.e. begun by scheduled timing or by an event) has lowest priority
and the most recently begun animation has highest priority. Higher priority animations that are not additive will
overrule al earlier animations, and set the attribute value. Animations that are additive apply (i.e. add to) to the
result of the earlier-activated animations. When two animations start at the same point in time, the first in lexical
order is applied first.

It isfrequently useful for repeated animations to build upon the previous results, accumulating with each
interation. The following example causes the rectangle to continue to grow with each repeat of the animation:
<rect w dth="20px" ...>

<animate attributeName="w dth" from="0px" to="10px" dur="10s"

addi tive="sunt' accunul at e="sunf repeat Count ="5"/>
</rect>

At the end of the first repetition, the rectangle has a width of 30 pixels. At the end of the second repetition, the
rectangle has awidth of 40 pixels. At the end of the fifth repetition, the rectangle has a width of 80 pixels.

<IENTITY % ani mAddi ti onAttrs
"additive (true | false) 'false'
accunul at e (true | false) '"false'" >

Attribute definitions:
additive = "replace | sum"

Controls whether or not the animation is additive.

If " sunt', the animation will add to the underlying value of the attribute and other lower priority
animations.

If "repl ace", theanimation will override the underlying value of the attribute and other lower priority
animations. Thisisthe default, however the behavior is aso affected by the animation value attributes
by andt o0, asdescribed in [SMILANIM_FROMTOBY-ADD].

accumulate = "none | sum"

Controls whether or not the animation is cumulative.

If " sum', each repeat iteration after the first builds upon the last value of the previous iteration.

If "none", repeat iterations are not cumulative. Thisisthe default.

This attribute isignored if the target attribute value does not support addition, or if the animation element

does not repeat.
Cumulative animation is not defined for "to animation”. This attribute will be ignored if the animation
function is specified with only the t o attribute.

19.2.8 Inheritance

SVG alows both attributes and properties to be animated. If agiven attribute or property is inheritable by
descendants, then animations on a parent element such asa'g' element has the effect of propagating the attribute

or property animation values to descendant elements as the animation proceeds; thus, descendant elements can
inherit animated attributes and properties from their ancestors.

19.2.9 The 'animate' element

The 'animate’ element is used to animate a single attribute or property over time. For example, to make a
rectangle repeatedly fade away over 5 seconds, you can specify:
<rect>

<animate attributeType="text/css" attributeNanme="opacity"

from="1" to="0" dur="5s" repeatCount="indefinite" />
</rect>

<IENTITY % ani nat eExt "" >
<! ELEMENT ani mate (%lescTitl e; %ani mateExt;) >
<! ATTLI ST ani nat e

id I D #l MPLI ED

systemrequired NMIOKEN #| MPLI ED

syst em | anguage CDATA #| MPLI ED

%&ani nirfar get Attrs;

%@ni nili m ngAttrs;

%ani nVal ueAttrs;

%ani MAddi ti onAttrs; >

Attributes defined elsewhere:

id, system-required, system-language, YoanimT argetAttrs;, YoanimTimingAttrs;, %animV a ueAttrs;,
%animAdditionAttrs;.

For alist of attributes and properties that can be animated using the ‘animate’ element, see Elements, attributes
and properties that can be animated.

19.2.10 The 'set' element

The 'set’ element provides a simple means of just setting the value of an attribute for a specified duration. It
supports all attribute types, including those that cannot reasonably be interpolated, such as string and boolean
values. The 'set' element is non-additive. The effect of repeatCount and repeatDur attributes are just to extend

the defined duration. In addition, using fill="freeze" will have the same effect as an indefinite duration.

<IENTITY % setExt "" >
<! ELEMENT set (%lescTitle; %setExt;) >

<I ATTLI ST set
id I D #l MPLI ED
system requi red NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED
%ani nrar get Attrs;
Y@ni nli m ngAttrs;
to CDATA #l MPLI ED >

Attribute definitions:
to = "<value>"

Specifies the value for the attribute during the duration of the 'set’ e ement. The <value> must be
appropriate to the target attribute or property.

Attributes defined elsewhere:
id, system-required, system-language, %animT argetAttrs;, %animTimingAttrs;.

For alist of attributes and properties that can be animated using the 'set' element, see Elements, attributes and
properties that can be animated.

19.2.11 The 'animateMotion' element
The 'animateMotion' element causes a referenced element to move along a motion path.

<IENTITY % ani mat eMoti onExt "" >
<! ELEMENT ani nat eMbtion (%lescTitl e; %ani mat eMoti onExt;) >

<! ATTLI ST ani nat eMbti on
id I D #l MPLI ED
systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED
Ul i nkRef Attrs;
xlink: href CDATA #l MPLI ED
%ani nli m ngAttrs;
%ani nVal ueAttrs;
Y%ani mAddi ti onAttrs;
pat h CDATA #| MPLI ED
rotate CDATA #| MPLI ED
origin CDATA #l MPLI ED >

For "animateMotion', the specified values for from, by, to and values consists of x, y coordinate pairs, with a

comma separating the x coordinate from the y coordinate. For example, from="33,15" specifies an x coordinate
value of 33 and ay coordinate value of 15.

If provided, the values attribute must consists of alist of x, y coordinate pairs, where commas separate the x

coordinate from the y coordinate and semicolons separate the various coordinate pairs, such as
values="10,20;30,20;30,40" or values="10mm,20mm;30mm,20mm;30mm,40mm". Each coordinate represents a
length. Attributes from, by, to and values specify a shape on the current canvas which represents the motion

path.

For more flexibility in controlling the motion path, the path attribute provides the ability to specify a motion
path using any of SVG's path data commands. If a path is specified, it will override the motion path provided by

the values or from/to/by attributes. (Note that a path can only contain values in user space, whereas from, by, to
and values can specify coordinates in user space or using CSS unit identifiers. For more information on CSS
units, see Processing rules for CSS units and percentages.)

The various (x,y) points of the shape provide a supplemental transformation matrix onto the CTM for the
referenced object which causes atranslation along the X and Y axis of the current user coordinate system by the
(x,y) values of the shape computed over time. Thus, the referenced object is translated over time by the offset of
the motion path relative to the origin of the current user coordinate system.

The default calculation mode (calcMode) for animateMotion is "paced"”. Thiswill produce constant velocity
motion along the specified path. Note that while animateM otion elements can be additive, it isimportant to
observe that the addition of two or more "paced” (constant velocity) animations might not result in a combined
motion animation with constant velocity.

When a path is combined with "linear" or "spline" calcMode settings, and if attribute keyPoints is not provided,
the number of valuesis defined to be the number of points defined by the path, unless there are "move to"
commands within the path. A "moveto" command within the path (i.e. other than at the beginning of the path
description) does not count as an additional point for the purpose of keyTimes and keySplines, and does not
define an additional "segment” for the purposes of timing or interpolation. When a path is combined with a
"paced" calcMode setting, al "move to" commands are considered to have 0 length (i.e. they aways happen
instantaneously), and is not considered in computing the pacing.

For more flexibility in controlling the velocity along the motion path, the keyPoints attribute provides the ability
to specify the progress along the motion path for each of the keyTimes specified values. If specified, keyPoints
causes keyTimes to apply to the values in keyPoints rather than the points specified in the values attribute array
or the points on the path attribute.

The override rules for ‘animateM otion are as follows. Regarding the definition of the motion path, the path
attribute overrides values, which overrides from/by/to. Regarding determining the points which correspond to
the keyTimes attributes, the keyPoints attribute overrides path, which overrides values, which overrides
from/by/to.

Attribute definitions:
path = "<path-data>"
The motion path, expressed in the same format and interpreted the same way as the d= attribute on the

'path’ element. The effect of a motion path animation is to add a supplemental transformation matrix onto

the CTM for the referenced object which causes atranglation along the X and Y axis of the current user
coordinate system by the computed X and Y values computed over time.

keyPoints = "<list-of-numbers>"

keyPoints takes a semicolon-separated list of floating point values between 0 and 1 and indicates how far
along the motion path the object shall move at the moment in time specified by corresponding keyTimes
value. Distance calculations use the user agent's distance along the path algorithm. Each progress value

inthelist correspondsto avalueinthekeyTi nmes attribute list.

If alist of keyPoi nt s is specified, there must be exactly as many valuesin the keyPoi nt s list asin
thekeyTi nmes list.

If there are any errorsin the keyPoi nt s specification (bad values, too many or too few values), the
animation will have no effect.

rotate = "<angle> | auto | auto-reflect”

auto indicates that the object is rotated over time by the angle of the direction (i.e., directional tangent
vector) of the motion path. auto-reflect indicates that the object is rotated over time by the angle of the
direction (i.e., directional tangent vector) of the motion path plus 180 degrees. An actual angle value can
also be given, which represents an angle relative to X-axis of current user coordinate system. The rotate
attribute adds a supplemental transformation matrix onto the CTM to apply arotation transformation

about the origin of the current user coordinate system. The rotation transformation is applied after the
supplemental trandlation transformation that is computed due to the path attribute. The default valueis 0.

origin = "default"
The origin attribute is defined in the SMIL Animation specification [SMILANIM-ATTR-ORIGIN]. It
has no effect in SVG.

Attributes defined el sewhere:
id, system-required, system-language, Y%animT argetAttrs;, Y%eanimTimingAttrs;, YoanimValueAttrs;,
%animAdditionAttrs;.

At any timet within a motion path animation of effective duration dur, the computed coordinate (x,y) aong the
motion path is determined by finding the point (x,y) which ist/dur distance along the motion path using the user
agent's distance along the path algorithm.

The following example demonstrates the supplemental transformation matrices that are computed during a
motion path animation.

Example animMotion01 shows a triangle moving along a motion path.

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ G aphi cs/ SVG SVG 19991203. dt d" >
<svg wi dt h="5cnf hei ght="3cm' viewBox="0 0 500 300">
<desc>Exanpl e ani mvbti on01 - denonstrate notion ani mati on conput ati ons</ desc>

<!-- Draw the outline of the nmotion path in blue, along
with three small circles at the start, mddle and end. -->
<pat h d="ML0O, 250 C 100, 50 400, 50 400, 250"
style="fill:none; stroke:blue; stroke-w dth:7.06" />

<circle cx="100" cy="250" r="17.64" style="fill:blue" />
<circle cx="250" cy="100" r="17.64" style="fill:blue" />
<circle cx="400" cy="250" r="17.64" style="fill:blue" />

<l-- Here is a triangle which will be noved about the nbtion path.
It is defined with an upright orientation with the base of
the triangle centered horizontally just above the origin. -->
<path d="M25,12.5 L25,12.5 L 0,87.5 z"
style="fill:yellow, stroke:red; stroke-w dth:7.06" >

<l-- Define the notion path animtion -->
<ani mat eMobti on dur="6s" repeat Count="i ndefinite"
pat h="ML00, 250 C 100, 50 400, 50 400, 250" rotate="auto" />
</ pat h>
</ svg>

At zero seconds At three seconds At six seconds

Example animMotion01

View this example as SV G (SV G-enabled browsers only)

The following table shows the supplemental transformation matrices that are applied to achieve the effect of the
motion path animation.

file:///d|/jon/svgspec/images/animate/animMotion01.svg

| |After Os |After 3s |After 6s
Supplemental transform

due to movement translate(100,250) |translate(250,100) |transl ate(400,250)
along motion path

Supplemental transform

dueto rotate(-90) rotate(0) rotate(90)
rotate="auto"

For alist of elements that can be animated using the ‘animateMotion' element, see Elements, attributes and
properties that can be animated.

19.2.12 The 'animateColor' element
The 'animateColor' element specifies a color transformation over time.

<IENTITY % ani mat eCol or Ext "" >
<! ELEMENT ani mat eCol or (%lescTitl e; %ani mat eCol or Ext;) >

<! ATTLI ST ani nat eCol or
id | D #l MPLI ED
systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED
%ani nrar get Attrs;
%ani nli m ngAttrs;
%ani nVal ueAttrs;
%ani mMAddi ti onAttrs; >

Attributes defined elsewhere:

id, system-required, system-language, %animT argetAttrs;, Y%animTimingAttrs;, YoanimV alueAttrs;,
%animAdditionAttrs;.

The from, by and to attributes take color values, where each color value is expressed using the same syntax that
isavailable for the target attribute or property.

The values attribute for the ‘animateColor' element consists of a semicolon-separated list of color values, where
each individual color value is expressed using the same syntax that is available for the target attribute or
property.

Out of range color values can be provided, but user agent processing will be implementation dependent. User
agents should clamp color valuesto allow color range values as | ate as possible, but note that system differences
might preclude consistent behavior across different systems.

The 'color-interpolation’ property appliesto color interpolations that result from ‘animateColor' animations.

For alist of attributes and properties that can be animated using the ‘animateColor' e ement, see Elements
attributes and properties that can be animated.

19.2.13 The 'animateTransform' element

The ‘animateTransform’ element adds a supplemental transformation onto atarget element so that it can be
trandated, scaled, rotated or skewed.

<IENTITY % ani nmat eTr ansf or mExt "" >
<! ELEMENT ani mat eTr ansform (%lescTi t| e; %ni mat eTr ansf or nExt ;) >

<! ATTLI ST ani mat eTr ansform
id | D # MPLI ED
systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #l| MPLI ED
%ani nrar get Attrs;
%ani nli m ngAttrs;
%ani nVal ueAttrs;
%ani mAddi ti onAttrs;
type (translate | scale | rotate | skewX | skewY) "translate" >

Attribute definitions:
type = "trandate | scale | rotate | skewX | skewY™"
Indicates the type of transformation which isto have its values change over time.

Attributes defined elsewhere:

id, system-required, system-language, YoanimT argetAttrs;, YoanimTimingAttrs;, %animV aueAttrs;,
%animAdditionAttrs;.

The from, by and to attributes take a value expressed using the same syntax that is available for the given
transformation type:

« For atype="trandate", each individual valueis expressed as <tx> [,<ty>].

» For atype="scale", each individua valueis expressed as <sx> [,<sy>].

» For atype="rotate", each individual value is expressed as <rotate-angle>.

» For atype="skewX" and type="skewY", each individual valueis expressed as <skew-angle>.
(See Modifying the User Coordinate System: the transform attribute.)

The values attribute for the ‘animateTransform' el ement consists of a semicolon-separated list of values, where
each individual value is expressed as described above for from, by and to.

If calcMode has the value paced, then atotal "distance" for each component of the transformation is cal culated

(e.g., for atrandlate operation, atotal distanceis calculated for both tx and ty) consisting of the sum of the
absolute values of the differences between each pair of values, and the animation runs to produce a constant
distance movement for each individual component.

The effect of additive ‘animateTransform' elements which are animating the same attribute or property is
equivalent to nesting the corresponding transformation matrices (i.e., the notion of "additive" correspondsto
transformation matrix multiplication).

For alist of attributes and properties that can be animated using the 'animateTransform’' element, see Elements,
attributes and properties that can be animated.

19.2.14 Elements, attributes and properties that can be animated

The following lists all of the elements which can be animated by an 'animateM otion' element:

« 'svg' (‘'animateMotion’ has no effect on outermost 'svg' elements)

- g
o 'path’
o 'rect'

o 'Image
o 'clipPath’

Each attribute or property within this specification indicates whether or not it can be animated by SVG's
animation elements. Animatable attributes and properties are designated as follows:

Animatable: yes.

whereas attributes and properties that cannot be animated are designated:

Animatable: no.

SVG has adefined set of basic data types for its various supported attributes and properties. For those attributes

and properties that can be animated, the following table indicates which animation elements can be used to

animate each of the basic data types.

Basic data type Additive? |'animate’ |'set’ l%‘;?;?.te Tlrai:rigc?rta' Notes
|<angle> lyes lyes lyes [no [no |
ot R T v) T
’<coordinate> ’yes |y&c |y&c |no ’no |
’<fre_quengy> ’no |no |no |no ’no |
|<integer> lyes lyes lyes [no [no |
’<Iength> ’yeﬁ |y$ |yes |no ’no |
|<list of x> Ino lves lves |no Ino |

’<number> ’yes |y&s |yee |no ’no

s e S i
’<|Qercentgge> ’y% |y$ |y$ |no ’no

’<tiﬂ ’no |no |no |no ’no

[<transform-list> lyes Ino o [no lyes |

’<U_Fi> ’y&s |y&c |y&c |no ’no |

ercl)géptie;s animatable attributesand | ’y&c ’yes o o

19.3 Animation using the SVG DOM

The following example shows a simple animation:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE svg PUBLIC "-//WBC// DTD SVG Decenber 1999//EN'
"http://ww. w3. or g/ Graphi cs/ SVE@ SVG 19991203. dt d" >
<svg w dt h="4in" hei ght="3in"
vi ewBox="0 0 400 300"
onl oad="Start Ani mation()" >

<def s>
<scri pt ><! [CDATA[

var tiner_increnent = 50.

var max_tinme = 10000

var text_el ement

Start Ani mation() {
text _el ement = docunent. get El ement Byl d(" Text El enent");
ShowAndGr owEl enent (0) ;

}
ShowAndG owEl enent (ti meval ue) {
timeval ue = tinmevalue + tiner_increnent
if (timevalue > max_tine)
timevalue = tinmevalue - floor(tinmevalue/max_tine) * max_tinme

/1l Scale the text string gradually until it is 20 tinmes |arger
scal efactor = (tinmevalue * 20.) / max_tine
text_element.SetAttribute("transforn, "scale(" + scalefactor + ")")

/1 Make the string nore opaque
opaci tyfactor = tinevalue / max_tinme
text _element.getStyle().setProperty("opacity", "opacity:" + opacityfactor, "")

/1 Call ShowAndG owEl enent again <tiner_increment> mlliseconds |ater.
set Ti meout (" ShowAndGr owEl enent (" + tiner_increnent + ")")

]1]1></script>

</ def s>
<g transform="transl ate(50, 300)" style="fill:red; font-size:10">
<text id="TextEl ement">SVG</text>
</ g>
</ svg>

Download this example

The above SV G file contains a single graphics element, atext string that says"SVG". The animation loops
continuously. The text string starts out small and transparent and grows to be large and opague. Hereisan
explanation of how this example works:

« The'svg element'swi dt h and hei ght attributes indicate that the viewport is arectangle of size

file:///d|/jon/svgspec/samples/animate-dom.xml

4inches by 3inches. Thevi ewBox attribute indicates that the initial coordinate system has (0,0) at its
top left and (400,300) at its bottom right. (Thus, 1 inch equals 100 user units.) The

onl oad="Start Ani mati on()" attribute indicates that when the document has been fully loaded
and processed, then invoke ECM A Script function StartAnimation().

« The'script' element defines the ECM A Script which makes the animation happen. The
Start Ani mat i on() functionisonly called onceto give avalueto global variablet ext _el enent
and to make theinitial call to ShowAndG owEl enent () . ShowAndG owEl enent () iscalled
every 50 milliseconds and resetsthet r ansf or mand st y| e attributes on the text element to new
values each timeit is called. At the end of ShowAndGr owEl enent , the function tells the ECM A Script
engineto call itself again after 50 more milliseconds.

« The'g element shifts the coordinate system so that the origin is shifted toward the lower-left of the
viewing area. It also definesthe fill color and font-size to use when drawing the text string.

» The'text' element contains the text string and is the element whose attributes get changed during the
animation.

It scripts are modifying the same attributes or properties that are being animated by SV G's animation elements,

the scripts modify the base value for the animation. If a base value is modified while an animation element is
animating the corresponding attribute or property, the animations are required to adjust dynamically to the new
base value.

If ascript is modifying a property on the override style sheet at the same time that an animation element is
animating that property, the result is implementation-dependent; thus, it is recommended that this be avoided.

19.4 DOM interfaces

19.4.1 Interface SVGAnimationElement

The SV GAnimationElement interface is the base interface for all of the animation € ement interfaces:
SV GAnimateElement, SV GSetElement, SV GAnimateM otionElement and SV GT extpathElement.

The SV GAnimationElement interface implements the TimeControl interface defined in the SMIL Animation
specification [SMILANIM-DOM-METHODS]. A DOM application can use the hasFeat ur e method of the

DOM Implementation [DOM2-CORE] interface to determine whether the El ement Ti meCont r ol interface
is supported or not. The feature string for thisinterface is"ElementTimeControl".

Calling begi nEl enmrent () causes the animation to begin in the same way that an animation with event-based
begin timing begins. The effective begin time is the current presentation time at the time of the DOM method
call. Note that begi nEl enment () issubjecttother est art attribute in the same manner that event-based
begin timing is. If an animation is specified to disallow restarting at a given point, begi nEl enent () methods
calls must fail.

Cdling begi nEl enent At Ti meOf f set (seconds) hasthe same behavior asbegi nEl enent () , except
that the animation starts midway into the animation (i.e., a given number of seconds offset from the normal
start of the animation.) If the offset value goes beyond the simple duration or the simple duration is undefined,
(e.g., the end time is indefinite), then the animation does not start.

Similarly, begi nEl ement At Fracti onOf fset (fracti on) causestheanimationtostartatf racti on
from the start, wheref r act i on isanumber between 0 and 1 which represents a fraction of the simple
duration. If the fraction is outside the range of O to 1 or if the simple duration is undefined (e.g., theend time is
indefinite), then the animation does not start.

CdlingendEl enent () causesan animation to end the active duration, just asendAct i ve does. Depending
upon thevalue of thef i | | attribute, the animation effect may no longer be applied, or it may be frozen at the
current effect. If an animation is not currently active (i.e. if it has not yet begun or if it isfrozen), the

endEl erment () method will fail.

Unlike other SVG DOM interfaces, the SVG DOM does not specify convenience DOM attributes corresponding
to the various language attributes on SV G's animation el ements. Specification of these convenience propertiesin
away that will be compatible with future versions of SMIL Animation [SMILAnNim] is expected in afuture
version of SVG. The current method for accessing and modifying the attributes on the animation elementsisto
usethe standard get Attri bute,set Attri bute,get Attri buteNSandset Attri but eNS definedin

[DOM2-CORE].
interface SVGAni mati onEl ement {
bool ean begi nEl enent ()
rai ses(DOVExcepti on);
bool ean begi nEl enent At Ti mreCf fset (i n fl oat seconds)
rai ses(DOVExcepti on);
bool ean begi nEl ement At Fracti onOffset(in float fraction)
rai ses(DOVExcepti on);
bool ean endEl enent ()
rai ses(DOVExcepti on);
b
Methods

begi nEl enment

Causes this element to begin the local timeline (subject to sync constraints).
No Parameters

Return Value

bool ean t rue if the method call was successful and the element was begun. f al se if the
method call failed. Possible reasons for failure include:

= Theelement is already active and can't be restart when it is active. (the
restart attributeissetto” whenNot Acti ve")

= The element is active or has been active and can't be restart. (ther est ar t
atributeisset to " never).
Exceptions

DOVExcept i on SYNTAX_ERR: The element was not defined with the appropriate syntax to
allow begi nEl enent calls.

begi nEl ement At Ti mef f set

Causes this element to begin the local timeline (subject to sync constraints), but the animation
starts midway as defined by parameter seconds.

Parameters:

seconds Rea number value indicating the number of seconds from the start of the animation
at which the animation should start.

Return Value: (same as beginElement)

Exceptions: (same as beginElement)

begi nEl ement At Fracti onOf f set

Causes this element to begin the local timeline (subject to sync constraints), but the animation
starts midway as defined by parameter f r act i on.

Parameters:

fracti on Rea number valueindicating an offset from the start of the animation expressed as
afraction of the simple duration at which the animation should start.

Return Value: (same as beginElement)

Exceptions: (same as beginElement)
endEl enent

Causes this element to end the local timeline (subject to sync constraints).
No Parameters

Return Value

bool ean t r ue if the method call was successful and the element was endeed. f al se if
method call failed. Possible reasons for failure include:

= Theeement isnot active.

Exceptions

DOVExcept i on SYNTAX_ERR: The element was not defined with the appropriate syntax to
allow endEl enment cals.

19.4.2 Interface SVGAnimateElement
The SV GAnimateElement interface corresponds to the 'animate’ element.
interface SVGAni nat eEl enent : SVGAni nati onEl ement {

b

19.4.3 Interface SVGSetElement
The SV GSetElement interface corresponds to the 'set' element.

interface SVGSet El enent : SVGAni mati onEl enent {
b

19.4.4 Interface SVGAnimateMotionElement

The SV GAnimateM otionElement interface corresponds to the ‘animateMotion’ element.

interface SVGAni mat eMoti onEl enent : SVGAni mati onEl ement {
b

19.4.5 Interface SVGAnimateTransformElement

The SV GAnimateTransformElement interface corresponds to the ‘animateTransform' element.

i nterface SVGAni mat eTr ansf or nEl enent : SVGAni mati onEl enent {
b

19.4.5 Interface SVGAnimationEvent

interface SVGAni mati onEvent : Event {
/1 Transition Types

const unsigned short kSVG_ AN MIRANSI TI ON_UNKNOWN
const unsi gned short kSVG AN MTRANSI TI ON_START
const unsigned short kSVG AN MIRANSI TI ON_FREEZE
const unsigned short kSVG_ AN MIRANSI TI ON_RESTART
const unsigned short kSVG_AN MIRANSI TI ON_STOP
readonly attribute wunsigned short transitionType;

/1 unknown. Not supported

0,
1
2,
3.
4

readonly attribute SVGEl enent tineContainer; // The 'svg' elenent.
readonly attribute SVGAni mati onEl enent ani mati onEl enent ;
readonly attribute SVGEl ement targetEl enent;

fl oat get Start Ti me()

rai ses(DOVExcepti on);
fl oat get Current Ti ne()

rai ses(DOVExcepti on);
fl oat get Si npl eDur ati on()

rai ses(DOVExcepti on);

b
Attributes
transitionType
Indicates the type of animation transition that caused the event to be generated. For adiscussion
of these transition types, refer to [SMILANIM-TRANSITION].
ti meCont ai ner
The 'svg' element which is the time container for the animation which generated this event.
ani mat i onEl enent
The animation element which generated this event.
t ar get El enent
The element which is the target of the animation (i.e., the element whose attributes and/or
properties are being modified over time).
Methods

getStartTinme
Returns the start time in seconds for the given ani mat i onEl enent
No Parameters

Return Value

fl oat The start timein seconds for the given ani mat i onEl enent relative to the start time
of thet i meCont ai ner

No Exceptions

getCurrent Ti ne

get Si

Returns the current time in seconds relative to time zero for the givent i meCont ai ner
No Parameters
Return Value

fl oat The current timein seconds relative to time zero for the givent i neCont ai ner

No Exceptions
nmpl eDur ati on

Returns the number of seconds for the simple duration for the current ani mat i onEl enment . If
the simple duration is undefined (e.g., the end time is indefinite), then an exception is raised.

No Parameters
Return Value

fl oat Thenumber of seconds for the simple duration for the current ani mat i onEl ement .

Exceptions

DOVExcepti on NO_SIMPLE DURATION_ERR: The animation element's simple duration
is undefined.

previous next contents properties index

previous next contents properties index

20 Fonts

Contents

 20.1 Introduction
o 20.2 SVGfonts
o 20.2.1 Overview of SVG fonts
o 20.2.2 The'font' element
o 20.2.3 The'glyph’ element
o 20.2.4 The 'missing-glyph’ element
o 20.2.5 The'hkern' and 'vkern' elements
« 20.3DOM interfaces
o 20.3.1 Interface SV GFontElement
o 20.3.2 Interface SV GGlyphBaseElement
o 20.3.3 Interface SV GGlyphElement
o 20.34 Interface SVGMissingGlyphElement
o 20.3.5 Interface SV GK ernBaseElement
o 20.3.6 Interface SVGHKernElement
o 20.3.7 Interface SV GVKernElement

20.1 Introduction

Reliable delivery of fontsis considered acritical requirement for SVG. Designers require the ability to
create SV G graphics with whatever fonts they care to use and then have the same fonts appear in the end
user's browser when viewing an SV G drawing, even if the given end user hasn't purchased the fontsin
guestion. This parallels the print world, where the designer uses a given font when authoring a drawing
for print, but when the end user views the same drawing within a magazine the text appears with the
correct font.

SVG utilizesthe web font facility defined in the "Cascading Style Sheets (CSS) level 2" specification
[CSS2] as a key mechanism for reliable delivery of font datato end users. A common scenario is that

SV G authoring applications will generate compressed, subsetted web fonts for all text elements used by
agiven SVG document fragment. Typically, the web fonts will be saved in alocation relative to the

referencing document.

One disadvantage to CSS2's Webfont facility to date is that CSS2 did not specify particular font formats
that were required to be supported. The result was that different implementations supported different
web font formats, thereby making it difficult for web site creators to post a single web site that is
supported by alarge percentage of installed browsers.

To provide acommon font format that will exist in all conforming SV G user agents, SVG includes
elements which allow for fonts to be defined in SVG.

20.2 SVG fonts

20.2.1 Overview of SVG fonts

An SVG font isafont defined using SVG's 'font' element.

The purpose of SVG fontsisto allow for delivery of glyph outlinesin display-only environments. SVG
fonts that accompany web pages must be supported only in browsing and viewing situations. Graphics
editing applications or file tranglation tools must not attempt convert SVG fontsinto system fonts. The
intent is that SV G files be interchangeable between two content creators, but not the SV G fonts that
might accompany these SV G files. Instead, each content creator will need to license the given font
before being able to successfully edit the SV G file. The font-face-name attribute indicates the name of

licensed font to use for editing,

SV G fonts contain unhinted font outlines. Because of this, on many implementations there will be
l[imitations regarding the quality and legibility of text in small font sizes. For increased quality and
legibility in small font sizes, content creators may want to use an alternate font technology, such as fonts
that ship with operating systems or an alternate web font format.

Because SV G fonts are expressed using SVG elements and attributes, in some cases the SV G font will
take up more space than if the font were expressed in a different web font format which was especially
designed for compact expression of font data. For the fastest delivery of web pages, content creators
may want to use an alternate font technology.

A key value of SVG fontsis guaranteed availability in SV G user agents. In some situations, it might be
appropriate for an SV G font to be the first choice for rendering some text. In other situations, the SVG
font might be an alternate, back-up font in case the first choice font (perhaps a hinted system font) is not
available to a given user.

The characteristics and attributes of SV G fonts correspond closely to the font characteristics and
parameters described in the " Cascading Style Sheets (CSS) level 2" specification [CSS2].

SV G fonts and their associated glyphs do not specify bounding box information. Because the glyph
outlines are expressed as SV G graphics elements, the implementation has the option to render the glyphs
either using standard graphics calls or by using special-purpose font rendering technology, in which case
any necessary maximum bounding box and overhang cal culations can be performed from analysis of the
graphics elements contained within the glyph outlines.

An SV G font can be either embedded within the SV G document fragment that uses the font or saved as
an external file and referenced viaa URI reference.

Hereis an example of how you might embed an SV G font inside of an SV G document:

<?xm version="1.0" standal one="yes" ?>
<svg wi dt h="400px" hei ght =" 300px"
xmns = "http://ww. w3. org/ G aphi cs/ SVG@ SVG 19991203. dtd' >
<def s>
<font id="MyFont" font-face-nanme="Super Sans"
uni ts- per-enE" 1000" cap- hei ght ="600" x- hei ght ="400"
ascent =" 700" descent="300" hori z-adv-x="1000"
t ext - bot t om=" - 300" basel i ne="0" centerline="350"
mat hl i ne="350" i deographi c="400" hangi ng="500"
t opli ne="700" text-top="700">
<m ssi ng- gl yph><pat h d="M), 0h200v200h- 200z"/ ></ gl yph>
<gl yph uni code="33"><path d="M), 0L200, 200L400, 0z"/ ></ gl yph>
<gl yph uni code="34"><pat h d="M), 0L200, 200L400, 0z"/ ></ gl yph>
<l-- nore glyphs -->

<style>
<! [CDATA[
@ont-face {
font-famly: "MyFont";
src: url ("#MWFont") format(svg)
}
11>
</styl e>
</ def s>
<text style="font-famly: MyFont, Helvetica, sans-serif">Text
usi ng enbedded font</text>
</ svg>

Download this example

Hereis an example of how you might reference an SV G font which is saved in an external file. First
referenced SVG font file:

<?xm version="1.0" standal one="yes" ?>
<svg wi dt h="100% hei ght="100%
xmns = "http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dtd' >
<def s>
<font id="MyFont" font-face-nanme="Super Sans"
uni ts- per-enmE"1000" cap- hei ght ="600" x- hei ght ="400"
ascent =" 700" descent="300" hori z-adv-x="1000"
t ext - bot t om=" - 300" basel i ne="0" centerline="350"
mat hl i ne="350" i deographi c="400" hangi ng="500"
t opli ne="700" text-top="700">
<m ssi ng- gl yph><pat h d="M), 0h200v200h- 200z"/ ></ gl yph>
<gl yph uni code="33"><path d="M), 0L200, 200L400, 0z"/ ></ gl yph>
<gl yph uni code="34"><pat h d="M), 0L200, 200L400, 0z"/ ></ gl yph>
<l-- nore glyphs -->

</ def s>
</ svg>

Download this example

The SV G file which uses/references the above SV G font

<?xm version="1.0" standal one="yes" ?>
<svg wi dt h="400px" hei ght ="300px"
xm ns = "http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dtd' > <defs>
<styl e>
<! [CDATA[
@ont-face {
font-famly: "MyFont";

file:///d|/jon/svgspec/samples/fonts01.xml
file:///d|/jon/svgspec/samples/fonts02a.xml

src: url ("nyfont.svg#M/Font") fornmat (svg)
}
11>
</styl e>
</ def s>
<text style="font-famly: MFont">Text using enbedded font</text>
</ svg>

Download this example

20.2.2 The 'font' element
The 'font' element defines an SV G font.

<IENTITY % font Ext "" >
<! ELEMENT font (%descTitle;, m ssing-glyph, (glyph|hkern|vkern
% ont Ext;)*) >

<! ATTLI ST font
id I D # MPLI ED
font-style CDATA #l MPLI ED
font-variant CDATA #l MPLI ED
font - wei ght CDATA #l MPLI ED
font-stretch CDATA #l MPLI ED
uni code-range CDATA #l MPLI ED
uni t s- per - em CDATA #REQUI RED
panose- 1 CDATA #l MPLI ED
sl ope CDATA #l MPLI ED
cap- hei ght CDATA #REQUI RED
x- hei ght CDATA #REQUI RED
accent - hei ght CDATA #l MPLI ED
ascent CDATA #REQUI RED
descent CDATA #REQUI RED
hori z-ori gi n-x CDATA #l MPLI ED
hori z-origin-y CDATA #l MPLI ED
hori z- adv- x CDATA #REQUI RED
vert-origin-x CDATA #l MPLI ED
vert-origin-y CDATA #l MPLI ED
vert-adv-y CDATA #l VPLI ED
t ext - bot t om CDATA #REQUI RED
basel i ne CDATA #REQUI RED
centerline CDATA #REQUI RED
mat hl i ne CDATA #REQUI RED
i deogr aphi ¢ CDATA #REQUI RED
hangi ng CDATA #REQUI RED
topli ne CDATA #REQUI RED
text-top CDATA #REQUI RED
font-face-nane CDATA #l MPLI ED
under |l i ne- positi on CDATA #l MPLI ED
underl i ne-thi ckness CDATA #l MPLI ED
stri ket hrough- posi ti on CDATA #| MPLI ED
stri ket hrough-thi ckness CDATA #l MPLI ED
overline-position CDATA #l MPLI ED
overline-thickness CDATA #l MPLI ED >

Attribute definitions:
font-style="all | [normal |italic | oblique] [, [normal | italic | oblique]]*"

file:///d|/jon/svgspec/samples/fonts02b.xml

The style of afont. Takes on the same values as the 'font-style' property, except that a
comma-separated list is permitted. The default valueisall.
Animatable: no.

font-variant = "[normal | small-caps] [,[normal | small-caps]]*"

Indication of whether this face is the small-caps variant of afont. Takes on the same values as
the 'font-variant' property, except that a comma-separated list is permitted. The default valueis

normal.
Animatable: no.
font-weight = "all | [normal | bold |100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900] [, [normal | bold
|100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900]]*"
The weight of aface relative to othersin the same font family. Takes on the same values as the
‘font-weight' property with three exceptions:
1. relative keywords (bolder, lighter) are not permitted
2. acomma-separated list of valuesis permitted, for fonts that contain multiple weights

3. an additional keyword, 'al’, is permitted, which means that the font will match for all
possible weights; either because it contains multiple weights, or because that face only
has a single weight.

The default valueis all.
Animatable: no.

font-stretch = "al | [normal | ultra-condensed | extra-condensed | condensed | semi-condensed |
semi-expanded | expanded | extra-expanded | ultra-expanded] [, [normal | ultra-condensed |
extra-condensed | condensed | semi-condensed | semi-expanded | expanded | extra-expanded |
ultra-expanded]]*"

Indication of the condensed or expanded nature of the face relative to othersin the same font
family. Takes on the same values as the 'font-stretch’ property except that:
o relative keywords (wider,narrower) are not permitted
0 acomma-separated list is permitted
o the keyword 'al' is permitted
The default value is normal.
Animatable: no.
unicode-range = "<urange> [, <urage>]*"
The range of 1SO 10646 characters [UNICODE] covered by the font. For more information, see

the description of the 'unicode-range' descriptor in the "Cascading Style Sheets (CSS) level 2"
specification [CSS2]. The default value is U+0-7FFFFFFF.

Animatable: no.

units-per-em = "<number>"
The number of coordinate units on the em square, the size of the design grid on which glyphs are
laid out. For more information, see the description of the 'units-per-em’ descriptor in the
"Cascading Style Sheets (CSS) level 2" specification [CSS2].
Animatable: no.

panose-1 = "[<integer>]{ 10} "
The Panose-1 number, consisting of ten decimal integers, separated by whitespace. For more

information, see the description of the 'panose-1' descriptor in the "Cascading Style Sheets (CSS)
level 2" specification [CSS2]. The default valueisO000000000.

Animatable: no.

dlope = "<number>"
The vertical stroke angle of the font. For more information, see the description of the 'slope'
descriptor in the "Cascading Style Sheets (CSS) level 2" specification [CSS2]. The default value
:: r(l)i.matabl €: no.

cap-height = "<number>"

The height of uppercase glyphsin the font within the font coordinate system. For more
information, see the description of the ‘cap-height’ descriptor in the "Cascading Style Sheets
(CSS) level 2" specification [CSS2].

Animatable: no.

x-height = "<number>"

The height of lowercase glyphsin the font within the font coordinate system. For more
information, see the description of the 'x-height' descriptor in the "Cascading Style Sheets (CSS)
level 2" specification [CSS2].

Animatable: no.
accent-height = "<number>"

The distance from the baseline to the top of accent characters, measure by a distance within the
font coordinate system. The default value is the value of the ascent attribute.

Animatable: no.

ascent = "<number>"

The maximum unaccented height of the font within the font coordinate system. For more
information, see the description of the ‘ascent’ descriptor in the "Cascading Style Sheets (CSS)
level 2" specification [CSS2].

Animatable: no.
descent = "<number>"

The maximum unaccented depth of the font within the font coordinate system. For more
information, see the description of the 'descent’ descriptor in the "Cascading Style Sheets (CSS)
level 2" specification [CSS2].

Animatable: no.
horiz-origin-x = "<number>"

The X-coordinate in the font coordinate system of the origin of a glyph to be used when drawing
horizontally oriented text. The default value is 0.
Animatable: no.

horiz-origin-y = "<number>"

The Y-coordinate in the font coordinate system of the origin of a glyph to be used when drawing
horizontally oriented text. The default valueis 0.
Animatable: no.

horiz-adv-x = "<number>"

The default horizontal advance after rendering a glyph in horizontal orientation. Glyph widths
are required to be positive, even if the glyph istypically rendered right-to-left, asin Hebrew and

Arabic scripts.
Animatable: no.
vert-origin-x = "<number>"

The X-coordinate in the font coordinate system of the origin of a glyph to be used when drawing
vertically oriented text. The default value is half of the value of attribute horiz-adv-x.

Animatable: no.
vert-origin-y = "<number>"

The Y-coordinate in the font coordinate system of the origin of a glyph to be used when drawing
vertically oriented text. The default value is the position specified by the font's ascent attribute.

Animatable: no.
vert-adv-y = "<number>"

The default vertical advance after rendering a glyph in vertical orientation. The default valueis
the sum of the values of attributes ascent and. descent.

Animatable: no.
text-bottom = "<number>"

The bottom of the font within the font coordinate system. For more information, see the
description of the 'text-bottom' value for the 'vertical-align' property in the "Cascading Style
Sheets (CSS) level 2" specification [CSS2].

Animatable: no.

basdline = "<number>"

The lower baseline of afont within the font coordinate system. For more information, see the
description of the 'baseline' descriptor in the "Cascading Style Sheets (CSS) level 2"
specification [CSS2].

Animatable: no.

centerline = "<number>"

The central baseline of afont within the font coordinate system. For more information, see the
description of the 'centerline' descriptor in the "Cascading Style Sheets (CSS) level 2"
specification [CSS2].
Animatable: no.

mathline = "<number>"

The mathematical baseline of afont within the font coordinate system. For more information, see
the description of the 'mathline' descriptor in the "Cascading Style Sheets (CSS) level 2"
specification [CSS2].
Animatable: no.

ideographic = "<number>"

The ideographic baseline of afont within the font coordinate system.
Animatable: no.

hanging = "<number>"

The hanging baseline of a font within the font coordinate system.
Animatable: no.

topline = "<number>"
The top baseline of afont within the font coordinate system. For more information, see the

description of the 'topline' descriptor in the "Cascading Style Sheets (CSS) level 2" specification
[CSS2].
Animatable: no.

text-top = "<number>"

The top of the font within the font coordinate system. For more information, see the description
of the 'text-top' value for the 'vertical-align' property in the "Cascading Style Sheets (CSS) level
2" specification [CSS2].
Animatable: no.

font-face-name = "<string>"

The full name of a particular face of afont family. It typically includes a variety of
non-standardized textual qualifiers or adornments appended to the font family name. For more
information, see the description of full font names in the "Cascading Style Sheets (CSS) level 2"
specification [CSS2].
Animatable: no.

underline-position = "<number>"

Theideal position of an underline within the font coordinate system.
Animatable: no.

underline-thickness = "<number>"

The ideal thickness of an underline, expressed as a length within the font coordinate system.
Animatable: no.

strikethrough-position = "<number>"

Theideal position of a strike-through within the font coordinate system.
Animatable: no.

strikethrough-thickness = "<number>"

The ideal thickness of a strike-through, expressed as alength within the font coordinate system.
Animatable: no.

overline-position = "<number>"

Theideal position of an overline within the font coordinate system.
Animatable: no.

overline-thickness = "<number>"

The ideal thickness of an overline, expressed as alength within the font coordinate system.
Animatable: no.

Attributes defined elsewhere:
id.
20.2.3 The 'glyph' element

The 'glyph' element defines the graphics for a given glyph. The coordinate system for the glyph is
defined by the various attributes in the 'font' element.

The contents of a'glyph’ can be any SV G graphics elements. However, in some implementations, faster

font rendering (and possibly improved quality) might occur when glyph definitions consist of asingle
'path’ element.

<IENTITY % gl yphExt "" >
<! ELEMENT gl yph (%lescTitl eDefs;,

(path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| g| swi tch
%l yphExt;)*) >

<! ATTLI ST gl yph
id | D #l MPLI ED
uni code CDATA #REQUI RED
gl yph- nane CDATA #1 MPLI ED
vert-text-orient CDATA #l MPLI ED
ar abi ¢ CDATA #l| MPLI ED
han CDATA #| MPLI ED
hori z- adv- x CDATA #!| MPLI ED
vert-adv-y CDATA #l MPLI ED >

Attribute definitions:
unicode = "<string>"

One or more Unicode characters indicating the sequence of Unicode characters which
corresponds to this glyph. If a character is provided, then this glyph corresponds to the given
Unicode character. If alist of charactersis provided, then this glyph corresponds to the given
sequence of Unicode characters. One use of alist of numbersisfor ligatures. For example, if
unicode="ffl", then the given glyph will be used to render the sequence of characters"f", "f", and
"I". (This could aternatively have been expressed using character entities, using XML character
references expressed in hexadecimal notation: unicode="& #x66;& #x66;& #x6c¢;", or XML
character references expressed in decimal notation: unicode="& #102;& #102;l".) When
determining the glyph(s) to draw a given character sequence, the 'font' element is searched from
itsfirst 'glyph’ element to itslast in lexical order to seeif the upcoming sequence of Unicode
characters to be rendered match the sequence of Unicode characters specified in the unicode
attribute for the given 'glyph' element. The first successful match is used.

Note that any occurrences of 'altglyph' take precedence over the glyph selection rules within an

SVG font.
Animatable: no.

glyph-name = "<name> [, <name> |* "

A name for the glyph. It is recommended that glyph names be unique across afont. The glyph
names can be used in situations where Unicode character numbers do not provide sufficient
information to access the correct glyph, such as when there are multiple glyphs per Unicode
character. The glyph names can be referenced in kerning definitions.

Animatable: no.
vert-text-orient = "default | h | v"

When drawing vertical text, indicates whether the given glyph is meant to be drawn with a
vertical or horizontal orientation. The default value is vertOrient="default", which indicates that
the Unicode character number determines the orientation of this glyph.
Animatable: no.

arabic ="initial | media | termina | isolated"
For Arabic glyphs, indicates which of the four possible forms this glyph represents.

Animatable: no.
han ="ja| zht | zhs | kor"

For glyphs in the Han range, indicates which of the four possible forms this glyph represents.
Animatable: no.

horiz-adv-x = "<number>"

The horizontal advance after rendering a glyph in horizontal orientation. The default value is the
value of the font's horizAdvX attribute. Glyph widths are required to be positive, even if the

glyph istypically rendered right-to-left, asin Hebrew and Arabic scripts.
Animatable: no.

vert-adv-y = "<number>"

The vertical advance after rendering aglyph in vertical orientation. The default value is the value
of thefont's vertAdvy attribute.

Animatable: no.

Attributes defined elsewhere:
id.

20.2.4 The 'missing-glyph' element

The 'missing-glyph’ element defines the graphics to use if there is an attempt to draw a glyph from a
given font and the given glyph has been defined. The attributes on the 'missing-glyph' element have the
same meaning as the corresponding attributes on the 'glyph’ element.

<IENTITY % mi ssi ng-gl yphExt "" >
<! ELEMENT mi ssi ng-gl yph (%lescTitleDefs;,
(path|text|rect|circle|ellipse|line|polyline|polygon|
use|image| g| swi tch
% ssi ng- gl yphExt;)*) >
<! ATTLI ST mi ssi ng-gl yph
id I D #l MPLI ED
hori z- adv- x CDATA #l MPLI ED
vert-adv-y CDATA #l MPLI ED >

Attributes defined elsewhere:
id. horiz-adv-x, vert-adv-y.

20.2.5 The 'hkern' and 'vkern' elements

The 'hkern' and 'vkern' elements define kerning pairs for horizontally-oriented and vertically-oriented
pairs of glyphs, respectively.

Kern pairsidentify pairs of glyphs within a single font whose inter-glyph spacing is adjusted when the
pair of glyphs are rendered next to each other. In addition to the requirement that the pair of glyphs are
from the same font, SV G font kerning happens only when the two glyphs correspond to characters
which have the same values for properties ‘font-family’, ‘font-size', 'font-styl€', ‘font-weight',
‘font-variant', ‘font-stretch’, 'font-size-adjust' and 'font'.

An example of akerning pair are the letters "Va', where the typographic result might ook better if the
letters"V" and the "a" were rendered slightly closer together.

Right-to-left and bi-directional text in SVG islaid out in atwo-step process, which is described in
Relationship with bi-directionality. If SV G fonts are used, before kerning is aplied, characters are

re-ordered into left-to-right (or top-to-bottom, for vertical text) visual rendering order. Kerning from
SVG fontsis then applied on pairs of glyphs which are rendered contiguoudly. Thefirst glyph in the
kerning pair is the left (or top) glyph in visual rendering order. The second glyph in the kerning pair is
the right (or bottom) glyph in the pair.

For convenience to font designers and to minimize file sizes, asingle 'hkern' and 'vkern' can define a
single kerning adjustment value between one set of glyphs (e.g., arange of Unicode characters) and
another set of glyphs (e.g., another range of Unicode characters).

The 'hkern' element defines kerning pairs and adjustment values in the horizontal advance value when
drawing pairs of glyphs which the two glyphs are contiguous and are both rendered horizontally (i.e.,
side-by-side). The spacing between charactersis reduced by the kerning adjustment. (Negative kerning
adjustments increase the spacing between characters.)

<! ELEMENT hkern EMPTY >
<! ATTLI ST hkern

id I D #l MPLI ED

ul CDATA #l MPLI ED

gl CDATA #l MPLI ED

u2 CDATA #l MPLI ED

g2 CDATA #l MPLI ED

k CDATA #REQUI RED >

Attribute definitions:
ul = "[<character> | <urange>] [, [<character> | <urange>] |* "

A sequence (comma-separated) of Unicode characters (refer to the description of the unicode
attribute to the 'glyph' element for a description of how to express individual Unicode characters)
and/or unicode ranges (see description of unicode rangesin [CSS2]) which identify a set of

possible first glyphsin the kerning pair. If agiven Unicode character within the set has multiple
corresponding 'glyph’ elements (i.e., there are multiple 'glyph’ elements with the same unicode

attribute value, but different glyphName values), then all such glyphs are included in the set.

Commavis the separator character; thus, to kern a comma, specify the comma as part of a
Unicode range or as a glyph name using the g1 attribute. The total set of possible first glyphsin

the kerning pair is the union of glyphs specified by the ul and gl attributes.
Animatable: no.

gl ="<name> [, <name> |* "

A sequence (comma-separated) of glyph names (i.e., values that match glyphName attributes on
'alyph’ elements) which identify a set of possible first glyphsin the kerning pair. All glyphs with

the given glyph name are included in the set. The total set of possible first glyphsin the kerning
pair is the union of glyphs specified by the ul and g1 attributes.

Animatable: no.

u2 = "[<number> | <urange>] [, [<number> | <urange>]]* "
Same as the ul attribute, except that u2 specifies possible second glyphsin the kerning pair.

Animatable: no.

g2 ="<name> [, <name> |* "
Same as the g1 attribute, except that g2 specifies possible second glyphsin the kerning pair.
Animatable: no.

k = "<number>"

The amount to decrease the spacing between the two glyphs in the kerning pair. The valueisin
the font coordinate system.
Animatable: no.

Attributes defined elsewhere:
id.

At least one each of ul or g1 and at least one of u2 or g2 must be provided.

The 'vkern' element defines kerning pairs and adjustment valuesin the vertical advance value when
drawing pairs of glyphs together when stacked vertically. The spacing between charactersis reduced by
the kerning adjustment.

<! ELEMENT vkern EMPTY >
<! ATTLI ST vkern

id | D #l MPLI ED

ul CDATA #l MPLI ED

gl CDATA #l MPLI ED

u2 CDATA #l MPLI ED

g2 CDATA #l MPLI ED

k CDATA #REQUI RED >

Attributes defined elsewhere:
id. ul. gl. u2. g2. k.

20.3 DOM interfaces

20.3.1 Interface SVGFontElement

The SV GFontElement interface corresponds to the 'font’ element.

i nterface SVGFont El enent : SVGEl enent {
3

20.3.2 Interface SVGGlyphBaseElement

The SV GGlyphBaseElement interface is the base interface for interfaces SV GGlyphElement and
SV GMissingGlyphElement.

i nterface SVGBased yphEl ement : SVCGEl enent {
b

20.3.3 Interface SVGGIlyphElement
The SVGGlyphElement interface corresponds to the 'glyph’ element.
i nterface SVGAE yphEl enent : SVGBased yphEl enent {

b

20.3.4 Interface SVGMissingGlyphElement
The SVGMissingGlyphElement interface corresponds to the 'missingGlyph' element.
i nterface SVGM ssi ngd yphEl enent : SVG@Based yphEl enent {
3
20.3.5 Interface SVGKernBaseElement

The SV GK ernBaseElement interface is the base interface for interfaces SV GHK ernElement and
SVGVKernElement.

i nterface SVGBaseKernEl enent : SVGEl enent {
b

20.3.6 Interface SVGHKernElement
The SVGHKernElement interface corresponds to the 'hkern' element.

interface SVCGHKer nEl enent : SVGBaseKer nEl enent {
H

20.3.7 Interface SVGVKernElement
The SVGVKernElement interface corresponds to the 'vkern' element.

interface SVGVKer nEl enent : SVGBaseKer nEl enent {
H

previous next contents properties index

previous next contents properties index

21 Metadata

Contents

e 21.1 Introduction
e 21.2 The SVG Metadata Schema
e 21.3 Anexample

21.1 Introduction

Metadata is information about a document.

RDF is the appropriate language for metadata. The specifications for RDF can be found at:
» Resource Description Framework Model and Syntax Specification

o Resource Description Framework (RDF) Schema Specification

It is recommended that metadata within an SV G document fragment be expressed in an appropriate RDF
namespaces and placed within the 'metadata’ child element to the document's 'svg' root element. (See
Example below.)

Here are some suggestions for content creators regarding metadata:

« Itisrecommended that content creators refer to W3C M etadata Recommendations and activities
when deciding which metadata schemato use in their documents.

« Itisrecommended that content creators refer to the Dublin Core, which is a set of generally
applicable core metadata properties (e.g., Title, Creator/Author, Subject, Description, etc.).

« Additionally, SVG Metadata Schema (below) contains a set of additional metadata properties
that are common across most uses of vector graphics.

Individual industries or individual content creators are free to define their own metadata schema, but
everyone is encouraged to follow existing metadata standards and use standard metadata schema
wherever possible to promote interchange and interoperability. If a particular standard metadata schema
does not meet your needs, then it is usually better to define an additional metadata schemain RDF
which is used in combination with the given standard metadata schema than to totally avoid the standard
schema.

http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/TR/PR-rdf-schema
http://www.w3.org/Metadata/
http://purl.org/DC/

21.2 The SVG Metadata Schema

(This schema has not yet been defined. Here are some candidate attributes for the schema:
M eetsA ccessibilityGuidelines, UsesDynamicElements, ListOf ExtensionsUsed, ListOfl CCProfilesUsed,
LiistOfFontsUsed, ListOflmagesUsed, ListOf ForeignObjectsUsed, ListOf External References.)

21.3 An example

Hereis an example of how metadata can be included in an SV G document. The example uses the Dublin
Core version 1.1 schema and the SVG metadata schema:

<?xm version="1.0" standal one="yes" ?>
<svg wi dth="4in" hei ght="3in"
xm ns = "http://ww. w3. or g/ G aphi cs/ SVG SVG 19991203. dtd' >
<desc xm ns: nmyfoo="http://bar. org/ nyfoo">
<nyfoo:title>This is a financial report</nyfoo:title>
<nyf oo: descr>The gl obal description uses markup fromthe
<nyf oo: enph>nyf oo</ nyf oo: enph> nanespace. </ nyf oo: descr >
<nyf oo: scene><nyf oo: what >wi dget $gr owt h</ nyf oo: what >
<nyf oo: cont ai ns>%t hr ee $gr aph- bar </ nyf 0oo: cont ai ns>
<nmyf oo: when>1998 $t hr ough 2000</ nyf oo: when> </ nyf oo: scene>
</ desc>
<net adat a>
<rdf : RDF
xmns:rdf = "http://ww.w3.o0rg/...-rdf-syntax-ns"
xmns:rdfs = "http://ww. w3.org/ TR/ ... -schem"
xm ns:dc = "http://purl.org/dc/elements/1.1/"
xm ns: svgnmetadata = "http://ww. w3.o0org/..." >
<rdf: Description about="http://bar.org/ nyfoo"
dc:titl e="M/Foo Financial Report"
dc: description="$three $bar $thousands $doll ars $from 1998
$t hr ough 2000"
dc: publ i sher="Bar Org | ncor por at ed"”
dc: dat e="1999- 03- 03"
dc: format ="i nage/ svg"
dc: 1 anguage="en" >
<dc: creator>
<r df : Bag>
<rdf:li>rving Bird</rdf:li>
<rdf:li>Mary Lanbert</rdf:li>
</ rdf : Bag>
</ dc: creat or>
<svgnet adat a: General UsesControl | edVocabul ary="true"/>
</rdf: Description>
</ rdf : RDF>
</ et adat a>
</ svg>

Download this example

previous next contents properties index

file:///d|/jon/svgspec/samples/metadata.xml

previous next contents properties index

22 Backwards Compatibility

A user agent (UA) might not have the ability to process and view SV G content. The following list
outlines two of the backwards compatibility scenarios associated with SV G content:

o For XML grammars with the ability to embed SV G content, it is assumed that some sort of
alternate representation capability such as the 'switch' element and some sort of
feature-availability test facility (such aswhat is described in the SMIL 1.0 specification
[SMIL1]) will be available.

This 'switch' element and feature-availability test facility (or their equivalents) are the
recommended way for XML authors to provide an alternate representation to SV G content, such
as an image or atext string. The following example shows how to embed an SV G drawing
within a SMIL 1.0 document such that an alternate image will display in the event the UA
doesn't support SVG. (In this example, the SV G content isincluded viaa URL reference. With
some parent XML grammarsit will also be possible to include an SVG document fragment
inline within the same file as its parent grammar.)

<?xm version="1.0" standal one="yes" ?>
<sm | >
<body>
<l-- Wth SML 1.0, the first child elenment of 'swtch'
which the SML 1.0 user agent is able to process
and which tests true will get processed and all other
child elements will have no visual effect. In this case
if the SML 1.0 user agent can process "imge/svg"
then the SVG wi || appear; otherw se, the alternate image
(the second child elenent) will appear. -->
<swi t ch>
<l-- Render the SVGif possible. -->
<ref type="image/svg" src="draw ng.svg" />

<!-- Else, render the alternate imge. -->
<inmg src="al ternate_inage.jpg" />
</ switch>
</ body>
</sm|>

Download this example

« For HTML 4.0, SVG drawings can be embedded using the 'object’ element. An aternate
representation such as an image can be included as the content of the 'object’ element. In this
case, the SV G content usually will beincluded viaa URL reference. The following example
shows how to use the 'object’ element to include an SV G drawing viaa URL reference with an
image serving as the alternate representation in the absence of an SV G user agent:

<htm >
<body>
<obj ect type="inmage/svg" data="draw ng.svg">
<l-- The contents of the <object> element (i.e., an alternate

i mage) are drawn in the event the user agent cannot process
the SVG drawi ng. -->
<ing src="alternate_imge.jpg" alt="short description" />

file:///d|/jon/svgspec/samples/switch.xml

</ obj ect >
</ body>
</htm >

previous next contents properties index

previous next contents properties index

23 Extensibility

Contents

o 23.1 Foreign namespaces and private data

o 23.2 Embedding foreign object types

23.1 Foreign namespaces and private data

SVG dlowsinclusion of elements from foreign namespaces anywhere with the SVG content. In general,
the SV G user agent will include the unknown elementsin the DOM but will otherwise ignore unknown
elements. (The notable exception is described under Embedding Foreign Object Types.)

Additionally, SVG alowsinclusion of attributes from foreign namespaces on any SVG element. The
SV G user agent will include unknown attributes in the DOM but with otherwise ignore unknown
attributes.

SVG's ahility to include foreign namespaces can be used for the following purposes:

« Application-specific information so that authoring applications can include model-level datain
the SV G content to serve their "roundtripping” purposes (i.e., the ability to write, then read afile
without loss of higher-level information).

« Supplemental datafor extensibility. For example, suppose you have an extrusion extension
which takes any 2D graphics and extrudes it in three dimensions. When applying the extrusion
extension, you probably will need to set some parameters. The parameters can be included in the
SV G content by inserting elements from an extrusion extension namespace.

To illustrate, a business graphics authoring application might want to include some private data within
an SV G document so that it could properly reassemble the chart (a pie chart in this case) upon reading it
back in:

<?xm version="1.0" standal one="yes" ?>
<svg wi dt h="4in" hei ght="3in"
xmns = "http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dtd' >
<def s>
<myapp: pi echart xm ns: nmyapp="http:// myconpany/ mapapp"
title="Sal es by Region">
<myapp: pi eslice | abel ="Northern Regi on" val ue="1.23"/>
<myapp: pi eslice | abel ="Eastern Regi on" val ue="2.53"/>
<nmyapp: pi eslice | abel =" Sout hern Regi on" val ue="3.89"/>
<myapp: pi eslice | abel ="Western Regi on" val ue="2.04"/>
<l-- Oher private data goes here -->
</ nyapp: pi echart >

</ def s>
<desc>This chart includes private data in another nanespace

</ desc>
<l-- In here would be the actual graphics el enents which
draw the pie chart -->
</ svg>

Download this example

23.2 Embedding foreign object types

One goal for SVG isto provide a mechanism by which other XML language processors can render into
an areawithin an SV G drawing, with those renderings subject to the various transformations and
compositing parameters that are currently active at a given point within the SV G content tree. One
particular example of thisisto provide aframe for the HTML/CSS processor so that dynamically
reflowing text (subject to SV G transformations and compositing) could be inserted into the middle of
some SV G content. Another example isinserting aMathML [MATHML] expression into an SVG

drawing.

The 'foreignObject’ element allows for inclusion of foreign namespaces which has graphical content
drawn by adifferent user agent, where the graphical content that is drawn is subject to SVG
transformations and compositing. The contents of 'foreignObject’ are assumed to be from a different
namespace. Any SV G elements within a ‘foreignObject’ will not be drawn, except in the situation where
aproperly defined SV G subdocument is recursively embedded within the different namespace (e.g., an
SV G document fragment contains an XHTML document fragement which in turn contains yet another
SV G document fragment).

Usualy, a'foreignObject’ will be used in conjunction with the 'switch' element and the system-required
system-language attributes to provide proper checking for user agent support and provide an aternate
rendering in case user agent support isn't available.

Hereisan example:

<?xm version="1.0" standal one="yes" ?>
<svg wi dt h="4in" hei ght="3in"
xmns = "http://ww.w3. or g/ G aphi cs/ SVE SVG 19991203. dtd' >
<desc>Thi s exanpl e uses the switch elenent to provide a
fall back graphical representation of an equation, if
XMHTML is not supported.

</ desc>

<I-- The <switch> element will process the first child el ement
whose testing attributes evaluate to true.-->

<sw t ch>

<l-- Process the enbedded HTM.L if the systemrequired attribute
eval uates to true (i.e., the user agent supports XHTM
enbedded within SVG. -->
<f orei gnChj ect systemrequired="SVG-orei gnObj ect: XHTM." wi dt h="100" hei ght ="50">
<l-- XHTML content goes here -->
</ forei gnoj ect >

<l-- Else, process the following alternate SVG
Note that there are no testing attributes on the <g> el ement.
If no testing attributes are provided, it is as if there
were testing attributes and they evaluated to true.-->
<g>
<!-- Draw a red rectangle with a text string on top. -->
<rect wi dth="20" height="20" style="fill: red"/>

file:///d|/jon/svgspec/samples/private.xml

<t ext >Fornul a goes here</text>
</ g>

</ swi tch>
</ svg>

Download this example

It isnot required that SV G user agent support the ability to invoke other arbitrary user agents to handle
embedded foreign object types; however, all conforming SV G user agents would need to support the
‘switch' element and must be able to render valid SV G elements when they appear as one of the
alternatives within a'switch' element.

Ultimately, it is expected that commercial Web browsers will support the ability for SV G to embed
content from other XML grammars which use CSS or XSL to format their content, with the resulting
CSS- or XSL-formatted content subject to SV G transformations and compositing. At thistime, such a
capability is not arequirement.

previous next contents properties index

file:///d|/jon/svgspec/samples/mathswitch.xml

previous next contents properties index

Appendix A: Document Type Definition

This appendix is normative.

The DTD is also available for download.

<l--
This is the DID for Scal able Vector G aphics (SVG 1.0 (draft 19991203).
The specification for SVG that corresponds to this DID is avail able at:

htt p: // ww. w3. or g/ 1999/ 12/ WD- SVG- 19991203/

<l-- Ceneric Attributes -->

<l-- This entity allows for at npst one of desc and title,
supplied in any order -->
<IENTITY % descTitle
"((desc,title?)|(title,desc?)?)" >

<l-- This entity allows for at nobst one of desc, title and defs,
supplied in any order -->
<IENTITY % descTitl eDefs
"(((desc, ((title, defs?)|(defs,title?))?)]
(title, ((desc, defs?)]| (defs, desc?))?)|
(defs, ((desc,title?)|(title, desc?))?))?)" >

<!-- Supplenmental attributes to xlink:href for all elenents
whi ch reference to other elenents using XLink -->
<IENTITY % xlinkRef Attrs
"xm ns: xli nk CDATA #FI XED ' htt p://wwm. w3. or g/ XML/ XLi nk/ 0. 9'

xlink:type (sinple|extended|locator|arc) #FIXED 'sinple'
xlink:rol e CDATA #l MPLI ED
xlink:title CDATA #l MPLI ED
xlink: show (new| enbed| repl ace) #FI XED ' enbed’
xlink:actuate (user|auto) #FIXED 'auto'" >

<IENTITY % gr aphi csEl enent Event s

"onfocusi n CDATA #l MPLI ED
onf ocusout CDATA #l MPLI ED
ongai nsel ecti on CDATA #| MPLI ED
onl osesel ecti on CDATA #| MPLI ED
onacti vat e CDATA #l MPLI ED
onnousedown CDATA #l| MPLI ED
onnmouseup CDATA #l MPLI ED
oncl i ck CDATA #l MPLI ED
ondbl cl i ck CDATA #l MPLI ED
onmouseover CDATA #| MPLI ED
onnousenove CDATA #l MPLI ED
onnouseout CDATA #| MPLI ED
onkeydown CDATA #| MPLI ED
onkeypr ess CDATA #l MPLI ED
onkeyup CDATA #| MPLI ED
onl oad CDATA #l MPLI ED
onsel ect CDATA #| MPLI ED' >

<I'ENTITY % docunent Event s
"onresi ze CDATA #l MPLI ED
onscrol | CDATA #l MPLI ED
onunl oad CDATA #| MPLI ED
onzoom CDATA #| MPLI ED
onerror CDATA #l MPLI ED
onabort CDATA #|l MPLIED " >

http://www.w3.org/Graphics/SVG/SVG-19991203.dtd

<IENTITY % structured_text
"content CDATA #FI XED 'structured text'" >

<I-- Allow for extending the DTD with internal subset for
contai ner and graphics el enents -->
<IENTITY %ceExt "" >

<IENTITY % geExt "" >
<! --========== Docunent Structure and G oupi ng ==========-->
<IENTITY % svgExt "" >

<! ELEMENT svg (%dlescTitl eDefs;, netadata?,
(path|text|rect|circle|ellipse|line|polyline|polygon|
use| image| svg| g| switch|a
% eExt; ¥%svgExt;)*) >

<! ATTLI ST svg
xm ns CDATA #FI XED ' http://ww. wW3. or g/ G aphi cs/ SVE SVG 19991203. dt d'
id I D #l MPLI ED
xm : | ang NMIOKEN #l MPLI ED
xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #| MPLI ED
%gr aphi csEl enent Event s;
%docunent Event s;
systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED
x CDATA #l| MPLI ED
y CDATA #l MPLI ED
wi dt h CDATA #REQUI RED
hei ght CDATA #REQUI RED
ref X CDATA #l MPLI ED
refY CDATA #l MPLI ED
vi ewBox CDATA #| MPLI ED
preserveAspect Rati o CDATA 'xM dYM d neet’
enabl eZoomAndPanControls (true | false) "true"
content Scri pt Type CDATA #| MPLI ED >

<IENTITY %gExt "" >
<! ELEMENT g (%dlescTitl eDefs;,

(path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| swi t ch| a|
ani nat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf orm
%ceExt ; YgExt;)*) >

<I ATTLI ST g
id 1D # MPLI ED
xm : [ang NMIOKEN #l MPLI ED
xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #| MPLI ED
transf or m CDATA #| MPLI ED
%gr aphi csEl enent Event s;
systemrequired NMIOKEN #l MPLI ED
syst em | anguage CDATA #| MPLI ED >

<IENTITY % def sext "" >
<! ELEMENT defs (script|style|synbol|marker|clipPath| mask]|

linearGradi ent|radial Gadient|pattern|filter|cursor]|font]|
ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf or nj
path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| vi ew| swi tch| al t G yphDef

%ceExt ; Ydef sExt;)* >

<! ATTLI ST defs
id 1D # MPLIED
xm : I ang NMIOKEN #l MPLI ED
xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #|l MPLI ED >

<l-- Shapes -->

<!
<!

<!

<!
<!

<!

<!

<!

<!

<!

ENTITY % pathExt "" >
ELEMENT path (%lescTitle;, (ani mate| set| ani mat eMbti on| ani nat eCol or | ani mat eTr ansf orm
%geExt ; %pat hExt;)*) >

ATTLI ST path

id I D # MPLIED

xm : 1 ang NMIOKEN #| MPLI ED

xm : space (defaul t|preserve) # MPLIED
cl ass NMIOKENS #| MPLI ED

styl e CDATA #| MPLI ED

transf orm CDATA #| MPLI ED

%gr aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED

d CDATA #REQUI RED

nom nal Lengt h CDATA #| MPLI ED >

ENTITY %rectExt "" >
ELEMENT rect (%lescTitle;, (animate|set|ani matelMtion|ani mateCol or| ani mat eTransform

%geExt; % ect Ext;)*) >

ATTLI ST rect

id I D #l MPLI ED

xm : 1 ang NMIOKEN #| MPLI ED

xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED

styl e CDATA #| MPLI ED

transf or m CDATA #l MPLI ED

%gr aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED

x CDATA #l MPLI ED

y CDATA #l MPLI ED

wi dt h CDATA #REQUI RED

hei ght CDATA #REQUI RED

rx CDATA #l MPLI ED

ry CDATA #l MPLI ED >

ENTITY %circl eExt "" >

' ELEMENT circle (%lescTitle;, (animte|set|ani mat eMotion| ani nat eCol or | ani mat eTr ansf orm

%geExt; %circl eExt;)*) >
ATTLI ST circle
id I D # MPLI ED
xm : 1 ang NMIOKEN #| MPLI ED
xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #| MPLI ED
transf or m CDATA #l MPLI ED
%gr aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
system | anguage CDATA #| MPLI ED
cx CDATA "0"
cy CDATA "0"
r CDATA #REQUI RED >

TENTITY %ellipseExt "" >

ELEMENT el lipse (%lescTitle;, (animate|set|ani matelMti on| ani mat eCol or | ani mat eTr ansf orm
%geExt; %l | i pseExt;)*) >

ATTLI ST el lipse

id | D #l MPLI ED

xm : | ang NMIOKEN #| MPLI ED

xm : space (defaul t|preserve) # MPLIED

cl ass NMIOKENS #l MPLI ED

styl e CDATA #| MPLI ED

transf orm CDATA #| MPLI ED

%r aphi csEl ement Event s;

systemrequired NMIOKEN #l MPLI ED

system | anguage CDATA #l MPLI ED

cx CDATA "0"

cy CDATA "0"

<!
<

<l

<!
<

<!

<!

<!
<!

<1

rx CDATA #REQUI RED
ry CDATA #REQUI RED >

ENTITY % |ineExt "" >

ELEMENT line (%lescTitle;, (animate|set|ani matelMtion| ani nat eCol or | ani mat eTr ansf orm
%geExt; % ineExt;)*) >

ATTLI ST Line

id I D #l MPLI ED

xm : 1 ang NMIOKEN #| MPLI ED

xm : space (defaul t|preserve) # MPLIED

cl ass NMIOKENS #l MPLI ED

styl e CDATA #| MPLI ED

transf orm CDATA #| MPLI ED

%r aphi csEl ement Event s;

systemrequired NMIOKEN #l MPLI ED

system | anguage CDATA #l MPLI ED

x1 CDATA "0"

yl CDATA "0"

x2 CDATA "0"

y2 CDATA "0" >

IENTITY % pol yli neExt "" >
I ELEMENT polyline (%descTitle;, (ani nate|set|ani mateltion| ani mat eCol or | ani nat eTr ansf orm

%geExt ; %pol yl i neExt;)*) >

I ATTLI ST polyline

id I D # MPLI ED

xm : | ang NMIOKEN #l MPLI ED

xm : space (default|preserve) # MPLI ED
cl ass NMIOKENS #| MPLI ED

styl e CDATA #| MPLI ED

transf orm CDATA #| MPLI ED

%gr aphi csEl enent Event s;
systemrequired NMIOKEN #l MPLI ED

syst em | anguage CDATA #| MPLI ED

poi nts CDATA #REQUI RED >

ENTITY % pol ygonExt "" >
ELEMENT pol ygon (%lescTitle;, (animate| set | ani mat eMdti on| ani mat eCol or | ani mat eTr ansf orm

%geExt ; %pol ygonExt;)*) >
ATTLI ST pol ygon
id | D #l MPLI ED
xm : | ang NMIOKEN #l MPLI ED
xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #| MPLI ED
transf or m CDATA #l MPLI ED
%gr aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED
poi nts CDATA #REQUI RED >

-- Text -->

ENTITY % textExt "" >
ELEMENT text (#PCDATA|tspan|tref|textPath|altglyph|use|aninate|set|animateMtion|ani mateCol or|ani nateTransformn

%geExt ; % ext Ext;)* >

ATTLI ST text

id | D #l MPLI ED

xm : 1 ang NMIOKEN #| MPLI ED

xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED

styl e CDATA #| MPLI ED

transf or m CDATA #l MPLI ED

%gr aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED

x CDATA #l MPLI ED

y CDATA #l MPLI ED >

<IENTITY % tspanExt "" >
<! ELEMENT tspan (#PCDATA|tspan|tref]|altglyph|animate|set]|aninateCol or

% spanExt;)* >

<I ATTLI ST tspan
id I D # MPLI ED
xm : [ang NMIOKEN #l MPLI ED
xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #| MPLI ED
%gr aphi csEl enent Event s;
systemrequired NMIOKEN #l MPLI ED
syst em | anguage CDATA #| MPLI ED
Xx CDATA #l| MPLI ED
y CDATA #l MPLI ED
dx CDATA #l MPLI ED
dy CDATA #l MPLI ED
rot at e CDATA #l MPLI ED >

<IENTITY %trefExt "" >
<! ELEMENT tref (aninmate|set|animateCol or

%refExt;)* >

<! ATTLI ST tref
id I D # MPLI ED
xm : 1 ang NMITOKEN #| MPLI ED
xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #| MPLI ED
%gr aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED
x CDATA #1 MPLI ED
y CDATA #l MPLI ED
dx CDATA #l MPLI ED
dy CDATA #l MPLI ED
rotate CDATA #l MPLI ED
Ul i nkRef Attrs;
xlink: href CDATA #REQUI RED >

<IENTITY % textPathExt "" >
<! ELEMENT textPath (#PCDATA|tspan|tref|altglyph|animte|set|animteColor

% ext Pat hExt;)* >
<! ATTLI ST textPath

id I D #l MPLI ED

xm : | ang NMIOKEN #l MPLI ED

xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED

styl e CDATA #| MPLI ED

%gr aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
system | anguage CDATA #| MPLI ED
start O f set CDATA "O0"

9%l inkRef Attrs;

xlink: href CDATA #REQUI RED >

<IENTITY %altd yphExt "" >
<! ELEMENT al td yph (#PCDATA %altd yphExt;)* >

<I' ATTLI ST altd yph
id I D # MPLI ED
9l i nkRef Attrs;
xlink: href CDATA #REQUI RED >

<IENTITY % al t d yphDef Ext "" >
<! ELEMENT al t d yphDef (glyphSub %altd yphDef Ext;)* >

<! ATTLI ST al t gl yphDef
id I D # MPLI ED >

<! ELEMENT gl yphSub EMPTY >
<! ATTLI ST gl yphSub

id ID # MPLI ED

font CDATA #REQUI RED

gl yphRef CDATA #REQUI RED
format CDATA #REQUI RED >

<l-- SVG Font s -->

<IENTITY %fontExt "" >
<! ELEMENT font (%lescTitle;, mssing-glyph, (glyph|hkern|vkern
% ont Ext;)*) >

<! ATTLI ST font
id I D #l MPLI ED
font-styl e CDATA #l MPLI ED
font-variant CDATA #l MPLI ED
f ont - wei ght CDATA #| MPLI ED
font-stretch CDATA #l MPLI ED
uni code-range CDATA #l MPLI ED
uni t s- per - em CDATA #REQUI RED
panose-1 CDATA #| MPLI ED
sl ope CDATA #| MPLI ED
cap- hei ght CDATA #REQUI RED
x- hei ght CDATA #REQUI RED
accent - hei ght CDATA #l MPLI ED
ascent CDATA #REQUI RED
descent CDATA #REQUI RED
hori z-origi n-x CDATA #l MPLI ED
hori z-origin-y CDATA #l MPLI ED
hori z- adv- x CDATA #REQUI RED
vert-origin-x CDATA #l MPLI ED
vert-origin-y CDATA #l MPLI ED
vert-adv-y CDATA #|l MPLI ED
t ext - bot t om CDATA #REQUI RED
basel i ne CDATA #REQUI RED
centerline CDATA #REQUI RED
mat hl i ne CDATA #REQUI RED
i deogr aphi ¢ CDATA #REQUI RED
hangi ng CDATA #REQUI RED
topli ne CDATA #REQUI RED
text-top CDATA #REQUI RED
font-face-nane CDATA #l MPLI ED
under | i ne- posi ti on CDATA #| MPLI ED
under |l i ne-thi ckness CDATA #| MPLI ED
striket hrough-posi ti on CDATA #l MPLI ED
stri ket hrough-thi ckness CDATA #l MPLI ED
overline-position CDATA #l MPLI ED
overline-thickness CDATA #l MPLI ED >

<IENTITY % gl yphExt "" >
<! ELEMENT gl yph (%descTitleDefs;,
(path|text|rect|circle|ellipse|line|polyline|polygon|
use| image| g| swi tch
9gl yphExt;)*) >

<! ATTLI ST gl yph
id I D # MPLI ED
uni code CDATA #REQUI RED
gl yph- name CDATA #| MPLI ED
vert-text-orient CDATA #l MPLI ED
ar abi ¢ CDATA #| MPLI ED
han CDATA #I MPLI ED
hori z- adv- x CDATA #l MPLI ED
vert-adv-y CDATA #l MPLI ED >

<IENTITY % mi ssi ng-gl yphExt "" >
<! ELEMENT mi ssing-glyph (%lescTitleDefs;,
(path|text|rect|circle|ellipse|line|polyline|polygon|
use| image| g| switch
% ssi ng- gl yphExt;)*) >
<! ATTLI ST mi ssing-gl yph
id I D # MPLI ED
hori z- adv- x CDATA #| MPLI ED
vert-adv-y CDATA #| MPLI ED >

<! ELEMENT hkern EMPTY >
<! ATTLI ST hkern

id 1D # MPLI ED

ul CDATA #| MPLI ED

gl CDATA #| MPLI ED

u2 CDATA #| MPLI ED

g2 CDATA #| MPLI ED

k CDATA #REQUI RED >

<! ELEMENT vkern EMPTY >
<! ATTLI ST vkern

id | D # MPLI ED

ul CDATA #l MPLI ED

gl CDATA #l MPLI ED

u2 CDATA #| MPLI ED

g2 CDATA #l MPLI ED

k CDATA #REQUI RED >

<l-- Graphi cs Referencing El enents ->

<IENTITY % useExt "" >
<! ELEMENT use (%lescTitle;, (animate|set|ani mat eMti on| ani mat eCol or | ani mat eTr ansf orm

Y%geExt ; YuseExt;)*) >

<! ATTLI ST use
id I D #l MPLI ED
xm : | ang NMIOKEN #I MPLI ED
xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #| MPLI ED
transf or m CDATA #l MPLI ED
%gr aphi csEl enent Event s;
systemrequired NMIOKEN #l MPLI ED
syst em | anguage CDATA #| MPLI ED
x CDATA #l MPLI ED
y CDATA #| MPLI ED
wi dt h CDATA #l MPLI ED
hei ght CDATA #l MPLI ED
Ul i nkRef Attrs;
xlink: href CDATA #REQUI RED >

<IENTITY % i nmageExt "" >
<! ELEMENT inmage (%lescTitle;, (animate|set|ani matelMtion|ani mat eCol or | ani mat eTr ansf orm

%geExt ; % mageExt;)*) >

<! ATTLI ST inmage
id I D # MPLI ED
xm : | ang NMIOKEN #I MPLI ED
xm : space (defaul t|preserve) #l MPLIED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #| MPLI ED
transf orm CDATA #| MPLI ED
%gr aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED
x CDATA #l MPLI ED
y CDATA #l MPLI ED
wi dt h CDATA #REQUI RED
hei ght CDATA #REQUI RED
%Il i nkRef Attrs;
xlink: href CDATA #REQUI RED >

<l-- Synbol s and Markers -->

<IENTITY % synbol Ext "" >
<! ELEMENT synbol (%lescTitleDefs;,

(path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| switch|a
%¢eExt ; %synbol Ext;)*) >

<! ATTLI ST synbol
id I D #l MPLI ED
xm : 1 ang NMIOKEN #| MPLI ED
xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #| MPLI ED
ref X CDATA #l MPLI ED
refY CDATA #l MPLI ED
vi ewBox CDATA #| MPLI ED
preserveAspect Rati o CDATA 'xM dYM d neet' >

<IENTITY % mar ker Ext "" >
<! ELEMENT nmarker (%lescTitleDefs;,

(path|text|rect|circle|ellipse|line|polyline|polygon|

use| i mage| svg| g| swi tch|a
%ceExt ; %rar ker Ext;)*) >

<! ATTLI ST narker
id I D #l MPLI ED
xm : 1 ang NMIOKEN #l| MPLI ED
xm : space (defaul t|preserve) # MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #| MPLI ED
ref X CDATA #l MPLI ED
refY CDATA #l MPLI ED
vi ewBox CDATA #l MPLI ED
preserveAspect Rati o CDATA ' xM dYM d neet'

markerUnits (stroke-wi dth | userSpace | userSpaceOnUse)

mar ker Wdth CDATA "3"

mar ker Hei ght CDATA " 3"
orient CDATA "0" >

<!--========== Descriptions and Titles ==========--

<! ELEMENT desc (#PCDATA)* >

<! ATTLI ST desc
id | D #l MPLI ED
xm : | ang NMIOKEN #| MPLI ED
xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #l| MPLI ED
styl e CDATA #| MPLI ED
Ystructured_text; >

<! ELEMENT title (#PCDATA)* >

<I ATTLI ST title
id | D #l MPLI ED
xm : | ang NMTOKEN #| MPLI ED
xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #l MPLI ED
Y%structured_text; >

<l-- Clipping and Maski ng

<IENTITY %clipPathExt "" >
<! ELEMENT clipPath (%lescTitle;,

"stroke-w dth"

(path|text|rect|circle|lellipse|line|polyline|polygon|

use| ani mat e| set | ani nat eMot i on| ani mat eCol or | ani mat eTr ansf orm

% eExt; %l i pPat hExt;)*) >

<I' ATTLI ST clipPath
id I D # MPLI ED
xm : [ang NMIOKEN #l MPLI ED
xm : space (defaul t|preserve) #l MPLIED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #| MPLI ED
clipPathUnits (userSpace | userSpaceOnUse |

<IENTITY % maskExt "" >
<! ELEMENT mask (%lescTitl eDefs;,

obj ect Boundi ngBox)

"user Space" >

<!

<!

<!
<!

<!

<!
<!

<!

<!
<!

<!

<!
<!

<1

(path|text|rect|circle|lellipse|line|polyline|polygon|
use| i nage| svg| g| swi tch| a|
ani mat e| set | ani mat eMbt i on| ani mat eCol or | ani mat eTr ansf orm
% eExt ; %raskExt;)*) >

ATTLI ST mask

id I D #l MPLI ED

xm : 1 ang NMIOKEN #l MPLI ED

xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #l MPLI ED

styl e CDATA #| MPLI ED

maskUnits (userSpace | user SpaceOnUse | obj ect Boundi ngBox) "user Space"
x CDATA #l MPLI ED

y CDATA #l MPLI ED

wi dt h CDATA #l MPLI ED

hei ght CDATA #l MPLI ED >

-- Gradi ents and Patterns ->

ENTITY % i near Gradi ent Ext "" >
ELEMENT |inear Gradi ent (stop|ani mate|set|ani mateTransform

% i near Gradi ent Ext;)* >
ATTLI ST |linear G adi ent

id I D #l MPLI ED

gradientUnits (userSpace | userSpaceOnUse | object Boundi ngBox) 'user Space'
gr adi ent Tr ansf or m CDATA #l MPLI ED

x1 CDATA #l MPLI ED

CDATA #| MPLI ED

CDATA #| MPLI ED

CDATA #l MPLI ED

spreadMet hod (pad | reflect | repeat)
%l inkRef Attrs;

xlink: href CDATA #l MPLI ED >

RRE

pad"

ENTITY % radi al G adi ent Ext "" >
ELEMENT radi al G adi ent (stop|ani mate|set|ani mateTransform

% adi al Gradi ent Ext;)* >
ATTLI ST radi al G adi ent

id I D # MPLIED

gradientUnits (userSpace | userSpaceOnUse | objectBoundi ngBox) 'user Space'
gr adi ent Tr ansf or m CDATA #l MPLI ED

cx CDATA #| MPLI ED

cy CDATA #| MPLI ED

r CDATA #l| MPLI ED

fx CDATA #| MPLI ED

fy CDATA #l MPLI ED

%l inkRef Attrs;

xl i nk: href CDATA #| MPLI ED >

ENTITY % stopExt "" >
ELEMENT stop (ani mate| set| ani mat eCol or

Y%t opExt;)* >

ATTLI ST stop

id I D #l MPLI ED

styl e CDATA #| MPLI ED
of f set CDATA #REQUI RED >

ENTITY % patternExt "" >
ELEMENT pattern (%lescTitleDefs;,

(path|text|rect|circle|ellipse|line|polyline|polygon|
use| image| svg| g| switch|a
% eExt ; YpatternExt;)*) >

ATTLI ST pattern

id 1D # MPLIED

xm : I ang NMIOKEN #l MPLI ED

xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #l| MPLI ED

styl e CDATA #| MPLI ED

patternUnits (userSpace | userSpaceOnUse | obj ectBoundi ngBox) ' user Space'
patternTransform CDATA #| MPLI ED

x CDATA #l MPLI ED

y CDATA #l MPLI ED

wi dt h CDATA #REQUI RED

hei ght CDATA #REQUI RED

ref X CDATA #l MPLI ED

refY CDATA #l MPLI ED

vi ewBox CDATA #l MPLI ED

preserveAspect Rati o CDATA 'xM dYM d neet’
Ul i nkRef Attrs;

xlink: href CDATA #l MPLI ED >

<l-- Li nki ng -->

<IENTITY % aExt "" >
<! ELEMENT a (%dlescTitl eDefs;,

(path|text|rect|circle|ellipse|line|polyline|polygon|
use| i rage| svg| g| switch|a
%ceExt ; YaExt;)*) >

<I ATTLI ST a
id I D #l MPLI ED
xm ns: xl i nk CDATA #FI XED "htt p://ww. w3. or g/ XM./ XLi nk/ 0. 9"
xlink:type (sinple|extended|locator|arc) #FIXED "sinple"
xlink:rol e CDATA #l MPLI ED
xlink:title CDATA #l MPLI ED
xl i nk: show (new enbed| repl ace) 'replace’
xlink:actuate (user|auto) #FIXED 'user’
xlink: href CDATA #REQUI RED
target CDATA #| MPLI ED >

<IENTITY % vi ewExt "" >
<! ELEMENT vi ew (%lescTitle; %iewExt;) >
<! ATTLI ST vi ew
id I D # MPLI ED
vi ewBox CDATA #l MPLI ED
preserveAspect Rati o CDATA 'xM dYM d neet'
enabl eZoomAndPanControls (true | false) "true"
vi ewTar get CDATA #| MPLI ED >

<l-- Ani mation ->

<IENTITY % ani nfarget Attrs
Ul i nkRef Attrs;

xlink: href CDATA #l MPLI ED
attributeName CDATA #REQUI RED
attributeType CDATA #l MPLIED" >

<IENTITY % ani nli m ngAttrs
begi n CDATA #l MPLI ED

end CDATA #lI MPLI ED

dur CDATA #!I MPLI ED

endActi ve CDATA #l MPLI ED

restart (always | never | whenNotActive) 'always'
repeat Count CDATA #l| MPLI ED

repeat Dur CDATA #| MPLI ED

fill (renove | freeze) 'renove'" >

<IENTITY % ani nVal ueAttrs

cal cvbde (discrete | l|inear evenPace | spline) 'linear'
val ues CDATA #l MPLI ED

from CDATA #| MPLI ED

to CDATA #l MPLI ED

by CDATA #| MPLI ED

keyTi mes CDATA #| MPLI ED

keySpl i nes CDATA #| MPLI ED" >

<!

ENTI TY % ani mAddi ti onAttrs

"additive (true | false) 'false'
accumul ate (true | false) 'false' " >
ENTITY % ani mat eExt "" >

<!
<!
<!

<!
<!
<!

<!
<!
<!

<l
<!
<!

<!
<!
<!

<!

<l
<l

ELEMENT ani mate (%descTitle; %ani mat eExt;) >
ATTLI ST animate

id I D # MPLI ED

systemrequired NMIOKEN #| MPLI ED

syst em | anguage CDATA #| MPLI ED

%ani mrar get Attrs;

%ani mMTi m ngAttrs;
%ani nVal ueAttrs;

%ani mMAddi ti onAttrs; >

ENTITY % set Ext "" >
ELEMENT set (%lescTitle; %setExt;) >

ATTLI ST set

id I D # MPLI ED

systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED
%ani mrar get Attrs;

%ani mMTi m ngAttrs;
to CDATA #l MPLI ED >

ENTI TY % ani mat eMbt i onExt "" >
ELEMENT ani mat eMbtion (%lescTitl e; %ani mat eMoti onExt;) >

ATTLI ST ani mat eMbti on

id I D #l MPLI ED

systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED
Ul i nkRef Attrs;

xlink: href CDATA #l MPLI ED

%ani MTi M ngAttrs;

%ani nVal ueAttrs;

%ani mAddi ti onAttrs;

pat h CDATA #l MPLI ED

rot at e CDATA #l MPLI ED

origin CDATA #l MPLI ED >

ENTI TY % ani mat eCol or Ext "" >
ELEMENT ani mat eCol or (%lescTitl e; %ni mat eCol or Ext ;) >

ATTLI ST ani mat eCol or

id | D # MPLI ED

systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED
%ani nMTar get Attrs;

%ani nMTi M ngAttrs;

%ani mval ueAttrs;

%ani mMAddi ti onAttrs; >

ENTITY % ani mat eTransfor nExt "" >
ELEMENT ani mat eTr ansf orm (%descTi t| e; ¥%ani mat eTr ansf or mExt ;) >

ATTLI ST ani mat eTr ansf orm

id I D #l MPLI ED

systemrequired NMIOKEN #| MPLI ED

syst em | anguage CDATA #| MPLI ED

%ani nMTar get Attrs;

%ani nTi M ngAttrs;

%ani mval ueAttrs;

%ani mMAddi ti onAttrs;

type (translate | scale | rotate | skewX | skewY) "translate"

--========== Defining Scripts and Declaring Styles ==========

ELEMENT script (#PCDATA)* >
ATTLI ST scri pt

| anguage CDATA #| MPLI ED

Ul i nkRef Attrs;

>

xl i nk: href CDATA #| MPLI ED >

<! ELEMENT styl e (#PCDATA)* >
<I ATTLI ST style type CDATA "text/css" >

<l-- Cust om cursors -->

<! ELEMENT cursor (%lescTitle;) >
<! ATTLI ST cursor
id I D # MPLI ED
systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED
x CDATA "0"
y CDATA "0"
Ul i nkRef Attrs;
xlink: href CDATA #REQUI RED >

<l-- Extensibility ->

<IENTITY % sw tchExt "" >
<! ELEMENT swi tch (%lescTitl eDefs;,

(path|text|rect|circle|ellipse|line|polyline|polygon|
use| i mage| svg| g| swi tch| a| f or ei gnObj ect |
ani mat e| set | ani nat eMbt i on| ani mat eCol or | ani mat eTr ansf orm
%eExt; %switchExt;)*) >

<! ATTLI ST swi tch
id I D #l MPLI ED
xm : 1 ang NMIOKEN #| MPLI ED
xm : space (defaul t|preserve) # MPLIED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #| MPLI ED
transf orm CDATA #| MPLI ED
%gr aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
syst em | anguage CDATA #| MPLI ED >

<IENTITY % forei gnObj ect Ext "" >
<! ELEMENT f orei gnObj ect (#PCDATA %eExt; % orei gnQbj ect Ext;)* >
<! ATTLI ST forei gnObj ect
id I D #l MPLI ED
xm : 1 ang NMIOKEN #l MPLI ED
xm : space (defaul t|preserve) #l MPLI ED
cl ass NMIOKENS #| MPLI ED
styl e CDATA #| MPLI ED
transf or m CDATA #l MPLI ED
%gr aphi csEl enent Event s;
systemrequired NMIOKEN #| MPLI ED
system | anguage CDATA #| MPLI ED
x CDATA #l MPLI ED
y CDATA #| MPLI ED
wi dt h CDATA #REQUI RED
hei ght CDATA #REQUI RED
Y%structured_text; >

<l-- Met adat a ->

<IENTITY % net adat abExt "" >
<! ELEMENT net adat a (#PCDATA %ret adat aExt;)* >
<I ATTLI ST net adata

id I D # MPLIED >

<l --============== Fj|ter Effects ==============-->

<IENTITY %filter_node_attributes
"result CDATA #l MPLI ED
x CDATA #| MPLI ED

<!

<!

<!
<!

<!

<!
<!

<!
<!

<!
<!

<!

<l

<1
<1

<!
<!

<l
<l

<!
<!

y CDATA #| MPLI ED
wi dt h CDATA #l MPLI ED
hei ght CDATA #l MPLI ED" >

ENTITY %filter_node_attributes with_in
"ofilter_node_attributes;
in CDATA #l MPLI ED'>

ENTITY % conponent _transfer_function_attributes
"type CDATA #REQUI RED

t abl eVal ues CDATA #| MPLI ED

sl ope CDATA #| MPLI ED

intercept CDATA #l MPLI ED

anpl i t ude CDATA #| MPLI ED

exponent CDATA #l MPLI ED

of f set CDATA #l MPLI ED" >

ENTITY %filterExt "" >
ELEMENT filter (feBlend|feFl ood|

feCol or Mat ri x| f eConponent Tr ansfer |

feConmposi te| feDi ffuseLi ghting|feD spl acenent Map|
f eGaussi anBl ur | f el mage| f eMer ge|

f eMor phol ogy| f eOX f set | f eSpecul ar Li ghti ng|
feTile| feTurbul ence|

ani nat e| set

%ilterExt;)* >

ATTLI ST filter

id I D # MPLI ED

xm : [ang NMIOKEN #l MPLI ED

xm : space (defaul t|preserve) #l MPLI ED
filterUnits (userSpace | userSpaceOnUse | object Boundi ngBox)
x CDATA #| MPLI ED

y CDATA #l MPLI ED

wi dt h CDATA #| MPLI ED

hei ght CDATA #l MPLI ED

filterRes CDATA #l MPLI ED

%l inkRef Attrs;

xl i nk: href CDATA #| MPLI ED >

ELEMENT feBl end EMPTY >

ATTLI ST feBl end

%ilter_node_attributes_with_in;

nmode (normal | multiple | screen | darken | lighten) "normal*"
in2 CDATA #REQUI RED >

ELEMENT f eFl ood (aninate|set|ani mateCol or)* >
ATTLI ST f eFl ood
%ilter_node_attributes_with_in;

styl e CDATA #|l MPLI ED >

ELEMENT feCol orMatrix (aninate|set)* >
ATTLI ST feCol or Matri x
%ilter_node_attributes_with_in;

type CDATA #REQUI RED

val ues CDATA #l MPLI ED >

"user Space"

ELEMENT f eConponent Transfer (feFuncR?, feFuncG?, feFuncB?, feFuncA?) >

ATTLI ST f eConponent Tr ansf er
% ilter_node_attributes_ with_ in; >

ELEMENT feFuncR (ani mate|set)* >

ATTLI ST feFuncR
%onponent _transfer_function_attributes; >

ELEMENT feFuncG (aninate|set)* >
ATTLI ST feFuncG
%onponent _transfer_function_attributes; >

ELEMENT feFuncB (animate|set)* >
ATTLI ST feFuncB
%onponent _transfer_function_attributes; >

ELEMENT feFuncA (ani mate|set)* >

ATTLI ST feFuncA
%onponent _transfer_function_attributes; >

<! ELEMENT f eConposite EMPTY >
<! ATTLI ST feConposite
%ilter_node_attributes_with_in;
operator (over | in | out | atop | xor arithnetic) "over"
k1 CDATA #l MPLI ED
k2 CDATA #l MPLI ED
k3 CDATA #l| MPLI ED
k4 CDATA #| MPLI ED
i n2 CDATA #REQUI RED >

<! ELEMENT feDiffuseLighting ((feD stantLight|fePointLight]|feSpotLight), (aninate|set|animteColor)*) >
<I ATTLI ST feDiffuseLighting

%ilter_node_attributes_with_in;

resul t Scal e CDATA #l MPLI ED

sur f aceScal e CDATA #l| MPLI ED

di f fuseConst ant CDATA #| MPLI ED

I'i ght Col or CDATA #l MPLI ED >

<! ELEMENT feDi stantLight (animate|set)* >
<! ATTLI ST feDi stantLight

azi nut h CDATA #l MPLI ED

el evati on CDATA #l MPLI ED >

<! ELEMENT fePoi ntLight (aninmate|set)* >
<! ATTLI ST fePoi nt Li ght

x CDATA #| MPLI ED

y CDATA #l MPLI ED

z CDATA #| MPLI ED >

<! ELEMENT f eSpot Li ght (aninmate|set)* >
<! ATTLI ST f eSpot Li ght

x CDATA #| MPLI ED

y CDATA #l MPLI ED

z CDATA #l MPLI ED

poi nt sAt X CDATA #| MPLI ED

poi nt sAtY CDATA #l MPLI ED

poi nt sAt Z CDATA #| MPLI ED

specul ar Exponent CDATA #| MPLI ED >

<! ELEMENT f eDi spl acenent Map (ani mate|set)* >
<! ATTLI ST feDi spl acenent Map
%ilter_node_attributes_with_in;
scal e CDATA #| MPLI ED
xChannel Sel ector (R| G| B| A "A"
yChannel Sel ector (R| G| B| A "A"
i n2 CDATA #REQUI RED >

<! ELEMENT feCaussi anBlur (animate|set)* >

<! ATTLI ST f eCGaussi anBl ur
%ilter_node_attributes_with_in;
st dDevi ati on CDATA #l MPLI ED >

<! ELEMENT fel mage (aninate|set|animteTransform* >

<! ATTLI ST fel nage
%ilter_node_attributes;
%l inkRef Attrs;

xlink: href CDATA #REQUI RED
transf or m CDATA #| MPLI ED >

<! ELEMENT feMerge (feMergeNode)* >
<! ATTLI ST feMerge
%ilter_node_attributes_ with_in; >

<! ELEMENT feMergeNode EMPTY >
<! ATTLI ST feMergeNode
in CDATA #| MPLI ED >

<! ELEMENT f eMor phol ogy (aninate|set)* >
<! ATTLI ST f eMor phol ogy
% ilter_node_attributes_with_in;
operator (erode | dilate) "erode"
radi us CDATA #l MPLI ED >

< ELEMENT feOffset (aninmate|set)* >
<I ATTLI ST feOf f set
%ilter_node_attributes with_in;
dx CDATA #| MPLI ED
dy CDATA #l MPLI ED >

<! ELEMENT f eSpecul ar Li ghting ((feDi stantLight|fePointLight]|feSpotLight), (aninate|set|ani mateColor)*) >

<! ATTLI ST feSpecul arLi ghti ng
%ilter_node_attributes_with_in;
surfaceScal e CDATA #l MPLI ED
specul ar Const ant CDATA #| MPLI ED
specul ar Exponent CDATA #| MPLI ED
I'i ght Col or CDATA #l MPLI ED >

<! ELEMENT feTile EMPTY >
<! ATTLI ST feTile
%ilter_node_attributes_ with_in; >

<! ELEMENT f eTurbul ence (aninate|set)* >
<! ATTLI ST feTurbul ence
% ilter_node_attributes_with_in;
baseFr equencyX CDATA #l MPLI ED
baseFr equencyY CDATA #| MPLI ED
nunOct aves CDATA #l MPLI ED
stitchTiles (stitch | noStitch) "noStitch"
type (fractal Noise | turbul ence) "turbul ence" >

previous next contents properties index

previous next contents properties index

Appendix B: SVG's Document Object
Model (DOM)

Contents

B.1 SVG DOM Overview
B.2 Naming Conventions
B.3 Interface SV GException
B.4 Interface SV GDOM Implementation
B.5 Feature strings for the hasFeatur e method call
B.6 Relationship with DOM2 CSS object model
o B.6.1 Introduction
0 B.6.2 Aura media
o B.6.3 Visua media
B.7 Relationship with DOM2 events

This appendix is normative.

B.1 SVG DOM Overview

This appendix provides an introduction to the SVG DOM and discusses the relationship of the SVG
DOM with the Document Object Model (DOM) Level 2 Specification [DOM2]. The specific SVG

DOM interfaces that correspond to particular sections of the SV G specification are defined at the end of
corresponding chapter in this specification.

The SVG DOM is compatible with the Document Object Model (DOM) Level 2 Specification [DOM2].
In particular:

The SVG DOM includes complete support for the DOM2 core [DOM 2-CORE]

Wherever appropriate, the SVG DOM is modeled after and maintains consistency with the DOM
for HTML asdescribed in [DOM2-HTML].

The SVG DOM includes complete support for the DOM2 views [DOM2-VIEWS]
The SVG DOM includes complete support for the DOM2 stylesheets [DOM2-SHEETS]

The SVG DOM incorporates relevant aspects of the DOM2 CSS object model [DOM2-CSS].
(For the specific [DOM2-CSS] features that are supported, see Relationship with DOM2 CSS

object model.)

« The SVG DOM incorporates relevant aspects of the DOM2 event model [DOM2-EVENTS).
(For the specific [DOM2-EVENTS] features that are supported, see Relationship with DOM2
event model.)

« Theoptional traversal features described in [DOM2-TRAV] are also optional features within the
SVG DOM.

« Therange features described in [DOM2-RANGE] are supported by the SVG DOM.

A DOM application can use the hasFeature method of the DOMImplementation interface to verify that
the interfaces listed in this section are supported. The list of available interfacesis provided in section
Feature strings for the hasFeatur e method call.

B.2 Naming Conventions

The SVG DOM follows similar naming conventions to the Document Object Model HTML
[DOM2-HTML].

All names are defined as one or more English words concatenated together to form a single string.
Property or method names start with the initial keyword in lowercase, and each subsequent word starts
with acapital letter. For example, a property that returns document meta information such as the date the
file was created might be named "fileDateCreated". In the ECM A Script binding, properties are exposed
as properties of a given object. In Java, properties are exposed with get and set methods.

For attributes with the CDATA datatype, the case of the return value is that given in the source
document.

B.3 Interface SVGException

Exception SVGEXxception

This exception is raised when a specific SVG operation isimpossible to perform.

IDL Definition

exception SVGException {
unsi gned short code;

b

/1 SVGExcepti onCode

const unsigned short SYNTAX_ERR

const unsigned short SVG | NVALI D_MODI FI CATI ON_ERR
const unsigned short SVG NO GRAPHI CS_ELEMENTS
const unsigned short SVG MATRI X_NOT_| NVERTABLE

B.4 Interface SVGDOMImplementation

I nterface SYGDOMI mplementation

The SVGDOM npl enent at i on interface extends the DOM npl enent at i on interface with
amethod for creating an SV G document instance.

IDL Definition
interface SVGDOM npl enentation : DOM npl enmentati on {
SV@ocument creat eSVGocument (in DOVBtring title);
b
Methods

cr eat eSV@ocunent
Creates an SVGocunent object with no content. No Parameters
Return Value

SVGDocunent A new SVGDocunent object.
No Exceptions

B.5 Feature strings for the hasFeature method call

The feature strings that are available for the hasFeatur e method call that is part of the SYG DOM's
support for the DOMImplementation interface defined in [DOM 2-CORE] are the same features strings

available for the system-required attribute that is available for many SVG elements.

The ver sion number for the hasFeatur e method call is"1".

B.6 Relationship with DOM2 CSS object model

B.6.1 Introduction

This section describes the relationship between the SVG DOM and the Document Object Model CSS
[DOM2-CSS] described in the [DOM2] specification.

B.6.2 Aural media

For the purposes of aural media, SV G represents a CSS-stylable XML grammar. For user agents that
support aural styling [CSS2-AURAL], al of the interfaces defined in [DOM2-CSS] which apply to aural

properties must be supported in the DOM.

B.6.3 Visual media

For visual media[CSS2-VISUAL], the SVG DOM extends [DOM2-CSS].

The SVG DOM supports all of the required interfaces defined in [DOM2-CSS]. All of the interfaces that
are optional for [DOM2-CSS] are also optional for the SVG DOM.

The SV G DOM defines the following SV G-specific custom property interfaces, al of which are
mandatory for SVG user agents:

e SVGColor

« SVGICCCaolor

e SVGPaint

[DOM2-CSS] defines a set of extended interfaces [DOM2-CSS-El]. The following table specifies the
type of CSSVaue [DOM2-CSSVALUE] used to represent each SV G property that appliesto visual

media[CSS2-VISUAL]. The table indicates which extended interfaces are mandatory and which are

not.

The expectation is that the CSSV a ue returned from the getProperty CSSV alue method on the
CSSStyleDeclaration interface can be cast down, using binding-specific casting methods, to the specific

derived interface.

For properties that are represented by a custom interface (the valueType of the CSSValueis
CSS_CUSTOM), the name of the derived interface is specified in the table. For properties that consist of
lists of values (the valueType of the CSSVaueisCSS VALUE_LIST), the derived interfaceis
CSSValuelist. For all other properties (the valueType of the CSSVaueis CSS PRIMITIVE_VALUE),
the derived interface is CSSPrimitiveValue.

|Property Name |Representation Mandatory?
‘baseline-shift' nul |

‘clip’ rect, ident

‘clip-path’ uri, ident

‘clip-rule ident

‘color' rgbcolor, ident
‘color-interpolation’ ident

‘color-rendering' ident

‘cursor’ [DOM2-CSS2Cursor] |no
'direction' ident

‘display’ ident

‘enabl e-background' ident

'fill' SVGPaint yes
fill-opacity' number

fill-rule ident

'filter' uri, ident

‘font' nul |

font-family' list of strings and idents
‘font-size ident, length, percentage
‘font-size-adjust’ number, ident
‘font-stretch’ ident

font-style ident

‘font-variant' ident

‘font-weight' ident

‘glyph-anchor’ ident
‘glyph-orientation-horizontal' |ident
‘glyph-orientation-vertical' |ident

'image-rendering' ident

' etter-spacing' ident, length

‘marker’ nul |

‘'marker-end' uri, ident

‘marker-mid' uri, ident

‘'marker-start' uri, ident

'mask’ uri, ident

‘opacity’ number

‘overflow' ident

'pointer-events ident

‘shape-rendering' ident

'stop-color' SVGCalor yes
'stop-opacity' number

'stroke' SVGPaint yes
'stroke-dasharray’ ident or list of lengths
'stroke-dashoffset’ length

'stroke-linecap' ident

'stroke-lingjoin’ ident

‘stroke-miterlimit' length

'stroke-opacity’ number

'stroke-width' length

'text-anchor" ident

'text-decoration' list of ident
'text-rendering' ident
‘unicode-bidi' ident
'visibility' ident
‘word-spacing' length, ident
‘writing-mode' ident

B.7 Relationship with DOM2 events

The SVG DOM supports the following interfaces and event types from [DOM2-EVENTS):
o The SVG DOM supports all of the interfaces defined in [DOM2-EVENTS).
o The SVG DOM supports the following Ul event types [DOM2-UIEVENTS]:

o o o o O

0

resize

scroll (triggered by either scroll or pan user actions)

focusin

focusout

gainselection (user agents are required to support this event for text selection actions)

losesel ection (user agents are required to support this event for text selection actions)
activate

o The SVG DOM supports the following mouse event types [DOM2-MOUSEEVENTS]:

o o o o O

O

click
mousedown
mouseup
mouseover
mousemove
mouseout

clientX and clientY parameters for mouse events represent viewport coordinates for the
corresponding 'svg' element. relatedNode is the corresponding 'svg' element.

« The SVG DOM supports the following keyboard event types[DOM2-KEY EVENTS):

O

O

O

keypress
keydown
keyup

o The SVG DOM supports the following mutation event types [DOM2-MUTEVENTS]:

O

DOM SubtreeM odified

o DOMNodel nserted

DOMNodeRemoved

DOM NodeRemovedFromDocument
DOM Nodel nsertedl ntoDocument
DOMALttrModified

DOM CharacterDataM odified

« The SVG DOM defines the following SV G-specific custom event interfaces, which are
compatible with the HTML event types[DOM2-HTMLEVENTS] defined in[DOM2-EVENTS].

These event interfaces are mandatory for SV G user agents:
o load
o unload
o abort
o eror

Additionally, the SVG DOM defines an additional custom event interface that is not availablein
the HTML DOM:

o SVGZoomEvent

o SVG includes a set of animation events which allow scripts to get invoked when there is a state
change in an animation.

o o o o o

Each SV G element which has at least one event attribute assigned to it in the SVG DTD supports the
DOM2 event registration interfaces [DOM2-EVREG] and be registered as an event listener for the

corresponding DOM2 event using the event registration interfaces. Thus, for example, if the SVG DTD
indicates that a given element supports the "onclick™ event attribute, then an event listener for the "click"
event can be registered with the given element as the event target.

SVG's animation elements also support the DOM2 event registration interfaces [DOM2-EV REG]. Event
listeners for any of the animation events can be registered on any of the animation elements.

Event listeners which are established by DOM2 Event registration interfaces [DOM2-EVREG] receive
events before any event listeners that correspond to event attributes (see Event attributes) or animations.

previous next contents properties index

previous next contents properties index

Appendix C: Implementation
Requirements

Contents

o C.1Introduction

« C.2 Version control

o C.3 Forward and undefined references

« C.4 Referenced objects are "pinned" to their own coordinate systems

o C.5 Clamping values which are restricted to a particular range

« C.6 'path' e ement implementation notes

o C.7 Elliptical arc implementation notes

o C.7.1 Elliptical arc syntax

o C.7.2 Out-of-range parameters

o C.7.3 Parameterization alternatives

o C.7.4 Conversion from center to endpoint parameterization

o C.7.5 Conversion from endpoint to center parameterization

o C.7.6 Correction of out-of-range radii

o C.8 Text selection implementation notes

This appendix is normative.

C.1 Introduction

The following are notes about implementation requirements corresponding to various features in the SVG
language.

C.2 Version control

The SV G user agent must verify the reference to the SYG DTD in the <! DOCTYPE> statement or the

xm ns attribute to ensure that it identifiesthe DTD for aversion of the SVG language which the SV G user
agent supports. If the reference to the DTD ismissing or it does not correspond to a version which the SVG
user agent supports, then the SV G user agent must not attempt to process the given SV G document fragment.
If the user environment allowsit, the user agent must generate an appropriate error message with a suggested
alternative processing option (e.g., installing an updated version of the user agent) if such an option exists.

In particular, SV G user agents must not attempt to process SV G document fragments whose <! DOCTYPE>
statement or corresponding xm ns attribute references a DTD corresponding to aworking draft version of
the SV G specification. These document fragments need to be updated to the SV G Recommendation before
they can be rendered by SV G user agents which support the SVG Recommendeation. If the user environment
allowsiit, the user agent must generate an appropriate error message indicating that the SVG document
fragment is not a conforming SVG Document fragment.

C.3 Forward and undefined references

SV G makes extensive use of URI references to other objects. For example, to fill arectangle with alinear
gradient, you define a'linear Gradient' element and giveit an ID (e.g., <linear Gradient
id="MyGradient" ...>, and then you can specify the rectangle as follows: <rect
style="fill:url(#MyGradient)" ...>.

In SVG, among the facilities that allow URI references are:
« the'clip-path' property
« the'mask’ property
« thefill' property
« the'stroke property
o the'marker','marker-start','marker-mid' and 'marker-end properties

o the'use element

Forward references are disallowed. All references must be to elements which are either defined in a separate
document or defined earlier in same document. References to elements in the same document can only be to
elements which are direct children of a'defs element. (See Defining referenced and undrawn elements: the

'defs _element.).

Unless a given attribute or property has defined fallback behavior when areference cannot be resolved (e.g.,
typically, when alist of alternative valuesis provided), invalid references are treated as errors (see Error

Processing). For example, if thereis no element with ID "BogusReference” in the current document, then
fill="url(#BogusReference)" would represent an invalid reference and would be an error.

C.4 Referenced objects are "pinned" to their own
coordinate systems

Except in the cases where val ue userSpaceOnUse or objectBoundingBox is assigned to:
« attribute gradientUnits on element 'linearGradient’ or 'radial Gradient’

« attribute patternUnits on element "pattern’
« attribute clipPathUnits on element 'clipPath’
o attribute maskUnits on element 'mask’
« atribute filterUnits on element 'filter'
when a graphical object is referenced by another graphical object, the referenced object does not change

location, size or orientation. Thus, referenced graphical objects are "pinned” to the user coordinate system
that isin place within its own hierarchy of ancestors and is not affected by the user coordinate system of the

referencing object.

C.5 Clamping values which are restricted to a
particular range

Some numeric attribute and property values have restricted ranges, such as color component values. When
out of range values are provided, but user agent shall defer any error checking until after presentation time,
as composited actions might produce intermediate values which are out of range but final values which are
within range.

Color values are not in error if they are out of range, even if final computations produce an out of range color
value at presentation time. It is recommended that user agents clamp color values to the nearest color value
(possibly determined by simple clipping) which the system can process as late as possible (e.g., presentation
time), although it is acceptable for user agentsto clamp color values as early as parse time. Thus,
implementation dependencies might preclude consistent behavior across different systems when out of range
color values are used.

Opacity values out of range are not in error and should be clamped to the range O to 1 at the time which
opacity values have to be processed (e.g., at presentation time or when it is necessary to perform intermediate
filter effect calculations).

C.6 'path' element implementation notes

A conforming SV G user agent must implement path rendering as follows:
« Error handling:

o The general rule for error handling in path datais that the SV G user agent shall render a'path’
element up to (but not including) the path command containing the first error in the path data
specification. Thiswill provide avisua clue to the user/developer about where the error might
be in the path data specification. This rule will greatly discourage generation of invalid SVG
path data.

o |If apath data command contains an incorrect set of parameters, then the given path data
command is rendered up to and including the last correctly defined path segment, even if that
path segment is a sub-component of a compound path data command, such as a"lineto" with
several pairs of coordinates. For example, for the path data string "M 10,10 L 20,20,30", there
isan odd number of parametersfor the "L" command, which requires an even number of
parameters. The user agent is required to draw the line from (10,10) to (20,20) and then
perform error reporting since "L 20 20" isthe last correctly defined segment of the pat data
specification.

o Wherever possible, all SVG user agents shall report all errorsto the user.
« Markers, directionality and zero-length path segments:

o If markers are specified, then amarker is drawn on every applicable vertex, even if the given
vertex isthe end point of a zero-length path segment and even if "moveto” commands follow
each other.

o Certain line-capping and line-joining situations and markers require that a path segment have
directionality at its start and end points. Zero-length path segments have no directionality. In
these cases, the following algorithm is used to establish directionality: to determine the
directionality of the start point of a zero-length path segment, go backwards in the path data

specification within the current subpath until you find a segment which has directionality at its
end point (e.g., a path segment with non-zero length) and use its ending direction; otherwise,
temporarily consider the start point to lack directionality. Similarly, to determine the
directionality of the end point of a zero-length path segment, go forwards in the path data
specification within the current subpath until you find a segment which has directionality at its
start point (e.g., a path segment with non-zero length) and use its starting direction; otherwise,
temporarily consider the end point to lack directionality. If the start point has directionality
but the end point doesn't, then the end point uses the start point's directionality. If the end
point has directionality but the start point doesn't, then the start point uses the end point's
directionality. Otherwise, set the directionality for the path segment's start and end pointsto
align with the positive X-axisin user space.

If 'stroke-linecap' is set to butt and the given path segment has zero length, do not draw the
linecap for that segment; however, do draw the linecap for zero-length path segments when
'stroke-linecap' is set to either round or square. (This alows round and square dots to be
drawn on the canvas.)

« The S/s commands indicate that the first control point of the given cubic bezier segment is calculated
by reflecting the previous path segments second control point relative to the current point. The exact
math is asfollows. If the current point is (curx, cury) and the second control point of the previous
path segment is (oldx2, oldy2), then the reflected point (i.e., (newx1, newyl), the first control point of
the current path segment) is:

(newx1,

newyl) = (curx - (oldx2 - curx), cury - (oldy2 - cury))
= (2*curx - oldx2, 2*cury - oldy2)

« A non-positive radius valueis an error.

Unrecognized contents within a path data stream (i.e., contents that are not part of the path data
grammar) is an error.

C.7 Elliptical arc implementation notes

C.7.1 Elliptical arc syntax

Andliptical arcisaparticular path command. As such, it is described by the following parametersin order:

(x4, yy) are the absolute coordinates of the current point on the path, obtained from the last two parameters of
the previous path command.

ry and ry aretheradii of the ellipse (also known asits semi-major and semi-minor axes).

{ﬁ isthe angle from the x-axis of the current coordinate system to the x-axis of the ellipse.

faisthelargearc flag, and is O if an arc spanning less than or equal to 180 degreesischosen, or 1if anarc
spanning greater than 180 degrees is chosen.

fsisthe sweep flag, and is O if the line joining center to arc sweeps through decreasing angles, or 1if it
sweeps through increasing angles.

(%o, yo) are the absolute coordinates of the final point of the arc.

This parameterization of elliptical arcswill be referred to as endpoint parameterization. One of the
advantages of endpoint parameterization isthat it permits a consistent path syntax in which all path
commands end in the coordinates of the new "current point”. The following notes give rules and formulae to
help implementers deal with endpoint parameterization.

C.7.2 Out-of-range parameters

Arbitrary numerical values are permitted for all elliptical arc parameters, but where these values are invalid
or out of range, an implementation must make sense of them as follows:

If the endpoints (x4, y1) and (X, y,) areidentical, then thisis equivalent to omitting the elliptical arc segment
entirely.

If r«=0o0rry=0thenthisarcistreated as a straight line segment (a"lineto") joining the endpoints.

If ry or ry have negative signs, these are dropped (the absolute value is used instead).

If ry, ryand pﬁ are such that there is no solution (basically, the ellipse is not big enough to reach from (x4,
y1) 10 (Xo, ¥o)) then the ellipse is scaled up uniformly until there is exactly one solution (until the ellipseis
just big enough).

pﬁ is taken mod 360 degrees.

Any nonzero value for either of the flags faor fgis taken to mean the value 1.

Thisforgiving yet consistent treatment of out-of-range values ensures that

The inevitable approximations arising from computer arithmetic cannot cause avalid set of values written by
one SV G implementation to be treated as invalid when read by another SV G implementation. Thiswould
otherwise be a problem for common boundary cases such as a semicircular arc.

Continuous animations that cause parameters to pass through invalid values are not a problem. The motion
remains continuous.

C.7.3 Parameterization alternatives

An arbitrary point (x, y) on the elliptical arc can be described by the 2-dimensional matrix equation

X COS ¢ —SI ¢7| | 1y COS €y
_ - _ + (C.7.3.2)
¥ Sl @7 COS g7 | | #, 81N & Cy

(cx, cy) are the coordinates of the center of the ellipse.

ry and ry are theradii of the ellipse (also known asits semi-major and semi-minor axes).

5“'{" isthe angle from the x-axis of the current coordinate system to the x-axis of the ellipse.
ranges from:
1 which isthe start angle of the dliptical arc prior to the stretch and rotate operations.

2 which isthe end angle of the elliptical arc prior to the stretch and rotate operations,

AF

which is the difference between these two angles.

If one thinks of an ellipse as a circle that has been stretched and then rotated, then
, and
4 4™AE

are the start angle, end angle and sweep angle, respectively of the arc prior to the stretch and rotate
operations. Thisleads to an alternate parameterization which is common among graphics APIs, which will
be referred to as center parameterization. In the next sections, formulas are given for mapping in both
directions between center parameterization and endpoint parameterization.

C.7.4 Conversion from center to endpoint parameterization

Given:
Cy Cy Ty Ty & & AF
the task isto find:

X, 0 X% ¥, fa s

Here are the formulas:

f f _ : _ f h
X, COS ¢#7 —SIN ¢7| [, COo8 & €y
= - _ + (C.7.4.1)
811 ¢#7 COS ¢ 1y 811 C
TR @ | | rysm & v
f f _ : _ f h
X, cos ¢¢g —sin ¢7| | rycos(& + A Cy
= - _ + (C.7.4.2)
SI1 ¢#7 COS ¢ rysmi & + A c
LV | S1I1 g2 @ty (4)) v

(1 if|A4>180°
f 4= _ (C.7.4.3)
0 if|A&<180°
p (1 it A#F#>0°
=, (C.7.4.4)
10 if A@<0°

W

C.7.5 Conversion from endpoint to center parameterization

Given:

X0 X ¥ fa /s

the task isto find:
Cy Cy Ty 1y & & A&

The equations simplify after atrandation which places the origin at the midpoint of the linejoining (X1, Y1)
to (xo, o), followed by arotation to line up the coordinate axes with the axes of the ellipse. All transformed

coordinates will be written with primes. They are computed as intermediate values on the way toward
finding the required center parameterization variables. This procedure consists of the following steps:

Step 1: Compute (X;', y1') according to the formula

' . : . H—x
X CO8 ¢& 8N ¢~ 12 2
= - (C.75.1)
' R)) H—¥a
yl =111 ¢ COS g7 7
Step 2: Compute (cy ', ¢y ") according to the formula
r 2.2 2. 42 2.2 mEn
Cr | _, Txly T3V 0¥ Y 752
/ - 2 12 2 1 .I"‘}-’Il' T
Cy ey T X T

where the + sign is chosen if fﬂ = fS

and the - sign is chosen if fﬂ - fS

Step 3: Compute (Cy, Cy) from(cy ', cy')

: o : ! N+
Cy| [COSgr —sIN ¢ (Cy .
= - + (C.75.3)
: . . ' ¥ +¥a
Cy SIM g7 COS g7 | | Cy :
Sep 4. Compute L':"’f and & ﬁ
In general, the angle between two vectors (uy, uy) and (vy, W) can be computed as
_ H-v
L(#, V)= +arccos —— (C.75.4)
e [
where the + sign appearing hereisthe sign of uy vy - uy vy
This angle function can be used to express and asfollows:
BTAE
s 1 x-cr'
=L £ (C.755)
0 | A ey
\ Ty
! x]_l_':'fl _I]_I_':'fl
¥ ¥
Ae=L 2oL E [|mod360° (C.7.56)
¥l ¥ ¥l TEF
rr Ty

where ﬁ‘} isfixed in the range -360° < & ﬁ < 360° such that:
1

if — 0, then <0,
fe=""A
eseif — 1, then > 0.

In other words, if fg= 0 and the right side of (C.7.5.6) is > 0, then subtract 360°, whereasif fg = 1 and the
right side of (C.7.5.6) is< 0, then add 360°. In all other casesleaveit asis.

C.7.6 Correction of out-of-range radii

This section formalizes the adjustments to out-of-range ry and ry mentioned in C.7.2. Algorithmically these
adjustments consist of the following steps:

Sep 1: Ensureradii are non-zero

If r«=0o0rry=0, then treat this as astraight line from (x4, y;) to (X,) and stop. Otherwise,

Sep 2: Ensureradii are positive

Take the absolute value of ry and ry:
ry — |yl r — |1 ©761)

Sep 3: Ensureradii are large enough
Using the primed coordinate values of equation (C.7.5.1), compute

2 e
x !
A= 1 2 + _}’1 7 (C.7.6.2)

Iy 1y

If the result of the above equation isless than or equal to 1, then no further change need be made to ry and
ry. If theresult of the above equation is greater than 1, then make the replacements

C.76.3
ry —~A 1y ry —~A R, (C763)

Step 4: Proceed with computations

Proceed with the remaining elliptical arc computations, such asthosein section C.7.5. Note: Asa
consequence of the radii correctionsin this section, equation (C.7.5.2) for the center of the ellipse always has
at least one solution (i.e. the radicand is never negative). In the case that the radii are scaled up using
equation (C.7.6.3), the radicand of (C.7.5.2) is zero and there is exactly one solution for the center of the
ellipse.

C.8 Text selection implementation notes

The following implementation notes describe the algorithm for deciding which characters are selected during
atext selection operation.

The text selection operation determines the start selection character(s) and start selection subregion and the
end selection character(s) and end selection subregion. To determine the start selection character(s), the

SV G user agent determines which rendered glyph received the initial select event (e.g., theinitial mouse
down event) and which character(s) corresponds to the given glyph (note that for ligatures, asingle glyph
represents multiple characters). For all of the glyphs used to render the given character(s), determine start
selection subregion depending on whether the selection/pointer event occurred in the top/left, top/right,
bottom/left or bottom/right subregion of the character cell areathat encompasses al of the glyphs used to
render the given character(s).

The end character(s) and the relevant end character(s) subregion are determined using a similar method,
except use the pointer location at the end of the select operation (e.g., when the user releases the given mouse
button).

For systems which support pointer devices such as a mouse, the user agent is required to provide a
mechanism for selecting text even when the given text has associated event handlers or links, which might
block text selection due to event processing precedence rules (see Pointer events). One implementation
option for platforms which support a pointer device such as a mouse, the user agent may provide for a small
additional region around character cells which initiate text selection operations but do not initiate event
handlers or links.

For horizontal text (i.e., when the baseline of the glyph is parallel to the primary text advance direction):

« If the start selection subregion is either the top/left or bottom/left, then the selection starts between
the start character(s) and the previous character in visual rendering order for the 'text’ element. (If

thisisthe first character in visual rendering order for the 'text’ element, then the selection starts with
thisfirst character in visua rendering order. Note that the bi-directional algorithm might result in the
selection being between two characters that are not contiguousin lexical order.)

« If the start selection subregion is either the top/right or bottom/right, then the selection starts between
the start character (s) and the next character in visual rendering order for the 'text' element. (If thisis
the last character in visual rendering order for the 'text' element, then the selection starts with thislast

character in visual rendering order. Note that the bi-directional algorithm might result in the selection
being between two characters that are not contiguousin lexical order.)

For vertical text (i.e., when the baseline of the glyph is perpendicular to the primary text advance direction):

« If the start selection subregion is either the top/left or top/right, then the selection starts between the
start character(s) and the previous character in visual rendering order for the 'text' element. (If thisis

the first character in visual rendering order for the 'text’ element, then the selection starts with this

first character in visual rendering order. Note that the bi-directional algorithm might result in the
selection being between two characters that are not contiguous in lexical order.)

« If the start selection subregion is either the bottom/left or bottom/right, then the selection starts
between the start character(s) and the next character in visual rendering order for the 'text’ element.

(If thisisthe last character in visual rendering order for the 'text’ element, then the selection starts

with this last character in visual rendering order. Note that the bi-directional algorithm might result in
the selection being between two characters that are not contiguousin lexical order.)

When the user agent isimplementing selection of bi-directional text in lexical order and the selection starts
(or ends) between characters which are not contiguousin lexical order, then there might be multiple potential
combinations of characters that can be considered part of the selection. The algorithms to choose among the
combinations of potential selection options shall choose the selection option which most closely matches the
text string's visual rendering order.

previous next contents properties index

previous next contents properties index

Appendix D: Conformance Criteria

Contents

D.1 Introduction

D.2 Conforming SVG Document Fragments

D.3 Conforming SV G Stand-Alone Files

D.4 Conforming SV G Included Document Fragments

D.5 Conforming SV G Generators

D.6 Conforming SV G Interpreters

D.7 Conforming SVG Viewers

This appendix is informative, not normative.

D.1 Introduction

Different sets of SV G conformance criteria exist for:

Conforming SV G Document Fragments

Conforming SVG Stand-Alone Files

Conforming SV G Included Documents

Conforming SV G Generators

Conforming SV G Interpreters

Conforming SVG Viewers

D.2 Conforming SVG Document Fragments

An SV G document fragment is a Conforming SVG Document Fragment if it adheres to the specification
described in this document (Scalable V ector Graphics (SVG) Specification) including SVG'sDTD (see

Document Type Definition) and also:

(relativeto XML) iswell-formed

if all non-SVG namespace elements and attributes and all xmlns attributes which refer to
non-SV G namespace elements are removed from the given document, and if an appropriate
<?xm ... ?> statement isincluded at the top of the document, and if an appropriate
<IDOCTYPE svg ... > statement which pointstothe SVG DTD isincluded immediately

http://www.w3.org/TR/REC-xml.html#sec-well-formed

thereafter, the result isavalid XML document

« conforms to the following W3C Recommendations:
o the XML 1.0 specification (Extensible Markup L anguage (XML) 1.0)

o (if any namespaces other than SV G are used in the document) Namespacesin XML

o any useof CSS styles and properties needs to conform to Cascading Style Sheets, level 2
CSS2 Specification

o any references to external style sheets shall conform to Associating stylesheets with XML
documents

D.3 Conforming SVG Stand-Alone Files

A fileisaConforming SVG Sand-Alone Fileif:
o itisan XML document
« itsroot element isan 'svg element

e it conformsto the criteriafor Conforming SV G Document Fragment

D.4 Conforming SVG Included Document
Fragments

SV G document fragments can be included within parent XML documents using the XML namespace
facilities described in Namespacesin XML.

An SV G document fragment that is included within a parent XML document is a Conforming Included
SVG Document Fragment if the SV G document fragment, when taken out of the parent XML document,
conformsto the SV G Document Type Definitions (DTD).

In particular, note that individual elements from the SV G namespace cannot be used by themselves.
Thus, the SVG part of the following document is not conforming:

<?xm version="1.0" standal one="no"?>

<! DOCTYPE SonePar ent XML.Gr ammar PUBLI C "-// SonePar ent "
"http:// SomePar ent XMLG anmmrar . dt d" >

<Par ent XM_>
<!-- Elements from Parent XML go here -->

<l-- The following is not conformng -->
<z:rect xm ns:z="http://ww.w3. org/ G aphi cs/ SVG SVG 19991203. dt d"
x="0" y="0" w dth="10" hei ght="10" />

<l-- Mre elenents from Parent XM. go here -->
</ Par ent XM_>

Instead, for the SV G part to become a Conforming Included SVG Document Fragment, the file could be
modified as follows:

<?xm version="1.0" standal one="no"?>
<! DOCTYPE SonePar ent XMLGr ammar PUBLI C "-// SonePar ent "
"http://SomePar ent XMLG anmmar . dt d" >

http://www.w3.org/TR/REC-xml.html#sec-prolog-dtd
http://www.w3.org/TR/REC-xml.html
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/REC-xml-names/

<Par ent XM_>
<!-- Elements from Parent XML go here -->

<l-- The following is conformng -->
<z:svg xm ns:z="http://ww. w3. or g/ G aphi cs/ SVE SVG 19991203. dt d"
wi dt h="100px" hei ght ="100px" >
<z:rect x="0" y="0" wi dth="10" hei ght="10" />
</ z:svg>

<l-- Mre elenents from Parent XM. go here -->
</ Par ent XM_>

D.5 Conforming SVG Generators

A Conforming SVG Generator is a program which:

« aways creates at least one of Conforming SV G Document Fragments, Conforming SVG
Stand-Alone Files or Conforming SV G Included Documents

« does not create non-conforming SV G document fragments of any of the above types

« conformsto al of the Priority 1 accessibility guidelines from the document "Authoring Tool
Accessibility Guidelines 1.0" [ACCESS-AUTHOR] that are relevant to generators of SVG

content. (Priorities 2 and 3 are encouraged but not required for conformance).

SV G generators are encouraged to follow W3C devel opments in the area of internationalization. Of
particular interest is the W3C Character Model and the concept of Webwide Early Uniform
Normalization, which promises to enhance the interchangability of Unicode character data across users
and applications. Future versions of the SV G Specification are likely to require support of the W3C
Character Model in Conforming SV G Generators.

D.6 Conforming SVG Interpreters

An SVG interpreter is a program which can parse and process SV G document fragments. Examples of
SVG interpreters are server-side transcoding tools (e.g., atool which converts SVG content into araster
image) or analysistools (e.g., atool which extracts the text content from SVG content). An SVG viewer

also satisfies the requirements of an SVG interpreter. An SVG Viewer does indeed parse and process
SV G document fragments, where processing consists of rendering the SVG content to the target
medium.

A Conforming SVG Interpreter is defined as follows:

« Theinterpreter must be able to successfully parse and process any Conforming SVG Document
Fragment. (It is not required, however, that the semantics of every possible SV G feature be
understood and supported beyond parsing. Thus, for example, a Conforming SVG Interpreter
might only parse the defined syntax but not process the semantics of al featuresin the language.)

o The XML parser must be able to parse and process and XML constructs defined within
[XML10] and [XML-NS].

o The XML parser must be able to parse and process arbitrarily long data streams.

« If the program allows scripts to run against Document Object Model, then a Conforming SVG
Interpreter must support the entire DOM model for SV G defined in this specification

http://www.w3.org/International/

D.7 Conforming SVG Viewers

An SV G viewer is aprogram which can parse and process an SV G document fragment and render the
contents of the document onto some sort of output medium such as adisplay or printer. Usually, an SVG
Viewer isalso an SVG Interpreter.

There are two sub-categories of Conforming SVG Viewers:

Conforming Satic SVG Viewers apply to platforms and environments which only render static
documents, such as printers

Conforming Dynamic SVG Viewers apply to platforms and environments such as common web
browsers which support user interaction and content whose representation can change over time

Specific criteriathat apply to both Conforming Static SVG Viewers and Conforming Dynamic SVG
Viewers:

In the typical case wherethe SVG Viewer isalso an SVG Interpreter, then the program must also
be a Conforming SV G Interpreter,

All of SVG static rendering features corresponding to the feature name " SV GStatic" (see Feature
strings) must be supported and rendered according to this specification.

For interactive user environments, facilities must exist for zooming and panning of standalone
SV G documents or SV G document fragments embedded within parent XML documents.

If printing devices are supported, SV G content must be printable at printer resolutions with the
same graphics features available as required for display (e.g., color must print correctly on color
printers).

On systems where this information is available, the parent environment must provide the viewer
with information about physical device resolution. In situations where thisinformation is
impossible to determine, the parent environment shall pass a reasonable value for device

resol ution which tends to approximate most common target devices.

The viewer must support JPEG and PNG image formats.

The viewer must support apha channel blending of the image of the SVG content onto the target
canvas.

The viewer must support the following W3C Recommendations with regard to SV G contents:
o complete support for the XML 1.0 specification (Extensible Markup Language (XML)

1.0)

o complete support for inclusion of non-SV G namespaces within SV G content Namespaces
in XML (Note that data from non-SV G namespaces are included in the DOM but are
otherwise ignored.)

o complete support for all features from CSS2 (Cascading Style Sheets, level 2 CSS2
Specification) that are described in this specification as applying to SVG

o complete support for external style sheets as described in Associating stylesheets with
XML documents

All visual rendering must be accurate to within one device pixel to the mathematically correct
resullt.

On systems which support accurate SRGB [SRGB] color, all SRGB color computations and all
resulting color values must be accurate to within one sRGB color component value, where SRGB

http://www.w3.org/TR/REC-xml.html
http://www.w3.org/TR/REC-xml.html
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/xml-stylesheet
http://www.w3.org/TR/xml-stylesheet

color component values range from 0 to 255.

Although anti-aliasing support isn't a strict requirement for a Conforming SVG Viewer, it is highly
recommended for display devices. Lack of anti-aliasing support will generally result in poor results on
display devices.

Specific criteriathat apply to only Conforming Dynamic SVG Viewers:

« Inweb browser environments, the viewer must have the ability to search and select text strings
within SV G content.

« If display devices are supported, the viewer must have the ability to select and copy text from
SV G content to the system clipboard

« Theviewer must have complete support for an ECM A Script binding of the SVG Document
Object Model.

The Web Accessibility Initiative [WAI] isdefining "User Agent Accessibility Guidelines 1.0"
[ACCESS-USERAGENTS]. Viewers are encouraged to conform to the Priority 1 accessibility

guidelines defined in this document, and preferably also Priorities 2 and 3. Once the guidelines are
completed, a future version of this specification islikely to require conformance to the Priority 1
guidelinesin Conforming SVG Viewers.

A higher class concept is that of a Conforming High-Quality SVG Viewer, with sub-categories
Conforming High-Quality Static SVG Viewer and Conforming High-Quality Dynamic SVG Viewer.

Both a Conforming High-Quality Satic SVG Viewer and a Conforming High-Quality Dynamic SVG
Viewer must support the following additional features:

« Generaly, professional-quality results with good processing and rendering performance and
smooth, flicker-free animations

« On low-resolution devices such as display devices at 150dpi or less, support for smooth edges on
lines, curves and text (Smoothing is often accomplished using anti-aliasing techniques.)

« Color management via I CC profile support (i.e., the ability to support colors defined using ICC
profiles)

« Resampling of image data using algorithms at |least as good as bicubic resampling methods
« At least double-precision floating point computation on coordinate system transformation
numerical calculations
A Conforming High-Quality Dynamic SVG Viewer must support the following additional features:

« Progressive rendering and animation effects (i.e., the start of the document will start appearing
and animations will start running in parallel with downloading the rest of the document)

« Restricted screen updates (i.e., only required areas of the display are updated in response to
redraw events)

« Background downloading of images and fonts retrieved from aweb server, with updating of the
display once the downloads are complete

previous next contents properties index

previous next contents properties index

Appendix E: Accessibility Support

Contents

E.1 Accessibility and SVG
E.2 Aura style sheets
E.3 SVG Accessihility guidelines

This appendix is informative, not normative.

E.1 Accessibility and SVG

The degree to which SV G content can be considered accessible depends on what SV G is compared
against and the manner in which the SV G content is constructed.

When comparing SV G content to images, SV G will be much more accessible for the following reasons:

Text stringsin SVG are represented as regular XML character data rather than bitsin an image.
(See Text.)

At any place in the SVG hierarchy, adrawing can include along set of descriptive text (i.e., the
'desc' element) and/or a short description in the form of atitle (i.e., the 'title' element). Both of
these features can be used to help the visually impaired interpret both the intent and specific
content of adrawing. The drawing can be architected such that there is a single description for
the drawing as a whole or there are multiple descriptions which are distributed within the
drawing and describe each separate component within the drawing.

SVG has anotion of structure from its grouping constructs such as the 'g' element. This grouping
constructs, when used in conjunction with the 'desc’ and 'title' elements, provide information
about document structure and semantics.

Personal style sheets can be used to adjust the color contrast of graphic elements.

Because SV G content is scalable, people with partial visual impairment will be able to magnify
the content or zoom in on graphics for easier viewing.

This specification includes a set of SV G accessibility guidelines, which will help to promote the
creation of accessible SVG content.

SV G's Conformance Guidelines:

o requires support of Priority 1 authoring tool accessibility guidelinesin Conforming SVG
Generators

0 encourages support of Priority 1 user agent accessibility guidelinesin Conforming SVG
Viewers

thereby promoting increased accessibility for both generation and viewing of SV G content.

On the other hand, when comparing SV G to other markup languages, SV G can be less accessible. For
example, in most cases, an XHTML [XHTML 10] document will be more accessible as XHTML than it

would beif converted into SV G since the higher-level structure and semantics will be lost in the
trang ation.

The degree to which SV G content is accessible depends on the degree to which the document's author
follows the SV G accessibility guidelines.

E.2 Aural style sheets

For the purposes of aural media, SV G represents a stylable XML grammar. In user agents that support
aural style sheets, aural style properties [CSS2-AURAL] can be applied as defined in [CSS2].

Aural style properties can be applied to any SVG element that can contain character data content,
including 'desc’, 'title, 'tspan'. 'tref’ and ‘textPath’. On user agents that support aural style sheets, the

following [CSS2] properties can be applied:

‘azimuth' [CSS2-azimuth]

‘cue [CSS2-cue

'cue-after' [CSS2-cue-after]
'‘cue-before’ [CSS2-cue-before]
'elevation’ [CSS2-elevation]
'pause [CSS2-pause
'pause-after’ [CSS2-pause-after]
'pause-before [CSS2-pause-before]
‘pitch’ [CSS2-pitch]
'pitch-range’ [CSS2-pitch-range]
'play-during' [CSS2-play-during]
'richness [CSS2-richness)
'speak’ [CSS2-speak
'speak-header’ [CSS2-speak-header]
‘speak-numeral’ [CSS2-speak-numeral]
'speak-punctuation’ [CSS2-speak-punctuation]
'speech-rate’ [CSS2-speech-rate]
'stress [CSS2-stress)
'voice-family' [CSS2-voice-family]
'volume' [CSS2-volume]

For user agents that support aural style sheets and also support [DOM 2], the user agent is required to
support the DOM interfaces defined in [DOM 2-CSS] that correspond to aural properties
[CSS2-AURAL]. (See Relationship with DOM2 CSS object model.)

E.3 SVG accessibility guidelines

The definition of a Conforming SV G Generator requires that it adhere to "Authoring Tool Accessibility
Guidelines 1.0" [ACCESS-AUTHOR].

The following are additional SV G-specific accessibility guidelines:

« SVGisalanguage for rich graphica content. For accessibility reasons, if thereis an original
source document containing higher-level structure and semantics, it is recommended that that
higher-level information be made available somehow. The latter information is necessary for
purposes of accessibility and intelligent textual processing. Alternatives include:

o Provide access to the original source document which convey's the document's structure
and semantics.

o Express the document in another markup language which conveys the document's
structure and semantics.

o Express the document using a combination SV G with other XML namespaces where
elements and attributes from other namespaces convey the document's structure and
semantics and the SVG namespace is used to represent the information graphically.

o Express the document solely using SV G, but utilize SV G's grouping constructs (e.g., the
‘g’ element) to represent document structure and use the 'desc’ and 'title’ elements to

describe the document semantics.

« Wherever supplemental descriptive information is available about part of the SV G content, it is
strongly recommended that the descriptive information be included within a'desc' or 'title

element. This guideline also applies to 'text’ elements, as the actual rendered text string might not
convey the higher-level structure and semantics of the character data content.

« Drawing programs often provide some sort of document structuring capabilities, such as the
ability to create and name layers of graphics, and authors often assign meaningful names to these
structural components for their purposes of managing their own data. For example, an author
might create a drawing which has three layers: alake (the background layer), an island (drawn
on top of the lake), and atree (drawn on top of the island), with the names of the layers being
"lake", "island" and "tree". It is recommended that SV G content convey as best as possible both
the inherent structure of the original drawing and any names of the structural components. In
particular, it is recommended that drawing tools which support the concept of named layers
create SV G content which create adistinct 'g' element for each layer and that a 'title' element be

provided for each layer's'g’ element, where the 'title' element contains the name of the given
layer.
« For SVG viewers, it isrecommended that 'title' elements be rendered as popup 'tooltips when the

pointing device is positioned over the given graphics or container element. For visual rendering
environments, the tooltip might appear within atransient popup window. For aural rendering
environments, the tooltip might be rendered aurally.

previous next contents properties index

previous next contents properties index

Appendix F: Internationalization Support

Contents

o F.1Internationalization and SVG
o F.2 SVG Internationalization Guidelines

This appendix is informative, not normative.

F.1 Internationalization and SVG

SVGisan application of XML [XML 10] and thus supports Unicode [UNICODE] [UNICODEZ21],
which provides universal 16-bit encoding for the scripts of the world's principal languages.

Additionally, SV G provides a mechanism for precise control of the glyphs used to draw text strings,
which is described in Alternate glyphs. This facility provides:

« accessto glyphs which are not defined in standard Unicode [UNICODE]

« the ability to follow the guidelines for normalizing character datafor the purposes of enhanced
interoperability (see [CHARMOD]), while still having precise control over the glyphsthat are
drawn.

SV G supports:
« Horizontal, left-to-right text found in Roman scripts (see the 'writing-mode' property)

« Vertical and vertical-ideographic text (see the 'writing-mode' property)
« Arabic bi-directional text (see the 'direction’ and 'unicode-bidi' properties)

SV G fonts support alternate glyphs for Arabic and Han text.

Multi-language SV G documents are possible by utilizing the system-language attribute to have different
text strings appear based on the user's language setting.

F.2 SVG Internationalization Guidelines

SV G generators should follow W3C guidelines for normalizing character data[CHARMOD] and should
use the facilities for Alternate glyphs to override the standard glyphs used to represent normalized
character data with specified glyphs.

previous next contents properties index

previous next contents properties index

Appendix G: Minimizing SVG File Sizes

This appendix is informative, not normative.

Considerable effort has been made to make SV G file sizes as small as possible while still retaining the
benefits of XML and achieving compatibility and leverage with other W3C specifications.

Here are some of the featuresin SVG that promote small file sizes:

« SVG's path data definition was defined to produce a compact data stream for vector graphics
data: all commands are one character in length; relative coordinates are available; separator
characters don't have to be supplied when tokens can be identified implicitly; smooth curve
formulations are available (cubic beziers, quadratic beziers and elliptical arcs) to prevent the
need to tesselate into polylines; and shortcut formulations exist for common forms of cubic
bezier segments, quadratic bezier segments, and horizontal and vertical straight line segments so
that the minimum number of coordinates need to be specified.

« Text can be specified using XML character data -- no need to convert to outlines.

« SVG contains afacility for defining symbols once and referencing them multiple times using
different visual attributes and different sizing, positioning, clipping and client-side filter effects

o SVG supports CSS selectors and property inheritance, which allows commonly used sets of
attributes to be defined once as named styles.

« Filter effects alow for compelling visual results and effects typically found only in
image-authoring tools using small amounts of vector and/or raster data

Additionally, HTTP 1.1 allows for compressed data to be passed from server to client, which can result
in significant file size reduction. Here are some sample compression results using gzip compression on
SV G documents:

Uncompressed With gzip Compression

SVG compression ratio
30,203 8,680 71%
12,563 8,048 36%

7,106 2,395 66%

6,216 2,310 63%
4,381 2,198 50%

A related issue is progressive rendering. Some SV G viewers will support:

« the ability to display the first parts of an SV G document fragments as the remainder of the
document is downloaded from the server; thus, the user will see part of the SVG drawing right
away and interact with it, even if the SVG file sizeislarge.

« delayed downloading of images and fonts. Just like some HTML browsers, some SV G viewers
will download images and Web fonts last, substituting atemporary image and system fonts,
respectively, until the given image and/or font is available.

Here are techniques for minimizing SV G file sizes and minimizing the time before the user is able to

start interacting with the SV G document fragments:

Construct the SV G file such that any links which the user might want to click on are included at
the beginning of the SVG file

Use default values whenever possible rather than defining al attributes and properties explicitly.

Take advantage of the path data data compaction facilities: use relative coordinates; use h and v

for horizontal and vertical lines; use sor t for cubic and quadratic bezier segments whenever
possible; eliminate extraneous white space and separators.

Utilize symbolsif the same graphic appears multiple times in the document

Utilize CSS property inheritance and selectors to consolidate commonly used properties into
named styles or to assign the properties to a parent <g> element.

Utilize filter effects to help construct graphics via client-side graphics operations.

previous next contents properties index

previous next contents properties index

Contents

Appendix H. References

« H.1 Normative references

e H.2 Informative references

H.1 Normative references

[COLORIMETRY]

"Colorimetry, Second Edition", CIE Publication 15.2-1986, ISBN 3-900-734-00-3.
Available at http://www.hike.te.chiba-u.ac.jp/ikeda/Cl E/publ/abst/15-2-86.html.

[CSS2]

"Cascading Style Sheets, level 2", B. Bos, H. W. Lig, C. Lilley, I. Jacobs, 12 May 1998.
Available at http://www.w3.0org/TR/REC-CSS2.

Specific topics:

O

0

O

[CSS2-ATRULES] CSS2 At-rules

[CSS2-POSN] CSS2 positioning properties
[CSS2-LAYOUT] CSS2 positioning properties
[CSS2-DYNPSEUDOQO] CSS2 dynamic pseudo-classes
[CSS2-AURAL] aura media

[CSS2-VISUAL] visua media

[] €SS2 dynamic pseudo-classes

[CSS2-azimuth] CSS2 ‘azimuth' property definition
[CSS2-clip] CSS2 'clip' property definition
[CSS2-cue] CSS2 'cue' property definition
[CSS2-cue-after] CSS2 'cue-after' property definition
[CSS2-cue-before] CSS2 'cue-before’ property definition
[CSS2-display] CSS2 'display’ property definition
[CSS2-elevation] CSS2 'elevation’ property definition
[CSS2-overflow] CSS2 'overflow' property definition

[CSS2-pause] CSS2 'pause’ property definition

[CSS2-pause-after] CSS2 'pause-after' property definition

http://www.hike.te.chiba-u.ac.jp/ikeda/CIE/publ/abst/15-2-86.html
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS2/syndata.html#at-rules
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-azimuth
http://www.w3.org/TR/REC-CSS2/????.html#propdef-clip
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-after
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-cue-before
http://www.w3.org/TR/REC-CSS2/????.html#propdef-display
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-elevation
http://www.w3.org/TR/REC-CSS2/????.html#propdef-overflow
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-after

[DOM1]

[CSS2-pause-before] CSS2 'pause-before’ property definition
[CSS2-pitch] CSS2 'pitch' property definition
[CSS2-pitch-range] CSS2 'pitch-range’ property definition

[CSS2-play-during] CSS2 'play-during' property definition
[CSS2-richness] CSS2 'richness property definition
[CSS2-speak] CSS2 'speak’ property definition
[CSS2-speak-header] CSS2 'speak-header' property definition
[CSS2-speak-numer al] CSS2 'speak-numeral’ property definition

[CSS2-speak-punctuation] CSS2 'speak-punctuation’ property definition

[CSS2-speech-rate] CSS2 'speech-rate’ property definition
[CSS2-stress| CSS2 'stress' property definition
[CSS2-voice-family] CSS2 'voice-family' property definition

[CSS2-volume] CSS2 'volume' property definition

"Document Object Model (DOM) Level 1 Specification”, V. Apparao, S. Byrne, M. Champion,
S. Isaacs, |. Jacobs, A. Le Hors, G. Nicol, J. Robie, R. Sutor, C. Wilson, L. Wood, editors, 1
October 1998.

Available at http://www.w3.0org/TR/REC-DOM-Level-1/

[DOM?2]

"Document Object Model (DOM) Level 2 Specification”, V. Apparao, M. Champion, A. Le
Hors, T. Pixley, J. Robie, P. Sharpe, C. Wilson, L. Wood, editors, 4 March 1999.
Available at http://www.w3.0rg/ TR/WD-DOM-L evel-2-19991025

Specific topics.

o [DOM 2-CORE] Document Object Model Core

o [DOM2-HTML] Document Object Model HTML

o [DOM2-VIEWS] Document Object Model Views

o [DOM2-SHEETS] Document Object Model StyleSheets
o [DOM2-CSS] Document Object Model CSS

= [DOM2-CSSVALUE] Document Object Model CSS - Interface CSSV alue

[DOM2-CSS-RGBCOL OR] Document Object Model CSS - Interface
RGBColor

[DOM 2-CSS-EI] Document Object Model CSS - Extended Interfaces
[DOM 2-CSS2Azimuth] Interface CSS2A zimuth

s [DOM2-CSS2Cur sor] Interface CSS2Cursor

[DOM 2-CSS2PlayDuring] Interface CSS2PlayDuring

o [DOM2-EVENTS] Document Object Model Events

= [DOM2-EVREG] Event registration interfaces

http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pause-before
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-pitch-range
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-play-during
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-richness
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-header
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-numeral
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speak-punctuation
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-speech-rate
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-stress
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-voice-family
http://www.w3.org/TR/REC-CSS2/aural.html#propdef-volume
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/WD-DOM-Level-2-19991025
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/core.html
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/html.html
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/views.html
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/stylesheets.html
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/css.html
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/css.html#CSS-CSSValue
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/css.html#CSS-RGBColor
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/css.html#CSS-RGBColor
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/css.html#CSS-extended
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/css.html#CSS-CSS2Azimuth
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/css.html#CSS-CSS2Cursor
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/css.html#CSS-CSS2PlayDuring
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/events.html
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/events.html#Events-Registration-interfaces

= [DOM2-EVTARGET] Interface EventTarget
= [DOM2-EVLISTEN] Interface EventL istener
= [DOM2-EVCAPTURE] Event capture
= [DOM2-EVBUBBLE] Event bubbling
= [DOM2-UIEVENTS] Interface UlEvent
= [DOM2-MOUSEEVENTS] Interface MouseEvent
= [DOM2-KEYEVENTS] Interface KeyEvent
= [DOM2-MUTEVENTS] Interface MutationEvent
» [DOM2-HTMLEVENTS] HTML event types
o [DOM2-TRAV] Document Object Model Traversa
o [DOM2-RANGE] Document Object Model Range

[ESS]

"Associating Style Sheets with XML documents Version 1.0", James Clark, editor, 29 June
1999.
Available at http://www.w3.org/TR/xml-stylesheet/.

[| EEE-754]

Available at 272.

[1CC32]

"ICC Profile Format Specification, version 3.2", 1995.
Available at ftp://sgigate.sgi.com/publ/icc/I| CC32.pdf.

[PNG10]

"PNG (Portable Network Graphics) Specification, Version 1.0 specification”, T. Boutell ed., 1
October 1996.
Available at http://www.w3.org/pub/WWW/TR/REC-png-multi.html.

[RFC1766]

"Tags for the Identification of Languages', H. Alvestrand, March 1995.
Available at ftp://ftp.isi.edu/in-notes/rfcl1766.txt.

[RFC2045]

"Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies’,
N. Freed and N. Borenstein, November 1996.
Available at ftp://ftp.internic.net/rfc/rfc2045.txt. Note that this RFC obsoletes RFC1521,

RFC1522, and RFC1590.
[RFC2119]

"Key words for use in RFCs to Indicate Requirement Levels', S. Bradner, March 1997.
Available at http://www.ietf.org/rfc/rfc2119.txt.

[SMIL1]

"Synchronized Multimedia Integration Language (SMIL) 1.0 Specification”, P. Hoschka, editor,
15 June 1998.

http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/events.html#Events-EventTarget
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/events.html#Events-EventListener
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/events.html
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/events.html
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/events.html#Events-UIEvent
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/events.html#Events-MouseEvent
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/events.html#Events-KeyEvent
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/events.html#Events-MutationEvent
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/events.html#Events-eventgroupings-htmlevents
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/traversal.html
http://www.w3.org/TR/1999/WD-DOM-Level-2-19990923/range.html
http://www.w3.org/TR/xml-stylesheet/
file:///d|/jon/svgspec/refs.html???
ftp://sgigate.sgi.com/pub/icc/ICC32.pdf
http://www.w3.org/pub/WWW/TR/REC-png-multi.html
ftp://ftp.isi.edu/in-notes/rfc1766.txt
ftp://ftp.internic.net/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2119.txt

Available at http://www.w3.org/TR/REC-smil/
Specific topics:
o [SMIL10-SY SLANG] 'system-language' attribute

[SMILANImM]

"SMIL Animation", P. Schmitz, K. Day, A. Cohen, P. Hoschka, editors, 02 September 1999.
Available at http://www.w3.org/TR/smil-animation/

Specific topics:
o [SMILANIM-TARGET] Specifying the animation target
o [SMILANIM-ANIMFUNC] Specifying the animation function
o [SMILANIM-AD] Computing the Active Duration
o [SMILANIM-UNIFY] Unifying Event-based and Scheduled Timing
o [SMILANIM-ADD] Additive Animation

o [SMILANIM-ACCUM] Controlling behavior of repeating animation - Cumulative
Animation

o [SMILANIM-FROMTOBY-ADD] How from, to and by attributes affect additive
behavior

o [SMILANIM-LINKS] Hyperlinks and Timing

o [SMILANIM-TRANSITIONS] State Transition Model

o [SMILANIM-ATTR-BEGIN] 'begin’ attribute

o [SMILANIM-ATTR-DUR] 'dur' attribute

o [SMILANIM-ATTR-END] 'end attribute

o [SMILANIM-ATTR-ENDACTIVE] 'endActive' attribute

o [SMILANIM-ATTR-RESTART] 'restart’ attribute

o [SMILANIM-ATTR-REPEATCOUNT] 'repeatCount’ attribute
0 [SMILANIM-ATTR-REPEATDUR] 'repeatDur’ attribute
o [SMILANIM-ATTR-FILL] fill' attribute

o [SMILANIM-ATTR-VALUES] Specifying function values
o [SMILANIM-ATTR-ORIGIN] 'origin' attribute

o [SMILANIM-DOM-METHODS] Supported methods

[SRGB]

"A Standard Default Color Space for the Internet - SRGB", M. Stokes, M. Anderson, S.
Chandrasekar, R. Motta.
Available at http://www.w3.org/Graphics/Col or/sRGB.

[UNICODE]

"The Unicode Standard: Version 2.0", The Unicode Consortium, Addison-Wesley Developers
Press, 1996.

[UNICODE21]

http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/REC-smil/#language
http://www.w3.org/TR/smil-animation/
http://www.w3.org/TR/smil-animation/#SpecifyingAnimationTarget
http://www.w3.org/TR/smil-animation/#SpecifyingAnimationFunction
http://www.w3.org/TR/smil-animation/#ComputingActiveDur
http://www.w3.org/TR/smil-animation/#Unifying
http://www.w3.org/TR/smil-animation/#AdditiveAnim
http://www.w3.org/TR/smil-animation/#Accumulate
http://www.w3.org/TR/smil-animation/#Accumulate
http://www.w3.org/TR/smil-animation/#FromToByAndAdditive
http://www.w3.org/TR/smil-animation/#FromToByAndAdditive
http://www.w3.org/TR/smil-animation/#HyperlinkSemantics
http://www.w3.org/TR/smil-animation/#AnimationStateTransitionModel
http://www.w3.org/TR/smil-animation/#BeginAttribute
http://www.w3.org/TR/smil-animation/#DurAttribute
http://www.w3.org/TR/smil-animation/#EndAttribute
http://www.w3.org/TR/smil-animation/#EndActiveAttribute
http://www.w3.org/TR/smil-animation/#RestartAttribute
http://www.w3.org/TR/smil-animation/#RepeatCountAttribute
http://www.w3.org/TR/smil-animation/#RepeatDurAttribute
http://www.w3.org/TR/smil-animation/#FillAttribute
http://www.w3.org/TR/smil-animation/#AnimFuncValues
http://www.w3.org/TR/smil-animation/#MotionOriginAttribute
http://www.w3.org/TR/smil-animation/#DOM-SupportedMethods
http://www.w3.org/Graphics/Color/sRGB

"Unicode Technical Report # 8, The Unicode Standard, Version 2.1", September 1998. Available
at: http://www.unicode.org/unicode/reports/tr8.html.

The latest version of Unicode. For more information, consult the Unicode Consortium's home
page at http://www.unicode.org/. For bidirectionality, see also the corrigenda at

http://www.unicode.org/unicode/uni 2errata/bidi.htm.
[URI]

"Uniform Resource Identifiers (URI): Generic Syntax”, T. Berners-Lee, R. Fielding, L. Masinter,
August 1998.
Available at http://www.ics.uci.edu/publ/ietf/uri/rfc2396.txt. (The term "URI-reference” is

defined in Section 4: URI References.)
[XLINK]

"XML Linking Language (XLink)", S. DeRose, D. Orchard, B. Trafford, editors, 26 July 1999.
Available at http://www.w3.0rg/1999/07/WD-xlink-19990726

[XML 10]

"Extensible Markup Language (XML) 1.0" T. Bray, J. Paoli, C.M. Sperberg-McQueen, editors,
10 February 1998.
Available at http://www.w3.org/TR/REC-xml/.

[XML-NS]

"Namespacesin XML" T. Bray, D. Hollander, A. Layman, editors, 14 January 1999.
Available at http://www.w3.org/TR/REC-xml-names.

[XPTR]

"XML Pointer Language (XPointer)", S. DeRose, R. Danidl Jr., editors, 09 July 1999.
Available at http://www.w3.0rg/1999/07/WD-xptr-19990709

H.2 Informative references

[ACCESS-AUTHOR]

"Authoring Tool Accessibility Guidelines 1.0", J. Treviranus, J. Richards, |. Jacobs, C.
McCathieNevile, editors, 26 October 1999.
Available at http://www.w3.org/TR/WAI-AUTOOL Y

[ACCESS-USERAGENTS]

"User Agent Accessibility Guidelines 1.0", J. Gunderson, |. Jacobs, editors, 11 August 1999.
Available at http://www.w3.org/ TR/WAI-USERAGENT/

[CHARMOD]

"Character Model for the World Wide Web (working draft)", M. Dirst, editor, 25 February
1999.
Available at http://www.w3.org/TR/1999/WD-charmod-19990225

[FOLEY-VANDAM]

"Computer Graphics : Principles and Practice, Second Edition", James D. , Andries van Dam,
Steven K. Feiner, John F. Hughes, Richard L. Phillips, Addison-Wesley, pp. 488-491.

[HTMLA40]
"HTML 4.0 Specification”, D. Raggett, A. Le Hors, |. Jacobs, 8 July 1997.

http://www.unicode.org/unicode/reports/tr8.html
http://www.unicode.org/
http://www.unicode.org/unicode/uni2errata/bidi.htm
http://www.ics.uci.edu/pub/ietf/uri/rfc2396.txt
http://www.w3.org/1999/07/WD-xlink-19990726
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/1999/07/WD-xptr-19990709
http://www.w3.org/TR/WAI-AUTOOLS/
http://www.w3.org/TR/WAI-USERAGENT/
http://www.w3.org/TR/1999/WD-charmod-19990225

Available at http://www.w3.0org/TR/REC-html40/. The Recommendation defines three document
type definitions: Strict, Transitional, and Frameset, all reachable from the Recommendation.

[RFC2068]
"HTTPVersion 1.1", R. Fielding, J. Gettys, J. Mogul, H. Frystyk Nielsen, and T. Berners-Lee,
January 1997.

Available at ftp://ftp.internic.net/rfc/rfc2068.txt.
[MATHML]

"Mathematical Markup Language (MathML) 1.01 Specification”, P. lon, R. Miner, 7 July 1999.
Available at http://www.w3.0rg/1999/07/REC-MathM L -19990707/.

[WAI]

Home page for Web Accessibility Initiative:
http://www.w3.org/wai/.

[WAI-PAGEAUTH]

"WAI Accesibility Guidelines: Page Authoring” for designing accessible documents are
available at:

http://www.w3.org/TR/WD-WAI-PAGEAUTH.
[XHTML 10]

"XHTML (tm) 1.0: The Extensible HyperText Markup Language"
Available at http://www.w3.org/TR/xhtml1/.

[XSL]

"Extensible Stylesheet Language (XSL) Specification”, S. Deach, editor, 21 Apr 1999.
Available at http://www.w3.org/TR/WD-xdl/

[XSLT]

"XSL Transformations (XSLT) Version 1.0", J. Clark, editor, 08 October 1999.
Available at http://www.w3.0rg/TR/1999/PR-xslt-19991008

previous next contents properties index

http://www.w3.org/TR/REC-html40
ftp://ftp.internic.net/rfc/rfc2068.txt
http://www.w3.org/1999/07/REC-MathML-19990707/
http://www.w3.org/wai/
http://www.w3.org/TR/WD-WAI-PAGEAUTH
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/WD-xsl/
http://www.w3.org/TR/1999/PR-xslt-19991008

previous contents properties index

Appendix I: Change History

Changes with the 03-December-1999 SVG Draft
Specification

« Global/miscellaneous changes

o Considerable miscellaneous editorial cleanup throughout, including significant
rearrangement of content and reordering of chapters.

o Provided considerable more detail about SV G's DOM interfaces. The DOM interfaces are
not provided at the end of the chapters to which they most relate.

o Added anew chapter called Basic Data Types and Interfaces which provides asingle
definition of things such as <number> and <length>.

o Changed all referencesto element start tags such as "the <svg> element” with
single-quoted references such as "the 'svg' element”.

o Added an indication for each attribute and property about whether it can be animated.
o Added anavigation bar at the bottom of all pages.

« Changesto Introduction
o Added anew section 1.6 Error processing which describes user agents error handling.

o Modified the wording about relationship to SMIL to emphasize that SV G static or
animated content is designed to be used as a component media for future versions of
SMIL.

o Changed the name of section 1.4 from Terminology to Definitions to match the approach
taken in the CSS spec. Removed definition of "number” as thisis now defined under

Basic Data Types.
o Added anew section 1.5 called Terminology to Terminology to define the terms "must”,
"required", etc.

« Changesto Basic Data Types and | nterfaces

o Provided more explicit range information on integers and numbers.

o Modified al DOM interfaces to use "float" instead of "double" per decision that
conforming implementations need only support single-precision floating point operations.

« Changesto SVG Rendering Model

o Added a note about markers drawing in order according to the directionality of the shape,
and added a note that marker symbols are rendered as if their graphics content were
expanded into the document tree..

« Changesto Document Structure

o Modified the wording in the section on URI referencesto say that invalid references are

errors and handled by standard user agent error processing behavior, per decision by the
working group to have consistent error handling.

o Removed methods open, close, write, writeln from SV GSV GElement as these will be
obsoleted for HTML down the road and equivalent capability is possible by manipulating
the DOM tree.

o For interface SV GDocument, added a forceRedraw() method.

o Modified the description of SV GDocument to clarify that an SV GDocument object only
exists when the 'svg' element is the root element of the document hierarchy,

o Moved various utility functions that had been part of interface SV GDocument to
interface SV GSV GElement since SV GDocument will not exist in al cases.

o Clarified that an 'image’ creates its own document tree and doesn't inherit properties.

o Moved 'switch', 'system-required' and the new 'system-language' to Document Structure.

o Added attribute system-language, from SMIL 1.0, for all elements that have attribute
system-required to provide the mechanism for multiple localized text strings for the same
document, as noted in previous draft specifications. Documented in The system-language

attribute

o Defined SVG's available feature strings for "hasFeature” method call and
"system-required" attribute.

o Modify system-required to be NMTOKEN instead of CDATA to match SMIL 1.0.
Modify example to use an NMTOKEN instead of a URL.

« Changesto Styling

o Changed thetitle of the chapter from "Styling and CSS" to "Styling" to re-inforce that
SV G content can be styled by either CSS or XSL.

Added an introduction talking about styling with both XSL and CSS.
Modified many descriptions so that they apply to both CSS and XSL.
Added descriptions for the 'style’ and 'class’ attributes.

Modified the description of the 'display" property to eliminate the SV G-specific value
"svg" and to say that anything other than 'none’ indicates that the given element can be
rendered.

o o o o

o Indicate that CSS dynamic pseudo classes :hover, :active, :focus are supported.
o Added abullet about aural style sheet support.

o The'overflow' and 'clip' properties have been moved to the Clipping and Masking
chapter. (See Masking notes below.)

o Modified the default style sheet so that the overflow property has an initial value of
‘hidden'’ for al elementsin the SVG language. Thisis necessary to achieve the default
behavior that new viewports also establish new clipping paths.

o Modified the default style sheet to eliminate the reference to 'display:svg'. Until CSS3,
which is expected to provide general purpose methods for associating user agents with
particular XML namespaces, user agents will have to have special detection for SVG
documents and fragments.

O

In the default style sheet, included all methods which support the viewBox attribute to
have a default value of 'hidden’ for the ‘overflow' property.

« Changesto Coordinate Systems, Transformations and Units

0

Major editorial cleanup. Switch to column vectorsinstead of row vectors. Change
wording per suggestions from various members of the working group. Added many
examples and supportive pictures.

Fix errors in Pythagorean formula examples where a comma needed to be replaced by a
plus-sign.

Fixed along-standing error in the section describing how to set up a new viewport where
the example and some of the write-up referred to using CSS properties
left/right/top/bottom/etc instead of attributes x/y/width/height. Now this chapter is correct
and consistent with the descriptions of the x/y/width/height attributes for the 'svg’
element.

« Changesto Paths

O

o o o o

Removed the erroneous reference to the "B" and "b" commands, which don't exist in the
current specification.

Fixed BNF to remove possibility of trailing comma at the end of acommand, such as"M
100,100, L 200,200,". Thisis no longer valid, and instead you have to remove the
extraneous commas, asin "M 100,100 L 200,200".

Changed the path data BNF to eliminate ambiguous productions (i.e., when two
productions could satisfy a given path specification).

Added a note indicating that the path data parser needs to be greedy (i.e., consume all
characters that continue to satisfy a production).

Added a comment to the distance-along-a-path chapter stating that "moveto™" operations
do not contribute to the distance calculations.

Removed "flatness" attribute due to statement in conformance criteria that rendering
needs to be within a device pixel.

Defined animation behavior for booleans that are part of the arc command.
Enhanced the write-up of attribute nominalLength and clarified "distance-along-a-path.”
Fixed errorsin SVG DOM where it was inconsistent with our newer arc command.

For interface SV GPathElement, added distance-along-a-path utiltiy functions
getTotal Length(), getPointAtLength() and getPathSegAtL ength().

« Changesto Basic shapes

O

O

Thorough editorial cleanup of this chapter, providing more precise language and
illustrating with pictures.
Fixed BNF to remove possibility of trailing comma at the end of the points list, such as

"100,100,200,200,". Thisisno longer valid, and instead you have to remove the
extraneous ending comma, as in "100,100,200,200".

« Changesto Text

O

Major cleanup, reorganization and rewriting of sectionsin preparation of Proposed
Recommendation. Sections have been renumbered and content has been shuffled between
sections. Very detailed descriptions have been provided for all layout rules, including text
on a path and text selection. Several drawings have been added.

[}

Incorporation of Last Call feedback from the 18N interest group, Last Call
internationalization feedback from the X SL working group, and Last Call feedback from
the CSS and FP working groups. Detailed changes are listed as follows.

Various editorial clean-up actions, including more careful use of the terms " character”
and "glyph".

Added a section entitled Characters and their corresponding glyphs to clearly describe the
differences and relationships between XML characters and glyphs.

Broke up the 'tspan’ element into two separate elements, 'tspan’ and 'tref’, per Last Call
feedback from the 118N interest group. The 'href' attribute has been removed from the
'tspan’ element. All referenced to non-embedded character data are done with the 'tref'
element. The 'tref' element is not alowed to have embedded character data.

Changed the descriptions of the x,y,dx,dy and rotate attributes to the 'tspan’ element to
correspond to characters rather than glyphs, per Last Call feedback from the 118N interest
group.

Wrote up how x,y,dx,dy and rotate attributes on the 'tspan’ element work with the
bi-directionality algorithm, reflecting Last Call feedback from the XSL and 118N
working groups.

Substituted SV G-specific property 'text-anchor' for ‘text-align' and 'glyph-anchor’ for
'vertical-align', per Last Call feedback comments from the 118N interest group and the
XSL working group. Both 'text-align’ and 'vertical-align' are meant for block text and did
not fit with SV G's single-line approach to text-at-a-point and text-on-a-path.

Added property 'baseline-shift' per Last Call feedback comments from the 118N interest
group and the XSL working group. The XSL working group is still developing the
definition of this property. The current definition in the SV G spec is a placeholder which
might require modifications as the XSL definition of the property gets further formulated.
Allow for nested 'tspan’ elements so that 'baseline-shift' properties can be nested, to alow
for (as an example) exponents of exponents.

Replaced properties textPath-transform and orient-to-path properties with attribute
'rotate’, which directly addresses the desired feature (i.e., precisely specified
text-on-a-path when the SV G text-on-a-path algorithm doesn't provide sufficient
precision), doesn't introduce additional unnecessary and hard-to-use capability, and
which has a parallel construction with the dx and dy attributes.

Changed 'altglyph’ from a property to an element, 'altGlyph’, per Last Call feedback

comments from the 118N interest group and the X SL working group. To complete the
definition of the altglyph capability, other new elements include 'atGlyphDef' and

‘alyphSub'. 'altGlyph' can appear within a‘text’ element and refersto either aglyph
defined in an SV G font or an 'altGlyphDef' element. 'altGlyphDef' is a child of 'defs.
Removed the ability to include a'use’ element as a child of a'text’, 'tspan’ or ‘textPath’
element, per discussions derivative of Last Call feedback on internationized text issues.
Instead, it was felt that SV G-on-a-path was better accomplished by including the

SV G-on-a-path as a glyph defined in the private section of Unicode.

Added a sentence in Relationship with bi-directionality indicating that the default
orientation for Arabic text when rendered in avertical text string is rotated 90 degrees
counter-clockwise, which is the same as for Roman text.

Rephrased the description of the W3C character model in the section on Alternate glyphs

to avoid the impression that normalization eliminates compatibility equivalents, per Last
Call feedback comments from the 118N interest group.

Made clear that the x,y,dx and dy attributes on the 'tspan’ element can be used for both

minor and major adjustments of the current text position, per Last Call feedback
comments from the 118N interest group.

Made clear that text selection in bi-directional situations selects text that is contiguousin
lexical order, with user agents given the option of providing an aternative text selection
facility in visual rendering order. This addresses Last Call feedback comments from the
18N interest group.

For White space, modified the rule for xml:space="default' to throw out all line breaks.
This accommodates Last Call feedback comments from the 118N interest group that
many languages would not want automatic generation of white space if character data
were spread across multiple lines. By making this change, then Roman text will need to
include explicit white space wherever word separators are needed (possibly achieved by
simply indenting the text data).

Removed the paragraph about the "uu" suffix with the font shorthand property. This
paragraph was in the previous spec only because of an editorial error.

Added a paragraph to Introduction recommending the use of appropriate semantic

markup along with 'text' elements to make SV G documents more accessible, per Last
Call feedback comments from Daniel Dardailler of the Web Accessibility Initiative
(WAI).

« Changesto Painting: Filling, Stroking and Marker Symbols

O

Added definitions of properties 'color-interpolation’ and 'color-rendering' to control

whether color computations are performed in the SRGB or linearRGB color spaces and to
provide speed/quality rendering hints to the user agent.

Added 'inherit' as avalue for 'fill-opacity'. (It already existed for 'stroke-opacity'.)

Added a note to stroke properties that all stroke operations must begin at the start of the
graphics element and must employ the user agent's distance-along-a-path algorithms.

Added a note that complex paint servers such as gradients and patterns must produce the
same result asif the stroke were converted to a'path’ and then filled with the given paint
server.

Added 'userSpaceOnUse' to markerUnits per working group decision to enhance

re-usability of referenced elements used in 'defs and to achieve consistency across all
types of referenced elements.

Added short descriptions of the available values for 'color-interpolation’, which were
missing in previous drafts.

Added a note that |CC color values cannot be expressed as percentages and indicates that
|CC color values are <number>s.

Reworded descriptions of 'stroke-opacity' and 'fill-opacity' about value clamping.

Copied explicit formulas for converting sRGB to linearRGB from
http://www.w3.0rg/Graphics/Color/sRGB.

For Rendering Properties, changed attribute value 'default’ to ‘auto’ per Last Call
comments from the CSS and FP working groups.

When aURI is provided for fill' or 'stroke’, there used to be an 'inherit' value available as

a back-up option in case the URI were invalid. Because the 'inherit' backup option causes
serious complications with regard to the DOM, this little used option has been removed.

« Changesto Color

o Merged properties 'color-profile’ and ‘rendering-intent’ into a " color profile description™

described by an @color-profile construct. As aresult, ICC color definitions now take an
additional initial parameter, which is the name of the profile to use.

Fixed a couple of errorswith the 'color' property. First, removed the reference to the
‘color' property being used for gradient stops. (Actually, it isthe 'stop-color' property that
appliesto gradient stops.) Second, removed the 'icc-color' option, as this was present only
to address the needs of gradient stops. (This removal also serves to sidestep the issue of
why SVG is extending this very widely used existing CSS2 property.)

« Changesto Gradients and Patterns

O

O

O

Added xlink:href attribute to gradient and pattern elements, which allows one
gradient/pattern to inherit attributes and (in the case of gradients) a gradient ramp from a
previously defined element of the same type. This addition promotes re-usability of
gradients and patterns and thus promotes more compact files.

Added 'userSpaceOnUse' to gradientUnits and patternUnits per working group decision

to enhance re-usability of referenced elements used in 'defs and to achieve consistency
across all types of referenced elements.

Fixed examples of gradient stops which erroneously used 'stop-color' instead of ‘color'.

« Changesto Clipping, Masking and Compositing

O

O

Added 'inherit' values to 'opacity’, ‘mask’ and ‘clip-path’ to correct an error in the spec.

Removed percentage values from the ‘opacity’ property per Last Call comments from the
CSS and FP working groups.

Added adrawing which illustrates various 'opacity’ settings on objects and groups. The

drawing illustrates the accumulative effects of opacity, which addresses one of the Last
Call comments from the CSS and FP working groups.

Added explicit alphablending formulas to Simple al pha blending/compositing.

Removed wording about approximating sSRGB with 2.2 exponent since precise formulas
involve little extra computation.

Changed wording for the 'mask’ element to clarify exactly when one-channel masking
happens and when luminance-to-al pha processing happens, and changed the formulas for
luminance-to-al pha to use the same formulas as the feColorMatrix filter effect.
The'overflow' and 'clip' properties have been moved to this section.

Elaborated on the ‘overflow' and 'clip' properties. In particular, the specification now
states explicitly state in words that the effect of the default style sheet having svg {
overflow:hidden } isthat the default behavior has the SV G user agent clipping to the
bounds of the initial viewport. Also, discuss the effect of these properties on embedded
'svg' elements and the difference between clipping to the viewBox versus clipping to the
viewport.

Added clipPathUnits="user Space|user SpaceOnUselobjectBoundingBox" and added

‘userSpaceOnUse' to maskUnits per working group decision to enhance re-usability of

referenced elements used in 'defs and to achieve consistency across al types of
referenced elements.

O

0

O

O

For 'clipPath’, changed wording on invalid references to say that standard error
processing would apply.

Added clarification for the 'clipPath’ element and clipping path inheritance rules (i.e., a
‘clipPath’ does not inherit clipping paths from its ancestors, but it can use the ‘cli-path’
property to explicitly indicate that the clipping path itself must be clipped.).

Changed the wording for the 'mask’ and 'clip-path’ properties to say that invalid
references are errors and handled by standard user agent error processing behavior, per
decision by the working group to have consistent error handling.

Reworded descriptions of 'stroke-opacity' and 'fill-opacity' about value clamping.

« Changesto Filter Effects

O

O

Added xlink:href attribute to the filter' element, which alows one filter to inherit
attributes and the filter effect definition from a previously defined ‘filter' element. This
addition promotes re-usability of filters and thus promotes more compact files.

Added 'userSpaceOnUse' to filterUnits per working group decision to enhance
re-usability of referenced elements used in 'defs and to achieve consistency across all
types of referenced elements.

Replaced the old initial example with one that actually works.

For feColorMatrix, changed hue-rotate and luminance-to-alphato hueRotate and
luminateT oAlphato conform to camel notation conventions found in the rest of the spec.
Added 'inherit’ values to 'enable-background' to correct an error in the spec.

Fixed typosin description of hueRotate in feColorMatrix to say [a00 a01 a02] [al0 all
al?] [a20 a21 a22].

Added x, y, width, height attributesto all filter effects, per resolution by SVG working
group to provide sufficient information for felmage and feTile to know what to do.

Added stitchTiles attribute and changed baseFrequency to baseFrequencyX and
baseFrequencyY in feTurbulence to allow for small tiles of generated noise which can be
stitched together.

Fixed error in example from 110% to 120%.

« Changesto Interactivity

O

O

O

Expanded the Introduction.
Included detailed rules for handling pointer events.

Added property 'pointer-events, which the working group decided to add at the Ottawa

face-to-face meeting but which did not make it into the Last Call specification due to an
editorial error.

Modified the description for ‘cursor’ element to explain that its primary purposeisto

provide for a platform-independent cursor adding a hot spot to a PNG used as the source
image per Last Call comments from the CSS and FP working groups.

Defined terms zoom, pan and magnify. Emphasized that zoom and pan are required for
user agents in interactive environments, and that magnification is recommended.
Documented that zoom does not change meaning of CSS units, per working group
decision.

Renamed "allowZoomAndPan" to "enableZoomAndPanControls’ per working group
decision.

« Changesto Scripting

O

0

Added event attributes onfocusin, onfocusout, ongainsel ection, onlosesel ection,
onactivate, onresize and onscroll to match eventsin DOM2.
In the description of Document events, modified the description of "onload" to mean that

the element and its descendants are ready to be rendered but that external resources are
not necessarily available yet, per working group decision.

« Changesto Animation

0

0

0

Major update to track new versions of the SMIL-Animation specification.
Added the 'set’ element from SMIL animation

Dropped the "animateFlipbook’ element per request from the SY MM working group,
since the same functionality will be available using other facilities and concerns about
‘animateFlipbook' being too close to the SMIL 'par’ element.

Added atype attribute to ‘animateTransform'’ to explicitly disallow mixing of different
types of transformations within the same animation element.

Added an "auto-reflect” option to the rotate attribute to make it easy to pick with which
side of the motion path the target element will rotate.

Add keyPoints as an additional SV G extension to compensate for SMIL Animation's
changes in semantics to 'animateMotion’ since the SVG Last Call draft of 12Aug1999.

Added some pictures.

Indicated that the 'color-interpolation’ property appliesto color interpolations that result
from 'animateColor'.

« Changesto Linking

0

O

O

Removed the #FI XED setting on "xlink:show' on the 'a element to allow for "new" vs.
"replace” per Last Call comments from the CSS and FP working groups.

Changed 'parsed’ to ‘embed' to match upcoming expected revisionsto XLink.
Added 'target’ attribute to 'a’ element.

« Changesto Fonts

O

Renamed al attributes and elements that used to use camel CaseNotation to use
|lowercase-separated-by-hyphens notation so that names match the corresponding CSS
properties, per Last Call comments from the CSS, FP and 118N groups.

Renamed full-font-name to font-face-name to match CSS2. (The previous name was
chosen by error.)

Replaced the 'kern' element with 'hkern’ and 'vkern' elements to support vertical kerning,
per feedback comments from the 18N and XSL working groups.

The value of the 'unicode' attribute on the 'glyph’ element is now just aregular old
Unicode character, possibly expressed as a character reference, per feedback comments
from the 118N and X SL working groups. Modified the descriptions of the 'hkern' and
'vkern' elements’ ul and u2 attributes, accordingly. In the process, cleaned up the wording
for the ul, g1, u2 and g2 attributes and also the introductory wording about the kerning
elements.

Added a note that Arabic glyph widths are required to be positive, per feedback
comments from the 118N and XSL working groups.

Added required attributes text-top, hanging, ideographic and text-bottom to the 'font'
element, per feedback comments from the 18N and XSL working groups.

Replaced the term "standard” with "isolated" for attribute "arabic’, per feedback comments
from the 118N interest group.

Modified the rule for prioritizing which 'glyph’ is chosen to match current font practice,
per feedback comments from the 118N and X SL working groups. Now, the first 'glyph’ in
lexical order which matches the sequence of characters to be rendered gets chosen.

Included a recommendation that the glyphName attribute be unique across agiven SVG
font.

Changed the glyphName attribute such that a single string rather than alist of stringsis
provided to better match the needs of the newly revised kerning elements.

Removed attribute 'bbox’ per font discussion in the SVG working group with
representation from the Unicode Corsortium and Apple's font group. The conclusion was
that it was better for the viewing to calcul ate the bbox from the available graphical
information. Changed horiz-adv-x to be #REQUIRED on the 'font' element, since
removal of bbox removed its fallback value. Changed the default for vert-origin-x to be
half of horiz-adv-x, since removal of bbox removed its fallback value. Changed the
default for vert-adv-y to be the sum of attributes ascent and descent, as removal of bbox
removed its fallback value.

« Changesto Extensibility

O

Updated the example. References Dublin Core 1.1 instead of 1.0.

« Changesto Extensibility

O

Moved 'switch', 'system-required’ and the new 'system-language’ to Document Structure.

« Changesto SYGDTD

0

0

Various changes to correspond to changes described above.

Added attribute system-language, from SMIL 1.0, for all elements that have attribute
system-required to provide the mechanism for multiple localized text strings for the same
document, as noted in previous draft specifications.

Added entities %descTitle and %descTitleDefs to remove the restriction that child
elements 'desc’, 'title' and 'defs' had to appear in a particular order. Now, at most one can
appear, and any order is allowed.

Scattered null entities xxxExt (e.g., svgEXxt, gExt, pathExt) throughout the DTD to allow
extensions to the SV G language viathe internal DTD subset.

Removed the #FIXED attribute to xlink:show to allow for "new" vs. "replace”.
Changed 'parsed’ to ‘embed' for XLink.
Added 'target’ attribute to 'a’ element.

Removed #FI XED from the specification for the 'type' attribute on the 'style’ element.
(The #FIXED was just an editorial error.)

Various text-related and font-related changes, described above under "Text" and "Fonts'.

Removed graphic element events and system-required from 'desc' as it must have been an
error to have these attributesin the first place.

Add a'metadata’ child element to the 'svg' element and defined the 'metadata’ element.
(This element was defined in the spec but left out of the DTD inadvertantly.)

Added the 'view' element, which by oversight had been left out of the previous DTD.
Modified 'defs to allow 'view' as a child element.

Added standard attributes id, lang, class, style, etc. to <textPath>. (Previous error of
omission.)

Make an entity for all standard XLink attributes other than xlink:href.

Lots of changes to which elements have which animation elements as children to match
the tables in the animation chapter that show which Elements, attributes and properties
that can be animated

« Changesto SVG DOM

O

Magjor editorial modifications, including a good deal of reorganization. Detailed
descriptions of relationship to DOM2, including CSS OM and DOM2 Events.

Moved detailed interface definitions into chapters which describe corresponding elements
and features.

Defined SV G's available feature strings for "hasFeature” method call and
"system-required" attribute.

Renamed suspend_redraw, unsuspend_redraw and unsuspend_redraw_all to
suspendRedraw, unsuspendRedraw and unsuspendRedrawAll per suggestion from the
DOM working group.

« Changesto Implementation Requirements

O

Changed the title of the appendix to "Implementation Requirements” instead of
"Implementation Notes" to emphasize the fact that this appendix is normative.

Added a section Version control which saysthat SV G user agents should only render
documents which have areference to the SVG DTD and for which the reference pointsto
aDTD which the user agent supports.

Added a bullet to the implementation notes on path data on error handling stating that the
rendering should continue up to and including the last correctly defined path segment,
even if it isin the middle of acompound path command such as "L 100 200 100 400".
Modified the wording in Forward and undefined references to say that invalid references
are errors and handled by standard user agent error processing behavior, per decision by
the working group to have consistent error handling.

Added a section Clamping values which are restricted to a particular range to indicate
that out-of-range values get clamped at the latest possible moment.

Added a section Elliptical arc implementation notes which provides the details on how to
implement elliptical arcsin SV G path data.

Under Text selection implementation notes, added a paragraph that talks about user

agents providing an ability to select text strings which might have an associated event
handler or link.

Modified the description of the text selection algorithm for user agents to be consistent
with the two-stage text layout processing model (i.e., first re-order charactersinto visual
rendering order, and then position the characters, do ligatures, do kerning, etc.).

« Changesto Conformance Criteria

O

Now there are four types of Conforming SVG Viewers: Conforming Static SVG Viewer,
Conforming Dynamic SVG Viewer, Conforming High-Quality Static SVG Viewer,

Conforming High-Quality Dynamic SVG Viewer, per feedback from people withinin
SV G working group.

Reworded the reference to accessibility authoring guidelines, per Last Call feedback from
WAL.

Added a conformance requirement for viewers that encourages conformance to the WAI
user agent guidelines, per Last Call feedback from WAL

Expanded the bullet point about a Conforming SV G Document needing to be validatable
after removing non-SV G elements and attributes.

Added a comment about a conforming SV G interpreter requiring an XML Parser that
supports XML 1.0 and XML Namespaces.

Added a bullet stating that High-Quality SV G Viewers need to support double-precision
floating point operations on coordinate system transformation numerical operations

For Conforming SV G Viewers, added bullets stating that rendering must be accurate to
within one device pixel and SRGB colors must be accurate to within one color value.

« Changesto Accessibility Support

0

0

General editorial cleanup.

Made additions and changes to Accessibility and SV G about the potential for harming the
accessibility of information if representing information in pure visual, final-form SV G,
per Last Call feedback comments from Daniel Dardailler of the Web Accessibility
Initiative (WALI).

Listed the aural style sheet properties from CSS2 as the set of properties which will be
available in user agents that support aural properties.

Transformed the various notes and comments about accessibility from the Last Call spec
into a consolidated bulleted list of SV G-specific accessibility guidelines.

« Changesto References

O

o o o o

Shifted some references from being informative to normative and vice versa as part of
general editorial cleanup.

Added a normative reference to [RFC2119] for definitions of some of the termsused in
this specification.

Added anormative referenceto "SMIL Animation”, which SV G will reference
normatively.

Added an informative reference to [XSL].

Added many references into specific sections of referenced specs, such as referencesto
various property definitions from the CSS2, DOM2 and SMIL-Animation spec.

Added a normative reference to the PNG specification.

Modified ACCESS to refer to ACCESS-AUTHOR.

Added ACCESS-USERAGENTS.

Added a normative reference to RFC1766 for language identification.

Changes with the 12-August-1999 (Last Call) SVG
Draft Specification

Global/miscellaneous changes

o Created a new chapter on Fonts which contains the contents of the old appendix
"Implementation and Performance Notes for Fonts" plus the specification for SV G fonts
(i.e, fonts defined in SVG).

o Created a new chapter exclusively on Linking.

o Changed the order of some of the chapters (Interactivity, Scripting, etc) as aresult of
creating a chapter on Linking and moving various sections to different chapters.

Changes to Document Structure
o Included additional details on property inheritance with the 'use’ element.

o Changed one of the alternative syntaxes for URI reference from #id(foo) to #xptr(id(foo))
to be compatible with latest draft of X Pointer. Inserted language stating that the only part
of XPointer that SVG 1.0 user agents are required to support are the #elementlD and
#xptr(id(elementl D)) syntaxes.

Changesto Styling and CSS

o Modified the discussion of the ‘'display’ property so that svg { display: block } and svg * {
display: svg}. Removed al of the detailed display values, such as svg-g, svg-rect, etc.

o Added quick documentation of the ‘overflow' and 'clip’ properties.
o Added aquick write-up on SVG's default CSS style sheet.
Changes to Painting: Filling, Stroking and Marker Symbols
o Renamed chapter to "Painting: Filling, Stroking and Marker Symbols'.

o Removed 'fill-params and 'stroke-params. Instead, use private data viaforeign
namespaces.

Changes to Gradients and Patterns
o Changed 'stick’ to 'pad’ for spreadM ethod attribute.
o For gradient stops, color and opacity are now set by properties 'stop-color' and
'stop-opacity' rather than 'color' and ‘opacity'.
Changesto Text

o For the 'tspan’ element, modified the x,y,dx,dy attributes to accept alist of valuesfor a
compact way to provide individual kerning and tracking between glyphs. Also, added
new attribute dCoordUnits="user Spacelem|fontSpace” which permits dx,dy to be
provided in three different coordinate systems.

o Added property 'text-advance' to allow for horizontal, vertical or vertical-ideographic
text.

Changesto Filters

o Minor change to description of saturate value on feColorMatrix to indicate clearly that it
can take on either areal number between 0 and 1 or a percentage value such as "50%".

o Renamed feColor to feFlood. Changed color value for feFlood from a color attribute to
‘flood-color' and 'flood-opacity' properties.

Changesto Interactivity

o Added an Introduction to provide an overview of the various interactivity options that are
available (e.g., links, scripting event handling).

o Added a section on Cursors which describe new element 'cursor' and new property
‘cursor’ which allow abuilt-in or custom cursor to be used when the pointing deviceis
over a specific element.

Changesto Linking

o New chapter. Contains description of ‘a element and discussion of linking into an SVG
document.

Changes to Scripting

o Added events onresize, onscroll, onerror, onabort to expose to script writers these events
which are a standard part of DOM level 2.

Changes to Animation

o Inserted a new section 15.2.1 Introduction which describes the collaborative effort
between the SY MM and SV G working groups to define SV G's animation elements.

o Removed the "dom" option to the attributeType attribute.

o Madeal of the xlink:href attributes be #iMPLIED rather than #REQUIRED and
indicated that you can only reference elements within the same SV G document.

o Modified the wording on vtimes attribute.

0 Replaced the "repeat” attribute with "repeatCount” to track latest changes to the SYMM
timing and animation drafts.

o Removed interpColorModel attribute. SV G 1.0 will only support rgb color animations.
Changes to Extensibility

o Added language indicating that attributes from foreign namespaces are OK. They will be
included in the DOM but otherwise ignored.

Changesto SVG DTD

o Fixed omission in previous DTD where the various animation elements were not children
of any other elements. Now, many elements have various animation elements as optional
children.

o Changed href attribute on ‘animate’, ‘animateMotion’, ‘animateTransform' and
‘animateColor' from #REQUIRED to #lMPLIED to match SY MM animation formulation
where an animation element can be a child of the object being animated and thus the
default href is the animation element's parent.

Changesto SVG DOM
o Fixed error where it used to say that 'title' is a subelement to 'defs.
Changes to Conformance Criteria

o Changed the title from " Conformance Requirements and Recommendations' to
"Conformance Criteria" since the W3C will not be policing adherence to the specification
and will not be sanctioning another body to do so either. Instead, industry and the media
will have to do its own policing. The Conformance Criteria are the W3C's statements
about quality and completeness of implementations. These criteriawill help developers
create complete implementations and will help industry and the mediato judge the
qualith and completeness of SV G support in industry.

o Added a note about removing foreign namespace attributes (in addition to foreign

namespace elements) before attempting to validate.

Changes with the 30-July-1999 SVG Draft
Specification

« Global/miscellaneous changes

0

O

O

Major editorial cleanup touching amost everything in amajor push toward readying the
specification for formal review by other working groups.

Lots of renaming of element names, attributes and identifiers to use "camel notation”. For
example, 'fit-box-to-viewport' is now ‘fitBoxToViewport'. Exact list of changesis found
in camel.sed.19990722.txt

Created new appendices. Implementation Notes (whose content used to be scattered
about the spec) and Conformance Requirements and Recommendations (whose content
used to be found in Chapter 3: Conformance Requirements and Recommendations).

Various consolidation and rearrangement of chapters and sections within chapters,
resulting in lots of chapter and appendix renumbering.

Updated all href attributes to conform to latest XLink draft..
Moved 'desc’ and 'title' el ements into Document Structure.

Consolidated Private Data, Extensibility and Foreign Object sections into a single chapter
Extensibility.

Removed SV G Requirements and Change History from document.
Renumbered appendices.

« Changesto Introduction to SVG

O

O

O

O

O

Updated the section describing SV G's relationship to other web standards.
Included alist of standard termsin Definitions.

Changes to Document Structure

Near total rewrite of the section on references and the 'defs element. (See References and
the 'defs element.) Included a more precise definition of the exact formats allowed in a
reference (i.e., #foo and #id(foo)). (Nearly everything is described more precisely.)

Changesto CSS and Styling

Reformulated the chapter to represented all of the introductory and high-level discussion
of how CSSrelatesto SVG.

Moved the main discussion of the 'script’ element from struct.html into this chapter.

o Added stub sections to discuss the style and class attributes.

O

O

Changes to Coordinate Systems, Transformations and Units

Renamed Implementation Notes to Processing rules for CSS units and percentages

General cleanup of the discussion in Processing rules for CSS units and percentages.
Included an explicit description of what to do if percentages are used for coordinate

values. Reformulated the discussion of x and y coordinates exprssed in viewport-relative
units because the previous methods could result in attempting to find the intersection of
paralel lines.

» Changesto SVG Rendering Model

o Lots of cleanup to remove ambiguities and to fix omissions. Included discussion of:
marker symbols, the order of fill vs. stroke vs markers, distinction of shapesvs. text vs.
raster images, centering of the paint on the stroke, three different types of built-in paint
that can be applied to fill and stroke operations (i.e., solid color, gradients and patterns),
unambiguously defined the order in which operations apply (e.g., filters before clipping,
masking and object opacity). Incorporated standard terminology and added several
hyperlinks.

o Fixed bug in image-rendering which used to say that the property applied to text
elements. (Then moved the rendering properties into other chapters.)

« Changesto Clipping, Masking and Compositing
o Changed the range on the 'opacity’ property from 0-255 to 0-1 to match common usage
and to make consistent with properties 'fill-opacity’ and 'stroke-opacity'.
« Transformed the old chapter "CSS Properties, XML Attributes, Cascading and Inheritance” into
Styling and CSS. Specific changes:
o First crack at defining explicitly which CSS features would be supported.
o Moved 'style’ element and class/style attributes into this chapter.
« Changesto Filling, Stroking and Paint Servers

o Reorganization. Moved markers into this chapter. Moved colors, gradients and patterns
into Gradients and Patterns.

o Fixedinitia valuesfor fill-opacity and stroke-opacity from "evenodd" (obviously a bug)
to "100%".

o Removed sentence saying a null value for stroke-dasharray was equivalent to 'none'.
(Instead, for all properties, anull valueisinvalid and shall result in the property setting
getting ignored.) Added a sentence indicating that if an odd number of valuesis provided,
then the list of valuesis repeated to yield an even number of values (i.e., twice the
values).

o Removed comments about paint server extensibility
« New chapter Gradients and Patterns
o From reorganization. Contains discussions of colors, gradients and patterns.

o Under Properties for specifying color profiles, replaced property 'icc-profile’ with latest
proposals from CSS working group: ‘color-profile’ and 'rendering-intent'.

« Changesto Paths

o Removed the 1023 character limitation on path data and eliminated the 'data’ child
element to the 'path’ element. Was going to add newline and tab characters to the BNF for
path data, but discovered they were already there. Added a guideline recommending that
SV G generators insert newline charactersinto long path data strings to keep line lengths
less than 255 characters.

o Fixed error in In Path data where the previous spec showed the parameters to moveto,
lineto, etc. as (X y)*, which means zero or more. It is now (X y)+, which means one or
more.

o Inthetablefor Close path command, we now show both uppercase and lowercase "Z" to

match the BNF.
Changes to Basic Shapes

o Removed the 1023 character limitation on vertices for polylines and polygons. Added a
guideline recommending that SV G generators insert newline charactersinto long path
data strings to keep line lengths less than 255 characters.

o Fixed examplesto use width/height attributes instead of width/height properties.
Changesto Text
o Explicitly listed which CSS2 properties SV G supports.

o Removed text-direction from text-on-a-path section awaiting decisions on vertical text
support. (The old formulation was clearly wrong.)

o In text-on-a-path section, renamed text-transform to textPath-transform because CSS
already has a property named 'text-transform'.

Added a new chapter on Scripting

o Defined a new contentScriptType attribute on the 'svg' element to allow specification of a
default scripting language.

Changesto Filters

o Added a new section Accessing the background image which describes property
enable-background, which can be used to enable the ability to access the currently
accumul ated background image on the current canvas. Possible values are ‘accumul ate
and 'new [(x y width height)]'.

o Cleanup of write-up on feBlend. Simplified the equation for computing result opacity and
expressed all formulas using premultiplied colors.

Changes to Animation

o Included the declarative animation syntax that has been developed in close collaboration
with the SY MM working group.

Changesto DTD
o Major cleanup. Changed names, conventions and comments throughout.

o Added <desc> and <title> child elements to basic shapes, <path>, <text>, <use> and
<image>.

o Removed 'data’ el ement as a child to <path>.

o Removed x,y,width,height attributes from the 'symbol’ element. (Assumed to have been a
mistake that it had these attributes.).

o Removed the transform attribute from the 'svg' element to make it parallel with ‘'symbol’
element. (Assumed to have been a mistake that it had a transform attribute.).

Changes to References

o Updated the reference to the definition of URIs from the proposed draft dated 1997 (to
which iswhat the HTML4 and CSS2 documents point) to the to an updated document
dated 1998. The updated document includes a discussion of fragment identifiers, which
are used throughout SV G.

Changes to Accessibility Support
o Included areference to the latest draft of SV G authoring guidelines for accessibility.

o Included a parenthetical comment about the WG's current investigation about providing
for vocalization of tooltips along with an authoring guideline so that SV G generators

automatically convert object names (e.g., layer names) to 'title' or 'tooltip' elements.
« New appendix on Internationalization Support
o Discussion of XML and Unicode support.
o Discussion of W3C Character Model and altglyph.
o Describe vertical text as an open issue.

Changes with the 06-July-1999 SVG Draft
Specification

Changes to Conformance Requirements and Recommendations:

o In Conforming SVG Viewers, dropped GIF from the list of required formats. Now, only
JPEG and PNG are listed.

o In Forward and undefined references, indicated that forward references are disallowed
and included alink to the description of the 'defs element.

Changes to Document Structure:

o Modified the description of the ‘defs’ element to discuss how all referenced elements must
be direct children of a'defs element.

o Modified the description of the 'use’ element to indicate that ‘use’ can only refer to
elements within an SV G file (not entirefiles).

o Added a section on the 'image’ element. The 'image’ element is very comparable to 'use
except that it can only refer to whole file (not elements within afile).

» Changesto Rendering Mode!:

o Moved the recently modified/renamed properties shape-rendering, text-rendering and
image-rendering into this chapter. (There used to be properties 'stroke-antialiasing' and
'‘text-antialiasing'.)

« Changesto Clipping, Masking and Compositing:

o For Clipping paths, reformulated how clipping paths are specified. Now, thereisa
‘clipPath’ element whose children can include 'path’ elements, 'text' elements and other
vector graphic shapes such as 'circle’. The silhouettes of the child elements are logically
OR'd together to create a single silhouette which is then used to restrict the region onto
which paint can be applied. Also, fixed a bug in the spec by replacing the 'inherit' value
on ‘clip-path’ with a'none’ value and fixed the spec to say that 'clip-path’ does not inherit
the 'clip-path’ property from its parent.

o For Masking, reformulated how clipping paths are specified. Now, thereis a'mask’
element whose children can include any graphical object. The 'mask’ element can have
attributes maskUnits, x, y, width and height to indicate a sub-region of the canvas for the
masking operation. These changes obsolete the following old properties: 'mask-method’,
'mask-width', 'mask-height’, 'mask-bbox'.

« Changesto Filling, Stroking and Paint Servers:

o Renamed stroke-antialiasing to shape-rendering, with possible values of defaullt,
crispEdges, optimizeSpeed and geometricPrecision. The revised property isnow just a

hint to the implementation. Moved to Rendering chapter.

o Revised the wording on gradient stops to indicate that out-of-order gradient stops shall be
resolved by adjusting offset values until the offset values become valid. (Previously, the
spec said that gradient stops would be sorted.)

« Changesto Paths:

o Removed the old elliptical arc commands A|a and Bl|b and inserted a new elliptical arc
command called Ala, which has adifferent set of parameters than the previous two
formulations. The new arc command matches the formulation of the other path data
commands in that it starts with the current point and ends at an explicit (x,y) value.

« Changesto Other Vector Graphic Shapes:

o Inthe sentence, "Mathematically, these shape elements are equivalent to the cubic bezier
path objects that would construct the same shape”, removed the words "cubic bezier".

« Changesto Text:

0 Replaced the old 'textflow’, 'textblock’, 'text' and 'textsrc' with the new 'text’ and ‘tspan’,
which is a subelement to 'text' and has optional attributes x=, y=, dx=, dy=, style= and
href= (which allows it to take the place of 'textsrc’). The only lost functionality from this
simplification is the ability to select text across discontiguous blocks of text elements.

o Made 'textPath' a container element which can contain ‘tspan’ elements or character data.
This reformulation was necessary given the changes in the previous bullet.

o Renamed text-antialiasing to text-rendering, with possible values of default,
optimizeL egibility, optimizeSpeed and geometricPrecision. The revised property is now
just a hint to the implementation. Moved to Rendering chapter.
« Changesto Images:

o Added new property image-rendering, with possible values of default, optimizeSpeed and
optimizeQuality. The new property isjust a hint to the implementation. The new property
is documented in the Rendering chapter.

« Changesto Filter Effects:

o Removed vector effects, including VEAdjustGraphics and VEPathTurbulence -- the
working group decided that we hadn't found a critical mass of vector graphics effects
functionality sufficient to warrant the additional complexity

o Modified the names of all of the filter effects processing nodes to have the prefix "fe".
The prefix is meant to prevent name clashes (e.g., 'felmage’ won't clash with 'image).

o Removed the section on parameter substitution -- the WG didn't see why filter effects
deserved macro expansion over other features.

« Changesto Animation chapter to indicate that SV G will include declarative animation. (Syntax
still under development.)

« Oneline changeinthe SVYG DOM chapter to change getStyle() to style property, per feedback
from the DOM working group.

« Minor changes to the example in the Metadata chapter to fix incorrect references to Dublin Core
elements.

o Changesto DTD
o Changesto DTD to reflect al of the changes described earlier in this section.

o Flattened some double-indirect entity referencing into only single-indirect referencing.
Fixed bug where pattern used x,y,width,height twice.

O

Changed rx,ry on 'rect' to be #lMPLIED so that if one of them is missing the other one
will be assigned the same value (for circular fillets).

Changes with the 25-June-1999 SVG Draft
Specification

o Generd editoria activities:

0

Modified the titles and content of chapters 1 and 2. Chapter 1 is now a Introduction to
SV G and chapter 2 isnow SV G Concepts.

Included afirst pass of information about conformance requirements, including a
discussion of what makes a conforming document, generator, interpreter and viewer.

Included updated wording on the Rendering Model.

Reorganized the appendices. Added the beginnings of Appendix D. SVG's Document
Object Model (DOM), Appendix E. Sample SV G files, Appendix F. Accessibility
Support, Appendix G. Minimizing SV G File Sizes, Appendix H. Implementation and
performance notes for fonts and Appendix |. References.

Included an example of DOM-based animation>.

Removed some of the wording that indicated tentativeness about certain features as the
specification of various featuresis firming up.

« Coordinate Systems, Transformations and Units modifications:

0

O

0

Changed the 'transform’ property into the transform attribute. The transform attribute
can now accept alist of transformations such as transform="translate(-10,-20) scale(2)
rotate(45) trandate(5,10)" . Added skewX and skewY convenience transformations.
Removed the fit() options from the old transform property and created new attributes
fitBoxToViewport= and preserveAspectRatio, described in new section Establishing an
Initial User Coordinate System: the fitBoxToViewport attribute.

Added an Implementation Notes section to the chapter on Coordinate Systems,
Transformations and Units.

Added a note to the description of the transform attribute to indicate that the transform
attribute is applied before other attributes or properties are processed.

¢ Paths modifications;

O

The Jjj commands (elliptical quadrant) have been dropped from the list of path data
commands because the working group felt the Jj commands would not receive wide
usage.

The path data commands for switching between absolute and relative coordinatesin the
middle of acommand (the former A and r commands) have been dropped because of
their high complexity relative to their limited space-saving value.

The various arc commands in path data have been consolidated, renamed, and then
expanded. The new commands are: Ala (an arc whose sweep is described by a start angle
and end angle) and B|b (an arc whose sweep is described by two vectors whose
intersections with the ellipse define the start point and end points of the arc).

Reformulated the T/t path data commands to be consistent with the rest of the path data
commands (i.e., vertices provided, control points automatically calculated asin §/s).

O

Broke up the path data commands into separate tables to improve understandability.

Modified the write-up on markers so that the 'marker' element no longer is a subelement
to 'path’. ‘marker' is now defined to be just like 'symbol’, but with marker-specific
attributes mar ker Units, marker Width, marker Height and orient. To use amarker on a
given 'path’ or vector graphic shape, we have new properties'marker-start’,
‘marker-end’, 'marker-mid' and ‘marker'. See Markers.

Indicated that each d= attribute in a'path’ element is restricted to 1023 characters. See
Path Data.

Added an Implementation Notes section to the document that describes various details
about expected processing and rendering behavior when drawing paths.

Added The grammar for path data, a BNF for path data.

« Filling, Stroking and Paint Servers modifications:

O

O

Included a note under 'fill' property that indicates that open paths and polylines still can
be filled.

Provided a more detailed write-up on patterns to make the 'pattern’ element consistent in
various ways with 'symbol’, 'marker’, 'linearGradient’ and 'radial Gradient'.

Modified gradientsin various ways. Replaced attribute target-type with gradientUnits.
Replaced 'linearGradient’ attributes vector-start-x, vector-start-y, vector-length,
vector-angle with x1, y1, x2, y2. Replaced ‘radial Gradient' attributes outermost-origin-x,
outermost-origin-y, outermost-radius, innermost-x, innermost-y with cx, cy, r, fx, fy.
Removed attributes target-1eft, target-top, target-right, target-bottom, which were deemed
superfluous. Renamed attribute matrix to gradientTransform. Added gradientTransform
back to linear gradients (they werein an earlier draft). Renamed 'gradientstop’ to 'stop’ to
save space since the working group decided it didn't want to offer non-linear gradient
ramps. Removed attribute color from 'stop' and included new paragraphs indicating that
color and opacity are set viathe 'color' and 'opacity’ properties.

Added a value of none to property 'stroke-dasharray'.

« Text modifications:

O

Broke the 'textflow' element into two elements 'textblock’ and 'textflow' to greatly
simplify the feature, to remove the need to maintain consistent doubly linked lists, and to
remove the possibility of cyclic references. Removed 'tf' and renamed 't' to 'tref’

o Renamed the 'src’ subelement to 'text' to 'textsrc' for more consistency in nomenclature

and to avoid use of such a generic element name for such a specific purpose.

« General/Miscellaneous:
o Added a syntax and various processing details for Filter Effects
o Altered the description of the 'symbol’ element to reflect the changesin transform-related

attributes and properties.

In the chapter on Other Vector Graphic Shapes, changed the attributes on 'ellipse’ from
major/minor to rx/ry for consistency with other parts of the spec, removed the angle
attribute on ellipse, reformulated polygon to be exactly line polyline except that it
automatically closes, changed "verts' to "points’, and added rounding radii rx and ry to
rectangle. Also, included a note about the 1023 character limit on the "points’ attribute
for 'polyline' and 'polygon'.

Removed property 'z-index'. The working group decided that a z-index effect can be
achieved either by having CSS manage multiple SVG drawings or by rearranging
graphical elements viathe DOM. A z-index option would complicate implementation and

streaming for little gain.

Add a chapter on Metadata, with an initial description of how metadata would work with
SVG.

Removed the 'private’ element after concluding it is unnecessary given XML namespaces
and the new W3C approach to validating namespaces. As a consequence, modified the
write-up under Private Data.

Updated the descriptions under Embedding Foreign Object Types to reflect increased
certainty about the direction SV G is headed in this area.

Added a General |mplementation Notes section to the chapter on Conformance
Requirements and Recommendations which discusses implementation issues that apply
across the entire SV G language. In particular, added sections Forward and Undefined
References (which explains implementation rules involving references that aren't valid at
initial processing time) and Referenced objects are "pinned” to their own coordinate
systems.

Changed all occurrences of "SV G processor” to "SV G user agent”.
Fixed all incorrect references to 'description’ and replaced them with 'desc'.

Renamed attribute 'nodel d' to ‘result’ due to feedback that having a name with the term ‘id'
init that wasn't an 1D was potentially confusing.

« Summary of changestothe DTD:

O

O

O

Gave the 'a element have the same content model as the 'g' element.
Add transform attribute to most graphic objects.

Added attributes fitBoxToViewport and preserveAspectRatio to 'svg' and 'symbol’
elements

Added attributes x and y to the 'svg' element.

For symbol _descriptor_attributes, renamed attributes x-min, y-min, Xx-max, y-max to X, Y,
width, height, respectively.

Modified the 'marker' element to reflect the revised formulation for markers.

Added a'pattern’ element which reflects the modified write-up on patterns. (The 'pattern’
element was missing from the previous DTD.).

Modified the definitions of 'linearGradient’ and 'radia Gradient' to reflect the modified
write-up on gradients.

Renamed 'gradientstop’ to 'stop'.

Removed attribute color from 'stop'.

Changed the attributes on 'ellipse’ from major/minor to rx/ry for consistency with other
parts of the spec, removed the angle attribute on ellipse, reformulated polygon to be

exactly line polyline except that it automatically closes, changed "verts' to "points’, and
added rounding radii rx and ry to rectangle.

Removed the 'private’ element after concluding it is unnecessary given XML namespaces
and the new W3C approach to validating namespaces.

Added xml:space to every element that might have character data content somewhere
inside of it. Thiswill allow content developers to control whether white spaceis
preserved on 'text' elements.

Text-related: renamed 'src’ to 'textsrc' for more consistency in nomenclature and to avoid
use of such a generic element name for such a specific purpose. Because of modifications

in the area of defining textflows, added 'textblock’, renamed 't' to 'tref' and changed
‘textflow' so that if can only contain 'tref' subelements.

Added a syntax for Filter Effects
Modified 'foreignObject’ such that it can only be the child of a'switch' element.
Added an href attribute to the 'script’ element. (Oversight that it wasn't there before.)

General clean-up in the area of anything using attributes x, y, width or height. Defined
standard entities xy_attributes, bbox_attributes optional and
bbox_attributes wh_required. In particular, the following elements now require width
and height attributes: ‘image’, 'rect’, ‘foreignObject’, ‘pattern'.

Changes with the 12-April-1999 SVG Draft
Specification

o o o o

e Included aDTD in Appendix C.

« Thereisnow an 'svg' element which istheroot for all stand-alone SV G documents and for any
SV G fragments that are embedded inline within a parent XML grammar. (See SV G Document
Structure>.)

« Addedinitial descriptions of how text-on-a-path and SV G-along-a-path might work. (See Text
on aPath.)

« Added 'symbol' and ‘'marker' elements to provide packaging for the following:

o Necessary additional attributes on template objects

o A clean way of defining standard drawing symbol libraries

o The definition of a graphic to use as a custom glyph within a'text' element (e.g.,
generalize "text-on-a-path” to "SV G-on-a-path™)
Necessary additional attributes for pattern definitions (for pattern fill)
Definition of a sprite for an animation
Marker symbols
Arrowheads

Also added anew optional ‘data’ subelement to the 'path’ element to provide the necessary hook
to provide for custom arrowheads.

« Many changes to Coordinate Systems, Transformations and Units to make the section more
complete and more readable. The specific changes to this chapter include:

o Relatively minor changes in terminology to better match the terminology used in the
CSS2 specification. For example, the definitions of the terms canvas and viewport were
modified to be as close as possible to the corresponding definitions in the CSS2
specification.

o Theinitia coordinate system is now based on the parent document's notion of pixels
rather than points.

o When embedded inline within a parent XML grammar, the outermost 'svg' element in an
SV G document acts like a block-level formatting object in the CSS layout model and thus
supports CSS positioning properties such as'left' and 'width' and the CSS properties

o o o 4o

‘clip' and 'overflow'.

o Nested 'svg' elements are the mechanism for recursively including nested SV G drawings,
but also provide the one and only means of establishing a new viewport and thus
changing the meaning of the various CSS unit specifiers such as px, pt, cm and %
(percentages). Nested 'svg' elements support the same CSS positioning properties as an
outermost 'svg' element,

Removed 'piedlice’, which was considered to be of lesser general utility than the other predefined
vector graphic shapes, and added 'lin€', which allows a one-segment line to be drawn. See Other
Vector Graphic Shapes.

Replaced the 'althtml’ element with a description for how to use the 'switch' (or equivalent)
elementsin XML grammars or the 'object’ element in HTML 4.0 as the recommended way to
provide for alternate representations in the event the user agent cannot process an SV G drawing.
(See Backwards Compatibility.)

Removed the comment in the discussion under 'description’ and 'title’ which said that the given
text string could be specified as an attribute. The text string now can only be supplied as
character data. (See The 'description’ and 'title' elements.

Changed the wording about text strings to say that the current point is advanced by the metrics of
the glyph(s) used rather than the character used. (See text positioning.)

Added some details to the description of the 'textflow' element to indicate that 'text' elements can
be directly embedded within 'textflow' and that the current text position is remembered within a
'‘textflow' from one 'text' element to the next 'text' element. (See Text Flows.)

Added a new property 'text-antialiasing' to provide a hint to the user agent about whether or not

text shall be antialiased. The lack of such a property was an inadvertant omission from previous
versions of the spec and was called for in the SV G Requirements document.

Removed the 'matrix’ property from linear gradients because it was unnecessary
(overspecification) and the 'spreadM ethod' property from radial gradients because it was difficult
to specify and implement, it didn't match current common usage and is of little apparent utility.
(See Gradients.)

Included a new section 2.1 with a brief discussion about the "image/svg" MIME type.
Subsequent sections in chapter 2 have been renumbered accordingly. (See SVG MIME Type.)

Added another bullet to the Accessibility section to indicate that SV G's zooming feature aids
those with partial visual impairment. (See Accessibility.)

Elaborated to a small level on how Embedded Foreign Object Types might work to reflect
progess within the working group on the issue.

Changed altglyph from a subelement to 'text’ to a CSS property in response to discussion on the
W3C Character Model. See Alternate Glyphs.

In the discussion about the 'use’ element, made clear that template objects could come from
either the same document or an external document.

Minor changes to description under Event Handling to indicate that any element can have an
onload or onunload event handler to provide additional control via scripting as parts of the
drawing download progressively.

Changes with the 05Feb1999 SVG Draft
Specification

Thiswas the first public working draft.

previous contents properties index

previous contents properties index

Property Index

Thiswill contain the property index

previous contents properties index

file:///d|/jon/svgspec/reqts.html
file:///d|/jon/svgspec/reqts.html

previous contents properties index

Index

Thiswill contain the index

previous contents properties index

file:///d|/jon/svgspec/reqts.html
file:///d|/jon/svgspec/reqts.html

	Local Disk
	W3C Working Draft: Scalable Vector Graphics (SVG) 1.0
	Introduction to SVG
	SVG Concepts
	Basic Data Types and Interfaces
	SVG Rendering Model
	Styling
	SVG Document Structure
	Coordinate Systems, Transformations and Units
	Paths
	Basic Shapes
	Text
	Painting: Filling, Stroking and Marker Symbols
	Color
	Gradients and Patterns
	Clipping, Masking and Compositing
	Filter Effects
	Interactivity
	Linking
	Scripting
	Animation
	Fonts
	Metadata
	Backwards Compatibility
	Extensibility
	SVG DTD
	SVG DOM
	Implementation Requirements
	Conformance Criteria
	Accessibility Support
	Internationalization Support
	Minimizing SVG File Sizes
	References
	Change History
	Property Index
	Index

