
 REC-DOM-Level-1-19981001

Document Object Model (DOM) Level 1 Specification

Version 1.0

W3C Recommendation 1 October, 1998

This version
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/DOM.ps
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/DOM.pdf
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/DOM.tgz
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/DOM.zip
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/DOM.txt

Latest version
http://www.w3.org/TR/REC-DOM-Level-1

Previous versions
http://www.w3.org/TR/1998/PR-DOM-Level-1-19980818
http://www.w3.org/TR/1998/WD-DOM-19980720
http://www.w3.org/TR/1998/WD-DOM-19980416
http://www.w3.org/TR/WD-DOM-19980318
http://www.w3.org/TR/WD-DOM-971209
http://www.w3.org/TR/WD-DOM-971009

WG Chair
Lauren Wood, SoftQuad, Inc.

Editors
Vidur Apparao, Netscape
Steve Byrne, Sun
Mike Champion, ArborText
Scott Isaacs, Microsoft
Ian Jacobs, W3C
Arnaud Le Hors, W3C
Gavin Nicol, Inso EPS
Jonathan Robie, Texcel Research
Robert Sutor, IBM
Chris Wilson, Microsoft
Lauren Wood, SoftQuad, Inc.

Principal Contributors
Vidur Apparao, Netscape
Steve Byrne, Sun (until November 1997)
Mike Champion, ArborText, Inc.

1

Document Object Model (DOM) Level 1 Specification

http://www.w3.org/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/DOM.ps
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/DOM.pdf
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/DOM.tgz
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/DOM.zip
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/DOM.txt
http://www.w3.org/TR/REC-DOM-Level-1
http://www.w3.org/TR/1998/PR-DOM-Level-1-19980818
http://www.w3.org/TR/1998/WD-DOM-19980720
http://www.w3.org/TR/1998/WD-DOM-19980416
http://www.w3.org/TR/WD-DOM-19980318
http://www.w3.org/TR/WD-DOM-971209
http://www.w3.org/TR/WD-DOM-971009

Scott Isaacs, Microsoft (until January, 1998)
Arnaud Le Hors, W3C
Gavin Nicol, Inso EPS
Jonathan Robie, Texcel Research
Peter Sharpe, SoftQuad, Inc.
Bill Smith, Sun (after November 1997)
Jared Sorensen, Novell
Robert Sutor, IBM
Ray Whitmer, iMall
Chris Wilson, Microsoft (after January, 1998)

Status of this document
This document has been reviewed by W3C Members and other interested parties and has been endorsed
by the Director as a W3C Recommendation. It is a stable document and may be used as reference material
or cited as a normative reference from another document. W3C’s role in making the Recommendation is
to draw attention to the specification and to promote its widespread deployment. This enhances the
functionality and interoperability of the Web.

The authors of this document are the DOM Working Group members, different chapters may have
different editors.

Comments on this document should be sent to the public mailing list www-dom@w3.org.

A list of current W3C Recommendations and other technical documents can be found at
http://www.w3.org/TR.

Errata

The list of known errors in this document is found at
http://www.w3.org/DOM/updates/REC-DOM-Level-1-19981001-errata.html.

Available Languages

The English version of this specification is the only normative version. However, for translations in other
languages see http://www.w3.org/DOM/updates/REC-DOM-Level-1-translations.html.

Abstract
This specification defines the Document Object Model Level 1, a platform- and language-neutral interface
that allows programs and scripts to dynamically access and update the content, structure and style of
documents. The Document Object Model provides a standard set of objects for representing HTML and
XML documents, a standard model of how these objects can be combined, and a standard interface for
accessing and manipulating them. Vendors can support the DOM as an interface to their proprietary data
structures and APIs, and content authors can write to the standard DOM interfaces rather than
product-specific APIs, thus increasing interoperability on the Web.

2

Status of this document

http://www.w3.org/TR
http://www.w3.org/DOM/updates/REC-DOM-Level-1-19981001-errata.html
http://www.w3.org/DOM/updates/REC-DOM-Level-1-translations.html

The goal of the DOM specification is to define a programmatic interface for XML and HTML. The DOM
Level 1 specification is separated into two parts: Core and HTML. The Core DOM Level 1 section
provides a low-level set of fundamental interfaces that can represent any structured document, as well as
defining extended interfaces for representing an XML document. These extended XML interfaces need
not be implemented by a DOM implementation that only provides access to HTML documents; all of the
fundamental interfaces in the Core section must be implemented. A compliant DOM implementation that
implements the extended XML interfaces is required to also implement the fundamental Core interfaces,
but not the HTML interfaces. The HTML Level 1 section provides additional, higher-level interfaces that
are used with the fundamental interfaces defined in the Core Level 1 section to provide a more convenient
view of an HTML document. A compliant implementation of the HTML DOM implements all of the
fundamental Core interfaces as well as the HTML interfaces.

Table of contents
................ 5Expanded Table of Contents
................... 7Copyright Notice
.............. 9What is the Document Object Model?

........... 15Chapter 1: Document Object Model (Core) Level 1

........... 49Chapter 2: Document Object Model (HTML) Level 1

................. 95Appendix A: Contributors

................. 97Appendix B: Glossary

................ 103Appendix C: IDL Definitions

.............. 117Appendix D: Java Language Binding

............ 135Appendix E: ECMA Script Language Binding

.................... 161References

..................... 163Index

............... 167Production Notes (Non-Normative)

3

Table of contents

4

Table of contents

Expanded Table of Contents
................ 5Expanded Table of Contents
................... 7Copyright Notice
.............. 9What is the Document Object Model?
................... 10Introduction
............. 10What the Document Object Model is
............ 12What the Document Object Model is not
........... 12Where the Document Object Model came from
............... 12Entities and the DOM Core
........... 13DOM Interfaces and DOM Implementations
................ 14Limitations of Level 1

........... 15Chapter 1: Document Object Model (Core) Level 1

............ 161.1. Overview of the DOM Core Interfaces

............. 161.1.1. The DOM Structure Model

.............. 161.1.2. Memory Management

.............. 171.1.3. Naming Conventions

......... 171.1.4. Inheritance vs Flattened Views of the API

.............. 181.1.5. The DOMString type

............. 181.1.6. Case sensitivity in the DOM

............... 191.2. Fundamental Interfaces

................ 431.3. Extended Interfaces

........... 49Chapter 2: Document Object Model (HTML) Level 1

.................. 502.1. Introduction

............. 502.2. HTML Application of Core DOM

.............. 502.2.1. Naming Conventions

............. 512.3. Miscellaneous Object Definitions

............ 522.4. Objects related to HTML documents

................. 552.5. HTML Elements

............... 552.5.1. Property Attributes

.............. 552.5.2. Naming Exceptions

......... 562.5.3. Exposing Element Type Names (tagName)

............ 562.5.4. The HTMLElement interface

............... 572.5.5. Object definitions

................. 95Appendix A: Contributors

................. 97Appendix B: Glossary

................ 103Appendix C: IDL Definitions

............ 103C.1. Document Object Model Level 1 Core

........... 106C.2. Document Object Model Level 1 HTML

.............. 117Appendix D: Java Language Binding

............ 117D.1. Document Object Model Level 1 Core

5

Expanded Table of Contents

........... 120D.2. Document Object Model Level 1 HTML

............ 135Appendix E: ECMA Script Language Binding

............ 135E.1. Document Object Model Level 1 Core

........... 139E.2. Document Object Model Level 1 HTML

.................... 161References

..................... 163Index

............... 167Production Notes (Non-Normative)

.............. 1681. The Document Type Definition

................ 1682. The production process

................. 1693. Object Definitions

6

Expanded Table of Contents

Copyright Notice
Copyright © 1998 World Wide Web Consortium , (Massachusetts Institute of Technology , Institut
National de Recherche en Informatique et en Automatique , Keio University). All Rights Reserved.

Documents on the W3C site are provided by the copyright holders under the following license. By
obtaining, using and/or copying this document, or the W3C document from which this statement is linked,
you agree that you have read, understood, and will comply with the following terms and conditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the document, or portions thereof, that you use:

1. A link or URI to the original W3C document.
2. The pre-existing copyright notice of the original author, if it doesn’t exist, a notice of the form:

"Copyright © World Wide Web Consortium , (Massachusetts Institute of Technology , Institut
National de Recherche en Informatique et en Automatique , Keio University). All Rights Reserved."

3. If it exists, the STATUS of the W3C document.

When space permits, inclusion of the full text of this NOTICE should be provided. In addition, credit
shall be attributed to the copyright holders for any software, documents, or other items or products that
you create pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives is granted pursuant to this license.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE
DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

7

Copyright Notice

http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/

8

Copyright Notice

What is the Document Object Model?
Editors

Jonathan Robie, Texcel Research

9

What is the Document Object Model?

Introduction
The Document Object Model (DOM) is an application programming interface (API) for HTML and XML
documents. It defines the logical structure of documents and the way a document is accessed and
manipulated. In the DOM specification, the term "document" is used in the broad sense - increasingly,
XML is being used as a way of representing many different kinds of information that may be stored in
diverse systems, and much of this would traditionally be seen as data rather than as documents.
Nevertheless, XML presents this data as documents, and the DOM may be used to manage this data.

With the Document Object Model, programmers can build documents, navigate their structure, and add,
modify, or delete elements and content. Anything found in an HTML or XML document can be accessed,
changed, deleted, or added using the Document Object Model, with a few exceptions - in particular, the
DOM interfaces for the XML internal and external subsets have not yet been specified.

As a W3C specification, one important objective for the Document Object Model is to provide a standard
programming interface that can be used in a wide variety of environments and applications. The DOM is
designed to be used with any programming language. In order to provide a precise, language-independent
specification of the DOM interfaces, we have chosen to define the specifications in OMG IDL, as defined
in the CORBA 2.2 specification. In addition to the OMG IDL specification, we provide language bindings
for Java and ECMAScript (an industry-standard scripting language based on JavaScript and JScript).
Note: OMG IDL is used only as a language-independent and implementation-neutral way to specify
interfaces. Various other IDLs could have been used. In general, IDLs are designed for specific
computing environments. The Document Object Model can be implemented in any computing
environment, and does not require the object binding runtimes generally associated with such IDLs.

What the Document Object Model is
The DOM is a programming API for documents. It closely resembles the structure of the documents it
models. For instance, consider this table, taken from an HTML document:

 <TABLE>
 <TBODY>
 <TR>
 <TD>Shady Grove</TD>
 <TD>Aeolian</TD>
 </TR>
 <TR>
 <TD>Over the River, Charlie</TD>
 <TD>Dorian</TD>
 </TR>
 </TBODY>
 </TABLE>

The DOM represents this table like this:

10

Introduction

http://www.omg.org/corba/corbiiop.htm

DOM representation of the example table

In the DOM, documents have a logical structure which is very much like a tree; to be more precise, it is
like a "forest" or "grove", which can contain more than one tree. However, the DOM does not specify that
documents must be implemented as a tree or a grove, nor does it specify how the relationships among
objects be implemented. The DOM is a logical model that may be implemented in any convenient manner.
In this specification, we use the term structure model to describe the tree-like representation of a
document; we specifically avoid terms like "tree" or "grove" in order to avoid implying a particular
implementation. One important property of DOM structure models is structural isomorphism: if any two
Document Object Model implementations are used to create a representation of the same document, they
will create the same structure model, with precisely the same objects and relationships.

The name "Document Object Model" was chosen because it is an "object model" in the traditional object
oriented design sense: documents are modeled using objects, and the model encompasses not only the
structure of a document, but also the behavior of a document and the objects of which it is composed. In
other words, the nodes in the above diagram do not represent a data structure, they represent objects,
which have functions and identity. As an object model, the DOM identifies:

the interfaces and objects used to represent and manipulate a document
the semantics of these interfaces and objects - including both behavior and attributes
the relationships and collaborations among these interfaces and objects

The structure of SGML documents has traditionally been represented by an abstract data model, not by an
object model. In an abstract data model, the model is centered around the data. In object oriented
programming languages, the data itself is encapsulated in objects that hide the data, protecting it from
direct external manipulation. The functions associated with these objects determine how the objects may
be manipulated, and they are part of the object model.

The Document Object Model currently consists of two parts, DOM Core and DOM HTML. The DOM
Core represents the functionality used for XML documents, and also serves as the basis for DOM HTML.
A compliant implementation of the DOM must implement all of the fundamental interfaces in the Core
chapter with the semantics as defined. Further, it must implement at least one of the HTML DOM and the

11

What the Document Object Model is

extended (XML) interfaces with the semantics as defined.

What the Document Object Model is not
This section is designed to give a more precise understanding of the DOM by distinguishing it from other
systems that may seem to be like it.

Although the Document Object Model was strongly influenced by "Dynamic HTML", in Level 1, it
does not implement all of "Dynamic HTML". In particular, events have not yet been defined. Level 1
is designed to lay a firm foundation for this kind of functionality by providing a robust, flexible
model of the document itself.
The Document Object Model is not a binary specification. DOM programs written in the same
language will be source code compatible across platforms, but the DOM does not define any form of
binary interoperability.
The Document Object Model is not a way of persisting objects to XML or HTML. Instead of
specifying how objects may be represented in XML, the DOM specifies how XML and HTML
documents are represented as objects, so that they may be used in object oriented programs.
The Document Object Model is not a set of data structures, it is an object model that specifies
interfaces. Although this document contains diagrams showing parent/child relationships, these are
logical relationships defined by the programming interfaces, not representations of any particular
internal data structures.
The Document Object Model does not define "the true inner semantics" of XML or HTML. The
semantics of those languages are defined by W3C Recommendations for these languages. The DOM
is a programming model designed to respect these semantics. The DOM does not have any
ramifications for the way you write XML and HTML documents; any document that can be written
in these languages can be represented in the DOM.
The Document Object Model, despite its name, is not a competitor to the Component Object Model
(COM). COM, like CORBA, is a language independent way to specify interfaces and objects; the
DOM is a set of interfaces and objects designed for managing HTML and XML documents. The
DOM may be implemented using language-independent systems like COM or CORBA; it may also
be implemented using language-specific bindings like the Java or ECMAScript bindings specified in
this document.

Where the Document Object Model came from
The DOM originated as a specification to allow JavaScript scripts and Java programs to be portable
among Web browsers. "Dynamic HTML" was the immediate ancestor of the Document Object Model,
and it was originally thought of largely in terms of browsers. However, when the DOM Working Group
was formed at W3C, it was also joined by vendors in other domains, including HTML or XML editors and
document repositories. Several of these vendors had worked with SGML before XML was developed; as a
result, the DOM has been influenced by SGML Groves and the HyTime standard. Some of these vendors
had also developed their own object models for documents in order to provide an API for SGML/XML
editors or document repositories, and these object models have also influenced the DOM.

12

What the Document Object Model is not

Entities and the DOM Core
In the fundamental DOM interfaces, there are no objects representing entities. Numeric character
references, and references to the pre-defined entities in HTML and XML, are replaced by the single
character that makes up the entity’s replacement. For example, in:

 <p>This is a dog & a cat</p>

the "&" will be replaced by the character "&", and the text in the P element will form a single
continuous sequence of characters. Since numeric character references and pre-defined entities are not
recognized as such in CDATA sections, or the SCRIPT and STYLE elements in HTML, they are not
replaced by the single character they appear to refer to. If the example above were enclosed in a CDATA
section, the "&" would not be replaced by "&"; neither would the <p> be recognized as a start tag.
The representation of general entities, both internal and external, are defined within the extended (XML)
interfaces of the Level 1 specification.

Note: When a DOM representation of a document is serialized as XML or HTML text, applications will
need to check each character in text data to see if it needs to be escaped using a numeric or pre-defined
entity. Failing to do so could result in invalid HTML or XML. Also, implementations should be aware of
the fact that serialization into a character encoding ("charset") that does not fully cover ISO 10646 may
fail if there are characters in markup or CDATA sections that are not present in the encoding.

DOM Interfaces and DOM Implementations
The DOM specifies interfaces which may be used to manage XML or HTML documents. It is important
to realize that these interfaces are an abstraction - much like "abstract base classes" in C++, they are a
means of specifying a way to access and manipulate an application’s internal representation of a
document. Interfaces do not imply a particular concrete implementation. Each DOM application is free to
maintain documents in any convenient representation, as long as the interfaces shown in this specification
are supported. Some DOM implementations will be existing programs that use the DOM interfaces to
access software written long before the DOM specification existed. Therefore, the DOM is designed to
avoid implementation dependencies; in particular,

1. Attributes defined in the IDL do not imply concrete objects which must have specific data members -
in the language bindings, they are translated to a pair of get()/set() functions, not to a data member.
(Read-only functions have only a get() function in the language bindings).

2. DOM applications may provide additional interfaces and objects not found in this specification and
still be considered DOM compliant.

3. Because we specify interfaces and not the actual objects that are to be created, the DOM can not
know what constructors to call for an implementation. In general, DOM users call the createXXX()
methods on the Document class to create document structures, and DOM implementations create
their own internal representations of these structures in their implementations of the createXXX()
functions.

13

Entities and the DOM Core

Limitations of Level 1
The DOM Level 1 specification is intentionally limited to those methods needed to represent and
manipulate document structure and content. The plan is for future Levels of the DOM specification to
provide:

1. A structure model for the internal subset and the external subset.
2. Validation against a schema.
3. Control for rendering documents via style sheets.
4. Access control.
5. Thread-safety.
6. Events.

14

Limitations of Level 1

1. Document Object Model (Core) Level 1
Editors

Mike Champion, ArborText (from November 20, 1997)
Steve Byrne, JavaSoft (until November 19, 1997)
Gavin Nicol, Inso EPS
Lauren Wood, SoftQuad, Inc.

15

1. Document Object Model (Core) Level 1

1.1. Overview of the DOM Core Interfaces
This section defines a minimal set of objects and interfaces for accessing and manipulating document
objects. The functionality specified in this section (the Core functionality) should be sufficient to allow
software developers and web script authors to access and manipulate parsed HTML and XML content
inside conforming products. The DOM Core API also allows population of a Document [p.22] object
using only DOM API calls; creating the skeleton Document [p.22] and saving it persistently is left to the
product that implements the DOM API.

1.1.1. The DOM Structure Model

The DOM presents documents as a hierarchy of Node [p.25] objects that also implement other, more
specialized interfaces. Some types of nodes may have child nodes of various types, and others are leaf
nodes that cannot have anything below them in the document structure. The node types, and which node
types they may have as children, are as follows:

Document [p.22] -- Element [p.38] (maximum of one), ProcessingInstruction [p.46] ,
Comment [p.43] , DocumentType [p.44]
DocumentFragment [p.21] -- Element [p.38] , ProcessingInstruction [p.46] ,
Comment [p.43] , Text [p.42] , CDATASection [p.43] , EntityReference [p.46]
DocumentType [p.44] -- no children
EntityReference [p.46] -- Element [p.38] , ProcessingInstruction [p.46] , Comment
[p.43] , Text [p.42] , CDATASection [p.43] , EntityReference [p.46]
Element [p.38] -- Element [p.38] , Text [p.42] , Comment [p.43] ,
ProcessingInstruction [p.46] , CDATASection [p.43] , EntityReference [p.46]
Attr [p.37] -- Text [p.42] , EntityReference [p.46]
ProcessingInstruction [p.46] -- no children
Comment [p.43] -- no children
Text [p.42] -- no children
CDATASection [p.43] -- no children
Entity [p.45] -- Element [p.38] , ProcessingInstruction [p.46] , Comment [p.43] ,
Text [p.42] , CDATASection [p.43] , EntityReference [p.46]
Notation [p.44] -- no children

The DOM also specifies a NodeList [p.32] interface to handle ordered lists of Node [p.25] s, such as
the children of a Node [p.25] , or the elements returned by the Element.getElementsByTagName
method, and also a NamedNodeMap [p.32] interface to handle unordered sets of nodes referenced by
their name attribute, such as the attributes of an Element [p.38] . NodeList [p.32] s and
NamedNodeMap [p.32] s in the DOM are "live", that is, changes to the underlying document structure
are reflected in all relevant NodeList [p.32] s and NamedNodeMap [p.32] s. For example, if a DOM
user gets a NodeList [p.32] object containing the children of an Element [p.38] , then subsequently
adds more children to that element (or removes children, or modifies them), those changes are
automatically reflected in the NodeList [p.32] without further action on the user’s part. Likewise
changes to a Node [p.25] in the tree are reflected in all references to that Node [p.25] in NodeList
[p.32] s and NamedNodeMap [p.32] s.

16

1.1. Overview of the DOM Core Interfaces

1.1.2. Memory Management

Most of the APIs defined by this specification are interfaces rather than classes. That means that an actual
implementation need only expose methods with the defined names and specified operation, not actually
implement classes that correspond directly to the interfaces. This allows the DOM APIs to be
implemented as a thin veneer on top of legacy applications with their own data structures, or on top of
newer applications with different class hierarchies. This also means that ordinary constructors (in the Java
or C++ sense) cannot be used to create DOM objects, since the underlying objects to be constructed may
have little relationship to the DOM interfaces. The conventional solution to this in object-oriented design
is to define factory methods that create instances of objects that implement the various interfaces. In the
DOM Level 1, objects implementing some interface "X" are created by a "createX()" method on the
Document [p.22] interface; this is because all DOM objects live in the context of a specific Document.

The DOM Level 1 API does not define a standard way to create DOMImplementation [p.20] or
Document [p.22] objects; actual DOM implementations must provide some proprietary way of
bootstrapping these DOM interfaces, and then all other objects can be built from the Create methods on
Document [p.22] (or by various other convenience methods).

The Core DOM APIs are designed to be compatible with a wide range of languages, including both
general-user scripting languages and the more challenging languages used mostly by professional
programmers. Thus, the DOM APIs need to operate across a variety of memory management
philosophies, from language platforms that do not expose memory management to the user at all, through
those (notably Java) that provide explicit constructors but provide an automatic garbage collection
mechanism to automatically reclaim unused memory, to those (especially C/C++) that generally require
the programmer to explicitly allocate object memory, track where it is used, and explicitly free it for
re-use. To ensure a consistent API across these platforms, the DOM does not address memory
management issues at all, but instead leaves these for the implementation. Neither of the explicit language
bindings devised by the DOM Working Group (for ECMAScript and Java) require any memory
management methods, but DOM bindings for other languages (especially C or C++) probably will require
such support. These extensions will be the responsibility of those adapting the DOM API to a specific
language, not the DOM WG.

1.1.3. Naming Conventions

While it would be nice to have attribute and method names that are short, informative, internally
consistent, and familiar to users of similar APIs, the names also should not clash with the names in legacy
APIs supported by DOM implementations. Furthermore, both OMG IDL and ECMAScript have
significant limitations in their ability to disambiguate names from different namespaces that makes it
difficult to avoid naming conflicts with short, familiar names. So, DOM names tend to be long and quite
descriptive in order to be unique across all environments.

The Working Group has also attempted to be internally consistent in its use of various terms, even though
these may not be common distinctions in other APIs. For example, we use the method name "remove"
when the method changes the structural model, and the method name "delete" when the method gets rid of
something inside the structure model. The thing that is deleted is not returned. The thing that is removed
may be returned, when it makes sense to return it.

17

1.1.2. Memory Management

1.1.4. Inheritance vs Flattened Views of the API

The DOM Core APIs present two somewhat different sets of interfaces to an XML/HTML document; one
presenting an "object oriented" approach with a hierarchy of inheritance, and a "simplified" view that
allows all manipulation to be done via the Node [p.25] interface without requiring casts (in Java and other
C-like languages) or query interface calls in COM environments. These operations are fairly expensive in
Java and COM, and the DOM may be used in performance-critical environments, so we allow significant
functionality using just the Node [p.25] interface. Because many other users will find the inheritance
hierarchy easier to understand than the "everything is a Node [p.25] " approach to the DOM, we also
support the full higher-level interfaces for those who prefer a more object-oriented API.

In practice, this means that there is a certain amount of redundancy in the API. The Working Group
considers the "inheritance" approach the primary view of the API, and the full set of functionality on
Node [p.25] to be "extra" functionality that users may employ, but that does not eliminate the need for
methods on other interfaces that an object-oriented analysis would dictate. (Of course, when the O-O
analysis yields an attribute or method that is identical to one on the Node [p.25] interface, we don’t
specify a completely redundant one). Thus, even though there is a generic nodeName attribute on the
Node [p.25] interface, there is still a tagName attribute on the Element [p.38] interface; these two
attributes must contain the same value, but the Working Group considers it worthwhile to support both,
given the different constituencies the DOM API must satisfy.

1.1.5. The DOMString type

To ensure interoperability, the DOM specifies the DOMString type as follows:

A DOMString is a sequence of 16-bit quantities. This may be expressed in IDL terms as:

 typedef sequence<unsigned short> DOMString;

Applications must encode DOMString using UTF-16 (defined in Appendix C.3 of [UNICODE] and
Amendment 1 of [ISO-10646]).The UTF-16 encoding was chosen because of its widespread industry
practice. Please note that for both HTML and XML, the document character set (and therefore the
notation of numeric character references) is based on UCS-4. A single numeric character reference in
a source document may therefore in some cases correspond to two array positions in a DOMString
(a high surrogate and a low surrogate). Note: Even though the DOM defines the name of the string
type to be DOMString , bindings may used different names. For, example for Java, DOMString is
bound to the String type because it also uses UTF-16 as its encoding.

Note: As of August 1998, the OMG IDL specification included a wstring type. However, that definition
did not meet the interoperability criteria of the DOM API since it relied on encoding negotiation to decide
the width of a character.

18

1.1.4. Inheritance vs Flattened Views of the API

1.1.6. Case sensitivity in the DOM

The DOM has many interfaces that imply string matching. HTML processors generally assume an
uppercase (less often, lowercase) normalization of names for such things as elements, while XML is
explicitly case sensitive. For the purposes of the DOM, string matching takes place on a character code by
character code basis, on the 16 bit value of a DOMString . As such, the DOM assumes that any
normalizations will take place in the processor, before the DOM structures are built.

This then raises the issue of exactly what normalizations occur. The W3C I18N working group is in the
process of defining exactly which normalizations are necessary for applications implementing the DOM.

1.2. Fundamental Interfaces
The interfaces within this section are considered fundamental, and must be fully implemented by all
conforming implementations of the DOM, including all HTML DOM implementations.

Exception DOMException

DOM operations only raise exceptions in "exceptional" circumstances, i.e., when an operation is
impossible to perform (either for logical reasons, because data is lost, or because the implementation
has become unstable). In general, DOM methods return specific error values in ordinary processing
situation, such as out-of-bound errors when using NodeList [p.32] .

Implementations may raise other exceptions under other circumstances. For example,
implementations may raise an implementation-dependent exception if a null argument is passed.

Some languages and object systems do not support the concept of exceptions. For such systems, error
conditions may be indicated using native error reporting mechanisms. For some bindings, for
example, methods may return error codes similar to those listed in the corresponding method
descriptions.
IDL Definition

exception DOMException {
 unsigned short code;
};

// ExceptionCode
const unsigned short INDEX_SIZE_ERR = 1;
const unsigned short DOMSTRING_SIZE_ERR = 2;
const unsigned short HIERARCHY_REQUEST_ERR = 3;
const unsigned short WRONG_DOCUMENT_ERR = 4;
const unsigned short INVALID_CHARACTER_ERR = 5;
const unsigned short NO_DATA_ALLOWED_ERR = 6;
const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;
const unsigned short NOT_FOUND_ERR = 8;
const unsigned short NOT_SUPPORTED_ERR = 9;
const unsigned short INUSE_ATTRIBUTE_ERR = 10;

19

1.2. Fundamental Interfaces

Definition group ExceptionCode

An integer indicating the type of error generated.
Defined Constants

INDEX_SIZE_ERR
If index or size is negative, or greater
than the allowed value

DOMSTRING_SIZE_ERR
If the specified range of text does not
fit into a DOMString

HIERARCHY_REQUEST_ERR
If any node is inserted somewhere it
doesn’t belong

WRONG_DOCUMENT_ERR
If a node is used in a different
document than the one that created it
(that doesn’t support it)

INVALID_CHARACTER_ERR
If an invalid character is specified,
such as in a name.

NO_DATA_ALLOWED_ERR
If data is specified for a node which
does not support data

NO_MODIFICATION_ALLOWED_ERR
If an attempt is made to modify an
object where modifications are not
allowed

NOT_FOUND_ERR
If an attempt was made to reference a
node in a context where it does not
exist

NOT_SUPPORTED_ERR
If the implementation does not support
the type of object requested

INUSE_ATTRIBUTE_ERR
If an attempt is made to add an
attribute that is already inuse
elsewhere

Interface DOMImplementation

The DOMImplementation interface provides a number of methods for performing operations that
are independent of any particular instance of the document object model.

The DOM Level 1 does not specify a way of creating a document instance, and hence document
creation is an operation specific to an implementation. Future Levels of the DOM specification are
expected to provide methods for creating documents directly.
IDL Definition

20

1.2. Fundamental Interfaces

interface DOMImplementation {
 boolean hasFeature(in DOMString feature,
 in DOMString version);
};

Methods
hasFeature

Test if the DOM implementation implements a specific feature.
Parameters

feature The package name of the feature to test. In Level 1, the legal
values are "HTML" and "XML" (case-insensitive).

version This is the version number of the package name to test. In Level
1, this is the string "1.0". If the version is not specified,
supporting any version of the feature will cause the method to
return true .

Return Value
true if the feature is implemented in the specified version, false otherwise.

This method raises no exceptions.

Interface DocumentFragment

DocumentFragment is a "lightweight" or "minimal" Document [p.22] object. It is very common
to want to be able to extract a portion of a document’s tree or to create a new fragment of a
document. Imagine implementing a user command like cut or rearranging a document by moving
fragments around. It is desirable to have an object which can hold such fragments and it is quite
natural to use a Node for this purpose. While it is true that a Document [p.22] object could fulfil
this role, a Document [p.22] object can potentially be a heavyweight object, depending on the
underlying implementation. What is really needed for this is a very lightweight object.
DocumentFragment is such an object.

Furthermore, various operations -- such as inserting nodes as children of another Node [p.25] -- may
take DocumentFragment objects as arguments; this results in all the child nodes of the
DocumentFragment being moved to the child list of this node.

The children of a DocumentFragment node are zero or more nodes representing the tops of any
sub-trees defining the structure of the document. DocumentFragment nodes do not need to be
well-formed XML documents (although they do need to follow the rules imposed upon well-formed
XML parsed entities, which can have multiple top nodes). For example, a DocumentFragment
might have only one child and that child node could be a Text [p.42] node. Such a structure model
represents neither an HTML document nor a well-formed XML document.

When a DocumentFragment is inserted into a Document [p.22] (or indeed any other Node
[p.25] that may take children) the children of the DocumentFragment and not the
DocumentFragment itself are inserted into the Node [p.25] . This makes the
DocumentFragment very useful when the user wishes to create nodes that are siblings; the

21

1.2. Fundamental Interfaces

DocumentFragment acts as the parent of these nodes so that the user can use the standard
methods from the Node [p.25] interface, such as insertBefore() and appendChild() .
IDL Definition

interface DocumentFragment : Node {
};

Interface Document

The Document interface represents the entire HTML or XML document. Conceptually, it is the root
of the document tree, and provides the primary access to the document’s data.

Since elements, text nodes, comments, processing instructions, etc. cannot exist outside the context
of a Document , the Document interface also contains the factory methods needed to create these
objects. The Node [p.25] objects created have a ownerDocument attribute which associates them
with the Document within whose context they were created.
IDL Definition

interface Document : Node {
 readonly attribute DocumentType doctype;
 readonly attribute DOMImplementation implementation;
 readonly attribute Element documentElement;
 Element createElement(in DOMString tagName)
 raises(DOMException);
 DocumentFragment createDocumentFragment();
 Text createTextNode(in DOMString data);
 Comment createComment(in DOMString data);
 CDATASection createCDATASection(in DOMString data)
 raises(DOMException);
 ProcessingInstruction createProcessingInstruction(in DOMString target,
 in DOMString data)
 raises(DOMException);
 Attr createAttribute(in DOMString name)
 raises(DOMException);
 EntityReference createEntityReference(in DOMString name)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString tagname);
};

Attributes
doctype

The Document Type Declaration (see DocumentType [p.44]) associated with this
document. For HTML documents as well as XML documents without a document type
declaration this returns null . The DOM Level 1 does not support editing the Document
Type Declaration, therefore docType cannot be altered in any way.

implementation
The DOMImplementation [p.20] object that handles this document. A DOM
application may use objects from multiple implementations.

documentElement
This is a convenience attribute that allows direct access to the child node that is the root
element of the document. For HTML documents, this is the element with the tagName
"HTML".

22

1.2. Fundamental Interfaces

Methods
createElement

Creates an element of the type specified. Note that the instance returned implements the
Element interface, so attributes can be specified directly on the returned object.
Parameters

tagName The name of the element type to instantiate. For XML, this is
case-sensitive. For HTML, the tagName parameter may be
provided in any case, but it must be mapped to the canonical
uppercase form by the DOM implementation.

Return Value
A new Element [p.38] object.

Exceptions
DOMException [p.19]

INVALID_CHARACTER_ERR: Raised if the specified name contains an
invalid character.

createDocumentFragment
Creates an empty DocumentFragment [p.21] object.
Return Value

A new DocumentFragment [p.21] .
This method has no parameters.
This method raises no exceptions.

createTextNode
Creates a Text [p.42] node given the specified string.
Parameters

data The data for the node.

Return Value
The new Text [p.42] object.

This method raises no exceptions.
createComment

Creates a Comment [p.43] node given the specified string.
Parameters

data The data for the node.

Return Value
The new Comment [p.43] object.

This method raises no exceptions.
createCDATASection

Creates a CDATASection [p.43] node whose value is the specified string.

23

1.2. Fundamental Interfaces

Parameters

data The data for the CDATASection [p.43] contents.

Return Value
The new CDATASection [p.43] object.

Exceptions
DOMException [p.19]

NOT_SUPPORTED_ERR: Raised if this document is an HTML document.
createProcessingInstruction

Creates a ProcessingInstruction [p.46] node given the specified name and data
strings.
Parameters

target The target part of the processing instruction.

data The data for the node.

Return Value
The new ProcessingInstruction [p.46] object.

Exceptions
DOMException [p.19]

INVALID_CHARACTER_ERR: Raised if an invalid character is specified.

NOT_SUPPORTED_ERR: Raised if this document is an HTML document.
createAttribute

Creates an Attr [p.37] of the given name. Note that the Attr [p.37] instance can then be
set on an Element [p.38] using the setAttribute method.
Parameters

name The name of the attribute.

Return Value
A new Attr [p.37] object.

Exceptions
DOMException [p.19]

INVALID_CHARACTER_ERR: Raised if the specified name contains an
invalid character.

createEntityReference
Creates an EntityReference object.
Parameters

24

1.2. Fundamental Interfaces

name The name of the entity to reference.

Return Value
The new EntityReference [p.46] object.

Exceptions
DOMException [p.19]

INVALID_CHARACTER_ERR: Raised if the specified name contains an
invalid character.

NOT_SUPPORTED_ERR: Raised if this document is an HTML document.
getElementsByTagName

Returns a NodeList [p.32] of all the Element [p.38] s with a given tag name in the
order in which they would be encountered in a preorder traversal of the Document tree.
Parameters

tagname The name of the tag to match on. The special value "*" matches
all tags.

Return Value
A new NodeList [p.32] object containing all the matched Element [p.38] s.

This method raises no exceptions.

Interface Node

The Node interface is the primary datatype for the entire Document Object Model. It represents a
single node in the document tree. While all objects implementing the Node interface expose methods
for dealing with children, not all objects implementing the Node interface may have children. For
example, Text [p.42] nodes may not have children, and adding children to such nodes results in a
DOMException [p.19] being raised.

The attributes nodeName, nodeValue and attributes are included as a mechanism to get at
node information without casting down to the specific derived interface. In cases where there is no
obvious mapping of these attributes for a specific nodeType (e.g., nodeValue for an Element or
attributes for a Comment), this returns null . Note that the specialized interfaces may contain
additional and more convenient mechanisms to get and set the relevant information.
IDL Definition

interface Node {
 // NodeType
 const unsigned short ELEMENT_NODE = 1;
 const unsigned short ATTRIBUTE_NODE = 2;
 const unsigned short TEXT_NODE = 3;
 const unsigned short CDATA_SECTION_NODE = 4;
 const unsigned short ENTITY_REFERENCE_NODE = 5;
 const unsigned short ENTITY_NODE = 6;
 const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
 const unsigned short COMMENT_NODE = 8;
 const unsigned short DOCUMENT_NODE = 9;

25

1.2. Fundamental Interfaces

 const unsigned short DOCUMENT_TYPE_NODE = 10;
 const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
 const unsigned short NOTATION_NODE = 12;

 readonly attribute DOMString nodeName;
 attribute DOMString nodeValue;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval
 readonly attribute unsigned short nodeType;
 readonly attribute Node parentNode;
 readonly attribute NodeList childNodes;
 readonly attribute Node firstChild;
 readonly attribute Node lastChild;
 readonly attribute Node previousSibling;
 readonly attribute Node nextSibling;
 readonly attribute NamedNodeMap attributes;
 readonly attribute Document ownerDocument;
 Node insertBefore(in Node newChild,
 in Node refChild)
 raises(DOMException);
 Node replaceChild(in Node newChild,
 in Node oldChild)
 raises(DOMException);
 Node removeChild(in Node oldChild)
 raises(DOMException);
 Node appendChild(in Node newChild)
 raises(DOMException);
 boolean hasChildNodes();
 Node cloneNode(in boolean deep);
};

Definition group NodeType

An integer indicating which type of node this is.
Defined Constants

26

1.2. Fundamental Interfaces

ELEMENT_NODE The node is a Element [p.38] .

ATTRIBUTE_NODE The node is an Attr [p.37] .

TEXT_NODE The node is a Text [p.42] node.

CDATA_SECTION_NODE The node is a CDATASection [p.43] .

ENTITY_REFERENCE_NODE
The node is an EntityReference
[p.46] .

ENTITY_NODE The node is an Entity [p.45] .

PROCESSING_INSTRUCTION_NODE
The node is a
ProcessingInstruction [p.46] .

COMMENT_NODE The node is a Comment [p.43] .

DOCUMENT_NODE The node is a Document [p.22] .

DOCUMENT_TYPE_NODE The node is a DocumentType [p.44] .

DOCUMENT_FRAGMENT_NODE
The node is a DocumentFragment
[p.21] .

NOTATION_NODE The node is a Notation [p.44] .

The values of nodeName, nodeValue , and attributes vary according to the node type as
follows:

27

1.2. Fundamental Interfaces

nodeName nodeValue attributes

Element tagName null NamedNodeMap

Attr name of attribute value of attribute null

Text #text content of the text node null

CDATASection #cdata-section content of the CDATA
Section

null

EntityReference name of entity
referenced

null null

Entity entity name null null

ProcessingInstructiontarget entire content excluding
the target

null

Comment #comment content of the comment null

Document #document null null

DocumentType document type name null null

DocumentFragment#document-fragment null null

Notation notation name null null

Attributes
nodeName

The name of this node, depending on its type; see the table above.
nodeValue

The value of this node, depending on its type; see the table above.
Exceptions on setting

DOMException [p.19]

NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
Exceptions on retrieval

DOMException [p.19]

DOMSTRING_SIZE_ERR: Raised when it would return more characters than fit
in a DOMString variable on the implementation platform.

nodeType
A code representing the type of the underlying object, as defined above.

parentNode
The parent of this node. All nodes, except Document [p.22] , DocumentFragment
[p.21] , and Attr [p.37] may have a parent. However, if a node has just been created and
not yet added to the tree, or if it has been removed from the tree, this is null .

28

1.2. Fundamental Interfaces

childNodes
A NodeList [p.32] that contains all children of this node. If there are no children, this is
a NodeList [p.32] containing no nodes. The content of the returned NodeList [p.32] is
"live" in the sense that, for instance, changes to the children of the node object that it was
created from are immediately reflected in the nodes returned by the NodeList [p.32]
accessors; it is not a static snapshot of the content of the node. This is true for every
NodeList [p.32] , including the ones returned by the getElementsByTagName
method.

firstChild
The first child of this node. If there is no such node, this returns null .

lastChild
The last child of this node. If there is no such node, this returns null .

previousSibling
The node immediately preceding this node. If there is no such node, this returns null .

nextSibling
The node immediately following this node. If there is no such node, this returns null .

attributes
A NamedNodeMap [p.32] containing the attributes of this node (if it is an Element
[p.38]) or null otherwise.

ownerDocument
The Document [p.22] object associated with this node. This is also the Document [p.22]
object used to create new nodes. When this node is a Document [p.22] this is null .

Methods
insertBefore

Inserts the node newChild before the existing child node refChild . If refChild is
null , insert newChild at the end of the list of children.

If newChild is a DocumentFragment [p.21] object, all of its children are inserted, in
the same order, before refChild . If the newChild is already in the tree, it is first
removed.
Parameters

newChild The node to insert.

refChild The reference node, i.e., the node before which the new node
must be inserted.

Return Value
The node being inserted.

Exceptions
DOMException [p.19]

HIERARCHY_REQUEST_ERR: Raised if this node is of a type that does not
allow children of the type of the newChild node, or if the node to insert is one
of this node’s ancestors.

29

1.2. Fundamental Interfaces

WRONG_DOCUMENT_ERR: Raised if newChild was created from a
different document than the one that created this node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly.

NOT_FOUND_ERR: Raised if refChild is not a child of this node.
replaceChild

Replaces the child node oldChild with newChild in the list of children, and returns the
oldChild node. If the newChild is already in the tree, it is first removed.
Parameters

newChild The new node to put in the child list.

oldChild The node being replaced in the list.

Return Value
The node replaced.

Exceptions
DOMException [p.19]

HIERARCHY_REQUEST_ERR: Raised if this node is of a type that does not
allow children of the type of the newChild node, or it the node to put in is one
of this node’s ancestors.

WRONG_DOCUMENT_ERR: Raised if newChild was created from a
different document than the one that created this node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly.

NOT_FOUND_ERR: Raised if oldChild is not a child of this node.
removeChild

Removes the child node indicated by oldChild from the list of children, and returns it.
Parameters

oldChild The node being removed.

Return Value
The node removed.

Exceptions
DOMException [p.19]

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly.

NOT_FOUND_ERR: Raised if oldChild is not a child of this node.
appendChild

Adds the node newChild to the end of the list of children of this node. If the newChild
is already in the tree, it is first removed.

30

1.2. Fundamental Interfaces

Parameters

newChild The node to add.

If it is a DocumentFragment [p.21] object, the entire
contents of the document fragment are moved into the child list
of this node

Return Value
The node added.

Exceptions
DOMException [p.19]

HIERARCHY_REQUEST_ERR: Raised if this node is of a type that does not
allow children of the type of the newChild node, or if the node to append is one
of this node’s ancestors.

WRONG_DOCUMENT_ERR: Raised if newChild was created from a
different document than the one that created this node.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly.
hasChildNodes

This is a convenience method to allow easy determination of whether a node has any
children.
Return Value

true if the node has any children, false if the node has no children.
This method has no parameters.
This method raises no exceptions.

cloneNode
Returns a duplicate of this node, i.e., serves as a generic copy constructor for nodes. The
duplicate node has no parent (parentNode returns null .).

Cloning an Element [p.38] copies all attributes and their values, including those
generated by the XML processor to represent defaulted attributes, but this method does not
copy any text it contains unless it is a deep clone, since the text is contained in a child
Text [p.42] node. Cloning any other type of node simply returns a copy of this node.
Parameters

deep If true , recursively clone the subtree under the specified node; if
false , clone only the node itself (and its attributes, if it is an
Element [p.38]).

Return Value
The duplicate node.

This method raises no exceptions.

31

1.2. Fundamental Interfaces

Interface NodeList

The NodeList interface provides the abstraction of an ordered collection of nodes, without
defining or constraining how this collection is implemented.

The items in the NodeList are accessible via an integral index, starting from 0.
IDL Definition

interface NodeList {
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
};

Methods
item

Returns the index th item in the collection. If index is greater than or equal to the
number of nodes in the list, this returns null .
Parameters

index Index into the collection.

Return Value
The node at the index th position in the NodeList , or null if that is not a valid
index.

This method raises no exceptions.
Attributes

length
The number of nodes in the list. The range of valid child node indices is 0 to length-1
inclusive.

Interface NamedNodeMap

Objects implementing the NamedNodeMap interface are used to represent collections of nodes that
can be accessed by name. Note that NamedNodeMap does not inherit from NodeList [p.32] ;
NamedNodeMaps are not maintained in any particular order. Objects contained in an object
implementing NamedNodeMap may also be accessed by an ordinal index, but this is simply to allow
convenient enumeration of the contents of a NamedNodeMap, and does not imply that the DOM
specifies an order to these Nodes.
IDL Definition

interface NamedNodeMap {
 Node getNamedItem(in DOMString name);
 Node setNamedItem(in Node arg)
 raises(DOMException);
 Node removeNamedItem(in DOMString name)
 raises(DOMException);
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
};

32

1.2. Fundamental Interfaces

Methods
getNamedItem

Retrieves a node specified by name.
Parameters

name Name of a node to retrieve.

Return Value
A Node [p.25] (of any type) with the specified name, or null if the specified name
did not identify any node in the map.

This method raises no exceptions.
setNamedItem

Adds a node using its nodeName attribute.

As the nodeName attribute is used to derive the name which the node must be stored
under, multiple nodes of certain types (those that have a "special" string value) cannot be
stored as the names would clash. This is seen as preferable to allowing nodes to be aliased.
Parameters

arg A node to store in a named node map. The node will later be accessible
using the value of the nodeName attribute of the node. If a node with
that name is already present in the map, it is replaced by the new one.

Return Value
If the new Node [p.25] replaces an existing node with the same name the previously
existing Node [p.25] is returned, otherwise null is returned.

Exceptions
DOMException [p.19]

WRONG_DOCUMENT_ERR: Raised if arg was created from a different
document than the one that created the NamedNodeMap.

NO_MODIFICATION_ALLOWED_ERR: Raised if this NamedNodeMap is
readonly.

INUSE_ATTRIBUTE_ERR: Raised if arg is an Attr [p.37] that is already an
attribute of another Element [p.38] object. The DOM user must explicitly clone
Attr [p.37] nodes to re-use them in other elements.

removeNamedItem
Removes a node specified by name. If the removed node is an Attr [p.37] with a default
value it is immediately replaced.
Parameters

name The name of a node to remove.

33

1.2. Fundamental Interfaces

Return Value
The node removed from the map or null if no node with such a name exists.

Exceptions
DOMException [p.19]

NOT_FOUND_ERR: Raised if there is no node named name in the map.
item

Returns the index th item in the map. If index is greater than or equal to the number of
nodes in the map, this returns null .
Parameters

index Index into the map.

Return Value
The node at the index th position in the NamedNodeMap, or null if that is not a
valid index.

This method raises no exceptions.
Attributes

length
The number of nodes in the map. The range of valid child node indices is 0 to length-1
inclusive.

Interface CharacterData

The CharacterData interface extends Node with a set of attributes and methods for accessing
character data in the DOM. For clarity this set is defined here rather than on each object that uses
these attributes and methods. No DOM objects correspond directly to CharacterData , though
Text [p.42] and others do inherit the interface from it. All offset s in this interface start from 0.
IDL Definition

interface CharacterData : Node {
 attribute DOMString data;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval
 readonly attribute unsigned long length;
 DOMString substringData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void appendData(in DOMString arg)
 raises(DOMException);
 void insertData(in unsigned long offset,
 in DOMString arg)
 raises(DOMException);
 void deleteData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void replaceData(in unsigned long offset,

34

1.2. Fundamental Interfaces

 in unsigned long count,
 in DOMString arg)
 raises(DOMException);
};

Attributes
data

The character data of the node that implements this interface. The DOM implementation
may not put arbitrary limits on the amount of data that may be stored in a
CharacterData node. However, implementation limits may mean that the entirety of a
node’s data may not fit into a single DOMString . In such cases, the user may call
substringData to retrieve the data in appropriately sized pieces.
Exceptions on setting

DOMException [p.19]

NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.
Exceptions on retrieval

DOMException [p.19]

DOMSTRING_SIZE_ERR: Raised when it would return more characters than fit
in a DOMString variable on the implementation platform.

length
The number of characters that are available through data and the substringData
method below. This may have the value zero, i.e., CharacterData nodes may be empty.

Methods
substringData

Extracts a range of data from the node.
Parameters

offset Start offset of substring to extract.

count The number of characters to extract.

Return Value
The specified substring. If the sum of offset and count exceeds the length , then
all characters to the end of the data are returned.

Exceptions
DOMException [p.19]

INDEX_SIZE_ERR: Raised if the specified offset is negative or greater than the
number of characters in data , or if the specified count is negative.

DOMSTRING_SIZE_ERR: Raised if the specified range of text does not fit into
a DOMString .

appendData
Append the string to the end of the character data of the node. Upon success, data
provides access to the concatenation of data and the DOMString specified.

35

1.2. Fundamental Interfaces

Parameters

arg The DOMString to append.

Exceptions
DOMException [p.19]

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly.
This method returns nothing.

insertData
Insert a string at the specified character offset.
Parameters

offset The character offset at which to insert.

arg The DOMString to insert.

Exceptions
DOMException [p.19]

INDEX_SIZE_ERR: Raised if the specified offset is negative or greater than the
number of characters in data .

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly.
This method returns nothing.

deleteData
Remove a range of characters from the node. Upon success, data and length reflect the
change.
Parameters

offset The offset from which to remove characters.

count The number of characters to delete. If the sum of offset and
count exceeds length then all characters from offset to the
end of the data are deleted.

Exceptions
DOMException [p.19]

INDEX_SIZE_ERR: Raised if the specified offset is negative or greater than the
number of characters in data , or if the specified count is negative.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly.
This method returns nothing.

36

1.2. Fundamental Interfaces

replaceData
Replace the characters starting at the specified character offset with the specified string.
Parameters

offset The offset from which to start replacing.

count The number of characters to replace. If the sum of offset and
count exceeds length , then all characters to the end of the data
are replaced (i.e., the effect is the same as a remove method call
with the same range, followed by an append method invocation).

arg The DOMString with which the range must be replaced.

Exceptions
DOMException [p.19]

INDEX_SIZE_ERR: Raised if the specified offset is negative or greater than the
number of characters in data , or if the specified count is negative.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly.
This method returns nothing.

Interface Attr

The Attr interface represents an attribute in an Element [p.38] object. Typically the allowable
values for the attribute are defined in a document type definition.

Attr objects inherit the Node [p.25] interface, but since they are not actually child nodes of the
element they describe, the DOM does not consider them part of the document tree. Thus, the Node
[p.25] attributes parentNode , previousSibling , and nextSibling have a null value for
Attr objects. The DOM takes the view that attributes are properties of elements rather than having a
separate identity from the elements they are associated with; this should make it more efficient to
implement such features as default attributes associated with all elements of a given type.
Furthermore, Attr nodes may not be immediate children of a DocumentFragment [p.21] .
However, they can be associated with Element [p.38] nodes contained within a
DocumentFragment [p.21] . In short, users and implementors of the DOM need to be aware that
Attr nodes have some things in common with other objects inheriting the Node [p.25] interface,
but they also are quite distinct.

The attribute’s effective value is determined as follows: if this attribute has been explicitly assigned
any value, that value is the attribute’s effective value; otherwise, if there is a declaration for this
attribute, and that declaration includes a default value, then that default value is the attribute’s
effective value; otherwise, the attribute does not exist on this element in the structure model until it
has been explicitly added. Note that the nodeValue attribute on the Attr instance can also be used
to retrieve the string version of the attribute’s value(s).

37

1.2. Fundamental Interfaces

In XML, where the value of an attribute can contain entity references, the child nodes of the Attr
node provide a representation in which entity references are not expanded. These child nodes may be
either Text [p.42] or EntityReference [p.46] nodes. Because the attribute type may be
unknown, there are no tokenized attribute values.
IDL Definition

interface Attr : Node {
 readonly attribute DOMString name;
 readonly attribute boolean specified;
 attribute DOMString value;
};

Attributes
name

Returns the name of this attribute.
specified

If this attribute was explicitly given a value in the original document, this is true ;
otherwise, it is false . Note that the implementation is in charge of this attribute, not the
user. If the user changes the value of the attribute (even if it ends up having the same value
as the default value) then the specified flag is automatically flipped to true . To
re-specify the attribute as the default value from the DTD, the user must delete the
attribute. The implementation will then make a new attribute available with specified
set to false and the default value (if one exists).

In summary:
If the attribute has an assigned value in the document then specified is true , and
the value is the assigned value.
If the attribute has no assigned value in the document and has a default value in the
DTD, then specified is false , and the value is the default value in the DTD.
If the attribute has no assigned value in the document and has a value of #IMPLIED in
the DTD, then the attribute does not appear in the structure model of the document.

value
On retrieval, the value of the attribute is returned as a string. Character and general entity
references are replaced with their values.

On setting, this creates a Text [p.42] node with the unparsed contents of the string.

Interface Element

By far the vast majority of objects (apart from text) that authors encounter when traversing a
document are Element nodes. Assume the following XML document:

<elementExample id="demo">
 <subelement1/>
 <subelement2><subsubelement/></subelement2>
</elementExample>

38

1.2. Fundamental Interfaces

When represented using DOM, the top node is an Element node for "elementExample", which
contains two child Element nodes, one for "subelement1" and one for "subelement2".
"subelement1" contains no child nodes.

Elements may have attributes associated with them; since the Element interface inherits from
Node [p.25] , the generic Node [p.25] interface method getAttributes may be used to retrieve
the set of all attributes for an element. There are methods on the Element interface to retrieve either
an Attr [p.37] object by name or an attribute value by name. In XML, where an attribute value may
contain entity references, an Attr [p.37] object should be retrieved to examine the possibly fairly
complex sub-tree representing the attribute value. On the other hand, in HTML, where all attributes
have simple string values, methods to directly access an attribute value can safely be used as a
convenience.
IDL Definition

interface Element : Node {
 readonly attribute DOMString tagName;
 DOMString getAttribute(in DOMString name);
 void setAttribute(in DOMString name,
 in DOMString value)
 raises(DOMException);
 void removeAttribute(in DOMString name)
 raises(DOMException);
 Attr getAttributeNode(in DOMString name);
 Attr setAttributeNode(in Attr newAttr)
 raises(DOMException);
 Attr removeAttributeNode(in Attr oldAttr)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString name);
 void normalize();
};

Attributes
tagName

The name of the element. For example, in:

<elementExample id="demo">
 ...
</elementExample> ,

tagName has the value "elementExample" . Note that this is case-preserving in XML,
as are all of the operations of the DOM. The HTML DOM returns the tagName of an
HTML element in the canonical uppercase form, regardless of the case in the source
HTML document.

Methods
getAttribute

Retrieves an attribute value by name.
Parameters

name The name of the attribute to retrieve.

39

1.2. Fundamental Interfaces

Return Value
The Attr [p.37] value as a string, or the empty string if that attribute does not have a
specified or default value.

This method raises no exceptions.
setAttribute

Adds a new attribute. If an attribute with that name is already present in the element, its
value is changed to be that of the value parameter. This value is a simple string, it is not
parsed as it is being set. So any markup (such as syntax to be recognized as an entity
reference) is treated as literal text, and needs to be appropriately escaped by the
implementation when it is written out. In order to assign an attribute value that contains
entity references, the user must create an Attr [p.37] node plus any Text [p.42] and
EntityReference [p.46] nodes, build the appropriate subtree, and use
setAttributeNode to assign it as the value of an attribute.
Parameters

name The name of the attribute to create or alter.

value Value to set in string form.

Exceptions
DOMException [p.19]

INVALID_CHARACTER_ERR: Raised if the specified name contains an
invalid character.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly.
This method returns nothing.

removeAttribute
Removes an attribute by name. If the removed attribute has a default value it is
immediately replaced.
Parameters

name The name of the attribute to remove.

Exceptions
DOMException [p.19]

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly.
This method returns nothing.

getAttributeNode
Retrieves an Attr [p.37] node by name.
Parameters

name The name of the attribute to retrieve.

40

1.2. Fundamental Interfaces

Return Value
The Attr [p.37] node with the specified attribute name or null if there is no such
attribute.

This method raises no exceptions.
setAttributeNode

Adds a new attribute. If an attribute with that name is already present in the element, it is
replaced by the new one.
Parameters

newAttr The Attr [p.37] node to add to the attribute list.

Return Value
If the newAttr attribute replaces an existing attribute with the same name, the
previously existing Attr [p.37] node is returned, otherwise null is returned.

Exceptions
DOMException [p.19]

WRONG_DOCUMENT_ERR: Raised if newAttr was created from a different
document than the one that created the element.

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly.

INUSE_ATTRIBUTE_ERR: Raised if newAttr is already an attribute of
another Element object. The DOM user must explicitly clone Attr [p.37]
nodes to re-use them in other elements.

removeAttributeNode
Removes the specified attribute.
Parameters

oldAttr The Attr [p.37] node to remove from the attribute list. If the
removed Attr [p.37] has a default value it is immediately
replaced.

Return Value
The Attr [p.37] node that was removed.

Exceptions
DOMException [p.19]

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly.

NOT_FOUND_ERR: Raised if oldAttr is not an attribute of the element.
getElementsByTagName

Returns a NodeList [p.32] of all descendant elements with a given tag name, in the order
in which they would be encountered in a preorder traversal of the Element tree.

41

1.2. Fundamental Interfaces

Parameters

name The name of the tag to match on. The special value "*" matches all
tags.

Return Value
A list of matching Element nodes.

This method raises no exceptions.
normalize

Puts all Text [p.42] nodes in the full depth of the sub-tree underneath this Element into
a "normal" form where only markup (e.g., tags, comments, processing instructions,
CDATA sections, and entity references) separates Text [p.42] nodes, i.e., there are no
adjacent Text [p.42] nodes. This can be used to ensure that the DOM view of a document
is the same as if it were saved and re-loaded, and is useful when operations (such as
XPointer lookups) that depend on a particular document tree structure are to be used.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

Interface Text

The Text interface represents the textual content (termed character data in XML) of an Element
[p.38] or Attr [p.37] . If there is no markup inside an element’s content, the text is contained in a
single object implementing the Text interface that is the only child of the element. If there is
markup, it is parsed into a list of elements and Text nodes that form the list of children of the
element.

When a document is first made available via the DOM, there is only one Text node for each block
of text. Users may create adjacent Text nodes that represent the contents of a given element without
any intervening markup, but should be aware that there is no way to represent the separations
between these nodes in XML or HTML, so they will not (in general) persist between DOM editing
sessions. The normalize() method on Element [p.38] merges any such adjacent Text objects
into a single node for each block of text; this is recommended before employing operations that
depend on a particular document structure, such as navigation with XPointers.
IDL Definition

interface Text : CharacterData {
 Text splitText(in unsigned long offset)
 raises(DOMException);
};

Methods
splitText

Breaks this Text node into two Text nodes at the specified offset, keeping both in the tree
as siblings. This node then only contains all the content up to the offset point. And a
new Text node, which is inserted as the next sibling of this node, contains all the content
at and after the offset point.

42

1.2. Fundamental Interfaces

http://www.w3.org/TR/REC-xml#syntax

Parameters

offset The offset at which to split, starting from 0.

Return Value
The new Text node.

Exceptions
DOMException [p.19]

INDEX_SIZE_ERR: Raised if the specified offset is negative or greater than the
number of characters in data .

NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly.

Interface Comment

This represents the content of a comment, i.e., all the characters between the starting ’<!-- ’ and
ending ’--> ’. Note that this is the definition of a comment in XML, and, in practice, HTML,
although some HTML tools may implement the full SGML comment structure.
IDL Definition

interface Comment : CharacterData {
};

1.3. Extended Interfaces
The interfaces defined here form part of the DOM Level 1 Core specification, but objects that expose
these interfaces will never be encountered in a DOM implementation that deals only with HTML. As
such, HTML-only DOM implementations do not need to have objects that implement these interfaces.

Interface CDATASection

CDATA sections are used to escape blocks of text containing characters that would otherwise be
regarded as markup. The only delimiter that is recognized in a CDATA section is the "]]>" string that
ends the CDATA section. CDATA sections can not be nested. The primary purpose is for including
material such as XML fragments, without needing to escape all the delimiters.

The DOMString attribute of the Text [p.42] node holds the text that is contained by the CDATA
section. Note that this may contain characters that need to be escaped outside of CDATA sections
and that, depending on the character encoding ("charset") chosen for serialization, it may be
impossible to write out some characters as part of a CDATA section.

The CDATASection interface inherits the CharacterData [p.34] interface through the Text
[p.42] interface. Adjacent CDATASections nodes are not merged by use of the
Element.normalize() method.

43

1.3. Extended Interfaces

IDL Definition

interface CDATASection : Text {
};

Interface DocumentType

Each Document [p.22] has a doctype attribute whose value is either null or a DocumentType
object. The DocumentType interface in the DOM Level 1 Core provides an interface to the list of
entities that are defined for the document, and little else because the effect of namespaces and the
various XML scheme efforts on DTD representation are not clearly understood as of this writing.

The DOM Level 1 doesn’t support editing DocumentType nodes.
IDL Definition

interface DocumentType : Node {
 readonly attribute DOMString name;
 readonly attribute NamedNodeMap entities;
 readonly attribute NamedNodeMap notations;
};

Attributes
name

The name of DTD; i.e., the name immediately following the DOCTYPE keyword.
entities

A NamedNodeMap [p.32] containing the general entities, both external and internal,
declared in the DTD. Duplicates are discarded. For example in:

<!DOCTYPE ex SYSTEM "ex.dtd" [
 <!ENTITY foo "foo">
 <!ENTITY bar "bar">
 <!ENTITY % baz "baz">
]>
<ex/>

the interface provides access to foo and bar but not baz . Every node in this map also
implements the Entity [p.45] interface.

The DOM Level 1 does not support editing entities, therefore entities cannot be altered
in any way.

notations
A NamedNodeMap [p.32] containing the notations declared in the DTD. Duplicates are
discarded. Every node in this map also implements the Notation [p.44] interface.

The DOM Level 1 does not support editing notations, therefore notations cannot be
altered in any way.

Interface Notation

44

1.3. Extended Interfaces

This interface represents a notation declared in the DTD. A notation either declares, by name, the
format of an unparsed entity (see section 4.7 of the XML 1.0 specification), or is used for formal
declaration of Processing Instruction targets (see section 2.6 of the XML 1.0 specification). The
nodeName attribute inherited from Node [p.25] is set to the declared name of the notation.

The DOM Level 1 does not support editing Notation nodes; they are therefore readonly.

A Notation node does not have any parent.
IDL Definition

interface Notation : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
};

Attributes
publicId

The public identifier of this notation. If the public identifier was not specified, this is
null .

systemId
The system identifier of this notation. If the system identifier was not specified, this is
null .

Interface Entity

This interface represents an entity, either parsed or unparsed, in an XML document. Note that this
models the entity itself not the entity declaration. Entity declaration modeling has been left for a
later Level of the DOM specification.

The nodeName attribute that is inherited from Node [p.25] contains the name of the entity.

An XML processor may choose to completely expand entities before the structure model is passed to
the DOM; in this case there will be no EntityReference [p.46] nodes in the document tree.

XML does not mandate that a non-validating XML processor read and process entity declarations
made in the external subset or declared in external parameter entities. This means that parsed entities
declared in the external subset need not be expanded by some classes of applications, and that the
replacement value of the entity may not be available. When the replacement value is available, the
corresponding Entity node’s child list represents the structure of that replacement text. Otherwise,
the child list is empty.

The resolution of the children of the Entity (the replacement value) may be lazily evaluated;
actions by the user (such as calling the childNodes method on the Entity Node) are assumed to
trigger the evaluation.

The DOM Level 1 does not support editing Entity nodes; if a user wants to make changes to the
contents of an Entity , every related EntityReference [p.46] node has to be replaced in the
structure model by a clone of the Entity ’s contents, and then the desired changes must be made to
each of those clones instead. All the descendants of an Entity node are readonly.

45

1.3. Extended Interfaces

An Entity node does not have any parent.
IDL Definition

interface Entity : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 readonly attribute DOMString notationName;
};

Attributes
publicId

The public identifier associated with the entity, if specified. If the public identifier was not
specified, this is null .

systemId
The system identifier associated with the entity, if specified. If the system identifier was
not specified, this is null .

notationName
For unparsed entities, the name of the notation for the entity. For parsed entities, this is
null .

Interface EntityReference

EntityReference objects may be inserted into the structure model when an entity reference is in
the source document, or when the user wishes to insert an entity reference. Note that character
references and references to predefined entities are considered to be expanded by the HTML or XML
processor so that characters are represented by their Unicode equivalent rather than by an entity
reference. Moreover, the XML processor may completely expand references to entities while
building the structure model, instead of providing EntityReference objects. If it does provide
such objects, then for a given EntityReference node, it may be that there is no Entity [p.45]
node representing the referenced entity; but if such an Entity [p.45] exists, then the child list of the
EntityReference node is the same as that of the Entity [p.45] node. As with the Entity
[p.45] node, all descendants of the EntityReference are readonly.

The resolution of the children of the EntityReference (the replacement value of the referenced
Entity [p.45]) may be lazily evaluated; actions by the user (such as calling the childNodes
method on the EntityReference node) are assumed to trigger the evaluation.
IDL Definition

interface EntityReference : Node {
};

Interface ProcessingInstruction

The ProcessingInstruction interface represents a "processing instruction", used in XML as a
way to keep processor-specific information in the text of the document.
IDL Definition

46

1.3. Extended Interfaces

interface ProcessingInstruction : Node {
 readonly attribute DOMString target;
 attribute DOMString data;
 // raises(DOMException) on setting
};

Attributes
target

The target of this processing instruction. XML defines this as being the first token
following the markup that begins the processing instruction.

data
The content of this processing instruction. This is from the first non white space character
after the target to the character immediately preceding the ?>.
Exceptions on setting

DOMException [p.19]

NO_MODIFICATION_ALLOWED_ERR: Raised when the node is readonly.

47

1.3. Extended Interfaces

48

1.3. Extended Interfaces

2. Document Object Model (HTML) Level 1
Editors

Mike Champion, ArborText
Vidur Apparao, Netscape
Scott Isaacs, Microsoft (until January 1998)
Chris Wilson, Microsoft (after January 1998)
Ian Jacobs, W3C

49

2. Document Object Model (HTML) Level 1

2.1. Introduction
This section extends the Level 1 Core API to describe objects and methods specific to HTML documents.
In general, the functionality needed to manipulate hierarchical document structures, elements, and
attributes will be found in the core section; functionality that depends on the specific elements defined in
HTML will be found in this section.

The goals of the HTML-specific DOM API are:

to specialize and add functionality that relates specifically to HTML documents and elements.
to address issues of backwards compatibility with the "DOM Level 0".
to provide convenience mechanisms, where appropriate, for common and frequent operations on
HTML documents.

The term "DOM Level 0" refers to a mix (not formally specified) of HTML document functionalities
offered by Netscape Navigator version 3.0 and Microsoft Internet Explorer version 3.0. In some cases,
attributes or methods have been included for reasons of backward compatibility with "DOM Level 0".

The key differences between the core DOM and the HTML application of DOM is that the HTML
Document Object Model exposes a number of convenience methods and properties that are consistent
with the existing models and are more appropriate to script writers. In many cases, these enhancements are
not applicable to a general DOM because they rely on the presence of a predefined DTD. For DOM Level
1, the transitional and frameset DTDs for HTML 4.0 are assumed. Interoperability between
implementations is only guaranteed for elements and attributes that are specified in these DTDs.

More specifically, this document includes the following specializations for HTML:

An HTMLDocument interface, derived from the core Document interface. HTMLDocument
specifies the operations and queries that can be made on a HTML document.
An HTMLElement interface, derived from the core Element interface. HTMLElement specifies the
operations and queries that can be made on any HTML element. Methods on HTMLElement include
those that allow for the retrieval and modification of attributes that apply to all HTML elements.
Specializations for all HTML elements that have attributes that extend beyond those specified in the
HTMLElement interface. For all such attributes, the derived interface for the element contains
explicit methods for setting and getting the values.

The DOM Level 1 does not include mechanisms to access and modify style specified through CSS 1.
Furthermore, it does not define an event model for HTML documents. This functionality is planned to be
specified in a future Level of this specification.

2.2. HTML Application of Core DOM

50

2.1. Introduction

2.2.1. Naming Conventions

The HTML DOM follows a naming convention for properties, methods, events, collections, and data
types. All names are defined as one or more English words concatenated together to form a single string.
Properties and Methods

The property or method name starts with the initial keyword in lowercase, and each subsequent word
starts with a capital letter. For example, a property that returns document meta information such as the
date the file was created might be named "fileDateCreated". In the ECMAScript binding, properties are
exposed as properties of a given object. In Java, properties are exposed with get and set methods.
Non-HTML 4.0 interfaces and attributes

While most of the interfaces defined below can be mapped directly to elements defined in the HTML 4.0
Recommendation, some of them cannot. Similarly, not all attributes listed below have counterparts in the
HTML 4.0 specification (and some do, but have been renamed to avoid conflicts with scripting
languages). Interfaces and attribute definitions that have links to the HTML 4.0 specification have
corresponding element and attribute definitions there; all others are added by this specification, either for
convenience or backwards compatibility with "DOM Level 0" implementations.

2.3. Miscellaneous Object Definitions
Interface HTMLCollection

An HTMLCollection is a list of nodes. An individual node may be accessed by either ordinal
index or the node’s name or id attributes. Note: Collections in the HTML DOM are assumed to be
live meaning that they are automatically updated when the underlying document is changed.
IDL Definition

interface HTMLCollection {
 readonly attribute unsigned long length;
 Node item(in unsigned long index);
 Node namedItem(in DOMString name);
};

Attributes
length

This attribute specifies the length or size of the list.
Methods

item
This method retrieves a node specified by ordinal index. Nodes are numbered in tree order
(depth-first traversal order).
Parameters

index The index of the node to be fetched. The index origin is 0.

51

2.3. Miscellaneous Object Definitions

Return Value
The Node [p.25] at the corresponding position upon success. A value of null is
returned if the index is out of range.

This method raises no exceptions.
namedItem

This method retrieves a Node [p.25] using a name. It first searches for a Node [p.25] with
a matching id attribute. If it doesn’t find one, it then searches for a Node [p.25] with a
matching name attribute, but only on those elements that are allowed a name attribute.
Parameters

name The name of the Node [p.25] to be fetched.

Return Value
The Node [p.25] with a name or id attribute whose value corresponds to the
specified string. Upon failure (e.g., no node with this name exists), returns null .

This method raises no exceptions.

2.4. Objects related to HTML documents
Interface HTMLDocument

An HTMLDocument is the root of the HTML hierarchy and holds the entire content. Beside
providing access to the hierarchy, it also provides some convenience methods for accessing certain
sets of information from the document.

The following properties have been deprecated in favor of the corresponding ones for the BODY
element:

alinkColor
background
bgColor
fgColor
linkColor
vlinkColor

IDL Definition

interface HTMLDocument : Document {
 attribute DOMString title;
 readonly attribute DOMString referrer;
 readonly attribute DOMString domain;
 readonly attribute DOMString URL;
 attribute HTMLElement body;
 readonly attribute HTMLCollection images;
 readonly attribute HTMLCollection applets;
 readonly attribute HTMLCollection links;
 readonly attribute HTMLCollection forms;
 readonly attribute HTMLCollection anchors;
 attribute DOMString cookie;

52

2.4. Objects related to HTML documents

 void open();
 void close();
 void write(in DOMString text);
 void writeln(in DOMString text);
 Element getElementById(in DOMString elementId);
 NodeList getElementsByName(in DOMString elementName);
};

Attributes
title

The title of a document as specified by the TITLE element in the head of the document.
referrer

Returns the URI of the page that linked to this page. The value is an empty string if the user
navigated to the page directly (not through a link, but, for example, via a bookmark).

domain
The domain name of the server that served the document, or a null string if the server
cannot be identified by a domain name.

URL
The complete URI of the document.

body
The element that contains the content for the document. In documents with BODY contents,
returns the BODY element, and in frameset documents, this returns the outermost
FRAMESET element.

images
A collection of all the IMG elements in a document. The behavior is limited to IMG
elements for backwards compatibility.

applets
A collection of all the OBJECT elements that include applets and APPLET (deprecated)
elements in a document.

links
A collection of all AREA elements and anchor (A) elements in a document with a value for
the href attribute.

forms
A collection of all the forms of a document.

anchors
A collection of all the anchor (A) elements in a document with a value for the name
attribute.Note. For reasons of backwards compatibility, the returned set of anchors only
contains those anchors created with the name attribute, not those created with the id
attribute.

cookie
The cookies associated with this document. If there are none, the value is an empty string.
Otherwise, the value is a string: a semicolon-delimited list of "name, value" pairs for all the
cookies associated with the page. For example, name=value;expires=date .

Methods
open

Note. This method and the ones following allow a user to add to or replace the structure
model of a document using strings of unparsed HTML. At the time of writing alternate
methods for providing similar functionality for both HTML and XML documents were

53

2.4. Objects related to HTML documents

being considered. The following methods may be deprecated at some point in the future in
favor of a more general-purpose mechanism.

Open a document stream for writing. If a document exists in the target, this method clears
it.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

close
Closes a document stream opened by open() and forces rendering.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

write
Write a string of text to a document stream opened by open() . The text is parsed into the
document’s structure model.
Parameters

text The string to be parsed into some structure in the document structure
model.

This method returns nothing.
This method raises no exceptions.

writeln
Write a string of text followed by a newline character to a document stream opened by
open() . The text is parsed into the document’s structure model.
Parameters

text The string to be parsed into some structure in the document structure
model.

This method returns nothing.
This method raises no exceptions.

getElementById
Returns the Element whose id is given by elementId. If no such element exists, returns
null . Behavior is not defined if more than one element has this id .
Parameters

elementId The unique id value for an element.

Return Value
The matching element.

This method raises no exceptions.

54

2.4. Objects related to HTML documents

getElementsByName
Returns the (possibly empty) collection of elements whose name value is given by
elementName .
Parameters

elementName The name attribute value for an element.

Return Value
The matching elements.

This method raises no exceptions.

2.5. HTML Elements

2.5.1. Property Attributes

HTML attributes are exposed as properties on the element object. The name of the exposed property
always uses the naming conventions, and is independent of the case of the attribute in the source
document. The data type of the property is determined by the type of the attribute as determined by the
HTML 4.0 transitional and frameset DTDs. The attributes have the semantics (including case-sensitivity)
given in the HTML 4.0 specification.

The attributes are exposed as properties for compatibility with "DOM Level 0". This usage is deprecated
because it can not be generalized to all possible attribute names, as is required both for XML and
potentially for future versions of HTML. We recommend the use of generic methods on the core Element
interface for setting, getting and removing attributes.

DTD Data Type Object Model Data Type

CDATA DOMString

Value list (e.g., (left | right | center)) DOMString

one-value Value list (e.g., (border)) boolean

Number long int

The return value of an attribute that has a data type that is a value list is always capitalized, independent of
the case of the value in the source document. For example, if the value of the align attribute on a P
element is "left" then it is returned as "Left". For attributes with the CDATA data type, the case of the
return value is that given in the source document.

55

2.5. HTML Elements

2.5.2. Naming Exceptions

To avoid name-space conflicts, an attribute with the same name as a keyword in one of our chosen
binding languages is prefixed. For HTML, the prefix used is "html". For example, the for attribute of the
LABEL element collides with loop construct naming conventions and is renamed htmlFor .

2.5.3. Exposing Element Type Names (tagName)

The element type names exposed through a property are in uppercase. For example, the body element type
name is exposed through the "tagName" property as "BODY".

2.5.4. The HTMLElement interface

Interface HTMLElement

All HTML element interfaces derive from this class. Elements that only expose the HTML core
attributes are represented by the base HTMLElement interface. These elements are as follows:

HEAD
special: SUB, SUP, SPAN, BDO
font: TT, I, B, U, S, STRIKE, BIG, SMALL
phrase: EM, STRONG, DFN, CODE, SAMP, KBD, VAR, CITE, ACRONYM, ABBR
list: DD, DT
NOFRAMES, NOSCRIPT
ADDRESS, CENTER

Note. The style attribute for this interface is reserved for future usage.
IDL Definition

interface HTMLElement : Element {
 attribute DOMString id;
 attribute DOMString title;
 attribute DOMString lang;
 attribute DOMString dir;
 attribute DOMString className;
};

Attributes
id

The element’s identifier. See the id attribute definition in HTML 4.0.
title

The element’s advisory title. See the title attribute definition in HTML 4.0.
lang

Language code defined in RFC 1766. See the lang attribute definition in HTML 4.0.
dir

Specifies the base direction of directionally neutral text and the directionality of tables. See
the dir attribute definition in HTML 4.0.

56

2.5.2. Naming Exceptions

http://www.w3.org/TR/REC-html40/struct/global.html#adef-id
http://www.w3.org/TR/REC-html40/struct/global.html#adef-title
http://www.w3.org/TR/REC-html40/struct/dirlang.html#adef-lang
http://www.w3.org/TR/REC-html40/struct/dirlang.html#adef-dir

className
The class attribute of the element. This attribute has been renamed due to conflicts with the
"class" keyword exposed by many languages. See the class attribute definition in HTML
4.0.

2.5.5. Object definitions

Interface HTMLHtmlElement

Root of an HTML document. See the HTML element definition in HTML 4.0.
IDL Definition

interface HTMLHtmlElement : HTMLElement {
 attribute DOMString version;
};

Attributes
version

Version information about the document’s DTD. See the version attribute definition in
HTML 4.0. This attribute is deprecated in HTML 4.0.

Interface HTMLHeadElement

Document head information. See the HEAD element definition in HTML 4.0.
IDL Definition

interface HTMLHeadElement : HTMLElement {
 attribute DOMString profile;
};

Attributes
profile

URI designating a metadata profile. See the profile attribute definition in HTML 4.0.

Interface HTMLLinkElement

The LINK element specifies a link to an external resource, and defines this document’s relationship
to that resource (or vice versa). See the LINK element definition in HTML 4.0.
IDL Definition

interface HTMLLinkElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString charset;
 attribute DOMString href;
 attribute DOMString hreflang;
 attribute DOMString media;
 attribute DOMString rel;
 attribute DOMString rev;
 attribute DOMString target;
 attribute DOMString type;
};

57

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/global.html#adef-class
http://www.w3.org/TR/REC-html40/struct/global.html#edef-HTML
http://www.w3.org/TR/REC-html40/struct/global.html#adef-version
http://www.w3.org/TR/REC-html40/struct/global.html#edef-HEAD
http://www.w3.org/TR/REC-html40/struct/global.html#adef-profile
http://www.w3.org/TR/REC-html40/struct/links.html#edef-LINK

Attributes
disabled

Enables/disables the link. This is currently only used for style sheet links, and may be used
to activate or deactivate style sheets.

charset
The character encoding of the resource being linked to. See the charset attribute definition
in HTML 4.0.

href
The URI of the linked resource. See the href attribute definition in HTML 4.0.

hreflang
Language code of the linked resource. See the hreflang attribute definition in HTML 4.0.

media
Designed for use with one or more target media. See the media attribute definition in
HTML 4.0.

rel
Forward link type. See the rel attribute definition in HTML 4.0.

rev
Reverse link type. See the rev attribute definition in HTML 4.0.

target
Frame to render the resource in. See the target attribute definition in HTML 4.0.

type
Advisory content type. See the type attribute definition in HTML 4.0.

Interface HTMLTitleElement

The document title. See the TITLE element definition in HTML 4.0.
IDL Definition

interface HTMLTitleElement : HTMLElement {
 attribute DOMString text;
};

Attributes
text

The specified title as a string.

Interface HTMLMetaElement

This contains generic meta-information about the document. See the META element definition in
HTML 4.0.
IDL Definition

interface HTMLMetaElement : HTMLElement {
 attribute DOMString content;
 attribute DOMString httpEquiv;
 attribute DOMString name;
 attribute DOMString scheme;
};

58

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/links.html#adef-charset
http://www.w3.org/TR/REC-html40/struct/links.html#adef-href
http://www.w3.org/TR/REC-html40/struct/links.html#adef-hreflang
http://www.w3.org/TR/REC-html40/present/styles.html#adef-media
http://www.w3.org/TR/REC-html40/struct/links.html#adef-rel
http://www.w3.org/TR/REC-html40/struct/links.html#adef-rev
http://www.w3.org/TR/REC-html40/present/frames.html#adef-target
http://www.w3.org/TR/REC-html40/struct/links.html#adef-type-A
http://www.w3.org/TR/REC-html40/struct/global.html#edef-TITLE
http://www.w3.org/TR/REC-html40/struct/global.html#edef-META

Attributes
content

Associated information. See the content attribute definition in HTML 4.0.
httpEquiv

HTTP response header name. See the http-equiv attribute definition in HTML 4.0.
name

Meta information name. See the name attribute definition in HTML 4.0.
scheme

Select form of content. See the scheme attribute definition in HTML 4.0.

Interface HTMLBaseElement

Document base URI. See the BASE element definition in HTML 4.0.
IDL Definition

interface HTMLBaseElement : HTMLElement {
 attribute DOMString href;
 attribute DOMString target;
};

Attributes
href

The base URI See the href attribute definition in HTML 4.0.
target

The default target frame. See the target attribute definition in HTML 4.0.

Interface HTMLIsIndexElement

This element is used for single-line text input. See the ISINDEX element definition in HTML 4.0.
This element is deprecated in HTML 4.0.
IDL Definition

interface HTMLIsIndexElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString prompt;
};

Attributes
form

Returns the FORM element containing this control. Returns null if this control is not within
the context of a form.

prompt
The prompt message. See the prompt attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLStyleElement

Style information. A more detailed style sheet object model is planned to be defined in a separate
document. See the STYLE element definition in HTML 4.0.

59

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/global.html#adef-content
http://www.w3.org/TR/REC-html40/struct/global.html#adef-http-equiv
http://www.w3.org/TR/REC-html40/struct/global.html#adef-name-META
http://www.w3.org/TR/REC-html40/struct/global.html#adef-scheme
http://www.w3.org/TR/REC-html40/struct/links.html#edef-BASE
http://www.w3.org/TR/REC-html40/struct/links.html#adef-href-BASE
http://www.w3.org/TR/REC-html40/present/frames.html#adef-target
http://www.w3.org/TR/REC-html40/interact/forms.html#edef-ISINDEX
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-prompt
http://www.w3.org/TR/REC-html40/present/styles.html#edef-STYLE

IDL Definition

interface HTMLStyleElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString media;
 attribute DOMString type;
};

Attributes
disabled

Enables/disables the style sheet.
media

Designed for use with one or more target media. See the media attribute definition in
HTML 4.0.

type
The style sheet language (Internet media type). See the type attribute definition in HTML
4.0.

Interface HTMLBodyElement

The HTML document body. This element is always present in the DOM API, even if the tags are not
present in the source document. See the BODY element definition in HTML 4.0.
IDL Definition

interface HTMLBodyElement : HTMLElement {
 attribute DOMString aLink;
 attribute DOMString background;
 attribute DOMString bgColor;
 attribute DOMString link;
 attribute DOMString text;
 attribute DOMString vLink;
};

Attributes
aLink

Color of active links (after mouse-button down, but before mouse-button up). See the alink
attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

background
URI of the background texture tile image. See the background attribute definition in HTML
4.0. This attribute is deprecated in HTML 4.0.

bgColor
Document background color. See the bgcolor attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

link
Color of links that are not active and unvisited. See the link attribute definition in HTML
4.0. This attribute is deprecated in HTML 4.0.

text
Document text color. See the text attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

60

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/present/styles.html#adef-media
http://www.w3.org/TR/REC-html40/present/styles.html#adef-type-STYLE
http://www.w3.org/TR/REC-html40/struct/global.html#edef-BODY
http://www.w3.org/TR/REC-html40/struct/global.html#adef-alink
http://www.w3.org/TR/REC-html40/struct/global.html#adef-alink
http://www.w3.org/TR/REC-html40/struct/global.html#adef-background
http://www.w3.org/TR/REC-html40/present/graphics.html#adef-bgcolor
http://www.w3.org/TR/REC-html40/struct/global.html#adef-link
http://www.w3.org/TR/REC-html40/struct/global.html#adef-text

vLink
Color of links that have been visited by the user. See the vlink attribute definition in HTML
4.0. This attribute is deprecated in HTML 4.0.

Interface HTMLFormElement

The FORM element encompasses behavior similar to a collection and an element. It provides direct
access to the contained input elements as well as the attributes of the form element. See the FORM
element definition in HTML 4.0.
IDL Definition

interface HTMLFormElement : HTMLElement {
 readonly attribute HTMLCollection elements;
 readonly attribute long length;
 attribute DOMString name;
 attribute DOMString acceptCharset;
 attribute DOMString action;
 attribute DOMString enctype;
 attribute DOMString method;
 attribute DOMString target;
 void submit();
 void reset();
};

Attributes
elements

Returns a collection of all control elements in the form.
length

The number of form controls in the form.
name

Names the form.
acceptCharset

List of character sets supported by the server. See the accept-charset attribute definition in
HTML 4.0.

action
Server-side form handler. See the action attribute definition in HTML 4.0.

enctype
The content type of the submitted form, generally "application/x-www-form-urlencoded".
See the enctype attribute definition in HTML 4.0.

method
HTTP method used to submit form. See the method attribute definition in HTML 4.0.

target
Frame to render the resource in. See the target attribute definition in HTML 4.0.

Methods
submit

Submits the form. It performs the same action as a submit button.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

61

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/global.html#adef-vlink
http://www.w3.org/TR/REC-html40/interact/forms.html#edef-FORM
http://www.w3.org/TR/REC-html40/interact/forms.html#edef-FORM
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accept-charset
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-action
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-enctype
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-method
http://www.w3.org/TR/REC-html40/present/frames.html#adef-target

reset
Restores a form element’s default values. It performs the same action as a reset button.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

Interface HTMLSelectElement

The select element allows the selection of an option. The contained options can be directly accessed
through the select element as a collection. See the SELECT element definition in HTML 4.0.
IDL Definition

interface HTMLSelectElement : HTMLElement {
 readonly attribute DOMString type;
 attribute long selectedIndex;
 attribute DOMString value;
 readonly attribute long length;
 readonly attribute HTMLFormElement form;
 readonly attribute HTMLCollection options;
 attribute boolean disabled;
 attribute boolean multiple;
 attribute DOMString name;
 attribute long size;
 attribute long tabIndex;
 void add(in HTMLElement element,
 in HTMLElement before);
 void remove(in long index);
 void blur();
 void focus();
};

Attributes
type

The type of control created.
selectedIndex

The ordinal index of the selected option. The value -1 is returned if no element is selected.
If multiple options are selected, the index of the first selected option is returned.

value
The current form control value.

length
The number of options in this SELECT.

form
Returns the FORM element containing this control. Returns null if this control is not within
the context of a form.

options
The collection of OPTION elements contained by this element.

disabled
The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

62

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/interact/forms.html#edef-SELECT
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-disabled

multiple
If true, multiple OPTION elements may be selected in this SELECT. See the multiple
attribute definition in HTML 4.0.

name
Form control or object name when submitted with a form. See the name attribute definition
in HTML 4.0.

size
Number of visible rows. See the size attribute definition in HTML 4.0.

tabIndex
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

Methods
add

Add a new element to the collection of OPTION elements for this SELECT.
Parameters

element The element to add.

before The element to insert before, or NULL for the head of the list.

This method returns nothing.
This method raises no exceptions.

remove
Remove an element from the collection of OPTION elements for this SELECT. Does
nothing if no element has the given index.
Parameters

index The index of the item to remove.

This method returns nothing.
This method raises no exceptions.

blur
Removes keyboard focus from this element.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

focus
Gives keyboard focus to this element.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

Interface HTMLOptGroupElement

63

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/interact/forms.html#adef-multiple
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-multiple
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-name-SELECT
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-size-SELECT
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-tabindex
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-tabindex

Group options together in logical subdivisions. See the OPTGROUP element definition in HTML
4.0.
IDL Definition

interface HTMLOptGroupElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString label;
};

Attributes
disabled

The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

label
Assigns a label to this option group. See the label attribute definition in HTML 4.0.

Interface HTMLOptionElement

A selectable choice. See the OPTION element definition in HTML 4.0.
IDL Definition

interface HTMLOptionElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute boolean defaultSelected;
 readonly attribute DOMString text;
 attribute long index;
 attribute boolean disabled;
 attribute DOMString label;
 readonly attribute boolean selected;
 attribute DOMString value;
};

Attributes
form

Returns the FORM element containing this control. Returns null if this control is not within
the context of a form.

defaultSelected
Stores the initial value of the selected attribute.

text
The text contained within the option element.

index
The index of this OPTION in its parent SELECT.

disabled
The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

label
Option label for use in hierarchical menus. See the label attribute definition in HTML 4.0.

selected
Means that this option is initially selected. See the selected attribute definition in HTML
4.0.

64

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/interact/forms.html#edef-OPTGROUP
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-disabled
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-label-OPTGROUP
http://www.w3.org/TR/REC-html40/interact/forms.html#edef-OPTION
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-disabled
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-label-OPTION
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-selected

value
The current form control value. See the value attribute definition in HTML 4.0.

Interface HTMLInputElement

Form control. Note. Depending upon the environment the page is being viewed, the value property
may be read-only for the file upload input type. For the "password" input type, the actual value
returned may be masked to prevent unauthorized use. See the INPUT element definition in HTML
4.0.
IDL Definition

interface HTMLInputElement : HTMLElement {
 attribute DOMString defaultValue;
 attribute boolean defaultChecked;
 readonly attribute HTMLFormElement form;
 attribute DOMString accept;
 attribute DOMString accessKey;
 attribute DOMString align;
 attribute DOMString alt;
 attribute boolean checked;
 attribute boolean disabled;
 attribute long maxLength;
 attribute DOMString name;
 attribute boolean readOnly;
 attribute DOMString size;
 attribute DOMString src;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString useMap;
 attribute DOMString value;
 void blur();
 void focus();
 void select();
 void click();
};

Attributes
defaultValue

Stores the initial control value (i.e., the initial value of value).
defaultChecked

When type has the value "Radio" or "Checkbox", stores the initial value of the checked
attribute.

form
Returns the FORM element containing this control. Returns null if this control is not within
the context of a form.

accept
A comma-separated list of content types that a server processing this form will handle
correctly. See the accept attribute definition in HTML 4.0.

accessKey
A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

65

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/interact/forms.html#adef-value-OPTION
http://www.w3.org/TR/REC-html40/interact/forms.html#edef-INPUT
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accept
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accesskey
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accesskey

align
Aligns this object (vertically or horizontally) with respect to its surrounding text. See the
align attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

alt
Alternate text for user agents not rendering the normal content of this element. See the alt
attribute definition in HTML 4.0.

checked
Describes whether a radio or check box is checked, when type has the value "Radio" or
"Checkbox". The value is TRUE if explicitly set. Represents the current state of the
checkbox or radio button. See the checked attribute definition in HTML 4.0.

disabled
The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

maxLength
Maximum number of characters for text fields, when type has the value "Text" or
"Password". See the maxlength attribute definition in HTML 4.0.

name
Form control or object name when submitted with a form. See the name attribute definition
in HTML 4.0.

readOnly
This control is read-only. When type has the value "text" or "password" only. See the
readonly attribute definition in HTML 4.0.

size
Size information. The precise meaning is specific to each type of field. See the size
attribute definition in HTML 4.0.

src
When the type attribute has the value "Image", this attribute specifies the location of the
image to be used to decorate the graphical submit button. See the src attribute definition in
HTML 4.0.

tabIndex
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

type
The type of control created. See the type attribute definition in HTML 4.0.

useMap
Use client-side image map. See the usemap attribute definition in HTML 4.0.

value
The current form control value. Used for radio buttons and check boxes. See the value
attribute definition in HTML 4.0.

Methods
blur

Removes keyboard focus from this element.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

66

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/objects.html#adef-align-IMG
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-alt
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-alt
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-checked
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-disabled
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-maxlength
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-name-INPUT
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-readonly
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-size-INPUT
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-size-INPUT
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-src
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-tabindex
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-tabindex
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-type-INPUT
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-usemap
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-value-INPUT
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-value-INPUT

focus
Gives keyboard focus to this element.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

select
Select the contents of the text area. For INPUT elements whose type attribute has one of
the following values: "Text", "File", or "Password".
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

click
Simulate a mouse-click. For INPUT elements whose type attribute has one of the
following values: "Button", "Checkbox", "Radio", "Reset", or "Submit".
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

Interface HTMLTextAreaElement

Multi-line text field. See the TEXTAREA element definition in HTML 4.0.
IDL Definition

interface HTMLTextAreaElement : HTMLElement {
 attribute DOMString defaultValue;
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute long cols;
 attribute boolean disabled;
 attribute DOMString name;
 attribute boolean readOnly;
 attribute long rows;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString value;
 void blur();
 void focus();
 void select();
};

Attributes
defaultValue

Stores the initial control value (i.e., the initial value of value).
form

Returns the FORM element containing this control. Returns null if this control is not within
the context of a form.

accessKey
A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

67

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/interact/forms.html#edef-TEXTAREA
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accesskey
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accesskey

cols
Width of control (in characters). See the cols attribute definition in HTML 4.0.

disabled
The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

name
Form control or object name when submitted with a form. See the name attribute definition
in HTML 4.0.

readOnly
This control is read-only. See the readonly attribute definition in HTML 4.0.

rows
Number of text rows. See the rows attribute definition in HTML 4.0.

tabIndex
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

type
The type of this form control.

value
The current textual content of the multi-line text field. If the entirety of the data can not fit
into a single wstring, the implementation may truncate the data.

Methods
blur

Removes keyboard focus from this element.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

focus
Gives keyboard focus to this element.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

select
Select the contents of the TEXTAREA.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

Interface HTMLButtonElement

Push button. See the BUTTON element definition in HTML 4.0.
IDL Definition

68

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/interact/forms.html#adef-cols-TEXTAREA
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-disabled
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-name-TEXTAREA
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-readonly
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-rows-TEXTAREA
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-tabindex
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-tabindex
http://www.w3.org/TR/REC-html40/interact/forms.html#edef-BUTTON

interface HTMLButtonElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute boolean disabled;
 attribute DOMString name;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString value;
};

Attributes
form

Returns the FORM element containing this control. Returns null if this control is not within
the context of a form.

accessKey
A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

disabled
The control is unavailable in this context. See the disabled attribute definition in HTML
4.0.

name
Form control or object name when submitted with a form. See the name attribute definition
in HTML 4.0.

tabIndex
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

type
The type of button. See the type attribute definition in HTML 4.0.

value
The current form control value. See the value attribute definition in HTML 4.0.

Interface HTMLLabelElement

Form field label text. See the LABEL element definition in HTML 4.0.
IDL Definition

interface HTMLLabelElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute DOMString htmlFor;
};

Attributes
form

Returns the FORM element containing this control. Returns null if this control is not within
the context of a form.

accessKey
A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

69

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accesskey
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accesskey
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-disabled
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-name-BUTTON
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-tabindex
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-tabindex
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-type-BUTTON
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-value-BUTTON
http://www.w3.org/TR/REC-html40/interact/forms.html#edef-LABEL
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accesskey
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accesskey

htmlFor
This attribute links this label with another form control by id attribute. See the for attribute
definition in HTML 4.0.

Interface HTMLFieldSetElement

Organizes form controls into logical groups. See the FIELDSET element definition in HTML 4.0.
IDL Definition

interface HTMLFieldSetElement : HTMLElement {
 readonly attribute HTMLFormElement form;
};

Attributes
form

Returns the FORM element containing this control. Returns null if this control is not within
the context of a form.

Interface HTMLLegendElement

Provides a caption for a FIELDSET grouping. See the LEGEND element definition in HTML 4.0.
IDL Definition

interface HTMLLegendElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute DOMString align;
};

Attributes
form

Returns the FORM element containing this control. Returns null if this control is not within
the context of a form.

accessKey
A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

align
Text alignment relative to FIELDSET. See the align attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

Interface HTMLUListElement

Unordered list. See the UL element definition in HTML 4.0.
IDL Definition

interface HTMLUListElement : HTMLElement {
 attribute boolean compact;
 attribute DOMString type;
};

70

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/interact/forms.html#adef-for
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-for
http://www.w3.org/TR/REC-html40/interact/forms.html#edef-FIELDSET
http://www.w3.org/TR/REC-html40/interact/forms.html#edef-LEGEND
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accesskey
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accesskey
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-align-LEGEND
http://www.w3.org/TR/REC-html40/struct/lists.html#edef-UL

Attributes
compact

Reduce spacing between list items. See the compact attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

type
Bullet style. See the type attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

Interface HTMLOListElement

Ordered list. See the OL element definition in HTML 4.0.
IDL Definition

interface HTMLOListElement : HTMLElement {
 attribute boolean compact;
 attribute long start;
 attribute DOMString type;
};

Attributes
compact

Reduce spacing between list items. See the compact attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

start
Starting sequence number. See the start attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

type
Numbering style. See the type attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLDListElement

Definition list. See the DL element definition in HTML 4.0.
IDL Definition

interface HTMLDListElement : HTMLElement {
 attribute boolean compact;
};

Attributes
compact

Reduce spacing between list items. See the compact attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

Interface HTMLDirectoryElement

Directory list. See the DIR element definition in HTML 4.0. This element is deprecated in HTML
4.0.

71

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/lists.html#adef-compact
http://www.w3.org/TR/REC-html40/struct/lists.html#adef-type-UL
http://www.w3.org/TR/REC-html40/struct/lists.html#edef-OL
http://www.w3.org/TR/REC-html40/struct/lists.html#adef-compact
http://www.w3.org/TR/REC-html40/struct/lists.html#adef-start
http://www.w3.org/TR/REC-html40/struct/lists.html#adef-type-OL
http://www.w3.org/TR/REC-html40/struct/lists.html#edef-DL
http://www.w3.org/TR/REC-html40/struct/lists.html#adef-compact
http://www.w3.org/TR/REC-html40/struct/lists.html#edef-DIR

IDL Definition

interface HTMLDirectoryElement : HTMLElement {
 attribute boolean compact;
};

Attributes
compact

Reduce spacing between list items. See the compact attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

Interface HTMLMenuElement

Menu list. See the MENU element definition in HTML 4.0. This element is deprecated in HTML 4.0.
IDL Definition

interface HTMLMenuElement : HTMLElement {
 attribute boolean compact;
};

Attributes
compact

Reduce spacing between list items. See the compact attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

Interface HTMLLIElement

List item. See the LI element definition in HTML 4.0.
IDL Definition

interface HTMLLIElement : HTMLElement {
 attribute DOMString type;
 attribute long value;
};

Attributes
type

List item bullet style. See the type attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

value
Reset sequence number when used in OL See the value attribute definition in HTML 4.0.
This attribute is deprecated in HTML 4.0.

Interface HTMLBlockquoteElement

??? See the BLOCKQUOTE element definition in HTML 4.0.
IDL Definition

interface HTMLBlockquoteElement : HTMLElement {
 attribute DOMString cite;
};

72

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/lists.html#adef-compact
http://www.w3.org/TR/REC-html40/struct/lists.html#edef-MENU
http://www.w3.org/TR/REC-html40/struct/lists.html#adef-compact
http://www.w3.org/TR/REC-html40/struct/lists.html#edef-LI
http://www.w3.org/TR/REC-html40/struct/lists.html#adef-type-LI
http://www.w3.org/TR/REC-html40/struct/lists.html#adef-value-LI
http://www.w3.org/TR/REC-html40/struct/text.html#edef-BLOCKQUOTE

Attributes
cite

A URI designating a document that describes the reason for the change. See the cite
attribute definition in HTML 4.0.

Interface HTMLDivElement

Generic block container. See the DIV element definition in HTML 4.0.
IDL Definition

interface HTMLDivElement : HTMLElement {
 attribute DOMString align;
};

Attributes
align

Horizontal text alignment. See the align attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLParagraphElement

Paragraphs. See the P element definition in HTML 4.0.
IDL Definition

interface HTMLParagraphElement : HTMLElement {
 attribute DOMString align;
};

Attributes
align

Horizontal text alignment. See the align attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLHeadingElement

For the H1 to H6 elements. See the H1 element definition in HTML 4.0.
IDL Definition

interface HTMLHeadingElement : HTMLElement {
 attribute DOMString align;
};

Attributes
align

Horizontal text alignment. See the align attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLQuoteElement

73

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/REC-html40/struct/global.html#edef-DIV
http://www.w3.org/TR/REC-html40/present/graphics.html#adef-align
http://www.w3.org/TR/REC-html40/struct/text.html#edef-P
http://www.w3.org/TR/REC-html40/present/graphics.html#adef-align
http://www.w3.org/TR/REC-html40/struct/global.html#edef-H1
http://www.w3.org/TR/REC-html40/present/graphics.html#adef-align

For the Q and BLOCKQUOTE elements. See the Q element definition in HTML 4.0.
IDL Definition

interface HTMLQuoteElement : HTMLElement {
 attribute DOMString cite;
};

Attributes
cite

A URI designating a document that designates a source document or message. See the cite
attribute definition in HTML 4.0.

Interface HTMLPreElement

Preformatted text. See the PRE element definition in HTML 4.0.
IDL Definition

interface HTMLPreElement : HTMLElement {
 attribute long width;
};

Attributes
width

Fixed width for content. See the width attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLBRElement

Force a line break. See the BR element definition in HTML 4.0.
IDL Definition

interface HTMLBRElement : HTMLElement {
 attribute DOMString clear;
};

Attributes
clear

Control flow of text around floats. See the clear attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

Interface HTMLBaseFontElement

Base font. See the BASEFONT element definition in HTML 4.0. This element is deprecated in
HTML 4.0.
IDL Definition

interface HTMLBaseFontElement : HTMLElement {
 attribute DOMString color;
 attribute DOMString face;
 attribute DOMString size;
};

74

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/text.html#edef-Q
http://www.w3.org/TR/REC-html40/struct/text.html#adef-cite-Q
http://www.w3.org/TR/REC-html40/struct/text.html#adef-cite-Q
http://www.w3.org/TR/REC-html40/struct/text.html#edef-PRE
http://www.w3.org/TR/REC-html40/struct/text.html#adef-width-PRE
http://www.w3.org/TR/REC-html40/struct/text.html#edef-BR
http://www.w3.org/TR/REC-html40/present/graphics.html#adef-clear
http://www.w3.org/TR/REC-html40/present/graphics.html#edef-BASEFONT

Attributes
color

Font color. See the color attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

face
Font face identifier. See the face attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

size
Font size. See the size attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

Interface HTMLFontElement

Local change to font. See the FONT element definition in HTML 4.0. This element is deprecated in
HTML 4.0.
IDL Definition

interface HTMLFontElement : HTMLElement {
 attribute DOMString color;
 attribute DOMString face;
 attribute DOMString size;
};

Attributes
color

Font color. See the color attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

face
Font face identifier. See the face attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

size
Font size. See the size attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

Interface HTMLHRElement

Create a horizontal rule. See the HR element definition in HTML 4.0.
IDL Definition

interface HTMLHRElement : HTMLElement {
 attribute DOMString align;
 attribute boolean noShade;
 attribute DOMString size;
 attribute DOMString width;
};

Attributes
align

Align the rule on the page. See the align attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

75

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/REC-html40/present/graphics.html#adef-size-BASEFONT
http://www.w3.org/TR/REC-html40/present/graphics.html#edef-FONT
http://www.w3.org/TR/REC-html40/present/graphics.html#adef-color-FONT
http://www.w3.org/TR/REC-html40/present/graphics.html#adef-face-FONT
http://www.w3.org/TR/REC-html40/present/graphics.html#adef-size-FONT
http://www.w3.org/TR/REC-html40/present/graphics.html#edef-HR
http://www.w3.org/TR/REC-html40/present/graphics.html#adef-align-HR

noShade
Indicates to the user agent that there should be no shading in the rendering of this element.
See the noshade attribute definition in HTML 4.0. This attribute is deprecated in HTML
4.0.

size
The height of the rule. See the size attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

width
The width of the rule. See the width attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

Interface HTMLModElement

Notice of modification to part of a document. See the INS and DEL element definitions in HTML
4.0.
IDL Definition

interface HTMLModElement : HTMLElement {
 attribute DOMString cite;
 attribute DOMString dateTime;
};

Attributes
cite

A URI designating a document that describes the reason for the change. See the cite
attribute definition in HTML 4.0.

dateTime
The date and time of the change. See the datetime attribute definition in HTML 4.0.

Interface HTMLAnchorElement

The anchor element. See the A element definition in HTML 4.0.
IDL Definition

interface HTMLAnchorElement : HTMLElement {
 attribute DOMString accessKey;
 attribute DOMString charset;
 attribute DOMString coords;
 attribute DOMString href;
 attribute DOMString hreflang;
 attribute DOMString name;
 attribute DOMString rel;
 attribute DOMString rev;
 attribute DOMString shape;
 attribute long tabIndex;
 attribute DOMString target;
 attribute DOMString type;
 void blur();
 void focus();
};

76

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/present/graphics.html#adef-noshade
http://www.w3.org/TR/REC-html40/present/graphics.html#adef-size-HR
http://www.w3.org/TR/REC-html40/present/graphics.html#adef-width-HR
http://www.w3.org/TR/REC-html40/struct/text.html#edef-ins
http://www.w3.org/TR/REC-html40/struct/text.html#edef-del
http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/REC-html40/struct/text.html#adef-datetime
http://www.w3.org/TR/REC-html40/struct/links.html#edef-A

Attributes
accessKey

A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

charset
The character encoding of the linked resource. See the charset attribute definition in HTML
4.0.

coords
Comma-separated list of lengths, defining an active region geometry. See also shape for
the shape of the region. See the coords attribute definition in HTML 4.0.

href
The URI of the linked resource. See the href attribute definition in HTML 4.0.

hreflang
Language code of the linked resource. See the hreflang attribute definition in HTML 4.0.

name
Anchor name. See the name attribute definition in HTML 4.0.

rel
Forward link type. See the rel attribute definition in HTML 4.0.

rev
Reverse link type. See the rev attribute definition in HTML 4.0.

shape
The shape of the active area. The coordinates are given by coords . See the shape attribute
definition in HTML 4.0.

tabIndex
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

target
Frame to render the resource in. See the target attribute definition in HTML 4.0.

type
Advisory content type. See the type attribute definition in HTML 4.0.

Methods
blur

Removes keyboard focus from this element.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

focus
Gives keyboard focus to this element.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

Interface HTMLImageElement

77

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accesskey
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accesskey
http://www.w3.org/TR/REC-html40/struct/links.html#adef-charset
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-coords
http://www.w3.org/TR/REC-html40/struct/links.html#adef-href
http://www.w3.org/TR/REC-html40/struct/links.html#adef-hreflang
http://www.w3.org/TR/REC-html40/struct/links.html#adef-name-A
http://www.w3.org/TR/REC-html40/struct/links.html#adef-rel
http://www.w3.org/TR/REC-html40/struct/links.html#adef-rev
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-shape
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-shape
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-tabindex
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-tabindex
http://www.w3.org/TR/REC-html40/present/frames.html#adef-target
http://www.w3.org/TR/REC-html40/struct/links.html#adef-type-A

Embedded image. See the IMG element definition in HTML 4.0.
IDL Definition

interface HTMLImageElement : HTMLElement {
 attribute DOMString lowSrc;
 attribute DOMString name;
 attribute DOMString align;
 attribute DOMString alt;
 attribute DOMString border;
 attribute DOMString height;
 attribute DOMString hspace;
 attribute boolean isMap;
 attribute DOMString longDesc;
 attribute DOMString src;
 attribute DOMString useMap;
 attribute DOMString vspace;
 attribute DOMString width;
};

Attributes
lowSrc

URI designating the source of this image, for low-resolution output.
name

The name of the element (for backwards compatibility).
align

Aligns this object (vertically or horizontally) with respect to its surrounding text. See the
align attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

alt
Alternate text for user agents not rendering the normal content of this element. See the alt
attribute definition in HTML 4.0.

border
Width of border around image. See the border attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

height
Override height. See the height attribute definition in HTML 4.0.

hspace
Horizontal space to the left and right of this image. See the hspace attribute definition in
HTML 4.0. This attribute is deprecated in HTML 4.0.

isMap
Use server-side image map. See the ismap attribute definition in HTML 4.0.

longDesc
URI designating a long description of this image or frame. See the longdesc attribute
definition in HTML 4.0.

src
URI designating the source of this image. See the src attribute definition in HTML 4.0.

useMap
Use client-side image map. See the usemap attribute definition in HTML 4.0.

vspace
Vertical space above and below this image. See the vspace attribute definition in HTML
4.0. This attribute is deprecated in HTML 4.0.

78

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/objects.html#edef-IMG
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-align-IMG
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-alt
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-alt
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-border-IMG
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-height-IMG
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-hspace
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-ismap
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-longdesc-IMG
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-longdesc-IMG
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-src-IMG
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-usemap
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-vspace

width
Override width. See the width attribute definition in HTML 4.0.

Interface HTMLObjectElement

Generic embedded object. Note. In principle, all properties on the object element are read-write but in
some environments some properties may be read-only once the underlying object is instantiated. See
the OBJECT element definition in HTML 4.0.
IDL Definition

interface HTMLObjectElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString code;
 attribute DOMString align;
 attribute DOMString archive;
 attribute DOMString border;
 attribute DOMString codeBase;
 attribute DOMString codeType;
 attribute DOMString data;
 attribute boolean declare;
 attribute DOMString height;
 attribute DOMString hspace;
 attribute DOMString name;
 attribute DOMString standby;
 attribute long tabIndex;
 attribute DOMString type;
 attribute DOMString useMap;
 attribute DOMString vspace;
 attribute DOMString width;
};

Attributes
form

Returns the FORM element containing this control. Returns null if this control is not within
the context of a form.

code
Applet class file. See the code attribute for HTMLAppletElement.

align
Aligns this object (vertically or horizontally) with respect to its surrounding text. See the
align attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

archive
Space-separated list of archives. See the archive attribute definition in HTML 4.0.

border
Width of border around the object. See the border attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

codeBase
Base URI for classid , data , and archive attributes. See the codebase attribute
definition in HTML 4.0.

codeType
Content type for data downloaded via classid attribute. See the codetype attribute
definition in HTML 4.0.

79

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/objects.html#adef-width-IMG
http://www.w3.org/TR/REC-html40/struct/objects.html#edef-OBJECT
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-align-IMG
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-archive-OBJECT
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-border
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-codebase-OBJECT
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-codebase-OBJECT
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-codetype
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-codetype

data
A URI specifying the location of the object’s data. See the data attribute definition in
HTML 4.0.

declare
Declare (for future reference), but do not instantiate, this object. See the declare attribute
definition in HTML 4.0.

height
Override height. See the height attribute definition in HTML 4.0.

hspace
Horizontal space to the left and right of this image, applet, or object. See the hspace
attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

name
Form control or object name when submitted with a form. See the name attribute definition
in HTML 4.0.

standby
Message to render while loading the object. See the standby attribute definition in HTML
4.0.

tabIndex
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

type
Content type for data downloaded via data attribute. See the type attribute definition in
HTML 4.0.

useMap
Use client-side image map. See the usemap attribute definition in HTML 4.0.

vspace
Vertical space above and below this image, applet, or object. See the vspace attribute
definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

width
Override width. See the width attribute definition in HTML 4.0.

Interface HTMLParamElement

Parameters fed to the OBJECT element. See the PARAM element definition in HTML 4.0.
IDL Definition

interface HTMLParamElement : HTMLElement {
 attribute DOMString name;
 attribute DOMString type;
 attribute DOMString value;
 attribute DOMString valueType;
};

Attributes
name

The name of a run-time parameter. See the name attribute definition in HTML 4.0.

80

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/objects.html#adef-data
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-declare
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-declare
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-height-IMG
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-hspace
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-hspace
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-name-INPUT
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-standby
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-tabindex
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-tabindex
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-type-OBJECT
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-usemap
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-vspace
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-vspace
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-width-IMG
http://www.w3.org/TR/REC-html40/struct/objects.html#edef-PARAM
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-name-PARAM

type
Content type for the value attribute when valuetype has the value "ref". See the type
attribute definition in HTML 4.0.

value
The value of a run-time parameter. See the value attribute definition in HTML 4.0.

valueType
Information about the meaning of the value attribute value. See the valuetype attribute
definition in HTML 4.0.

Interface HTMLAppletElement

An embedded Java applet. See the APPLET element definition in HTML 4.0. This element is
deprecated in HTML 4.0.
IDL Definition

interface HTMLAppletElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString alt;
 attribute DOMString archive;
 attribute DOMString code;
 attribute DOMString codeBase;
 attribute DOMString height;
 attribute DOMString hspace;
 attribute DOMString name;
 attribute DOMString object;
 attribute DOMString vspace;
 attribute DOMString width;
};

Attributes
align

Aligns this object (vertically or horizontally) with respect to its surrounding text. See the
align attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

alt
Alternate text for user agents not rendering the normal content of this element. See the alt
attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

archive
Comma-separated archive list. See the archive attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

code
Applet class file. See the code attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

codeBase
Optional base URI for applet. See the codebase attribute definition in HTML 4.0. This
attribute is deprecated in HTML 4.0.

height
Override height. See the height attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

81

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/objects.html#adef-type-PARAM
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-type-PARAM
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-value-PARAM
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-valuetype
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-valuetype
http://www.w3.org/TR/REC-html40/struct/objects.html#edef-APPLET
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-align-IMG
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-alt
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-alt
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-archive-APPLET
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-code
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-codebase-APPLET
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-height-APPLET

hspace
Horizontal space to the left and right of this image, applet, or object. See the hspace
attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

name
The name of the applet. See the name attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

object
Serialized applet file. See the object attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

vspace
Vertical space above and below this image, applet, or object. See the vspace attribute
definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

width
Override width. See the width attribute definition in HTML 4.0. This attribute is deprecated
in HTML 4.0.

Interface HTMLMapElement

Client-side image map. See the MAP element definition in HTML 4.0.
IDL Definition

interface HTMLMapElement : HTMLElement {
 readonly attribute HTMLCollection areas;
 attribute DOMString name;
};

Attributes
areas

The list of areas defined for the image map.
name

Names the map (for use with usemap). See the name attribute definition in HTML 4.0.

Interface HTMLAreaElement

Client-side image map area definition. See the AREA element definition in HTML 4.0.
IDL Definition

interface HTMLAreaElement : HTMLElement {
 attribute DOMString accessKey;
 attribute DOMString alt;
 attribute DOMString coords;
 attribute DOMString href;
 attribute boolean noHref;
 attribute DOMString shape;
 attribute long tabIndex;
 attribute DOMString target;
};

Attributes

82

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/objects.html#adef-hspace
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-hspace
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-name-APPLET
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-object
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-vspace
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-vspace
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-width-APPLET
http://www.w3.org/TR/REC-html40/struct/objects.html#edef-MAP
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-name-MAP
http://www.w3.org/TR/REC-html40/struct/objects.html#edef-AREA

accessKey
A single character access key to give access to the form control. See the accesskey attribute
definition in HTML 4.0.

alt
Alternate text for user agents not rendering the normal content of this element. See the alt
attribute definition in HTML 4.0.

coords
Comma-separated list of lengths, defining an active region geometry. See also shape for
the shape of the region. See the coords attribute definition in HTML 4.0.

href
The URI of the linked resource. See the href attribute definition in HTML 4.0.

noHref
Specifies that this area is inactive, i.e., has no associated action. See the nohref attribute
definition in HTML 4.0.

shape
The shape of the active area. The coordinates are given by coords . See the shape attribute
definition in HTML 4.0.

tabIndex
Index that represents the element’s position in the tabbing order. See the tabindex attribute
definition in HTML 4.0.

target
Frame to render the resource in. See the target attribute definition in HTML 4.0.

Interface HTMLScriptElement

Script statements. See the SCRIPT element definition in HTML 4.0.
IDL Definition

interface HTMLScriptElement : HTMLElement {
 attribute DOMString text;
 attribute DOMString htmlFor;
 attribute DOMString event;
 attribute DOMString charset;
 attribute boolean defer;
 attribute DOMString src;
 attribute DOMString type;
};

Attributes
text

The script content of the element.
htmlFor

Reserved for future use.
event

Reserved for future use.
charset

The character encoding of the linked resource. See the charset attribute definition in HTML
4.0.

83

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accesskey
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-accesskey
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-alt
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-alt
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-coords
http://www.w3.org/TR/REC-html40/struct/links.html#adef-href
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-nohref
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-nohref
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-shape
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-shape
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-tabindex
http://www.w3.org/TR/REC-html40/interact/forms.html#adef-tabindex
http://www.w3.org/TR/REC-html40/present/frames.html#adef-target
http://www.w3.org/TR/REC-html40/interact/scripts.html#edef-SCRIPT
http://www.w3.org/TR/REC-html40/struct/links.html#adef-charset

defer
Indicates that the user agent can defer processing of the script. See the defer attribute
definition in HTML 4.0.

src
URI designating an external script. See the src attribute definition in HTML 4.0.

type
The content type of the script language. See the type attribute definition in HTML 4.0.

Interface HTMLTableElement

The create* and delete* methods on the table allow authors to construct and modify tables. HTML
4.0 specifies that only one of each of the CAPTION, THEAD, and TFOOT elements may exist in a
table. Therefore, if one exists, and the createTHead() or createTFoot() method is called, the method
returns the existing THead or TFoot element. See the TABLE element definition in HTML 4.0.
IDL Definition

interface HTMLTableElement : HTMLElement {
 attribute HTMLTableCaptionElement caption;
 attribute HTMLTableSectionElement tHead;
 attribute HTMLTableSectionElement tFoot;
 readonly attribute HTMLCollection rows;
 readonly attribute HTMLCollection tBodies;
 attribute DOMString align;
 attribute DOMString bgColor;
 attribute DOMString border;
 attribute DOMString cellPadding;
 attribute DOMString cellSpacing;
 attribute DOMString frame;
 attribute DOMString rules;
 attribute DOMString summary;
 attribute DOMString width;
 HTMLElement createTHead();
 void deleteTHead();
 HTMLElement createTFoot();
 void deleteTFoot();
 HTMLElement createCaption();
 void deleteCaption();
 HTMLElement insertRow(in long index);
 void deleteRow(in long index);
};

Attributes
caption

Returns the table’s CAPTION, or void if none exists.
tHead

Returns the table’s THEAD, or null if none exists.
tFoot

Returns the table’s TFOOT, or null if none exists.
rows

Returns a collection of all the rows in the table, including all in THEAD, TFOOT, all
TBODY elements.

84

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/interact/scripts.html#adef-defer
http://www.w3.org/TR/REC-html40/interact/scripts.html#adef-defer
http://www.w3.org/TR/REC-html40/interact/scripts.html#adef-src-SCRIPT
http://www.w3.org/TR/REC-html40/interact/scripts.html#adef-type-SCRIPT
http://www.w3.org/TR/REC-html40/struct/tables.html#edef-TABLE

tBodies
Returns a collection of the defined table bodies.

align
Specifies the table’s position with respect to the rest of the document. See the align
attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

bgColor
Cell background color. See the bgcolor attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

border
The width of the border around the table. See the border attribute definition in HTML 4.0.

cellPadding
Specifies the horizontal and vertical space between cell content and cell borders. See the
cellpadding attribute definition in HTML 4.0.

cellSpacing
Specifies the horizontal and vertical separation between cells. See the cellspacing attribute
definition in HTML 4.0.

frame
Specifies which external table borders to render. See the frame attribute definition in
HTML 4.0.

rules
Specifies which internal table borders to render. See the rules attribute definition in HTML
4.0.

summary
Supplementary description about the purpose or structure of a table. See the summary
attribute definition in HTML 4.0.

width
Specifies the desired table width. See the width attribute definition in HTML 4.0.

Methods
createTHead

Create a table header row or return an existing one.
Return Value

A new table header element (THEAD).
This method has no parameters.
This method raises no exceptions.

deleteTHead
Delete the header from the table, if one exists.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

createTFoot
Create a table footer row or return an existing one.
Return Value

A footer element (TFOOT).
This method has no parameters.
This method raises no exceptions.

85

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/tables.html#adef-align-TABLE
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-align-TABLE
http://www.w3.org/TR/REC-html40/present/graphics.html#adef-bgcolor
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-border-TABLE
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-cellpadding
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-cellspacing
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-cellspacing
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-frame
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-rules
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-summary
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-summary
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-width-TABLE

deleteTFoot
Delete the footer from the table, if one exists.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

createCaption
Create a new table caption object or return an existing one.
Return Value

A CAPTION element.
This method has no parameters.
This method raises no exceptions.

deleteCaption
Delete the table caption, if one exists.
This method has no parameters.
This method returns nothing.
This method raises no exceptions.

insertRow
Insert a new empty row in the table. Note. A table row cannot be empty according to
HTML 4.0 Recommendation.
Parameters

index The row number where to insert a new row.

Return Value
The newly created row.

This method raises no exceptions.
deleteRow

Delete a table row.
Parameters

index The index of the row to be deleted.

This method returns nothing.
This method raises no exceptions.

Interface HTMLTableCaptionElement

Table caption See the CAPTION element definition in HTML 4.0.
IDL Definition

interface HTMLTableCaptionElement : HTMLElement {
 attribute DOMString align;
};

Attributes

86

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/tables.html#edef-CAPTION

align
Caption alignment with respect to the table. See the align attribute definition in HTML 4.0.
This attribute is deprecated in HTML 4.0.

Interface HTMLTableColElement

Regroups the COL and COLGROUP elements. See the COL element definition in HTML 4.0.
IDL Definition

interface HTMLTableColElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute long span;
 attribute DOMString vAlign;
 attribute DOMString width;
};

Attributes
align

Horizontal alignment of cell data in column. See the align attribute definition in HTML
4.0.

ch
Alignment character for cells in a column. See the char attribute definition in HTML 4.0.

chOff
Offset of alignment character. See the charoff attribute definition in HTML 4.0.

span
Indicates the number of columns in a group or affected by a grouping. See the span
attribute definition in HTML 4.0.

vAlign
Vertical alignment of cell data in column. See the valign attribute definition in HTML 4.0.

width
Default column width. See the width attribute definition in HTML 4.0.

Interface HTMLTableSectionElement

The THEAD, TFOOT, and TBODY elements.
IDL Definition

interface HTMLTableSectionElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;
 readonly attribute HTMLCollection rows;
 HTMLElement insertRow(in long index);
 void deleteRow(in long index);
};

87

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/tables.html#adef-align-CAPTION
http://www.w3.org/TR/REC-html40/struct/tables.html#edef-COL
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-align-TD
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-char
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-charoff
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-span-COL
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-span-COL
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-valign
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-width-COL

Attributes
align

Horizontal alignment of data in cells. See the align attribute for HTMLTheadElement for
details.

ch
Alignment character for cells in a column. See the char attribute definition in HTML 4.0.

chOff
Offset of alignment character. See the charoff attribute definition in HTML 4.0.

vAlign
Vertical alignment of data in cells. See the valign attribute for HTMLTheadElement for
details.

rows
The collection of rows in this table section.

Methods
insertRow

Insert a row into this section.
Parameters

index The row number where to insert a new row.

Return Value
The newly created row.

This method raises no exceptions.
deleteRow

Delete a row from this section.
Parameters

index The index of the row to be deleted.

This method returns nothing.
This method raises no exceptions.

Interface HTMLTableRowElement

A row in a table. See the TR element definition in HTML 4.0.
IDL Definition

interface HTMLTableRowElement : HTMLElement {
 attribute long rowIndex;
 attribute long sectionRowIndex;
 attribute HTMLCollection cells;
 attribute DOMString align;
 attribute DOMString bgColor;
 attribute DOMString ch;
 attribute DOMString chOff;

88

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/tables.html#adef-char
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-charoff
http://www.w3.org/TR/REC-html40/struct/tables.html#edef-TR

 attribute DOMString vAlign;
 HTMLElement insertCell(in long index);
 void deleteCell(in long index);
};

Attributes
rowIndex

The index of this row, relative to the entire table.
sectionRowIndex

The index of this row, relative to the current section (THEAD, TFOOT, or TBODY).
cells

The collection of cells in this row.
align

Horizontal alignment of data within cells of this row. See the align attribute definition in
HTML 4.0.

bgColor
Background color for rows. See the bgcolor attribute definition in HTML 4.0. This attribute
is deprecated in HTML 4.0.

ch
Alignment character for cells in a column. See the char attribute definition in HTML 4.0.

chOff
Offset of alignment character. See the charoff attribute definition in HTML 4.0.

vAlign
Vertical alignment of data within cells of this row. See the valign attribute definition in
HTML 4.0.

Methods
insertCell

Insert an empty TD cell into this row.
Parameters

index The place to insert the cell.

Return Value
The newly created cell.

This method raises no exceptions.
deleteCell

Delete a cell from the current row.
Parameters

index The index of the cell to delete.

This method returns nothing.
This method raises no exceptions.

89

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/tables.html#adef-align-TD
http://www.w3.org/TR/REC-html40/present/graphics.html#adef-bgcolor
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-char
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-charoff
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-valign

Interface HTMLTableCellElement

The object used to represent the TH and TD elements. See the TD element definition in HTML 4.0.
IDL Definition

interface HTMLTableCellElement : HTMLElement {
 attribute long cellIndex;
 attribute DOMString abbr;
 attribute DOMString align;
 attribute DOMString axis;
 attribute DOMString bgColor;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute long colSpan;
 attribute DOMString headers;
 attribute DOMString height;
 attribute boolean noWrap;
 attribute long rowSpan;
 attribute DOMString scope;
 attribute DOMString vAlign;
 attribute DOMString width;
};

Attributes
cellIndex

The index of this cell in the row.
abbr

Abbreviation for header cells. See the abbr attribute definition in HTML 4.0.
align

Horizontal alignment of data in cell. See the align attribute definition in HTML 4.0.
axis

Names group of related headers. See the axis attribute definition in HTML 4.0.
bgColor

Cell background color. See the bgcolor attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

ch
Alignment character for cells in a column. See the char attribute definition in HTML 4.0.

chOff
Offset of alignment character. See the charoff attribute definition in HTML 4.0.

colSpan
Number of columns spanned by cell. See the colspan attribute definition in HTML 4.0.

headers
List of id attribute values for header cells. See the headers attribute definition in HTML
4.0.

height
Cell height. See the height attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

noWrap
Suppress word wrapping. See the nowrap attribute definition in HTML 4.0. This attribute is
deprecated in HTML 4.0.

90

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/tables.html#edef-TD
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-abbr
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-align-TD
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-axis
http://www.w3.org/TR/REC-html40/present/graphics.html#adef-bgcolor
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-char
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-charoff
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-colspan
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-headers
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-height-TH
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-nowrap

rowSpan
Number of rows spanned by cell. See the rowspan attribute definition in HTML 4.0.

scope
Scope covered by header cells. See the scope attribute definition in HTML 4.0.

vAlign
Vertical alignment of data in cell. See the valign attribute definition in HTML 4.0.

width
Cell width. See the width attribute definition in HTML 4.0. This attribute is deprecated in
HTML 4.0.

Interface HTMLFrameSetElement

Create a grid of frames. See the FRAMESET element definition in HTML 4.0.
IDL Definition

interface HTMLFrameSetElement : HTMLElement {
 attribute DOMString cols;
 attribute DOMString rows;
};

Attributes
cols

The number of columns of frames in the frameset. See the cols attribute definition in
HTML 4.0.

rows
The number of rows of frames in the frameset. See the rows attribute definition in HTML
4.0.

Interface HTMLFrameElement

Create a frame. See the FRAME element definition in HTML 4.0.
IDL Definition

interface HTMLFrameElement : HTMLElement {
 attribute DOMString frameBorder;
 attribute DOMString longDesc;
 attribute DOMString marginHeight;
 attribute DOMString marginWidth;
 attribute DOMString name;
 attribute boolean noResize;
 attribute DOMString scrolling;
 attribute DOMString src;
};

Attributes
frameBorder

Request frame borders. See the frameborder attribute definition in HTML 4.0.
longDesc

URI designating a long description of this image or frame. See the longdesc attribute
definition in HTML 4.0.

91

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/struct/tables.html#adef-rowspan
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-scope
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-valign
http://www.w3.org/TR/REC-html40/struct/tables.html#adef-width-TH
http://www.w3.org/TR/REC-html40/present/frames.html#edef-FRAMESET
http://www.w3.org/TR/REC-html40/present/frames.html#adef-cols-FRAMESET
http://www.w3.org/TR/REC-html40/present/frames.html#adef-rows-FRAMESET
http://www.w3.org/TR/REC-html40/present/frames.html#edef-FRAME
http://www.w3.org/TR/REC-html40/present/frames.html#adef-frameborder
http://www.w3.org/TR/REC-html40/present/frames.html#adef-longdesc-FRAME
http://www.w3.org/TR/REC-html40/present/frames.html#adef-longdesc-FRAME

marginHeight
Frame margin height, in pixels. See the marginheight attribute definition in HTML 4.0.

marginWidth
Frame margin width, in pixels. See the marginwidth attribute definition in HTML 4.0.

name
The frame name (object of the target attribute). See the name attribute definition in
HTML 4.0.

noResize
When true, forbid user from resizing frame. See the noresize attribute definition in HTML
4.0.

scrolling
Specify whether or not the frame should have scrollbars. See the scrolling attribute
definition in HTML 4.0.

src
A URI designating the initial frame contents. See the src attribute definition in HTML 4.0.

Interface HTMLIFrameElement

Inline subwindows. See the IFRAME element definition in HTML 4.0.
IDL Definition

interface HTMLIFrameElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString frameBorder;
 attribute DOMString height;
 attribute DOMString longDesc;
 attribute DOMString marginHeight;
 attribute DOMString marginWidth;
 attribute DOMString name;
 attribute DOMString scrolling;
 attribute DOMString src;
 attribute DOMString width;
};

Attributes
align

Aligns this object (vertically or horizontally) with respect to its surrounding text. See the
align attribute definition in HTML 4.0. This attribute is deprecated in HTML 4.0.

frameBorder
Request frame borders. See the frameborder attribute definition in HTML 4.0.

height
Frame height. See the height attribute definition in HTML 4.0.

longDesc
URI designating a long description of this image or frame. See the longdesc attribute
definition in HTML 4.0.

marginHeight
Frame margin height, in pixels. See the marginheight attribute definition in HTML 4.0.

marginWidth
Frame margin width, in pixels. See the marginwidth attribute definition in HTML 4.0.

92

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/present/frames.html#adef-marginheight
http://www.w3.org/TR/REC-html40/present/frames.html#adef-marginwidth
http://www.w3.org/TR/REC-html40/present/frames.html#adef-name-FRAME
http://www.w3.org/TR/REC-html40/present/frames.html#adef-noresize
http://www.w3.org/TR/REC-html40/present/frames.html#adef-scrolling
http://www.w3.org/TR/REC-html40/present/frames.html#adef-scrolling
http://www.w3.org/TR/REC-html40/present/frames.html#adef-src-FRAME
http://www.w3.org/TR/REC-html40/present/frames.html#edef-IFRAME
http://www.w3.org/TR/REC-html40/struct/objects.html#adef-align-IMG
http://www.w3.org/TR/REC-html40/present/frames.html#adef-frameborder
http://www.w3.org/TR/REC-html40/present/frames.html#adef-height-IFRAME
http://www.w3.org/TR/REC-html40/present/frames.html#adef-longdesc-IFRAME
http://www.w3.org/TR/REC-html40/present/frames.html#adef-longdesc-IFRAME
http://www.w3.org/TR/REC-html40/present/frames.html#adef-marginheight
http://www.w3.org/TR/REC-html40/present/frames.html#adef-marginwidth

name
The frame name (object of the target attribute). See the name attribute definition in
HTML 4.0.

scrolling
Specify whether or not the frame should have scrollbars. See the scrolling attribute
definition in HTML 4.0.

src
A URI designating the initial frame contents. See the src attribute definition in HTML 4.0.

width
Frame width. See the width attribute definition in HTML 4.0.

93

2.5.5. Object definitions

http://www.w3.org/TR/REC-html40/present/frames.html#adef-name-IFRAME
http://www.w3.org/TR/REC-html40/present/frames.html#adef-scrolling
http://www.w3.org/TR/REC-html40/present/frames.html#adef-scrolling
http://www.w3.org/TR/REC-html40/present/frames.html#adef-src-FRAME
http://www.w3.org/TR/REC-html40/present/frames.html#adef-width-IFRAME

94

2.5.5. Object definitions

Appendix A: Contributors
Members of the DOM Working Group and Interest Group contributing to this specification were:

Lauren Wood, SoftQuad, Inc., chair
Arnaud Le Hors, W3C, W3C staff contact
Andrew Watson, Object Management Group
Bill Smith, Sun
Chris Lovett, Microsoft
Chris Wilson, Microsoft
David Brownell, Sun
David Singer, IBM
Don Park, invited
Eric Vasilik, Microsoft
Gavin Nicol, INSO
Ian Jacobs, W3C
James Clark, invited
Jared Sorensen, Novell
Jonathan Robie, Texcel
Mike Champion, ArborText
Paul Grosso, ArborText
Peter Sharpe, SoftQuad, Inc.
Phil Karlton, Netscape
Ray Whitmer, iMall
Rich Rollman, Microsoft
Rick Gessner, Netscape
Robert Sutor, IBM
Scott Isaacs, Microsoft
Sharon Adler, INSO
Steve Byrne, JavaSoft
Tim Bray, invited
Tom Pixley, Netscape
Vidur Apparao, Netscape

95

Appendix A: Contributors

96

Appendix A: Contributors

Appendix B: Glossary
Editors

Robert S. Sutor, IBM Research

97

Appendix B: Glossary

Several of the following term definitions have been borrowed or modified from similar definitions in other
W3C or standards documents. See the links within the definitions for more information.

ancestor
An ancestor node of any node A is any node above A in a tree model of a document, where "above"
means "toward the root."

API
An API is an application programming interface, a set of functions or methods used to access some
functionality.

child
A child is an immediate descendant node of a node.

client application
A [client] application is any software that uses the Document Object Model programming interfaces
provided by the hosting implementation to accomplish useful work. Some examples of client
applications are scripts within an HTML or XML document.

COM
COM is Microsoft’s Component Object Model, a technology for building applications from binary
software components.

content model
The content model is a simple grammar governing the allowed types of the child elements and the
order in which they appear. See [XML]

context
A context specifies an access pattern (or path): a set of interfaces which give you a way to interact
with a model. For example, imagine a model with different colored arcs connecting data nodes. A
context might be a sheet of colored acetate that is placed over the model allowing you a partial view
of the total information in the model.

convenience
A convenience method is an operation on an object that could be accomplished by a program
consisting of more basic operations on the object. Convenience methods are usually provided to
make the API easier and simpler to use or to allow specific programs to create more optimized
implementations for common operations. A similar definition holds for a convenience property.

cooked model
A model for a document that represents the document after it has been manipulated in some way. For
example, any combination of any of the following transformations would create a cooked model:

1. Expansion of internal text entities.
2. Expansion of external entities.
3. Model augmentation with style-specified generated text.
4. Execution of style-specified reordering.
5. Execution of scripts.

A browser might only be able to provide access to a cooked model, while an editor might provide
access to a cooked or the initial structure model (also known as the uncooked model) for a document.

CORBA
CORBA is the Common Object Request Broker Architecture from the OMG . This architecture is a
collection of objects and libraries that allow the creation of applications containing objects that make
and receive requests and responses in a distributed environment.

98

Appendix B: Glossary

http://www.microsoft.com/com
http://www.w3.org/TR/REC-xml#sec3.2
http://www.omg.org/

cursor
A cursor is an object representation of a node. It may possess information about context and the path
traversed to reach the node.

data model
A data model is a collection of descriptions of data structures and their contained fields, together
with the operations or functions that manipulate them.

deprecation
When new releases of specifications are released, some older features may be marked as being
deprecated. This means that new work should not use the features and that although they are
supported in the current release, they may not be supported or available in future releases.

descendant
A descendant node of any node A is any node below A in a tree model of a document, where "above"
means "toward the root."

ECMAScript
The programming language defined by the ECMA-262 standard. As stated in the standard, the
originating technology for ECMAScript was JavaScript. Note that in the ECMAScript binding, the
word "property" is used in the same sense as the IDL term "attribute."

element
Each document contains one or more elements, the boundaries of which are either delimited by
start-tags and end-tags, or, for empty elements by an empty-element tag. Each element has a type,
identified by name, and may have a set of attributes. Each attribute has a name and a value. [XML]

event propagation, also known as event bubbling
This is the idea that an event can affect one object and a set of related objects. Any of the potentially
affected objects can block the event or substitute a different one (upward event propagation). The
event is broadcast from the node at which it originates to every parent node.

equivalence
Two nodes are equivalent if they have the same node type and same node name. Also, if the nodes
contain data, that must be the same. Finally, if the nodes have attributes then collection of attribute
names must be the same and the attributes corresponding by name must be equivalent as nodes. Two
nodes are deeply equivalent if they are equivalent, the child node lists are equivalent are equivalent as
NodeList objects, and the pairs of equivalent attributes must in fact be deeply equivalent. Two
NodeList objects are equivalent if they have the same length, and the nodes corresponding by index
are deeply equivalent. Two NamedNodeMap objects are equivalent if they are have the same length,
they have same collection of names, and the nodes corresponding by name in the maps are deeply
equivalent. Two DocumentType nodes are equivalent if they are equivalent as nodes, have the same
names, and have equivalent entities and attributes NamedNodeMap objects.

hosting implementation
A [hosting] implementation is a software module that provides an implementation of the DOM
interfaces so that a client application can use them. Some examples of hosting implementations are
browsers, editors and document repositories.

HTML
The HyperText Markup Language (HTML) is a simple markup language used to create hypertext
documents that are portable from one platform to another. HTML documents are SGML documents
with generic semantics that are appropriate for representing information from a wide range of
applications. [HTML 3.2] [HTML4.0]

99

Appendix B: Glossary

http://www.ecma.ch/stand/ecma-262.htm
http://developer.netscape.com/one/javascript/resources.html
http://www.w3.org/TR/REC-xml#sec-logical-struct
http://www.w3.org/TR/REC-html32
http://www.w3.org/TR/REC-html40

IDL
An Interface Definition Language (IDL) is used to define the interfaces for accessing and operating
upon objects. Examples of IDLs are the Object Management Group’s IDL , Microsoft’s IDL , and
Sun’s Java IDL .

implementor
Companies, organizations, and individuals that claim to support the Document Object Model as an
API for their products.

inheritance
In object-oriented programming, the ability to create new classes (or interfaces) that contain all the
methods and properties of another class (or interface), plus additional methods and properties. If class
(or interface) D inherits from class (or interface) B, then D is said to be derived from B. B is said to
be a base class (or interface) for D. Some programming languages allow for multiple inheritance, that
is, inheritance from more than one class or interface.

initial structure model
Also known as the raw structure model or the uncooked model, this represents the document before it
has been modified by entity expansions, generated text, style-specified reordering, or the execution of
scripts. In some implementations, this might correspond to the "initial parse tree" for the document, if
it ever exists. Note that a given implementation might not be able to provide access to the initial
structure model for a document, though an editor probably would.

interface
An interface is a declaration of a set of methods with no information given about their
implementation. In object systems that support interfaces and inheritance, interfaces can usually
inherit from one another.

language binding
A programming language binding for an IDL specification is an implementation of the interfaces in
the specification for the given language. For example, a Java language binding for the Document
Object Model IDL specification would implement the concrete Java classes that provide the
functionality exposed by the interfaces.

method
A method is an operation or function that is associated with an object and is allowed to manipulate
the object’s data.

model
A model is the actual data representation for the information at hand. Examples are the structural
model and the style model representing the parse structure and the style information associated with a
document. The model might be a tree, or a directed graph, or something else.

object model
An object model is a collection of descriptions of classes or interfaces, together with their member
data, member functions, and class-static operations.

parent
A parent is an immediate ancestor node of a node.

root node
The root node is the unique node that is not a child of any other node. All other nodes are children or
other descendents of the root node. [XML]

sibling
Two nodes are siblings if they have the same parent node.

100

Appendix B: Glossary

http://www.omg.org/
http://premium.microsoft.com/msdn/library/sdkdoc/mi-laref_49v0.htm
http://java.sun.com/products/jdk/preview/docs/ext/idl/
http://www.w3.org/TR/REC-xml#sec2.1

string comparison
When string matching is required, it is to occur as though the comparison was between 2 sequences
of code points from the Unicode 2.0 standard.

tag valid document
A document is tag valid if all begin and end tags are properly balanced and nested.

type valid document
A document is type valid if it conforms to an explicit DTD.

uncooked model
See initial structure model.

well-formed document
A document is well-formed if it is tag valid and entities are limited to single elements (i.e., single
sub-trees).

XML
Extensible Markup Language (XML) is an extremely simple dialect of SGML which is completely
described in this document. The goal is to enable generic SGML to be served, received, and
processed on the Web in the way that is now possible with HTML. XML has been designed for ease
of implementation and for interoperability with both SGML and HTML. [XML]

101

Appendix B: Glossary

http://www.w3.org/TR/REC-xml

102

Appendix B: Glossary

Appendix C: IDL Definitions
This appendix contains the complete OMG IDL for the Level 1 Document Object Model definitions. The
definitions are divided into Core and HTML.

The IDL files are also available as: http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/idl.zip

C.1: Document Object Model Level 1 Core
This section contains the OMG IDL definitions for the interfaces in the Core Document Object Model
specification, including the extended (XML) interfaces.

exception DOMException {
 unsigned short code;
};

// ExceptionCode
const unsigned short INDEX_SIZE_ERR = 1;
const unsigned short DOMSTRING_SIZE_ERR = 2;
const unsigned short HIERARCHY_REQUEST_ERR = 3;
const unsigned short WRONG_DOCUMENT_ERR = 4;
const unsigned short INVALID_CHARACTER_ERR = 5;
const unsigned short NO_DATA_ALLOWED_ERR = 6;
const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;
const unsigned short NOT_FOUND_ERR = 8;
const unsigned short NOT_SUPPORTED_ERR = 9;
const unsigned short INUSE_ATTRIBUTE_ERR = 10;

// ExceptionCode
const unsigned short INDEX_SIZE_ERR = 1;
const unsigned short DOMSTRING_SIZE_ERR = 2;
const unsigned short HIERARCHY_REQUEST_ERR = 3;
const unsigned short WRONG_DOCUMENT_ERR = 4;
const unsigned short INVALID_CHARACTER_ERR = 5;
const unsigned short NO_DATA_ALLOWED_ERR = 6;
const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7;
const unsigned short NOT_FOUND_ERR = 8;
const unsigned short NOT_SUPPORTED_ERR = 9;
const unsigned short INUSE_ATTRIBUTE_ERR = 10;

interface DOMImplementation {
 boolean hasFeature(in DOMString feature,
 in DOMString version);
};

interface DocumentFragment : Node {
};

interface Document : Node {
 readonly attribute DocumentType doctype;
 readonly attribute DOMImplementation implementation;
 readonly attribute Element documentElement;
 Element createElement(in DOMString tagName)

103

Appendix C: IDL Definitions

 raises(DOMException);
 DocumentFragment createDocumentFragment();
 Text createTextNode(in DOMString data);
 Comment createComment(in DOMString data);
 CDATASection createCDATASection(in DOMString data)
 raises(DOMException);
 ProcessingInstruction createProcessingInstruction(in DOMString target,
 in DOMString data)
 raises(DOMException);
 Attr createAttribute(in DOMString name)
 raises(DOMException);
 EntityReference createEntityReference(in DOMString name)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString tagname);
};

interface Node {
 // NodeType
 const unsigned short ELEMENT_NODE = 1;
 const unsigned short ATTRIBUTE_NODE = 2;
 const unsigned short TEXT_NODE = 3;
 const unsigned short CDATA_SECTION_NODE = 4;
 const unsigned short ENTITY_REFERENCE_NODE = 5;
 const unsigned short ENTITY_NODE = 6;
 const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
 const unsigned short COMMENT_NODE = 8;
 const unsigned short DOCUMENT_NODE = 9;
 const unsigned short DOCUMENT_TYPE_NODE = 10;
 const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
 const unsigned short NOTATION_NODE = 12;

 readonly attribute DOMString nodeName;
 attribute DOMString nodeValue;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval
 readonly attribute unsigned short nodeType;
 readonly attribute Node parentNode;
 readonly attribute NodeList childNodes;
 readonly attribute Node firstChild;
 readonly attribute Node lastChild;
 readonly attribute Node previousSibling;
 readonly attribute Node nextSibling;
 readonly attribute NamedNodeMap attributes;
 readonly attribute Document ownerDocument;
 Node insertBefore(in Node newChild,
 in Node refChild)
 raises(DOMException);
 Node replaceChild(in Node newChild,
 in Node oldChild)
 raises(DOMException);
 Node removeChild(in Node oldChild)
 raises(DOMException);
 Node appendChild(in Node newChild)
 raises(DOMException);
 boolean hasChildNodes();
 Node cloneNode(in boolean deep);
};

104

C.1: Document Object Model Level 1 Core

interface NodeList {
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
};

interface NamedNodeMap {
 Node getNamedItem(in DOMString name);
 Node setNamedItem(in Node arg)
 raises(DOMException);
 Node removeNamedItem(in DOMString name)
 raises(DOMException);
 Node item(in unsigned long index);
 readonly attribute unsigned long length;
};

interface CharacterData : Node {
 attribute DOMString data;
 // raises(DOMException) on setting
 // raises(DOMException) on retrieval
 readonly attribute unsigned long length;
 DOMString substringData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void appendData(in DOMString arg)
 raises(DOMException);
 void insertData(in unsigned long offset,
 in DOMString arg)
 raises(DOMException);
 void deleteData(in unsigned long offset,
 in unsigned long count)
 raises(DOMException);
 void replaceData(in unsigned long offset,
 in unsigned long count,
 in DOMString arg)
 raises(DOMException);
};

interface Attr : Node {
 readonly attribute DOMString name;
 readonly attribute boolean specified;
 attribute DOMString value;
};

interface Element : Node {
 readonly attribute DOMString tagName;
 DOMString getAttribute(in DOMString name);
 void setAttribute(in DOMString name,
 in DOMString value)
 raises(DOMException);
 void removeAttribute(in DOMString name)
 raises(DOMException);
 Attr getAttributeNode(in DOMString name);
 Attr setAttributeNode(in Attr newAttr)
 raises(DOMException);
 Attr removeAttributeNode(in Attr oldAttr)
 raises(DOMException);

105

C.1: Document Object Model Level 1 Core

 NodeList getElementsByTagName(in DOMString name);
 void normalize();
};

interface Text : CharacterData {
 Text splitText(in unsigned long offset)
 raises(DOMException);
};

interface Comment : CharacterData {
};

interface CDATASection : Text {
};

interface DocumentType : Node {
 readonly attribute DOMString name;
 readonly attribute NamedNodeMap entities;
 readonly attribute NamedNodeMap notations;
};

interface Notation : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
};

interface Entity : Node {
 readonly attribute DOMString publicId;
 readonly attribute DOMString systemId;
 readonly attribute DOMString notationName;
};

interface EntityReference : Node {
};

interface ProcessingInstruction : Node {
 readonly attribute DOMString target;
 attribute DOMString data;
 // raises(DOMException) on setting
};

C.2: Document Object Model Level 1 HTML
interface HTMLCollection {
 readonly attribute unsigned long length;
 Node item(in unsigned long index);
 Node namedItem(in DOMString name);
};

interface HTMLDocument : Document {
 attribute DOMString title;
 readonly attribute DOMString referrer;
 readonly attribute DOMString domain;
 readonly attribute DOMString URL;
 attribute HTMLElement body;
 readonly attribute HTMLCollection images;

106

C.2: Document Object Model Level 1 HTML

 readonly attribute HTMLCollection applets;
 readonly attribute HTMLCollection links;
 readonly attribute HTMLCollection forms;
 readonly attribute HTMLCollection anchors;
 attribute DOMString cookie;
 void open();
 void close();
 void write(in DOMString text);
 void writeln(in DOMString text);
 Element getElementById(in DOMString elementId);
 NodeList getElementsByName(in DOMString elementName);
};

interface HTMLElement : Element {
 attribute DOMString id;
 attribute DOMString title;
 attribute DOMString lang;
 attribute DOMString dir;
 attribute DOMString className;
};

interface HTMLHtmlElement : HTMLElement {
 attribute DOMString version;
};

interface HTMLHeadElement : HTMLElement {
 attribute DOMString profile;
};

interface HTMLLinkElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString charset;
 attribute DOMString href;
 attribute DOMString hreflang;
 attribute DOMString media;
 attribute DOMString rel;
 attribute DOMString rev;
 attribute DOMString target;
 attribute DOMString type;
};

interface HTMLTitleElement : HTMLElement {
 attribute DOMString text;
};

interface HTMLMetaElement : HTMLElement {
 attribute DOMString content;
 attribute DOMString httpEquiv;
 attribute DOMString name;
 attribute DOMString scheme;
};

interface HTMLBaseElement : HTMLElement {
 attribute DOMString href;
 attribute DOMString target;
};

107

C.2: Document Object Model Level 1 HTML

interface HTMLIsIndexElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString prompt;
};

interface HTMLStyleElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString media;
 attribute DOMString type;
};

interface HTMLBodyElement : HTMLElement {
 attribute DOMString aLink;
 attribute DOMString background;
 attribute DOMString bgColor;
 attribute DOMString link;
 attribute DOMString text;
 attribute DOMString vLink;
};

interface HTMLFormElement : HTMLElement {
 readonly attribute HTMLCollection elements;
 readonly attribute long length;
 attribute DOMString name;
 attribute DOMString acceptCharset;
 attribute DOMString action;
 attribute DOMString enctype;
 attribute DOMString method;
 attribute DOMString target;
 void submit();
 void reset();
};

interface HTMLSelectElement : HTMLElement {
 readonly attribute DOMString type;
 attribute long selectedIndex;
 attribute DOMString value;
 readonly attribute long length;
 readonly attribute HTMLFormElement form;
 readonly attribute HTMLCollection options;
 attribute boolean disabled;
 attribute boolean multiple;
 attribute DOMString name;
 attribute long size;
 attribute long tabIndex;
 void add(in HTMLElement element,
 in HTMLElement before);
 void remove(in long index);
 void blur();
 void focus();
};

interface HTMLOptGroupElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString label;
};

108

C.2: Document Object Model Level 1 HTML

interface HTMLOptionElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute boolean defaultSelected;
 readonly attribute DOMString text;
 attribute long index;
 attribute boolean disabled;
 attribute DOMString label;
 readonly attribute boolean selected;
 attribute DOMString value;
};

interface HTMLInputElement : HTMLElement {
 attribute DOMString defaultValue;
 attribute boolean defaultChecked;
 readonly attribute HTMLFormElement form;
 attribute DOMString accept;
 attribute DOMString accessKey;
 attribute DOMString align;
 attribute DOMString alt;
 attribute boolean checked;
 attribute boolean disabled;
 attribute long maxLength;
 attribute DOMString name;
 attribute boolean readOnly;
 attribute DOMString size;
 attribute DOMString src;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString useMap;
 attribute DOMString value;
 void blur();
 void focus();
 void select();
 void click();
};

interface HTMLTextAreaElement : HTMLElement {
 attribute DOMString defaultValue;
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute long cols;
 attribute boolean disabled;
 attribute DOMString name;
 attribute boolean readOnly;
 attribute long rows;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString value;
 void blur();
 void focus();
 void select();
};

interface HTMLButtonElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute boolean disabled;

109

C.2: Document Object Model Level 1 HTML

 attribute DOMString name;
 attribute long tabIndex;
 readonly attribute DOMString type;
 attribute DOMString value;
};

interface HTMLLabelElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute DOMString htmlFor;
};

interface HTMLFieldSetElement : HTMLElement {
 readonly attribute HTMLFormElement form;
};

interface HTMLLegendElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString accessKey;
 attribute DOMString align;
};

interface HTMLUListElement : HTMLElement {
 attribute boolean compact;
 attribute DOMString type;
};

interface HTMLOListElement : HTMLElement {
 attribute boolean compact;
 attribute long start;
 attribute DOMString type;
};

interface HTMLDListElement : HTMLElement {
 attribute boolean compact;
};

interface HTMLDirectoryElement : HTMLElement {
 attribute boolean compact;
};

interface HTMLMenuElement : HTMLElement {
 attribute boolean compact;
};

interface HTMLLIElement : HTMLElement {
 attribute DOMString type;
 attribute long value;
};

interface HTMLBlockquoteElement : HTMLElement {
 attribute DOMString cite;
};

interface HTMLDivElement : HTMLElement {
 attribute DOMString align;
};

110

C.2: Document Object Model Level 1 HTML

interface HTMLParagraphElement : HTMLElement {
 attribute DOMString align;
};

interface HTMLHeadingElement : HTMLElement {
 attribute DOMString align;
};

interface HTMLQuoteElement : HTMLElement {
 attribute DOMString cite;
};

interface HTMLPreElement : HTMLElement {
 attribute long width;
};

interface HTMLBRElement : HTMLElement {
 attribute DOMString clear;
};

interface HTMLBaseFontElement : HTMLElement {
 attribute DOMString color;
 attribute DOMString face;
 attribute DOMString size;
};

interface HTMLFontElement : HTMLElement {
 attribute DOMString color;
 attribute DOMString face;
 attribute DOMString size;
};

interface HTMLHRElement : HTMLElement {
 attribute DOMString align;
 attribute boolean noShade;
 attribute DOMString size;
 attribute DOMString width;
};

interface HTMLModElement : HTMLElement {
 attribute DOMString cite;
 attribute DOMString dateTime;
};

interface HTMLAnchorElement : HTMLElement {
 attribute DOMString accessKey;
 attribute DOMString charset;
 attribute DOMString coords;
 attribute DOMString href;
 attribute DOMString hreflang;
 attribute DOMString name;
 attribute DOMString rel;
 attribute DOMString rev;
 attribute DOMString shape;
 attribute long tabIndex;
 attribute DOMString target;

111

C.2: Document Object Model Level 1 HTML

 attribute DOMString type;
 void blur();
 void focus();
};

interface HTMLImageElement : HTMLElement {
 attribute DOMString lowSrc;
 attribute DOMString name;
 attribute DOMString align;
 attribute DOMString alt;
 attribute DOMString border;
 attribute DOMString height;
 attribute DOMString hspace;
 attribute boolean isMap;
 attribute DOMString longDesc;
 attribute DOMString src;
 attribute DOMString useMap;
 attribute DOMString vspace;
 attribute DOMString width;
};

interface HTMLObjectElement : HTMLElement {
 readonly attribute HTMLFormElement form;
 attribute DOMString code;
 attribute DOMString align;
 attribute DOMString archive;
 attribute DOMString border;
 attribute DOMString codeBase;
 attribute DOMString codeType;
 attribute DOMString data;
 attribute boolean declare;
 attribute DOMString height;
 attribute DOMString hspace;
 attribute DOMString name;
 attribute DOMString standby;
 attribute long tabIndex;
 attribute DOMString type;
 attribute DOMString useMap;
 attribute DOMString vspace;
 attribute DOMString width;
};

interface HTMLParamElement : HTMLElement {
 attribute DOMString name;
 attribute DOMString type;
 attribute DOMString value;
 attribute DOMString valueType;
};

interface HTMLAppletElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString alt;
 attribute DOMString archive;
 attribute DOMString code;
 attribute DOMString codeBase;
 attribute DOMString height;
 attribute DOMString hspace;

112

C.2: Document Object Model Level 1 HTML

 attribute DOMString name;
 attribute DOMString object;
 attribute DOMString vspace;
 attribute DOMString width;
};

interface HTMLMapElement : HTMLElement {
 readonly attribute HTMLCollection areas;
 attribute DOMString name;
};

interface HTMLAreaElement : HTMLElement {
 attribute DOMString accessKey;
 attribute DOMString alt;
 attribute DOMString coords;
 attribute DOMString href;
 attribute boolean noHref;
 attribute DOMString shape;
 attribute long tabIndex;
 attribute DOMString target;
};

interface HTMLScriptElement : HTMLElement {
 attribute DOMString text;
 attribute DOMString htmlFor;
 attribute DOMString event;
 attribute DOMString charset;
 attribute boolean defer;
 attribute DOMString src;
 attribute DOMString type;
};

interface HTMLTableElement : HTMLElement {
 attribute HTMLTableCaptionElement caption;
 attribute HTMLTableSectionElement tHead;
 attribute HTMLTableSectionElement tFoot;
 readonly attribute HTMLCollection rows;
 readonly attribute HTMLCollection tBodies;
 attribute DOMString align;
 attribute DOMString bgColor;
 attribute DOMString border;
 attribute DOMString cellPadding;
 attribute DOMString cellSpacing;
 attribute DOMString frame;
 attribute DOMString rules;
 attribute DOMString summary;
 attribute DOMString width;
 HTMLElement createTHead();
 void deleteTHead();
 HTMLElement createTFoot();
 void deleteTFoot();
 HTMLElement createCaption();
 void deleteCaption();
 HTMLElement insertRow(in long index);
 void deleteRow(in long index);
};

113

C.2: Document Object Model Level 1 HTML

interface HTMLTableCaptionElement : HTMLElement {
 attribute DOMString align;
};

interface HTMLTableColElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute long span;
 attribute DOMString vAlign;
 attribute DOMString width;
};

interface HTMLTableSectionElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;
 readonly attribute HTMLCollection rows;
 HTMLElement insertRow(in long index);
 void deleteRow(in long index);
};

interface HTMLTableRowElement : HTMLElement {
 attribute long rowIndex;
 attribute long sectionRowIndex;
 attribute HTMLCollection cells;
 attribute DOMString align;
 attribute DOMString bgColor;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;
 HTMLElement insertCell(in long index);
 void deleteCell(in long index);
};

interface HTMLTableCellElement : HTMLElement {
 attribute long cellIndex;
 attribute DOMString abbr;
 attribute DOMString align;
 attribute DOMString axis;
 attribute DOMString bgColor;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute long colSpan;
 attribute DOMString headers;
 attribute DOMString height;
 attribute boolean noWrap;
 attribute long rowSpan;
 attribute DOMString scope;
 attribute DOMString vAlign;
 attribute DOMString width;
};

interface HTMLFrameSetElement : HTMLElement {
 attribute DOMString cols;
 attribute DOMString rows;

114

C.2: Document Object Model Level 1 HTML

};

interface HTMLFrameElement : HTMLElement {
 attribute DOMString frameBorder;
 attribute DOMString longDesc;
 attribute DOMString marginHeight;
 attribute DOMString marginWidth;
 attribute DOMString name;
 attribute boolean noResize;
 attribute DOMString scrolling;
 attribute DOMString src;
};

interface HTMLIFrameElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString frameBorder;
 attribute DOMString height;
 attribute DOMString longDesc;
 attribute DOMString marginHeight;
 attribute DOMString marginWidth;
 attribute DOMString name;
 attribute DOMString scrolling;
 attribute DOMString src;
 attribute DOMString width;
};

115

C.2: Document Object Model Level 1 HTML

116

C.2: Document Object Model Level 1 HTML

Appendix D: Java Language Binding
This appendix contains the complete Java binding for the Level 1 Document Object Model. The
definitions are divided into Core and HTML.

The Java files are also available as
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/java-binding.zip

D.1: Document Object Model Level 1 Core
public abstract class DOMException extends RuntimeException {
 public DOMException(short code, String message) {
 super(message);
 this.code = code;
 }
 public short code;
 // ExceptionCode
 public static final short INDEX_SIZE_ERR = 1;
 public static final short DOMSTRING_SIZE_ERR = 2;
 public static final short HIERARCHY_REQUEST_ERR = 3;
 public static final short WRONG_DOCUMENT_ERR = 4;
 public static final short INVALID_CHARACTER_ERR = 5;
 public static final short NO_DATA_ALLOWED_ERR = 6;
 public static final short NO_MODIFICATION_ALLOWED_ERR = 7;
 public static final short NOT_FOUND_ERR = 8;
 public static final short NOT_SUPPORTED_ERR = 9;
 public static final short INUSE_ATTRIBUTE_ERR = 10;

}

// ExceptionCode
public static final short INDEX_SIZE_ERR = 1;
public static final short DOMSTRING_SIZE_ERR = 2;
public static final short HIERARCHY_REQUEST_ERR = 3;
public static final short WRONG_DOCUMENT_ERR = 4;
public static final short INVALID_CHARACTER_ERR = 5;
public static final short NO_DATA_ALLOWED_ERR = 6;
public static final short NO_MODIFICATION_ALLOWED_ERR = 7;
public static final short NOT_FOUND_ERR = 8;
public static final short NOT_SUPPORTED_ERR = 9;
public static final short INUSE_ATTRIBUTE_ERR = 10;

}

public interface DOMImplementation {
 public boolean hasFeature(String feature,
 String version);
}

public interface DocumentFragment extends Node {
}

public interface Document extends Node {
 public DocumentType getDoctype();

117

Appendix D: Java Language Binding

 public DOMImplementation getImplementation();
 public Element getDocumentElement();
 public Element createElement(String tagName)
 throws DOMException;
 public DocumentFragment createDocumentFragment();
 public Text createTextNode(String data);
 public Comment createComment(String data);
 public CDATASection createCDATASection(String data)
 throws DOMException;
 public ProcessingInstruction createProcessingInstruction(String target,
 String data)
 throws DOMException;
 public Attr createAttribute(String name)
 throws DOMException;
 public EntityReference createEntityReference(String name)
 throws DOMException;
 public NodeList getElementsByTagName(String tagname);
}

public interface Node {
 // NodeType
 public static final short ELEMENT_NODE = 1;
 public static final short ATTRIBUTE_NODE = 2;
 public static final short TEXT_NODE = 3;
 public static final short CDATA_SECTION_NODE = 4;
 public static final short ENTITY_REFERENCE_NODE = 5;
 public static final short ENTITY_NODE = 6;
 public static final short PROCESSING_INSTRUCTION_NODE = 7;
 public static final short COMMENT_NODE = 8;
 public static final short DOCUMENT_NODE = 9;
 public static final short DOCUMENT_TYPE_NODE = 10;
 public static final short DOCUMENT_FRAGMENT_NODE = 11;
 public static final short NOTATION_NODE = 12;

 public String getNodeName();
 public String getNodeValue()
 throws DOMException;
 public void setNodeValue(String nodeValue)
 throws DOMException;
 public short getNodeType();
 public Node getParentNode();
 public NodeList getChildNodes();
 public Node getFirstChild();
 public Node getLastChild();
 public Node getPreviousSibling();
 public Node getNextSibling();
 public NamedNodeMap getAttributes();
 public Document getOwnerDocument();
 public Node insertBefore(Node newChild,
 Node refChild)
 throws DOMException;
 public Node replaceChild(Node newChild,
 Node oldChild)
 throws DOMException;
 public Node removeChild(Node oldChild)
 throws DOMException;
 public Node appendChild(Node newChild)

118

D.1: Document Object Model Level 1 Core

 throws DOMException;
 public boolean hasChildNodes();
 public Node cloneNode(boolean deep);
}

public interface NodeList {
 public Node item(int index);
 public int getLength();
}

public interface NamedNodeMap {
 public Node getNamedItem(String name);
 public Node setNamedItem(Node arg)
 throws DOMException;
 public Node removeNamedItem(String name)
 throws DOMException;
 public Node item(int index);
 public int getLength();
}

public interface CharacterData extends Node {
 public String getData()
 throws DOMException;
 public void setData(String data)
 throws DOMException;
 public int getLength();
 public String substringData(int offset,
 int count)
 throws DOMException;
 public void appendData(String arg)
 throws DOMException;
 public void insertData(int offset,
 String arg)
 throws DOMException;
 public void deleteData(int offset,
 int count)
 throws DOMException;
 public void replaceData(int offset,
 int count,
 String arg)
 throws DOMException;
}

public interface Attr extends Node {
 public String getName();
 public boolean getSpecified();
 public String getValue();
 public void setValue(String value);
}

public interface Element extends Node {
 public String getTagName();
 public String getAttribute(String name);
 public void setAttribute(String name,
 String value)
 throws DOMException;
 public void removeAttribute(String name)

119

D.1: Document Object Model Level 1 Core

 throws DOMException;
 public Attr getAttributeNode(String name);
 public Attr setAttributeNode(Attr newAttr)
 throws DOMException;
 public Attr removeAttributeNode(Attr oldAttr)
 throws DOMException;
 public NodeList getElementsByTagName(String name);
 public void normalize();
}

public interface Text extends CharacterData {
 public Text splitText(int offset)
 throws DOMException;
}

public interface Comment extends CharacterData {
}

public interface CDATASection extends Text {
}

public interface DocumentType extends Node {
 public String getName();
 public NamedNodeMap getEntities();
 public NamedNodeMap getNotations();
}

public interface Notation extends Node {
 public String getPublicId();
 public String getSystemId();
}

public interface Entity extends Node {
 public String getPublicId();
 public String getSystemId();
 public String getNotationName();
}

public interface EntityReference extends Node {
}

public interface ProcessingInstruction extends Node {
 public String getTarget();
 public String getData();
 public void setData(String data)
 throws DOMException;
}

D.2: Document Object Model Level 1 HTML
public interface HTMLCollection {
 public int getLength();
 public Node item(int index);
 public Node namedItem(String name);
}

120

D.2: Document Object Model Level 1 HTML

public interface HTMLDocument extends Document {
 public String getTitle();
 public void setTitle(String title);
 public String getReferrer();
 public String getDomain();
 public String getURL();
 public HTMLElement getBody();
 public void setBody(HTMLElement body);
 public HTMLCollection getImages();
 public HTMLCollection getApplets();
 public HTMLCollection getLinks();
 public HTMLCollection getForms();
 public HTMLCollection getAnchors();
 public String getCookie();
 public void setCookie(String cookie);
 public void open();
 public void close();
 public void write(String text);
 public void writeln(String text);
 public Element getElementById(String elementId);
 public NodeList getElementsByName(String elementName);
}

public interface HTMLElement extends Element {
 public String getId();
 public void setId(String id);
 public String getTitle();
 public void setTitle(String title);
 public String getLang();
 public void setLang(String lang);
 public String getDir();
 public void setDir(String dir);
 public String getClassName();
 public void setClassName(String className);
}

public interface HTMLHtmlElement extends HTMLElement {
 public String getVersion();
 public void setVersion(String version);
}

public interface HTMLHeadElement extends HTMLElement {
 public String getProfile();
 public void setProfile(String profile);
}

public interface HTMLLinkElement extends HTMLElement {
 public boolean getDisabled();
 public void setDisabled(boolean disabled);
 public String getCharset();
 public void setCharset(String charset);
 public String getHref();
 public void setHref(String href);
 public String getHreflang();
 public void setHreflang(String hreflang);
 public String getMedia();
 public void setMedia(String media);

121

D.2: Document Object Model Level 1 HTML

 public String getRel();
 public void setRel(String rel);
 public String getRev();
 public void setRev(String rev);
 public String getTarget();
 public void setTarget(String target);
 public String getType();
 public void setType(String type);
}

public interface HTMLTitleElement extends HTMLElement {
 public String getText();
 public void setText(String text);
}

public interface HTMLMetaElement extends HTMLElement {
 public String getContent();
 public void setContent(String content);
 public String getHttpEquiv();
 public void setHttpEquiv(String httpEquiv);
 public String getName();
 public void setName(String name);
 public String getScheme();
 public void setScheme(String scheme);
}

public interface HTMLBaseElement extends HTMLElement {
 public String getHref();
 public void setHref(String href);
 public String getTarget();
 public void setTarget(String target);
}

public interface HTMLIsIndexElement extends HTMLElement {
 public HTMLFormElement getForm();
 public String getPrompt();
 public void setPrompt(String prompt);
}

public interface HTMLStyleElement extends HTMLElement {
 public boolean getDisabled();
 public void setDisabled(boolean disabled);
 public String getMedia();
 public void setMedia(String media);
 public String getType();
 public void setType(String type);
}

public interface HTMLBodyElement extends HTMLElement {
 public String getALink();
 public void setALink(String aLink);
 public String getBackground();
 public void setBackground(String background);
 public String getBgColor();
 public void setBgColor(String bgColor);
 public String getLink();
 public void setLink(String link);

122

D.2: Document Object Model Level 1 HTML

 public String getText();
 public void setText(String text);
 public String getVLink();
 public void setVLink(String vLink);
}

public interface HTMLFormElement extends HTMLElement {
 public HTMLCollection getElements();
 public int getLength();
 public String getName();
 public void setName(String name);
 public String getAcceptCharset();
 public void setAcceptCharset(String acceptCharset);
 public String getAction();
 public void setAction(String action);
 public String getEnctype();
 public void setEnctype(String enctype);
 public String getMethod();
 public void setMethod(String method);
 public String getTarget();
 public void setTarget(String target);
 public void submit();
 public void reset();
}

public interface HTMLSelectElement extends HTMLElement {
 public String getType();
 public int getSelectedIndex();
 public void setSelectedIndex(int selectedIndex);
 public String getValue();
 public void setValue(String value);
 public int getLength();
 public HTMLFormElement getForm();
 public HTMLCollection getOptions();
 public boolean getDisabled();
 public void setDisabled(boolean disabled);
 public boolean getMultiple();
 public void setMultiple(boolean multiple);
 public String getName();
 public void setName(String name);
 public int getSize();
 public void setSize(int size);
 public int getTabIndex();
 public void setTabIndex(int tabIndex);
 public void add(HTMLElement element,
 HTMLElement before);
 public void remove(int index);
 public void blur();
 public void focus();
}

public interface HTMLOptGroupElement extends HTMLElement {
 public boolean getDisabled();
 public void setDisabled(boolean disabled);
 public String getLabel();
 public void setLabel(String label);
}

123

D.2: Document Object Model Level 1 HTML

public interface HTMLOptionElement extends HTMLElement {
 public HTMLFormElement getForm();
 public boolean getDefaultSelected();
 public void setDefaultSelected(boolean defaultSelected);
 public String getText();
 public int getIndex();
 public void setIndex(int index);
 public boolean getDisabled();
 public void setDisabled(boolean disabled);
 public String getLabel();
 public void setLabel(String label);
 public boolean getSelected();
 public String getValue();
 public void setValue(String value);
}

public interface HTMLInputElement extends HTMLElement {
 public String getDefaultValue();
 public void setDefaultValue(String defaultValue);
 public boolean getDefaultChecked();
 public void setDefaultChecked(boolean defaultChecked);
 public HTMLFormElement getForm();
 public String getAccept();
 public void setAccept(String accept);
 public String getAccessKey();
 public void setAccessKey(String accessKey);
 public String getAlign();
 public void setAlign(String align);
 public String getAlt();
 public void setAlt(String alt);
 public boolean getChecked();
 public void setChecked(boolean checked);
 public boolean getDisabled();
 public void setDisabled(boolean disabled);
 public int getMaxLength();
 public void setMaxLength(int maxLength);
 public String getName();
 public void setName(String name);
 public boolean getReadOnly();
 public void setReadOnly(boolean readOnly);
 public String getSize();
 public void setSize(String size);
 public String getSrc();
 public void setSrc(String src);
 public int getTabIndex();
 public void setTabIndex(int tabIndex);
 public String getType();
 public String getUseMap();
 public void setUseMap(String useMap);
 public String getValue();
 public void setValue(String value);
 public void blur();
 public void focus();
 public void select();
 public void click();
}

124

D.2: Document Object Model Level 1 HTML

public interface HTMLTextAreaElement extends HTMLElement {
 public String getDefaultValue();
 public void setDefaultValue(String defaultValue);
 public HTMLFormElement getForm();
 public String getAccessKey();
 public void setAccessKey(String accessKey);
 public int getCols();
 public void setCols(int cols);
 public boolean getDisabled();
 public void setDisabled(boolean disabled);
 public String getName();
 public void setName(String name);
 public boolean getReadOnly();
 public void setReadOnly(boolean readOnly);
 public int getRows();
 public void setRows(int rows);
 public int getTabIndex();
 public void setTabIndex(int tabIndex);
 public String getType();
 public String getValue();
 public void setValue(String value);
 public void blur();
 public void focus();
 public void select();
}

public interface HTMLButtonElement extends HTMLElement {
 public HTMLFormElement getForm();
 public String getAccessKey();
 public void setAccessKey(String accessKey);
 public boolean getDisabled();
 public void setDisabled(boolean disabled);
 public String getName();
 public void setName(String name);
 public int getTabIndex();
 public void setTabIndex(int tabIndex);
 public String getType();
 public String getValue();
 public void setValue(String value);
}

public interface HTMLLabelElement extends HTMLElement {
 public HTMLFormElement getForm();
 public String getAccessKey();
 public void setAccessKey(String accessKey);
 public String getHtmlFor();
 public void setHtmlFor(String htmlFor);
}

public interface HTMLFieldSetElement extends HTMLElement {
 public HTMLFormElement getForm();
}

public interface HTMLLegendElement extends HTMLElement {
 public HTMLFormElement getForm();
 public String getAccessKey();

125

D.2: Document Object Model Level 1 HTML

 public void setAccessKey(String accessKey);
 public String getAlign();
 public void setAlign(String align);
}

public interface HTMLUListElement extends HTMLElement {
 public boolean getCompact();
 public void setCompact(boolean compact);
 public String getType();
 public void setType(String type);
}

public interface HTMLOListElement extends HTMLElement {
 public boolean getCompact();
 public void setCompact(boolean compact);
 public int getStart();
 public void setStart(int start);
 public String getType();
 public void setType(String type);
}

public interface HTMLDListElement extends HTMLElement {
 public boolean getCompact();
 public void setCompact(boolean compact);
}

public interface HTMLDirectoryElement extends HTMLElement {
 public boolean getCompact();
 public void setCompact(boolean compact);
}

public interface HTMLMenuElement extends HTMLElement {
 public boolean getCompact();
 public void setCompact(boolean compact);
}

public interface HTMLLIElement extends HTMLElement {
 public String getType();
 public void setType(String type);
 public int getValue();
 public void setValue(int value);
}

public interface HTMLBlockquoteElement extends HTMLElement {
 public String getCite();
 public void setCite(String cite);
}

public interface HTMLDivElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);
}

public interface HTMLParagraphElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);
}

126

D.2: Document Object Model Level 1 HTML

public interface HTMLHeadingElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);
}

public interface HTMLQuoteElement extends HTMLElement {
 public String getCite();
 public void setCite(String cite);
}

public interface HTMLPreElement extends HTMLElement {
 public int getWidth();
 public void setWidth(int width);
}

public interface HTMLBRElement extends HTMLElement {
 public String getClear();
 public void setClear(String clear);
}

public interface HTMLBaseFontElement extends HTMLElement {
 public String getColor();
 public void setColor(String color);
 public String getFace();
 public void setFace(String face);
 public String getSize();
 public void setSize(String size);
}

public interface HTMLFontElement extends HTMLElement {
 public String getColor();
 public void setColor(String color);
 public String getFace();
 public void setFace(String face);
 public String getSize();
 public void setSize(String size);
}

public interface HTMLHRElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);
 public boolean getNoShade();
 public void setNoShade(boolean noShade);
 public String getSize();
 public void setSize(String size);
 public String getWidth();
 public void setWidth(String width);
}

public interface HTMLModElement extends HTMLElement {
 public String getCite();
 public void setCite(String cite);
 public String getDateTime();
 public void setDateTime(String dateTime);
}

127

D.2: Document Object Model Level 1 HTML

public interface HTMLAnchorElement extends HTMLElement {
 public String getAccessKey();
 public void setAccessKey(String accessKey);
 public String getCharset();
 public void setCharset(String charset);
 public String getCoords();
 public void setCoords(String coords);
 public String getHref();
 public void setHref(String href);
 public String getHreflang();
 public void setHreflang(String hreflang);
 public String getName();
 public void setName(String name);
 public String getRel();
 public void setRel(String rel);
 public String getRev();
 public void setRev(String rev);
 public String getShape();
 public void setShape(String shape);
 public int getTabIndex();
 public void setTabIndex(int tabIndex);
 public String getTarget();
 public void setTarget(String target);
 public String getType();
 public void setType(String type);
 public void blur();
 public void focus();
}

public interface HTMLImageElement extends HTMLElement {
 public String getLowSrc();
 public void setLowSrc(String lowSrc);
 public String getName();
 public void setName(String name);
 public String getAlign();
 public void setAlign(String align);
 public String getAlt();
 public void setAlt(String alt);
 public String getBorder();
 public void setBorder(String border);
 public String getHeight();
 public void setHeight(String height);
 public String getHspace();
 public void setHspace(String hspace);
 public boolean getIsMap();
 public void setIsMap(boolean isMap);
 public String getLongDesc();
 public void setLongDesc(String longDesc);
 public String getSrc();
 public void setSrc(String src);
 public String getUseMap();
 public void setUseMap(String useMap);
 public String getVspace();
 public void setVspace(String vspace);
 public String getWidth();
 public void setWidth(String width);
}

128

D.2: Document Object Model Level 1 HTML

public interface HTMLObjectElement extends HTMLElement {
 public HTMLFormElement getForm();
 public String getCode();
 public void setCode(String code);
 public String getAlign();
 public void setAlign(String align);
 public String getArchive();
 public void setArchive(String archive);
 public String getBorder();
 public void setBorder(String border);
 public String getCodeBase();
 public void setCodeBase(String codeBase);
 public String getCodeType();
 public void setCodeType(String codeType);
 public String getData();
 public void setData(String data);
 public boolean getDeclare();
 public void setDeclare(boolean declare);
 public String getHeight();
 public void setHeight(String height);
 public String getHspace();
 public void setHspace(String hspace);
 public String getName();
 public void setName(String name);
 public String getStandby();
 public void setStandby(String standby);
 public int getTabIndex();
 public void setTabIndex(int tabIndex);
 public String getType();
 public void setType(String type);
 public String getUseMap();
 public void setUseMap(String useMap);
 public String getVspace();
 public void setVspace(String vspace);
 public String getWidth();
 public void setWidth(String width);
}

public interface HTMLParamElement extends HTMLElement {
 public String getName();
 public void setName(String name);
 public String getType();
 public void setType(String type);
 public String getValue();
 public void setValue(String value);
 public String getValueType();
 public void setValueType(String valueType);
}

public interface HTMLAppletElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);
 public String getAlt();
 public void setAlt(String alt);
 public String getArchive();
 public void setArchive(String archive);

129

D.2: Document Object Model Level 1 HTML

 public String getCode();
 public void setCode(String code);
 public String getCodeBase();
 public void setCodeBase(String codeBase);
 public String getHeight();
 public void setHeight(String height);
 public String getHspace();
 public void setHspace(String hspace);
 public String getName();
 public void setName(String name);
 public String getObject();
 public void setObject(String object);
 public String getVspace();
 public void setVspace(String vspace);
 public String getWidth();
 public void setWidth(String width);
}

public interface HTMLMapElement extends HTMLElement {
 public HTMLCollection getAreas();
 public String getName();
 public void setName(String name);
}

public interface HTMLAreaElement extends HTMLElement {
 public String getAccessKey();
 public void setAccessKey(String accessKey);
 public String getAlt();
 public void setAlt(String alt);
 public String getCoords();
 public void setCoords(String coords);
 public String getHref();
 public void setHref(String href);
 public boolean getNoHref();
 public void setNoHref(boolean noHref);
 public String getShape();
 public void setShape(String shape);
 public int getTabIndex();
 public void setTabIndex(int tabIndex);
 public String getTarget();
 public void setTarget(String target);
}

public interface HTMLScriptElement extends HTMLElement {
 public String getText();
 public void setText(String text);
 public String getHtmlFor();
 public void setHtmlFor(String htmlFor);
 public String getEvent();
 public void setEvent(String event);
 public String getCharset();
 public void setCharset(String charset);
 public boolean getDefer();
 public void setDefer(boolean defer);
 public String getSrc();
 public void setSrc(String src);
 public String getType();

130

D.2: Document Object Model Level 1 HTML

 public void setType(String type);
}

public interface HTMLTableElement extends HTMLElement {
 public HTMLTableCaptionElement getCaption();
 public void setCaption(HTMLTableCaptionElement caption);
 public HTMLTableSectionElement getTHead();
 public void setTHead(HTMLTableSectionElement tHead);
 public HTMLTableSectionElement getTFoot();
 public void setTFoot(HTMLTableSectionElement tFoot);
 public HTMLCollection getRows();
 public HTMLCollection getTBodies();
 public String getAlign();
 public void setAlign(String align);
 public String getBgColor();
 public void setBgColor(String bgColor);
 public String getBorder();
 public void setBorder(String border);
 public String getCellPadding();
 public void setCellPadding(String cellPadding);
 public String getCellSpacing();
 public void setCellSpacing(String cellSpacing);
 public String getFrame();
 public void setFrame(String frame);
 public String getRules();
 public void setRules(String rules);
 public String getSummary();
 public void setSummary(String summary);
 public String getWidth();
 public void setWidth(String width);
 public HTMLElement createTHead();
 public void deleteTHead();
 public HTMLElement createTFoot();
 public void deleteTFoot();
 public HTMLElement createCaption();
 public void deleteCaption();
 public HTMLElement insertRow(int index);
 public void deleteRow(int index);
}

public interface HTMLTableCaptionElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);
}

public interface HTMLTableColElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);
 public String getCh();
 public void setCh(String ch);
 public String getChOff();
 public void setChOff(String chOff);
 public int getSpan();
 public void setSpan(int span);
 public String getVAlign();
 public void setVAlign(String vAlign);
 public String getWidth();

131

D.2: Document Object Model Level 1 HTML

 public void setWidth(String width);
}

public interface HTMLTableSectionElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);
 public String getCh();
 public void setCh(String ch);
 public String getChOff();
 public void setChOff(String chOff);
 public String getVAlign();
 public void setVAlign(String vAlign);
 public HTMLCollection getRows();
 public HTMLElement insertRow(int index);
 public void deleteRow(int index);
}

public interface HTMLTableRowElement extends HTMLElement {
 public int getRowIndex();
 public void setRowIndex(int rowIndex);
 public int getSectionRowIndex();
 public void setSectionRowIndex(int sectionRowIndex);
 public HTMLCollection getCells();
 public void setCells(HTMLCollection cells);
 public String getAlign();
 public void setAlign(String align);
 public String getBgColor();
 public void setBgColor(String bgColor);
 public String getCh();
 public void setCh(String ch);
 public String getChOff();
 public void setChOff(String chOff);
 public String getVAlign();
 public void setVAlign(String vAlign);
 public HTMLElement insertCell(int index);
 public void deleteCell(int index);
}

public interface HTMLTableCellElement extends HTMLElement {
 public int getCellIndex();
 public void setCellIndex(int cellIndex);
 public String getAbbr();
 public void setAbbr(String abbr);
 public String getAlign();
 public void setAlign(String align);
 public String getAxis();
 public void setAxis(String axis);
 public String getBgColor();
 public void setBgColor(String bgColor);
 public String getCh();
 public void setCh(String ch);
 public String getChOff();
 public void setChOff(String chOff);
 public int getColSpan();
 public void setColSpan(int colSpan);
 public String getHeaders();
 public void setHeaders(String headers);

132

D.2: Document Object Model Level 1 HTML

 public String getHeight();
 public void setHeight(String height);
 public boolean getNoWrap();
 public void setNoWrap(boolean noWrap);
 public int getRowSpan();
 public void setRowSpan(int rowSpan);
 public String getScope();
 public void setScope(String scope);
 public String getVAlign();
 public void setVAlign(String vAlign);
 public String getWidth();
 public void setWidth(String width);
}

public interface HTMLFrameSetElement extends HTMLElement {
 public String getCols();
 public void setCols(String cols);
 public String getRows();
 public void setRows(String rows);
}

public interface HTMLFrameElement extends HTMLElement {
 public String getFrameBorder();
 public void setFrameBorder(String frameBorder);
 public String getLongDesc();
 public void setLongDesc(String longDesc);
 public String getMarginHeight();
 public void setMarginHeight(String marginHeight);
 public String getMarginWidth();
 public void setMarginWidth(String marginWidth);
 public String getName();
 public void setName(String name);
 public boolean getNoResize();
 public void setNoResize(boolean noResize);
 public String getScrolling();
 public void setScrolling(String scrolling);
 public String getSrc();
 public void setSrc(String src);
}

public interface HTMLIFrameElement extends HTMLElement {
 public String getAlign();
 public void setAlign(String align);
 public String getFrameBorder();
 public void setFrameBorder(String frameBorder);
 public String getHeight();
 public void setHeight(String height);
 public String getLongDesc();
 public void setLongDesc(String longDesc);
 public String getMarginHeight();
 public void setMarginHeight(String marginHeight);
 public String getMarginWidth();
 public void setMarginWidth(String marginWidth);
 public String getName();
 public void setName(String name);
 public String getScrolling();
 public void setScrolling(String scrolling);

133

D.2: Document Object Model Level 1 HTML

 public String getSrc();
 public void setSrc(String src);
 public String getWidth();
 public void setWidth(String width);
}

134

D.2: Document Object Model Level 1 HTML

Appendix E: ECMA Script Language Binding
This appendix contains the complete ECMA Script binding for the Level 1 Document Object Model
definitions. The definitions are divided into Core and HTML.

E.1: Document Object Model Level 1 Core
Object DOMException
Object ExceptionCode
Object DOMImplementation

The DOMImplementation object has the following methods:
hasFeature(feature, version)

This method returns a boolean. The feature parameter is of type DOMString . The version
parameter is of type DOMString .

Object DocumentFragment
DocumentFragment has the all the properties and methods of Node as well as the properties and
methods defined below.

Object Document
Document has the all the properties and methods of Node as well as the properties and methods
defined below.
The Document object has the following properties:

doctype
This property is of type DocumentType.

implementation
This property is of type DOMImplementation .

documentElement
This property is of type Element.

The Document object has the following methods:
createElement(tagName)

This method returns a Element. The tagName parameter is of type DOMString .
createDocumentFragment()

This method returns a DocumentFragment.
createTextNode(data)

This method returns a Text. The data parameter is of type DOMString .
createComment(data)

This method returns a Comment. The data parameter is of type DOMString .
createCDATASection(data)

This method returns a CDATASection. The data parameter is of type DOMString .
createProcessingInstruction(target, data)

This method returns a ProcessingInstruction. The target parameter is of type
DOMString . The data parameter is of type DOMString .

createAttribute(name)
This method returns a Attr . The name parameter is of type DOMString .

createEntityReference(name)
This method returns a EntityReference. The name parameter is of type DOMString .

135

Appendix E: ECMA Script Language Binding

getElementsByTagName(tagname)
This method returns a NodeList. The tagname parameter is of type DOMString .

Object Node
The Node object has the following properties:

nodeName
This property is of type String.

nodeValue
This property is of type String.

nodeType
This property is of type short.

parentNode
This property is of type Node.

childNodes
This property is of type NodeList.

firstChild
This property is of type Node.

lastChild
This property is of type Node.

previousSibling
This property is of type Node.

nextSibling
This property is of type Node.

attributes
This property is of type NamedNodeMap.

ownerDocument
This property is of type Document.

The Node object has the following methods:
insertBefore(newChild, refChild)

This method returns a Node. The newChild parameter is of type Node. The refChild
parameter is of type Node.

replaceChild(newChild, oldChild)
This method returns a Node. The newChild parameter is of type Node. The oldChild
parameter is of type Node.

removeChild(oldChild)
This method returns a Node. The oldChild parameter is of type Node.

appendChild(newChild)
This method returns a Node. The newChild parameter is of type Node.

hasChildNodes()
This method returns a boolean.

cloneNode(deep)
This method returns a Node. The deep parameter is of type boolean.

Object NodeList
The NodeList object has the following properties:

length
This property is of type int .

136

E.1: Document Object Model Level 1 Core

The NodeList object has the following methods:
item(index)

This method returns a Node. The index parameter is of type unsigned long.
Object NamedNodeMap

The NamedNodeMap object has the following properties:
length

This property is of type int .
The NamedNodeMap object has the following methods:

getNamedItem(name)
This method returns a Node. The name parameter is of type DOMString .

setNamedItem(arg)
This method returns a Node. The arg parameter is of type Node.

removeNamedItem(name)
This method returns a Node. The name parameter is of type DOMString .

item(index)
This method returns a Node. The index parameter is of type unsigned long.

Object CharacterData
CharacterData has the all the properties and methods of Node as well as the properties and methods
defined below.
The CharacterData object has the following properties:

data
This property is of type String.

length
This property is of type int .

The CharacterData object has the following methods:
substringData(offset, count)

This method returns a DOMString . The offset parameter is of type unsigned long. The
count parameter is of type unsigned long.

appendData(arg)
This method returns a void. The arg parameter is of type DOMString .

insertData(offset, arg)
This method returns a void. The offset parameter is of type unsigned long. The arg
parameter is of type DOMString .

deleteData(offset, count)
This method returns a void. The offset parameter is of type unsigned long. The count
parameter is of type unsigned long.

replaceData(offset, count, arg)
This method returns a void. The offset parameter is of type unsigned long. The count
parameter is of type unsigned long. The arg parameter is of type DOMString .

Object Attr
Attr has the all the properties and methods of Node as well as the properties and methods defined
below.
The Attr object has the following properties:

name
This property is of type String.

137

E.1: Document Object Model Level 1 Core

specified
This property is of type boolean.

value
This property is of type String.

Object Element
Element has the all the properties and methods of Node as well as the properties and methods
defined below.
The Element object has the following properties:

tagName
This property is of type String.

The Element object has the following methods:
getAttribute(name)

This method returns a DOMString . The name parameter is of type DOMString .
setAttribute(name, value)

This method returns a void. The name parameter is of type DOMString . The value
parameter is of type DOMString .

removeAttribute(name)
This method returns a void. The name parameter is of type DOMString .

getAttributeNode(name)
This method returns a Attr . The name parameter is of type DOMString .

setAttributeNode(newAttr)
This method returns a Attr . The newAttr parameter is of type Attr .

removeAttributeNode(oldAttr)
This method returns a Attr . The oldAttr parameter is of type Attr .

getElementsByTagName(name)
This method returns a NodeList. The name parameter is of type DOMString .

normalize()
This method returns a void.

Object Text
Text has the all the properties and methods of CharacterData as well as the properties and methods
defined below.
The Text object has the following methods:

splitText(offset)
This method returns a Text. The offset parameter is of type unsigned long.

Object Comment
Comment has the all the properties and methods of CharacterData as well as the properties and
methods defined below.

Object CDATASection
CDATASection has the all the properties and methods of Text as well as the properties and methods
defined below.

Object DocumentType
DocumentType has the all the properties and methods of Node as well as the properties and methods
defined below.
The DocumentType object has the following properties:

name
This property is of type String.

138

E.1: Document Object Model Level 1 Core

entities
This property is of type NamedNodeMap.

notations
This property is of type NamedNodeMap.

Object Notation
Notation has the all the properties and methods of Node as well as the properties and methods
defined below.
The Notation object has the following properties:

publicId
This property is of type String.

systemId
This property is of type String.

Object Entity
Entity has the all the properties and methods of Node as well as the properties and methods defined
below.
The Entity object has the following properties:

publicId
This property is of type String.

systemId
This property is of type String.

notationName
This property is of type String.

Object EntityReference
EntityReference has the all the properties and methods of Node as well as the properties and
methods defined below.

Object ProcessingInstruction
ProcessingInstruction has the all the properties and methods of Node as well as the properties and
methods defined below.
The ProcessingInstruction object has the following properties:

target
This property is of type String.

data
This property is of type String.

E.2: Document Object Model Level 1 HTML
Object HTMLCollection

The HTMLCollection object has the following properties:
length

This property is of type int .
The HTMLCollection object has the following methods:

item(index)
This method returns a Node. The index parameter is of type unsigned long.

namedItem(name)
This method returns a Node. The name parameter is of type DOMString .

139

E.2: Document Object Model Level 1 HTML

Object HTMLDocument
HTMLDocument has the all the properties and methods of Document as well as the properties and
methods defined below.
The HTMLDocument object has the following properties:

title
This property is of type String.

referrer
This property is of type String.

domain
This property is of type String.

URL
This property is of type String.

body
This property is of type HTMLElement .

images
This property is of type HTMLCollection .

applets
This property is of type HTMLCollection .

links
This property is of type HTMLCollection .

forms
This property is of type HTMLCollection .

anchors
This property is of type HTMLCollection .

cookie
This property is of type String.

The HTMLDocument object has the following methods:
open()

This method returns a void.
close()

This method returns a void.
write(text)

This method returns a void. The text parameter is of type DOMString .
writeln(text)

This method returns a void. The text parameter is of type DOMString .
getElementById(elementId)

This method returns a Element. The elementId parameter is of type DOMString .
getElementsByName(elementName)

This method returns a NodeList. The elementName parameter is of type DOMString .
Object HTMLElement

HTMLElement has the all the properties and methods of Element as well as the properties and
methods defined below.
The HTMLElement object has the following properties:

id
This property is of type String.

140

E.2: Document Object Model Level 1 HTML

title
This property is of type String.

lang
This property is of type String.

dir
This property is of type String.

className
This property is of type String.

Object HTMLHtmlElement
HTMLHtmlElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLHtmlElement object has the following properties:

version
This property is of type String.

Object HTMLHeadElement
HTMLHeadElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLHeadElement object has the following properties:

profile
This property is of type String.

Object HTMLLinkElement
HTMLLinkElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLLinkElement object has the following properties:

disabled
This property is of type boolean.

charset
This property is of type String.

href
This property is of type String.

hreflang
This property is of type String.

media
This property is of type String.

rel
This property is of type String.

rev
This property is of type String.

target
This property is of type String.

type
This property is of type String.

Object HTMLTitleElement
HTMLTitleElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.

141

E.2: Document Object Model Level 1 HTML

The HTMLTitleElement object has the following properties:
text

This property is of type String.
Object HTMLMetaElement

HTMLMetaElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLMetaElement object has the following properties:

content
This property is of type String.

httpEquiv
This property is of type String.

name
This property is of type String.

scheme
This property is of type String.

Object HTMLBaseElement
HTMLBaseElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLBaseElement object has the following properties:

href
This property is of type String.

target
This property is of type String.

Object HTMLIsIndexElement
HTMLIsIndexElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLIsIndexElement object has the following properties:

form
This property is of type HTMLFormElement .

prompt
This property is of type String.

Object HTMLStyleElement
HTMLStyleElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLStyleElement object has the following properties:

disabled
This property is of type boolean.

media
This property is of type String.

type
This property is of type String.

Object HTMLBodyElement
HTMLBodyElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLBodyElement object has the following properties:

142

E.2: Document Object Model Level 1 HTML

aLink
This property is of type String.

background
This property is of type String.

bgColor
This property is of type String.

link
This property is of type String.

text
This property is of type String.

vLink
This property is of type String.

Object HTMLFormElement
HTMLFormElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLFormElement object has the following properties:

elements
This property is of type HTMLCollection .

length
This property is of type long.

name
This property is of type String.

acceptCharset
This property is of type String.

action
This property is of type String.

enctype
This property is of type String.

method
This property is of type String.

target
This property is of type String.

The HTMLFormElement object has the following methods:
submit()

This method returns a void.
reset()

This method returns a void.
Object HTMLSelectElement

HTMLSelectElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLSelectElement object has the following properties:

type
This property is of type String.

selectedIndex
This property is of type long.

143

E.2: Document Object Model Level 1 HTML

value
This property is of type String.

length
This property is of type long.

form
This property is of type HTMLFormElement .

options
This property is of type HTMLCollection .

disabled
This property is of type boolean.

multiple
This property is of type boolean.

name
This property is of type String.

size
This property is of type long.

tabIndex
This property is of type long.

The HTMLSelectElement object has the following methods:
add(element, before)

This method returns a void. The element parameter is of type HTMLElement . The before
parameter is of type HTMLElement .

remove(index)
This method returns a void. The index parameter is of type long.

blur()
This method returns a void.

focus()
This method returns a void.

Object HTMLOptGroupElement
HTMLOptGroupElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLOptGroupElement object has the following properties:

disabled
This property is of type boolean.

label
This property is of type String.

Object HTMLOptionElement
HTMLOptionElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLOptionElement object has the following properties:

form
This property is of type HTMLFormElement .

defaultSelected
This property is of type boolean.

text
This property is of type String.

144

E.2: Document Object Model Level 1 HTML

index
This property is of type long.

disabled
This property is of type boolean.

label
This property is of type String.

selected
This property is of type boolean.

value
This property is of type String.

Object HTMLInputElement
HTMLInputElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLInputElement object has the following properties:

defaultValue
This property is of type String.

defaultChecked
This property is of type boolean.

form
This property is of type HTMLFormElement .

accept
This property is of type String.

accessKey
This property is of type String.

align
This property is of type String.

alt
This property is of type String.

checked
This property is of type boolean.

disabled
This property is of type boolean.

maxLength
This property is of type long.

name
This property is of type String.

readOnly
This property is of type boolean.

size
This property is of type String.

src
This property is of type String.

tabIndex
This property is of type long.

type
This property is of type String.

145

E.2: Document Object Model Level 1 HTML

useMap
This property is of type String.

value
This property is of type String.

The HTMLInputElement object has the following methods:
blur()

This method returns a void.
focus()

This method returns a void.
select()

This method returns a void.
click()

This method returns a void.
Object HTMLTextAreaElement

HTMLTextAreaElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLTextAreaElement object has the following properties:

defaultValue
This property is of type String.

form
This property is of type HTMLFormElement .

accessKey
This property is of type String.

cols
This property is of type long.

disabled
This property is of type boolean.

name
This property is of type String.

readOnly
This property is of type boolean.

rows
This property is of type long.

tabIndex
This property is of type long.

type
This property is of type String.

value
This property is of type String.

The HTMLTextAreaElement object has the following methods:
blur()

This method returns a void.
focus()

This method returns a void.
select()

This method returns a void.

146

E.2: Document Object Model Level 1 HTML

Object HTMLButtonElement
HTMLButtonElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLButtonElement object has the following properties:

form
This property is of type HTMLFormElement .

accessKey
This property is of type String.

disabled
This property is of type boolean.

name
This property is of type String.

tabIndex
This property is of type long.

type
This property is of type String.

value
This property is of type String.

Object HTMLLabelElement
HTMLLabelElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLLabelElement object has the following properties:

form
This property is of type HTMLFormElement .

accessKey
This property is of type String.

htmlFor
This property is of type String.

Object HTMLFieldSetElement
HTMLFieldSetElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLFieldSetElement object has the following properties:

form
This property is of type HTMLFormElement .

Object HTMLLegendElement
HTMLLegendElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLLegendElement object has the following properties:

form
This property is of type HTMLFormElement .

accessKey
This property is of type String.

align
This property is of type String.

Object HTMLUListElement

147

E.2: Document Object Model Level 1 HTML

HTMLUListElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLUListElement object has the following properties:

compact
This property is of type boolean.

type
This property is of type String.

Object HTMLOListElement
HTMLOListElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLOListElement object has the following properties:

compact
This property is of type boolean.

start
This property is of type long.

type
This property is of type String.

Object HTMLDListElement
HTMLDListElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLDListElement object has the following properties:

compact
This property is of type boolean.

Object HTMLDirectoryElement
HTMLDirectoryElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLDirectoryElement object has the following properties:

compact
This property is of type boolean.

Object HTMLMenuElement
HTMLMenuElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLMenuElement object has the following properties:

compact
This property is of type boolean.

Object HTMLLIElement
HTMLLIElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLLIElement object has the following properties:

type
This property is of type String.

value
This property is of type long.

Object HTMLBlockquoteElement
HTMLBlockquoteElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.

148

E.2: Document Object Model Level 1 HTML

The HTMLBlockquoteElement object has the following properties:
cite

This property is of type String.
Object HTMLDivElement

HTMLDivElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLDivElement object has the following properties:

align
This property is of type String.

Object HTMLParagraphElement
HTMLParagraphElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLParagraphElement object has the following properties:

align
This property is of type String.

Object HTMLHeadingElement
HTMLHeadingElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLHeadingElement object has the following properties:

align
This property is of type String.

Object HTMLQuoteElement
HTMLQuoteElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLQuoteElement object has the following properties:

cite
This property is of type String.

Object HTMLPreElement
HTMLPreElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLPreElement object has the following properties:

width
This property is of type long.

Object HTMLBRElement
HTMLBRElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLBRElement object has the following properties:

clear
This property is of type String.

Object HTMLBaseFontElement
HTMLBaseFontElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLBaseFontElement object has the following properties:

color
This property is of type String.

149

E.2: Document Object Model Level 1 HTML

face
This property is of type String.

size
This property is of type String.

Object HTMLFontElement
HTMLFontElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLFontElement object has the following properties:

color
This property is of type String.

face
This property is of type String.

size
This property is of type String.

Object HTMLHRElement
HTMLHRElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLHRElement object has the following properties:

align
This property is of type String.

noShade
This property is of type boolean.

size
This property is of type String.

width
This property is of type String.

Object HTMLModElement
HTMLModElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLModElement object has the following properties:

cite
This property is of type String.

dateTime
This property is of type String.

Object HTMLAnchorElement
HTMLAnchorElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLAnchorElement object has the following properties:

accessKey
This property is of type String.

charset
This property is of type String.

coords
This property is of type String.

href
This property is of type String.

150

E.2: Document Object Model Level 1 HTML

hreflang
This property is of type String.

name
This property is of type String.

rel
This property is of type String.

rev
This property is of type String.

shape
This property is of type String.

tabIndex
This property is of type long.

target
This property is of type String.

type
This property is of type String.

The HTMLAnchorElement object has the following methods:
blur()

This method returns a void.
focus()

This method returns a void.
Object HTMLImageElement

HTMLImageElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLImageElement object has the following properties:

lowSrc
This property is of type String.

name
This property is of type String.

align
This property is of type String.

alt
This property is of type String.

border
This property is of type String.

height
This property is of type String.

hspace
This property is of type String.

isMap
This property is of type boolean.

longDesc
This property is of type String.

src
This property is of type String.

151

E.2: Document Object Model Level 1 HTML

useMap
This property is of type String.

vspace
This property is of type String.

width
This property is of type String.

Object HTMLObjectElement
HTMLObjectElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLObjectElement object has the following properties:

form
This property is of type HTMLFormElement .

code
This property is of type String.

align
This property is of type String.

archive
This property is of type String.

border
This property is of type String.

codeBase
This property is of type String.

codeType
This property is of type String.

data
This property is of type String.

declare
This property is of type boolean.

height
This property is of type String.

hspace
This property is of type String.

name
This property is of type String.

standby
This property is of type String.

tabIndex
This property is of type long.

type
This property is of type String.

useMap
This property is of type String.

vspace
This property is of type String.

width
This property is of type String.

152

E.2: Document Object Model Level 1 HTML

Object HTMLParamElement
HTMLParamElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLParamElement object has the following properties:

name
This property is of type String.

type
This property is of type String.

value
This property is of type String.

valueType
This property is of type String.

Object HTMLAppletElement
HTMLAppletElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLAppletElement object has the following properties:

align
This property is of type String.

alt
This property is of type String.

archive
This property is of type String.

code
This property is of type String.

codeBase
This property is of type String.

height
This property is of type String.

hspace
This property is of type String.

name
This property is of type String.

object
This property is of type String.

vspace
This property is of type String.

width
This property is of type String.

Object HTMLMapElement
HTMLMapElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLMapElement object has the following properties:

areas
This property is of type HTMLCollection .

name
This property is of type String.

153

E.2: Document Object Model Level 1 HTML

Object HTMLAreaElement
HTMLAreaElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLAreaElement object has the following properties:

accessKey
This property is of type String.

alt
This property is of type String.

coords
This property is of type String.

href
This property is of type String.

noHref
This property is of type boolean.

shape
This property is of type String.

tabIndex
This property is of type long.

target
This property is of type String.

Object HTMLScriptElement
HTMLScriptElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLScriptElement object has the following properties:

text
This property is of type String.

htmlFor
This property is of type String.

event
This property is of type String.

charset
This property is of type String.

defer
This property is of type boolean.

src
This property is of type String.

type
This property is of type String.

Object HTMLTableElement
HTMLTableElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLTableElement object has the following properties:

caption
This property is of type HTMLTableCaptionElement .

tHead
This property is of type HTMLTableSectionElement.

154

E.2: Document Object Model Level 1 HTML

tFoot
This property is of type HTMLTableSectionElement.

rows
This property is of type HTMLCollection .

tBodies
This property is of type HTMLCollection .

align
This property is of type String.

bgColor
This property is of type String.

border
This property is of type String.

cellPadding
This property is of type String.

cellSpacing
This property is of type String.

frame
This property is of type String.

rules
This property is of type String.

summary
This property is of type String.

width
This property is of type String.

The HTMLTableElement object has the following methods:
createTHead()

This method returns a HTMLElement .
deleteTHead()

This method returns a void.
createTFoot()

This method returns a HTMLElement .
deleteTFoot()

This method returns a void.
createCaption()

This method returns a HTMLElement .
deleteCaption()

This method returns a void.
insertRow(index)

This method returns a HTMLElement . The index parameter is of type long.
deleteRow(index)

This method returns a void. The index parameter is of type long.
Object HTMLTableCaptionElement

HTMLTableCaptionElement has the all the properties and methods of HTMLElement as well as
the properties and methods defined below.
The HTMLTableCaptionElement object has the following properties:

155

E.2: Document Object Model Level 1 HTML

align
This property is of type String.

Object HTMLTableColElement
HTMLTableColElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLTableColElement object has the following properties:

align
This property is of type String.

ch
This property is of type String.

chOff
This property is of type String.

span
This property is of type long.

vAlign
This property is of type String.

width
This property is of type String.

Object HTMLTableSectionElement
HTMLTableSectionElement has the all the properties and methods of HTMLElement as well as
the properties and methods defined below.
The HTMLTableSectionElement object has the following properties:

align
This property is of type String.

ch
This property is of type String.

chOff
This property is of type String.

vAlign
This property is of type String.

rows
This property is of type HTMLCollection .

The HTMLTableSectionElement object has the following methods:
insertRow(index)

This method returns a HTMLElement . The index parameter is of type long.
deleteRow(index)

This method returns a void. The index parameter is of type long.
Object HTMLTableRowElement

HTMLTableRowElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLTableRowElement object has the following properties:

rowIndex
This property is of type long.

sectionRowIndex
This property is of type long.

156

E.2: Document Object Model Level 1 HTML

cells
This property is of type HTMLCollection .

align
This property is of type String.

bgColor
This property is of type String.

ch
This property is of type String.

chOff
This property is of type String.

vAlign
This property is of type String.

The HTMLTableRowElement object has the following methods:
insertCell(index)

This method returns a HTMLElement . The index parameter is of type long.
deleteCell(index)

This method returns a void. The index parameter is of type long.
Object HTMLTableCellElement

HTMLTableCellElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLTableCellElement object has the following properties:

cellIndex
This property is of type long.

abbr
This property is of type String.

align
This property is of type String.

axis
This property is of type String.

bgColor
This property is of type String.

ch
This property is of type String.

chOff
This property is of type String.

colSpan
This property is of type long.

headers
This property is of type String.

height
This property is of type String.

noWrap
This property is of type boolean.

rowSpan
This property is of type long.

157

E.2: Document Object Model Level 1 HTML

scope
This property is of type String.

vAlign
This property is of type String.

width
This property is of type String.

Object HTMLFrameSetElement
HTMLFrameSetElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLFrameSetElement object has the following properties:

cols
This property is of type String.

rows
This property is of type String.

Object HTMLFrameElement
HTMLFrameElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLFrameElement object has the following properties:

frameBorder
This property is of type String.

longDesc
This property is of type String.

marginHeight
This property is of type String.

marginWidth
This property is of type String.

name
This property is of type String.

noResize
This property is of type boolean.

scrolling
This property is of type String.

src
This property is of type String.

Object HTMLIFrameElement
HTMLIFrameElement has the all the properties and methods of HTMLElement as well as the
properties and methods defined below.
The HTMLIFrameElement object has the following properties:

align
This property is of type String.

frameBorder
This property is of type String.

height
This property is of type String.

longDesc
This property is of type String.

158

E.2: Document Object Model Level 1 HTML

marginHeight
This property is of type String.

marginWidth
This property is of type String.

name
This property is of type String.

scrolling
This property is of type String.

src
This property is of type String.

width
This property is of type String.

159

E.2: Document Object Model Level 1 HTML

160

E.2: Document Object Model Level 1 HTML

References
XML

W3C (World Wide Web Consortium) Extensible Markup Language (XML) 1.0. See
http://www.w3.org/TR/REC-xml .

HTML4.0
W3C (World Wide Web Consortium) HTML 4.0 Specification. See
http://www.w3.org/TR/REC-html40 .

Unicode
The Unicode Consortium. The Unicode Standard, Version 2.0. Reading, Mass.: Addison-Wesley
Developers Press, 1996.

CORBA
OMG (Object Management Group) The Common Object Request Broker: Architecture and
Specification. See http://www.omg.org/corba/corbiiop.htm .

Java
Sun The Java Language Specification. See http://java.sun.com/docs/books/jls/ .

ECMAScript
ECMA (European Computer Manufacturers Association) ECMAScript Language Specification. See
http://www.ecma.ch/stand/ECMA-262.htm .

161

References

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-html40
http://www.omg.org/corba/corbiiop.htm
http://java.sun.com/docs/books/jls/
http://www.ecma.ch/stand/ECMA-262.htm

162

References

Index
ATTRIBUTE_NODE 26 Attr 37 CDATASection 43

CDATA_SECTION_NODE 26 COMMENT_NODE 26 CharacterData 34

Comment 43 DOCUMENT_FRAGMENT_NODE 26 DOCUMENT_NODE 26

DOCUMENT_TYPE_NODE
26

DOMException 19 DOMImplementation 20

DOMSTRING_SIZE_ERR 19 Document 22 DocumentFragment 21

DocumentType 44 ELEMENT_NODE 26 ENTITY_NODE 26

ENTITY_REFERENCE_NODE
26

Element 38 Entity 45

EntityReference 46 HIERARCHY_REQUEST_ERR 19 HTMLAnchorElement 76

HTMLAppletElement 81 HTMLAreaElement 82 HTMLBRElement 74

HTMLBaseElement 59 HTMLBaseFontElement 74 HTMLBlockquoteElement 72

HTMLBodyElement 60 HTMLButtonElement 68 HTMLCollection 51

HTMLDListElement 71 HTMLDirectoryElement 71 HTMLDivElement 73

HTMLDocument 52 HTMLElement 56 HTMLFieldSetElement 70

HTMLFontElement 75 HTMLFormElement 61 HTMLFrameElement 91

HTMLFrameSetElement 91 HTMLHRElement 75 HTMLHeadElement 57

HTMLHeadingElement 73 HTMLHtmlElement 57 HTMLIFrameElement 92

HTMLImageElement 77 HTMLInputElement 65 HTMLIsIndexElement 59

HTMLLIElement 72 HTMLLabelElement 69 HTMLLegendElement 70

HTMLLinkElement 57 HTMLMapElement 82 HTMLMenuElement 72

HTMLMetaElement 58 HTMLModElement 76 HTMLOListElement 71

HTMLObjectElement 79 HTMLOptGroupElement 63 HTMLOptionElement 64

HTMLParagraphElement 73 HTMLParamElement 80 HTMLPreElement 74

HTMLQuoteElement 73 HTMLScriptElement 83 HTMLSelectElement 62

HTMLStyleElement 59 HTMLTableCaptionElement 86 HTMLTableCellElement 90

HTMLTableColElement 87 HTMLTableElement 84 HTMLTableRowElement 88

HTMLTableSectionElement 87 HTMLTextAreaElement 67 HTMLTitleElement 58

HTMLUListElement 70 INDEX_SIZE_ERR 19 INUSE_ATTRIBUTE_ERR 19

INVALID_CHARACTER_ERR
19

NOTATION_NODE 26 NOT_FOUND_ERR 19

NOT_SUPPORTED_ERR 19 NO_DATA_ALLOWED_ERR 19
NO_MODIFICATION_ALLOWED_ERR
19

163

Index

NamedNodeMap 32 Node 25 NodeList 32

Notation 44
PROCESSING_INSTRUCTION_NODE
26

ProcessingInstruction 46

TEXT_NODE 26 Text 42 URL 53

WRONG_DOCUMENT_ERR
19

aLink 60 abbr 90

accept 65 acceptCharset 61 accessKey 65, 67, 69, 69, 70, 77, 83

action 61 add 63
align 66, 70, 73, 73, 73, 75, 78, 79, 81, 85,
87, 87, 88, 89, 90, 92

alt 66, 78, 81, 83 anchors 53 appendChild 30

appendData 35 applets 53 archive 79, 81

areas 82 attributes 29 axis 90

background 60 bgColor 60, 85, 89, 90 blur 63, 66, 68, 77

body 53 border 78, 79, 85 caption 84

cellIndex 90 cellPadding 85 cellSpacing 85

cells 89 ch 87, 88, 89, 90 chOff 87, 88, 89, 90

charset 58, 77, 83 checked 66 childNodes 29

cite 73, 74, 76 className 57 clear 74

click 67 cloneNode 31 close 54

code 79, 81 codeBase 79, 81 codeType 79

colSpan 90 color 75, 75 cols 68, 91

compact 71, 71, 71, 72, 72 content 59 cookie 53

coords 77, 83 createAttribute 24 createCDATASection 23

createCaption 86 createComment 23 createDocumentFragment 23

createElement 23 createEntityReference 24 createProcessingInstruction 24

createTFoot 85 createTHead 85 createTextNode 23

data 35, 47, 80 dateTime 76 declare 80

defaultChecked 65 defaultSelected 64 defaultValue 65, 67

defer 84 deleteCaption 86 deleteCell 89

deleteData 36 deleteRow 86, 88 deleteTFoot 86

deleteTHead 85 dir 56 disabled 58, 60, 62, 64, 64, 66, 68, 69

doctype 22 documentElement 22 domain 53

elements 61 enctype 61 entities 44

event 83 face 75, 75 firstChild 29

164

Index

focus 63, 67, 68, 77
form 59, 62, 64, 65, 67, 69, 69, 70, 70,
79

forms 53

frame 85 frameBorder 91, 92 getAttribute 39

getAttributeNode 40 getElementById 54 getElementsByName 55

getElementsByTagName 25, 41 getNamedItem 33 hasChildNodes 31

hasFeature 21 headers 90 height 78, 80, 81, 90, 92

href 58, 59, 77, 83 hreflang 58, 77 hspace 78, 80, 82

htmlFor 70, 83 httpEquiv 59 id 56

images 53 implementation 22 index 64

insertBefore 29 insertCell 89 insertData 36

insertRow 86, 88 isMap 78 item 32, 34, 51

label 64, 64 lang 56 lastChild 29

length 32, 34, 35, 51, 61, 62 link 60 links 53

longDesc 78, 91, 92 lowSrc 78 marginHeight 92, 92

marginWidth 92, 92 maxLength 66 media 58, 60

method 61 multiple 63
name 38, 44, 59, 61, 63, 66, 68, 69, 77, 78,
80, 80, 82, 82, 92, 93

namedItem 52 nextSibling 29 noHref 83

noResize 92 noShade 76 noWrap 90

nodeName 28 nodeType 28 nodeValue 28

normalize 42 notationName 46 notations 44

object 82 open 53 options 62

ownerDocument 29 parentNode 28 previousSibling 29

profile 57 prompt 59 publicId 45, 46

readOnly 66, 68 referrer 53 rel 58, 77

remove 63 removeAttribute 40 removeAttributeNode 41

removeChild 30 removeNamedItem 33 replaceChild 30

replaceData 37 reset 62 rev 58, 77

rowIndex 89 rowSpan 91 rows 68, 84, 88, 91

rules 85 scheme 59 scope 91

scrolling 92, 93 sectionRowIndex 89 select 67, 68

selected 64 selectedIndex 62 setAttribute 40

setAttributeNode 41 setNamedItem 33 shape 77, 83

size 63, 66, 75, 75, 76 span 87 specified 38

165

Index

splitText 42 src 66, 78, 84, 92, 93 standby 80

start 71 submit 61 substringData 35

summary 85 systemId 45, 46 tBodies 85

tFoot 84 tHead 84 tabIndex 63, 66, 68, 69, 77, 80, 83

tagName 39 target 47, 58, 59, 61, 77, 83 text 58, 60, 64, 83

title 53, 56
type 58, 60, 62, 66, 67, 69, 71, 71, 72,
77, 80, 81, 84

useMap 66, 78, 80

vAlign 87, 88, 89, 91 vLink 61 value 38, 62, 65, 66, 68, 69, 72, 81

valueType 81 version 57 vspace 78, 80, 82

width 74, 76, 79, 80, 82, 85, 87,
91, 93

write 54 writeln 54

166

Index

Production Notes (Non-Normative)
Editors

Gavin Nicol, Inso EPS

167

Production Notes (Non-Normative)

The DOM specification serves as a good example of the power of using XML: all of the HTML
documents, Java bindings, OMG IDL bindings, and ECMA Script bindings are generated from a single set
of XML source files. This section outlines how this specification is written in XML, and how the various
derived works are created.

1. The Document Type Definition
This specification was written entirely in XML, using a DTD based heavily on the DTD used by the XML
Working Group for the XML specification. The major difference between the DTD used by the XML
Working Group, and the DTD used for this specification is the addition of a DTD module for interface
specifications.

The DTD module for interfaces specifications is a very loose translation of the Extended Backus-Naur
Form (EBNF) specification of the OMG IDL syntax into XML DTD syntax. In addition to the translation,
the ability to describe the interfaces was added, thereby creating a limited form of literate programming
for interface definitions.

While the DTD module is sufficient for the purposes of the DOM WG, it is very loosely typed, meaning
that there are very few constraints placed on the type specifications (the type information is effectively
treated as an opaque string). In a DTD for object to object communication, some stricter enforcement of
data types would probably be beneficial.

2. The production process
The DOM specification is written using XML. All documents are valid XML. In order to produce the
HTML versions of the specification, the object indexes, the Java source code, and the OMG IDL and
ECMA Script definitions, the XML specification is converted.

The tool currently used for conversion is COST by Joe English. COST takes the ESIS output of nsgmls ,
creates an internal representation, and then allows scripts, and event handlers to be run over the internal
data structure. Event handlers allow document patterns and associated processing to be specified: when
the pattern is matched during a pre-order traversal of a document subtree, the associated action is
executed. This is the heart of the conversion process. Scripts are used to tie the various components
together. For example, each of the major derived data sources (Java code etc.) is created by the execution
of a script, which in turn executes one or more event handlers. The scripts and event handlers are specified
using TCL.

The current version of COST has been somewhat modified from the publicly available version. In
particular, it now runs correctly under 32-bit Windows, uses TCL 8.0, and correctly handles the case
sensitivity of XML (though it probably could not correctly handle native language markup).

We could also have used Jade , by James Clark. Like COST, Jade allows patterns and actions to be
specified, but Jade is based on DSSSL, an international standard, whereas COST is not. Jade is more
powerful than COST in many ways, but prior experience of the editor with Cost made it easier to use this
rather than Jade . A future version or Level of the DOM specification may be produced using Jade or an
XSL processor.

168

1. The Document Type Definition

The complete XML source files are available at:
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/xml-source.zip

3. Object Definitions
As stated earlier, all object definitions are specified in XML. The Java bindings, OMG IDL bindings, and
ECMA Script bindings are all generated automatically from the XML source code.

This is possible because the information specified in XML is a superset of what these other syntax need.
This is a general observation, and the same kind of technique can be applied to many other areas: given
rich structure, rich processing and conversion are possible. For Java and OMG IDL, it is basically just a
matter of renaming syntactic keywords; for ECMA Script, the process is somewhat more involved.

A typical object definition in XML looks something like this:

<interface name="foo">
 <descr><p>Description goes here...</p></descr>
 <method name="bar">
 <descr><p>Description goes here...</p></descr>
 <parameters>
 <param name="baz" type="DOMString" attr="in">
 <descr><p>Description goes here...</p></descr>
 </param>
 </parameters>
 <returns type="void">
 <descr><p>Description goes here...</p></descr>
 </returns>
 <raises>
 <!-- Throws no exceptions -->
 </raises>
 </method>
</interface>

As can easily be seen, this is quite verbose, but not unlike OMG IDL. In fact, when the specification was
originally converted to use XML, the OMG IDL definitions were automatically converted into the
corresponding XML source using common Unix text manipulation tools.

169

3. Object Definitions

	
	
	 REC-DOM-Level-1-19981001

	Document Object Model †DOM‡ Level 1 Specification
	
	Version 1.0
	W3C Recommendation 1 October, 1998

	Status of this document
	Errata
	Available Languages

	Abstract
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	What is the Document Object Model?
	Introduction
	What the Document Object Model is
	What the Document Object Model is not
	Where the Document Object Model came from
	Entities and the DOM Core
	DOM Interfaces and DOM Implementations
	Limitations of Level 1

	1. Document Object Model †Core‡ Level 1
	1.1. Overview of the DOM Core Interfaces
	1.1.1. The DOM Structure Model
	1.1.2. Memory Management
	1.1.3. Naming Conventions
	1.1.4. Inheritance vs Flattened Views of the API
	1.1.5. The DOMString type
	1.1.6. Case sensitivity in the DOM

	1.2. Fundamental Interfaces
	1.3. Extended Interfaces

	2. Document Object Model †HTML‡ Level 1
	2.1. Introduction
	2.2. HTML Application of Core DOM
	2.2.1. Naming Conventions

	2.3. Miscellaneous Object Definitions
	2.4. Objects related to HTML documents
	2.5. HTML Elements
	2.5.1. Property Attributes
	2.5.2. Naming Exceptions
	2.5.3. Exposing Element Type Names †tagName‡
	2.5.4. The HTMLElement interface
	2.5.5. Object definitions

	Appendix A: Contributors
	Appendix B: Glossary
	Appendix C: IDL Definitions
	C.1: Document Object Model Level 1 Core
	C.2: Document Object Model Level 1 HTML

	Appendix D: Java Language Binding
	D.1: Document Object Model Level 1 Core
	D.2: Document Object Model Level 1 HTML

	Appendix E: ECMA Script Language Binding
	E.1: Document Object Model Level 1 Core
	E.2: Document Object Model Level 1 HTML

	References
	Index
	Production Notes †Non-Normative‡
	1. The Document Type Definition
	2. The production process
	3. Object Definitions

